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All of the data used in the examples in this book are provided inside R
packages and so will be automatically available when the packages are
installed or are collected by the code that is used. Instructions on
installation of packages appears as they are introduced. In some instances
data are read directly from websites into R and in these cases details are
given in the text.

An annotated R script for each chapter is available at
https://study.sagepub.com/brunsdoncomber. The authors will make
periodic updates to these as needed (for example if packages or function
calls change).

This books draws heavily on the functions available in the GISTools
package. For detailed information about this package go to: http://cran.r-
project.org/web/packages/GISTools/index.html


https://study.sagepub.com/brunsdoncomber
http://cran.r-project.org/web/packages/GISTools/index.html

R has provided a freely available tool for the analysis of data for well over a
decade. The original purpose of R was to provide a programming language
and interactive environment for statistical data analysis. By providing a
command-line focused and programmable environment for data analysis, it
has proved its worth not only as a statistical analysis toolkit (in the manner
of say SPSS or Minitab), but also a flexible environment for the
development of new techniques. In addition, it provides a number of
powerful graphical facilities.

Over recent years both of us have witnessed the increasing use of R for
spatial analysis and geo-computation in the scientific activities we engage
in directly. In addition we have seen the increasing use and analysis of
spatial data in many other scientific and academic fields. This implies that
R is now becoming an important tool for anyone who needs to work with
spatial data. Although R does not offer a ‘point-and-click’ approach
offering rapid access to a number of ‘standard’ GIS operations, its
programmability implies that it can be used to tackle a very broad range of
applications, with virtually any data format. It can be thought of as a Swiss
Army Knife of spatial data handling and analysis.

Our motivation for writing this book — much of which is about using R as
a tool for manipulating geographical information, and the production of
maps — reflects these perceptions and the need for a text that can be used by
both geographers and researchers in other areas to develop spatial analyses.
For these reasons the book is structured and sequenced to provide a learning
path that does not assume any prior knowledge of R, spatial analysis or
GIS. Rather, as the reader progresses through the chapters, they undertake
analyses and exercises that build on previously introduced concepts and
tools. R provides an incredibly diverse environment within which to
conduct data analyses as its functionality is constantly being expanded with
the creation and sharing of new tools and functions in contributed packages.
We aim to give the reader a sense of the power that R can offer — by



explaining a number of geographical information based techniques and
problems, and demonstrating how R may be used to address these. We are
both strong believers in the principle of ‘learning by doing’. We hope this
approach is not only informative, but also enjoyable.

We would also like to acknowledge the help of Idris Jega Mohammed,
who checked through the manuscript and examples, the reviewers of the
first draft, David Unwin and Rich Harris, whose helpful and constructive
comments made our task much easier, and the authors of R itself and the
many packages that we use in this book.

CB, AJC



1.1 OBJECTIVES OF THIS BOOK

This book assumes no prior knowledge of either R or spatial analysis and
mapping. It provides an introduction to the use of R and the increasing
number of tools that can be wused for explicitly spatial analyses,
geocomputation and the statistical analysis of geographical information.
The text draws from a number of open source, user contributed libraries or
‘packages’ that support mapping and cartographic outputs arising from both
raster and vector analyses. The book implicitly focuses on vector GIS as
other texts cover raster with classic geostatistics (see Bivand et al., 2008),
although rasters are implicitly included in some of the exercises, for
example the outputs of density surfaces and some of the geographically
weighted analyses as described in later chapters.

The rationale for producing this book at this time relates to a number of
factors. First, the increasing use of R as an analytical tool across a range of
different scientific disciplines is evident. Second, there are an increasing
number of data capture devices that are GPS-enabled: smartphones, tablets,
cameras, etc. This has resulted in more and more data (both formal and
informal) having location attached to them. Third, there is therefore an
associated increase in demand for explicitly spatial analyses of such data, in
order to exploit the richness of analysis that location affords. Finally, at the
time of writing, there are no books on the market that have a specific focus
on spatial analysis and mapping of such data in R that do not require any
prior knowledge of GIS, spatial analysis, or geocomputation. One of the
few textbooks on using R for the analysis of spatial data is Bivand et al.
(2008), although this is aimed at advanced users. For these reasons, what
we have sought to do is to write a book with a geographical focus and
(hopefully) user friendliness.



As you work through this book you will learn a number of techniques for
using R directly to carry out spatial data analysis, visualisation and
manipulation. Although here we focus on vector data and on social and
economic applications, and the packages that this book uses have been
chosen as being the most appropriate for analysing these kinds of data, R
also presents opportunities for the analysis of many other kinds of spatial
data — for example, relating to climate and landscape processes. While some
of libraries and packages covered in this book may also be useful in the
analysis of physical geographical and environmental data, there will no
doubt be other packages that may also play an important role. For example,
the PBSMapping package, developed by the Pacific Biological Station in
Nanaimo, British Columbia, Canada, offers a number of functions that may
be useful for the analysis of biogeographical data.

1.2 SPATTIAL DATA ANALYSIS IN R

In recent years large amounts of spatial data have become widely available.
For example, there are many governmental open data initiatives that make
census data, crime data and various other data relating to social and
economic processes freely available. However, there is still a need to
flexibly analyse, visualise and model data of this kind in order to
understand the underlying patterns and processes that the data describe.
Whilst there are many software packages available that are capable of
analysing spatial data, in many situations standard statistical modelling
approaches are not appropriate: data observations may not be independent
or the relationship between variables may vary across geographical space.
For this reason many standard statistical packages provide only inadequate
tools for analysis as they cannot account for the complexities of spatial
processes and spatial data.

Similarly, although standard GIS packages and software provide tools for
the visualisation of spatial data, their analytical capabilities are relatively
limited, inflexible and cannot represent the state of the art. On the other
hand, many R packages are created by experts and innovators in the field of
spatial data analysis and visualisation, and as R 1is, in fact, a programming
language it is a natural testing ground for newly developed approaches.
Thus R provides arguably the best environment for spatial data analysis and



manipulation. One of the key differences between a standard GIS and R is
that many people view GIS as a tool to handle very large geographical
databases rather than for more sophisticated modelling and analysis, and
this is reflected in the evolution of GIS software. For example, R can be
used as a tool to test whether an arrangement of data points is random,
whereas a standard GIS may be a better tool for extracting a set of points
for a particular neighbourhood from an extremely large spatial national
database. We therefore do not regard R as competing with GIS; rather we
see the two kinds of software as having complementary functionality.

1.3 CHAPTERS AND LEARNING ARCS

The chapters build in the complexity of the analyses they develop, and by
working through the illustrative code examples you will develop sufficient
skill to create your own routines, functions and programs. The book
includes a mix of embedded exercises, where the code is provided for you
to work through with extensive explanations, and self-test questions, which
require you to develop an answer yourself. All chapters have self-test
questions. In some cases these are included in an explicitly named section
and in others they are embedded in the rest of the text. The final section in
each chapter provides model answers to the self-test questions. Thus in
contrast to the exercises, where the code is provided in the text for you to
work through (i.e. for you to enter and run yourself), the self-test Questions
are tasks for you to complete, mostly requiring you to write R code
yourself, with answers provided in the last section of each chapter. The idea
of these questions is to give you some experience with working with
different kinds of data structures, functions and operations in R. There is a
strong emphasis on solving problems, rather than simply working through
the code. In this way, snippets of code are included in each chapter
describing commands for data manipulation and analysis and to exemplify
specific functionality. It 1s expected that you will run the R code yourself in
each chapter. This can be typed directly into the R console or may be
written directly into a script or document as described below. It is also
possible to access the code in each chapter from the book’s website (again
see below). The reasons for running the code yourself are so that you get



used to using the R console and to help your understanding of the code’s
functionality.

In various places information boxes (marked as I boxes) are included to
develop a deeper understanding of functions and alternative approaches for
achieving the same ends.

The book is aimed at both second- and third-year undergraduate and
post-graduate students. Chapters 6—8 go into much more detail about
specific types of spatial analysis and are extensively supported by
references from the scientific literature in a way that the earlier chapters are
not. For these reasons Chapters 2—5 might be considered as introductory
and Chapters 6—8 might be considered as advanced. Thus the earlier
chapters are suitable for an Introduction to R module (Chapters 2—4) or for
an Introduction to Mapping in R module and the later ones for a module
covering more Advanced Techniques (Chapters 6-9). The book could also
be used as the basis for a Geographical Programming module, drawing
from different chapters, especially Chapters 4 and 9, depending on the
experience and technical capabilities of the student group.

The formal learning objectives of this book are:

to apply appropriate data types, arrays, control structures, functions and
packages within R code

to introduce geographical analysis and spatial data handling in R

to develop programming skills in R language with particular reference
to current geocomputational research and applications

to exemplify the principles of algorithm and function construction in R

to design and construct basic graphical algorithms for the analysis and
visualisation of spatial information

In terms of learning arcs, each chapter introduces a topic, has example code
to run and self-test questions to work through. In a similar way, earlier
chapters provide the foundations for later ones. The dependencies and
prerequisites for each chapter are listed below and you should note that
these are inherited (i.e. if Chapter 4 is a prerequisite then the prerequisites
for Chapter 4 also are relevant):



Chapter Prerequisite chapters | Comments

Chapter 2 | None Data types and plots — the jumping-off point for all other
chaptars

Chapter 2 | 2 The first maps and spatial data types

Chapter4 | 2, 3 Coding blocks and fumctions

Chapter> | 2,3 GI5-like operations in K

Chaptero |45 Cluster analysis and mapping of point data

Chapter 7 |45 Attribute analysis and mapping of polygon data

Chapter &8 | 6,7 Amalysis of geographical variation in spatial processes

Chapter? [ 3,45 Spatial analysis of data from the web

1.4 THE R PROJECT FOR STATISTICAL
COMPUTING

R was developed from the S language which was originally conceived at
the Lucent Technologies (formerly AT&T) Bell Laboratories in the 1970s
and 1980s. Douglas Martin at the company StatSci developed S into the
enhanced commercial product known as S+ in the late 1980s and early
1990s (Krause and Olson, 1997). R was initially developed by Robert
Gentleman and Ross Thaka of the Department of Statistics at the University
of Auckland. It is becoming widely used in many areas of scientific activity
and quantitative research, partly because it is available free in source code
form and also because of its extensive functionality, through the continually
growing number of contributions of code and functions, in the form of R
packages, which when installed can be called as libraries. The background
to R, along with documentation and information about packages as well as
the contributors, can be found at the R Project website http://www.r-

project.orq.

1.5 OBTAINING AND RUNNING THE R
SOFTWARE

You should download the latest version of R in order to run the code
provided in this book. At the time of writing, this is version 3.0.2 and you
should ensure you have at least this version. There are 32-bit and 64-bit
versions available, and we assume you have the 64-bit version. The


http://www.r-project.org/

simplest way to get R installed on your computer is to go to the download
pages on the R website — a quick search for ‘download R’ should take you
there, but if not you could try:

http://cran.r-project.org/bin/windows/base/
http://cran.r-project.org/bin/macosx/

http://cran.r-project.org/bin/linux/

for Windows, Mac and Linux, respectively. The Windows and Mac versions
come with installer packages and are easy to install, whilst the Linux
binaries require use of a command terminal.

You may have to set a mirror site from which the installation files will be
downloaded to your computer. Generally you should pick one that is near to
you. Once you have installed the software you can run it. On a Windows
computer, an R icon is typically installed on the desktop; on a Mac, R can
be found in the Applications folder. Macs and Windows have slightly
different interfaces, but the protocols and processes for an R session on
either platform are similar.

The base installation includes many functions and commands. However,
more often we are interested in using some particular functionality, encoded
into packages contributed by the R developer community. Installing
packages for the first time can be done at the command line in the R
console using the install.packages command, as in the example below to
install the GIsToo1s library, or via the R menu items.

In Windows, the menu for this can be accessed by Packages > Load
Packages and on a Mac via Packages and Data > Package Installer. In
either case, the first time you install packages you may have to set a mirror
site from which to download the packages. Once the package has been
installed then the library can be called as below.


http://cran.r-project.org/bin/windows/base/
http://cran.r-project.org/bin/macosx/
http://cran.r-project.org/bin/linux/

Further descriptions of packages, their installation and their data structures
are given in later chapters. There are literally thousands of packages that
have been contributed to the R project by various researchers and
organisations. These can be located by name at http://cran.r-
project.org/web/packages/available packages by name.html if you
know the package you wish to use. It is also possible to search the CRAN
website to find packages to perform particular tasks at http://www.r-
project.org/search.html. Additionally, many packages include user
guides in the form of a PDF document describing the package and listed at
the top of the index page of the help files for the package. The packages
used in this book are:


http://cran.r-project.org/web/packages/available_packages_by_name.html
http://www.r-project.org/search.html

Name Description

datasets A package confaining a mumber of datasets, supplied with the standard
imstallation of R

deldir Functions to caloulate and manipulate Delaunay tiangulations and
Dirichlet or Voronei tessellations of point datassts

el071 Functions for latent class analysis, short-time Fourier transform, fuzzy
clustering, support vector machines, ete.

fHultivar Toals for illustrating financial enginesring and computational finance but
also useful for spatial data

GISTools Mapping and spatial data manipulation tools — in particular, drawing
choropleth maps

gstat Fumnctions for spatial and spatio-temporal geostatistical modalling,
prediction and simulation

GRmodel Geographically weighted models

maptools Functions for manipulating and reading geographic data

miscid Miscellameous functions for three-dimensional (30 plots

CpenftrestHap | Accesses high-resclution raster maps and satellite imagery from
CrpanStraethiap

PBEmapping A rmmber of GI3-like imctions and public domain datasets

plyr Fumnctions for breaking a big problem down inte manageable piaces,

operating on each piece and then reassembling them

raster Feading, writing, manipulating, analysing and medelling of gridded raster
or gridded spatial data

RBColorBrewer | A package providing colour palettes for shading maps and other plots

BCurl Composition of general HT TP requests, functons to fetch uniform resource
identifiers (URIs), to get and post web data

rgdal The Geospatial Data Abstraction Library, access to projection/
transformation operations

rgecs The Geometry Engine — Open Source (GECS), providing topology
operations on geometries

rgl 3D visnalisation device (OpeniGL)

BgoogleMaps Interface to query the Google server for static maps o use as background
imapes to maps

Bgraphviz Provides plotting capabilities for R graph objects (not available from CRAN;
for dewmload instructions, see Chapter 9)

rjson Converts R objects into JavaScript Object Motation (J20N) objects and vice
versa

sp Classes and methods for spatial data

SpatialEpi Performs various spatial epidemiclogical analyses

spatstat A package for analysing spatial data, mainly spatial point pattemns

spdep A collection of functions and tests for evaluating spatial patterns and
autocorrelation

When you install these packages it is strongly suggested you also install the
dependencies — other packages required by the one that is being installed —
by either checking the Install Dependencies box in the menu (on a Mac) or
including depend=TRUE or dep = T in the command line (on a Mac or in
Windows):



Packages are occasionally completely rewritten, and this can impact on
code functionality. Since we started writing this book, for example, the sp
package has depreciated its overlay function, which has been replaced by a
new function called over. Code using overiay will still work for a limited
period but will be accompanied by a warning message informing the R user
of the depreciation. For example, at the time of writing, having installed the
GISTools package above, if the following is entered at the R console:

it will run, returning the results, but will also generate a warning stating the
function is depreciated and suggesting the function that should be used
instead, in this case the sp function overiay. The book website will always
contain working code snippets for each chapter to overcome any problems
caused by function depreciation.

Such changes are only a minor inconvenience and are part of the nature
of a dynamic development environment provided by R in which to do
research: such changes are inevitable as packages are refined and
standardised.

1.6 THE R INTERFACE

There are few pull-down menus in R, and therefore you will type command
lines in what is termed a command line interface. Like all command line
interfaces, the learning curve is steep but the interaction with the software is
more detailed, which allows greater flexibility and precision in the
specification of commands.

Beyond this there are further choices to be made. Command lines can be
entered in two forms: directly into the R console window or as a series of
commands into a script window. This is, by default, titled Untitled — R
Editor in Windows or Untitled on a Mac.



As you work though the book, the expectation is that you run all the code
that you come across. We cannot emphasise enough the importance of
learning by doing — the best way to learn how to write R code is to write
and enter it. Some of the code might look a bit intimidating when first
viewed, especially in later chapters. However, the only really effective way
to understand it is to give it a try.

It is good practice to write your code in scripts, and R includes its own
editor (similar to Notepad in Windows or TextEdit on a Mac). Scripts are
useful if you wish to automate data analysis, and have the advantage of
keeping a saved record of the relevant R programming language commands
that you use in a given piece of analysis. These can be re-executed, referred
to or modified at a later date. For this reason, you should get into the habit
of constructing scripts for all your analyses. Since being able to edit
functions is extremely useful, both the MS Windows and Mac OSX
versions of R have built-in text editors. Although they operate slightly
differently, they do very similar jobs.

To start the Windows editor with a blank document, go to File > New
Script, and to open an existing script File > Open Script

To start the Mac editor, use the menu options File > New Document to

open a new document and File > Open Document to open an existing
file

Once code is written into these files, they can be saved for future use; rather
than copy and pasting each line of code, both installations have their own
short-cut. You should highlight the code you would like to run in R and then
press either:

Ctrl-Enter for Windows or the Run toolbar button — hover your mouse
over the buttons to locate it — or

Cmd-Enter on a Mac

It 1s also good practice to set the working directory at the beginning of your
R session. In Windows this is File > Change dir... and on a Mac it is Misc
> Set Working Directory. This points the R session to the folder you
choose and will ensure that any files you wish to read, write or save are
placed in this directory.



Scripts can be saved by selecting File > Save As which will prompt you
to enter a name for the R script you have just created. Chose a name (for
example, ‘test.R’) and select save. It is good practice to use the file
extension ‘.R’.

1.7 OTHER RESOURCES AND
ACCOMPANYING WEBSITE

There are many freely available resources for R users. In order to get some
practice with R we strongly suggest that you download the ‘Owen Guide’
(entitled The R Guide) and work through this up to and including Section 5.
It can be accessed via http://cran.r-project.org/doc/contrib/Owen-
TheRGuide.pdf. It does not require any additional libraries or data and
provides a gentle introduction to R and its syntax.

There are many guides to the R software available on the internet. In
particular, you may find some of the following links useful:

http://www.maths.lth.se/help/R/
http://www.r-bloggers.com

http://stackoverflow.com/ and speciﬁcaﬂy
http://stackoverflow.com/questions/tagged/r

The contemporary nature of R means that much of the R development for
processing geographical information is chronicled on social media sites
(you can search for information on services such as Twitter, for example
‘“#rstats’) and blogs such as the R-bloggers site listed above, rather than
standard textbooks. In addition to the above resources, there is a website
thatacconqxnﬂesthk;bOOkﬁhttps://study.sagepub.com/brunsdoncomber
This site contains all of the code, scripts, exercises and self-test questions
contained in each chapter, and these are available to download. The scripts
for each chapter allow the reader to copy and paste the code into the R
console or into their own script. At the time of writing all of the code in the
book is correct. However, R and its packages are occasionally updated. In
most cases this is not problematic as the update almost always extends the
functionality of the package without affecting the original code. However in


http://cran.r-project.org/doc/contrib/Owen-TheRGuide.pdf
http://www.maths.lth.se/help/R/
http://www.r-bloggers.com/
http://stackoverflow.com/
http://stackoverflow.com/questions/tagged/r
https://study.sagepub.com/brunsdoncomber

a few instances, specific packages are completely rewritten without
backward compatibility. If this happens the code on the accompanying
website will be updated accordingly. You are therefore advised to check the
website regularly for archival component and links to new resources.
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2.1 INTRODUCTION

This chapter introduces the different data types and data structures that are
commonly used in R and how to visualise or ‘plot’ them. As you work
through this book, you will gain experience of using all of these different
data structures, sequentially building on ideas you have encountered
previously (for example, developing your own functions). As you progress,
the exercises will place more emphasis on solving problems, using and
manipulating different data structures as you need them, rather than simply
working through the example code. You should note the different functions
called in the example code snippets that are used, such as max, sgrt and
length. This chapter covers a lot of ground — it will:

Review basic commands in R

Introduce variables and assignment

Introduce data types and classes (vectors, lists, matrices, S4, data
frames)

Describe how to test for and manipulate data types

Introduce basic plot commands

Describe how to read, write, load and save different data types
Chapter 1 introduced R, the reasons for using it in spatial analysis and
mapping, and described how to install it. It also directed you to some of the
many resources and introductory exercises describing basic operations in R.

Specifically, it advised that you should work through the ‘Owen Guide’
(entitled The R Guide) up to the end of Section 5. This can be accessed via



http://cran.r-project.org/doc/contrib/Owen-TheRGuide.pdf. This
chapter assumes that you have worked your way through this introduction,
which does not take long and is critical for the more specialised materials
that will be introduced in the rest of this book.

2.2 THE BASIC INGREDIENTS OF R:
VARIABLES AND ASSIGNMENT

The R interface can be used as a sort of calculator, returning the results of
simple mathematical operations such as (-5 + -4). However, it is normally
convenient to assign values to variables. The variables that are created can
then be manipulated or subject to further operations.

-
AR
in

¥ o< 4

X+Y

F# I 8
Z —.}-C + ¥
F# I 8
sqrt nj.z. J.

## [1] 3

Note that in this text, R output is preceded by a double hash (##) so that it is
clear that this is the output resulting from entering the R command, rather
than something that should be typed in.



http://cran.r-project.org/doc/contrib/Owen-TheRGuide.pdf

The snippet of code above is the first that you have come across in this
book. There will be further snippets throughout each chapter. Two key
points. First you are strongly advised to enter and run the code at the R
prompt yourself. You may wish to write the code into a script or
document as described in Chapter 1. The reasons for this are so that
you get used to using the R console and to help your understanding of
the code’s functionality. In order to run the code in the R console, a
quick way to enter it is to highlight the code (with the mouse or using
the keyboard controls) and the press Ctrl-R, or Cmd-Enter on a Mac.
Second, we would like to emphasise the importance of learning by
doing and getting your hands dirty. Some of the code might look a bit
fearsome when first viewed, especially in later chapters, but the only
really effective way to understand it is to give it a try. Remember that
the code snippets are available on the book website
https://study.sagepub.com/brunsdoncomber as scripts so that you
can copy and paste these into the R console or your own script. A
minor further point is that in the code comments are prefixed by # and
are ignored by R when entered into the console.

The basic assignment type in R is to a vector of values. Vectors can have
single values as in x, y and z above, or multiple values. Note the use of
c(4, 5, .. inthe following to combine or concatenate multiple values:

Remember that UPPER and lower case matters to R. So
tree.heights, Tree.Heights and TREE.HEIGHTS all refer to different
variables. Make sure you type in upper and lower case exactly as it is
written, otherwise you are likely to get an error.



https://study.sagepub.com/brunsdoncomber

In the example above, a vector of values have been assigned to the variable
tree.heights. It is possible for a single assignment to refer to the entire
vector, as in the code below that returns tree.heights squared. Note how
the operation returns the square of each element in the vector.

Other operations or functions can then be applied to these vectors variables:

sum ({tree.heights)
% [1] 28.2
mean (tree . heights)
## 111 4.7

And, if needed, the results can be assigned to yet further variables.

max.height <- max(tree.heights)
max.height

One of the advantages of vectors and other structures with multiple data
elements is that they can be subsetted. Individual elements or subsets of
elements can be extracted and manipulated:



$# [1] 4.3
tree. heights[1:3]
## [11 4.3 7.1 6.3

sqrt (tree.heights[1:3])

(]
o
[

=

$% [1] 2.074 2.6€5

tree. heights[o (5, 3,2) ]

(%]
[
o
w

F# I1] 7.1
As well as numeric values as in the above examples, vectors can be

assigned character oOr logical values as below. Different variables classes
and types are described in more detail in the next section.

name <- "Lex Comber"
TAmE



$F [1] "Lex Comber"

cities <— c("Leicester","Newcastle","London", "Durham”, "Exeter™)
cities
$F [1] "Leicester" "Newcastle" "London" "Durham™ "Exeter"

length (cities)

£3 [1] 5

northern «<— o (FALSE, TRUE, FALSE, TRUE, FALSE)
northern

$## [1] FALSE TRUE FALSE TRUE FALSE
cities[northern]

£% [1] "Hewcastle" "Durham"

As you explore the code in the text, the very strong advice of this book
is that you write and develop the code using the in-built text editor in
R. The scripts can be saved as .R files and code snippets can be run
directly by highlighting them and then using Ctrl-R (Windows) or
Cmd-Enter (Mac). Keeping your copies of your code in this way will
help you keep a record of it, and will allow you to go back to earlier
declarations of variables easily. A hypothetical example is shown
below.

library (GISTools)

4]

aource {"My.function




my.data <— read.csvi{file = "my.data.csv")

cube. root . func (my.data)

row.tot <— rowsums(my.data)

2.3 DATA TYPES AND DATA CLASSES

This section introduces data classes and data types to a sufficient depth for
readers of this book. However, more formal descriptions of R data objects
and class can be found in the R Manual on the CRAN website under the
descriptions of:

Basic classes: http://stat.ethz.ch/R-manual/R-
devel/library/methods/html/BasicClasses.html

Classes: http://stat.ethz.ch/R-manual/R-
devel/library/methods/html/Classes.html

2.3.1 Data Types in R

Data in R can be considered as being organised into a hierarchy of data
types which can then be used to hold data values in different structures.
Each of the types is associated with a test and a conversion function. The
basic or core data types and associated tests and conversions are shown in
the table below.


http://stat.ethz.ch/R-manual/R-devel/library/methods/html/BasicClasses.html
http://stat.ethz.ch/R-manual/R-devel/library/methods/html/Classes.html

type test conversion
character is.character as.character
complex is.complex as.complex
double is.double as.doubls
expression is.expressicon as.expression
integer is.integer as.integer
list is.list as.list
logical is.logical as.logical
ST is.numeric &S5 . numeric
singls is.single as.single
FAW is. raw a5 .Taw

You should note from the table that each type has associated with it a test
1s.xyz, which will return TRUE or FALSE and a conversion as xyz. Most of
the exercises, methods, tools, functions and analyses in this book work with
only a small subset of these data types:

character
numeric

logical

These data types can be used to populate different data structures or classes,
including vectors, matrices, data frames, lists and factors. The data types are
described in more detail below. In each case the objects created by the
different classes, conversion functions or tests are illustrated.

Characters

Character variables contain text. By default the function character creates
a vector of whatever length is specified. Each element in the vector equal to
"" —an empty character element in the variable. The function as.character
tries to convert its argument to character type, removing any attributes
including, for example vector element names. The function is.character
tests whether the arguments passed to it are of character type and returns
TRUE or FALSE depending on whether its argument is of character type or
not.



Consider the following examples of these functions and the results when
they are applied to different inputs:

character (B)

t:F '_' mn mmn mar mun mn nmn mmn mmn
as .character ("EB")

h; rij wmgw

o

is.character (8)
$¥# [1] FALSE
is.character ("E")

¥ [1] TRUE

Numeric

Numeric data variables are used to hold numbers. The function numeric is
used to create a vector of the specified length with each element equal to 0.
The function as.numeric tries to convert (coerce) its argument to numeric
type. It 1s identical to as.double and to as.real. The function is.numeric
tests whether the arguments passed to it are of numeric type and returns
TRUE or FALSE depending on whether its argument is of numeric type or not.
Notice how the last test returns FaLSE because not all the elements are
numeric.



numeric(§)

# [1] b ! ol
as.numeric(c("1980","-8", "Geographv") |
## [1] 1580 -8 HR

as.numeriec (o (FALSE, TRUE} )

# [1]1 0 1

is.numeric ({8,

[
o

$## [1] THUE
is.numeriec{c (B, B, 8, ™8"))

## [1] FALSE

Logical

The function 10gical creates a logical vector of the specified length and by
default each element of the vector is set to equal rarse. The function
as.logical attempts to convert its argument to be of logical type. It
removes any attributes including, for example, vector element names. A
range of character strings c (*T7”, “TRUE”, “True”, “true”), as well any
number not equal to zero, are regarded as TRUE. Similarly, (“r~,
“FALSE”, “False”, “false”) and zero are regarded as rarse. All others
as are regarded as Na. The function is.logical returns TRUE Or FALSE
depending on whether the argument passed to it is of logical type or not.



logical {7)
% [1] FALSE FALSE FALSE FALSE FRLSE FALSE FRLSE
ea.logieal ({7, 5, 0; —4,5))

% [1] TRUE TRUE FALSE TRUE TRUE

F ST ]

ad.logical (¢({7,5,0,—3,5)] * 1
$4 [11 1 1 0 1 1
ef.logical [(¢{7,5,0,=4;5)) +'0

#F# 1] 110 1 1

¥ differ=nt wavs bteo declares

Lol 2y ol

as.logical {c ("True", "I", "FALSE"™, "Raapberry® "0" 0", O))

$# [1] TRUE TRUE FALSE KA A oy KA

Logical vectors are very useful for indexing data, to select the data that
satisfy some criteria. In spatial analysis this could be used to select database
records that match some criteria. For example, consider the following:

data == e(3,; 6; 9; 99; §4; 32; =102)

index <-— (data > 10)

index
$# [1] FALSE FALSE FALSE TRUE TRUE TRUE FALSE

data[index]

$% [1] 9% 54 3z2
sum (data)

#* [1] 101

sum (data [index])

n

## [1] 18!

2.3.2 Data Classes in R



The different data types can be used to populate different data structures or
classes. This section will describe and illustrate vectors, matrices, data
frames, lists and factors — data classes that are commonly used in spatial
data analysis.

Vectors

All of the commands in R in the previous subsection on data types produced
vectors. Vectors are the most commonly used data structure and the
standard one- dimensional R variable.You will have noticed that when you
specified character or logical, etc., a vector of a given length was
produced. An alternative approach is to use the function vector, which
produces a vector of the length and type or mode specified. The function
as.vector seeks to convert its argument into a vector of whatever mode is
specified. The default is 10gical, and when you assign values to vectors R
will seek to convert them to whichever vector mode is most convenient.
The test is.vector returns TRUE if its argument is a vector of the specified
class or mode with no attributes other than names, returning rFALSE
otherwise.



:|:'T|: _] i 10 (] 1]

vector {(length = B)

#% [1] FALSE FRLSE FALSE FALSE FALSE FALSE FRLSE FALSE
tmp <- data.frame(a=10:15, b=15:20)

ia.vector (tmp)
% [1] FALSE

as.vector (tmp})

4 a b
## 1 10 15
# 2 11 1s
## 3 1z 17
## 4 13 18
## 5 14 19
## &6 15 20
Matrices

The function matrix creates a matrix from the data and parameters that are
passed to it. This should normally include parameters for the number of
columns and rows in the matrix. The function as.matrix attempts to turn
its argument into a matrix, and the test is.matrix tests to see whether its
argument is a matrix.



g SR G e

matrix(ncol 2, nrow

I
1
1]

¥+ [,1]1 [,2]

matrix{l:6)

3 [+1]

% [1,] 1

## [2,] 2

## [3,1 3

% [4,] 4

% [5,] 5

% [6,] B
matrix{l:6, ncol = 2)
3 [,11 [.2]
£ [1,] 4
$## 12,1 = 5
% 13,1 3 &
as.matrix(6:3)

3 e k|

## [1,] &

##F [2,] 5

i+ [32,1 4

% [4,] 3

is.matrix|as.matrix(6:3))

$## [1] TRUE

Notice how it is possible to specify empty data structures — the first
line of code above produced an empty matrix with two columns and no
rows. This can be very useful in some circumstances.

Matrix rows and columns can be named.



flow <— matrix(c {2000, 1243, 543, 1243, 212, 545,

€54, leB, 10%), c{3,3), byrow=TRUE
colnames [flow) <— c({"Leicester", "Liverpool","Elsewhere")
rownames (flow) <— c("Leicester", "Liverpool™, "Elsewhere™)
flow
#4 Leicester Liverpool Elsewhere
34 Leicester 2000 1243 543
#%# Liverpool 1243 212 45
#% Elszsswhers 654 168 108
outflows <- rowSums{flow)
ocucflows
## Leicestsr Liverpool Elsswhers
4% 3786 2000 931

However, if the data class is not a matrix then just use names, rather than

rownames OI colnames.

z <- o(6,.7,8)

namesa () <— o {"Newcastle","London","Manchester")
z

% Hewcastle London Manchester

4 & 7 3

R has many additional tools for manipulating matrices and performing
matrix algebra functions that are not described here. However, as spatial
scientists we are often interested in analysing data that has a matrix-like
form, as in a data table. For example, in an analysis of spatial data in vector
format, the rows in the attribute table represent specific features (such as
polygons) and the columns hold information about the attributes of those
features. Alternatively, in a raster analysis environment, the rows and
columns may represent specific latitudes and longitudes or northings and
eastings or raster cells. Methods for analysing matrices in this way will be
covered in more detail in later chapters as spatial data objects (Chapter 3)
and spatial analyses (Chapter 5) are introduced.



You will have noticed in the code snippets that a number of new
functions are introduced. For example, early in this chapter, the
function sum was used. R includes a number of functions that can be
used to generate descriptive statistics such as sum, and max. You
should explore these as they occur in the text to develop your
knowledge of and familiarity with R. Further useful examples are in
the code below and throughout this book. You could even store them in
your own R script. R includes extensive help files which can be used to
explore how different functions can be used, frequently with example
snippets of code. An illustration of how to find out more about the sum
function and some further summary functions is given below:

?sum
help (sum})

x - matrixi(c(3,6,8,8,6,1,-1,6,7),2(3,3) ,byrow=TRUE}
rowsSums (X}

colSums (X)

IM— ana (X j:.

a}_;q_:-i}-‘ (=,1 ,..rr'..ax;

x[;c ;;T?.Eﬁ, EiLSE,.;_'ﬁlTEj: ]

aum X}

diag(x)

solve (x)

zapasmall (x %¥%% solve{ix))

Factors

The function factor creates a vector with specific categories, defined in the
levels parameter. The ordering of factor variables can be specified and an



ordered function also exists. The functions as.factor and as.ordered are
the coercion functions. The test is. factor returns TRUE or FALSE depending
on whether their arguments is of factor type or not and is.ordered returns
TRUE When its argument is an ordered factor and FaLSE otherwise.

First, let us examine factors:

house.type <— oc({"Bungalow", "Flat"™, "Flat",
"Detached™, ™Flat™, "Ierrace", "Terrace")
house.type <- factor(c("Bungalow™, "Flat",
'Flat", "Detached"™, "Flat™, "Terrace", "Terrace"),
levels=c ("Bungalow","Flat", "Detached", "Semi 'Terrace")
house . type
## [1] Bungalow Flat Flat Detached Flat Terrace Terrace
$## Lewvels: Bungalow Flat Detached Semi Terrace

table (house.type)

## Bungalow Flat Detachsd Semi Terracs
4 1 3 1 2
house . type <— factor(c{™"People Carrier™, "Flat",
"Flat™, "Hatchback", "Flat", "Terrace®, "Terrace™),
levels=c{"Bungalow", "Flat", "Detached™, "Semi"”, "Terrace")
house . type
## [1] <NA> Flat Flat <HR> Flat Terrace Terrace
$## Lewels: Bungalow Flat Detached S=2mi Terrace

Factors are useful for categorical or classified data — that is, data values that
must fall into one of a number of predefined classes. It is obvious how this
might be relevant to geographical analysis, where many features
represented in spatial data are labelled using one of a set of discrete classes.
Ordering allows inferences about preference or hierarchy to be made
(lower—higher, better—worse, etc.) and this can be used in data selection or
indexing (as above) or in the interpretation of derived analyses.



Ordering

There is no concept of ordering in factors. However, this can be imposed by
using the ordered function.

income facbor 'High" High Low" "Low"
"Lc "Medium" "Low", "Medium
1¢ la=g ("Low" "Medium" Hig
income > "Low"™
% [1] HA WA NA NA NA NA HNL H&L
income <-ordered (c("High"™, "High", Low™, L
Low™ =dium" Lo "Mediuwm") ,
levels=c ("Low" "Medium", Hi ]
income "Tow"™
¥# [1] TRUE TRUE FALSE FALSE FARLSE TRUE FALSE TRUE

Thus we can see that ordering is implicit in the way that the levels are
specified and allows other, ordering related functions to be applied to the
data.

The functions sort and table are new functions. In the above code
relating to factors, the function table was used to generate a tabulation of
the data in house.type. It provides a count of the occurrence of each level
In house.type. The command sort orders a vector or factor. You should
use the help in R to explore how these functions work and try them with
your own variables. For example:

S0rt (income)

Lists

The character, numeric and logical data types and the associated data
classes described above all contain elements that must all be of the same
basic type. Lists do not have this requirement. Lists have slots for different
elements and can be considered as an ordered collection of elements. A list
allows you to gather a variety of different data types together in a single



data structure and the nth element of a list is denoted by double square
brackets.

tmp.list <- list ("Lex Comber",c(2005, Z2009%), "Lecturer",
metrix{e(s,3,1,2), (2, )

tmp.listc

# O[]

#% [1] "Lex Comber™
F#

## [[2]]

$% [1] 2005 2009

4 .11 [:2
# [1,] £
#0027 E

From the above it is evident that the function 1ist returns a list structure
composed of its arguments. Each value can be tagged depending on how the
argument was specified. The conversion function as.list attempts to
coerce its argument to a list. It turns a factor into a list of one-element
factors and drops attributes that are not specified. The test is.1ist returns
TRUE if and only if its argument is a list. These are best explored through
some examples; note that 1ist items can be given names.



== <— list (name="Lex Comber"™, start.year = 2005,

sition="Praofessor™)

## Sname
## [1] "Lex Comber™

3
$# Sposition
[1

3

Lists can be joined together with append, and 1apply applies a function to
each element of a list.



append (tmp.list, liet{c(7,6,9,1}))

#F [[11]

% [1] "Lex Combexr™
3

## [[21]

$#4 [11 2005 2009

#

## [[3]1]

#%# [1] "Lecturer"”
%

#F [[4]]

£# [,1]1 [,2]
%
%
$#
#% [[51]

$# [1] 7 6 9 1

§ gasrs pues Ggsdssi e

- e L ¥ L

lapply(tmp.list[[2]], is.numeric)

## [[11]

#3% [1] TRUE
i3

## [[21]

## [1] TRUE

lapply(tmp.list, length)

#F [[11]
## [1] 1
3

## [[21]
#F [1] 2
i

#0311
FOI1] 1
F#

FH [14]]
F# (1] 4

Note that the 1ength of a matrix, even when held in a list, is the total
number of elements.



