Autovalores e autovetores de operadores lineares

Prof. Alfredo Gay Neto Prof. Luís Bitencourt Jr. Prof. Miguel Bucalem

Definições

Seja um operador linear $T: \mathbb{E} \to \mathbb{E}$,

E: espaço de vetores da geometria euclidiana

se existirem $\lambda \in \mathbb{R}$ e $x \in \mathbb{E}$, $x \neq 0$, tal que:

$$\mathbf{T}\mathbf{x} = \lambda \mathbf{x}$$

Dizemos que λ é um autovalor de T associado ao autovetor (ou "vetor próprio") x.

Se x é um autovetor, então $y = \alpha x$, $\alpha \in \mathbb{R}$, também é autovetor.

$$\mathbf{T}\mathbf{y} = \mathbf{T}(\alpha \mathbf{x}) = \alpha \mathbf{T}(\mathbf{x}) = \alpha \lambda \mathbf{x} = \lambda(\alpha \mathbf{x}) = \lambda \mathbf{y}$$

O autovetor $y = \alpha x$ é associado ao mesmo autovalor λ .

Equação característica

Considerando h um autovetor de T,

$$Th = \lambda h$$

$$\mathbf{T}\boldsymbol{h} - \lambda \boldsymbol{h} = (\mathbf{T} - \lambda \mathbf{I})\boldsymbol{h} = \mathbf{0}$$

Pode ser escrito matricialmente por:

$$([T] - \lambda[I])\{h\} = 0$$

$$\begin{bmatrix} T_{11} - \lambda & T_{12} & T_{13} \\ T_{21} & T_{22} - \lambda & T_{23} \\ T_{31} & T_{32} & T_{33} - \lambda \end{bmatrix} \begin{pmatrix} h_1 \\ h_2 \\ h_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

Equação característica

Para existirem soluções diferentes da trivial (h = 0),

Equação característica

$$\det([T] - \lambda[I]) = 0$$
ou
$$\lambda^3 - I_1 \lambda^2 + I_2 \lambda - I_3 = 0$$

onde I_1 , I_2 , I_3 são os invariantes:

$$I_{1} = T_{11} + T_{22} + T_{33} = \text{tr}[T]$$

$$I_{2} = \begin{vmatrix} T_{11} & T_{12} \\ T_{21} & T_{22} \end{vmatrix} + \begin{vmatrix} T_{22} & T_{23} \\ T_{32} & T_{33} \end{vmatrix} + \begin{vmatrix} T_{33} & T_{31} \\ T_{13} & T_{11} \end{vmatrix}$$

$$I_{3} = \begin{vmatrix} T_{11} & T_{12} & T_{13} \\ T_{21} & T_{22} & T_{23} \\ T_{31} & T_{32} & T_{33} \end{vmatrix} = \text{det}[T]$$

Para um operador simétrico, as raízes da equação característica $(\lambda_1, \lambda_2, \lambda_3)$ são números reais

Autovetor associado

Considerando, por exemplo, o autovalor λ_1 , pode-se determiner o autovetor $h^{(1)}$ associado a λ_1 usando:

$$\begin{bmatrix} T_{11} - \lambda_1 & T_{12} & T_{13} \\ T_{21} & T_{22} - \lambda_1 & T_{23} \\ T_{31} & T_{32} & T_{33} - \lambda_1 \end{bmatrix} \begin{pmatrix} h_1^{(1)} \\ h_2^{(1)} \\ h_3^{(1)} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

Como a matriz é singular, há infinitas soluções. Para restringir as soluções, considera-se a condição adicional:

$$\|\boldsymbol{h}\| = 1 \Rightarrow (h_1)^2 + (h_2)^2 + (h_3)^2 = 1$$

Diz-se que h é um versor neste caso

Ortogonalidade dos autovetores

Quando $\mathbf{T} = \mathbf{T}^T$ para dois autovalores distintos $\lambda_1 \neq \lambda_2$, tem-se que $\mathbf{h}_1 \perp \mathbf{h}_2$

De fato, como $T = T^T$:

$$\boldsymbol{h}_1 \cdot \mathbf{T}\boldsymbol{h}_2 = \boldsymbol{h}_2 \cdot \mathbf{T}^T \boldsymbol{h}_1 = \boldsymbol{h}_2 \cdot \mathbf{T}\boldsymbol{h}_1$$

