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ABSTRACT 

Using classic approaches of analytical mechanics, this 

paper addresses the general problem and provides an analytic 

and explicit formulation for the stiffness matrix of a generic 

mooring system layout. This is done around a generic offset 

position and heading of the floating unit, given the curves of 

tension vs displacement for each mooring line, for a 

frictionless seabed. The international benchmark of the 

Offshore Code Comparison Collaboration Continuation – OC4 

is taken as a case study. The use of the analytical formulation 

is exemplified by systematically varying the mean offset 

position and heading of the platform, as well as the pre-

tensioning of the mooring system. 

Keywords: mooring system, stiffness, analytic formulation, 

floating wind turbine, OC4. 

INTRODUCTION 

Mooring system design is an essential task in Floating 

Offshore Wind Turbine (FOWT) projects. A good mooring 

system must be cost effective, regarding payload, initial 

investments, operational expenditure and long-term 

maintenance costs, while being able to provide the necessary 

station keeping ability to the floating unit, resisting to current, 

wind and wave loads, from mild to harsh environmental 

conditions. 

During a FOWT project, the mooring system stiffness has 

to be specified and designed in accordance with a set of static 

and dynamic criteria. In essence, the mooring stiffness has to 

be high enough to keep the unit offset within operational 

margins, whereas detuning its dynamics from slow-drift forces 

due to the action of waves and wind in the presence of ocean 

currents. Such a task is usually accomplished through 

integrated nonlinear numerical simulations, in which the 

whole system, including the mooring lines, is modeled from 

the point of view of hydrodynamics, aerodynamics and 

dynamics. Quite sophisticated linear and nonlinear codes are 

available nowadays; see, e.g. [1]. Nonetheless, in early stages 

of a complex project, expedite tools are always useful. This is 

the case regarding a preliminary specification of a proper 

mooring system stiffness matrix in the horizontal plane.  

Using classic approaches of analytical mechanics, this 

paper addresses the general problem and provides an analytic 

and explicit formulation for the horizontal plane stiffness 

matrix of a generic mooring system layout. This is done 

around a generic offset position and heading of the floating 

unit, given the curves of tension for each mooring line as 

nonlinear functions of the displacement of the respective 

fairlead on the horizontal plane. Possible friction with the 

seabed is neglected. From basic concepts of mechanics, the 

problem is formulated in a general way, by deriving the 

stiffness matrix from generalized mooring forces associated to 

a set of generalized displacements on the horizontal plane. 

Then, around any configuration, a stiffness matrix is obtained 

locally and analytically, for a generic mooring layout. In the 

formulation, coupling stiffness terms are clearly revealed, 

whereas the effect of local tension is made explicit. 

The international benchmark of the Offshore Code 

Comparison Collaboration Continuation – OC4 is taken as a 

case study. The use of the analytical formulation is 

exemplified by systematically varying the mean offset position 

and heading of the platform, as well as the pre-tensioning of 

the mooring system. Colored maps for the stiffness matrix are 

plotted, where symmetric and antisymmetric patterns are 

disclosed. Finally, an assessment on the eigenvalue problem as 

a function of position and heading is made, exemplified by 

maps of natural periods and illustrated with the corresponding 

oscillation modes. 
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THE STIFFNESS MATRIX MODEL 

Consider a generic moored body, as sketched in Figure 1. 

As we are mostly interested in the mooring stiffness on the 

horizontal plane, the problem is taken as planar. All fairlead 

mooring line positions, iP , Ni  ,...,1 , are supposed to 

pertain to the same horizontal plane, say , which is taken as 

the plane of motion. Let Oxy  and G  be two reference 

frames where, for convenience, G is the projection of the 

position of the center of mass of the body onto the considered 

plane of motion, . The frame Oxy , oriented by the unity 

vectors ),( ji


 and defined with the origin at the equilibrium 

position of the autonomous system, is grounded to the earth. 