Defining your own classes

In R it 1s possible to define your own data type and to associate it with
specific behaviours, such as its own way of printing and drawing. For
example, you will notice in later chapters that the p1ot function is used to
draw maps for spatial data objects as well as conventional graphs. Suppose
we create a list containing some employee information.

e «<— list (name="Lex Comber"™; start.year =

ition="Professor"™)

employ

tn i

This can be assigned to a new class, called staff in this case (it could be
any name but meaningful ones help).

class (employee) — MaraffE"

Then we can define how R treats that class in the form <existing
function>.<class>; to change, for example, how it is printed. Note how
the existing function for printing is modified by the new class definition:

print.staff «<- function(x)
cat ("Name: ",xzSname, "\n")
cat ("Start Year: ",xSstart.year, "\n")
cat ("Job Ticle: ",.xSpositiom, "\n")}
print (employee)
% Hame: Lex Comber
an

## Start Year: 200
## Job Title: Pr

m A |

of

332

You can see that R knows to use a different print function if the argument
is a variable of class staff. You could modify how your R environment
treats existing classes in the same way, but do this with caution. You can
also ‘undo’ the class assigned by using unclass and the print.staff
function can be removed permanently by using rm (print.staff) :

print(unclass(employee))



print (unclass (emplovee) )

% Sname

£+ [1] "Lex Comber™
£3

% Sstart.vear

$4 [11 2005

£3

$## Sposition

$%# [1] "Professor”

Classes in lists

Variables can be assigned to new or user-defined class objects. The example
below defines a function to create a new staff object.

new.staff <- function(nams,vear,poat) |
T.Vear=year, position=post)

result <- list (nams=name, Star
claas (result) <-— "staff"™
return (resulc) }

A list can then be defined, which is populated using that function as in the
code below (note that functions will be dealt with more formally in later
chapters).

leica.uni «— wvector{mode="list',3)

leics.uni[[1]] <- new.etaff ("Fisher, Pete™, 1851,

"Professor™)

leics.unif[2]] <- new.staff ("Comber, Lex", 2005,
"Lecturer”
leics.uni[[3]] <- new.staff ("Burgess, Robert", 1898, "WVC")



## Job Title: Praofessor

#

# [I2]]

## Hams: Comber, Lex

## Start Year: 2005

## Job Title: Lecturer
#+#

FO[[23]1]

## Nam=: Burgess, Robertc
## Start Year: 1998

F# Job Title: C

2.3.3 Self-Test Questions

In the next pages there are a number of self-test questions. In contrast to the
previous sections where the code is provided in the text for you to work
through (i.e. you to enter and run it yourself), the self-test questions are
tasks for you to complete, mostly requiring you to write R code. Answers
are provided at the end of this chapter. The self-test questions relate to the
main data types that have been introduced: factors, matrices, lists (named
and unnamed) and classes.

Factors

Recall from the descriptions above that factors are used to represent
categorical data — where a small number of categories are used to represent
some characteristic in a variable. For example, the colour of a particular
model of car sold by a showroom in a week can be represented using
factors:

", "white","3ilver","silver"),

Since the only colours this car comes in are red, blue, white, silver and
black, these are the only levels in the factor.

Self-Test Question 1. Suppose you were to enter:



colours[4] — "prange"
colours

What would you expect to happen? Why?

Next, use the table function to see how many of each colour were sold.
First reassign the colours, as you may have altered this variable in the
previous self-test question. You can find previously used commands using
the up and down arrows on your keyboard.

colours — factor (c("red™,"blus", "red”, "white",
"gilwver Myadn Trrlh i =M L= rEp T
ilver T iee", ilwver
"red", "red", "white", "silver" g2ilver™)
1 1g=c ({"red", "blue" , "white", "silver", "black"} )

+¥ colours
3 red blue white silwver black
3 5 3 4

Note that the result of the tab1e function is just a standard vector, but that
each of its elements is named — the names in this case are the levels in the
factor. Now suppose you had simply recorded the colours as a character
variable, in colours2 as below, and then computed the table:

coloura? <-o("red","blus", "red","white",
"gilver","red", "white™, "silver”,
"red®, "red", "white", "silver"

table (colours2)

¥ coloursZz

£ blue red silver white

- % : 1 5 3 3

Self-Test Question 2. What two differences do you notice between the
results of the two table expressions?

Now suppose we also record the type of car — it comes in saloon,
convertible and hatchback types. This can be specified by another factor
variable called car.type:



car.type <- factor({c{"saloon","saloon","hatchback",

"saloon™, "convertible™, "hatchback", "convertible™,

"galoon", " -'.--"-llll "galoon”,

"saloon™,

levels=g|

hatchback”, "convertible™)

The table function can also work with two arguments:

tabkle (car.type, colours)

La]

4 colours

## car.type red blue white silver black
E saloon z 1 z 2 0
E hatchback 3 d ] 1

E convertible ] d 1 1

This gives a two-way table of counts — that is, counts of red hatchbacks,
silver saloons and so on. Note that the output this time is a matrix. For
now enter:

crosstab <— table (car.tyvpe,colours)

to save the table into a variable called crosstab to be used later on.

Self-Test Question 3. What i1s the difference  between
table (car.type,colours) and table (colours, car.type) ?

Finally in this section, ordered factors will be considered. Suppose a third
variable about the cars is the engine size, and that the three sizes are 1.1
litres, 1.3 litres and 1.6 litres. Again, this is stored in a variable, but this
time the sizes are ordered. Enter:

engine <— ordered{c("l.llictre",™l .3litre", . "1.11itra"
s B 1 B o e PR G B el 5 i, P | itre™
il S il B o e s B o e o [ ol i i oAl itTen
"I.21itre™, "1 . 313ErE"™) ,
levels=o("1.11itre™ "1 . 31itre™ "l.61itre™))

Recall that with ordered variables, it is possible to use comparison
operators >, <, >= and <=. For example:



engine > "l.1litre"™
## [1] FLLSE TEUE FALSE TRUE TRUE TRUE TRUE FALSE TREUE FALSE FALSE
## [12] TRUE TRUE

Self-Test Question 4. Using the engine, car.type and colours variables,
write expressions to give the following:

The colours of all cars with engines with capacity greater than 1.1 litres.

The counts of types (hatchback, etc.) of all cars with capacity below 1.6
litres.

The counts of colours of all hatchbacks with capacity greater than or
equal to 1.3 litres.

Matrices

Recall that in the previous section you created a variable called crosstab —
and that this was a matrix. In the section on matrices, a number of functions
were shown that could be applied to matrices:

dimicrosstahb)

FF [1] 3 5

rowSums {crosstab)

£ saloon hatchback convertible

3 T 4 2

colnames (crosstalb)

¥ [1] "red" "blu=" "white" Tailwer" "Bblack"

Another important tool for matrices is the apply function. This applies a
function to either the rows or columns of a matrix giving a single-

dimensional list as a result. A simple example finds the largest value in each
Tow:



apply (crosstab, 1, max)

: % saloon hatchback convertible
£3 2 3 |

In this case, the function max is applied to each row of crosstab. The 1 as
the second argument specifies that the function will be applied row by row.
If it were 2 then the function would be column by column:

apply (crosstalb, 2, max)
E % red Iblue white gilwver black
E £ - 3 1 2 2 ]

A useful function is which.max. Given a list of numbers, it returns the
index of the largest one. For example:

example <— (1.9, 2.68,1.1,;13.5,1.2)

which.max (example)

£ (1] 2

so that in this case the second element is the largest.

Self-Test Question 5. What happens if there is more than one number
taking the largest value in a list? Either use the help facility or
experimentation to find out.

Self-Test Question 6. which.max can be used in conjunction with apply.
Write an expression to find the index of the largest value in each row of
crosstab.

The function 1evels returns the levels of a variable of type factor in
character form. For example:

The order they are returned in is that specified in the original factor
assignment and the same order as row or column names produced by the
table function. This means that it can be used in conjunction with



which.max when applied to matrices to obtain the row or column names
instead of an index number:

levels {colours) [which.max (crosstab[,1]) ]

#F [1] "blue"

Alternatively, the same effect can be achieved by the following:

colnames (crosstab) [which.max (crosstab([,11) ]

$% [1] "blue"

You should unpick these last two lines of code to make sure you understand
what each element is doing.
colnames (crosstab)

F# [1] Tred" "blues™ "white" fgilver" "black"™

$# saloon hatchback convertible
33 2 3 0

which.mex (croastab([,1])
#%# hatchback

4 2

More generally, a function could be written to apply this operation to any
variable with names:



which.max.name <- function(x} {

return (names (x} [which.measx (x) ]) }
names (example) <— c("Leicester™, "Hottingham",
"Loughborough", "Birmingham™, "Coventry"
example
t# Leicester Nottingham Loughborough Birmingham Coventry
3 T8 2.6 1. 1.5 1.2

which.max.name (example)

$¥ [1] "Nottingham"

Self-Test Question 7. Finally, which.max.name could be applied (using
apply) to a matrix, to find the row name with the largest value, for each of
the columns, or vice versa. For the car sales matrix, this would give you the
best-selling colour for each car type (or vice versa). Write the apply
expression for each of these.

Note that in the last code snippet, a function was defined called which.
max.name. YOu have been using functions, but these have all been existing
ones as defined in R until now. Functions will be thoroughly dealt with in
Chapter 4, but you should note two things about them at this point. First is
the form:

function name <- function({function inputs) |
variable «<- function actions

return (variable)

Second are the syntactic elements of the curly brackets { } that bound the
code and the return function that defines the value to be returned by the
function.

Lists

From the text in this chapter, recall that lists can be named and unnamed.
Here we will only consider the named kind. Lists may be created by the
1ist function. To create a list variable enter:


http://max.name/

var <- list (namsl=valuel, namszZ=valueZ,...)

Note that the above is just a template used as an example — entering it into
R will give an error as there are no variables called valuel, value2, etc.,
and the dots ... in this context are not valid R syntax.

Self-Test Question 8. Suppose you wanted to store both the row- and
column-wise apply results (from Question 7) into a list called
most .popular with two named elements called colour (containing the most
popular colour for each car type) and type (containing the most popular car
type for each colour). Write an R expression that shows the best-selling
colour and car types into a list.

Classes

The objective of this task is to create a class based on the list created in the
last section. The class will consist of a list of most popular colours and car
types, together with a third element containing the total number of cars sold
(called tota1). Call this class sales.data. A function to create a variable
of this class, giVCl’l colours and car.type, 1S below:

new.sales.data <- function(coloura, car.tvps)
xtab <- table(car.type,colours)
result <— list (colocur=apply(xtab,l,which.max.name},
type=apply (xtab, 2, which.max.name} ,
total=sum{xtalb) )
class (result) — "gales.data"

return (resulc) }

This can be used to create a sales.data object which has the colours and
car.type variables assigned to it via the function:



this.week <- new.sales.data(colours,car.type)
this.week

% Scolour

E saloon hatchback convertible
:‘r# LR e A M=

F#

%+ Stype

E £ red blus white silver black
$## "hatchback" "galo

4

## Stotal

## [1] L3

4

## attri,"clasa")
## [1] "salesz.data"

- -— L]
"white!"

WL "galoon" "saloon" "aaloon"

In the above code, a new variable called this.week of class sales.data 18
created. Following the ideas set out in the preceding section, it is now
possible to create a print function for variables of class sales.data. This
can be done by writing a function called print.sales.data that takes an
input or argument of the sales.data class.

Self-Test Question 9. Write a print function for variables of class
sales.data. This is a difficult problem and should be tackled by those
with previous programming experience. Others can try it now, but should
return to it after the functions have been formally introduced in the next
chapter.

2.4 PLOTS

There are a number of plot routines and packages in R. In this section some
basic plot types will be introduced, followed by some more advanced
plotting commands and functions. The aim of this section is to give you an
understanding of how the basic plot types can be used as building blocks in
more advanced plotting routines that are called in later chapters to display
the results of spatial analysis.

2.4.1 Basic Plot Tools



The most basic plot is the scatter plot. Figure 2.1 was created from the
function rnorm which generates a set of random numbers.

x1 <- rnorm(100)
vl <- ronorm({l100)
plot (x1,v1)

The generic plot function creates a graph of two variables that are plotted
on the x-axis and the y-axis. The default settings for the piot function
produce a

3
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Figure 2.1 A basic scatter plot

scatter pdefault the axes are labelled with lot, and you should note that by
default the axes are labelled with expressions passed to the p1ot function.
Many parameters can be set for plot either by defining the plot
environment (described later) or when the plot is called. For example, the
option col specifies the plot colour and pch the plot character:

plot (x1,¥1,pch=16, col="red')

Other options include different types of plot: type = "1’ produces a line
plot of the two variables, and again the co1 option can be used to specify
the line colour and the option 1wd specifies the plot line width. You should
run the code below to produce different line plots:



x2 <- seqg(0l,2*pi,len=1 i

v2 <- ain(x2)

plot (x2,v2, =17

olot (22, v2 type="1"', lwd=3 col="'darkgreen')
]:- Yep LXE / r o

You should examine the help for the p1ot command (reminder: type 2plot
at the R prompt) and explore different plot types that are available. Having
called a new plot as in the above examples, other data can be plotted using
other commands: points, lines, polygons, etc. You will see that plot
by default assumes the plot type is point unless otherwise specified. For
example, in Figure 2.2 the line data described by x2 and y2 are plotted, after
which the points described by x2 and y2r are added to the plot.

plot (x2,y2,type="'1l", col="darkgreen', lwd=3,
viim=c({-1.2,1.2))
V2F <— v2 + roorm({l100,0,0.1)
peints (%2, v2r, pch=16, col='darkred')
1.0
0.5
o 004
~0.5
—1.04
T T T T T T T
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n

Figure 2.2 A line plot with points added

In the above code, the rnorm function creates a vector of small values which
are added to y2 to create y2r. The function points adds points to an
existing plot. Many other options for plots can be applied here. For
example, note the y1im option. This sets the limits on the y-axis, and x1im
does the same for the x-axis. You should apply the commands below to the
plot data.



vd <- cos(xXZ)
plet (x2, v2, type='

= T=1A"Agwlrrrroe (I
SR = daEXgreen” )
lines (x2, v4, lwd=3, 1ltv=2, col='darkblue')

LWLL=3 A

Notice that, similar to points, the function 1ines adds lines to an existing
plot. Note also the 1ty option: this specifies the type of line (dotted, simple,
etc.) and is described in the plot parameters below.

You should examine the different types (and other plot parameters) in
par. Enter 2par for the help page to see the full list of different plot
parameters. One of these, mfrow, is used below to set a combined plot
of one row and two columns. This needs to be reset or the rest of your
plots will continue to be printed in this way. To do this enter:

par{mfrow = c{l,2}])

par{mfrow = c(l,1)}

The function polygon adds a polygon to the plot. The option co1 sets the
polygon fill colour. By default a black border is drawn; however, including
the parameter border = NA would result in no border being drawn. In
Figure 2.3 two different plots of the same data illustrate the application of
these parameters.

x2 <- seq(0,2*pi,len=100)

r2 <- gin(x2)

v4 <- cos(xZ)

par imfrow = e{1,2))

plot (v2,v4)
polygon(v2,¥4,col="lightgreen'})

plot (v2,vy4, asp=l, type='n'j}

polygon (¥2, y4,col="lightgreen’)
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Figure 2.3 Points with polygons added

The parameter asp fixes the aspect ratio, in this case to 1 so that the x and y
scales are the same, and type = ‘n’ draws the plot axes to correct scale
(i.e. of the y2 and y4 data) but adds no lines or points.

So far the plot commands have been used to plot pairs of x and y
coordinates in different ways: points, lines and polygons (this may suggest
different vector types in a GIS for some readers). We can extend these to
start to consider geographic coordinates more explicitly with some
geographic data. You will need to install the cTsToo1s package, which may
involve setting a mirror site as described in Chapter 1. The first time you
use any package in R it needs to be downloaded before it is installed.

install.packages ("GISTocla", depend = T)

Then you can call the package in the R console:

library (GISTools)

You will see some messages when you load the package, letting you know
that the packages that cisTools makes use of have also been loaded
automatically. The code below loads a number of datasets with the
data (georgia) command. It then selects the first element from the
georgia.polys dataset and assigns it to a variable called app1ing. This
contains the coordinates of the outline of Appling County in Georgia. It
then plots this to generate Figure 2.4. You only need to install a package
onto your computer the first time you use it. Once it is installed it can



simply be called. That is, there is no need to download it again, you can
simply enter 1ibrary (package) .

appling <- georgia.polysa[[l
plot (appling, asp=1, type="n', xlab="Easting",
viab="Northing™)
polygen (appling, enaity=14, angle=135
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Figure 2.4 Appling County plotted from coordinate pairs

There are a number of things to note in this bit of code.

1. data(georgia) loads three datasets: georgia, georgia2 and
georgia.polys.

2. The first element of georgia.polys contains the coordinates for the
outline of Appling County.

3. Polygons do not have to be regular: they can, as in this example, be
geographical zones. The code assigns the coordinates to a variable
called appling and the variable is a two-column matrix.



4. Thus, with an x and y pairing, the following plot commands all work
with data in this format: plot, lines, polygon, points.

5. As before, the p1ot command in the code below has the type = ‘n’
parameter and asp fixes the aspect ratio. The result is that that the x and
y scales are the same but the command adds no lines or points.

2.4.2 Plot Colours

Plot colours can be specified as red, green and blue (RGB) values: that is,
three values in the ranges 0 to 1. Having run the code above, you should
have a variable called appling in your workspace. Now try entering the
code below:

plot (appling, asp~=1, type='n';, xlab="Easting",
viab="Northing™)

polygon {appling, col=rgb(0,0.5,0.7})

A fourth parameter can be added to rgb to indicate transparency as in the
code below, where the range is 0 to 1 for invisible to opaque.

polygon (appling, col=rgb(0,0.5,0.7,0.4})

Text can also be added to the plot and its placement in the plot window
specified. The cex parameter (for character expansion) determines the size
of text. Note that parameters like co1 also work with text and that HTML
colours also work, such as "B3B333". The code below generates two plots.
The first plots a set of random points and then plots appling with a
transparency shading over the top. The second plots appling, but with
some descriptive text. The result of applying these plot commands should
look like Figures 2.5 and 2.6.



# st the plot extent

plot (appling, asp=1, type='n',

# plot the points
points(x = runif (500,126,132)*10000,
v = runif(500,103,108)*10000, pch=16, col='red')

# plet the polygon

polygon (appling,

iy

with & transparency factor

col=rgb(0,0.5,0.7,0.4))

xlab="Easting", ylab="Northing™})
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Figure 2.5 Appling County with transparency
plot (appling, asp=l1l, type="n', xlab="Easting",
vliab="Northing™)
polygon{appling, col="4B3B333")
¥ add text, specifying its placement, colcour and sizZe
text (1287000,1053000, "Appling County™,cex=1.5)
text (1287000,1045000, "Georgia",col="darkred"')
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& d
:
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Figure 2.6 Appling County with text

In the above code, the coordinates for the text placement needed to
specified. The function 1ocator is very useful in this context: it can be
used to determine locations in the plot window. Enter 1ocator () at the
R prompt, and then left-click in the plot window at various locations.
When you right-click, the coordinates of these locations are returned to
the R console window.

Other plot tools include rect, which draws rectangles. This is useful for
placing map legends as your analyses develop. The three code blocks below
produce the plot in Figure 2.7.

Plot (e({-1.5,1:3) ;of-1.5,1.8),,asp=1; type="n')

rect (-0.5,-0.5,0.5,0.5, border=H

1.6 4
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(1.5, 1.5)

i 1 0 1 2
c(-1.5.1.5)

Figure 2.7 Plotting rectangles

reot (0;0,1;1; col=rgb{l,;0:3:0:.5,0.7)



The command image plots tabular and raster data as shown in Figure 2.8. It
has default colour schemes, but other colour palettes exist. This book
strongly recommends the use of the rRcolorBrewer package, which is
described in more detail in Chapter 3, but an example of its application is

given below:

¥ load some grid data

data(m=use grid)

# HAdefins 1Pix=lsDataFrs

o S = _-J_.-..l.___:_...____.-«.u. =
mat = SpatialPixelsDataPFrame (points = meuse.grid[c{™"x", "y"} 1,
data = meuse.grid)

¥ set some plot parameters (1 row, 2 columns,
par(mfrow = e{l,2))

¥ set the plet margins

par (mar = ¢ (0,0,0,0))

# plet the points vsing the defsult shading

image (mat, "dist")

# load the package

library (RColorBrewer)

F i Pareds syped apioresimedionsn L ST S SRR T LT 2 ~ BRT T ptiiney
8 P [l B g A I aiida CACIiR L i = s L el L :.pﬂd.‘?. L= - L ¢ R = e

greenpal «<- hrewer,pal[W,'Gre=ns']

¥ and now use this 1
2110 Ha T Lilia Lo DAloerb

image {mat, "dist", col=greenpal)

‘:l.:

Figure 2.8 Plotting raster data

# reset par

par (mfrow = ec{1,1}))



You should note that the par (mfrow = c(1,2)) results in one row and two
columns and that it 1s reset in the last line of code.

The command contour (mat, “dist”) will generate a contour plot of
the matrix above. You should examine the help for contour. A nice
example of its use can be found in code in the help page for the
volcano dataset that comes with R. Enter the following in the R
console:

?volcano

2.5 READING, WRITING, LOADING AND
SAVING DATA

There are a number of ways of getting data in and out of R, and three are
briefly considered here: reading and writing text files, R data files and
spatial data.

2.5.1 Text Files

Consider the appling data variable above. This is a matrix variable,
containing two columns and 125 rows. You can examine the data using dim
and head:

head (appling)

dim(appling)



You will note that the data fields (columns) are not named. However, these
can be assigned.

colnames (appling) S el SO

The data can be written into a comma-separated variable file using the
command write.csv and then read back into a different variable, as
follows:

write.cevappling, file = "test.csv")

This writes a .csv file into the current working directory. If you open it
using a text editor or spreadsheet software, you will see that it has three
columns, X and Y as expected plus the index for each record. This is
because the default for write.csv includes row.names = TRUE. Again
examine the help file for this function.

write.csv{appling, file = "test.csv", row.names =

R also allows you to read .csv files using the read.csv function. Read the
file you have created into a variable:

tmp.appling <— read.cev{file = "test.cav")

Notice that in this case what is read from the .csv file is assigned to the
variable tmp.appling. Try reading this file without assignment. The
default for read.csv is that the file has a header (i.e. the first row contains
the names of the columns) and that the separator between values in any
record is a comma. However, these can be changed depending on the nature
of the file you are seeking to load into R. A number of different types of
files can be read into R. You should examine the help files for reading data
in different formats. Enter 22read to see some of these listed. You will note
that read.table and write.table require more parameters to be specified
than read.csv and write.csv.



2.5.2 R Data Files

It is possible to save variables that are in your workspace to a designated
file. This can be loaded at the start of your next session. For example, if you
have been running the code as introduced in this chapter you should have a
number of variables, from x at the start to engine and colours and the
appling data above.

You can save this workspace using the drop-down menus in the R
interface or using the save function. The R interface menu route saves
everything that is present in your workspace — as listed by 1s () — whilst the
save command allows you to specify what variables you wish to save.

awve (11 = 1la|) file = "MyData.RData")

ave (11 = Pappling", file = "MyData.RData")

ave (list = e ("appling” 'georgia.polys' e =
"MvData.RData"

You should note that the .RData file binary format is very efficient at
storing data: the appling .csv file used 4 kb of memory, whilst the .RData
file used only 2 kb. Similarly, .RData files can be loaded into R using the
menu in the R interface or loaded at the command line at the R console:

load {"MyData.RData")

This will load the variables in the .RData file into the R console.

2.5.3 Spatial Data Files

Very often we have data that is in a particular format, such as shapefile
format. R has the ability to load many different spatial data formats.

Consider the georgia dataset that was loaded earlier. This can be written
out as a shapefile in the following way:



data (geocrgia)
writePolyShape (georgia, "georgia.shp",)

You will see that a shapefile has been written into your current working
directory, with its associated supporting files (.dof, etc.) that can be
recognised by other applications (QGIS, etc.). Similarly, this can be read
into R and assigned to a variable, provided that a package calling the
writePolyShape and readShapePoly functions in maptools such as
GISTools has been loaded into R:

new.georgia <- readShapePoly ("georgia.shp")

You should examine the readShapelines, readShapePoints,
readShapePoly functions and their associated write functions. You should
also note that R is able to read and write other proprietary spatial data
formats, which you should be able to find through a search of the R help
system or via an internet search engine.

ANSWERS TO SELF-TEST QUESTIONS

Q1. orange 1s not one of the factor’s levels, so the result is Na.

colours[4] <- "orange"

colours

## [1] red blue red <MA> silver red white silver red red
## [11] white silwver ailwver

## Levels: red blue white silver black

Q2. There is no count for ‘black’ in the character version — table does not
know that this value exists, since there is no 1evels information. Also the
order of colours is alphabetical in the character version. In the factor
version, it is based on that specified in the factor function.

Q3. The first variable is tabulated along the rows, the second along the
columns.

Q4. Colours of all cars with engines with capacity greater than 1.1 litres:



colours <= factor{e{"red", "blue", "red", "white",
"gilwern, Tred” "nhhdeet  "aiTver™,
"red™, "red" . "white™ Msilwerm|,
levels=c ("red™; "blus™, "white", "silver",; "black™) )
colours [engine > "l1.1litre™]
## [1] blue white <NA> red white red silver <NA>

## Lewvels: red blus white silver hlack

Counts of types of all cars with capacity below 1.6 litres:

table (car.type[engine < "1.&8litre"])
4

## =aloon hatchback convertible
4 7 4 o

Counts of colours of all hatchbacks with capacity greater than or equal to
1.3 litres:

table (colours[ (engine >= "1.31litre") & (car.type
"Thatchback™) ] )

3
$¥ red blue white silver black
% 2 i i ] 0

QS. The index returned corresponds to the first number taking the largest

value.
Q6. An expression to find the index of the largest value in each row of

crosstab using which.max and apply.

apply (crosstab, 1, which.max)

¥ saloon hatchback convertibl
£3 1 1

L

Q7. apply functions to return the best-selling colour and car type.



apply (crosstab, 1, which.max.name)

$¥ saloon hatchback convertible
i# "rad” "rad” "yhite"

apply icrosstab, 2, which.max .name)

i red blue white silver black
$## "hatchback"™ "saloon" "saloon™ "saloon"™ "saloon"

Q8. An R expression that shows the best-selling colour and car types into a
list.

most.popular <— list (colour=apply(crosstab,l,which.max.name),
type=apply (crosstab, 2, which.max.name) )
most.popular

$¥ ZScolour

E 4 saloon hatchback convertible

% "rad" "rad" "whita”

3

% Stvpe

+# red blue white silver black
% "hatchback" "saloon" "saloon" "saloon" "saloon™

Q9. A print function for variables of the class data. frame.



print.sales.data <- function(x)

cat ("Weekly Sales Data:i\n")

cat ("Most popular celour:\n™)

for (i im 1:length{xScolour)}
cat (sprintf ("%¥125:%123\n", names (x$colour) [i],
x5colourfi]) )}

cat ("Most popular type:hn™)

for {i in 1l:length(xStype))
cat (Bprintf ("$¥12s5:%123\n", names (xStype) [1],
xStype [11)1) )

cat ("Total Sold = ",xStotal)

this.wesk

#%# Weekly Sales Data:

## Most popular colour

4 saloon: re
# hatchback: red
#% convertible: white
$## Most popular type:

4 red: hatchback
4 blue: saloon
% white: saloon
4 gilver: saloon
4 black: saloon

#% Total Sold = 13

Although the above is one possible solution to the question, it is not unique.
You may decide to create a very different-looking print.sales.data
function. Note also that although until now we have concentrated only on
print functions for different classes, it is possible to create class-specific
versions of any function.



3.1 OVERVIEW

The aim of this chapter is provide an introduction to the mapping and
geographical data handling capabilities of R. It explicitly focuses on
developing building blocks for the spatial data analyses in later chapters.
These extend the mapping functionality that was briefly introduced in the
previous chapter and that will be extended further in Chapter 5. It includes
an introduction to the GIsTools package and its functions, describes
methods for producing choropleth maps — from basic to quite advanced
outputs — and introduces some methods for generating descriptive statistics.
These skills are fundamental to the analyses that will be developed in later
in this book. This chapter will:

Introduce the GrsToo1s package
Describe how to compile maps based on multiple layers
Describe how to set different shading schemes

Describe how to plot spatial data with different parameters

Describe how to develop basic descriptive statistical analyses of spatial
data

3.2 INTRODUCTION: GISTools

The previous chapters introduced some basic analytical and graphical
techniques using R. However, few of these were particularly geographical.
A number of packages are available in R that allow sophisticated



visualisation, manipulation and analysis of spatial data. Some of this
functionality will be demonstrated in this chapter in conjunction with some
mapping tools and specific data types to create different examples of
mapping in R. Remember that a package in R is a set of pre-written
functions (and possibly data items as well) that are not available when you
initially start R running, but can be loaded from the R library at the
command line. To illustrate these techniques, the chapter starts by
developing some elementary maps, building to more sophisticated mapping.

3.2.1 Installing and Loading GISTools

You will use different methods and tools contained within the GIsTools
package to draw maps and to handle spatial information. You should have
installed the cTsTools package onto your computer as you ran the code in
Chapter 2 using the install.packages command. Once you have
downloaded and installed a package on your computer, you can simply load
the package when you use R subsequently. To load GIsTools into the R
session that you have just started, simply enter:

It is possible to inspect the functionality and tools available in GIsTools or
any other package by examining the documentation:

help (GISTools)
or
?GISTools

This provides a general description of the package. At the bottom of the
help window, there is a hyperlink to the index which, if you click on it, will
open a page with a list of all the tools available in the package. The CRAN



website also has full documentation for each package — for cIsTools, see
http://cran.r-project.org/web/packages/GISTools/index.tml.

3.2.2 Spatial Data in GISTools

GISTools, similar to many other R packages, comes with a number of
embedded datasets that can be loaded from the command line after the
package is installed. Two datasets will be used in this chapter: polygon and
line data for New Haven, Connecticut, and counties in the state of Georgia,
both in the USA. The New Haven data include crime statistics, roads,
census blocks (including demographic information), railway lines and place
names. The data come from two sources, both of which have made the data
freely available. The crime data are obtained from the New Haven Crime
Log website (http://www.newhavencrimelog.org) provided by the New
Haven Independent newspaper (http://www.newhavenindependent.org) —
the data may be extracted from the HTML source code of the crime map
web pages. The remaining data are obtained from the University of
Connecticut’s Map and Geographical Information Center (MAGIC:
http://magic.lib.uconn.edu/). These data can be downloaded in
Maplnfo MIF or ESRI E0O formats, and with a public domain program
called ogr2ogr it is possible to convert them into ESRI Shapefiles. The
Georgia data include outlines of counties in Georgia (from
http://www.census.gov/geo/) With a number of attributes relating to the
1990 census including population (TotPop90), the percentage of the
population that are rural (pctrural), that have a college degree (pctBach),
that are elderly (pctE1d), that are foreign born (pctFB), that are classed as
being in poverty (pPctPov), that are black (pctBlack) and the median
income of the county (Medinc). The two datasets are shown in Figure 3.1.


http://cran.r-project.org/web/packages/GISTools/index.tml
http://www.newhavencrimelog.org/
http://www.newhavenindependent.org/
http://magic.lib.uconn.edu/
http://www.census.gov/geo/
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Figure 3.1 The New Haven census blocks with roads in blue, and the
counties in the state of Georgia shaded by median income

The first thing you should do with any dataset is examine it. For spatial
data, this often means a visual examination of its spatial properties and
perhaps a more formal consideration of its attributes. Initially you will use
the New Haven datasets to draw your first map in R. Load the New Haven
data:

data (newhaven)

To examine the data that have been loaded enter:

T&E i)
L34

$# [1] "blocks™ "breach" "burgres.t" "burgres.n"
$¥# [5] "famdisp™ "places" "roads" "tracta"

This gives the printout above (blocks, breach, roads,..) showing all of
the datasets that are loaded. A number of these, including the data called
roads, are geographical data. Enter:

and a map of roads in New Haven appears.



The p1ot command has been used earlier for graphics — but now, after
loading the cIsTools package, R has learned a new plot method to
apply when the term between the brackets refers to geographical data.
This is an example of defining and using classes in R as described in
Chapter 2.

To determine the c1ass of the roads dataset, enter:

This shows that roads is a variable of class SpatiallinesDataFrame,
defined in the sp package that was automatically loaded in with GTsToo1s.
You should investigate the class of blocks, tracts and breach in the same
way. The sp package defines a number of classes as summarised in the table
below.

Without Attributes With attributes AreGIS Equivalent
SpatialPoints ZpatialPointsDataFrams Poing shapafilss
Spatiallines SpatiallinesDacaFrames Line shapefilas
SpatialPoints SpatialPolygonsDataFrame ?oljr_gcn s':ul:-efiles

So, for example, the breach data are a spatialPoints class that simply
describes locations, with no attributes, whereas the blocks data are of the
SpatialPolygonsDataFrame class as they include some census variables
associated with each census block. Thus spatial data with attributes defined
in this way hold their attributes in the data.frame and you can see this by
looking at the first few lines of the blocks data.frame using the head
function:



This prints the first six lines of attributes associated with the census blocks
data. A formal consideration of spatial attributes and how to analyse and
map them is given later in this chapter. The census blocks in New Haven
can be plotted:

plot (blocks)

Now suppose we want to plot another variable with the census blocks
which shows the roads for the area. Entering:

plot (roads)

will draw a map of the roads. However, one problem is that this has now
overwritten the blocks that were drawn before. To stop this from happening,
an extra parameter called add can be included in the second plot call to
ensure that the first set of data that was plotted is not overwritten. This
overlays (rather than overwrites) the information. The add=TRUE part sets a
parameter in the p1ot command to the logical value TrRUE, instructing R not
to overwrite, but to add the new information to the existing plot. A number
of other parameters can also be included. For example, enter:



Figure 3.2 The New Haven census blocks and road data

The first line plots the blocks data. Again, because there are no other
parameters, this starts a new plot. The next line adds the roads data, but the
extra parameter tells R to draw them in red. Note that where quotes are
needed these can be either single or double quotes, but not mixed and not
formatted into curly quotes. Your map should look like the one in Figure
3.2.

The p1ot commands above generates maps of the census blocks and the
roads in New Haven, regardless of whether the data describe area or linear
features. Those familiar with GIS will recognise these as two of the
commonly referred to vector features often cited in a GIS context of “points,
lines and areas’. In R, the command p1lot can also be used to plot point
features. For example:

This draws a map of locations where breaches of the peace have occurred in
New Haven, overlaying the census blocks. Note that the default plot
character 1s a cross and that some areas have a greater density of incidents
than others. Remember from Chapter 2 that pch can be used to change the
plot character for graphs. It can be used in the same way to map point
spatial data. You should experiment with different pch and colour settings



to get the best visualisation of the breaches of the peace and the census
blocks data together. For example:

It is possible to display a list of colours by entering:

And remember that help for piot describes many plot options, including
different plot characters.

3.2.3 Embellishing the Map

You have now drawn your first maps in R showing the roads, breaches of
peace and census blocks in New Haven. However, maps generally need
more information than this. In particular, someone who had no prior
knowledge of New Haven may not realise the geographical extent (in miles
or kilometres) of the area. Assuming you still have the map window from
the previous section, you can add a scale using the map.scale command.
This command has a large number of parameters. Enter:

A scale bar 1s drawn (overplotted) on the map. The first two parameters are
the location at which the scale bar appears, in the coordinate system of the
map. Currently, this is in US survey feet, using the State Plane Coordinate
System for Connecticut. The coordinates specify the centre of the scale. The
third parameter is the length (in projected map units) of the scale. In this
case it is 2 miles. Since this distance also has to be specified in the
coordinate system of the map, this quantity must be converted into feet,
using the miles2ft function. The fourth parameter is a text string
specifying the name of the units for the scale (miles in this case). The fifth
parameter gives the number of gradations in the scale, and the sixth gives



the fraction of the units that each gradation on the scale represents. Here,
there are four gradations, and each one represents 0.5 miles.

A second embellishment is a north-pointing arrow. To add this, enter:

This adds (overplots) the north arrow to the map. Again, the first two
parameters here specify the location of the arrow: they give the coordinates,
in map units, of the centre of the base of the arrow. The third parameter
specifies the length of the arrow’s base (here 0.25 miles in map units) and
the co1 parameter specifies the colour that the arrow is filled with. If left
unspecified, the arrow will be filled in white. Remember the 1ocator ()
function introduced in Chapter 2 — this can be very useful for determining
where to place items such scale bars and north arrows in plot windows. A
final decoration to the map is a map title. Suppose the map is to be called
‘New Haven, CT.’. Then enter the code below to add the title to the map.

It should now look like the map in Figure 3.3.
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Figure 3.3 An embellished map of the New Haven census blocks and
breaches of the peace

3.2.4 Saving Your Map

Having created a map in a window on the screen, you may now want to
save the map for either printing, or incorporating in a document. There are a
number of ways that this can be done. The simplest is to right-click with the
mouse on the map window, select copy or copy image to clipboard (Mac)
or Copy as metafile or Copy as bitmap (Windows), and then paste it into a
word-processing document (for example, one being created in either
OpenOffice or MS Windows). Another is to highlight the window and to
use File > Save as to save the map as an image file, with a name that you
give it. However, it is also possible to save images by using the R
commands that were used to create the map. This takes more initial effort,
but has the advantage that it is possible to make minor changes (such as
altering the position of the scale, or drawing the census block boundaries in
a different colour) and to easily rerun the code. Finally, it is also possible to
save your map in a number of file formats, such as PDF or PNG.