Tem-se:

$$\mathbf{h}_1 \cdot \lambda_2 \mathbf{h}_2 = \mathbf{h}_2 \cdot \lambda_1 \mathbf{h}_1$$

$$\Rightarrow (\lambda_2 - \lambda_1)(\mathbf{h}_1 \cdot \mathbf{h}_2) = 0 \Rightarrow \boxed{\mathbf{h}_1 \cdot \mathbf{h}_2 = 0}$$

Como
$$\| oldsymbol{h}_1 \| = \| oldsymbol{h}_2 \| = 1,$$
 $oldsymbol{h}_1 \perp oldsymbol{h}_2 oldsymbol{|}$

Ortogonalidade dos autovetores

- ▶ 1ª situação: três autovalores distintos $(\lambda_1 \neq \lambda_2 \neq \lambda_3)$
 - Os três autovetores são necessariamente ortogonais entre si!
- ▶ 2^a situação: dois iguais e um distinto $(\lambda_1 = \lambda_2 \neq \lambda_3)$
 - O autovalor distinto λ_3 está associado a um determinado autovetor h_3 .
 - h_3 determina a normal a um **plano**. Todos os vetores paralelos a esse plano são autovetores associados ao outro autovalor $\lambda_1 = \lambda_2$.
 - Sempre pode-se escolher um par de autovetores ortogonais paralelos a esse plano!
- \rightarrow 3^a situação: três autovalores iguais ($\lambda_1 = \lambda_2 = \lambda_3$)
 - Todos os vetores são autovetores!
 - Sempre pode-se escolher um trio de autovetores ortogonais!

Ortogonalidade dos autovetores

Assim, é sempre possível construir uma base (tri)ortonormal formada por autovetores de um operador simétrico T.

Nesta base, a matriz de T é diagonal e tem componentes:

$$[T] = \begin{bmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & \lambda_3 \end{bmatrix}$$

Geralmente estabelecem-se os autovalores na ordem: $\lambda_1 \ge \lambda_2 \ge \lambda_3$

Pode-se definir uma forma quadrática associada a um operador linear simétrico **T** como sendo a aplicação $t: \mathbb{E} \to \mathbb{R}$, de um vetor a um número real, dada por:

$$t(\mathbf{x}) = \mathbf{x} \cdot \mathbf{T}\mathbf{x}$$

Note-se que

$$t(\alpha \mathbf{x}) = (\alpha \mathbf{x}) \cdot \mathbf{T}(\alpha \mathbf{x}) = \alpha^2 (\mathbf{x} \cdot \mathbf{T} \mathbf{x}) = \alpha^2 t(\mathbf{x}), \forall \alpha \in \mathbb{R}$$

Considere um vetor genérico x, escrito na base ortonormal de autovetores de T:

$$\boldsymbol{x} = x_1 \boldsymbol{h}_1 + x_2 \boldsymbol{h}_2 + x_3 \boldsymbol{h}_3$$

$$(x_1)^2 + (x_2)^2 + (x_3)^2 = 1$$

Na base de autovetores, o operador simétrico T que define a forma quadrática tem componentes:

$$[T] = \begin{vmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & \lambda_3 \end{vmatrix}$$

Portanto:

$$t(\mathbf{x}) = \mathbf{x} \cdot \mathbf{T}\mathbf{x} = \{x_1 \quad x_2 \quad x_3\} \begin{bmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & \lambda_3 \end{bmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$$

ou

$$t(\mathbf{x}) = \lambda_1(x_1)^2 + \lambda_2(x_2)^2 + \lambda_3(x_3)^2$$

Substituindo na equação anterior

$$(x_1)^2 = 1 - (x_2)^2 - (x_3)^2$$

$$t(\mathbf{x}) = \lambda_1 [1 - (x_2)^2 - (x_3)^2] + \lambda_2 (x_2)^2 + \lambda_3 (x_3)^2$$

$$t(\mathbf{x}) = \lambda_1 + (\lambda_2 - \lambda_1)(x_2)^2 + (\lambda_3 - \lambda_1)(x_3)^2$$

Como $\lambda_1 \ge \lambda_2 \ge \lambda_3$, pode-se concluir que:

$$\forall x \in \mathbb{E}, t(x) \le \lambda_1$$
 Já que $\lambda_2 - \lambda_1 \le 0$ e $\lambda_3 - \lambda_1 \le 0$

Como $t(\mathbf{h}_1) = \lambda_1$, λ_1 é o valor máximo assumido pela aplicação t