G  is a moving frame, fixed to the body. Let iA  be the 

projection of the anchor position of a particular mooring line, 

i, onto , such that iiiii PAPAr  . Let also 

GPGPl iii   be the distance between iP  and G and i  

the angle formed by GPi  with respect to the axis G .  

 
Figure 1: Sketch of a horizontal plan view of a generic moored body 

at a generic offset position and heading. The projection onto the plane 

of motion is detailed for a particular mooring line  i=1,…,N.  

Define  tvu q  as the generalized coordinate 

vector that gives the position of the body with respect to the 

fixed frame. The displacements ),(),(
GG

yxvu   are the 

Cartesian coordinates of G and   is the heading angle with 

respect to Ox . Each fairlead position Pi may be then written as 

a function )(qii PP  , in the form: 

jlviluOP iiiii
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with 
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Notice that ir  and i  are both functions of q . Neglecting a 

possible effect of friction with the seabed, consider now that 

each mooring line will contribute with the horizontal 

component of a restoring force applied to the vessel, in the 

form, 

iiiiii erfrFF


)()(   ,   (5) 

where ( ) ( ( ); ) ( )i i i i i if r f P A f q q  is a nonlinear function 

of the distance iiiii PAPAr   that characterizes each 

mooring line. Notice that such a function should be known a 

priori and may represent from a simple catenary line to a 

composed and extensible line made of various segments, as 

chain and ropes. The way the functions are constructed can 

vary from analytical methods, for the simple catenary case, to 

numerical ones. Such functions might also take into account 

the action of sea current, although this point is left for a further 

paper. An example for a simple catenary line is given in the 

Appendix. 

From the classical methods of analytical mechanics, the 

corresponding generalized restoring force vector, 

 tvu QQQ Q , is then supposed to be a function of the 

position q  only, in a quasi-static approach. For conciseness 

sake, let jQ , 3,2,.1j  designate the generalized restoring 

forces for ),,( vu , respectively. Then, from any good 

textbook of analytical mechanics, e.g., [1], [3],  



















N

i jj

i
iii

N

i j

i
ij

q

V

q

P
erf

q

P
FQ

11

)(


 , (6) 

where ( ; )V V q  is defined as the mooring system 

force potential function, being  ( , , ); 1,..,i i iA l i N   the 

set of geometric parameters. In the jargon of analytical 

mechanics, ji qP  is sometimes referred to as the local 

generalized direction corresponding to jq . Locally, around 

any chosen configuration q , the mooring system stiffness 

matrix )(qK  may be then determined, as the Hessian of 

);( iVV pq . In fact, 
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From (6), it follows then that, 
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where 

)( iiiii rkdrdff       (9) 

is the local horizontal stiffness of the i-th mooring line. Notice 

that in the second summation term in Eq. (8), the effect of the 

horizontal component of the tension, ( ) ( )i i if r f q , of each 

mooring line at that position, appears explicitly. Notice that 

Eq. (8) is general indeed, seen the assumed hypotheses. Notice 

also that this matrix is a local linearization of the system 

nonlinear stiffness, at any assumed configuration, i.e., at any 

mean dislocation of the vessel that might be caused by the 

environmental forces. Addressing the problem of finding such 

mean equilibrium position under environmental forces is not 

in the scope of the present paper and shall be discussed in a 

further work, for completeness sake. 

After some straightforward algebra (see Appendix A), and 

defining 

( ) ( )i i i i ik r f r r      (10) 

as the ‘string stiffness’, i.e., that associated to the tensioning of 

each mooring line at a given position q, we finally arrive at a 

symmetric stiffness matrix for the moored system, 
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The effect of the ‘string stiffness’, )( ii rk , is analogous to 

that of a tensioned string in a perpendicular direction to its 

axis, as in a violin chord, for instance. The presence of terms 

related to ik  can be of crucial importance, particularly to the 

yawing rigidity, for some symmetric mooring arrangements 

with a central point, as those used in an equilateral triangular 

semi-submersible platform, for example. Such an issue will be 

explored in the next section. Notice that the ‘string stiffness’ 

terms have sometimes been missed in the specialized technical 

literature; see, e.g., [4], page 266, Eq. (8.26). As a matter of 

fact, stiffness matrices for systems composed by inclined 

linear springs may be found in many textbooks; see, e.g., [5], 

p 572-576. However, the ‘spring stiffness’ effect on the 

torsional stiffness (the yawing stiffness in the present case) is 

not so commonly found. Formulations for generic restoring 

force functions are not commonly found either. 