One way to create a file of commands is to edit a text file with a name
ending in .R — note the capital letter. In R, open a new document on a
Windows machine by going to File > New script and File > New script, or
on a Mac by selecting File > New Document. Then type in the following:

library (GISTools)

data (newhaven)

plot (blocka)

plot (roads, add=TRUE, col= 'red')

map.scale (534750, 152000, miles2fE {2}, "Miles",4,0.5)

Save the file as ‘newhavenmap.R’ in the directory in which you started up
R.




When you start an R session you should set the working directory to be
the folder that you wish to use to write and read data to and from, to
store your command files, such as the newhavenmap.Rr file, and any
workspace files or .rRpata files that you save. In Windows this is File >
Change dir ..., and on a Mac it is Misc > Set Working Directory.

Now, go back to the R command line and enter:

and your map will be redrawn. The file contains all of the commands to
draw the map, and ‘sourcing’ it makes R run through these in sequence.
Suppose you now wish to redraw the map, but with the roads drawn in blue,
rather than red. In the file editor, go to the second line, and edit the line to
become:

plot (roads, add=TRUE; col= "blue')

and save the file again. Re-entering source ("newhavenmap.R") now draws
the map, but with the roads drawn in blue. Another parameter sometimes
used in map drawing is the line width parameter, 1wd. This time, edit the
first p1ot command in the file to become:

and re-enter the source command. The map is redrawn with thicker
boundaries around the census blocks. The co1l and 1wd parameters can of
course be used in combination — edit the file again, so that the second line
becomes:



and source the file again. This time the roads are thicker, and drawn in red.
Another advantage of saving command files, as noted earlier, is that it is
possible to place the graphics created into various graphics file formats. To
create a PDF, for example, the command:

can be placed before the first line containing a plot command in the
newhavenmap.R file. This tells R that after this command, any graphics will
not be drawn on the screen, but instead written to the file map.pdf (or
whatever name you choose for the file). When you have written all of the
commands you need to create your map, then enter:

which is short for device off, and tells R to close the PDF file, and go
back to drawing graphics in windows on the screen in the future. To test this
out, insert a new first line at the beginning of newhavenmap.Rr and a new last
line at the end. Then re-source the file. This time, no new graphics are
drawn but you have now created a set of commands to write the graphic
into a PDF file called map.pdf. This file will be created in the folder in
which you are working. To check that this has worked, open your working
directory folder in Windows Explorer, Mac Finder, etc., and there should be
a file called map.pdf. Click on it and whatever PDF reader you use should
open, and your map displayed as a PDF file. This file can be incorporated
into presentations, word-processing documents and so on. A similar
command, for producing PNG files, is:

which writes all subsequent R graphics into a PNG file, until a dev.off () is
issued. To test this, replace the first line of newhavenmap.r with the above
command, and re-source it from the R command line. A new file will
appear in the folder called map.png which may be incorporated into
documents as with the PDF file.



3.3 MAPPING SPATIAL OBJECTS
3.3.1 Introduction

The first part of this chapter has outlined basic commands for plotting data
and for producing maps and graphics using R. This next section will now
concentrate on developing and expanding these basic techniques, will
introduce some new plot parameters and will show you how to extract and
download Google Maps data as background context. As you develop more
sophisticated analyses in later sections you may wish to return to some of
the examples used in this section. It will develop mapping of vector spatial
data (points, lines and areas) and will also introduce some new R
commands and techniques to help put all of this together. To begin with,
you will need some predetermined data and, as ever, you may wish to think
about creating a workspace folder in which you can store any results you
generate.

3.3.2 Data

In this section you will practise your mapping and plotting techniques. The
code in this section will examine the georgia dataset, select a subset of
specific counties and display these using an OpenStreetMap backdrop. You
will need to make use of the cIsTools package to draw maps and handle
spatial information.

You should start a new R session or clear your workspace to remove all
the variables and datasets you have created and opened using the previous
code and commands. You can clear your workspace via the menu Misc >
Remove all objects (on a Mac, select Workspace > Clear Workspace) or
by entering:

Then you should make sure the cIsTools package and the georgia
datasets are loaded by entering:

library (GISTools)

Am=a (remrers 5 )
data (georgia)



Check that the data has loaded correctly using 1s () . There should be three
Georgia datasets: georgia, georgia2 and georgia.polys.

3.3.3 Plotting Options

A number of plot parameters exist in addition to the ones that have
previously been used, including different window sizes, multiple plots in
the same window, polygon or area shading, hatching, boundary thickness,
boundary colour and labelling. Many of these plot parameters are described
in the help for par. First, plot georgia with a single shade and a
background colour:

plot (geocrgia, col = "red", bg = "wheat™)

It is also possible to generate an outline of the area using the gunaryUnion
function as in the code below, with the results shown in Figure 3.4. The
manipulation of spatial data using overlay, union and intersection functions
will be covered in more depth in Chapter 5 later in this book.

geprgia.outline «<- gUnaryUnion{georgia, id = NULL)



The State of Georgia

and its counties

Figure 3.4 An example of applying different plot parameters

In the above code there are two plot commands: the first plots the georgia
dataset, specifying a dashed blue line to show the county boundaries, a red
colour for the objects and a map background colour of wheat. The second
overlays the outline created by the union operation with a thicker line
width, before the title and subtitle are added. The plot window can be
expanded to include multiple plots using the mfrow plot parameter. This
takes as its arguments the number of rows and the number of columns. Note
in the code below the explicit call to create two maps in the plot window
and their order using par (mfrow=c(1,2)) and to adjust the plot margins
(mar) to accommodate the plots.

par (mfrow=c(l,
par (mar = ci2,

par (mfrow=c(l,1))



Thus different plot parameters can be used for different subsets of the data
such that they are plotted in ways that are different from the default. Note
that the parameters can be manually reset for plot windows that are open,
for example by entering par (mfrow=c(1,1)), or the defaults are reset when
a new window is opened.

Sometimes we would like to label the features in our maps. Have a look
at the georgia dataset. These are held in the 13th attribute column and
names (georgia) Will return a list of the names of all attributes:

It would be useful to display these on the map, and this can be done using
the pointLabel function in the maptools package that is loaded with
GISTools. Notice the col is set to Na. The result is shown in Figure 3.5.

at
on <- data.frame (georgia) [, 2]
i

plot (georgia, col = HA)

cintlabel (Lon, Lat, Hames, offset = 0, cex =.5)



Figure 3.5 Adding feature labels to the map

Perhaps we are interested in a specific sub-region of the data, for example
the area to the east of the state covered by the counties of Jefferson, Jenkins,
Johnson, Washington, Glascock, Emanuel, Candler, Bulloch, Screven,
Richmond and Burke. A subset of these counties can be selected and plotted
in the following way.

county.tmp <- c{(B1, B2, B3, 150, &2, 53, 21, 1&, 124,
123, 17)

geocrgia.sub <- georgia[county.tmp, ]

and then plotted:
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plot (georgia.ocutline, add = TROUE, 1lwd = 2}
title({"A subset of Georgia™, cex.main = 2, fontc - = )
Pl <- pointlabel (Lon[county.tmp], Lat[county.tmp],

Names [county.tmp], offset = 3, cex = 1.5)

Notice how the county. tmp variable is used to index the georgia data. It is
possible to select individual areas or polygons from spatial datasets using
the bracket notation as used in matrices and vectors.

Finally, we can bring the different spatial data that have been created
together in a single map. You should note that the plot window extent is set
by the first plot call and when subsequent plots are ‘added’ (overplotted),
then only the portions of them within that window are displayed.

plot (georgia, border = "grey", lwd = 0.5)

Plot (georgia.sub, add = TRUE, col = "lightblue")

plot (georgia.outline, lwd = 2, add = TRUE})

title ("Eeorgia with a subsset of countiesa")
3.3.4 Adding Context

Finally, a map with context may be more informative. Fortunately at the
time of writing this can be done by adding OpenStreetMap tiles'. This
requires some additional packages to be downloaded and installed in R and
a connection to the internet:

The approach is to define the area of interest, to download and plot the map
tile from OpenStreetMap and then to plot your data over the tiles. In this
case the area for the background map data is defined from the Georgia
subset, as created above, which is used to identify the data to download
from OpenStreetMap. The results of the code below are shown in Figure
3.6. Note the spTransform function in the last line of the code. This



transforms the georgia.sub data to the same projection as the
OpenStreetMap data layer.

ector (cbhbind (bbc
bbox (georgia.sub) [1,2]))
MyMap «<- openmap(ul,lr,9, 'mapguest”)

par (mar = c(0,0,0,0})
plot (MyMap, removeMargin=FALSE)

plot (spTransform(georgia.sub, osm()}), add = TROUE, lwd = 2}
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Figure 3.6 A subset of Georgia with an OpenStreetMap backdrop

Google Maps can also be downloaded and used as context as in Figure 3.7.
Again, this requires packages to be downloaded and installed and a
connection to the internet.

inatall.packages (c ("RgoogleMaps™,; "PBESmapping™), depend=T)



Then the area for the background map data is defined to identify the tiles to
be downloaded from Google Maps. Some of the plotting commands are
specific to the packages installed. Note the first step to convert the subset to
polyset format and the last line that defines a polygon plot over Google
Maps:

library (RgoogleMaps)

library (PBSmapping)

shp <- SpatialPoclygons2PolySet (georgia.sub)

bb «<- agbbox(lat = shp[,"¥"], lon = shp[,"X"])

w A AT =G w3 = 1 - = =Lk

MyMap <- GetMap.bbox(bb$lonR, bbSlatR, deacfils = "DC.Jpg™)

par (mar = c(0,0,0,0}))
PlotPolysCn3taticMap (MyMap, shp, 1
col = rgb(0.25,0.25,0.25,0.025),; add = F)
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Figure 3.7 A subset of Georgia with a Google Maps backdrop

3.4 MAPPING SPATIAL DATA ATTRIBUTES
3.4.1 Introduction

This section describes some approaches for displaying spatial data
attributes. Some of these ideas and commands have already been used in the
proceding illustrations, but this section provides a more formal and
comprehensive description.

All of the maps that you have generated thus far have simply displayed
data (for example, the roads in New Haven and the counties in Georgia).
This is fine if the aim is simply to map the locations of different features.
However, we are often interested in identifying and analysing the properties
or attributes associated with different spatial features. The New Haven and
Georgia datasets introduced above both contain areas or regions within
them. In the case of the New Haven these are the census reporting areas
(census blocks or tracts), and in Georgia the counties within the state. These
areas have census attributes which provide population census information
for each spatial unit. These attributes are held in the data frame of the
spatial object. For example, in the code above you examined the data frame
of the Georgia dataset and listed the attributes of individual objects within
the dataset. Figure 3.1 actually maps the median income of each county in
Georgia, although this code was not shown.

3.4.2 Attributes and Data Frames

The attributes associated with individual features (lines, points, areas in
vector data and cell values in raster data) provide the basis for spatial
analyses and geographic investigation. Before examining attributes directly,
it 1s important to reconsider the data structures that are commonly used to
hold and manipulate spatial data in R.

Clear your workspace and load the New Haven data. Then examine in
turn blocks, breach and tracts using the summary function:



You should notice a number of things from these summaries:

That each of the datasets is spatial: blocks and tracts are
SpatialPolygonsDataFrame ObjGCtS and breach 1S a SpatialPoints
object;

That b1ocks and tracts have data frames attached to them that contain
attributes whose values are summarised by the summary function;

That breach does not have any attributes (i.e. it has no data frame), it
just records locations.

The data frame of these spatial objects needs to accessed in order to
examine, manipulate or classify the attribute data. Each row in the data
frame contains attribute values associated with one of the spatial objects —
polygons in blocks — and each column describes the values associated with
a particular attribute for all of the objects. Accessing the data frame allows
you to read, alter or compute new attributes. Entering

data.frame (blocks)

prints all of the attribute information for each census block in New Haven
in R console window, whilst

prints out the first six rows. The attributes can be individually identified
using their names. To see the list of column names enter:

colnames (data. frame (blocks) )



One is called »_vacanT and describes the percentage of households that are
unoccupied (i.e. vacant) in each of the blocks. To access the variable itself,
enter:

data.frame (blocks) $P VACANT

The $ operator works as it would on a standard data frame to access
individual variables (columns) in the data frame. For the data frames of
spatial objects a shorthand exists to access this variable. Enter:

A third option is to attach the data frame. Enter:

All of the attribute variables now appear as ordinary R variables. For
example, to draw a histogram of the percentage vacant housing for each
block, enter:

hist (P VACANT)

Finally, it is good practice to detach any objects that have been attached
after you have finished using them. It is possible to attach many data frames
simultaneously, and this can lead to problems if you are not careful. Enter:

You can try a similar set of commands with the tracts data, but the breach
dataset has no attributes: it simply records the locations of breaches of the
peace. However, the breaches of the peace data can be used to create a
raster dataset:



ach.dens = kde.points({breach, lims=tracts)

summary (breach.dens)

The breach.dens dataset is of class SpatialPixelsDataFrame and
similarly its attributes are held in a data frame which can be examined:

head (data.frame (breach.dens) )

Notice that this has three attributes: the kernel density estimation and two
locational attributes that describe the x and y locations. Other raster formats
include sSpatialGridDataFrame Into Wwhich SpatialPixelsDataFrame
objects can be coerced:

breach.dens.grid <- as(breach.dens, "SpatialGridDataFrame")

summary (breach.dens.grid)

3.4.3 Mapping Polygons and Attributes

A choropleth is a thematic map in which areas are shaded in proportion to
their attributes. The cisTools package includes a choropleth mapping
function. Enter:

This produces a map of the census block in New Haven, shaded by the
proportions of vacant properties. Adding a legend to the map allows the
map to be interpreted in terms of the levels of vacancy associated with each
of the different colour shades in the map. The choro.legend command
requires information about the variables and the shading scheme used in the
map. The shading scheme is a list of class interval boundaries for the
quantity being mapped, together with the colour that is used to shade each
class interval. There is always one more colour than there are class interval
boundaries. In R, shading schemes can be assigned to the variable, and this
is passed on to choro.legend, and sometimes other functions. In the



simplest use of the choropleth function, the shading scheme is computed
automatically from the variable that is passed to it to be mapped, using a
function called auto.shading. To compute the shading scheme for
p_vACANT and store it in a variable called vacant.shades, enter

vacant.shades = auto.shading(blocksiP VACLRNT)
and have a look at what is created by entering:
vacant .shades

You will notice that the auto.shading command creates a list with two
elements: $breaks and $cols. These respectively describe the break points
between classes and the shading colours used. This information about the
shading scheme used can be passed on to choro.legend:

choro.legend (533000,1€1000, vacant . shades)

1

This places a legend in the plot window at the coordinates specified by the
first two arguments, using the shading scheme specified by the third. The
default shading scheme (auto.shading) returns five classes, but it is
possible to use more. Enter:

vacant .shades = a:t:.ehaii:;{blccks$?_?§€£ﬂ?rn=?l
ch:tcpleti[blccks,:L:;kaﬂP_?&CAHT,:huﬁ;:g=?acan:.5hadeal
choro.legend (533000,161000,vacant . shades)

The first line of code above firstly derives a shading scheme with seven
class intervals (n=7), the next draws the choropleth map — the new
argument here is shading=vacant.shades, which tells the map-drawing
routine to use this shading scheme rather than the default. The final line
adds the legend to the map, as before.

It is also possible to alter the colours used in a shading scheme. The
default colour scheme uses increasing intensities of red. Graduated lists of



colours like this are generated using the RcolorBrewer package, which is
automatically loaded with c1sToo1s. This package makes use of a set of
colour palettes designed by Cynthia Brewer and intended to optimise the
perceptual difference between each shade in the palette, so that visually
each shading colour is distinct even when converted to a greyscale. The
palettes available in this package are displayed with the command:

This displays the various colour palettes and their names in a plot window.
To generate a list of colours from one of these palettes, for example, enter
the following:

## [1] "#EFF3FF" "$BDDJET" "$6BAEDE" "$3182BD" "$08519C")

This is a list of colour codes used by R to specify the palette. The arguments
to brewer.pal specify that a five-stage palette based on shades of blue is
required. The output of brewer.pal can be fed into auto.shading to give
alternative colours in shading schemes. For example, enter the code below
and a choropleth map shaded in green is displayed with its legend (see
Figure 3.8). The cols argument in auto.shading specifies the new colours
in the shading scheme.

A final adjustment to the auto.shading command is to change the way the
class interval boundaries are computed. As a default, they are based on
quantiles of the attribute being mapped, but they can be changed to equal-
sized intervals or standard deviations. For example, specifying the option
cutter=rangeCuts to the auto.shading function changes the mapped class
intervals as in Figure 3.8 (right).



vacant.shades = auto.shading(blockasP VACANT, n=5,

cols=brewer.pal (5, "Blu=s"), cutter=rangeluts)
it .

C IR7
choropleth (blocks, blocksSP VACANT, shading=vacant.shades)
choro.legend (533000,1€1000, vacant . shades)

In summary, the choropleth function maps attributes held in
SpatialPolygons DataFrame data variables. It automatically shades the
variables using five intervals and the ‘Reds’ palette from the rRcolorBrewer
package. The shading colours, their number and the way the intervals
between them are determined can all be adjusted. In order to better
understand how these functions operate together you should examine the
different functions. Enter:

| under 5.4 | under 7.6
O B4to7E g 76toib
m 76to10 = 15t023
m 10toi3 E 231030
m overi3 m  overiD \‘/J

Figure 3.8 Different choropleth maps of vacant properties in New Haven
using different shades and cutters

choropleth

The function code detail is displayed in the R console window. You will see
that choropleth calls the auto.shading function if no shading parameter is
specified. Enter:

auto.shading

Notice that this in turn specifies a number of default parameters (two digits,
five colours and the rRcolorBrewer ‘Reds’ palette) and calculates the class



intervals using quantiles. In addition to using the R help system to
understand functions, examining functions in this way can also provide you
with insight into their operation.

3.4.4 Mapping Points and Attributes

Point data can be mapped in R as well as polygons and lines. In the New
Haven crime dataset, the point locations of reports of breach of the peace
events are available. These events are essentially public disorder incidents,
on many occasions requiring police intervention. The data are stored in a
variable called breach. Plotting this variable works in the same way as
plotting polygons or lines, using the plot command:

plot (breach)

This plots the locations of each of the breach of the peace incidents with a +
symbol. Usually it is more helpful to plot these on top of another map. As
with the roads data earlier, this can be done with the add option:

plot (blocksa)

plot (breach, add=TRUE)

The pch argument (plot character) allows the plotting symbol to be altered.
Entering pch="e"', for example, replaces the plot symbol with an @ sign:

plot (blocka)
plot (breach, add=TRUE,pch="@"]

Also, as well as text characters, there are a number of special plotting
symbols that can be used. A list of plot character options can be found on
the help pages for points (enter ?points) and are denoted by numbers.
These are specified by entering things like pch=16 and so on. Try entering



and

plot (blocks)

10t fhraacrh  SAA=TRIIE ~—~h= i T e e A T
plot (breach, add=TRUE, pch=1,col="red")

In the last example, you can see that the co1 option specifying the colour of
the plot symbols also works with point data.

If you have very dense point data then one point may obscure another.
Adding some transparency to the points can help visualise dense point data.
The add.alpha function adds transparency to colour palettes. For example,
to add transparency to the Brewer ‘Reds’ palette, enter:

add.alpha (brewer.pal (3,

This prints out a list of five red colours with a transparency term added to
them. One of these can be used to display the breaches of the peace as in
Figure 3.9, where the density of points is shown more clearly shown.

Commonly, point data come in a tabular format rather than as an R spatial
object (i.e. of class sp) with attributes that include the latitude and longitude
or easting and northing of the individual data points. For example, the
quakes dataset is included as part of R. It provides the locations of 1000
seismic events (earthquakes) near Fiji. To load and examine the data enter:

data (quakes)

head (quakes)



Figure 3.9 Breaches of the peace with a transparency added to the colour

You will see that the dataset comes with a number of attributes: 1at, long,
depth, mag and stations. Here you will use the lat and long attributes to
create a spatial points dataset, and because we want to include the attributes
this will be a spatialPointsDataFrame object. The results of running the
code below are shown in Figure 3.10, which shows the spatial context of
the data in the Pacific Ocean, to the north of New Zealand.

data (quakes)

coorda.tmp <- chind(quakesSlong, ouakes$lat)
quakes.spdf <- SpatialPointsDataFrame (coords.tmp,

data = data.frame (quakes))

parimar = c(0,0,0,0)])



par (mfrow=c(1,2))

plot (gquakes.spdf)

Figure 3.10 Two plots of the Fiji quake data

The last bit of code nicely illustrates how to create a spatial dataset in R.
Essentially the sequence is:

Define the coordinates for the spatial object;

Assign these to a SspatialPoints, Spatiallines Or SpatialPolygons
object;

If the object has attributes, then the dataframe needs to be specified for
the SpatialPointsDataFrame, SpatiallLinesDataFrame or
SpatialPolygonsDataF object.

You should examine the help for these classes of objects. Points just need
coordinate pairs, but polygons and lines need lists of coordinates for each



object.

help ("SpatialPolygons—class™)

This can be illustrated using the georgia.polys dataset:

data (georgia)

tmp <- georgia.polys[c{l,3,151,113)]

tl «<- Polygom{tmp[1i])}:; t1 <- Polygons{list{cl), "1
t2 <- Polygon{tmp[2]); t2 <— Polygons(list({c2), ™2'
t3 <- Polygon{tmp[3]); t3 <— Polygons(list({t3), ™3'
t4 <- Polygon(tmp[4])}: t4 <- Polygons({list(c4), ™4"
tmp.5p <— SpatialPolygons(list{cl,t2,t3,t4), 1:4)
plot (tmp.Sp; col-=: 2.:5)

names <- c("Appling", "Bacon", "Wayne", "Pierce")
tmp . spdf <- SpatialPolygonsDataFrame (tmp.Sp,

data=data.frame (names) )

Note the use of the semi-colon (;) to combine commands on the same line.
Note also the way that 1, t2, etc. are created and then overwritten.

You will have noticed that the quakes dataset has an attribute describing
the magnitude of each earthquake. We can visualise the magnitudes in a
number of ways — for example, by using choropleth (which will take any
sp spatial dataset), by selecting data according to different criteria and then
plotting these in particular ways, or by plotting all the data points but
specifying the size of each data point to be proportional to the attribute
magnitude. These are shown in the code blocks below and in the results in
Figures 3.11 and 3.12. As a reminder, when you run this code and the other
code in this book, you should try manipulating and changing the parameters
that are used to explore different mapping approaches. First, choropleth and
different sizes of plot characters can be used to indicate the magnitude of
the variable being considered (Figure 3.11):
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0,0,0})) # 5=t margins
ng choropleth
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choroplech (guakes.spdf, gquakesimag)

#% 2. Plot with a different sheding scheme & pch
shades = auto.shading{gquakesimag, n=g,

cols=brewer.pal (&, "Greensa'))
choropleth (quakes.spdf, guakesSmag, shades, pch = 1)
#¢ 3. Plot with & transparency
shadesScols <- add.alpha(shades$cols, 0.5)
choropletch (quakes.spdf, guakesSmag, shading = shades,
pch = 20}
## 4. Plot character size 1T1E magnl tude
tmp <- guakesSmag # ass1 magin
tmp <- tmp - min(tmp} # remove minlmum

o s

tmp <- tmp f max(tmp) ¥ divide by maximum
plot (quakes.spdf, cex = tmp*3, pch = 1, col = '"#FBER4ZB0")
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Figure 3.11 Different choropleth point maps

Next a threshold can be used to define classes in a number of different
ways. The plots in Figure 3.12 map these classes using different pot
characters and colours.



#F 1 Arinlt 3 thresheld to categorisse the dats

4. SR % = LIATESIIG C ra LEd

tmpZ <— cut (guakesSmag, fivenum (guakesimag), includs.lowest = T)
class <- TugbhiuﬂPh;lETulS'ETDZ]]

e :
index.l <- (gquakesfmag >= £ & ankHSSNag < 5) + O
index.2 <- (guakesfmag >=5 & guakesfmag < 5.5} * Z

index.3 <- (guakesSmag »>=5.3) * 3
class <- index.l + index.2 + index.3

i AT LD ot AR L [EL L'l ] L L Lot

cal.var <- (brew (3, "Blues"))

plot{quakes. spdf col ol.var[class], cex = 1.4, pch = 20)

¥ reset pari

:=T(ﬂ row=c{l,1}))

Figure 3.12 Different ways of classifying and mapping point attributes

The code used above includes logical operators and illustrates how
they can be used to select elements that satisfy some condition. These




can be used singularly or in combination to select in the following
way:

data «— ci(3, &, 9%, 99, 54, 32, —-102)
index «<- {data == 32 data <= &)
data[index]

4 [1] 3 & 32 =102

These are described in greater detail in Chapter 4.

Finally, it 1s possible to use the PlotonstaticMap function from the
RgoogleMaps package to plot the earthquake locations with some context
from Google Maps. This is similar to Figure 3.6, which mapped a subset of
Georgia counties against an OpenStreetMap backdrop, except that this time
points rather than polygons are being displayed and different Google Maps
backdrops are used as context, as in Figures 3.13 and 3.14.

library (RgoogleMaps)
Lat <- as.vector{guakesS$lat)
Long <- as.wvector (quakesSlong)
MyMap <- MapBackground(lat=Lat, lon=Long, =zoocm = 10)
PlotCnStaticMap (MyMap, Lat, Long, cex=tmp+0. 3, =
= '"#FEoA4R i
B
1
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Figure 3.13 Plotting points with a Google Maps context



MyMap <— MapBackground(lat=Lat, lon=Long, =zoom = 10,
= Mgatellite")
PlotOnStaticMap (MyMap, Lat, Long, cex=tmp+0. 3, pch=1,

col="FFBEL4RB0O")

mMaptype

Figure 3.14 Plotting points with Google satellite image context

3.4.5 Mapping Lines and Attributes

This section considers line data spatial objects. These can be defined in a
number of ways and typically describe different network features such as
roads. In the example below, a subset of the roads in New Haven is
extracted. This involves defining a polygon to clip the road data and
converting it to a SpatialPolygonsDataFrame object before doing so.

data (newhawven}

xmin «<- bbox(roads) [1,1]

vmin <— bbox(roads) [2,1]

xmax <— xmin + diff (bbox(roads)[1,1) [/ 2

vmax <— ymin + diff (bbox (roads)[2,]1) F 2

XX = Aa3.ve {c{¥xmin, xmin, xXmax, Xmax, Xmin))
Y¥ = as.

{c{vmin, vmax, ymax, vmin, vmin))

crda <- chind{xx,vv)
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ID <- "“clip"

F

Pls <- Polygomns(list{Pl}, ID=ID)
5P1ls <«<- SpatialPolygons (list (Pls))

df <- data.frame(value=1l, row.names=1D)

clip.bb <- SpatialPolygonsDataFrame (5Pls, df)
roads.tmp <-— glntersection{clip.bb, roads, byid = T)
tmp <- as.numeric(gsub("clip”, "", names(roads.tmp)))

tmp <- data.frame (roads) [tmp, ]

DataFrame (roads.tmp,

data = tmp, match.ID = F)

roads.tmp <- Spatiallines

Having prepared the roads data subset in this way, a number of methods for
mapping spatial lines can be illustrated. These include maps based on
classes and continuous variables or attributes contained in the data frame.
As before, we can start with a straightforward map which is then
embellished in different ways: shading by road type (the av LEGEND
attribute) and line thickness defined by road segment length (the attribute
LENGTH MI). The maps are shown in Figure 3.15.

plot (roads. tmp)
road.class <- unigue (roads.tmpiiV LEGEND)

shades <- rev(brewer.pal(length{rocad.class), "Spectral"))
tmp <- roads.tmp5SAV LEGEND
index <- match(tmp, a=s.vector{road.class))

plot (roads.tmp, c©cl = shades[index], 1wd = 3)

lot (roads.tmp, lwd = ::ad5.tm;S:EHGT3_HI £ 10)

3.4.6 Mapping Raster Attributes

The spatial object type considered in this section relates to raster data.
Earlier in this chapter a simple raster dataset was created using a kernel
density function. This generated a SpatialPixelsbDataFrame object which



was converted to a spatialGridbataFrame object. In this section the Meuse
dataset, included as part of the sp package, will be used to illustrate how
raster attributes can be mapped.

Figure 3.15 A subset of the New Haven roads data, plotted in different
ways: simple; shaded using an attribute; line width based on an attribute

Load the meuse.grid data and examine its properties using the c1ass and
summary functions.

data (meuse.grid)
class (meuse.grid)

summary (meuse.grid)

You should notice that meuse.grid is a data.frame object and that it has
seven attributes, including an easting (x) and a northing (y). These are
described in the meuse.grid help pages (enter ?meuse.grid). The spatial
properties of the dataset can be examined by plotting the easting and
northing attributes:

lot (meuse.gridSx, meuse.gridéy, asp = 1)

And it can be converted to a spatialPixelsDataFrame object (enter?
SpatialPixelsDataFrame for a description of this type of object):

meuse.grid = SpatialPixelsDataFrame (points =

meuse.gridc({"x", "y")], data = meuse.grid)



It is possible to map different attributes held in the data.frame of the
SpatialPixelsDataFrame object. Essentially these work by specifying the
raster dataset and the attribute to be mapped. You should note that the raster
datasets passed to image and spplot can be SpatialGridDataFrame O
SpatialPixelsDataFrame oObjects. A number of examples of mapping
routines with different shading schemes using image (Figure 3.16) and
using spplot (Figure 3.17) are shown below. You may have to close the plot
window after the first raster plot before entering the code for the second.

par imfrow=c(l,2})
par (mar = c(0.25, 0.

F marm Fhe ATedr ardecliile 1o mer RR TmarrE Ty e
¥ Map L[he dlISE dCElrIDUEE US Cils N2 g [ B

image {meuse.grid, "dist", col = rainbow(T})
image {meuse.grid, "dist", col = h

Figure 3.16 Maps of the Meuse raster data using the image function

1. P e MO Ty e TPC T S E 1 Tl e e Pl P
I (= - Praloh gl

par (mar = c(0.25, 0.25, 0
pl <- gspplot (meuse.grid, "dist",

LITOIR E

2o, 0.253)) # set margins

col.regions=terrain.colors{20))
# position in cfxmin, Ymin, Xmax, ymax
print (pl, position = c{0,0,0.5,0.5), more = T)

p2 <- spplot (meuse.grid, c("part.a", "part.b", "soil",
"ffreqg™), col.regions=topo.colors(20]))

print (p2, position = c{0.5,0,1,0.5), more = T)
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Figure 3.17 Maps of the Meuse raster data using the spplot function
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3.5 SIMPLE DESCRIPTIVE STATISTICAL
ANALYSES

The final section of this chapter before the self-test questions describes how
to develop some basic descriptive statistical analyses of attributes held in R
data.frame objects. These are intended to provide an introduction to
methods for analysing the properties of spatial data attributes which will be
extended in more formal treatments of statistical and spatial analyses in
later chapters. This section first describes approaches for examining the
properties of data variables using histograms and boxplots, and then extends
this to consider some simple ways of analysing data variables in relation to
each other using scatter plots and simple regressions, before showing how
mosaic plots can be used to visualise relationships between variables.

3.5.1 Histograms and Boxplots

You should make sure the New Haven data is loaded. There are number of
ways of generating simple summaries of any variable. The function tabile
can be used to summarise the counts of categorical or discrete data, and
hist, summary and fivenum provide summaries of continuous variables.
You should use these to explore the $p vacanT variable in blocks. For
example, typing hist (blocks$P VACANT) will draw a histogram of the
percentage vacant housing for each census block in New Haven. Similarly,



typing summary (blocks$P VACANT) O fivenum(blocks$P VACANT) will
produce other summaries of the distribution of the variable. As with all plot
functions, it is possible to adjust the histogram bin sizes and the plot labels
as in the example below.

ain = "The distribution of wacant property
T

A further way to provide visual descriptive summaries of variables is to
use box-and-whisker plots (or boxplots) via the boxplot function. This can
be used to display a single variable or multiple variables together. In order
to illustrate this the b1ocks dataset can be split into high- and low-vacancy

areas based on whether the proportion of properties vacant is greater than
10%.

index <- blccks$F_?1C£E? =30
high.vac <- blocks[index, ]
low.vac <— blocks|[!index,]

Then boxplot can be used to visualise the differences between these two
subsets in terms of the distribution of owner occupancy and the proportion
of different ethnic groups, as in Figure 3.18.



cols = revibrewsr.pal(3, "Bluesa"))

par (mfro o i1 2) )
par (mar -8 e T e he

R i« IR R Tl e

attach (data.frame{high.wvac)}

redce 8 DoXpioT O 14Dl Eer

boxplot (F OWHEROCC,P WHITE,P BLACK,
names=c {"OwnerDcc", ™White", "Black"),

col=cols, cex.axis = 0.7, main = "High Vacancy")

# detach the daeta fram
detach (data.frame (high.vac) )
# deo the same for the sscon oxplot & variables

gttach(data.frame (low.vac))
boxplot (P OWRERDCC, P WHITE,P BLACEK,
names=c ("OwnerOcc", "White", "Black"),

col=cols, cex.axis = 0.7, main = "Low Vacancy")
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Figure 3.18 Box-and-whisker plots of the blocks dataset split into high-
and low-vacancy areas



detach (data.frame{(low.vac) ]

par (mfrow=c(l,1}))

par (mar=c(5,4,4,2))

3.5.2 Scatter Plots and Regressions

The differences in the two subgroups suggest that there may be some
statistical association between the amount of vacant properties and the
proportions of different ethnic groups, typically due to well-known socio-
economic inequalities and power imbalances. First, we can plot the data to
see if we can visually identify any trends:

plot (bl
plot (bl

* VACRNT/100, blocks$P WHITE/100)

P VACRNT/100, blocks$P BLACE/100)

zckss
yckss

=
ck

The scatter plots suggest that there may be a negative relationship between
the proportion of white people in a census block and the proportion of
vacant properties and that there may be a positive association with the
proportion of black people. It is difficult to be confident in these statements,
but can be examined more formally by using a simple regression model as
estimated by the 1m function and then plotting the coefficient estimates or
slopes:

.vac <- blocksSP VACRNT/100

P

p.w <- hlocksSP WHITE/100
p.b <- blocks$P BLACK/100
mod.l <— Im(p.vac ~ p.w
mod. 2 — lmi{p.vac ~ p.b)

The function 1m is used in R to fit regression models (1m stands for
‘linear models’). The models to be fitted are specified in a special
notation in R. Effectively a model description is an R variable of its




own. Although we do not go into detail about the modelling language
in this book, more can be found in, for example, de Vries and Meys
(2012: Chapter 15); for now, it is sufficient to know that the R notation
y ~ x suggests the model y = ax + b. The notation is sufficiently rich to
allow the specification of very broad set of linear models.

The coefficients can be inspected and it is evident that the proportion of
white people is a weak negative predictor of the proportion of vacant
properties in a census block and that the proportion of black people is a
weak positive predictor. Specifically, the model suggests relationships that
indicate that the amount of vacant properties in a census block decreases by
1% for each 3.5% increase in the proportion of white people and that it
increases by 1% for each 3.7% increase in the proportion of black people in
the census block. However, when a multi-variate analysis model is
computed neither are found to be significant predictors of vacant properties.
The models can be examined using the summary command:

summary {mod. 1)

% Call:

$#¥ Ilm(formula = p.vac ~ p.w)

tF# Beaiduals:

=+ Min 12 Median 30 Max

$%# -0.1175 -0.0373 -0.0120 0.0171 0.28B27

t§ Coefficients:
= % Estimate S5td. Error t walue Pr(>|t])
. P

$$# Signif. codes:
$$ 0 '¥*¥' 0,001 '**' 0.01 '*' 0.05 '.' O.

$# Residual standard error: 0.062 on 127 degrees of fresdom
## Multiple R-sguared: 0.0323,2Adjusted B-squared: 0.0247

¥# F-statistic: 4.24 on 1 and 127 DF, p-value: 0.0415



The trends can be plotted with the data as in Figure 3.19.

# define a factor for the jitter function

fac = 0.05

# define a

colas = (brewer.p

# plet the term addec
#§ this 1=

prC

E
(
xlab= "Proportion WVacant",ylab = "Proprtiom White /
Black"™, col = cols[l], xlim = c{0,; 0.8B))

fi{mod.1l) [1], b= cosf{mod.l)[2],
, col = cols[l]); #Fwhite
= coef (mod.2) [1], b= cosef{mod.Z2) [2],

a
ley = 1, col = cols[g]):s #black
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legend (0.1, 0.19,. legend = M™Black™; bty =."n". cex = 0.
legend (0.7, 0:085, légend = "White® . bEy = "n"; cex =
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Figure 3.19 Plotting regression coefficient slopes
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3.5.3 Mosaic Plots

For data where there is some kind of true or false statement, mosaic plots
can be used to generate a powerful visualisation of the statistical properties
and relationships between variables. What they seek to do is to compare
crosstabulations of counts (hence the need for true or false statements)
against a model where proportionally equal counts are expected, in this case
of vacant housing across ethnic groups. The mosaic plot in Figure 3.20
shows that the distribution of census blocks with vacancy levels higher than
10% 1is not evenly distributed amongst different ethnic groups: the tiles in
the mosaic plot have areas proportional to the counts (in this case the
number of people affected) and their colours show which groups are under-
or over-represented, when compared against a model of expected equality.
The blue tiles show combinations of property vacancy and ethnicity that are
higher than would be expected, with the tiles shaded deep blue
corresponding to combinations whose residuals are greater than +4, when
compared to the model, indicating a much greater frequency in those cells
than would be found if the model of equality were true. The tiles shaded
deep red correspond to the residuals less than 4, indicating much lower
frequencies than would be expected. Thus the white ethnic group is
significantly more strongly associated with areas where vacant properties
make up less than 10%, and the other ethnic groups are significantly more
strongly associated with areas where vacant properties make up less than
10%, than would be expected in a model of equal distribution.