Analogamente, temos:

$$(x_3)^2 = 1 - (x_1)^2 - (x_2)^2$$

$$t(\mathbf{x}) = \lambda_1 (x_1)^2 + \lambda_2 (x_2)^2 + \lambda_3 [1 - (x_1)^2 - (x_2)^2]$$

$$t(\mathbf{x}) = \lambda_3 + (\lambda_1 - \lambda_3)(x_1)^2 + (\lambda_2 - \lambda_3)(x_2)^2$$

Lembrando a ordem $\lambda_1 \ge \lambda_2 \ge \lambda_3$, resulta:

$$\forall x \in \mathbb{E}, t(x) \ge \lambda_3$$
 Já que $\lambda_1 - \lambda_3 \ge 0$ e $\lambda_2 - \lambda_3 \ge 0$

Como $t(\mathbf{h}_3) = \lambda_3$, λ_3 é o valor mínimo assumido pela aplicação t

Ou seja,
$$\forall x \in \mathbb{E}, \left[\lambda_3 \leq t(x) \leq \lambda_1\right]$$

Aplicação ao estudo das deformações

O alongamento linear da fibra infinitesimal é dado por:

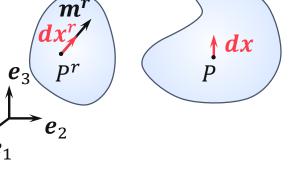
$$\varepsilon_l(\boldsymbol{m}^r) = \boldsymbol{m}^r \cdot \mathbf{E} \, \boldsymbol{m}^r$$

 $\varepsilon_l(\boldsymbol{m}^r)$ é uma forma quadrática associada ao operador linear simétrico **E**, o tensor das deformações infinitesimais.

$$\mathbf{E}\mathbf{x} = \lambda \mathbf{x}$$

Denominando-se os autovalores λ de $\varepsilon_1 \ge \varepsilon_2 \ge \varepsilon_3$ e os correspondentes autovetores de h_1 , h_2 , h_3 , decorre:

- $oldsymbol{arepsilon}$ $oldsymbol{arepsilon}_1$ é o máximo alongamento linear e ocorre na direção $oldsymbol{h}_1$
- ε_3 é o mínimo alongamento linear e ocorre na direção h_3



Aplicação ao estudo das deformações

Na base dos autovetores, tem-se a seguinte representação matricial

$$[E] = \begin{bmatrix} \varepsilon_1 & 0 & 0 \\ 0 & \varepsilon_2 & 0 \\ 0 & 0 & \varepsilon_3 \end{bmatrix}$$

Denomina-se:

 $\varepsilon_1 \ge \varepsilon_2 \ge \varepsilon_3$ deformações principais e h_1, h_2, h_3 direções principais de deformação

O estado de deformação em um ponto de um sólido deformável é caracterizado pelo tensor das deformações E que, na base ortonormal considerada, é dado por:

$$[E] = \begin{bmatrix} -2 & 1 & -1 \\ 1 & 3 & 2 \\ -1 & 2 & 4 \end{bmatrix} \times 10^{-3}$$

Determinar as deformações e direções principais de E.

Determinando a equação característica $det([E] - \lambda[I]) = 0$

$$\begin{vmatrix} -0,002 - \lambda & 0,001 & -0,001 \\ 0,001 & 0,003 - \lambda & 0,002 \\ -0,001 & 0,002 & 0,004 - \lambda \end{vmatrix} = 0$$

ou

$$\lambda^3 - I_1\lambda^2 + I_2\lambda - I_3 = 0$$

onde:

$$I_1 = E_{11} + E_{22} + E_{33} = 0.005$$

$$I_{2} = \begin{vmatrix} E_{11} & E_{12} \\ E_{21} & E_{22} \end{vmatrix} + \begin{vmatrix} E_{22} & E_{23} \\ E_{32} & E_{33} \end{vmatrix} + \begin{vmatrix} E_{33} & E_{31} \\ E_{13} & E_{11} \end{vmatrix} = -8 \times 10^{-6}$$

$$I_{3} = \begin{vmatrix} E_{11} & E_{12} & E_{13} \\ E_{21} & E_{22} & E_{23} \\ E_{31} & E_{32} & E_{33} \end{vmatrix} = -2.7 \times 10^{-8}$$