Observe also that, would the reader prefer to work on the 

vessel reference frame, G , a simple rotation should be 

applied in the form, 

t
BKBK ˆ  ,    (14) 
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Certainly, the same general result could have been derived 

through perturbation techniques, by retaining first order terms 

in ( , , )u v    in the Taylor series expansions of the mooring 

line horizontal force functions, around any given position, 

( , , )u v  , as originally done in [6]; see also [5]. However, 

approaching the problem through the methods of analytical 

mechanics, besides much more elegant, produces concise, 

straightforward and general results, concerning the use of any 
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suitable nonlinear restoring force function 

( ) ( ( ); ) ( )i i i i i if r f P A f q q . Moreover, the generalized forces 

given in Eq. (6) may be applied in nonlinear analysis 

procedures or in direct nonlinear dynamic numerical 

simulations. 

CASE STUDY: THE OC4 FOWT 

To illustrate and discuss the application of the analytical 

method, we take the OC4-DeepCwind, semi-submersible type, 

Floating Offshore Wind Turbine, [8], as a case of study. The 

mooring line arrangement is supposed to be triangular 

equilateral, as shown in Figure 2. Table 1 shows the relevant 

data for the analysis of the chosen moored system. 

 

 

Figure 2: An equilateral triangular mooring system arrangement. 

Obviously, for such a symmetric arrangement and under 

no external force, the equilibrium position of the system is the 

trivial one,  0 0 0
t

 q 0 . 

 

Figure 3: The OC4-DeepCwind floating wind system; illustration 

extracted from [7]. 

 

Table 1. OC4-DeepCwind Semi-Submersible Floating Offshore 

Wind Turbine platform and mooring system relevant data; [7][8] 

FOWT unity 

Type Semi-sub 

Mass 14,267 t 

Yaw moment of inertia around Gz 12.260E06 tm2 

Surge added mass (Ma 8,270 t 

Sway added mass (Ma 8,270 t 

Yaw added moment of inertia (Ia  6.230E06 tm2 

Center of mass (G) centered 

Draught 20 m 

Diameter of central column 6.5 m 

Diameter of offset columns 12 m 

Diameter of base columns 24 m 

Diameter of braces 1.6 m 

 at zero frequency  

Mooring system 

Number of mooring lines 3 

Type mooring chain 

Equidistant arrangement at 120o 

Radius from center to anchors ( 0iA ) 837.6m 

Radius from center to fairleads (l) 40.9m 

Mass per unit length () 113.35kg/m 

Immersed weight per unit length () 1064.6N/m 

Unstretched mooring length (base case) (L) 835.5m 

Horizontal pre-tension (base case) 962.57kN 
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Moreover, at the trivial equilibrium position we have 

, 1,2,3i i i   , so that the first summation in the yaw 

stiffness coefficient, k , given in Eq. (12) turns to be 

identically null, as expected. 

The second summation term is not null, though. In fact, at 

q 0 , with 
ir r , 

il l  and ( ) ( )i i i i ik r f r r k  , i=1,2,3, 

k  reduces to  

3
2 2

1

1 3 1i

i i

i i

r r
k k l kl

l l
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

   
      

  


q 0
 (17) 

In other words, in this particular configuration, the pure 

yaw stiffness is only function of the ‘string stiffness’, k . If 

this term is ignored, the analyst might be erroneously led to 

the conclusion that the yaw stiffnesses would be identically 

null at the trivial equilibrium position, contradicting any 

intuitive argument.  

For completeness, the reader can easily verify from Eqs. 