Mosaic Plot of Vacant Properties
with Ethnicty

il |

]
il

E_‘_ Fa_

[l
c=ded 220002 2:4 =4

Vacant Properties = 10 per cant

Standardisad

Residuals:



Figure 3.20 An example of a mosaic plot

| 5,8] 8, — data.frame(blocks[,14:18]) * data.frame{blocks)[,11]
pops <-— matrix (pops/1i
colnames (pop3) <— c{"White", "Black", "Ameri"™, "Asian",
" F\rh: I :I
vac.l0 <- {(blocksSP VACANT > 10) + 0O
mat.tab <- xtabs (pops ~vac.l1ld)
ttext = sprintf("Mosaic Plot of Vacant Properties
ith ethnicty™)
mosaicplot (t (mat.tab) ,xlab="
vlab= 'Vacant Properties 10 percent',
=ttext e=TRUE, 1as=3, cex=0.8)

3.6 SELF-TEST QUESTIONS

This chapter has introduced a number of commands and functions for
mapping spatial data and visualising spatial data attributes. The questions in
this section present a series of tasks for you to complete that build on the
methods illustrated in the preceding sections. The answers at the end of the
chapter present snippets of code that will complete the tasks but, as ever,
you may find that your code differs from the answers provided. This is to be
expected and is not something that should concern you as there are usually
many ways to achieve the same objectives. The tasks seek to extend the
mapping that you should have already done (as a reminder, the expectation
is that you run the code embedded in the text throughout the book), and in
places greater detail and explanation of the specific techniques is given.
Four general areas are covered:

Plots and maps: working with map data

Misrepresentation of continuous variables: using different cut functions
for choropleth mapping



Selecting data: creating variables and subsetting data using logical
statements

Re-projections: transforming data using spTransfrom

Self-Test Question 1. Plots and maps: working with map data

Your task is to write code that will produce a map of the counties in
Georgia, shaded in a colour scheme of your choice but using 11 classes
describing the distribution of median income in thousands of dollars (this is
described by the Medinc attribute in the data frame). The maps should
include a legend and the code should write the map to a TIFF file, with a
resolution of 300 dots per inch and a map size of 7 x 7 inches.

Self-Test Question 2. Misrepresentation of continuous variables: using
different cutters for choropleth mapping

It i1s well known that it is very easy to lie with maps (see Monmonier, 1996).
One of the very commonly used tricks for misrepresenting the spatial
distribution of phenomena relates to the inappropriate categorisation of
continuous variables. Your task in this exercise is produce three maps that
represent the same feature, and in so doing you will investigate the impact
of different cut functions when used to generate maps.

Write code to create three maps in the same window of the numbers of
houses in the New Haven census blocks. Apply different cut functions to
divide the Hse uniTs in the blocks dataset into five classes in different
ways based on quantiles, absolute ranges, and standard deviations. You
need not add legends, scale bars, etc. but should include map titles.



Self-Test Question 3. Selecting data: creating variables and subsetting
data using logical statements.

In the previous sections on mapping polygon attributes and mapping lines,
different methods for selecting or subsetting the spatial data were
introduced. These applied an overlay of spatial data using the
gIntersection function to select roads within the extent of a
SpatialPolygons object, and a series of logical operators were used to
select and classify earthquake locations that satisfied specific criteria.
Additionally, logical operators were introduced in the previous chapter.
When applied to a variable they return true or false statements or, more
correctly, 1ogical data types. In this exercise, the objective is to create a
secondary attribute and then to use a logical statement to select data objects
when applied to the attribute you create.

A company wishes to market a product to the population in rural areas.
They have a model that says that they will sell one unit of their product for
every 20 people in rural areas that are visited by one of their sales team, and
they would like to know which counties have a rural population density of
20 people per square kilometre. Using the Georgia data, you should develop
some code that selects counties based on a rural population density
measure. You will need to calculate for each county a rural population
density score and map the counties in Georgia that have a score of greater
than 20 rural people per square kilometre.



Self-Test Question 4. Re-projections: transforming data using
spTransfrom

Spatial data come with projections, which define an underlying geodetic
model over which the spatial data are projected. Different spatial datasets
need to be aligned over the same projection for the spatial features they
describe to be compared and analysed together. National grid projections
typically represent the world as a flat surface and allow distance and area
calculations to be made, which cannot be done using models that use
degrees and minutes. World geodetic systems such as WGS84 provide a
standard model provide standard reference system. In the previous exercise
you worked with the georgia2 dataset which is projected in metres,
whereas georgia is projected in degrees in WGS84. A range of different
projects are described in formats for different packages and software are
described at the Spatial Reference website.> A typical re-projection would
be something like

You should note that data need to have a projection in order to be
transformed. Projections can be assigned if you know what the projection
is. Recall the code from earlier in this chapter using the Fiji earthquake
data:



T3bhrarzr il Te T~ [
11brary(lalogls)

libraryv{rgdal)

data (gquakes)

coords.tmp <- cbhind({guakesflong, guakeaSlat)

quakes.spdf <- SpatialPointsDataFrame (coords.tmp,
data = data.frame (quakes))

You can examine the projection properties of this spatialPointsDataFrame
object by entering:

summary (quakes.spdf)

You will see that the 1s projected and proj4string properties are empty.
These can be populated if you know the spatial reference system and then
the data can be transformed.

projd4string (quakes.spdf) <- CRS ("+proj=longlat +ellps=Wz584")

The objective of this exercise i1s to re-project the New Haven blocks and
breach datasets from their original reference system to WGS84. Recall that
at the start of this chapter the description of these datasets was that they had
a local projections system, using the State Plane Coordinate System for
Connecticut, in US survey feet. You should transform the breaches of the
peace and the census blocks data to latitude and longitude using the crs
statement above and the spTransfrom function in the rgdal package. Then,
having transformed the datasets, you should extend the context mapping
that used the rRgoogleMaps package in earlier sections to map the locations
of the breaches of peace and the census blocks with a Google Maps
backdrop.
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# Hin

# use the help and the example code they include
?PlotOmStaticMap # for the points

?PlotPolys0OnStaticMap # for the census block

# adjust the polygeon shading using rgb and transparsncy
?rgb

# Tools

library (GIS5STools) # for the mapping tools

library(rgdal) # this has the spatial reference tools

librarv (RgoogleMaps)
librarvy (PESmapping)
data (newhaven) # for the breach point dataset

ANSWERS TO SELF-TEST QUESTIONS

Q1. Plots and maps: working with map data

# load the datae and the package
library{GISTools)

data (georgia)

# open the tif file and give 1t & name

tiff ("Questl.ciff", width=7,height=7,units='"in",res3=300)

¥ define the shading scheme
shades <- auto.shading({gecrgiafMedInc/i1000,n=11,
cols=brewer.pal{ll, "Spectral™)})
¥ plcot the map
choropleth (georgia, georgiasMedIng/ 1000, shading=shadss)
¥ add the legend & keys
choro.legend{—81.7, 35.1, shades,
title ="Median Income (100038 5)", cex = 0.75)

o

dev.off ()

Your map should look something like Figure 3.21:
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Figure 3.21 The map produced by the code for Self-Test Question 1

Q2. Misrepresentation of continuous variables: using different cutters for
choropleth mapping
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library (GISTools)

data (newhawven)
attach({data.frame{blocks) )

# 1. Initiel investigaticon

# You ceould stert by having a look at the data

hist (HSE UNITS, breaks = 20)

# You should notice that 1t has a normal distrikuticn
# but with some largse outliers

# have a look at the impsects of different cut schemes

gquantileCuts (HSE UNITS, 3)
rangeCuts (HSE UNITS, 35)
sdCuts (HSE UNITS, 5)

£ =~

£ 2 Do the task

Ry - Y

# define the plof window

if ({.PlatformS$GUI == "AQUA™) {

gquartz (w=10,h=6) } else {
¥x11 (w=10,h=86) }

set the plotf parameters

perimar = ci(0.25,0.25,2, 0.25}))

iy
¥

parimfrow = c(1,3})
parf{lwd = 0.7)
# @) mapping classes defined by guantiles

shades <- auto.shading (HSE UNITS, cutter = guantileCuts,
n = 5, cols = brewer.pal(5, "R4dYiGn"))

choroplechi{blocks, HSE UNITS, shading=shades)

choro.legend (5332000,161000, shades)

title ("Quantile  Cuts™, cex.main = 2}

4 3 = -~ ~Tsoo e 2me~A i skhenln
¥ b} mapping classes definsed by absolutse r

[11]

nges

shades <- auto.shading(HSE UNITS, cutter = rangeCuts,
n = 5 cola = brewer.pal(S, "B4AY¥1Gn"})

choropleth (blocks, HSE UNITS, shading=shades)

choro.legend(533000,161000,3hades)

title ("Range Cuts", cex.main = 2)
# ¢) mapping classes defined by standsrd devistions

shades <- auto.shading(HSE UNITS, cutter = sdCuts,
n = 5%, cols = brewer.pal(5, "RAY1Gn"})

choropleth (blocks, HSE UNITS, shading=shades)

choro.legend(533000,161000, shades)

title("S5t. Dev. Cuts", cex.main = 2)
£ 3. Finally detach the da
detach {data.frame (blocks} )
¥ reset par{mfrow)

par (mfrow=c(l,1}]

Your map should look something like Figure 3.22:



Quantile Cuts

Figure 3.22 The map produced by the code for Self-Test Question 2

Q3. Selecting data: creating variables and subsetting data using logical
statements

f attach the data frame

attach (data.frames {georgia?))

& - S S yrnm g R QA BE gy

!

rur.pop <— PctRural * TotPopS0 / 100

4 = 111 == ~auntyv areass Ty =

areas <- ghrea(georgia2, byid
arsas <- as.vector (areas S (1000% 1000))

'y ~=2lculaete 11 S =T

iLlUl@E LT LUl@ml Wollald Ly

rur.pop.den <- rIur.popfareas

detach the dsta Fram=
' L fi= A0 L& PR r 1 L

tach (data.frame (georgia?))

e e v T 1 ollicn T i Rt

b3 gp e =1 =

index <- rur.pop.den > 20

y - - ==

Plot (georgiaZ[index,], col = "chartreuss4")

¥ plot the nAoanp—riugr ~anmnties

Plot (georgiaZ[lindex, ], col = "darkgoldenrod3", add = TRUE)

3 R e
a rural population density
of >20 people per km™2", =sub = "Georgia, USA™)
(850000, 925000, 970000, 966000, col = "white")
i
1

B50000, 955000, legend = "Rural",

bty = "n"™,.: pch-= I5%, col = "charcreuse4dm)
legend (850000, 575000, legend = "Not Rural™,
bty = "ao"™, pch = 1%, cal = "darkgoldenrod3™)

Your map should look something like Figure 3.23:
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Figure 3.23 The map produced by the code for Self-Test Question 3

Q4. Re-projections: transforming data using spTransfrom

library (GISTools) # for the mapping toeols
library{rgdal) # th =

libraryv ({RgoogleMaps)

library (PBESmapping)

data (newhaven)
# define & new projection

{("+proj=longlat 4+ellps=HWES584™)

e ] - —F
ks and bkreach

new
newProj <-— CR3
# transform bl
breach? «<- spTransform(breach, newProj)
blocks2 «<- spIransform(blocks, newProj)

# extract coordinates to pass to G

oo
coords <— coordinates({breach2)



Lat <— coords|[, 2]
Long <- coords[,1l]

MyMap <— MapBackground(lat=Lat, lon=Long, =zoom = Z20)

shp <- SpatialPolygonsZPolySet (blocksZ)

PlotPolysOn3taticMap (MyMap, shp, lwd=

1
eal = FaghllsTs, 0250 25005y, Hdd = F)
PlotOnStaticMap (MyMap, Lat, Long, pch=1,ccl="red', add = TRUE)

Your map should look something like Figure 3.24:

e
Hartanr

ety bl G & Dot

Figure 3.24 The map produced by the code for Self-Test Question 4
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4.1 OVERVIEW

As you have been working through the code and exercises in this book you
have applied a number of different tools and techniques for extracting,
displaying and analysing data. In places you have used some quite
advanced snippets of code. However, this has all been done in a step-by-
step manner, with each line of code being run individually, and the
occasional function has been applied individually to a specific dataset or
attribute. Quite often in spatial analysis, we would like to do the same thing
repeatedly, but adjusting some of the parameters on each iteration — for
example, applying the same algorithm to different data, different attributes,
or using different thresholds. The aim of this chapter is to introduce some
basic programming principles and routines that will allow you to do many
things repeatedly in single block of code. This is the basics of writing
computer programs. This chapter will:

Describe how to combine commands into loops
Describe how to control loops using if, else, repeat, etc.
Describe logical operators to index and control
Describe how to create functions, test them and to make them universal
Explain how to automate short tasks in R
No previous knowledge of programming is required for you to understand
the content of this chapter. Different concepts will be introduced with

worked examples, supported by snippets of code, and by working through
these, at the end of this chapter you should understand key principles of



programming and be able to apply these to spatial information processing
problems. If you have no previous experience of programming do not
worry. By developing basic competence in R, you will get used to using
code blocks or groups of commands, sometimes combined into functions. If
you have experience in programming in another language, then this chapter
will serve to introduce the R syntax.

4.2 INTRODUCTION

In spatial data analysis and mapping, we frequently want to apply the same
set of commands over and over again, to cycle through data or lists of data
and do things to data depending on whether some condition is met or not,
and so on. These types of repeated actions are supported by functions, loops
and conditional statements. A few simple examples serve to illustrate how
R programming combines these ideas through functions with conditional
commands, loops and variables.
For example, consider the following variable tree.heights:

We may wish to print out the first element of this variable if it has a value
less than 6: this is a conditional command as the operation (in this case to
print something) is carried out conditionally (i.e. if the condition is met):

tree. heights

## [1] 4.3 7.1 6.3 5.2 3.2

if (tree.heights[l] < &) t("Tree is small\n") else
{ cat{("Tree is large\n'})}

#% Tree is small

Alternatively, we may wish to examine all of the elements in the variable
tree.heights and, depending on whether each individual value meets the
condition, perform the same operation. We can carry out operations



repeatedly using a loop structure as below. Notice the construction of the
for 100p in the form for (variable in sequence) {R expression}.

for (i in 1:3)
if (trese.heighta[i] &) cat ("Tree',i," is smallin'} }
eloe [ cet ("Tree';1i, "is:largexn')} I}

## Tree 1 is small
i Treese 2 iz largs
% Tres 2 iz largs

A third situation is where we wish to perform the same set of operations,
group of conditional or looped commands over and over again, perhaps to
different data. We can do this by grouping code and defining our own
functions:

agssess.treesheight <- function(tree.list;, thresh)
{ for (i in 1l:length(trees.list))
{ if(tree.listfi] < thresh) {cat('Tree',i, ' is small\n'})]}

else { cat{'Tres",i, ' is large'n")}

% Tres 1 is small
iz large
¥ Tree 3 is large
1 is small

all

f B

tF Tres 5 is smal

tree.heights2 <-

assess.tree.height |

% Tres 1 is
% Tres 2 is

=
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m

3 Tres 3 is

—
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| e |
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w
=)
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Notice how the code in the function assess.tree.height above modifies
the original loop: rather than for (i in 1:3) it now uses the length of the
variable 1:length(tree.list) to determine how many times to loop
through the data. Also a variable thresh was used for whatever threshold
the user wishes to specify.



The sections in this chapter develop more detailed ideas around
functions, loops and conditional statements, and the testing and debugging
of functions, in order to support automated analyses in R.

4.3 BUILDING BLOCKS FOR PROGRAMS

In the examples above a number of programming concepts were introduced.
Before we start to develop these more formally into functions, it is
important to explain these ingredients in a bit more detail.

4.3.1 Conditional Statements

Conditional statements test to see whether some condition 1S TRUE or FALSE,
and if the answer is TRUE then some specific actions are undertaken.
Conditional statements are composed of i f and else.

The if statement is followed by a condition, an expression that is evaluated,
and then a consequent, to be executed if the condition is TRue. The format
of an if statement is:

1 f—condition—consequent

Actually this could be read as ‘if the condition is true then the consequent
is...”. The components of a conditional statement are:

the condition, an R expression that is either TRUE or FALSE

the consequent, any valid R statement which is only executed if the
condition is TRUE

For example, consider the simple case below where the value of x is
changed and the same condition is applied. The results are different (in the
first case a statement is printed to the console, in the second it is not),
because of the different values assigned to x.



f (= £ 0) cat("x is negatiwve™)

#% x i=s negatiwve

Frequently if statements also have an alternative consequent that is
executed when the condition is Fanse. Thus the format of the conditional
statement 1s expanded to

1 f—condition—consequent—e1se—alternative

Again, this could be read as ‘if the condition is true then do the consequent;
or, if the condition is not true then do the alternative’. The components of a
conditional statement that includes an alternative are:

The condition, an R expression that is either TRUE or FALSE;

The consequent and alternative, which can be any valid R statements;

The consequent is executed if the condition is TRUE;

The alternative 1s executed if the condition 1s FALSE.

The example is expanded below to accommodate the alternative:

if (x < ] at ("= is negative™) else HE ["® ia pdsitive™)
#F x i3 negative

X <- 8

if (x < 0) cat{"x is negatiwve™) else cat("x is positive®)

$t%¥ % is positive

The condition statement is composed of one or more logical operators, and
in R these are defined as follows:



Logical operator

Description

Equal

Mot equal

Greater than

Lazs than
= Graater than or equal
o= Less than or equal

Mot (goes in front of other expressions)
&

And {combines expressions)

Cr (combines expressions)

In addition, R contains a number of logical functions which can also be
used to evaluate conditions. A sample of these are listed below, but many

others exist.

Logical function

Description

any [x)

TRUE if any in a vector of conditions = is true

allix)

TRUE if all of a vector of conditions = is true

TRUE if = contains a numeric value

is_character (=]

TRUE if = contains a character value

is_logical {x)

TRUE if = contains a true or false value

There are quite a few more is-type functions (i.e. logical evaluation
functions) that return TRUE or FALSE statements that can be used to develop

conditional tests. To explore these enter:

??1is.

The examples below illustrate how the logical tests a11 and any may be

incorporated into conditional statements:




f (any(x > 0)) cat("Some numbers are positive")
#% Some numbers are positive

any (x==0)

4.3.2 Code Blocks

Frequently we wish to execute a group of consequent statements together if,
for example, some condition is TRUE. Groups of statements are called code
blocks, and in R are contained by { and }. The examples below show how
code blocks can be used if a condition is TRUE to execute consequent
statements and can be expanded to execute alternative statements if the
Condition 18 FALSE.

in

x €= e 8,8 85,5}

if (all{x > 0)) {
catc("All numbers are positiveln™)
total <- sum(x)

cat ("Their sum is",total)

## A1l numbers ars positive

## Their sum is 32

The curly brackets are used to group the consequent statements: that is, they
contain all of the actions to be performed if the condition is met is TRUE and
all of the alternative actions if the condition is not met (i.e. iS FALSE):

if condition { consequents } else { alternatives }

These are illustrated in the code below:



if {allix > 1
cat("All numbers are positive’\n"®
total <- sum(x)
cat ("Their sum is",total) } else {
cat ("Hot all numbers are positivehn")
cat ("This is probably an errorin™)
cat ("as numbers are rainfall levels") |}
¥ Not z2ll numbers are positiwve
$# This is probably am error

t%¥ as numbers are rainfall lewvels

i

4.3.3 Functions

Section 4.2 included a function called assess.tree.height. The format of
a function 1is:

function name <- function (argument list) { R expression }

The R expression is usually a code block and in R the code is contained by
curly brackets or braces: { and }. Wrapping the code into a function allows
it to be used without having to retype the code each time you wish to use it.
Instead, once the function has been defined and compiled, it can be called
repeatedly and with different arguments or parameters. Notice in the
function below that there are a number of sets of containing brackets { }
that are variously related to the function, the consequent and the alternative.

mean.rainfall <- function({rf)
if {(all({xf> 0))
{ mean.value <- mean (zrf)
cat ("The mean is " ,mean.value)
} el=e
{ cat ("Warning: NHot all values are positive\n"
1 4
mean.rainfall{(c{8.5,9.3;,6.5,9.3,9.4))



More commonly functions are defined that do something to the input
specified in the argument list and return the result, either to a variable or to
the console window, rather than just printing something out. This is done
using return () within the function. Its format is

return( R expression )

Essentially what this does if it is used in a function is to make r
expression the value of the function. In the following the mean.rainfall
function now returns the mean of the data passed to it, and this can be
assigned to another variable:

mean.rainfall? <- function(rf)
if {all({xrf> 0)) |
retn mean (rf) )} =l=se {
=413 BTA Y Y
- (s N
mnr <- mean.rainfall? (c{8.5,9.3,6.5,9.3,9.4))
mr
## [L] 8.t

Notice that the code blocks used in the functions contained within the
curly brackets { and } are indented. There are a number of commonly
accepted protocols for doing this, but no unique one. The aim is to
make the code and the nesting of sub-clauses indicated by { and }
clear. In the code for mean.rainfall above, { is used before the first
line of the code block, whereas for mean.rainfal1.2 the { is positioned
immediately after the function declaration.

It is possible to declare variables inside functions, and you should note that
these are distinct from external variables with the same name. Consider the
internal variable rf in the mean.rainfa112 function above. Because this is a
variable that is internal to the function, it only exists within the function and



will not alter any external variable of the same name. This is illustrated in
the code below.

rf <- "Tuesday"

mean . rainfall2 fe{B.5,9.3,6.5,8.3, 8.4]
##F [1] B.6

## [1] "Tussday"

4.3.4 Loops and Repetition

Very often, we would like to run a code block a certain number of times, for
example for each record in a data frame or a spatial data frame. This is done
using for loops. The format of a loop is:

for( 'loop wvariable' in 'list of values' ) do R expression

Again, typically code blocks are used as in the example of a for loop:

for (1in 1:5) {

for (i im 1:5)
i.cubed <- 1 L &
cat ("The cube of",1i, "is",i.cubed;, ™\n
$$# The cubs of 1 is 1
¥ The cube of 2 iz 8
¥ The cube of 3 is 27
¥ The cubse of 4 is &4
¥ The cubs of 5 is 125

When working with a data frame and other tabular-like data structures, it is
common to want to perform a series of R expressions on each row, on each
column or on each data element. In a for loop the '1ist of values' can be
a simple sequence of 1 to n (1:n), where n is related to the number of rows
or columns in a dataset of the data or the length of the input variable as in
the assess.tree.height function above.



However, there are many other situations when a different '1ist of
values' 1s required. The function seq is a very useful helper function that
generates number sequences. It has the following formats:

seq(from, to, by = step value)
or
seq(from, to, length = sequence length)

In the example below, it is used to generate a sequence of 0 to 1 in steps of
0.25:

for (val in seg(0,1,by=0.25})
val.sguared <- wal * wal
cat ("The square of",val, "is",wval.sguared, "\n")}

¥ The square of 0 is 0

¥# The sqguare of 0.25 is 0.0625
## The asguare of 0.5 is 0.25

## The square of 0.75 is 0.5625
## The square of 1 is 1

Conditional loops are very useful when you wish to run a code block until
a certain condition is met. In R these are specified using the repeat and
break functions. Here is an example:

i.squared «<- i i
if (i.squared n) break
i<— i+4+ 11}

Vi

cat ("The first sguare number exc

i

eding™,n, "is ",i.sgquared,

=

54 iz o776

(a4}

$## The first sguars number sxcesding



Notice in the above example that the first line of the code makes two
statements separated by a semi-colon ';'. Although it is possible to link
many lines in this way, it is advisable to do this only occasionally and
to link only simple snippets of code as above.

Finally, it is possible to include loops in functions as in the following
example with a conditional loop:

first.bigger.sgquare <- functionin) {
i <-1
repeatq
i.8quared <— i * I
if (i.aguared > n) break

i#-3141]

return(i.squared) }

4.3.5 Debugging

As you develop your code and compile it into functions, especially initially,
you will probably encounter a few teething problems: hardly any function
of reasonable size works first time! There are two general kinds of problem:

The function crashes (i.e. it throws up an error)

The function does not crash, but returns the wrong answer

Usually the second kind of error is the worst. Debugging is the process of
finding the problems in the function. A typical approach to debugging is to
‘step’ through the function line by line and in so doing find out where a
crash occurs, if one does. You should then check the values of variables to
see if they have the values they are supposed to. R has tools to help with
this.

To debug a function



Enter debug (function name)

Then call the function

For example, enter:
debug (mean.rainfall2)

Then just use the function you are trying to debug and R goes into ‘debug
mode’:

You will notice that the prompt becomes Browse> and the line of the
function about to be executed i1s listed. You should note a number of
features associated with debug:

Entering a return executes it, and debug goes to next line
Typing in a variable lists the value of that variable
R can ‘see’ variables that are specific to the function

Typing in any other command executes that command

When you enter ¢ the return runs to the end of a loop/function/block.
Typing in ¢ exits the function.
To return to normal

Enter undebug (function name)

A final comment is that learning to write functions and programming is a
bit like learning to drive — you may ‘pass the test’ but you will become a
good driver by spending time behind the wheel. Similarly, the best way to
learn to write functions is to practise, and the more you practise the better
you will get at programming. You should try to set yourself various function
writing tasks and examine the functions that are introduced throughout this
book. Most of the commands that you use in R are functions that can



themselves be examined: entering them without any brackets afterwards
will reveal the blocks of code they use. Have a look at the ife1se function
by entering at the R prompt:

ifelse

This allows you to examine the code blocks, the control, etc. in existing
functions.

4.4 WRITING FUNCTIONS
4.4.1 Introduction

In this section you will gain some initial experience in writing functions
that can be used in R, using a number of coding illustrations. You should
enter the code blocks for these, compile them and then run them with some
data to build up your experience. Unless you already have experience in
writing code, this will be your first experience of programming. This
section contains a series of specific tasks for you to complete in the form of
self-test questions. The answers to the questions are provided in the final
section of the chapter.

In the preceding section, the basic idea of writing functions was
described. You can write functions directly by entering them at the R
command line:

cube.root <- functioni(x) {
result <- x ° (1/3)

Note that * means ‘raise to the power’ and recall that a number to the power
of one third is its cube root. The cube root of 27 is 3, since 27 =3 X 3 x 3,
hence the answer printed out for cube.root (27). However, entering
functions from the command line is not always very convenient:



If you make a typing error in an early line of the definition, it is not
possible to go back and correct it

You would have to type in the definition every time you used R

A more sensible approach is to type the function definition into a text file. If
you write this definition into a file — calling it, say, functions.R — then you
can load this file when you run R, without having to type in the whole
definition. Assuming you have set R to work in the directory where you
have saved this file, just enter:

source ("functions.R")

This has the same effect of entering the entire function at the command line.
In fact any R commands in a file (not just function definitions) will be
executed when the source function is used. Also, because the function
definition is edited in a file, it 1s always possible to return to any typing
errors and correct them — and if a function contains an error, it is easy to
correct this and just redefine the function by re-entering the command
above. The built-in R editor for writing and saving code was introduced in
Chapter 1.

Open a text-editing window. In the new window, enter in the code for the
program:

Then use Save As to save the file as functions.r in the directory you are
working in. In R you can now use source as described:

~urce ("functions.R')

root (243)

L ST PO
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Note that you can type in several function definitions in the same file. For
example, underneath the code for the cube.root function, you should define
a function to compute the area of a circle. Enter:



circle.area <- functionir) {

result <- pi ®* r * 2

return (result) }

If you save the file, and enter source (' functions.R') to R again then the
function circle.area will be defined as well as cube.root. Enter:

source ("functions.R')

T L B = - 1=
De ot (343)

circle.area{10)

4.4.2 Data Checking

One issue when writing functions is making sure that the data that have
been given to the function are the right kind. For example, what happens
when you try to compute the cube root of a negative number?

That probably wasn’t the answer you wanted. nan stands for ‘not a
number’, and is the value returned when a mathematical expression is
numerically indeterminate. In this case, this is actually due to a shortcoming
with the ” operator in R, which only works for positive base values. In fact
—7 1s a perfectly valid cube root of —343, since (-7) x (-7) x (-7) =
-343. In fact we can state a conditional rule:

If x > 0: Calculate the cube root of x normally
Otherwise: Use cube.root (-x)
That is, for cube roots of negative numbers, work out the cube root of the

positive number, then change it to negative. This can be dealt with in an R
function by using an i f statement:



cube.root <- functioni(x) {

result <— x * (1/3) } else {
regult <- —(-x) ° )

return {result) }

Now you should go back to the text editor and modify the code in
functions.R to reflect this. You can do this by modifying the original
cube.root function. You can now save this edited file, and use source to
reload the updated function definition. The function should work with both
positive and negative values.

Next, try debugging the function — since it is working properly, you will not

(hopefully!) find any errors, but this will demonstrate the debug facility.
Enter:

at the R command line (not in the file editor!). This tells R that you want to
run cube.root in debug mode. Next, enter:

at the R command line and see how repeatedly pressing the return key steps

you through the function. Note particularly what happens at the if
statement.

At any stage in the process you can type an R expression to check its
value. When you get to the if statement enter:



at the command line and press return to see whether it is true or false.
Checking the value of expressions at various points when stepping through
the code 1s a good way of identifying potential bugs or glitches in your
code. Try running through the code for a few other cube root calculations,
by replacing —50 above with different numbers, to get used to using the
debugging facility. When you are finished, enter

at the R command line. This tells R that you are ready to return cube.root
to running in normal mode. For further details about the debugger, at the
command line enter:

help (debug)

4.4.3 More Data Checking

In the previous section, you saw how it was possible to check for negative
values in the cube.root function. However, other things can go wrong. For
example, try entering:

["Leicester™)

This will cause an error to occur and to be printed out by R. This is not
surprising because cube roots only make sense for numbers, not character
variables. However, it might be helpful if the cube root function could spot
this and print a warning explaining the problem, rather than just crashing
with a fairly obscure error message such as the one above, as it does at the
moment. Again, this can be dealt with using an if statement. The strategy to
handle this is:

If x 1s numerical: Compute its cube root

If x is not numerical: Print a warning message explaining the problem



Checking whether a variable is numerical can be done using the is.numeric
function:

is.numeric {77}

is.numeric ("Lex")

ig.numeric("77T")
e 3

v - Two Sewvens Clash"™

is.numeric (V)

The function could be rewritten to make use of is.numeric in the following
way:

cube.root <- functioni(xz) {
if {is.numeric{x}}) A
if (x »= 0) { result <- x~(1/3) 1}
else [ result <- -[(-x%)"{1/3) 1}
return {(result) }
else |
cat ("HARNING: Tnput must be numerical, not characteri\n")

Note that here there is an if statement inside another if statement — this is
an example of a ‘nested’ code block. Note also that when no proper result is
defined, it 1s possible to return the value na instead of a number (NA = ‘not
available’). Finally, recall that the \n in cat tells R to add a carriage return
(new line) when printing out the warning. Try updating your cube root
function in the editor with this latest definition, and then try using it (in
particular with character variables) and stepping through it using debug.

An alternative way of dealing with cube roots of negative numbers is to
use the R functions sign and abs. The function sign (x) returns a value of 1
if x 1s positive, —1 if it is negative, and 0 if it is zero. The function abs (x)
returns the value of x without the sign, so for example abs (-7) 1s 7, and
abs (5) 1s 5. This means that you can specify the core statement in the cube
root function without using an i f statement to test for negative values, as:

result <- sign({x)¥*abs(x)"({1/s3)

This will work for both positive and negative values of x.



Self-Test Question 1. You should define a new function cube.root.2 that
uses this way of computing cube roots — and also include a test to make sure
x 18 @ numerical variable, and print out a warning message if it is not.

4.4.4 Loops Revisited

In this section, you will revisit the idea of looping in function definitions.
There are two main kinds of loops in R: deterministic and conditional
loops. The former is executed a fixed number of times, specified at the
beginning of the loop. The latter is executed until a specific condition is
met.

Conditional loops

A very old example of a conditional loop 1s Euclids algorithm. This is a
method for finding the greatest common divisor (GCD) of a pair of
numbers. The GCD of a pair of numbers is the largest number that divides
exactly (i.e. with remainder zero) into each number in the pair. The
algorithm is set out below:

1 Take a pair of numbers a and b — let the dividend be max(a, b), and the
divisor be min(a, b).

2. Let the remainder be the arithmetic remainder when the dividend is
divided by the divisor.

3. Replace the dividend with the divisor.

4. Replace the divisor with the remainder.

5. If the remainder is not equal to zero, repeat from step 2 to here.

6. Once the remainder is zero, the GCD is the dividend.

Without considering in depth the reasons why this algorithm works, it

should be clear that it makes use of a conditional loop. The test to see
whether further looping is required occurs in step 5 above. It should also be



clear that the divisor, dividend and remainder are all variables. Given these
observations, we can turn Euclid’s algorithm into an R function:

god <— function(a,kb)

divisor <- mini{a,b)

dividend <- max({a,b)

repeat

{ remainder <- dividend %% divisor
dividend <- diviscr

diviscr <- remainder
if (remaindesr == () break

The one unfamiliar thing here is the <% symbol. This is just the remainder
operator — the value of x %% y is the remainder when x is divided by v.

Using the editor, create a definition of this function, and read it in to R.
You can put the definition into functions.R. Once the function is defined, it
may be tested:

()]
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Self-Test Question 2. Try to match up the lines in the function definition
with the lines in the description of Euclid’s algorithm. You may also find it
useful to step through an example of gcd in debug mode.

Deterministic loops

As described in earlier sections, the form of a deterministic loop is

for (<VAR> in <ITteml>:<Item2>)

. code in loop...



where <var> refers to the looping variable. It is common practice to refer to
<vaRrR> in the code in the loop. <Ttem1> and <1tem2> refer to the range of
values over which <var> loops. For example, a function to print the cube
roots of numbers from 1 to n takes the form:

cube.root.table <- function{n}
for (x in 1:n)

ot RO EL AL LR e T = ([ I [ e i my -y
cart(Tline Cupe IoOoT Or P 13", CUubs.IooT (X], v )

Self-Test Question 3. Write a function to compute and print out ccp (x, 60)
for x in the range 1 to n. (i1) Write another function to compute and print out
GCD (x,y) for x in the range 1 to n1 and y in the range 1 to n2. In this
exercise you will need to nest one deterministic loop inside another one.

Self-Test Question 4. Modify the cube.root.table function so that the loop
variable runs from 0.5 in steps of 0.5 to n. The key to this is provided in the
descriptions of loops in the sections above.

4.4.5 Further Activity

You will notice that in the previous example, the output is rather messy,
with the cube roots printing to several decimal places — it might look neater
if you could print to fixed number of decimal places. In the function
cube.root.table replace the cat... line with

cat (sprintf ("The cube root of %¥4.0f iz %6.4f \n",x,cubs.root(x)))}

Then enter help (sprintf) and try to work out what is happening in the
code above.

4.5 WRITING FUNCTIONS FOR SPATIAL
DATA



The sections on plotting and graphics in Chapter 2 outlined a number of
techniques for visualising data using R, and Chapter 3 introduced some
basic techniques for analysing and displaying spatial data. The exercises in
this section apply some of the techniques from Chapters 2 and 3, in
conjunction with writing functions and using spatial data. In so doing, these
exercises show you how to create some elementary maps in R using
functions rather than line by line coding. They also outline some new R
commands and techniques to help put all of this together. These exercises
and examples applying functions give a flavour of how R can be used to
handle geographical data, and in particular how graphics can be produced.

To begin with, you will load the crsToo1s package and the georgia data.
However, before doing this and running the code below you need to check
that you are in the correct working directory. You should already be in the
habit of doing this at the start of every R session. Also, if this is not a fresh
R session then you should clear the workspace of any variables and
functions you have created. Recall from Chapter 3 that this can be done
through the menu Misc > Remove all objects in Windows (or Workspace
> Clear Workspace on a Mac) or by entering:

Then load the G1sToo1s package and the georgia datasets:

library (GISTools)

o e 1
data |[gedrdgld)

One of the variables is called georgia.polys. There are two ways to
confirm this. A new one is to type 1s () into R. This function tells R to list
all currently defined variables:

The other way of checking that georgia.polys now exists is just to type it
in to R and see it printed out.



georgia.polys

What is actually printed out has been excluded here, as it would go on for
pages and pages. However, the content of the variable will now be
explained. georgia.polys is a variable of type 1ist, with 159 items in the
list. Each item is a matrix of k& rows and 2 columns. The two columns
correspond to x and y coordinates describing a polygon made from & points.
Each polygon corresponds to one of the 159 counties that make up the state

of Georgia in the United States. To check this quickly, enter the code below
to produce Figure 4.1.

plot (georgia.polya _J] =1, e=11"
e
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= i =
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% |
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] i " 3
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1240000 4280000 1280000 1300000 1320000 1340000
georgiapolys[[1]][.1]

Figure 4.1 The plot produced by
plot (georgia.polys([[1]],asp=1,type="1")

The above will not win any prizes for cartography — but it should be
recognisable as Appling County, as featured in earlier chapters. In this case,

the polygons are ordered alphabetically by county name and Appling
happens to come first.

4.5.1 Drawing Polygons in a List

Having loaded the variable georgia.polys, which is a list of polygons, it
would be useful to draw all of these — essentially making a map of all of the



counties in Georgia. Recall that the function polygon draws polygons, but
that it adds the polygon to an existing graph. To create the background

graph, you need to use the plot function with the 'n' option. A good
bounding box for the whole of Georgia is

Corner South-West Morth-East
Easting 939 220 m 1419420 m
Morthing Q05,510 m 1405900 m

So first draw a blank plot with these limits. Then add the outlines of each of
the polygons in the list. The simplest way to do this is to use lapply to
apply the polygon function to each polygon in the list georgia.polys as in
the code to below to produce Figure 4.2:

plot (c(939200,1415942 5510,1405900) ,asp=1,type="n")

[T ]
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Figure 4.2 Plotting using the 1app1y function

What you will have noticed is that although this has worked, using the
function caused a lot of things to be printed out. This is because 1apply
returns a list of the same length as the input list, with each element in the
list corresponding to the result of applying the input function to each
element in the input list. However, in this instance the function polygon
doesn’t return a value. As a result, each element in the output of 1apply
contains the value nuLL, signifying an empty list. What you see printed out
is a list of 159 nuLL values, one for each county polygon. Since this isn’t



very helpful here, you can use the invisible function. This basically
overrides the standard option of printing out the result of an expression. To
do this, just enter:

invisible (lapply{georgia.polys,polygon) )

This has the same effect as before, but doesn’t print out the result, just the
map.