Resolvendo:

$$\lambda_1 = 0.00557$$
 $\lambda_2 = 0.00194$
 $\lambda_3 = -0.0025$

Determinando o autovetor associado a $\lambda_1 = 0.00557$

$$\begin{bmatrix} -0,00757 & 0,001 & -0,001 \\ 0,001 & -0,00257 & 0,002 \\ -0,001 & 0,002 & -0,00157 \end{bmatrix} \begin{pmatrix} h_1 \\ h_2 \\ h_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

Como o sistema é possível e indeterminado, deve-se escolher duas equações linearmente independentes e considerar a equação adicional:

$$(h_1)^2 + (h_2)^2 + (h_3)^2 = 1$$

$$-0.00757h_1 + 0.001h_2 - 0.001h_3 = 0$$

$$0.001h_1 - 0.00257h_2 + 0.002h_3 = 0$$

$$(h_1)^2 + (h_2)^2 + (h_3)^2 = 1$$

Resolvendo o sistema, chega-se a:

$$h_1 = -0.03073h_3$$

 $h_2 = 0.76753h_3$
 $h_3 = \pm 0.79304$

onde os sinais + e - para h_3 sinalizam a existência de dois autovetores com sentidos opostos. Escolhendo a solução positiva, temos:

$$h_1 = -0.02437$$

 $h_2 = 0.60868$
 $h_3 = 0.79304$

Ou:

$$\boldsymbol{h}_1 = -0.02437 \; \boldsymbol{e}_1 + 0.60868 \; \boldsymbol{e}_2 + 0.79304 \; \boldsymbol{e}_3$$

De forma análoga para $\lambda_2 = 0.00194$ e $\lambda_3 = -0.0025$ chega-se a:

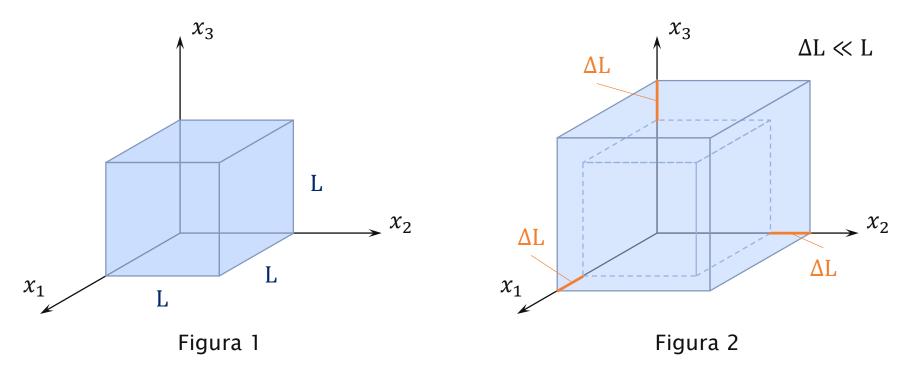
$$h_2 = -0.3351 \ e_1 - 0.75236 \ e_2 + 0.56715 \ e_3$$

 $h_3 = 0.94187 \ e_1 - 0.25192 \ e_2 + 0.22230 \ e_3$

Observa-se que na base dos versores próprios, escreve-se E como:

$$[E] = \begin{bmatrix} 0,00557 & 0 & 0\\ 0 & 0,00194 & 0\\ 0 & 0 & -0,0025 \end{bmatrix}$$

Considere o cubo de aresta L representado na Figura 1 e sua configuração deformada definida na Figura 2:



- (i) Calcule por inspeção o tensor das deformações na base (e_1, e_2, e_3) ;
- (ii) Interprete o resultado.

Nas três direções coordenadas há o mesmo alongamento:

$$E_{11} = E_{22} = E_{33} = \frac{(L + \Delta L) - L}{L} = \frac{\Delta L}{L}$$

Não há distorções entre qualquer par de fibras ortogonais paralelas aos vetores da base. Logo:

$$E_{12} = E_{23} = E_{31} = 0$$

Portanto, na base (e_1, e_2, e_3)

$$[E] = \begin{bmatrix} \Delta L/L & 0 & 0\\ 0 & \Delta L/L & 0\\ 0 & 0 & \Delta L/L \end{bmatrix}$$

- Pela estrutura diagonal do tensor das deformações obtido, conclui-se que as direções e_1 , e_2 , e_3 são direções principais e as deformações principais valem $^{\Delta L}/_L$;
- Esse caso representa a situação em que os três autovalores são iguais. Portanto, todos os vetores são autovetores, ou seja, todas as direções são direções principais;
- Para qualquer base ortonormal escolhida, não haverá distorção entre quaisquer duas fibras ortogonais escolhidas.