(12) and (13) that, at q 0 , with ( ) ( )i i i ik r f r k  , the 

stiffnesses matrix for the triangular arrangement is diagonal 

and reduces to 

2

( ) 0 0
3

(0) 0 ( ) 0
2

0 0 2 1

k k

k k

r
kl

l

 
 
 
  
 

      

K . (18) 

Notice that, generally speaking, the ‘string stiffness’ effect 

may be indeed significant, not only for such peculiar 

arrangements and particular configurations. In fact, in a taut-

leg mooring system, where pre-tensioning is high and the 

mooring system radius relatively small, the ‘string stiffness’ 

may become even more relevant. The same may be also true 

for systems composed by mixed mooring lines, with chain and 

ropes. Such an issue is left for a further paper. 

From now on, attention is given to the OC4-DeepCwind 

FOWT mooring system, focusing on the effect of pre-

tensioning on the stiffness matrix and on the natural periods of 

the motions in the horizontal plane. A simple catenary model 

is taken to compute the horizontal restoring force function 

( )i if r , since for chains the geometric rigidity is much lower 

than the elastic one, in general. This is the case for the system 

under study. The catenary model for ( )i if r  is given in the 

appendix. Pre-tensioning is defined at the trivial equilibrium 

position. The design condition, corresponding to the data 

given in Table 1, is taken as the base case. Two other pre-

tensioning conditions are analyzed: a ‘low’ one, with 

pretension reduced by 10% and a ‘high’ one, with pretension 

augmented by 10%. Table 2 presents the corresponding 

unstretched mooring line lengths and respective pre-tensioning 

values. 

Figure 4 shows a colored map of the stiffness matrix 

coefficients for the design condition, as functions of the 

displacement of the center of mass of the platform from the 

trivial equilibrium position. 

Table 2. OC4-DeepCwind mooring system analyzed conditions 

Pre-tensioning condition Low Design High 

Pre-tensioning ratio (f*) w.r.t design  0.9 1.0 1.1 

Unstretched mooring line length (m) 837.0 835.5 833.5 

Horizontal pre-tensioning (kN) 866.3 962.6 1058.8 

Pre-tensioning (kN) 1079.1 1161.0 1266.4 

Angle at fairlead w.r.t. horizontal (o) 35.3 34.0 32.5 

Values are given in kN and m. This is done for a single 

heading angle, 0  , taking displacements *u u l  and 

*v v l  in the interval [-0.25, +0.25]. In other words, these 

maps present the elements of ( , ,0)u vK . It should be observed 

the large variability of all coefficients within the considered 

interval. Symmetric and anti-symmetric patterns are also 

shown explicitly. Notice, for instance, the symmetry of the 

elements in the diagonal, with respect to the displacement v, as 

should be expected. On the other hand, the off-diagonal terms, 

uvk   and 
vk  , are respectively anti-symmetric and symmetric 

with respect to v, whereas 
uk   is anti-symmetric w.r.t. to both, 

u and v. For this symmetric heading condition ( 0  ), such 

qualitative results could have been intuitively anticipated and 

may be observed from Eqs. (12) and (13). 

Figure 5 repeats the same results of Figure 4, however in 

a different color scale. This change in scale is made for direct 

comparisons with other cases, presented in Figs. 6-10. The 

color scales are preserved hereinafter. Figure 6 illustrates how 

a relatively small heading angle, chosen illustratively as 

10  , may affect the stiffness matrix. Compared to the base 

case, the diagonal terms reveal some increasing. Changes are 

more pronounced for the off-diagonal terms, particularly to 

those involving the heading angle. The coupled terms reveal 

the existence of some symmetry (anti-symmetry) breakings. 

Figures 7 to 10 illustrate how pre-tensioning affects the 

stiffness matrix. Figures 7 and 8 treat a case in which the pre-

tensioning of the design case has been reduced by 10%. Both 

heading angles are considered, for comparison sake. Though 

small, quantitative changes are perceptible. The qualitative 

behavior remains the same, as can be seen by comparing Figs. 