Self-Test Question 5. Write a function to take a polygon list, such as
georgia.polys, and draw a map in the same way as the above example.
Call it draw.polys. One thing you may want to adjust is the labelling on the
axes. At the moment they are labelled by default with the expressions
passed in the call to piot. In fact, it might be better to just have a blank
window — basically we are trying to plot a map, not a graph!

Entering the code below will give an entirely blank window — in effect
this is a graph with all of the usual annotation switched off, and the various
options xlab, ylab, =xaxt, yaxt and bty switch off displays of axes,
labels and the box around the graph:

Write the draw.polys function to use these options to create a blank
window, and then plot the polygons.

4.5.2 Automatically Choosing the Bounding Box

The last result (particularly the output from the self-test question) looked
more like a proper map. However, you needed to rely on a bounding box
that was supplied earlier in the text. It would be useful to be able to work
out the bounding box automatically given the polygon list. The R functions
min and max find the largest and smallest values in a list of numbers. These
can be used, on an individual polygon in the list, to find the extreme north,
south, east and west coordinates. For example the code below finds the
most eastern point on the boundary of polygon 1:



polyl <- georgia.polysi[l]]

min(polyl{,1])

#% [1] 1264520

The other extremes can be found by the following expressions:

Extreme point Most northern Most southern

R Exppression max (polyl[,2]1) min{polyl(,2])
Extreme point Most sastern Most western

I Expression min(polyl[,1]) max {polyl([,1]})

One of these expressions could be applied to every polygon in the list to get
a list of the most eastern point in each polygon. Firstly, define a
most.eastern function to return the most eastern point of a polygon:

most.eastern <- function(poly) {return{min{poly{,1]1})1}

Next, use lapply to apply it to each polygon in the list:

most.eastern.list «<- lapplyi(gecrgia.polys,most.castern)

If you type in most.eastern.list you will see the result is a list of 159
items. Each one is the most eastern point of the corresponding polygon. In
fact, there 1s a shorter way of doing this:

most.eastern.list «<- lapplyigecrgia.polys,

function{poly) {return (min (po

In this version, the function most.eastern is replaced with the definition of
the function. Assuming you do not want to make use of the function again,
this is a quicker way of doing things. Since the function never gets given a
name, this is referred to as an anonymous function. In fact, you can make
this even shorter. Since the function body only has one line, you don’t
actually need to enclose it in curly brackets { and } — and you can write the
whole thing on a single line:



most.eastern.list «<- lapplyige
1 |

function{poly) return{min|(

Now if you apply unlist to this list this will return a basic vector of 159
most eastern points. Finally, you can apply min to this — this gives you the
most eastern point of all the polygons in the list.

min {(unlist (mosSt.eastern.liat))

% [1] 939

Al

It is possible to combine all of these operations into a new function called
most.eastern.point and then to test it:

T 4 e e A by e
# Functien definition

most.eastern.point <- function{polys) {

# Most eastern points

most.eastern.list <- lapply{polys,
function(poly) return(min(polv[,1])))
:et::n{ﬁi:{u:;ist[m:s:.eas:e:n.l;et;;}}
most.eastern.point (gecrgia.polys
## [1] o©38221

Self-Test Question 6. Write similar functions for the most western, most
northern and most southern points in the polygon list.

You can test the functions you create with the code below, assuming you
have used similar naming conventions:

Self-Test Question 7. Use these functions to update the draw.polys
function to automatically work out the map window.



4.5.3 Shaded Maps

In this section, you will extend the methods above to produce shaded maps,
rather than plain ones. To do this, you will need to create a new factor
variable. First, make sure the georgia datasets are still loaded. As a
reminder, three variables are loaded — georgia, georgia2 and
georgia.polys:

Next, a factor variable called classifier will be created with two levels,
urban and rural, that will be used to apply an urban/rural classification for
each of the counties in Georgia. This is based on whether or not more than
50% of the population live in a rural area. Have a look at the georgia
attributes and the rural descriptor pctrRural by entering:

Now create the c1assifier variable:

classifier <- factor{ifelse(geocrgial

W W Ul ke A
rural"™, "urban®) )

You should examine this variable and note the use of the factor function
and the ifelse function. This is new and combines both if and else
statements. You should explore this in the help file.

Now, create a vector of colours, to shade in the map. To show the rural
areas in dark green and the urban areas in yellow, the first step is to create a
vector of appropriate colours. Define a character vector called fill.cols
with the same length as the number of polygons, initially just containing
empty strings:

fill.cols <- wector (mode="character",

length=length ({claszifier))



Then set the elements in fi11.cols that correspond to rural counties with
the value "darkgreen", and those corresponding to urban areas with the
value "yellow":

fill.cols[classifier="urban"] <-
fill.cols[classifier—"rural"] <- "darkgreen"

To draw the map, it is necessary to draw each polygon in the list
georgia.polys with the colour given in the corresponding element in
fill.cols. Note that this is possible because the georgia and georgia.polys
datasets are similarly ordered. The 1app1y function can’t be used here, as it
can only apply functions to single elements in a list — and here we need an
additional argument to give the colour. Fortunately there is also another
function, mapp1y (the 'm' stands for multivariate), that handles this situation.
This takes the form:

mapply (<function>, <13 arguments list>,<Znd
arguments list>, ...)

Note that this is in a different order to lapply. In this case, the ‘Ist
argument list’ is the polygon list, and the second argument is the list of
colours. Assuming you have successfully defined the functions required for
Self-Test Question 6, enter the code below to produce Figure 4.3.

= - c({most.eastern.point (gecrgia.polys),

oSt . western.point (georgia.polys
ns <- c{mest.scuthern.point{geocrgia.polys),

108t rthern.point (georgia.polys
par (mar = c(Q,0,0,0)
plot (ew,ns3,asp=1

type=" xlab=""' ,ylab= Xaxt="mn axt="n',bty="n"’

invisible (mapply {polyvgon, geocrgia.polys, 1=fill.cols)



Figure 4.3 Rural/urban areas in Georgia

Self-Test Question 8. Repeat the above, but using different densities of
hatching instead of colour shading, to show the rural areas. For information,
you can create a vector with numeric variables, instead of characters, by
using:

You should note that a density of zero in the polygon command implies no
hatching.

ANSWERS TO SELF-TEST QUESTIONS

Q1. A new cube.root function:



cube.root.2 <- function(x)
if (is.numeric(x))
{ result <- signix)*abs{x)"(1/3)
return{result)

=
at ("HABNING: Input must be numerical, not characteri\n")
i

Q2. Match up the lines in the gcd function to the lines in the description of
Euclid’s algorithm:

divisor <- mini{a,b)
dividend <- max{a,b) # lins 1
repeat #1ine &
[ remainder <- diwvidend %% divisor Flines 2
dividend <- diwvisor #
divisor <- remainder # lins 4
if (remainder =— 0) break #lins &

1
¥

return (dividend)

Q3. (i) Here is a function to compute and print out gcd (x, 60) :

god.6d <-— function(a)

for{(i in 1:a)
{ divisor <-— min (i, &0)
dividend <- max(i,&0)
repeat
{ remainder <- dividend %% diwvisor
dividend «<- diwvisor

divisor <— remainder
if {(remainder == 0} break

Alternatively, you could nest the predefined gcd function inside the
modified one:



gcd. 60 <— function(a)
{for(i in 1:a)
dividend <- gocd{i,&0)

cat({i, ":", diwvidend, "\n")

(ii) Here 1s a function to compute and print out gcd (x, y) :

for(nZz in 1:vy)
{ dividend <- gcd{nl, nZ2)

cat ("when x is",nl, "&vis", n2, "dividend=",dividend, "\n")

Q4. The obvious solution to this is:

cube.root.table <- function(n)

for (x in seq(0.5, n; by = 0.5))
cat ("The cube ookt of ", x, ™ izg"
sign(x) *abs(x)*(1/3), "\n")]}

However, this will not work when negative values are passed to it: seq
cannot create the array. The function can be modified to accommodate

sequences running from 0.5 to both negative and positive values of n:

cube.root.table <- function{n}
if (n >*» 0 ) by.val = 0.5
if (n < 0 )} by.val = —0.5

for (x in seq(D.5, n, by = by.v

cat ("The cube root of ",x, " is"™,
2ign (x) *aba{x)*(1/3), "\n") }

Q5. Write the draw.polys function:



draw.polys <— function(poly.list)
{ plot{c(939200,1419420),c(905510,1405900} , asp=1,

g - — y | Ju=—1 1 - = L, o — "
cype="'n",xlab=""' ,vlab="",xaxt="'n",

invisible (lapply (poly.list,polygon) )

You might also want to add a test as to whether the input to the function is
actually a list and report an error if it is not — you can do the test with the

is.list function.

Q6. The function definitions and tests are given below:

most.western.point <- function{polvs)
most.western.list <- lapply(gecrgia.polvs,
function (poly) return(max(poly[,1])))

return (max (unlist{most.weastern.1list)) )}
most.southern.point <— function{polys)
most.southern.list <- lapply(georgia.
function (poly) return(min{po
return (min (unlist{most.southern.lis

most.norchern.point <— function{polys} {

most.northern.list <- lapplyigeocrgia.polys,
function(poly) return{max(polv[,2]1))})
return {max (unlist {most.northern.list)) )}

c{most.sastern.point (georgia.polys),
mos3t.western.point (georgia.polys) )

c{most. n.point{geocrgia.polys),

mostT.no n.point (gecrgia.polys) )

$% [1] 905508 1405900

Note that the last two expressions could be used as the arguments in piot to

set the map window. This can be used in the next answer.

Q7. Combine the various functions to update the draw.polys function to

automatically work out the map window.
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draw.polys <- function{poly.list) {
ew <- ci{most.eastern.point(poly.lisat),
most..western.point (poly.list)})
ns <- ci{most.southern.point({poly.liat),
most.northern.point (poly.1list) )

plot (ew,ns,asp=1,
type='n',xlab="",yvlab=" " xaxt="n'",,vazxt="n";bty="n"})

invisible (lapply{poly.list,polygon)) }

4

#

¥ Test 2t - 1t should look the same as befors!
£

draw.polys (georgia.polys)

Q8. This is one possibility — it only hatches urban counties:

hatch.densities <- vector (mode="mmeric", length=length (georgia.polys) )
hatch.densitiesfclassifier=="urban"] «<- 40

hatch.densitiesfclassifier=="rural"]

¥ This assumes oW &and ns werse defl rlier
plot [ew,ns,.asp=1,
type='n" . xlab="", . ylab=""' , zaxt="n" yaxt='"n',bty="n")

invisible (mapply (polygon, georgia.polys, density=hatch.densities) )



5.1 INTRODUCTION

In GIS and spatial analysis, we are often interested in finding out how the
information contained in one spatial dataset relates to that contained in
another. The kinds of questions we may be interested in include:

How does X interact with Y?

How many X are there in different locations of Y

How does the incidence of X relate to the rate of Y?
How many of X are found within a certain distance of Y?

How does process X vary with Y spatially?

X and Y may be diseases, crimes, pollution events, attributed census areas,
environmental factors, deprivation indices or any other geographic process
or phenomenon that you are interested in understanding. Answering such
questions using a spatial analysis frequently requires some initial data pre-
processing and manipulation. This might be to ensure that different data
have the same spatial extent, describe processes in a consistent way (for
example, to compare land cover types from different classifications), are
summarised over the same spatial framework (for example, census
reporting areas), are of the same format (raster, vector, etc.) and are
projected in the same way (the latter was introduced in Chapter 3).

This chapter uses worked examples to illustrate a number of fundamental
and commonly applied spatial operations on spatial datasets. Many of these
form the basis of most GIS software. The datasets may be ones you have
read into R from shapefiles or ones that you have created in the course of



your analysis. Essentially, the operations illustrate different methods for
extracting information from one spatial dataset based on the spatial extent
of another. Many of these are what are frequently referred to as overiay
operations in GIS software such as ArcGIS or QGIS, but here are extended
to include a number of other types of data manipulation. The sections below
describe the following operations:

Intersections to clip one dataset to the extent of another
Creating buffers around features

Merging the features in a spatial dataset
Point-in-polygon and area calculations

Creating distance attributes

Combining spatial data and attributes

Converting between raster and vector

As you work through the example code in this chapter a number of self-test
questions are introduced. Some of these go into much greater detail and
complexity than in earlier chapters and are accompanied with extensive
direction for you to work through and follow.

The G1sTools and rgeos packages have a number of functions for
performing overlay and other spatial operations on spatial datasets which
create new data, information or attributes. In many cases, it is up to the
analyst (you!) to decide the order of operations in a particular analysis and,
depending on your objectives, a given operation may be considered as a
pre-processing step or as an analytical one. For example, calculating
distances, areas, or point-in-polygon counts prior to a statistical test may be
pre-processing steps prior to the actual data analysis or used as the actual
analysis itself. The key feature of these operations is that they create new
data or information.

5.2 SPATIAL INTERSECTION OR CLIP
OPERATIONS



The GISTools package comes with dataset describing tornados in the USA.
Load the package and this data into a new R session:

library (GISTools)
data [(tornados)

You will see that four datasets are now loaded: torn, torn2, us_states and
us_states2. The torn and torn2 data describe the locations of tornados

recorded between 1950 and 2004, and the us states and us states2
datasets are spatial data describing the states of the USA. Two of these are

in WGS84 projections (torn and us states) and two are projected in a

GRS80 datum (torn2 and us states2).
We can plot these and examine the data as in Figure 5.1.

2 oot mlar mearametrers srnd 1rniEds ]
¥# S DlofC paramecels and nitia %

par (mar=c (0, 0,0,0))
Plot (us_states)
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Figure 5.1 The tornado data

Remember that you can examine the attributes of a variable using the
summary () function. So, for example, to see the projection and attributes of



torn, enter:

Now, consider the situation where the aim was to analyse the incidence of
tornados in a particular area: we do not want to analyse all of the tornado
data but only those records that describe events in our study area — the area
we are interested in. The code below selects a group of US states, in this
case Texas, New Mexico, Oklahoma and Arkansas — note the use of the OR
logical operator '|' to make the selection — and then plots the tornado data
over that."

index <- us statesS5TATE NAME == "Texas"
us statesSSTATE NAME == "Mew Mexico"
us StatesS$STATE HMAME == "Oklahcma™ |
;s_s:atesSETEIE_EEHE == "Arkansas"
Aol <- us_states[index, ]

This can be plotted using the usual commands as in the code below. You
can see that the plot extent is defined by the spatial extent of area of interest
(called 2o7) and that all of the tornados within that extent are displayed.

plot (AoT)

plot (torn, add = T, pch = 1, col = "§FBeA4R4C™)

However, it is possible to select only those records from the tornado data
that are within the area we are interested in using a spatial intersection
(sometimes referred to as a clip operation in GIS software such as ArcGIS).
The gIintersection function allows us to do this as shown in the code
below. The results are mapped in Figure 5.2:

Aol.torn <— glnterssection{fAcl, torn)
par (mar=c (0,0,0,0))
plot (AoT)

plot (AoIl.torn, add = T, pch = 1, col = "§FBoRA4R4C"™)



Figure 5.2 The tornado data in the defined area of interest

The gIntersection operation creates a SpatialPoints dataset of the
locations of the tornados within the area of interest. However, if you
examine the data created by the intersection, you will notice that it has lost
its attributes: it has no data. frame and if you examine the first few rows of
the aoT.torn object, by entering head (2oI.torn) at the R prompt, it returns
only a list of coordinates.

To preserve the data attributes, the gIntersection command needs to be
modified so that the results include the data attributes and not just their
locations. This is done by including a parameter in the call to
gIntersection to include object IDs. This takes slightly longer to run, but
the variable that is created as a result of the operation contains references to
the data frames of both the input spatial objects:

Aol.torn <- glntersection{fol, torn, byid = TRUE)

You can examine the attributes of the aoT.torn data by entering:

head (data.frame (Aol.torn} )
head (rownames (data.frame (Aol.torn) ) )
tail (rownames (data.frame (Aol.torn)))



You will notice that the intersection object, AoT.torn has rownames that
indicate the origins of each tornado point: they are a composite of the row
names of both inputs. In this case the row names of the us states object
are from 1 to 50. The ones we are interested in can be extracted using the
index variable created above:

rownames (data.frame (us states[index, ])
i::F '_' II_E'?I' II;_E_'I I'i_lll I"iEII
u3 sStatesSSTATE HAME [index

£3

t# 51 Levels: Alabama Rlaska ArizZona Lrkansas ... Wy

[1] Oklahoma Texas New Mexico Arkansas

&)
=]
=
=]

[te]

The rownames of aoI.torn can be used to extract the data from us states
and/or torn. In the examples below, first the tornado attributes and then the
state in which the tornado occurred are extracted and then attached as
attributes to the intersected data. These operations are used to create two
data.frame variables df1 and df2 which are then combined using the cbind
function.

To extract the tornado attributes from the torn data frame the strsplit
function can be used to separate the rownames of the intersected data into
references that relate to the intersection inputs. Note that another method
for splitting strings is given in the box below using the gsub function. Then
as.numeric 1S used to coerce the character vectors to numbers which are
then used as an index to extract the data from the torn data frame:

tmp <— rownames (data.frame (Aol.torn)
tmp <-— strsplit({tmp, " ")

torn.id <- | L [ Bt |
state.id <- | il B 1)




The state.id and torn.id can be used to link to each input data frame. At
the end of these operations the variable df1 contains the information from
the torn data.frame for each of the data points in the area of interest.

The strsplit function above is a convenient way for extracting the
required information from character variables or strings. Another
useful function 1S gsub, as in the code below. Notice the use of the
space in the replace.val variable when it is defined using sprintf:
"$s" to replace the unwanted text in the rownames of the aol.torn
character vector (in this case references to the US state data). In the
code below, the elements of the variable tmp are reassigned or
overwritten by the output of each iteration of the loop:

state.list <— rownames (data.frame(us states[index,])
tmp <— rownames ({data.frame (Aol.torn))
for (i in 1: length(state.list}) {
replace.val <- sprintf("%s ", state.list[i])
tmp <- gsub{replace.wval, ™ ", tmp)
torn.id < as.numeric (tmp)
dfl =£- data.frame{tocrn[torn.id,])

To extract the state names for each tornado, the state.id can be used to
create a second temporary variable df2. The two temporary data variables,

df1 and df2, are joined together using cbind and assigned to a variable
called 4f, the final data frame:

df2 - u3 sStatesSSTATE HAME [as.numeric{state.id}]

df <- cbind(df2, dfl)

3{df} [1] <- "State"


http://state.id/
http://torn.id/
http://state.id/

Now the spatialPointsDataFrame function can be used to convert the
intersected spatial data (2oT.torn) into a format with attributes in the data
frame, df, which can in turn be written to a shapefile for use in other
applications:

A2ol.torn <- SpatialPointsDataFrame (Aol.torn, data = df)

In the above example, the state names were attached to the output of the
intersection. It is possible to extract and attach other attributes as well. The
procedure below matches the state name from the intersection to the data
held in us states and then attaches this to the data frame of the
intersection object, which can of course be converted to a
SpatialPointsDataFrame variable. In effect the code attaches the data
about the states to each tornado location:

index? <- match{df2z, ;a_s:ates$5fATE_HQHE}

df3 <- data.frams(us states) [indexZ,]

df3 <- chind({df2, d4dfl, dil)

names (Af3) [1] =- "State"

dol.torn2 <— SpatialPointsDataFrame (Aol.torn, ta = df3)

You should examine the help for gintersection to see how it works and
should note that it will operate on any pair of spatial objects provided they
are projected using the same datum (in this case WGS84). In order to
perform spatial operations you may need to re-project your data to the same
datum using spTransform as described in Chapter 3.

5.3 BUFFERS

In many situations, we are interested in events or features that occur near to
our area of interest as well as those within it. Environmental events such as
tornados, for example, do not stop at state lines or other administrative



boundaries. Similarly, if we were studying crime locations or spatial access
to facilities such as shops or health services, we would want to know about
locations near to the study area border. Buffer operations provide a
convenient way of doing this, and buffers can be created in R using the
gBuf fer function.

Continuing with the example above, we might be interested in extracting
the tornados occurring in Texas and those within 25 km of the state border.
Thus the objective is to create a 25 km buffer around the state of Texas and
to use that to select from the tornado dataset. The gruffer function in the
rgeos package allows us to do that, and requires that a distance for the
buffer is specified in terms of the units used in the projection. However, in
order to do this, a different projection is required as distances are difficult to
determine directly from projections in degrees (essentially the relationship
between planar distance measures such as metres and kilometres to degrees
varies with latitude). And gBuffer will return an error message if you try to
buffer a non-projected spatial dataset. Therefore, the code below uses the
projected US data, us states2 and the resultant buffer is shown in Figure
5.3:

uf <— gBuffer(Bol, width = 25000)
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Figure 5.3 Texas with a 25 km buffer

The buffered object, shown in Figure 5.3 or objects can be used as input to
gIntersection as above to expand the data that are extracted from the
spatial overlay. You should also examine the impact on the output of other
parameters in the gBuffer function that control how line segments are
created, the geometry of the buffer, join styles, etc. Also, you should note
that any sp object can be used as an input to the gBuffer function: try
applying it to the breach dataset that is put into working memory when the
newhaven data are loaded.

There are number of options for defining how the buffer is created. If you
enter the code below, using IDs, then buffers are created around each of the

counties within the georgia2 dataset:

The IDs of the resulting buffer dataset relate to each of the input features,
which in the above code has been specified to be the county names. This



can be checked by examining how the buffer object has been named using
names (buf.t). If you are not convinced that the indexing has been
preserved then you can compare the output with a familiar subset, Appling
County:

5.4 MERGING SPATIAL FEATURES

In the first intersection example above, four US states were selected and
used to define the area of interest over which the tornado data were
extracted. An attribute describing in which state each tornado occurred was
added to the data frame of the intersected object. In other instances we may
wish to consider the area as a single object and to merge the features within
it. This can be done using the gunaryunion function in the rgeos package
which was used in Chapter 3 to create an outline of the state of Georgia
from its constituent counties. In the code below the US states are merged

into a single object and the plotted over the original data as shown in Figure
5.4:

2ol .merge <- gUnaryUnion{us states)

plot (us states, border = "darkgreen", lty = 3)

1= | B e A = T = 1
_..I_.-'.-._'I.I?.".'E_g":, add = L, 4AWd = J..E_l

The gunaryunion function is one a set of union functions, the rest of which
are described in the rgeos help section. It takes a variable of class
SpatialPolygons OI SpatialPolygonsDataFrame With sub-geometries
which it merges or, in set-theoretical terms, unions together. Once the
merged objects have been created they can be used as inputs into the
intersection and buffering procedures above in order to select data for
analysis, as well as the analysis operations described below. The merged
objects can also be used in a cartographic context to provide a border to the
study area being considered.



Figure 5.4 The outline of the merged US states created by gunaryUnion,
with the original state outlines in green

5.5 POINT-IN-POLYGON AND AREA
CALCULATIONS

5.5.1 Point-in-Polygon

It is often useful to count the number of points in a spatialPoints dataset
that fall inside each zone in a polygon dataset. This can be done using the
poly.counts function in the GIsTools package, which extends the
gContains function in the rgeos package.

Remember that you can examine how a function works by entering it
into the console without the brackets:

poly.counts

£f function (pts, polys)

$## colSums{gContains(polys, pts, byid = TEUE)})
# <environment: namespace:&EI5Tcols>




The code below returns a list of counts of the number of tornados that occur
inside each US state to the variable torn.count and prints the first six of
these to the console using the head function:

torn.count <-— poly.counts{torn, us states)
head (torn.count)
£3 1 2 3 4

£3 74 341 g7 1121 1445 5495

The numbers along the top are the ‘names’ of the elements in the variable
tmp, which in this case are the polygon ID numbers of the us states
variable. The values below are the counts of the points in the corresponding
polygons. You can check this by entering:

names (torn.count)

5.5.2 Area Calculations

Another useful crsTools function is poly.areas which returns the area (in
squared map units) of each polygon, using the garea function in rgeos. To
check the projection, and therefore the map units, of an sp class object (i.e.
including spatialPolygons, SpatialPoints, etc.), use the projdstring
function:

proj4string (us_staces)

This declares the projection to be in metres. To see the areas in square
metres of each US state, enter:

These are not particularly useful and more realistic measures are to report
areas in hectares or square kilometres:



Self-Test Question 1. Your task is to create the code to produce maps of the
densities of breaches of the peace in New Haven in breaches per square
mile. For the analysis you will need to use the breach point data and the
census blocks In the newhaven dataset using the poly.counts and
poly.areas functions. The maps should be produced using the choropleth
function. Remember that the New Haven data are included in the GIsTools
package:

As with all the self-test questions in this book, worked answers are provided
at the end of the chapter.

You should note that the New Haven is projected in feet. Thus to report
the breaches of the peace per square mile you will need to apply the
ft2miles function to the results of the poly.area calculation, and as areas
are in squared units, you will need to apply it twice:

ftZmiles (ftZmiles (poly.areas (blocka) ) )

5.5.3 Point and Areas Analysis Exercise

An important advantage of using R to handle spatial data is that it is very
easy to incorporate your data into statistical analysis and graphics routines.
For example, in the New Haven blocks data frame, there is a variable
called p_owneErOCC which states the percentage of owner-occupied housing
in each census block. It may be of interest to see how this relates to the
breach of the of peace densities calculated in Self-Test Question 1. A useful
statistic is the correlation coefficient generated by the cor function which
causes the correlation to be printed out:



data (ne

whawven)
densities= poly.counts (breach,blocksa)
ftZmiles (ft2milesa(poly.areas (blocks))

cor (blocksSP OWMEROCC, densities)

$## [1] -0.2038

In this case the two variables have a correlation of around —0.2, a weak
negative relationship, suggesting that in general, places with a higher
proportion of owner-occupied homes tend to see fewer breaches of peace. It
is also possible to plot the relationship between the quantities — close the
plot window if it 1s still open before running this code:

plot (blocksSPE OWNERCCC, densities)

A more detailed approach might be to model the number of breaches of
peace. Typically, these are relatively rare, and a Poisson distribution might
be an appropriate model. A possible model might then be:

- —
)

breaches ~ Poisson (BREA * expla + b * blocksSF OWHEROCC))

where area is the area of a block, p ownEROCC is the percentage of owner-
occupiers in the block, and a and b are coefficients to be estimated, a being
the intercept term. The Area variable plays the role of an offset — a variable
that always has a coefficient of 1. The idea here is that even if breaches of
peace were uniformly distributed, the number of incidents in a given census
block would be proportional to the area of that block. In fact, we can
rewrite the model such that the offset term is the log of the area:

breaches ~ Pojasoniexpia + b * blocksSF OWHNEROCC+log (ARRER) ) )

Seeing the model written this way makes it clear that the offset term has a
coefficient that must always be equal to 1. The model can be fitted in R
using the following code:



tt frame {blocks
n.breaches = poly.counts(breach,blocks)
area = ftZmiles(ft2miles(poly.areas{blocks)))
modell=glm (n.breaches~F OWNERDCC,offsec=log(area),family=
poisson)
etach (data.frame (blocks)

The first two lines compute the counts, storing them in n.breaches and the
areas, storing them in area. The next line fits the Poisson model. g1m stands
for ‘generalized linear model’, and extends the standard 1m routine to fit
models such as Poisson regression. As a reminder, further information
about linear models and the R modelling language was provided in one of
the information boxes in Chapter 3 and an example of its use was given.
The family=poisson option specifies that a Poisson model is to be fitted
here. The offset option specifies the offset term, and the first argument
specifies the actual model to be fitted. The model fitting results are stored in
the variable mode11. Having created the model in this way, entering

modell

returns a brief summary of the fitted model. In particular, it can be seen that
the estimated coefficients are a = 3.02 and b = —0.0310. A more detailed
view can be obtained using:

summary (modell)

Now, among other things, the standard errors and Wald statistics for a and b
are shown. The Wald Z statistics are similar to ¢ statistics in ordinary least
squares regression, and may be tested against the normal distribution. The
results below summarise the information, showing that both a and b are
significant — and that therefore there is a statistically significant relationship
between owner-occupation and breach of peace incidents:
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It also possible to extract diagnostic information from fitted models. For
example, the rstandard function extracts the standardised residuals from a
model. Whereas residuals are the difference between the observed value
(i.e. in the data) and the value when estimated using the model, standardised
residuals are rescaled to have a variance of 1. If the model being fitted is
correct, then these residuals should be independent, have a mean of 0, a
variance of 1 and an approximately normal distribution. One useful
diagnostic is to map these values. The code below first computes them, and
stores them in a variable called s.resids:

s.resids = ratandard (modell)

Now, to plot the map it will be more useful to specify a shading scheme
directly using the shading command:

resid.shades = shading{c{-2,2),c("red","grey", "blus"})

This specifies that the map will have three class intervals: below -2,
between —2 and 2, and above 2. These are useful intervals given that the
residuals should be normally distributed, and these values are the
approximate two-tailed 5% points of this distribution. Residuals within these
points will be shaded grey, large negative residuals will be red, and large
positive ones will be blue:

par (mar=c (0,0,0,0})

choropleth{blocks,s.resids, resid.shades)

From Figure 5.5 it can be seen that in fact there is notably more variation
than one might expect (there are 21 blocks shaded blue or red, about 162 of
the total, when around 5% would appear based on the model’s assumptions),
and also that the shaded blocks seem to cluster together. This last
observation casts doubt on the assumption of independence, suggesting
instead that some degree of spatial correlation is present. One possible



reason for this is that further variables may need to be added to the model,
to explain this extra variability and spatial clustering amongst the residuals.

Figure 5.5 The distribution of the mode11 residuals, describing the
relationship between breaches of the peace and owner-occupancy

It is possible to extend this analysis by considering p vacant, the
percentage of vacant properties in each census block, as well as
p_ownerocc. This is done by extending mode11 and entering:

attach (data.frame{blocks))

n.breaches = poly.counts(breach,blocks)

area = ftZmiles(frZ2miles{polv.areas(blocks)))

modelZ=glm (n.breaches~F OWNEROCC+E VACANT,
offset=log (area) , family=poisson)

5.resids.2 = rstandard (modelZ)

detach (data.frame{blocks))

This sets up a new model, with a further term for the percentage of vacant
housing in each block, and stores it in mode12. Entering summary (model2)
shows that the new predictor variable is significantly related to breaches of
peace, with a positive relationship. Finally, it is possible to map the



standardised residuals for the new model reusing the shading scheme
defined above:

s.resids.2 = rstandard(model2)

par (mar=c (0,0,0,0))
choropleth(blocks,s.resids. 2, resid.shades)
par (mar=c(5,4,4,2))

Figure 5.6 The distribution of the mode12 residuals, describing the
relationship between breaches of the peace with owner-occupancy and
vacant properties

This time, Figure 5.6 shows that there are fewer red and blue shaded census
blocks — although perhaps still more than we might expect, and there is still
some evidence of spatial clustering. Adding the extra variable has improved
things to some extent, but perhaps there is more investigative research to be
done. A more comprehensive treatment of spatial analysis of spatial data
attributes is given in Chapter 7.

5.6 CREATING DISTANCE ATTRIBUTES



Distance is fundamental to spatial analysis. For example, we may wish to
analyse the number of locations (health facilities, schools, etc.) within a
certain distance of the features we are considering. In the exercise below,
distance measures are used to evaluate differences in accessibility for
different social groups. These approaches form the basis of supply and
demand modelling and provide inputs into location—allocation models.

Distance could be approximated using a series of buffers created at
specific distance intervals around our features (whether point or polygons).
These could be used to determine the number of features or locations that
are within different distance ranges, as specified by the buffers using the
poly.counts function above. However, the gbistance function calculates
the Cartesian minimum (straight line) distance between two spatial datasets
of class sp. In the code below, this function is used to determine the
distances between the places variable (which are simply place holder
locations for the names of districts New Haven but could be any kind of
facility or supply feature), and the centroids of the census blocks in New
Haven, in this case acting as demand locations. The gpistance function
returns a to—from matrix of the distances between each pair of supply and
demand points. In the first few lines of code, the projections of the two
variables are set to be the same, before gcentroid 1S used to extract the
geometric centroids of the census block areas and the distance between
places and centroids are calculated:

data (newhaven)

projd4string{places) «<- CES(projdstcring(blocks))

centroids. <— gCentroidiblocks, byid = T, id =
rownames (blocks) )

distances <- ftZmiles(gDistance(places, centroids.,

You can examine the result in relation to the inputs to gbistance, and you
will see that the distances variable is a matrix of distances (in miles) from
each of the 129 census block centroids to each of the nine locations
described in the places variable. It is possible to use the census block
polygons in the above gbistance calculation, but the distances returned
will be to the nearest point of the census area. Using the census area
centroid provides a more representative measure of the average distance
experienced by people living in that area.



The gwithinDistance function tests whether each to—from distance pair
is less than a specified threshold. It returns a matrix of TRUE and FALSE
describing whether the distances between the elements of the two sp dataset
elements are less than or equal to the specified distance or not. In the
example below the distance specified is 1.2 miles.

distances - gWicthinDistance (places, blocks,

T, dist = miles2ft{1.2})

You should note that the gbistance and gWwithinDistance functions work
with whatever distance units are specified in the projections of the spatial
features. This means the inputs need to have the same units. Also remember
that the newhaven data are projected in feet, hence the use of the miles2ft
and ft2miles functions.

5.6.1 Distance A nalysis/Accessibility E xercise

The use of distance measures in conjunction with census data is particularly
useful for analysing access to the supply of some facility or service for
different social groups. The code below replicates the analysis developed by
Comber et al. (2008), examining access to green spaces. In this exercise a
hypothetical example is used: we wish to examine the equity of access to
the locations recorded in the places variable (supply) for different ethnic
groups as recorded in the blocks dataset (demand), on the basis that we
expect everyone to be within 1 mile of a facility. We will use the census
data to approximate the number of people with and without access of less
than 1 mile to the set of hypothetical facilities.

First, the distances variable is recalculated in case it was overwritten in
the gwithinDistance example above. Then the minimum distance to a
supply facility is determined for each census area using the app1y function.

Finally a logical statement is used to generate a TRUE or FALSE statement for
each block:



FE N, - - . - —

distances <— ftZmiles (ghistance (places, centroids., byid =T)
min.diast <- as.vector{apply{distances,1l, min))
access <- min.dist < 1

The populations of each ethnic group in each census block can be extracted
from the blocks dataset:

<— as.matrix{daca.frame (blocks[,14:18])/100)
v <— applyv{ethnicity, 2, function(x) {(x *

blocksSPOP1S90}) )

ethnicity <-— matrix{as.integer{ethnicity), 1 = &)
colnames (ethnicity) <— ¢ tef, "Black"
"Mative American", "hsi ! "Ccher"

And then a crosstabulation is used to bring together the access data and the
populations:

mat.access.takbh = Xtabs(ethnicity-~accessa)

data.set = as.data.frame(mat.access.tab)

colnames (data.set) = c("Acceas", "Ethnicity”™, "Freg")

You should examine the data.set variable. This summarises all of the
factors being considered: access, ethnicity and the counts associated with all
factor combinations. If we make an assumption that there is an interaction
between ethnicity and access, then this can be tested for using a generalised
regression model with a Poisson distribution using the gim function:

modelethnic = glm(Freg~Access*Ethnicity,
data=data.set, family=poisson)

The model coefficient estimates show that there is significantly less access
for some groups than would be expected under a model of equal access



when compared to the largest ethnic group white, which was listed first in
the data.set variable, and significantly greater access for the ethnic group
other. Examine the model coefficient estimates, paying particular attention
to the accessTRUE: coefficients:

summary (modelethnic) Scoef
Then assign these to the a variable:
mod.coefs = summary (modelethnic) Scoet

By subtracting 1 from the coefficients and converting them to percentages,
it is possible to attach some likelihoods to the access for different groups
when compared the ethnic group white. Again, you should examine the
terms in the model outputs prefixed by accessTRUE:, as below:

tab <- 100% (exp (mod.coefs[,1]) — 1)

cal - tab[7:10]

names (tab) <— colnames (ethnicity) [2:5

tak

£ Black Hative American Lsian Other
- £ —35 —11.73 —259.83 256.26

The results in tab tell us that some ethnic groups have significantly less
access to the hypothetical supply facilities when compared to the White
ethnic group (as recorded in the census): the ethnic group Black have 352
less, Native Americans 12% less, (although this is not significant), Asians
30% less and Other 256% more access than the White ethnic group.

It 1s possible to visualise the variations in access for different groups
using a mosaic plot. Mosaic plots show the counts (i.e. population) as well
as the residuals associated with the interaction between groups and their
access, the full details of which were given in Chapter 3.

mosaicplot (t{mat.access.tab) ,xlakb="",yvlab="~AC

main="Mcsaic Plo= of Accsgsa! hade=
maln MioSmalc FLlOoT O ACCesg™ ,  Shade



Self-Test Question 2. In working through the exercise above you have
developed a number of statistical techniques. In answering this self-test
question you will explore the impact of using census data summarised over
different areal units in your analysis. Specifically, you will develop and
compare the results of two statistical models using different census areas in
the newhaven datasets: blocks and tracts. You will analyse the
relationship between residential property occupation and burglaries. You
will need to work through the code below before the tasks associated with
this questions are posited. To see the relationship between the census tracts
and the census blocks, enter:

You can see that the census blocks are nested within the tracts.

The analysis described below develops a statistical model to describe the
relationship between residential property occupation and burglary using two
of the New Haven crime variables related to residential burglaries. These
are both point objects, called burgres.f and burgres.n. The first of these,
burgres.f, 1S a list of burglaries where entry was forced into the property,
and burgres.n 1s a list of burglaries where entry was not forced, suggesting
that the property was left insecure, perhaps by leaving a door or window
open. The burglaries data cover the six-month period between 1 August
2007 and 31 January 2008.

The questions you will consider are:

Do both kinds of residential burglary occur in the same places — that is,
if a place 1s a high-risk area for non-forced entry, does it imply that it is
also a high-risk area for forced entry?

How does this relationship vary over different census units?