O alongamento linear é o mesmo para qualquer direção

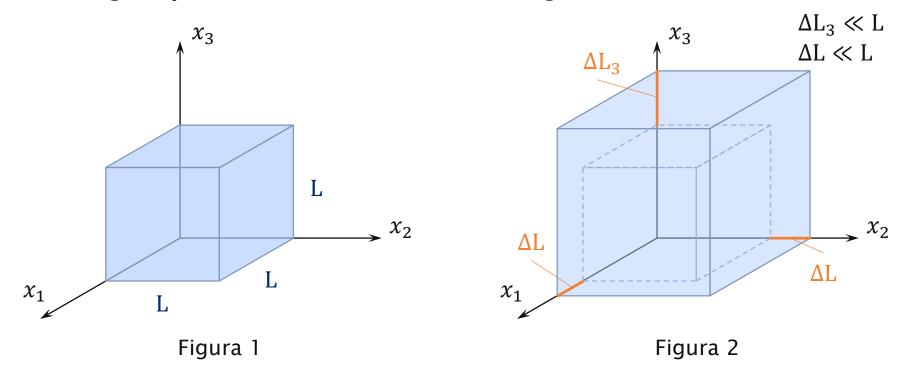
Seja $m^r = m_1 e_1 + m_2 e_2 + m_3 e_3$ um versor, o alongamento linear infinitesimal na direção de m^r é dado por:

$$\varepsilon_l(\boldsymbol{m}^r) = \boldsymbol{m}^r \cdot \mathbf{E} \, \boldsymbol{m}^r$$
 Como $\mathbf{E} = (\Delta L/L)\mathbf{I}$,
$$\varepsilon_l(\boldsymbol{m}^r) = \boldsymbol{m}^r \cdot (\Delta L/L)\mathbf{I} \, \boldsymbol{m}^r = (\Delta L/L)\underbrace{(\boldsymbol{m}^r \cdot \boldsymbol{m}^r)}_{1}$$

$$\varepsilon_l(\boldsymbol{m}^r) = \frac{\Delta L}{L}$$

Estado de dilatação uniforme

Considere o cubo de aresta L representado na Figura 1 e sua configuração deformada definida na Figura 2:



- (i) Calcule por inspeção o tensor das deformações na base (e_1, e_2, e_3) ;
- (ii) Interprete o resultado.

A diferença deste exemplo para o anterior é que o alongamento na direção e_3 é diferente dos demais. Por inspeção, obtém-se:

$$E_{11} = E_{22} = \frac{\Delta L}{L}$$

$$E_{33} = \frac{\Delta L_3}{L}$$

$$E_{12} = E_{23} = E_{31} = 0$$

Portanto, na base (e_1, e_2, e_3)

$$[E] = \begin{bmatrix} \Delta L/_{L} & 0 & 0\\ 0 & \Delta L/_{L} & 0\\ 0 & 0 & \Delta L_{3}/_{L} \end{bmatrix}$$

- Pela estrutura diagonal do tensor das deformações obtido, conclui-se que as direções e_1 , e_2 , e_3 formam uma base de autovetores;
- Os autovalores são $\Delta L/L$ e $\Delta L_3/L$;
- Esse caso representa a situação com dois autovalores iguais e um distinto $(\lambda_1 = \lambda_2 \neq \lambda_3)$;
- O versor e_3 é um autovetor correspondente ao autovalor ${}^{\Delta L_3}/_L$;
- Qualquer vetor ortogonal a e_3 , como é o caso de qualquer versor no plano x_1x_2 , é um autovetor correspondente ao autovalor $^{\Delta L}/_L$.