7 and 5 and Figs. 8 and 6. The same kind of symmetries and 

anti-symmetries are observed in Fig. 7, as well the same 

symmetry / anti-symmetry breakings in Fig. 8, caused by a 

non-symmetric heading. On the other hand, by increasing pre-

tensioning by 10%, the stiffness is augmented significantly, as 

neatly shows the diagonal terms of Figures 9 and 10. 

With a quantitative analysis purpose, Table 3 presents 

numerical values for some of the conditions at null heading 

(). For concision, only the design pre-tensioning 

condition is exemplified. The mentioned symmetries and anti-

symmetries with respect to the displacements u* and v* are 

now quantitatively explicit, much more than could be revealed 

by the colored maps. Table 4 refers to the same pre-tensioning 

design condition, but at a small heading angle, (). 
Symmetry and anti-symmetry breakings due to the non-null 

heading angle are noticeable. 
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Figure 4: OC-4 DeepCwind FOWT. Stiffness Matrix coefficients as function of displacements, in percentage of l = 40.9m. Heading: = 0o. Base 

case. Pre-tensioning: design conditions. Pre-tensioning ratio: f*=1.0. Unities: kN and m. Amplified color scales. 

 

 

Table 3. OC4-DeepCwind mooring system stiffness matrix; 

Design pre-tensioning case. Units in kN and m.
* *( , ) (0,0)u v   

81,25 0,00 0,00 

  81,25 0,00 

    1,24E+05 
* *( , ) (0.25,0.25)u v   

157,93 -19,81 -58,91 

  71,94 -3,20 

    1,52E+05 
* *( , ) ( 0.25,0.25)u v    

90,71 -68,27 61,38 

  183,24 -4,68 

    1,64E+05 
* *( , ) (0.25, 0.25)u v    

157,93 19,81 58,91 

  71,94 -3,20 

    1,52E+05 
* *( , ) ( 0.25, 0.25)u v     

90,71 68,27 -61,38 

  183,24 -4,68 

    1,64E+05 

 

 

 

Table 4. OC4-DeepCwind mooring system stiffness matrix; 

Design pre-tensioning case. Units in kN and m
* *( , ) (0,0)u v   

85,28 0,00 0,00 

  85,28 0,00 

    1,36E+05 
* *( , ) (0.25,0.25)u v   

167,33 -22,33 648,91 

  76,75 371,96 

    1,68E+05 
* *( , ) ( 0.25,0.25)u v    

94,95 -72,63 -700,68 

  197,07 1113,17 

    1,84E+05 
* *( , ) (0.25, 0.25)u v    

170,47 19,99 793,89 

  74,76 -380,33 

    1,70E+05 
* *( , ) ( 0.25, 0.25)u v     

98,04 75,30 -850,07 

  195,14 -1124,58 

    1,85E+05 
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Figure 5: OC-4 DeepCwind FOWT. Stiffness Matrix coefficients as function of displacements, in percentage of l = 40.9m. Heading: = 0o. Base 

case. Pre-tensioning: design conditions. Pre-tensioning ratio: f*=1.0. Unities: kN and m. 

 

Figure 6: OC-4 DeepCwind FOWT. Stiffness Matrix coefficients as function of displacements, in percentage of l = 40.9m. Heading: = 10o. Base 

case. Pre-tensioning: design conditions. Pre-tensioning ratio: f*=1.0. Unities: kN and m. 
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Figure 7: OC-4 DeepCwind FOWT. Stiffness Matrix coefficients as function of displacements, in percentage of l = 40.9m. Heading: = 0o. ‘Low’ 

pre-tensioning: case. Pre-tensioning ratio: f*=0.9. Unities: kN and m. 