To investigate these, you should use a bivariate regression model that
attempts to predict the density of forced burglaries from the density of non-
forced ones. The indicators needed for this are the rates of burglary given
the number of properties at risk. You should use the variable occupIED,
present in both the census blocks data frame and the the census tracts data
frame, to estimate the number of properties at risk. If we were to compute



rates per 1000 households, this would be: 1000* (number of burglaries
in block)/occupIED and since this i1s over a six-month period, doubling
this quantity gives the number of burglaries per 1000 households per year.
However, entering:

blocksSOCCUPIED

shows that some blocks have no occupied housing, so the above rate cannot
be defined. To overcome this problem you should select the subset of the
blocks with more than zero occupied dwellings. For polygon spatial objects,
each individual polygon can be treated like a row in a data frame for the
purposes of subset selection. Thus, to select only the blocks where the
variable occuPIED is greater than zero, enter:

oy —

blocks2 = blocks [blocksSOCCUOPIED > 4O, ]

We can now compute the burglary rates for forced and non-forced entries
by first counting the burglaries in each block in blocks2 using the
poly.counts function, dividing these numbers by the occuriED counts and
then multiplying by 2000 to get yearly rates per 1000 households. However,
before we do this, you should remember that you need the occupieD
attribute from blocks2 and not blocks. Attach the blocks2 data and then
calculate the two rate variables:

attach (data.frame (blocks2} )
forced.rate = 2000%poly.counta{burgres.f,;blocksl) /OQCCUPIED

]
notforced.rate = 2000%poly.countcs (burgres.n,blocksi)/
L

OCCUPIED

You should have two rates stored in forced.rate and notforced.rate. A
first attempt at modelling the relationship between the two rates could be
via simple bivariate regression, ignoring any spatial dependencies in the
error term. This is done using the 1m function, which creates a simple
regression model, mode11:



modell = lm(forced.rate~notforced.rate)

To examine the regression coefficients, enter:

surmmary (model 1)

coef (modell)

The key things to note here are that the forced rate is related to the not-
forced rate by the formula:

expected(forced rate) = a + b * (not forced rate)

where a is the intercept term and b is the slope or coefficient for the
predictor variable. If the coefficient for the not-forced rate is statistically
different from zero, indicated in the summary of the model, then there is
evidence that the two rates are related. One possible explanation is that if
burglars are active in an area, they will only use force to enter dwellings
when it 1s necessary, making use of an insecure window or door if they spot
the opportunity. Thus in areas where burglars are active, both kinds of
burglary could potentially occur. However, in areas where they are less
active it is less likely for either kind burglary to occur.
Having outlined the approach, your specific tasks in this question are:

1. To determine the coefficients a and b in the formula above for two
different analyses using the b1ocks and tracts datasets.

2. To comment on the difference between the analyses using different
areal units.

5.7 COMBINING SPATIAL DATASETS AND
THEIR ATTRIBUTES

The point-in-polygon calculation using poly.counts generates counts of the
points falling in each polygon. A common situation in spatial analysis is the
need to combine (overlay) different polygon features that describe the



spatial distribution of different variables, attributes or processes that are of
interest. The problem is that the data may have different underlying area
geographies. In fact, it is commonly the case that different agencies,
institutions and government departments use different geographical areas,
and even where they do not, geographical areas frequently change over
time. In these situations, we can use the gIntersection function to identify
the area of intersection between the datasets. With some manipulation it is
possible to determine the proportions of the objects in dataset X that fall
into each of polygon of dataset Y. This section uses a worked example to
illustrate how this can be done in R.

In the subsequent self-test question you will develop a function to do this.
As with all spatial operations on sp datasets, the input data need to have the
same projections. You can examine their proj4string attributes to check
and if need be use the spTransform function to put the data into the same
projection.

A zone dataset will be created with the aim of calculating the number of
houses in each zone. These will be extracted from the New Haven tracts
data which includes the variable use uniTs, describing the number of
residential properties in each census tract. The zones are hypothetical, but
could perhaps be zones used by the emergency services for planning
purposes and resource allocation.

First, you should create the zones, number them with an ID and plot these
on a map with the tracts data. This is easily done by defining a grid and then
converting this to a spatialPolygonsDataFrame object. Enter:

Projections can be checked using projdstring(int.layer)and proj4
string (tracts). These have the same projections, in this case na, and so
they can be intersected:



int.res «<- glntersection{int.layer, tracts, byid = T)

You can examine the intersected data, the original data and the zones in the
same plot window, as in Figure 5.7.

par (mfrow = c(l1,2

par (mar=c(0,0,0,0)

pleot (int.layer, 1ty = 2)

Lat <- as.vector (coordinates(int.layer) [,.2

Lon <- as.vector (coordinates(int.layer)[,.1

Names <- as.character(data.frame(int.layer) |[,1]

plot (tracts, add = T, border = "red" lwd =2)

pl <- pointlabel (Lon, Lat, HNames, ffaet = 0, cex =.7)
plot (int .layer, arder = "white"

plot (int.res, col=bluesq9, add = T)

Figure 5.7 The zones and census tracts data before and after intersection

As in the gIntersection operation described in earlier sections, you can
examine the result of the intersection:

names (int.res)

You will see that the names of the intersected objects are composites of the
inputs. These can be used to link to the attributes held in the data frame of



each imput to the intersection, and then to create attributes for the
intersection output data, in this case int.res and the original zone data
int.layer.

First, the composite object names have to be split:

tmp <- strsplit{names(int.res), ™ ")

tracts.id <— (sapply({tmp, "[[", 2}
intlayer.id <- (sapply{tmp, "[["™, 1))

Then, the proportions of the original tract areas need to be extracted —
these will be used to proportionally allocate the counts of houses to the
zones.

int.areas <— ghrea{int.resa, byid = T)

tract.areas <-— ghrea(tracts, byid = T}

index <- matchi(tracts.id, row.names(tracts))
tract.areas <- tract.areas[index]
tract.prop <- zapsmall({int.areas/tract.areas, 3)

<— data.frame(intlayer.id, tract.prop)

houses «<- zapsmall (tractsfHIE UNITS [index] * tract.prop, 1)

f «<- data.frame(df, houses, int.areas)

o,

Finally, the attributes held in the new data frame, df, are summarised using
xtabs and linked back to the original zone areas. Note that the df variable
above could be attached to the spatialPolygonsDataFrame object, int.res.

int.layer.houses <- xtabs{dffhouses~dfsintlayer.id)

index <— as.numeric(gsub{"g", "", names(int.layer.houses)))

mp <— vector ("mmmeric”, length = dim{data.frame(int.layer))[1])
tmp[index] <- int.layer.houses
i.houses <- tmp

Now the outputs can be attached to the original zone dataset:

int.layer <- SpatialPolygonsDataFrame (int.layer,

data = data.frame (data.frame (int.layer),
i.houses), match.ID = FALSE)



The results can be plotted as Figure 5.8 and checked against the original
inputs in Figure 5.7:

Self-Test Question 3. Your task is to write a function that will return an
intersected dataset, with an attribute of counts of some variable (houses,
population, etc.) as held in another spatial polygon data frame. You should
base your function on the code used in the illustrated example above. You
should compile it such that the function returns the portion of the count
attribute covered by each zone. For example, it should be able to intersect
the int.layer data with the blocks data and return a
SpatialPolygonsDataFrame dataset with an attribute of the number of
people, as described in the por1990 variable of blocks, covered by each
zone. You should remember that spatial functions such as gIntersect
require their inputs to have the same projection. The int.layer defined
above and the tracts data have no projections. You may find it useful to
align the projections of the int.1ayer defined above and the biocks data in
the following way using the rgda1 package:
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Figure 5.8 The zones shaded by the number of households after
intersection with the census tracts

install.packages ("rgdal™, dep = T}

library (rgdal}

ct <- projd4string({blocks)
proj4string(int.layer) «<-— CRS{cL)
blocks <- splransform(blocks, CRS({projf2string(int.layer)))

5.8 CONVERTING BETWEEN RASTER AND
VECTOR

Very often we would like to move or convert our data between vector and
raster environments. In fact the very persistence of these dichotomous data
structures, with separate raster and vector functions and analyses in many
commercial GIS software programs, is one of the long-standing legacies in
GIS.

This section briefly describes methods for converting data between raster
and vector structures. There are three reasons for this brief treatment.
Firstly, many packages define their own data structures. For example, the
functions in the PBsmapping package require a polyset object to be passed
to them. This means that conversion between one class of raster object



and, for example, the sp class of spatial Polygons will require different
code. Secondly, the separation between raster and vector analysis
environments is no longer strictly needed, especially if you are developing
your spatial analyses using R, with the easy ability for users to compile
their own functions and to create their own analysis tools. Thirdly,
advanced raster mapping and analysis are extensively covered in other
books (see, for example, Bivand et al. 2008). The sections below describe
methods for converting the sp class of objects
(SpatialPoints, SpatialLines and SpatialPolygons, etc.) to and from
the rRasterLayer class of objects as defined in the raster package, created
by Robert J. Hijmans and Jacob van Etten. They also describe how to
convert between sp classes, for example to and from SpatialPixels and
SpatialGrid objects.

5.8.1 Raster to Vector

In this section simple approaches for converting are illustrated using
datasets in the tornados dataset that you have already encountered.

First, we shall examine techniques for converting the sp class of objects
to the raster class, considering in turn:
points (spatialPoints and SpatialPointsDataFrame)
lines (SpatialLines and SpatialLinesDataFrame)
areas (SpatialPolygons and SpatialPolygonsDataFrame)
You will need to load the data and the packages — you may need to install

the raster package using the install.packages function if this is the first
time that you have used it.

Converting points to raster



library (GISTools)
libraryv{raster)

data (tornados)

r = raster({nrow = 180, ncols = 360, ext = extent(us states?))
t2 <- as{torn2, "SpatialPointa"
r <- rasterize(tZ, r, Iun=sum

The resultant raster has cells describing different tornado densities that can
be mapped as in Figure 5.9:

olot (r, col = "white")

plot (us statesZ, add = T, border = "grey"

nlot (r, add = T)
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Figure 5.9 Converting points to raster format

Converting lines to raster

For illustrative purposes the code below creates a SpatiallinesDataFrame
object of the outline of the polygons:

us_outline <- as(us_statesZ , "SpatiallineaDataFrame")
r <- raster(nrow = 180 , ncols = 360, ext = extent(us astatesl) )
r «£- rasterize(us outline , ¥, "STATE FIPS")

This takes a bit longer to run, but again the results can be mapped and this
time the shading describes the sTaTe r1ps attribute — a numerical code for

each US state (see Figure 5.10):



plot(r)
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Figure 5.10 Converting lines to raster format

Converting polygons or areas to raster

Finally, polygons can easily be converted to a RasterLayer object using
tools in the raster package and plotted as in Figure 5.11. You will note that
in this case the 1997 population for each state is used to generate raster cell

or pixel values.

H

<- raster{nrow = 180 , ncols = 360, =xt = extent (us statssl))
r <- rasterize (us statesZ, r, "POP155T")
$# Found 4% region(s) and %5 polygon(s)
plot (T
2500000 .08+ 07
| 25e <07
g
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Figure 5.11 Converting polygons to raster format

It is instructive to examine the outputs of these processes. Enter:



This summarises the characteristics of the raster object, including the
resolution, dimensions and extent.

It is possible to specify particular dimensions for the raster grid cells,
rather than just dividing the dataset’s extent by ncol and nrow in the
raster function. The code below i1s a bit convoluted but cleanly
allocates the values to raster grid cells of a specified size:

d <— 50000
dim.x <— d
dim.y <- d

bb <- bbox{us statesl)}

cells.x <- (bb[l,2]-bb[1,1]) / dim.x

cells.y <— (bb[2,2]1-bb[Z,1]) / dim.y

round.vals <- functiom(x) {
if{as.integerix) < x} |

x «— as.integer({z] + 1

} else {= <- as.integer(x]

11
cells.x <— round.vals(cells.x)
cells.y <— round.wvals(cells.y)

Syt €= ewbent{e(bBIL, 11, BHLL, IFE(ealla s wvd),
bb[2,1],bb[2, 1]+ (cells.y*d)))

r «- raster(ncel = ecells.x,nrow —cellsa.y)
extent (x) - 2xt
r =£— rasterize(us statesZ, r, "PORPLELT")




5.8.2 Converting to sp Classes

You may have noticed that the sp package also has two data classes that are
able to represent raster data, or data are located on a regular grid. These are
SpatialPixelsDataFrame and SpatialGridDataFrame. It 1S possible to
convert the raster class objects using the as function. The example below
converts the raster layer to SpatialPixelsDataFrame and to
SpatialGridDataFrame Objects.

First create a spatially coarse raster layer of US states similar to the
above:

<— raster (nrow =60, ncols =120, eXt = extent (us statesZ})
<-rasterize(us statesi, r, "STATE FIP3")

Mo

## Found 49 region(s) and %5 polygon(s)

Then the as function can be used to coerce this to SpatialPixelsDataFrame
and spatialGridpataFrame objects, which can also be mapped using the
image Or plot commands in the usual way, as in Figure 5.12:

g <- as(r, 'SpatialGridDataFrame')
p <- as(r, 'SpatialPixelsDataFrame’)
par (mar=c (0,0,0,0)




Figure 5.12 Plotting the spatialGrid and spatialPoint objects

You can also examine the data values held in the data.frame by entering:
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The data can also be manipulated to select certain features, in this case
selecting the states with populations greater than 10 million people. The
code below assigns na values to the data points that fail this test and plots
the data as an image and as points (Figure 5.13):

<— raster{nrow = 60 , ncols = 120, ext = extent (us states?))

r <- rasterize(us_statesd , r, "POPL153T")

r2 <— T

rZ2(r 10000000] <— HA

g <- {r2, SpatialGridDataFrame"”)

P <- {r2, 'SpatialPixelsDataFrame")
par (mar=c (0,0,0,0))

plot (p ex = 05 peh = 1

Figure 5.13 Selecting data in spatialGrid and spatialPoint objects



5.8.3 Vector to Raster

The raster package contains a number of functions for converting from
vector to raster formats. These nclude rasterToPolygons which converts to
a SpatialPolygonsDataFrame object, and rasterToPoints which converts
to a matrix object. Both are illustrated in the code below and the results
shown in Figure 5.14. Notice how the original raster imposes a grid
structure on the polygons that are created.

T <- rasterinrow = 60 , ncols = &0, ext = extent(tracts))

H
L
¥
1
Al
H
1]
1
rt
A1)
H
el

r «<— rasterl

## Found 29 region(s) and 30 polvgon(s)

polyl <- rasterToPolygonsir, igaolve = T)

pointsl <- rasterToPoints(r

par {(mar=c (0, 0,0,0)

plot (pointsl, col = "grey", axes — FALSE, xaxt="n",
ann=FALSE

plot(polyl, lwd = 1.5, add = T)

= . - -



Figure 5.14 Converting from rasters to polygons and points, with the
original polygon data in red

5.9 INTRODUCTION TO RASTER ANALYSIS

This section provides the briefest of overviews of how raster data may be
manipulated and overlayed in a R in a similar way to a standard GUI GIS
such as QGIS. This section will introduce the raster package, the
reclassification of raster data as a precursor to some basic methods for
performing what is sometimes referred to as map algebra, using a raster
calculator or raster overlay. As a reminder, many packages include user
guides in the form of a PDF document describing the package. This is listed
at the top of the package index page. The raster package includes example
code for the creation of raster data and different types of multi-layered
raster composites. These will not be covered in this section. Rather, the
coded examples illustrate some basic methods for manipulating and
analysing raster layers in a similar way to what is often referred to as
‘multi-criteria evaluation’ or ‘multi-criteria analysis’.



Raster analysis requires that the different data have a number of
characteristics in common: typically they should cover the same spatial
extent, the same spatial resolution (grid or cell size), and as with data for
any spatial analysis, they should have the same projection or coordinate
system. The data layers used in the example code in this section all have
these properties. When you come to develop your own analyses, you may
have to perform some manipulation of the data prior to analysis to ensure
that your data also have these properties.

5.9.1 Raster Data Preparation

The Meuse data in the sp package will be used to illustrate the functions
below. You could read in your raster data using the readcpar function in the
rgdal package, which provides an excellent engine for reading most
commonly used raster formats. You can inspect the properties and attributes
of the Meuse data by examining the associated help files ?meuse.grid.

data (meuse.grid)

<- rasater (meuse.grid, layer

<- rasater (meuse.grid, layer

LI .
T

r3 <- raster|{meuse.grid, layer 5
N = r X [,

The code above loads the meuse.grid data, converts it to a SpatialPixels
pataFrame format and then creates three separate raster layers in the raster
format. These three layers will form the basis of the analyses in this section.
You could visually inspect their attributes by using some simple image
commands:



5.9.2 Raster Reclassification

Raster analyses frequently employ simple numerical and mathematical
operations. In essence they allow you to add, multiply, subtract, etc. raster
data layers, and these operations are performed on a cell by cell basis. So
for an addition this might be in the form:

Raster RBesult «<- ERaster.layer.l + Raster.Layer.Z

Remembering that raster data are numerical, if the rRaster.Layer.1 and
Raster.Layer.2 data both contained the values 1, 2 and 3, it would be
difficult to know the origin, for example, of a value of 3 in the
Raster Result output. The r2 and r3 layers created above both contain
values in the range 1-3 describing soil types and flooding frequency,
respectively (as described in the help for the meuse.grid data). Therefore
we may wish to reclassify them in some way to understand the results of
any overlay operation.

It is possible to reclassify raster data in a number of ways.

First, the raster data values can be manipulated using simple
mathematical operations. These produce raster outputs describing the
mathematical combination of the input raster layers. The code below
multiplies one of the layers by 10. This means that the result combining
both raster data layers using the add (+) function contains a fixed set of
values — in this case 9 — which are tractable to the combinations of inputs
used. A value of 32 would indicate values of 3 in r3 (a flooding frequency
of one in 50 years) and 2 in r2 (a soil type of ‘RA90C/VII’, whatever that
is). The results of this simple overlay are shown in Figure 5.15 and in the
table of values printed. Note the use of the sppilot function in the code
below.



Raster Result <- rZ + (r3 * 10)

table (as.vector (Raster_Res:l-:i'-.raluesj I
3

## 11 12 13 21 22 23 21 32 33
$# 535 242 2 T3¢ 450 145 354 352 203

spplot (Raster Result, col.rsgions=brewer.pal (S, "Spectral),
cuts=g)

A second approach to reclassifying raster data is to employ logical
operations on the data layers prior to combining them. These return TRUE or
FALSE for each raster grid cell, depending on whether it satisfies the logical
condition. The resultant layers can then be combined in mathematical
operations as above. For example, consider the analysis that wanted to

identify the locations in the Meuse data that satisfied the following
conditions:

Figure 5.15 The result of a simple raster overlay



Are greater than half of the rescaled distance away from the Meuse

river;

Have a soil class of 1, i.e. calcareous weakly developed meadow soils,
light sandy clay;

Have a flooding frequency class of 3, i.e. once in a 50-year period.

The following logical operations can be used to do this:

These can

then be combined using specific mathematical operations,
depending on the analysis. For example, a simple suitability Multi-Criteria
Evaluation, where all the conditions have to be true and where a crisp,
Boolean output is required, would be coded using the multiplication
function as below with the result shown in Figure 5.16:

Raster Result «<- rla * rZa * r3a

table (as.vector (Raster ResultSvalues))

i3

£3 i

$F 2924 173

plot (Raster Result, legend = F Bo=-1)

legend (¥x="botcomright’® = ("Suitable' "Not
Suitable™), £ill terrain.colora{n = 2)), Lty = "o
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Figure 5.16 A raster overlay

using a combinatorial AND

This is equivalent to a combinatorial AND operation, also known as an
intersection. Alternatively the analysis may be interested in identifying

where any of the conditions

are true, a combinatorial OR operation, also

known as a union, with a different result as shown in Figure 5.17:

Ras:e:_Re5;;t <— rla + r2a + r3a

table (as.vector (Raster ResultSvalues))

F#
4
L&

image (Raster Result,
legend (x="hottomright',

=qgend -~ T

LY & Y
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Figure 5.17 A raster overlay using a combinatorial OR

5.9.3 Other Raster Calculations

The above examples illustrated code to reclassify raster layers and then
combined them using simple mathematical operations. You should note that
it 1s possible to apply any kind of mathematical function to a raster layer.
For example:

Baster Result <- sin(r3) + sgrt{rl)
Baster Result <- ({(rl * 1000 ) / log(r3}) ) * rz

image (Raster Result)

A number of other operations are possible using different functions
included in the raster package. They are not given a full treatment here but
are introduced such that the interested reader can explore them in more
detail.

The calc function performs a computation over a single raster layer, in a
similar manner to the mathematical operations in the preceding text. The
advantage of the calc function is that it should be faster when computing
more complex operations over large raster datasets.

my.func <— function(x} {logi(x)}

Raster Result <- calc(r3, my.func)

Raster Result <- calc(r3d, log)



The overlay function provides an alternative to the mathematical
operations illustrated in the reclassification examples above for combining
multiple raster layers. The advantage of the overlay function, again, is that
it is more efficient for performing computations over large raster objects.

Raster Besult <- owerlay{rz,r3,
fun = functiom(x; ¥y) {return{x + (y * 10})}
my.stack <- stack(r2, ri)
Raster Result <- overlay(my.stack, fun = functicn(x, ¥)
(x + (v * 10) )

There are a number of distance functions for computing distances to
specific features. The distanceFromPoints calculates the distance between
a set of points to all cells in a raster surface and produces a distance or cost
surface as in Figure 5.18.

data (meuse)

coordinates (meuse) — mEEY

30il.1 - meuse [meusesfsoll == 1,]
T =- raster (meuse.grid)

dist <- distanceFrom

plot (dist)

plet(so0il.l, add = T)

You are encouraged to explore the raster package (and indeed the sp
package) in more detail if you are specifically interested in raster based
analyses. There are a number of other distance functions, functions for
computing over neighbourhoods (focal functions), accessing raster cell
values and assessing spatial configurations of raster layers.
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Figure 5.18 A raster analysis of distance to points

ANSWERS TO SELF-TEST QUESTIONS

Q1. Here is the code to maps the densities of breaches of the peace in New
Haven in breaches per square mile:

densities = poly.counts {breach,blocks) /[
ftZmiles (fr2miles(poly.areas (blocks) ) )
density.shades <- auto.shading({denaities,

cols=brewer.pal{5, "Oranges"), cutter=rangeCuts)
choro.leg 16
T .

dents per S5g. Mile")

Note that much of the concentration of incidents occurs in a small number
of places.

Q2. First, calculate the coefficients for the analysis using census blocks:

blocks2 = blocks [blocksSOCCOPIED > O, ]

attach{data.frame {(blocks2))

forced.rate = 2000*poly.counts (burgres.f,blocks2) /OCCUPIED

notforced.rate = 2000%poly.counta (burgres.n,blockaz} f
OCCUPIED

modell = Im(forced.rate~notforced.ratce)

coef (modell)

4 {(Intercept) notforced.rate
4 5.487 0.3749



cat ("expected (forced rate)= ",coef(modell) [1], "+,

coef (modell) [2], "* (not forced rate) ")

$# expected(forced rate)= 5.487 + 0.37% ¥ ([not forced rate)

detach (data.frame {blocks2} )

Now, calculate the coeffcients using census tracts:

tractsZ = tracts[tractsS$OCCUPIED > O, ]

ct <- projdstring(burgres.f)

projd4string{tractsZ) «<— CRS([ct)

rame (tracts2) )

attach {da
r 2000*poly . counts (burgres. £, tracts?) fJOCCOPIED

forced.ra
notforced.rate = 2000%poly.counts (burgres.n, tracts2) fOCCUPTED

Ta
Te

model2 = lm({forced.rate~notforced.rate)
cosef (modell)

$%¥ (Intercept) notforced.rate

£F 5.2435 0.4133
cat [("expected (forced rate) = ",coef (model2) [1], "™+7,
coef (modell) [2], "% {(not forced rate] ")

## expected(forced rate) = 5.243 + 0.4133 * (not forced

rate)

detach (data.frame (tractsd})

These two analyses show that, in this case, there are only small differences

between the coefficients arising from analyses using different areal units.

cat ("expected (forced rate} = ",coef (modell) [1], "+,
coef (modell) [2], "¥* {(not forced rate) ")

¥ expectediforced rate) = 5.467 + 0.379 * (not forced rate)

(model2) [1], "+",

cat {("expected (forced rate} = f
d rate) ™)

e
coef (model?Z) [2], "* {not forc

¥ expected(forced rate) = 5.243 + 0.4133 * (not forced rate)

This analysis tests what is referred to as the modifiable areal unit problem,
first identified in the 1930s, and extensively researched by Stan Openshaw



in the 1970s and beyond — see Openshaw (1984) for a comprehensive
review. Variability in analyses can arise when data are summarised over
different spatial units, and the importance of the modifiable areal unit
problem cannot be overstated as a critical consideration in spatial analysis.

Q3. The simplest way to write the function required would be simply to use
the code in the preceding text and to wrap it in a function:

int.poly.counts <— function{int.laysr, tracts,

tracts.var, wvar.name)
int.res <— glntersection({int.layer, tracts, byid = T)

tmp <— strsplit(names(int.res), ™ ")
tracts.id <-— {(sapply({tmp, "[[", 2]))
intlayer.id <- (sapply(tmp, "[[™, 1))

int.areas <- ghrea{int.res, byid = T)
tract.areas <- gAreal(tracts, byid = T)

index <- match({tracts.id, row.namss(tracts))
tract.areas <- tract.areas[index]
tract.prop <- =zapsmall (int.areas/tract.areas, 3}

f <- data.frame(intlayer.id, tract.prop)
houses <- zapsmall (tracts.var[index] *

= JNl o FRE

«<— data.frame (df, housesa, int.areas)

£ L

int.laver.houses «<- xtaba(dfShouses~dfSintlayer.id)
index <- as.numeric(gsub("g", """, names{int.layer.houses)))

tmp <— vector ("mmeric™, length = dim{data.frame (int.layer)) [1])
tmp [index] <- int.layer.houses
i.houses <- tmp

int.layer2 <- SpatialPolygonsDataFrame (int.layer,
data = d fr (data.frame{int.layer), i.houses),

ata. r
= FALSE
names (int.layer2) <-— c{("ID", wvar.name)

match.ID

And this could be used to evaluate the inputs as in the worked example:

int.layer? <- int.poly.countcs(int.layer,

tracts,tracts$HSE UNITS, "i.houss" )



However, the code is not very transparent and better names could be used
for the various intermediate internal variables that are created to make the
function more understandable to someone else or you at a later date.

int.poly.counts <— function({int.layerl, int.layerl,
int.layer2.var, var.name) {

int.res <- glntersection(int.layerl, int.layer2, byid = T)
tmp <— strsplit (names{int.res), " ")

int.layer?2.id <— (sapplyi(tmp, "[["™, 2})
intlayer.id <- (sapplyv(tmp, "[[™, 1))
int.areas <- ghrea(int.resa, byid = T)
tract.areas <- ghArea(int.layer?, byid = T)

index <- match{int.layer2.id, row.names{int.layeri))
tract.areas <- tract.arcas[index]

tract.prop <-— zapsmall{int.areas/tract.arsas, 3)

df <- data.frame (intlayer.id, tract.prop)

var <— zapsmall({int.layerZ.var[index] * tract.prop, 1)
df «<— data.frame(df, wvar, int.areas)

int.laverl.var «<- xtabs(dffvar~dffintlayer.id)

index <- as.numeric{gsub("

iy <— vector ("mumeric", length=dim (data.frame (int.layerl)) [1])

", "n names{int.layerl.var)
tmp [index] <— int.layerl.var

int.layer.out <- SpatialPolygonsDataFrame(int.layerl,
data = data.frame (data.frame (int.layerl), i.wvar)

match.ID = FALSE)

+
bl B

names (int.layer.ouc) <-— c{"ID", war.nams)

return{int.layer.out)}

This can then be tentatively applied to other data, after making sure that it
has a similar projected (i.e. consistent with distance and area calculations)
coordinate system. A full implementation of this function and the results of
applying it to int.layer and blocks, after they have had their spatial
reference systems aligned, is described below and shown in Figure 5.19.



library (GISTools)
library (rgdal)
data (newhawven)

f define the intersection layer Jjust to make sure

bb <- bbox(tracts)

grd <- GridTopeclogy{cellcentre.offsetc=
ci(bb[1,1]1-200,bb[2,1]-200),
cellasize=c({10000,10000); cells.dim = c{5,5))

int.layer <— SpatialPolygonsDataFrame (
as.SpatialPolygons.GridTopologyi{grd) ;
data = data.frame(c{l:25)), match.ID = FALSE)

names (int.layer) «<- "ID"

¥ new run with

# match prjd4strings

ct <- projd4string({blocks)

proj4string(int.layer) <— CRS{cCEt)

int.layver <- splransformi{int.layer,
CRS (projd4string(blocks) ) )

# now run the funection

int.result <- int.poly.counts{int.layer, blocks,
blocksSPOP1580, "i.pop™ )

¥ msb plot paramsters

par (mar=c (0,0,0,0))

# map the results

shades = auto.shadingiint.resultéfi.pop,n = 5,
cols = brewer.pali{S, "OrRd™})

choropleth (int.result, int.resultfi.pop, shades)

plotblocks,; add = T, ity = 2; 1lwd = 1.5}

choro.legend (530000, 159115, bg = "white™, shades,
title = "Count", under = " M)

You can check the assigned populations in relation to Figures 5.7 and

5.19.

matrix{data.frame(int.result) [,2],
byrow = T)
4 [r1] [2] .31 [.4]
#O[1,1 154 Sed2 556 0
#%# [2,]1 1962 20354 41712 17125
4 [3:1 0 3478 20603 10494
4 [4,1 0 0 £87 4054
4 [5:1 0 0 208 26l

nrow = 5%, neol = &,
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Figure 5.19 The zones shaded by population after intersection with the
census blocks
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6.1 INTRODUCTION

In this and the next chapter, some key ideas of spatial statistics will be
outlined, together with examples of statistical analysis based on these ideas,
via R. The two main areas of spatial statistics that are covered are those
relating to point patterns (this chapter) and spatially referenced attributes
(next chapter). One of the characteristics of R, as open source software, is
that R packages are contributed from a variety of authors, each using their
own individual styles of programming. In particular, for point pattern
analysis the spatstat package is often used, whilst for spatially referenced
attributed, spdep is favoured. One the one hand spdep handles spatial data
in the same way as sp, maptools and GISTools, while on the other hand
spatstat does not. Also, for certain specific tasks, other packages may be
called upon, whose mode of working differs from either of these packages.
Whilst this may seem a daunting prospect, the aim of these two chapters is
to introduce the key ideas of spatial statistics, as well as providing guidance
in the choice of packages, and help in converting data formats. Fortunately,
although some packages use different data formats, conversion is generally
straightforward, and examples will appear throughout the -chapters,
whenever necessry.

6.2 WHAT IS SPECIAL ABOUT SPATIAL?

In one sense, the motivations for statistical analysis of spatial data are the
same as those for non-spatial data:



To explore and visualise the data;
To create and calibrate models of the process generating the data;

To test hypotheses related to the processes generating the data.

However, a number of these requirements are strongly influenced by the
nature of spatial data. The study of mapping and cartography may be
regarded as an entire subject area within the discipline of information
visualisation, which focuses exclusively on geographical information.

In addition, the kinds of hypotheses one might associate with spatial data
are quite distinctive — for example, focusing on the detection and location of
spatial clusters of events, or on whether two kinds of event (say, two
different types of crime) have the same spatial distribution. Similarly,
models that are appropriate for spatial data are distinctive, in that they often
have to allow for spatial autocorrelation in their random component — for
example, a regression model generally include a random error term, but if
the data are spatially referenced, one might expect nearby errors to be
correlated. This differs from a ‘standard’ regression model where each error
term is considered to apply independently, regardless of location. In the
remainder of this section, point patterns (one of two key types of spatial
data considered in this book) will be considered. Firstly, these will be
described.

6.2.1 Point Patterns

Point patterns are collections of geographical points assumed to have been
generated by a random process. In this case, the focus of inference and
modelling is on model(s) of the random processes, and their comparison.
Typically, a point dataset consists of a set of observed (x, y) coordinates, say
{(x1, 1), (X2, 9), ..., (x,,, ¥,,)}, where n 1s the number of observations. As an

alternative notation, each point could be denoted by a vector x;, where x; =
(x;, ;). Using the data formats used in sp, maptools and so on, these data

could be represented as SspatialPoints Or SpatialPointsDataFrame
objects. Since these data are seen as random, many models are concerned
with the probability densities of the random points, v(x;).



Another area of interest is the interrelation between the points. One way
of thinking about this is to consider the probability density of one point x;

conditional on the remaining points {xi,....X; ,X;41,...,X,}. In some
situations x; is independent of the other points. However, for other
processes this is not the case. For example, if x; is the location of the

reported address for a contagious disease, then it is more likely to occur
near one of the points in the dataset (due to the nature of contagion), and
therefore not independent of the values of {Xi,...,.X;,_{,X;:1,-...X,,}.

Also important is the idea of a marked process. Here, random sets of
points drawn from a number of different populations are superimposed (for
example, household burglaries using force and household burglaries not
using force) and the relationship between the different sets is considered.
The term ‘marked’ is used here as the dataset can be viewed as a set of
points where each point is tagged (or marked) with its parent population.
Using the data formats used by sp, a marked process could be represented
as a spatial points data frame — although the spatstat package uses a
different format.

6.3 TECHNIQUES FOR POINT PATTERNS
USING R

Having outlined the two main data types that will be considered, and the
kinds of model that may be applied, in this section more specific techniques
will be discussed, with examples of how they may be carried out using R.
In this section, we will focus on random point patterns.

6.3.1 Kernel Density Estimates

The simplest way to consider random two-dimensional point patterns is to
assume that each random location x; is drawn independently from an

unknown distribution with probability density function f'(x;). This function

maps a location (represented as a two-dimensional vector) onto a
probability density. If we think of locations in space as a very fine pixel
grid, and assume a value of probability density is assigned to each pixel,



then summing the pixels making up an arbitrary region on the map gives the
probability that an event occurs in that area. It is generally more practical to
assume an unknown f, rather than, say, a Gaussian distribution, since
geographical patterns often take on fairly arbitrary shapes — for example,
when applying the technique to patterns of public disorder, areas of raised
risk will occur in a number of locations around a city, rather than a
simplistic radial ‘bell curve’ centred on the city’s mid-point.

A common technique used to estimate f(x;) is the kernel density estimate
or KDE (Silverman, 1986). KDEs operate by averaging a series of small
‘bumps’ (probability distributions in two dimensions, in fact) centred on
each observed point. This is illustrated in Figure 6.1. In algebraic terms, the
approximation to f'(x), for an arbitrary location x = (x, ), is given by

q.\—-.: I_Ij H_yf :
h S ) | (6.1)

2 T | !
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Each of the ‘bumps’ (central panel in Figure 6.1) map on to the kernel
function | " 'y |in equation (6.1) and the entire equation describes the
‘bump averaging’ process, leading to the estimate of probability density on

the right-hand panel. Note that there are also parameters /, and 4,

(frequently referred to as the bandwidths) in the x and y directions; their
dimension is length, and they represent the radii of the bumps in each
direction. Varying h, and &, alters the shape of the estimated probability

density surface — in brief, low values of /4, and £, lead to very ‘spiky’

distribution estimates, and very high values, possibly larger than the span of
the x; locations, tend to ‘flatten’ the estimate so it appears to resemble the k-

function itself; effectively this gives a superposition of nearly identical .-
functions with relatively small perturbations in their centre points.

LI ANF 7 |
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Figure 6.1 Kernel density estimation: initial points (left); bump centred on
each point (centre); average of bumps giving estimate of probability density




(right)

This effect of varying 4, and A, is shown in Figure 6.2. Typically 4, and £,

take similar values. If one of these values i1s very different in magnitude
than the other, kernels elongated in either the x or y direction result.
Although this may be useful when there are strong directional effects, we
will focus on the situation where values are similar for the examples
discussed here. To illustrate the results of varying the bandwidths, the same
set of points used in Figure 6.1 is used to provide KDEs with three different
values of 4, and &, — on the left, they both take a very low value, giving a
large number of peaks; in the centre, there are two peaks; and on the right,
only one.

An obvious problem is that of choosing appropriate 4, and h, given a
dataset {x;}. There are a number of formulae to provide ‘automatic’
choices, as well as some more sophisticated algorithms. Here, a simple rule
is used, as proposed by Bowman and Azzalini (1997) and Scott 1992:
A

by =0, q—”r
where o, 1s the standard deviation of the x;. A similar formula exists for 4,
replacing o, with o, the standard deviation of the y; The central KDE in

Figure 6.2 is based on choosing 4, and /), using this method.

Figure 6.2 Kernel density estimation bandwidths: 4, and £, too low (left);
h, and h,, appropriate (centre); A, and A, too high (right)

6.3.2 Kernel Density Estimation Using R



There are a number of packages in R that provide code for computing
KDEs. Here, the crsTools library introduced earlier in this book will be
used. The steps used to produce a KDE map here are as follows:

1.

2.

Compute the KDE. The function to carry out kernel density estimation
1s kde .points. This estimates the value of the density over a grid of
points, and returns the result as a grid object. Here it takes two
arguments — the set of points to use, and another geographical object,
whose bounding box will be used to set the extent of the grid object to
be created. A further optional argument allows the bandwidths to be
specified. If it is omitted (as here) bandwidths are supplied via the
formula in equation (6.2). Here, the breaches of the peace (public
disturbances) dataset for New Haven, Connecticut, first introduced in
Chapter 3, is used as an example — recall that this is provided in the
GISTools package — here loaded using data (newhaven).

Plot the KDE. Here the KDEs will be mapped as filled contour lines,
rather than represented as three-dimensional objects as in Figures 6.1
and 6.2. In this way it 1s easier to add other geographical entities. The
level.plot command plots the resultant grid from the KDE — although
this will be seen as a rectangular grid extending beyond the New Haven
study area.

Clip the plot to the study area. To clip the grid with the boundaries of
the study area some further software tools are used. poly.outer
provides a new spatialPolygons object, effectively consisting of a
rectangle with a hole having the shape of the second argument — a
SpatialPolygons OF SpatialPolygonsDataFrame object. The first
argument 1s any kind of spatial object (in this case a spatial polygons
data frame of census tracts in New Haven), and is used to determine the
boundary of the rectangle. The polygon thus produced acts as a kind of
‘mask’, overwriting the parts of the grid that lie outside of the polygon.
Finally, the extend argument expands this rectangular mask by the
specified number of units in each direction — sometimes the default
rectangle (which fits over the first argument polygon exactly) needs to
be extended to cover other features of the map. The add.masking
function then draws this object onto the map. Finally, in case some of
the boundaries of the study area tracts may have been overwritten (this



sometimes happens as the boundaries of the polygonal hole may
coincide exactly with those of the study area), the tracts are redrawn.