De fato, seja um versor $m^r = m_1 e_1 + m_2 e_2$:

$$[E]\{m^r\} = \begin{bmatrix} \Delta L/_L & 0 & 0 \\ 0 & \Delta L/_L & 0 \\ 0 & 0 & \Delta L_3/_I \end{bmatrix} \begin{Bmatrix} m_1 \\ m_2 \\ 0 \end{Bmatrix} = \frac{\Delta L}{L} \begin{Bmatrix} m_1 \\ m_2 \\ 0 \end{Bmatrix} = \frac{\Delta L}{L} \{m^r\}$$

ou

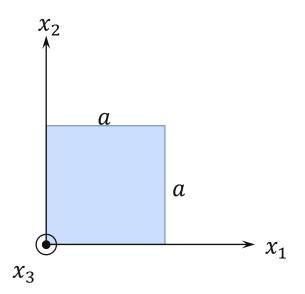
$$\mathbf{E}\,\boldsymbol{m}^r = (\Delta L/L)\boldsymbol{m}^r$$

E o alongamento linear:

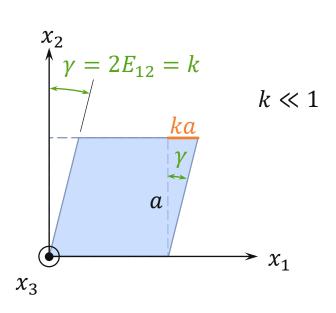
$$\varepsilon_l(\boldsymbol{m}^r) = \boldsymbol{m}^r \cdot \mathbf{E} \, \boldsymbol{m}^r = \boldsymbol{m}^r \cdot \left(\frac{\Delta L}{L}\right) \boldsymbol{m}^r = \left(\frac{\Delta L}{L}\right) \underbrace{(\boldsymbol{m}^r \cdot \boldsymbol{m}^r)}_{1}$$

$$\varepsilon_l(\boldsymbol{m}^r) = \frac{\Delta L}{L}$$

Considere a deformação ilustrada abaixo. Calcule as direções principais



Bloco na configuração indeformada



Bloco na configuração deformada

Tensor das deformações: [E] =
$$\begin{bmatrix} 0 & \frac{k}{2} & 0 \\ \frac{k}{2} & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

Determinando a equação característica $det([E] - \lambda[I]) = 0$

$$\begin{vmatrix} -\lambda & k/2 & 0 \\ k/2 & -\lambda & 0 \\ 0 & 0 & -\lambda \end{vmatrix} = 0$$

ou

$$\lambda^3 - I_1 \lambda^2 + I_2 \lambda - I_3 = 0$$

onde:

$$I_1 = E_{11} + E_{22} + E_{33} = 0$$

$$I_{2} = \begin{vmatrix} E_{11} & E_{12} \\ E_{21} & E_{22} \end{vmatrix} + \begin{vmatrix} E_{22} & E_{23} \\ E_{32} & E_{33} \end{vmatrix} + \begin{vmatrix} E_{33} & E_{31} \\ E_{13} & E_{11} \end{vmatrix} = -\frac{k^{2}}{4}$$

$$I_3 = \begin{vmatrix} E_{11} & E_{12} & E_{13} \\ E_{21} & E_{22} & E_{23} \\ E_{31} & E_{32} & E_{33} \end{vmatrix} = 0$$

Equação característica: $\lambda^3 - \frac{k^2}{4}\lambda = 0$

Resolvendo: $\lambda_1 = \frac{k}{2}$ $\lambda_2 = 0$ $\lambda_3 = -\frac{k}{2}$

Determinando o autovetor associado a $\lambda_1 = k/2$

$$\begin{bmatrix} -k/2 & k/2 & 0 \\ k/2 & -k/2 & 0 \\ 0 & 0 & -k/2 \end{bmatrix} \begin{pmatrix} h_1 \\ h_2 \\ h_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

Como o sistema é indeterminado, deve-se escolher duas equações linearmente independentes e considerar a equação adicional:

$$(h_1)^2 + (h_2)^2 + (h_3)^2 = 1$$

$$k/_{2}h_{1} - k/_{2}h_{2} = 0$$
$$-k/_{2}h_{3} = 0$$
$$(h_{1})^{2} + (h_{2})^{2} + (h_{3})^{2} = 1$$

Resolvendo o sistema, chega-se a: $h_1 = h_2 = \sqrt{2}/2$

$$h_1 = h_2 = \sqrt{2}/2$$

$$h_3 = 0$$

Para $\lambda_2 = 0$, chega-se a:

$$h_1 = h_2 = 0$$

$$h_3 = 1$$

Para
$$\lambda_3 = -k/2$$
, chega-se a:

$$h_1 = -h_2 = -\frac{\sqrt{2}}{2} \qquad h_3 = 0$$

As direções principais não triviais $h^{(1)}$ e $h^{(3)}$ pertencem ao plano x_1x_2 (onde a deformação efetivamente ocorre)