 

Figure 8: OC-4 DeepCwind FOWT. Stiffness Matrix coefficients as function of displacements, in percentage of l = 40.9m. Heading: = 10o. ‘Low’ 

pre-tensioning: case. Pre-tensioning ratio: f*=0.9. Unities: kN and m. 
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Figure 9: OC-4 DeepCwind FOWT. Stiffness Matrix coefficients as function of displacements, in percentage of l = 40.9m. Heading: = 0o. ‘High’ 

pre-tensioning: case. Pre-tensioning ratio: f*=1.1. Unities: kN and m. 

 

Figure 10: OC-4 DeepCwind FOWT. Stiffness Matrix coefficients as function of displacements, in percentage of l = 40.9m. Heading: = 10o. 

‘High’ pre-tensioning: case. Pre-tensioning ratio: f*=1.1. Unities: kN and m. 
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At last, an assessment on how the mean position of the 

platform may influence the natural periods and modes of 

oscillation is made. A classic linear eigenvalue problem is 

solved within the same intervals of displacements u* and v*, 

for the headings  and . For that, added masses 

and moment of inertia have been determined through a 

worldwide-recognized panel method-based software, [9]. 

Figure 11 shows the added masses and moment of inertia, 

);;(  aaa IMM , in surge, sway and yaw, as function of 

the period of oscillation. As well known, these added inertia 

coefficients tend to asymptotic values as the oscillation 

periods go to infinity. Such asymptotic values may then be 

taken as representative ones for a first estimate of (large) 

natural periods in the horizontal plane. 

It has to be noticed that in the asymptotic limit of zero-

frequency, the motions on the horizontal plane could have 

been considered under a double-body modelling in an infinite 

fluid, thus under no free-surface effects. Moreover, regular 

polygonal shaped bodies, therefore polygonal symmetric, have 

equal added masses in orthogonal directions, i.e., 

 aa MM  ; see, e.g., [10], page 37. In other words, in the 

present case, the added mass matrix, besides diagonal, is 

invariant with respect to a planar rotation, , as that 

considered in this paper, such that 

 aaavvauu MMMM  . This fact simplifies the 

numerical work even more in the present case study. 

 

 
Figure 11: Added masses and moment of inertia as function of period. 

Determined with WAMIT®; [9]. 

 

Figures 12 and 13 present colored maps of the natural 

periods as function of the position of the center of mass, for 

 and . Center lines refer to the design pre-

tensioning case; upper lines to the ‘low’ pre-tensioning case 

and bottom lines to the ‘high’ pre-tensioning one. Natural 

periods vary from 60 to 120s. 

 

 
Figure 12: OC-4 DeepCwind FOWT. Natural periods (seconds) as 

function of pre-tensioning ratio: upper: 0.9; center: 1.0; bottom: 1.1. 

Heading: = 0o.  

 

Figure 13: OC-4 DeepCwind FOWT. Natural periods (seconds) as 

function of pre-tensioning ratio: upper: 0.9; center: 1.0; bottom: 1.1. 

Heading: = 10o. 

 
* *( , ) ( 0.25,0.25)u v    

 
* *( , ) (0.25,0.25)u v   

 

 
* *( , ) (0,0)u v   

 

 
* *( , ) ( 0.25, 0.25)u v     

 
* *( , ) (0.25, 0.25)u v    

Figure 14: OC-4 DeepCwind. Oscillation modes, corresponding to 

natural periods, ,  1,2,3jT j  . Design pre-tensioning case; f*=1.0. 

Figure 12, center line. 
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CONCLUSIONS 

A simple analytical model has been worked out to deal 

with the problem of determining the stiffness matrix of a 

generic mooring system in the horizontal plane, by 

considering a frictionless seabed. Supported on usual relations 

of analytical mechanics, from which the generalized mooring 

forces are constructed, this paper has as main contribution 

explicit mathematical forms for all the stiffness matrix 

elements, determined at any mean position the vessel might 

assume on the horizontal plane. Besides the geometry of the 

mooring system, the only data needed are the functions that 

relate the restoring horizontal force of each mooring line to the 

horizontal projection of the distance between the anchor and 

the respective fairlead position. Therefore, the procedure is 

general, in a quasi-static sense, since such functions are to be 

computed a priori, given the type of each mooring line. Notice 

that all types of mooring lines may be accounted for, from 

simple catenary lines to mixed ones. 