The code block to perform these operations is given below, and the resultant
KDE map is shown in Figure 6.3.

EErne

reguire (GISTools)

data (newhaven)

breach.dens <- kde.points{breach, lims=tracts)

level .plot (breach.dens)
masker <- poly.outer (breach.dens,tracts,extend=100)
add.masking (masker)

E AdA Fhe Feasto T
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plot (tracts,add=TRUE)

Figure 6.3 KDE map for breaches of the peace

Self-Test Question 1. As a further exercise, try adding a scale, and a layer
of roads to this map. The help for map.scale is useful here, and an example



is given in the help for the newhaven dataset.

6.4 FURTHER USES OF KERNEL DENSITY
ESTIMATION

As well as estimating the probability density function f(x, y), kernel
density estimation also provides a helpful visual tool for displaying
point data. Although plotting point data directly can show all of the
information in a small dataset, if the dataset is larger it is hard to
discriminate between relative densities of points: essentially, when
points are very closely packed, the map symbols begin to overprint and
exact numbers are hard to determine; this is illustrated in Figure 6.4.
On the left is a plot of locations. The points plotted are drawn from a
two-dimensional Gaussian distribution, and their relative density
increases towards the centre. However, except for a penumbral region,
the intensity of the dot pattern appears to have roughly fixed density.
As the KDE estimates relative density, this problem is addressed — as
may be seen in the KDE plot in Figure 6.4 (right).

Figure 6.4 The overplotting problem: point plot (left) and KDE plot (right)

KDE is also useful for comparative purposes. In the New Haven dataset
there are also data relating to burglaries from residential properties. These



are divided into two classes, burglaries that involve forced entry and
burglaries that do not. It may be of interest to compare the spatial
distributions of the two groups. In the newhaven dataset, burgres.f is a
SpatialPoints object with points for the occurrence of forced entry
residential burglaries, and burgres.n is a spatialPoints object with points
for non-forced entries. Based on the recommendation to compare patterns in
data using small multiples of graphical panels (Tufte, 1990), KDE maps for
forced and non-forced burglaries may be shown side by side. This is
achieved using the following block of R code, which essentially reuses the
previous block, but substitutes the spatialPoints object used in the KDE
computations, and repeats the operation for two maps side by side. The
result is seen in Figure 6.5. Although there are some similarities in the two
patterns — likely due to the underlying pattern of housing — it may be seen
that for the non-forced entries there is a more prominent peak in the east,
whilst for forced entries the stronger peak is to the west.



masker <- poly.outer (brf.dens,tracta,extend=100)
add.masking (masker)
plot (tracts, add=TRUE)

& s TRy
LAl LIS

¥ Add =a

title ("Forced Burglaries"™)

¥ Compute density for non-forced entry burglaries and
create plet

brn.dens <- kde.points (burgres.n, lims=tracts)
level.plot (brn.dens)

# Use 'mask:ing’ as before

masker <— poly.outer (brn.dens,tracts,extend=100)
add.masking (masker)
plot (tracts, add=TRUE)

AT 5

# Add a tatle
title ("Hon-Forced Burglariss")
- |

reget par (mfrow)
par (mfrow=c{l,1})

6.4.1 Hexagonal Binning Using R

Hon-Forced Burglaries

Figure 6.5 KDE maps to compare forced and non-forced burglary patterns



An alternative visualisation tool for geographical point datasets with larger
numbers of points is hexagonal binning. In this approach, a regular lattice
of small hexagonal cells is overlaid on the point pattern, and the number of
points in each cell is counted. The cells are then shaded according to the
counts. This method also overcomes the overplotting problem. However,
hexagonal binning is not directly available in GIsTools, and it is necessary
to use another package. One possibility is the fMultivar package. This
provides a routine for hexagonal binning called hexBinning, which takes a
two-column matrix of coordinates and provides an object representing the
hexagonal grid and the counts of points in each hexagonal cell. Note that
this function does not work directly with sp-type spatial data objects. This
is mainly because it is designed to apply hexagonal binning to any kind of
data (for example, scatter plot points where the x and y variables are not
geographical coordinates). However, it is perfectly acceptable to subject
geographical points to this kind of analysis.

First, make sure that the fmMultivar package is installed in R. If not, enter

install.packages ("fMultivar", depend = TRUE)

Then use the hexBinning function:

reguire (fMultivar)

hbins <-hexBinning(coordinatesa{breach))

The object hbins contains the binning information. In particular, it contains
the centroid of each hexagonal bin, and the count of points in each bin:

= {(hbinsSx)
## [1] 5422B4 545289 55090& 548212 561144 547673
head (hbins5y)
#4 [1] 163291 165273 1€5933 1lee594 1leg584 157254
head (hbinsSz)

£F [1] I 1 1 11



Note that z refers to the count in each bin. Also, bins with zero counts are
not recorded, so 1 is the smallest value of z that can appear. To draw these
on the map, the full polygonal coordinates associated with each centroid
need to be entered — the variables u and v contain the relative offsets for
hexagons, so that when the centroids are added to these variables, the
polygons for specific polygons are created:

u - i, 0, -1, I, | 41
u <- u ¥ min(diff (unique (sort (hbinzSx))}))
= 1 Bl iy =20 =1
- w * min(diff (unique(sort{hkinasy)))} i3

Next, the background map (US Census blocks in New Haven) are drawn.
Finally, the hexagons are added, here using a loop in R, so that each
hexagon centre is visited in turn, and the appropriate polygon is created and
shaded according to the count of points in that polygon. In this case it can
be seen that there is a maximum of nine points in any polygon:

max (hbinsSz)

¥ [1] &

Thus, a palette of nine shades is created (via the function brewer.pal from
the rRcolorBrewer package) is created. Note that nine is the maximum
number of shades allowed for the palette used here — so if the highest value
of z had exceeded 9, it would have been necessary to scale this down. Also
note that at the time of writing there is no ‘pre-built’ function to draw
hexagonal bin plots over maps, hence this code builds up this functionality
from basic tools such as polygon drawing. The code to do this follows,
giving the map in Figure 6.6.



polvogon (u + hbinsSx[il, v + hbinsSv[i].,
col = shades[hbinsSz[i]],

horder = NAL)}

plot (blocks, add=TRUE)

Figure 6.6 Hexagonal binning of breach of the peace events

As an alternative graphical representation, it is also possible to draw
hexagons whose area is proportional to the point count. This is done by
creating a variable scaler with which to multiply the relative polygon
coordinates (this relates to the square root of the count in each
polygon, since it is areas of the hexagons that should reflect the
counts). This is all achieved via a modification of the previous code,
listed below. The graphical output is shown in Figure 6.7.




scaler <- sgrt(hbinsSz/9)

for (i in l:length(hbins$x}) |
polygon{u*scaler[i] + hbinsS$x[i], wv¥scaler[i]
+ hbinssv[i],

LIl Gl TR

Figure 6.7 Hexagonal binning of breach of the peace events — proportional
symbolism

6.5 SECOND-ORDER ANALYSIS OF POINT
PATTERNS

In this section, an alternative approach to point patterns will be considered.
Whereas KDEs assume that the spatial distributions for a set of points are
independent but have a varying intensity, the second-order methods
considered in this section assume that marginal distributions of points have



a fixed intensity, but that the joint distribution of all points is such that
individual distributions of points are not independent.! This process
describes situations in which the occurrences of events are related in some
way; for example, if a disease is contagious, the reporting of an incidence in
one place might well be accompanied by other reports nearby. The K-
function (Ripley, 1981) is a very useful tool for describing processes of this
kind. The K-function is a function of distance, defined by

K(d) = 2E(N,) (6.3)

where N, 1s the number of events x; within a distance d of a randomly
chosen event from all recorded events {xy,...,X,}, and 4 is the intensity of

the process, measured in events per unit area. Consider the situation where
the distributions of x; are independent, and the marginal densities are

uniform — often termed a Poisson process, or complete spatial randomness
(CSR). In this situation one would expect the number of events within a
distance d of a randomly chosen event to be the intensity 4 multiplied by
area of a circle of radius d, so that

Kesp (d) d® (6.4)

The situation in equation (6.4) can be thought of as a benchmark to assess
the clustering of other processes. For a given distance d, the function value
Kcgr(d) gives an indication of the expected number of events found around

a randomly chosen event, under the assumption of a uniform density with
each observation being distributed independently of the others. Thus for a
process having a K-function K(d), if K(d) > K-qr(d) this suggests that there

is an excess of nearby points — or, to put it another way, there is clustering
at the spatial scale associated with the distance d. Similarly, if K(d) <
Kcqr(d) this suggests spatial dispersion at this scale — the presence of one

point suggests other points are less likely to appear nearby than for a
Poisson process.

The consideration of spatial scale is important (many processes exhibit
spatial clustering at some scales, and dispersion at others), so that the
quantity K(d) — Kcqr(d) may change sign with different values of d. For

example, the process illustrated in Figure 6.8 shows clustering at low values
of d — for small distances (such as d, in the figure) there is an excess of



points near to other points compared to CSR, but for intermediate distances
(such as d in the figure) there is an undercount of points.

F

Figure 6.8 A spatial process with clustering and dispersion

When working with a sample of data points {x;}, the K-function for the

underlying distribution will not usually be known. In this case, an estimate
must be made using the sample. If d;; is the distance between x; and x; then

an estimate of K(d) is given by
L I, <d)
Ki)=i px—41 s
i j=i nn—1) (6.3)
where 7 is an estimate of the intensity — given by
2 % (6.6)
with |4| being the area of a study region defined by a polygon 4. Also I(.) is
an indicator function taking the value 1 if the logical expression in the
brackets is true, and 0 otherwise. To consider whether this sample comes
from a clustered or dispersed process, it is helpful to compare Kid) to

Kesr(d).

Statistical inference is important here. Even if the dataset had been
generated by a CSR process, an estimate of the K-function would be subject
to sampling variation, and could not be expected to match K-qr(d)

perfectly. Thus, it is necessary to test whether the sampled K4) is sufficiently
unusual with respect to the distribution of x estimates one might expect to
see under CSR to provide evidence that the generating process for the



sample is not CSR. The idea is illustrated in Figure 6.9. Here, 100 K-
function estimates (based on equation (6.5)) from random CSR samples of
100 points (the same number of points as in Figure 6.8) are are
superimposed, together with the estimate from the point set shown in Figure
6.8. From this it can be seen that the estimate from the clustered sample is
quite different from the range of estimates expected from CSR.

Another aspect of sampling inference for K-functions is the dependency
of Kid) on the shape of the study area. The theoretical form K gg(d) = Azwd” is

based on assumption of points occurring in an infinite two-dimensional
plane. The fact that a ‘real-world’ sample will be taken from a finite study
area (denoted here by A) will lead to further deviation of sample-based
estimates of X(4) from the theoretical form. This can also be seen in Figure
6.9 — although for the lower values of d the CSR estimated K-function
curves resemble the quadratic shape expected, the curves ‘flatten out’ for
higher values of d. This is due to the fact that for larger values of d, points
will only be observed in the intersection of a circle of radius d around a
random x; and the study area 4. This will result in fewer points being

observed than the theoretical K-function would predict. This effect
continues, and when d is sufficiently large any circle centred on one of the
points will encompass the entirety of A. At this point, any further increase
in d will result in no change in the number of points contained in the circle
— this provides an explanation of the flattening-out effect seen in the figure.

1.0 ] —

0.8 4

0.6 4

K(d)

0.4 4

0.2 4

0.0 4

T T T T
0.0 0.5 1.0 1.5 2.0

Figure 6.9 Sample K-functions under CSR



Above, the idea is to consider a CSR process constrained to the study
area. However another viewpoint is that the study area defines a subset of
all points generated on the full two-dimensional plane. To estimate the K-
function for the full-plane process some allowance for edge effects on the
study area needs to be made. Ripley (1976) proposed the following
modification to equation (6.5):

o | 21{d;; <d)
Edy=3 ¥% ;
i j=i B(n =1y

where wy; 1s the area of intersection between a circle centred at x;, passing

through x; and the study area 4. Inference about the estimated K-function

can then be carried out using the approach used above, but with X(4) based
on equation (6.7).

For the data in the example, points were generated with A as the
rectangle having lower left corner (—1, —1) and upper right corner (1,
1). In practice A may have a more complex shape (a polygon outline of
a county, for example; for this reason, assessing the sampling
variability of the K-function under sampling must often be achieved
via simulation, as seen in Figure 6.9.

6.5.1 Using the K-function in R

In R, a useful package for computing estimated K-functions (as well as
other spatial statistical procedures) is spatstat. This is capable of carrying
out the kind of simulation illustrated earlier in this section.

The K-function estimation as defined above may be estimated in the
spatstat package using the kest function. Here the locations of bramble
canes (Hutchings, 1979; Diggle, 1983) are analysed, having been obtained
as a dataset supplied with spatstat via the data(bramblecanes)
command. They are plotted in Figure 6.10. Different symbols represent



different ages of canes — although initially we will just consider the point
pattern for all canes.

reguire [(spatstat)

data (bramblecanes)
plot (bramblecanes)

bramblecanes
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Figure 6.10 Bramble cane locations

Next the xest function is used to obtain an estimate for the K-function of
the spatial process underlying the distribution of the bramble canes. The
correction="border' argument requests that an edge-corrected estimate
(as in equation (6.7)) be used.

kf <- Eest (bramblecanes,correction="border')

plot (k)
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Figure 6.11 Ripley’s K-function plot

The result of plotting the K-function, as shown in Figure 6.11, compares the
estimated function (labelled xbord) to the theoretical function under CSR
(labelled xpois). It may be seen that the data appear to be clustered
(generally the empirical K-function is greater than that for CSR, suggesting
that more points occur close together than would be expected under CSR).
However, this perhaps needs a more rigorous investigation, allowing for
sampling variation via simulation as set out above.

This simulation approach is sometimes referred to as envelope analysis,
the envelope being the highest and lowest values of K4) for a value of d.
Thus the function for this is called envelope. This takes a ppp object and a
further function as an argument. The function here is kest — there are other
functions also used to describe spatial distributions which will be discussed
later, which envelop can use, but for now we focus on xest. The envelope
object may also be plotted — as shown in the following code which results
in Figure 6.12:

kf.env <— enwvelope (bramblecanes,Kest, correction="border")



kf.erw
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Figure 6.12 K-function with envelope

From this it can be seen that the estimated K-function for the sample takes
on a higher value than the envelope of simulated K-functions for CSR until
d becomes quite large, suggesting strong evidence that the locations of
bramble canes do indeed exhibit clustering. However, it can reasonably be
argued that comparing an estimated K@) and an envelope of randomly
sampled estimates under CSR is not a formal significance test. In particular,
since the sample curve is compared to the envelope for several d values,
multiple significance testing problems may occur. These are well explained
by Bland and Altman (1995) — in short, when carrying out several tests, the
chance of obtaining a false positive result in any test is raised. If the
intention 1s to evaluate a null hypothesis of CSR, then a single number
measuring departure of K@) from K gg(d), rather than the K-function may be

more appropriate — so that a single test can be applied. One such number is
the maximum absolute deviation (MAD: Ripley, 1977, 1981). This is the
absolute value of the largest discrepancy between the two functions:

MAD nmd|ﬁf|;d]-f<c5au]| (6.8)
In R, we enter:
mad.test (bramblecanes, Eesat)
t# Generating %% simumlations of CSR ...

r

44+ 1, 2, 3, 4, 5, 6, 7, B, 8§, 10, 11, 12, 13, 14, 15,
$¢ 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30,



#% 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45,
#% 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 5&, 57, 58, 59, &0,
#% 61, o2, €3, 64, &5, €6, &7, &8, 69, J0, T, T2, 73, T4, 75,
#% 76, 77, 78, 79, 80, 81, B2, 83, B4, B5, 86, 87, 88, 89, 90,
#F 91, 92, 53, 54, 95, 56, 97, 93, 99.

#F

#F Done.

#F

#F Maximum akbsclute deviation test of CSR

#F Monte Carlo test based on 99 simulations

## Summary function: EK({r)

## Beference function: sample mean

## Interval of distance wvalues: [0, 0.25] units (one unit = 9

#F metres)

i
## data: bramblecanes
## mad = 0.016, rank = 1, p—value = 0.01

In this case it can be seen that the null hypotheses of CSR can be rejected at
the 1% level. An alternative test 1s advocated by Loosmore and Ford (2006)
where the test statistic is

max - = &z
M; 2 [ Ki(dy ) - K;(dy }-‘ g (6.9)

!
d.'r nin

in which Ki(%) is the average value of K@ over the simulations, the d, are a
to d.« and 0, = d; — d,.-
Essentially this attempts to measure the sum of the squared distance
between the functions, rather than the maximum distance. This is
implemented by spatstat via the dcilf.test function, which works
similarly to mad. test.

sequence of sample distances ranging from d,;,

im
[¥]
A1)
o
m
[15)
*
1!
fi]
ot

declf.test (brambl

#4 Generating %9 simulations of CSRE

$# 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,

$# 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30,
$3 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45,
$% 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, &0,
$% 61, 62, 63, 64, €5, €6, €7, 68, €9, 70, 71, 72, 73, 74, 75,
$% 76, 77, 78, 79, 80, 81, B2, B3, B4, BS, 86, B7, 88, 89, 90,
$3 91, 92, 93, 94, 95, 9§, 97, 98, 99.

=

#% Done.



- &

$t Diggle-Cressie-Loosmorse-Ford test of CSR

$¥ Monte Carlo test based on %9 simulationa

$¥ Summary function: E{r)

$¥ Feference function: sampls mean

¥¥ Interval of diatance values: [0, 0.25] units (one unitc = 9
¥t metres)

-+

tt data: bramblecanss

¥ uw =0, rank = 1, p-valus = 0.01

Again, results suggest rejecting the null hypothesis of CSR — see the
reported p-value.

6.5.2 The L-function

An alternative to the K-function for identifying clustering in spatial
processes is the L-function. This is defined in terms of the K-function:

| i Y
Lid)= [ X&) (6.10)

Although just a simple transformation of the K-function, its utility lies in
the fact that under CSR, L(d) = d; that is, the L-function is linear, having a
slope of 1 and passing through the origin. Visually identifying this in a plot
of estimated L-functions is generally easier than identifying a quadratic
function, and therefore L-function estimates are arguably a better visual
tool. The rest function provides a sample estimate of the L-function (by
applying the transform in equation (6.10) to K(4)) which can be used in place
of Kest. As an example, recall that the envelope function could take
alternatives to K-functions to create the envelope plot: in the following
code, an envelope plot using L-functions for the bramble cane data is
created (see Figure 6.13):



Similarly, it is possible to apply MAD tests or Lossmore and Ford tests
using L instead of K. Again mad.test and dc1f.test allow an alternative to
K-functions to be specified. Indeed, Besag (1977) recommends using L-
functions in place of K-functions in this kind of test. As an example, the
following code applies the MAD test to the bramble cane data using the L-
function.

If.ermw
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Figure 6.13 L-function with envelope

mad.test (bramblecanes, Leat)

#F Generating 99 simulations of CSR ...

X2 3 3 58T Be 9. 30071 42013034 Q5L

¥ 16, 17; 18, 1%, 20, 21, 22, 23; 24, 25, 26, 27, 28, 29, 30;
## 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45,
## 465, 47, 48, 4%, 50, 51, 52, 53, 54, 55, o6, 57, 5DE, 59, &0,
## 61, 62, €3, 64, 65, €6, &7, 68, €9, 70, Ti, T2, T3, T4, 75,
## 76, 77, 78, 79, BO, 81, B2, 83, B4, BS5, 86, B7, @B, B89, 90,
## 91, 92, 53, 94, 95, 96, 97, 98, 99.

$#

#% Done.

33

## Maximum absclute deviation test of CSR

#F Monte Carlo test based on 98 simulations

#F Summary function: L{r)

#F Reference function: sample mean

## Interval of distance wvalues: [0, 0.25] units (ons unit = 9
*F metre3)

##

#% data: bramblecanes

i . - o

##f mad = 0.0175, rank = 1, p—valus = 0.01



6.5.3 The G-function

Yet another function used to describe the clustering in point patterns is the
G-function. This is the cumulative distribution of the nearest neighbour
distance for a randomly selected x;. Thus, given a distance d, G(d) is the

probability that the nearest neighbour distance for a randomly chosen
sample point is less than or equal to d. Again, this can be estimated using
spatstat, using the function Gest. As in Section 6.5.2, envelope,
mad.test and dclf.test may be used with cest. Here, again with the
bramble cane data, a G-function envelope is plotted (see Figure 6.14):

gf .en — enve e (bramblecanes, Gest rre ="horder™
1ot (gf.env)
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Figure 6.14 G-function with envelope

the estimate of the G-function for the sample is based on the empirical
proportion of nearest neighbour distances less than d, for several values of
d. In this case the envelope is the range of estimates for given d values, for
samples generated under CSR. Theoretically, the expected G-function for
CSR is

Gid) = 1 —exp(~Axd) (6.11)

This is also plotted in Figure 6.14, as Gy,



One complication is that spatstat stores spatial information in a
different way than sp, GIsTools and related packages, as noted
earlier. This 1s not a major hurdle, but it does mean that objects of
types such as sSpatialPointsDataFrame must be converted to
spatstat's ppp format. This is a compendium format containing both
a set of points and a polygon describing the study area A, and can be
created from a spatialPoints Or SpatialPointsDataFrame object
combined with a SpatialPolygons O SpatialPolygonsDataFrame
object. This is achieved via the as and as.ppt functions from the
maptools package.

require (maptools)

require (spatstat)

data {(bhramblecaness)

be.spformat <-as (bramblecanes, "SpatialPoints™)
plot (bec.spformat)

be.win «<— as(bramblecanesfwin,"SpatialPeolygons” )
plot (bc.win,add=TRUE)

It is also possible to convert objects in the other direction, via the
as.ppp function. This takes two arguments, the coordinates of the
SpatialPoints Or SpatialPointsDataFrame oObject (extracted using
the coordinates function), and an owin object created from a
SpatialPolygons Or SpatialPolygonsDataFrame via as.win. owin
objects are single polygons used by spatstat to denote study areas,
and are a component of ppp objects. In the following example, the
burgres.n point dataset from G1sTools is converted to ppp format and
a G-function is computed and plotted.




6.6 LOOKING AT MARKED POINT
PATTERNS

A further advancement of the analysis of patterns of points of a single type
is the consideration of marked point patterns. Here, several kinds of points
are considered in a dataset, instead of only a single kind. For example, in
the newhaven dataset, there are point data for several kinds of crime. The
term ‘marked’ is used, as each point is thought of as being tagged (or
marked) with a specific type. As with the analysis of single kinds of points
(or ‘unmarked’ points), the points are still treated as two-dimensional
random quantities. It is also possible to apply tests and analyses to each
individual kind of point — for example, testing each mark type against a null
hypothesis of CSR, or computing the K-function for that mark type.
However, it is also possible to examine the relationships between the point
patterns of different mark types. For example, it may be of interest to
determine whether forced-entry residential burglaries occur closer to non-
forced-entry burglaries than one might expect if the two sets of patterns
occurred independently.

One method of investigating this kind of relationship is the cross-K-
function between marks of type i and j. This is defined as

K;ild) = 2, E(N ) (6.12)

where Ng; is the number of events x; of type j within a distance d of a
randomly chosen event from all recorded events {x,,...,x,} of type i, and /;

is the intensity of the process marked j — measured in events per unit area
(Lotwick and Silverman, 1982). If the process for points with mark j is
CSR, then Kj; (d) = md?. A similar simulation-based approach to that set



out for K, L and G in earlier sections may be used to investigate K;; (d) and
compare it to a hypothesised sample estimate of K;; (d) under CSR.

The empirical estimate of K;; (d) is obtained in a similar way to that in
equation (6.5):

- ~ =1 Tidy =d
Kii(d)= . EZL{]
b ok it

(6.13)

where k indexes all of the i-marked points and / indexes all of the j-marked
processes, and n; and n; are the respective numbers of points marked 7 and /.

A correction (of the form in equation (6.7)) may also be applied. There is
also a cross-L-function, L; (d), which relates to the cross-K-function in the

same way that the standard K-function relates to the standard L-function.

6.6.1 Cross-L-function Analysis in R

There is a function in spatstat, called Kcross, to compute cross-K-
functions, and a corresponding function called Lcross for cross-L-
functions. These take a ppp object and values for i and j as the key
arguments. Since i and j refer to mark types, it is also necessary to identify
the marks for each point in a ppp object. This can be done via the marks
function. For example, for the bramblecanes object, the points are marked
in relation to the age of the cane (see Hutchings, 1979) with three levels of
age (labelled as 0, 1 and 2 in increasing order). Note that the marks are
factors. These may be listed by enteing:



marks (bramblecanss)
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It 1s also possible to assign values to marks of a ppp object using the
expression

marks (x) <

where ... is any valid R expression creating a factor variable with the
same length of number elements as there are points in the ppp object x.
This 1s useful if converting a spatialPointsDataFrame into a ppp
representing a marked process.

As an example here, we compute and plot the cross-L function for levels 0
and 1 of the bramblecanes object (the resultant plot is shown in Figure



6.15):

ck.bramble <-Lcross(bramblecanes,i=0,j=1l,correction=
'border”')

plotick.bramble)

ck.bramble
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Figure 6.15 Cross-L-function for levels 0 and 1 of the bramble cane data

The envelope function may also be used (see Figure 6.16):

nvelope {(bramblecanes, Lecross, i=0, =1,

ckenv.bramble <- e
correction="border"
plot (ckenv.bramble

ckenv.bramble

040 0.15 0.20 0.25
r{one unit = 9 matres)

Figure 6.16 Cross-L-function envelope for levels 0 and 1 of the bramble

cane data



Thus, it would seem that there is a tendency for more young (level 1)
bramble canes to occur close to very young (level 0) canes. This can be
formally tested, as both mad.test and dcl1f.test can be used with kKcross
and Lcross. Here the use of L.cross with dc1f. test is demonstrated:

delf _test {bramblecanes, Leross, i=0, j=1, correction="border")

¥ Generating 9% simulations of CSR . ..

% 1, 2, 3.4, 5, 6. 7, 8; 9, 10, 1Y, 1z, 13, 14, 15

4% 1e, 17,18, 1920, 21,22, 23; 24, 25, 2&, 27,28, 29, °30
% 31, 32, 33, 34, 35, 36, 37, 38, 33, 4 41, 42, 43, 44, 45
#% 46, 47, 48, 4%, 50, 51, 5%, 6 53, 54, 55, 56, 57, & 59, &0
% €1, &2, B3, &4, 65, 66, 6T, 68, €%, 70, 71, T2, 73, 74, 75
¥t e, T, T8, T&, 80, Bl, BZ, 83, 84; %, B&, 87, 88, g
3% 91, 92, 93, 94, 95, 6, 9T, 98, 95.

£%

% Done.

Ex4

% Diggle-Cressie-Loosmore—-Ford test of CS5R

% Monte Carlo test based on 5% simulations

¥ Summary function: LI™0™, "1"1{r}

% Reference function: sample mean

¥ Interval of distance wvalues: [0, 0.25] units [(one unit = §
% metres)

£

£% data: bramblecanes

% u = 0, rank = 1, p-value = 0.01

6.7 INTERPOLATION OF POINT PATTERNS
WITH CONTINUOUS ATTRIBUTES

The previous section can be thought of as outlining methods for analysing
point patterns with categorical-level attributes. An alternative issue is the
analysis of point patterns in which the points have continuous (or
measurement scale) attributes, such as height above sea level, soil
conductivity or house price. A typical problem here is interpolation: given a
sample of measurements — say {zi,..., z,,} atlocations {xy,..., X,,} —the goal

is to estimate the value of z at some new point x. Possible methods for
doing this can be based on fairly simple algorithms, or on more
sophisticated spatial statistical models. Here, three key measures will be
covered:



1. Nearest neighbour interpolation
2. Inverse distance weighting

3. Kriging

6.7.1 Nearest Neighbour Interpolation

The first of these, nearest neighbour interpolation, is the simplest
conceptually, and can be stated as below:

Find i such that |x; — x| 1s minimised

The estimate of z 1s z;.

In other words, to estimate z at x, use the value of z; at the closest
observation point to x. Since the set of closest points to x; for each i form

the set of Thiessen (Voronoi) polygons for the set of points, an obvious way
to represent the estimates is as a set of Thiessen (Voronoi) polygons
corresponding to the x; points, with respective attributes of z;. In rgeos

there is no direct function to create Voronoi polygons, but Carson Farmer?

has made some code available to do this, providing a function called
voronoipolygons. This has been slightly modified by the authors, and is
listed below. Note that the modified version of the code takes the points
from a spatial points data frame as the basis for the Voronoi polygons on a
spatial polygons data frame, and carries across the attributes of the points to
become attributes of the corresponding Voronoi polygons. Thus, in effect, if
the z value of interest is an attribute in the input spatial points data frame
then the nearest neighbour interpolation is implicitly carried out when using
this function.

The function makes use of Voronoi computation tools carried out in
another package called de1dir — however, this package does not make use
of spatial™® object types, and therefore this function provides a ‘front end’
to allow its integration with the geographical information handling tools in
rgeos, sp and maptools. Do not be too concerned if you find the code
difficult to interpret — at this stage it is sufficient to understand that it serves



to provide a spatial data manipulation function that is otherwise not
available.

reguire (deldir)

reguire (sp)

voronoipolygons = function({layer) {

crds <- layer@coords

z <— deldiricrdsa[;1], cxrda,2]

W - tile.list{z)

polys <— wector (mode="list’, ength=length (W)
for (i in seg{along=polya))l |

pords <— chbind{w[[i]]%=, w[[i]]&wv)

pcrds <— rbind(pcrds, pcrdsfl,])
polys[[i]] «<- F

Polygons{list (Polygon (pcrds) )

ID=as.character{i})

5P <- SpatialPolygons (polys)
voronoi <- SpatialPolvgonsDataFrame (SP,

data=data.frame (¥x=crdal,1l].;

y=crda[,2],

laver@data

r 3lot{SP, '"polygons'
function({x} slot({x, "ID"'}j)}})

return (voronoi)

A look at the data

Having defined this function, the next stage is to use it on a test dataset.
One such dataset is provided in the gstat package. This package provides
tools for a number of approaches to spatial interpolation — including the
other two listed in this chapter. Of interest here is a data frame called
fulmar. Details of the dataset may be obtained by entering?fuimar once the
package gstat has been loaded. The data are based on airborne counts of
the sea bird Fulmaris glacialis during August and September of 1998 and
1999, over the Dutch part of the North Sea. The counts are taken along



transects corresponding to flight paths of the observation aircraft, and are
transformed to densities by dividing counts by the area of observation, 0.5

km?.

In this and the following sections you will analyse the data described
above. Firstly, however, this data should be read in to R, and converted into
a spatial™® object. The first thing you will need to do is enter the code to
define the function voronoipolygons as listed above. The next few lines of
code will read in the data (stored in the data frame fuimar) and then convert
them into a spatial points data frame. Note that the fulmar sighting density
is stored in column fulmar in the data frame fulmar — the location is
specified in columns x and y. The point object is next converted into a
Voronoi spatial polygons data frame to provide nearest neighbour
interpolations. Having created both the point and Voronoi polygon objects,
the code below then plots these (see Figure 6.17):

library (maptools)

data (fulmar)

fulmar.spdf «<- SpatialPointalataFrame (chind|{fulmars$x,
fulmarsy),
fulmar)
fulmar.spdf <- fulmar.spdf[fulmar.spdfsyear=—1995%,]
fulmar.voro <— voronoipolygons{fulmar.spdf)
per (mfrov—c (1,2} mar=c(0.1,0.1,0.1,0.1}))
plot (fulmar.spdf, pch=1§&)
plot (fulmar . voro
par (mfrow=c (1,1}
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Figure 6.17 Fulmar sighting transects: (left) points; (right) Voronoi
diagram

The paths of the transects become clear when the data are plotted. For the
most part they are linear, although one path follows the Netherlands coast.
Towards the south-west, north—south oriented paths are crossed by other
zig-zag paths providing a fairly comprehensive coverage. Further north,
coverage is sparser. In terms of the Voronoi diagrams, one notable artefact
is that the areas of the polygons vary with the density of the points (when
the points are internal) — and that edge points have polygons of infinite area
(here trimmed to an enclosing rectangle). These are typical features of
Voronoi polygons, but they can give rather strange characteristics to spatial
interpolation. To see this, a choropleth map of the nearest neighbour
densities is created. In this case, the Brewer palette purples is used (higher
intensity implies greater density) with break points at densities of 5, 15, 25
and 35 birds/km?. The par statement controls some of the parameters used
to create the plot. The mfrow parameter tells R to create multiple plots
within the window. The plots can be thought of as a matrix, and ¢ (1,2)
specifies a matrix of one row and two columns — in other words, a pair of
plots. The mar parameter specifies the margin between the drawing area in
the plot and the whole area allocated. The four quantities are — in order —
the bottom, left, top and right side margins in centimetres. Here these are
made quite small, to allow more area to depict the map. Note that the
margin area is used to add axes and titles in conventional graphs, but when
working with maps with no axes, this space is not needed.

Again, some of the rather strange characteristics of the Voronoi polygon
representation are apparent. In particular, the very large polygons on the
edges visually dominate the interpolations somewhat, and the irregular
shapes of the polygons lead to a fairly confusing visualisation. Although
this approach is sometimes used as a ‘quick and dirty’ estimation tool
(possibly as inputs to numerical models or indicators), the visual approach
here does demonstrate some of the stranger characteristics of the approach.
While it is possible to detect an increased density towards the north-east of
the study area, it is harder to identify any subtler patterns due to the
distorting effect of the variety of polygon shapes and sizes. Arguably the
most problematic aspect of this approach is that the interpolated surfaces
are discontinuous, and in particular that the discontinuities are an artefact of



the locations of the samples. For this reason, methods such as the two others
covered here are preferred. The following code results in Figure 6.18:

library (gstat)

library (GISTools)

sh <-shading (breaks=c(5,15,25,35)

cola=brewer.pal (5, "Purples’))

par (mar=c (0.1,0.1,0.1,0.1})

choropleth (fulmar.voro, fulmar. voroSfulmar, shading=sh, border=Ha)

plot (fulmar.voro,border="lightgray', add=TRUE, 1wd=0.5)

choro.legend (px="topright', sh=sh)
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Figure 6.18 Nearest neighbour estimate of fulmar density

6.7.2 Inverse Distance Weighting

In the inverse distance weighting (IDW) approach to interpolation, to
estimate the value of z at location x a weighted mean of nearby observations
1s taken, rather than relying on a single nearest neighbour. To accommodate
the 1dea that observations of z at points closer to x should be given more
importance in the interpolation, greater weight is given to these points — in
particular, if w; is the weight given to z,, then the estimate of z at location x

1S
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where

w; = |x - xj-|_“ (6.13)

and o > 0. Typically « = 1 or a = 2, giving an inverse or inverse square
relationship.

There are some interesting relationships between IDW and other
methods. If o = 0 then w; = 1 for all i, and z is just the mean of all the z;

regardless of location. Also, note that the ratio of w; to w;, where & is
the index of the closest observation to x, 1s

|
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and so if @ — oo then the weighting i1s dominated by w;, — and the
estimate of z tends to the nearest neighbour estimate.

If the value of x coincides with one of the x; values then there 1s a problem
with the weighting, as w; 1s infinite. However, the IDW estimate is then
defined to be the value of z;. If a number (say, k) of distinct observations are
all taken at the same location, so that x;; = x;, = ... = X;;, then the estimate
1s the mean of z,;, z;», ..., Zj.

The definition of IDW when x coincides with data point Xx; is
understood by noting that the IDW can be written as
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(628)

and in the limiting case where d; — 0 this expression is just z; as in the
definition above. Also note that in the case where there are coincident

locations, so that d;; = dj, = =+ = d;;, = d, say then by multiplying
denominator and numerator by d we have
+ .+ di d =z
5(x) = Iyt i, Iy t+ k=L, 1, 0 k
3x k + dZ,. ) d (61g)
and again, as d — o the limit is the mean of z;|, z;, ..., z;.

Computing IDW with the gstat package

There are a number of ways to compute IDW interpolation. Here, the gstat
package will be considered. This package is also useful for kriging, the
third approach to spatial interpolation covered here (Section 6.8). Thus
knowledge of this package is helpful for both methods. Here, the package is
demonstrated using the fulmar data used earlier. The following code carries
out the IDW interpolation, and plots the interpolated surface. Firstly, you
will need a set of sample points at which the IDW estimates are computed.
The function spsample in the package maptools creates a sample grid.

Given a spatial polygons data frame and a number of points, if the
argument type="'reqgular' 1s provided, it will generate a spatial points data
frame with a regular grid of points covering the polygon. The density of the
grid such that the number of grid points is as close as possible to the
number provided.? Here a grid with around 6000 points is created. Since the
previous object fulmar.voro has a rectangular footprint, this causes the
creation of a rectangular grid.

After this, the IDW estimate is created, using the idw function. This
requires the model to be specified (here the formula fuimar~1 implies that



we are performing a simple interpolation) — the x; locations are in

fulmar.spdf and the points at which estimates are made are supplied in
s.grid. The parameter idp (interpolation distance parameter) is just the
value of a in the IDW — here set to 1.

librarv (maptools)

librarv (GISTools)

library{gstat)

F

5.grid <- spsample (fulmar.voro,type="regular' , n=6000}

idw.est <- gstat::idw({fulmar~1,fulmar.spdf,
ewdata=s.grid,idp=1.0)}

You may wonder why the idw function is referred to as gstat::idw.
This 1s because an earlier package you loaded (spatstat) also has a
function called idw. The notation here tells R you want to use the
function in gstat. If you do not have spatstat loaded this notation is
not needed — simply idw will do. However, if you are still in the same
session where spatstat was used, it is difficult to guarantee which
version of the function would be called. Using gstat::idw removes
the ambiguity.