A particular practical contribution of the analytical 

formulation is the discussion on the importance of terms 

related to the tensioning of the lines (the ‘string stiffness’) at a 

given position and not only of terms related to the derivatives 

of the functions of restoring forces with respect to the 

displacements. Such tensioning terms have sometimes been 

missing or omitted in the specialized technical literature, e.g., 

[4], and may have important effects in the case of polygonal 

arrangements or in very tight mooring systems. 

Those aspects have been illustrated through the 

application of the analytical formulation to the international 

benchmark of the Offshore Code Comparison Collaboration 

Continuation – OC4 floating wind turbine. In this particular 

triangular symmetric arrangement, the yaw stiffness would 

render exactly null if the ‘string stiffness’ terms were not 

considered. Finally, the use of the analytical formulae enabled 

us to construct maps of stiffness as function of the mean offset 

position of the platform within a certain interval. Symmetries 

and anti-symmetries with respect to the mean offset of the 

platform have been revealed through colored maps. The 

effects of pre-tensioning and heading on the stiffness matrix 

were also addressed. In particular, how heading may break the 

alluded symmetric or anti-symmetric patterns. Finally, an 

assessment on natural periods and respective modes of 

oscillation varying as function of pre-tensioning, heading and 

offset position has been made. 

The authors believe that this model can contribute 

practically, if incorporated in the early stages of mooring 

system design procedures. In fact, being the method analytical, 

therefore expedite, it may serve as guide for mooring system 

dimensioning. Further work is envisaged for such an approach 

towards nonlinear dynamics analysis and bifurcation studies; 

see, e.g., [11] - [13]. 
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APPENDIX 

A. Geometric relations 

To compute the stiffness matrix coefficients from the 

general form given by Eq. (8), a set of relations must be 

worked out. Such relations are easily verifiable by the 

interested reader, as follows. 
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(i) ‘Local generalized directions’, 
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(ii) Partial derivatives 
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(iii) Partial derivatives of the generalized projections of 

mooring lines unity vectors, 























j

i
i

k q

P
e

q


; from Eqs 

(2), (3), (4), (A.1) and (A.2): 

 

 

 

 

  




























































































u

P
e

vv

ruv

P
e

u

rvv

P
e

v

ruu

P
e

u

i
ii

i

ii
i

i
i

i

i
i

i
i

i

i
i

i
i




















cos

cossin
sin

cos
sin

sin
cos

2

2

 ; (A.3) 

 and 

 











































































































)cos(1)cos(

)cos(cos

)cos(sin

ii
i

i
iii

i
i

i
i

iii
i

ii
i

i
i

iii
i

ii
i

r

l
l

P
e

P
e

v

r

l

v

P
e

P
e

u

r

l

u

P
e
























(A.4) 

 

In fact, symmetries and recursive relations may be seen 

embedded in the expressions above. 

B. Horizontal force function for a catenary line 

supported on a frictionless and horizontal seabed 

Consider the ith catenary line supported on a frictionless and 

horizontal seabed, as shown in Figure 15. Li is the total length, 

from the anchor Ai to the fairlead Pi; Lsi is the suspended 

length; zfi is the distance between the fairlead and the seabed; 

rsi and ri are, respectively, the projections of the suspended and 

total length on the seabed. Let i be the immersed weight per 

unit length and fi the horizontal component of the tension at 

the fairlead. 

 

 

Figure 15: Catenary line and geometric definitions 

 

From the classic equations of a catenary, by eliminating Lsi 

and rsi in favor of Li and ri, it can be proved that, see e.g. [6], 

the function )( ii rf  may be written in an analytic, though 

inverse form, as 
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from which the mooring line ‘derivative stiffness’ 

)()( iiii rfrk  , as well as the ‘string stiffness’ 

iiiii rrfrk )()(   may be readily obtained. 
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