The object idw.est 1S a SpatialPointsDataFrame containing the IDW
estimates at each of the sample points (actually a rectangular grid) in a
variable called vari.pred. The next few lines extract the unique x and y
locations in the grid, and format vari.pred into a matrix, predmat.

ux <- unigque(coordinates(idw.esat) [,1])
uy <- unigque (coordinates{idw.est) [,2])
predmat <- matrix(idw.estivarl.pred, length (ux), length (uy))

Having created this, an alternative interpolation with o = 2 is created using
the same approach. The ‘raw’ IDW is stored in idw.est2 and then stored in
the matrix predmat2:



idw.est2 <- gstat::idw(fulmar~1, fulmar.
newdata=s.grid,idp

predmat? <- matrix(idw.est2$varl.pred, length (ux), leng uy) )

Finally, both of these interpolations are mapped via the filled.contour
function. Note that this function adds contours to an existing plot. Drawing
the fulmar.voro object with colours and borders set to NA is admittedly a
hack, but a useful way of creating a blank plot window with the correct
extent, that the filled contour plot may be added to. Finally, although the
.filled.contour uses a different way of specifying shading and break
levels, the method from GIsTools is used to create legends. The following
code produces Figure 6.19:

par(mar=c (0.1,0.1,0:.1,0.1) ,mfrow=c (1,2}
plot (fulmar.voro, border=HA, col=HA)
filled.contour{ux,ay, predmat, col=kbrewer.pal (S5, "Purples"),
levels=c(0,2,4,6,8,30)

sh <-shading (breaks=ci{2,4,6,8),
= rer.pal (S, "Purples”) )

choro ght ', sh=sh, bg="' At

plot (fulmar.voro,border=HNA, col=NL)

.filled.contour {ux,uy, predmat2, col=brewer.pal (5, 'Purples'),;

l~v—i’—:|L,_,é,E,E,EJ::

choro.legend (px="topright',sh=sh,bg="vwhite"
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Figure 6.19 IDW Interpolation (LHS:a = 1, RHS:a = 2)

6.8 THE KRIGING APPROACH

Viewing the maps of fulmar density produced by the IDW approach, these
appear to be more satisfactory than the nearest neighbour interpolation, at
least in that they do consist of flat regions with a set of arbitrary linear
discontinuities. However, one fact to note is that IDW interpolation always
passes exactly through uniquely located measurement points. If the data are
the result of very reliable measurement, and the underlying process is
largely deterministic, this is fine. However, if the process is subject to
random errors in measurement or sampling, or the underlying process is
stochastic, there will be a degree of random variability in the observed z;

values — essentially z; could be thought of as an expected ‘true’ value plus
some random noise — so that z; = T(x;) + E;, where E; 1s a random quantity
with mean zero, and 7(x;) is a trend component. In these circumstances it 1s
more useful to estimate the 7(x;) than z;. Unfortunately, IDW interpolation

does not do this. The problem here is that since this method passes through
z; it 1s interpolating the noise in the data as well as the trend. This i1s

illustrated particularly well with perspective plots of the IDW
interpolations. The spikes seen in the IDW surfaces for both a =1 and o = 2
are a consequence of forcing the surface to go through random noise. The
following R code will create these plots (see Figure 6.20):

par (mfrow=c(1,;2),mar=c{0,0,2,0))

persp (predmat , box=FALSE)
persp (predmat?, box=FALSE)




Figure 6.20 Three-dimensional plots of IDW: (left) a = 1; (right) a =2

If multiple observations are taken at location x; then the interpolated value

here 1s the mean of the observed z values, which i1s a creditable estimator of
1(x;), but in most circumstances, only a single observation occurs at each

point, and some alternative approach to interpolation should be considered.
One possibility here is the use of kriging (Matheron, 1963). The theory
behind this approach is relatively complex (see, for example, Cressie
(1993)), but a brief outline will be given. For another practical overview of
the method, see Brunsdon (2009).

6.8.1 A Brief Introduction to Kriging

In kriging, the observed quantity z; is modelled to be the outcome of a
random process:

z. = f(x,)+v(x;)+&; (6.207)

where f(x;) 1s a deterministic trend function, v(x;) is a random function and
g; 1s a random error of observation. The deterministic trend function is

typical of the sorts of function often encountered in regression models - for
example, a planar or quadratic function of x — or often just a constant mean
value function. ¢; is a random variate, associated with the measurement or

sampling error at the point Xx;. ¢; 1s assumed to have a Gaussian distribution

with mean zero and variance ¢?. This is sometimes called the ‘nugget’
effect — kriging was initially applied in the area of mining and used to
estimate mineral concentration. However, although this was modelled as a
continuous quantity, in reality minerals such as gold occur in small nuggets
- and exploratory mining samples taken at certain locations would be
subject to highly localised variability, depending on whether or not a nugget
was discovered. This effect may well be apparent in the fulmar sighting
data — an observatory flight at the right time and place may spot a flock of
birds, whereas one with a marginally different flight path, or slightly earlier
or later may miss this.



The final term is the random function o(x). This is perhaps the most
complex to explain. If you would like to gain some further insight into this
concept, read the next section. If, however, you are happy to take the
kriging approach on trust, you can skip this section.

6.8.2 Random Functions

Here, rather than a single random number, the entire function is random.

A simple example of a random function might be f(x) = a + bx, where a
and b are random numbers (say, independent Gaussian with mean zero and
variances ©:, @:). Since these functions are straight lines, one can think of
v(x) as a straight line with a random slope and intercept. For any given
value of x, one could ask what the expected value of v(x) is, and also what
its variance 1is.

It is possible to derive the mean value of v(x) for any value of x by noting
that

E{vix)) = E{a) + E(b)x (6.21)

and that since E(a) = E(b) = 0, E(v(x)) = 0. This implies that if a sample of
several random straight lines were generated in this way, taking their
average value would give something close to zero, regardless of x.
However, although the average value of v(x) may be close to zero, how
might its variance change with x? Since a and b are independent,

Yariuix)) Gg +x2r.rf (6.22)

Thus, variance of the expected value of v(x) increases with large absolute
values of x.

Finally, suppose the function was evaluated at two values of x, say x; and
X,. Then some similar, but more complex, working shows that the
correlation between v(x;) and v(x,) is

b

' (B.23)
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Table 6.1 Some semivariogram functions
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The idea here is that it is possible to define a correlation function that is
related to the initial random function. It is possible, in some cases, to
reverse this notion, and to define a random function in terms of the bivariate
correlation function. This idea is central to kriging and geostatistics. In this
case, however, a number of extensions to the above idea are applied:

The function is defined for a vector x rather than a scalar x.

Stationarity: The correlation function depends only on the distance
between two vectors: say, p(|x; — X,|) = p(d) for some correlation

function p.

Typically the relationship is defined in terms of the variogram: y(d) =
25°(1 = p(d)).

The function ov(x) is not specified directly, but deduced by ‘working
backwards’ from y(d) and some observed data.

The last modification is really just convention — most practitioners of
kriging specify the relationship between points in this way, rather than as a
correlation or covariance. If the process is stationary, then

vid) ]EE[l:I; (3 ) - xz}]lz

(6.24)

and this can be empirically estimated from data by taking average values of
the squared difference of v(x;) and v(x,) where the distance between x; and

X, falls into a specified band.



Not all functional forms are valid semivariograms — however, a number
of functions that are valid are well known, such as those shown in Table
6.1.

In all of these functions, the degree of correlation between v(x;) and v(x,)

is assumed to reduce as distance increases. a and b are parameters
respectively controlling the scale of variance and the extent to which nearby
observations are correlated. For the Matérn semivariogram, x is an
additional shape parameter, and K, () is a modified Bessel function of order

k. If K = 1/2 this is equivalent to an exponential semivariogram, and as x —
o it approaches a Gaussian semivariogram.

6.8.3 Estimating the Semivariogram

As suggested earlier, equation (6.24) can be used as a way of estimating the
semivariogram. Essentially all pairwise point distances are grouped into
bands, and the average squared difference between o(x;) and o(x,) i1s

computed for each band. Then, for one of the semivariogram functions
listed above (or possibly another), a semivariogram curve is fitted — this
involves finding the values of a and b that best fit the banded average
squared differences described above. Note that for the Matérn case, x is
sampled at a small number of values, rather than finding a precise optimal
value.

Once this is done, although o(x) has not been explicitly calibrated, an
estimate of p(d) i1s now available. In the R package gstat the
semivariogram estimation procedure is carried out with the variogram
function. The boundaries argument specifies the distance bands to work
with. Here it is used with the fulmar data, and the boundaries are in steps of
5 km up to 250 km. The result of this is stored in evgm. Following the
calibration of the estimated semivariogram evgm, by grouped averaging as
described above, a semivariogram curve is fitted — in this case a Matérn
curve. The kind of curve to fit is specified in the vgm function. The
parameters are, in order, an estimate of a, a specification of the kind of
semivariogram (Mat is Matérn, Exp 1s exponential, Gau is Gaussian and Sph
is spherical). The next two parameters are b and «, respectively. Note that
the values provided here are initial guesses — the fit.variogram function



takes this specification and the evgm and calibrates the parameters to get a
best-fit semivariogram. The result is then plotted using the p1ot function
(see Figure 6.21).

evgm <-variogram{fulmar~1,fulmar.spdf,
youndaries=seq({0; 250000, 1=51}))
fvgm <-fit.variogram{evgm,vgm(3, "Mat"™, 100000,1))
1ot (evgm, mode 1=fvgm
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Figure 6.21 Kriging semivariogram

Once a semivariogram has been fitted it can be used to carry out the
interpolation. The fit.variogram function estimates the ‘nugget’ variance
discussed earlier, as well as the semivariogram parameters. Once this is
done, it 1s possible to carry out the interpolation: essentially if a set of z;

values are available at locations x; fori = 1, ..., n and an estimate of y(d) is

available, then f(x) and v(x) can be estimated for arbitrary x locations. Until
this point, the estimation of the trend f'(x) has not been considered, but it is
possible to estimate this (using more conventional regression approaches),
or, if the trend is just a constant value u, say, then the calibration of this
value, and the estimation of u + v(x) — essentially the interpolated value —
can be carried out simultaneously using a technique termed ordinary
kriging (see Wackernagel, 2003: 31, for example).

Operationally the interpolations are achieved by taking a weighted
combination of the z; values,. In matrix form, if w; 1s the weight applied to

z

» 1s an estimate of x, dj; is the distance between x; and x; and d; is the



distance between sample location x; and x, an arbitrary location at which it
is desired to carry out the interpolation, then

‘ 411
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However, users of gstat do not need to implement this, as it is made
available via the krige function. This works in much the same way as the
idw function, although the semivariogram model must also be supplied.
This is carried out below, followed by a drawing of the fulmar density
surface in the same way as before. An added bonus of kriging is that it is
possible to obtain variances of the interpolated estimates as well as the
estimate itself — these are derived from the statistical model — and stored in
varl.var, alongside var1.est. They are useful, as they give an indication
of the reliability of the estimates. Below, both the interpolated values and
their variances are computed and shown in contour plots (Figure 6.22).

kri

23t «<—-krige (fulmar~1,fulmar.spdf, newdata=s.grid,

[Tw]

model=fvgm)
predmat3 <-macrix({krig.estSvar

1.pred, length (ux) , length {uy) )

par (mar=c (0.1,0.1,0.1,0.1) mf:

(] [}

plot (fulmar.voro,.k

filled.contour (ux,

choro.legend (px

errmatd -

The plots show the interpolation and the variance. Note that on the
variance map, levels are lowest (and hence reliability is highest) near to the
transect flight paths — generally speaking, interpolations are at their most
reliable when they are close to the observation locations.
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Figure 6.22 Estimates of fulmar density (right), and associated variance
(left)

Finally, a perspective plot shows that although the interpolated surface is
still fairly rough, some of the ‘spikiness’ of the IDW surface has been
removed, as the surface 1s not forced to pass through all of the z; (Figure

6.23).

persp (predmat 3, box=FALSE)

Figure 6.23 Three-dimensional plot of kriging-based interpolation



Self-Test Question 2. Try fitting an exponential variogram to the fulmar
data, and creating the surface plot and maps. You may want to look at the
help for fit.variogram to find out how to specify alternative variogram
models.

6.9 CONCLUDING REMARKS

In this chapter, a number of techniques for analysing random patterns of
two-dimensional points (with associated measurements in the case of
interpolation), have been outlined. The key areas are first-order approaches
(where the probability density function for the process is assumed to vary,
and an attempt is made to estimate it) and second-order approaches (where
the dependency between the spatial distributions of points is considered —
this includes K-functions and related topics, as well as kriging). Although
the chapter does not cover all possible aspects of this, it should provide an
overview. As a further exercise, the reader may wish to investigate, for
example, H-functions (Hansen et al., 1999) and their implementation in
spatstat, or universal kriging (Wackernagel, 2003) where the deterministic
trend function is assumed to be something more complex than a constant, as
in ordinary kriging.

ANSWERS TO SELF-TEST QUESTIONS

Q1. The suggested map (Figure 6.24) could be achieved with the following
code:



breach.dens <- kde.points(breach, lims=tracts)

level.plot {breach.dens)
masker «<— poly.outer (breach.dens,tracts,extend=100)
add.masking (masker)

plot (tracts, add=TRUE)

plot (roads, col="grey",add=TRUE)

0D0BE 1162
Miles

Figure 6.24 KDE map for breaches of the peace, with roads and map scale

Q2. The exponential variogram model is specified using the "Exp"
argument in fit.variogram — the code to produce the variogram is given
below, and the result is shown in Figure 6.25. Following this, the same
procedures for producing a perspective plot or contour maps used in the
above example may also be applied here.

gm <- wvariogram(fulmar-~1,fulmar.spdf,
boundaries==zeqg(0,250000,1=51})
gm

,,,,,,

<— fit.wariogram(evgm,vgm{3, "Exp",100000,1})
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Figure 6.25 Kriging semivariogram (exponential model)
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1 A further stage in complication would be the situation where individual distributions are not
independent, but also the marginal distributions vary in intensity; however, this will not be

considered here.
2 See http://www.carsonfarmer.com/2009/09/voronoi-polygons-with-r/

3 It is not always possible to find a grid with exactly the right number of points


http://www.carsonfarmer.com/2009/09/voronoi-polygons-with-r/

7.1 INTRODUCTION

Spatially referenced observations are a kind of data that is very similar to an
ordinary dataset, for example a set of observations! {z, ..., z,}. The only
difference is that each observation is associated with some form of spatial
reference — typically a point or a polygon. Unlike the processes modelled in
point pattern analysis, the polygons or points are considered as fixed, non-
random entities. Here, the observations {z;, ..., z,} are the random
quantities. In one kind of frequently used model, the probability
distributions of the z; depend on their spatial references, and some other
parameters, which may need to be estimated from the data. For example, if
each observation z; is referenced by a spatial location (x; y;) then it may be
modelled by a normal distribution with variance o, and mean a + bx; + cy; —
thus the distribution of z; depends on the spatial location and the parameters
a, b, ¢c and o. A model of this kind is useful for modelling broad
geographical trends — for example, whether house prices to the east of a
state in the US tend to be lower or higher than those to the west. This
situation might be the case if the state is on the coast, and housing closer to
the coast generally fetches a higher price.

An alternative approach is to model the correlation between observations
z; and z; as dependent on their spatial references. For example, the variables
{zy, ..., z,} may have a multivariate normal distribution whose variance—

covariance matrix (giving the covariances between each pair of z-variables)
depends on the distances between points {(x{,1),..., (x,, ,,)}. Alternatively,



if the observations are associated with polygons rather than points (for
example, this would be the case if the zs were unemployment rates for
counties, with county boundaries expressed as polygons) then correlations
or covariances could be a function of the adjacency matrix of the polygons:
a 0—1 matrix indicating whether each polygon pair share any common
boundary. This can be the case where processes can be thought of as
random (unlike the fixed pattern due to proximity to the coast in the last
example) but still exhibiting spatial patterns — for example, the
measurement of crop yields, where groups of nearby fields may exhibit
similar values due to shared soil characteristics.

7.2 THE PENNSYLVANIA LUNG CANCER
DATA

In this section, the dataset that will be used in the first set of examples will
be introduced. This is a set of county-level lung cancer counts for 2002. The
counts are stratified in ethnicity (with rather broad categories 'white' and
'other'), gender, and age (‘'under 40', '40 to 59', '60 to 69' and 'over 70'). In
addition, a table of proportion of smokers per county is provided.
Population data were obtained from the 2000 decennial census, lung cancer
and smoking data were obtained from the Pennsylvania Department of
Health website.> All of these data are provided by the hhvhhspatialepi
package — so it will be necessary to install the package and its dependencies
before trying the code segments in this chapter. To do this from the
command line in R, ensure your computer is connected to the internet, and
that you have appropriate permissions, and then enter

install.packages{'SpatialEpi', depend

In conjuction with GIsTools, it is then possible to use this dataset — which
is stored in an object called pennrc. This is a list with a number of
components:

geo A table of county IDs, with longitudes latitudes of the geographic
centroid of each county



data A table of county IDs, number of cases, population subdivided by
race, gender and age

smoking A table of county IDs and proportion of smokers

spatial.polygon A SpatialPolygons object giving the boundaries of
each county in latitude and longtude (geographical coordinates)

Using the packages cIsTools and rgdal, for example, standard methods
may be used to produce a choropleth map of smoking uptake in
Pennsylvania. In the code below (all making use of techniques from earlier
chapters), the map of Pennsylvania is transformed from geographical
coordinates to UTM projection® for zone 17. Note this has EPSG reference
number* 3724, as is used in the spTransform function. Next a shading
object is created from the lung cancer rates (rescaled to percentages and
stored in smk). These are then used to create a choropleth map, and a
legend, as seen in Figure 7.1. Note that this is produced on a notional
window of 8 cm X 8 cm — you may have to resize the window or set
par (mar=c (0,0,0,0)) to ensure the legend is visible.

penn.state.latlo:n — pennLCSspatial.polyg
penn.state.utm <- spTransform{penn.state.latlong,
CES ("+init=epsg:3724 +units=km")}
smk <- pennLCSsmokingSsmoking * 1
shades =- aut E ( smk, n=}¢ ls=brewer.pal (3, "Bluess"})



This produces a basic choropleth map of smoking rates in Pennsylvania.
From this, it may be seen that these tend to show some degree of spatial
clustering — counties having higher rates of uptake are generally near to
other counties with higher rates of uptake, and similarly for lower rates of
uptake. This is quite a common occurrence — and this kind of spatial
clustering will be seen in the coming sections, for smoking rates, patterns in
death rates, and in the classes used in the stratification of the population.

7.3 A VISUAL EXPLORATION OF
AUTOCORRELATION

Smoking Uptake (% of popn.)
under 21
210 23
231025
26 o 27
over 27

BEBRODO

Figure 7.1 Pennsylvania smoking rates

An important descriptive statistic for spatially referenced attribute data —
and, in particular, measurement scale data — is spatial autocorrelation. In
Figure 7.1 it was seen that counties in Pennsylvania tended to have similar
smoking uptake rates to their neighbours. This is a way in which spatial
attribute data are sometimes different from other data, and it suggests that
models used for other data are not always appropriate. In particular, many
statistical tests and models are based on the assumption that each



observation in a set of measurements is distributed independently of the
others — so that in a set of observations {z;, ..., z,}, each z; is modelled as

being drawn from, say, a Gaussian distribution, with probability density
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where ¢ and o are respectively the population mean and standard deviation
of the distribution of the data. However, the distribution itself is not a key
issue here. More important is the assumption that for each z, the distribution

1s independent of the other observations {z;, ..., z; |, z;1, ..., Z,}, SO that the
joint distribution is

diz) _]-lf'ﬁ':‘:l' | u,a) (7.2)

where z denotes the vector (z;, ..., z,)’. The reason why this common

assumption is important here is that it is frequently untrue for spatial data.
Figure 7.1 suggests that it is unlikely that, say, two observations z; and z; are

independent, if i and j index adjacent counties in Pennsylvania. It seems
that a more realistic model would allow for some degree of correlation
between nearby observations. Correlation of this kind is referred to as
spatial autocorrelation. There are a number of ways in which spatial
autocorrelation can be modelled, but in this section visual exploration will
be considered.

We begin by scrutinising the claim that the image in Figure 7.1 really
does demonstrate correlation. This can be done via significance testing in
later sections, but here some useful visual approaches will be outlined. The
first of these is to compare the pattern seen in the map to a set of random
patterns, where the observed smoking rates are assigned randomly to
counties. Here, six maps are drawn, one based on the actual data and the
rest created using random permutations. These are drawn in a 3 x 2
rectangular grid arrangement. For the random part of this, the sampie
function is used. Given a single argument, which is a vector, this function
returns a random permutation of that argument. If there is a second integer
argument (n) which is less than the length of the first argument, it returns
just n randomly chosen elements, drawn without replacement. Thus, the
sample (1:6,1) expression in the following code block selects a number



from 1 to 6, and the expression sample (smk) returns a random permutation
of the smoking rates. Thus, there are two random elements in the code. Not
only are five of the six maps are based on random permutations, but also the
position in the figure of the actual data map is chosen at random. The idea
of this second randomisation is that not even the coder will know which of
the six maps represents the true data. If on inspection there is one clearly
different pattern — and it appears obvious which of the maps this is, then
there is strong visual evidence of autocorrelation.

par (mf =g (3,2} ,mar=c(1,1,1,1})S2)
real.data.i <- sample({l:&,1)
for (1 im 1:&)

if (i == real.data.i)

choropleth (penn.state.utm, amk, shades) }
elge {

choropleth (penn.state.utn, sample {3mk) , shades) }

Having drawn these maps (see Figure 7.2), an informal self-test is to
reveal which map is the real data:

real.data.i

£F [1] 4



Figure 7.2 Randomisation of smoking uptake rates

Note that the results here will not be identical to those you obtain, due to
the random nature of the process. One point it is worth making is that the
‘random’ maps do show some groups of similar neighbours — commonly
this is the case: the human eye tends to settle on regularities in maps, giving
a tendency to identify clusters, even when the data are generated by a
process without spatial clustering. This is why procedures such as the
previous one are necessary, to make visual cluster identification more
robust. This approach is a variant on that due to Wickham et al. (2010).

7.3.1 Neighbours and Lagged Mean Plots

An alternative visual approach is to compare the value in each county with
the average values of its neighbours. This can be achieved via the
lag.listw function in the spdep library. This library provides a number of
tools for handling data with spatial referencing, particularly data that are
attributes of spatialPolygons such as the Pennsylvania data here. A lagged



mean plot can be generated if we have a list of which counties each county
has as neighbours. Neighbours can be defined in several ways, but a
common definition is that a pair of counties (or other polygons in different
examples) who share some part of their boundaries are neighbours. If this is
the queen s case definition, then even a pair of counties meeting at a single
corner point are considered neighbours. The more restrictive rooks case
requires that the common boundary must be a linear feature. This is
illustrated in Figure 7.3.

Zone 1

Zona 3
Zona 2

Figure 7.3 Rook’s case and queen’s case neighbours: zones 1 and 2 are
neighbours only under queen’s case; zone pairs 1,3 and 2,3 are neighbours
under both cases.

Neighbour lists of either case can be extracted using the poly2nb function
in spdep. These are stored in an nb object — basically a list of neighbouring
polygons for each polygon.

require {spdep)

penn.state.nb <- polyZnb(penn.state.utm)
penn.state.nb

$# Neighbour list object:

t# MNumber of regions: &7

4 MNumber of nonzerc links: 346

$$# Percentage nonzero weights: 7.708

$# Average number of links: 5.1%4



As seen in the block above, printing out an nb object lists various
characterstics, such as the average number of neighbours each polygon has
— 1in this case 5.164. Note that in the default situation, queen’s case
neighbours are computed. To compute the rook’s case, the optional
argument queen=rFALSE 1S added to poly2nb.

It is also possible to plot an nb object — this represents neighbours as a
network (see Figure 7.4):

Figure 7.4 Depiction of neighbouring counties of Pennsylvania as a
network (queen’s case).

plot (penn.state.utm, border="1lightgrey')
plot (penn.state.nb, coordinates (penn.state.utm),
add=TRUE, col="red')

Note that, to plot this network, node locations are also required. These
are the second argument to the piot command for an nb object. Here,
coordinates (penn.state.utm) provides the label points for the
Pennsylvania counties, in UTM coordinates. Finally, the plots are also

useful to compare the rook’s case to the queen’s case neighbourhoods (see
Figure 7.5):



penn.state.nb2 <- polyZnb(penn.state.utm, quesen=FALSE}

plot (penn.state.utm, border="'1lightgrey")

i
plet (penn.state.nb, coordinates (penn.state.utm),
add=TRUE, col="blue" , lwd=2)

plot (penn.state.nbZ, coordinates {penn.state.utm),
add=TRUE, col="yellow")

Figure 7.5 Comparison of neighbouring counties of Pennsylvania (rook’s
VS. queen’s case).

Here the queen’s case only neighbours are apparent (these are the blue links
on the network) — there are eight of these. For now, we will work with
rook’s case neighbours. The next stage is to consider the lagged mean plot —
as discussed above, this 1s a plot of the value of z; for each polygon 7 against

the mean of the z-values for the neighbours of polygon i. If J; is the set of
indices of the neighbours of polygon 7, and | J;| is the number of elements in
this set, then this mean (denoted as %) is defined by

1

y —2:
L Y [
Jed

(7.3)

Thus, the lagged mean is a weighted combination of values of the
neighbours. In this case, the weights are the same within each neighbour
list, but in some cases they may differ (for example, if weighting were
inversely related to distance between polygon centres). In spdep another



kind of object — 1istw — is used to store a list of neighbours, together with
their weights. A 1istw object can be created from an nb object using the
nb21listw function in spdep:

onvert the neighbour list te a listw ob
peEnn.stace.lw <- nkZlistw{penn.state.nbkz)
penn.state.lw

$# Characteristics of weights list object:
$# Neighbour list obhject:

¥ Number of regions: &7

$%# Humber of nonzerc links: 330
$# Percentage nonzero weights: 7.351
$#% Average number of links: 4.82

0

4

## Weights styvle: W

## Weights constants summary:
## n nn S0 51 s2
## W &7 4489 67 Z2B.T74 274.6

As a default, this function creates weights as given in equation (7.3) — this
is the 'wWeights style: w' in the printout above. Other possible
approaches to weights are possible — use 2nb2listw if you wish to
investigate this further. Having obtained a [listw object, the function
lag.listw computes a spatially lagged mean (i.e. a vector of = values) —
here, these are calculated, and then mapped (see Figure 7.6):

Figure 7.6 Lagged means of smoking uptake rates



amk.lagged.means <- lag.listwi{penn.state.lw, smk)
choropleth (penn.state.utm, smk. lagged.means, shades)

Finally, a lagged mean plot is produced — as described this is a scatter plot
of z; against %. Here the line x = y is added to the plot as a point of
reference. The idea is that when nearby polygons tend to have similar z;
values, there should be a linear trend in the plots. However, if each z; is
independent, then z; will be uncorrelated to % and the plots will show no

pattern. Below, code is given to produce the plot shown in Figure 7.7:

plot (smk, smk.lagged.means, asp=1, xlim~range (smk) , ylim=range
(smk) )

abline (a=0,kb=1)

abline {(v=mean (smk) , 1ty=2)

abline (h=mean (smk.lagged.m=ans), 1tv=2)

Figure 7.7 Lagged mean plot for smoking uptake — alternative method.

The abline (a=0,b=1) command adds the line x = y to the plot. The two
following abline commands add dotted horizontal and vertical lines
through the mean values of the variables. The fact that more points lie in the
bottom left and upper right quadrants created by the two lines suggests that



there 1s some degree of positive association between z; and % — this means
generally that when z; is above average, so is %, and when one is below
average, so 1s the other.

Note that this procedure is also termed a Moran plot or Moran scatterplot
— see Anselin (1995, 1996). In fact there 1s a function that combines the
above steps, and adds some functionality, called moran.plot. However,
working through the steps is helpful in demonstrating the ways in which
spdep handles neighbour-based data. Below, the moran.plot approach is
demonstrated:

moran.plot (smk, penn.state. 1w)

In addition to the code earlier, and as shown in Figure 7.8, this approach
also identifies points with a high influence in providing a best-fit line to the
plot — see, for example, Belsley et al. (1980) or Cook and Weisberg (1982).

Self-Test Question. One further modification of this approach is based on
the observation that although the permutation approach does simulate no
spatial influence on correlation, observations are in fact correlated — since
the randomised data are a permutation of the actual data, the fact that z; gets

assigned one particular value implies that no other variables can take this
value.> An alternative simulation would assign values to counties based on
sampling with replacement. In this case we are no longer conditioning on
the exact set of observed uptake rates, but on an empirical estimate of the
cumulative distribution function of the data, assuming that observations are
independent. Modify the above code to carry out this alternative approach.
Hint: use the help facility to find the optional arguments to the sample
function.
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Figure 7.8 Lagged mean plot for smoking uptake — alternative method

7.4 MORAN’S I : AN INDEX OF
AUTOCORRELATION

In this section, the exploratory approaches of Section 7.3 will be taken a
step further. As stated earlier, autocorrelation is the tendency of z; values of

nearby polygons to be related. Rather like the Pearson correlation
coefficient, which measures the dependency between a pair of variables,
there are also coefficients (or indices) to measure autocorrelation. One that
1s very commonly used is the Moran s I coefficient (Moran, 1950), defined
by

1 ZIZJ’: J:_I'I;.ZI' _Z—}(Zj -I)

I (7 4)
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where w;; is the (i, j)th element of a weights matrix W, specifying the

degree of dependency between polygons j and j. As before, this could be a
neighbour indicator, so that w;; = 1 if polygons i and j are neighbours and

Wy = 0 otherwise, or the rows of the matrix could be standardised to sum to



1, in which case Wz is the vector of lagged means % as defined in Section
7.3.

You may have noticed that the matrix W contains the same information
as the 1istw objects discussed earlier. This is certainly true, but the
latter stores information in quite a different, and usually more compact,
way. The 1istw object notes, for each polygon, a list of its neighbours
and their associated weights. For the polygon’s non-neighbours,
nothing needs to be stored. On the other hand, the W matrix has n x n
elements. Each row of W contains information for all n» polygons —
although for many of them, w;; = 0. Computation using the matrix form

in R 1s generally less efficient — for example, although Wz is the vector
of spatially lagged means, computing it directly as w $*¢ z would
result in several numbers being multiplied by zero, and these resultant
zeros being added up. If there are a lot of polygons, and typically they
have, say, four or five neighbours, then the matrix format would also
have a much higher storage overhead — and much of this would be
filled with zeros.

Given the computational advantages of 1istw, why consider
matrices? There are two important reasons. First, when considering the
algebraic properties of quantities like Moran’s /, matrix expressions are
easy to manipulate. Second, although it is mostly the case that the
listw form is more compact, it does store two items of data for every
neighbour — the index of the neighbouring polygon, and the associated
weight. Thus, if neighbours were defined in a very permissive way, so
that W had few zero elements, the storage overheads might exceed that
for standard matrices. A matrix with no zeros requires n? items of
information, but the 1listw form requires 2n. In this situation,
calculations would also take longer. This is also true when the result of
a computation has few zeros even if the supplied input does, as is the
case in matrix inversion, for example.




It is also worth noting that, if W is standardised so that its rows sum to 1,
then ZZ;w; =#, In this case, equation (7.4) simplifies to

EJ'Ej-"""|'_|"-ir1"'-ir_|'
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where 7.==- 7; that 1s, g; 1s z; recentred around the mean value of z. If the

I

vector of g;s 1s written as q then equation (7.5) may be written in vector—
matrix form as

=4 :_‘“‘ (7.6)
qq

It may be checked that if the g;s are plotted in a lagged mean plot — as in

Figure 7.8 or 7.7, and a regression line is fitted, then 7 is the slope of this
line. This helps to interpret the coefficient. Larger values of / suggest that
there is a stronger relationship between nearby z; values. Furthermore, /

may be negative in some circumstances — suggesting that there can be a
degree of inverse correlation between nearby z; values, giving a

checkerboard pattern on the map. For example, a company may choose to
site a chain of stores to be spread evenly across the state, so that occurrence
of a store in one county may imply that there is no store in a neighbouring
county.

7.4.1 Moran’s /in R

The package spdep provides functions to evaluate Moran’s / for a given
dataset and W matrix. As noted in the earlier information box, it is
sometimes more effective to store the W matrix in 1istw form — and this is
done for the computation of Moran’s / here. The function used to compute
Moran’s [ is called moran.test —and can be used as below:



moran.test (smk, penn. state.lw)

4

## Moran's I test under randomisation

4

34 data ami

#%4 weights: penn.state.lw

4

## Moranm I statiatic standard deviate = 5.418, p-value =
3.022e-08

## alternative hypotheais: greater

#% zample estimates:

## Moranm I statistic Expectation Variance

B 0.404431 =0.015152 0.005%98

The above code supplies more than the actual Moran’s / estimate itself — but
for now note that the value is about 0.404 for the Pennsylvania smoking
uptake data.

This is fine, but one problem is deciding whether the above value of [ is
sufficiently high to suggest that an autocorrelated process model is a
plausible alternative to an assumption that the smoking uptake rates are
independent. There are two issues here:

1. Is this value of I a relatively large level on an absolute scale?

2. How likely is the observed / value, or a larger value, to be obversed if
the rates were independent?

The first of these is a benchmarking problem. Like correlation, Moran’s / is
a dimensionless property — so that, for example, with a given set of
polygons and associated W matrix, area-normalised rates of rainfall would
have the same Moran’s [ regardless of whether rainfall was measured in
millimetres or inches. However, while correlation is always restricted to lie
within the range [—1, 1] — making, say a value of 0.8 reasonably easy to
interpret — the range of Moran’s [ varies with the W matrix. This may be
computed — see de Jong et al. (1984). For the W matrix here, / can range
between —0.579 and 1.020. Thus on an absolute scale the reported value
suggests a reasonable degree of spatial autocorrelation.




The maximum and minimum values of 7 are shown (in de Jong et al.,
1984) to be the maximum and minimum values of the eigenvalues of
(W + WT)/2. If you do not know what an eigenvalue is, do not worry
too much. However, if you would like to find out, it is generally
discussed in introductory textbooks on linear algebra, such as Marcus
and Minc (1988). An R function to find the maximum and minimum /
values from a 1istw object is defined below. 1istw2mat converts a
listw object to a matrix.

moran.range <— [function|lw)

wmat «<— llistw2mat (1w)

return (range (elgen({ (wmat + t(wmat))/Z2)Svalues))
1

moran.range (¢

enn.state.
## [1] -0.578¢ 1.0202

The second issue is essentially a classical statistical inference problem.
Assuming a null hypothesis of no spatial autocorrelation, what is the
probability of obtaining a sample Moran’s / as extreme as (or more extreme
than) the observed one? This probability is the p-value for the hypothesis of
no spatial autocorrelation.

However, the null hypothesis statement 'mo spatial autocorrelation' is
quite broad, and two more specific hypotheses will be considered here. The
first 1s the assumption that each z; is drawn from an independent Gaussian

distribution, with mean x4 and variance o,. Under this assumption, it can be
shown that / is approximately normally distributed with mean E(/) = —1/(n
— 1). The variance of this distribution is quite complex — readers interested
in seeing the formula could consult, for example, Fotheringham et al.
(2000). If the variance is denoted V,,,(/) then the test statistic is
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This will be approximately normally distributed with mean 0 and variance
1, so that p-values may be obtained by comparison with the standard normal
distribution.



The other form of the test is a more formal working of the randomisation
idea set out in Section 7.3. In this case, no assumption is made about the
distribution of the z; — but it is assumed that any permutation of the z;

against the polygons is equally likely. Thus, the null hypothesis is still one
of 'no spatial pattern', but it is conditional on the observed data. Under this
hypothesis, it is also possible to compute the mean and variance of /. As
before, the expected value if 7 1s E(/) = —1/(n — 1); the formula for the
variance is different from that for the normality assumption, but also
complex — again the formula is given in Fotheringham et al. (2000). If this
variance 1s denoted by V,,,4(/) then the test statistic 1s
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(7.8)

In this case, the distribution of the text statistic in expression (7.8) is also
close to the normal distribution — and the quantity in this expression can
also be compared to the normal distribution with mean 0 and variance 1 to
obtain p-values. Both kinds of test are available in R via the moran.test
function shown earlier. As noted earlier, as well as Moran’s [/ statistic itself,
this function prints out some further information. In particular, looking
again at this output, it can be seen that the expectation, variance and test
statistic for Moran’s / statistic is output (the test statistic 1s labelled 'Moran /
statistic standard deviate'), as well as the associated p-value. As a default,
the output refers to the randomised hypotheses — that is, V., 4(/) is used.

Thus, looking at the output from moran.test (smk,penn.state.lw) again,
it can be seen that there is strong evidence to reject the randomisation null
hypothesis in favour of an alternative hypothesis of 7 > 0 for the smoking
uptake rates.

The argument randomisation allows the normal distribution assumption,
and hence V), to be used instead:

moran.test (smk, penn.state. 1w, randomisation=FALSE)

F#



$F# Moran's I test under normality

$F data: smk

$$ weights: penn.state.lw

3

¥# Moran I statistic standard deviate = 5.449, p-valus =
2.53e-08

tf =sample =stimates:
% Moran I statistic Expectation Variance
3 0.404431 -0.015152 (.00582%9

From this, it can be seen that there is also strong evidence to reject the null
hypothesis of the z; being independently normally distributed, again in

favour of an alternative that / > 0.

7.4.2 A Simulation-Based Approach

The previous tests approximate the test statistic by a normal distribution
with mean 0 and variance 1. However, this distribution is asymptotic — that
is, as n increases, the actual distribution of the test statistic gets closer to the
normal distribution. The rate at which this happens is affected by the
arrangement of the polygons — essentially, in some cases, the value of n for
which a normal approximation is reasonable is lower than for others (Cliff
and Ord, 1973, 1981).

For this reason, it may be reasonable to employ a simulation-based
approach here, instead of using a theoretical, but approximate approach. In
this approach — which applies to the permutation-based hypothesis — a
number of random permutations (say, 10,000) of the data are drawn, and
assigned to polygons, using the samp1e function in R, as in Section 7.3. For
each randomly drawn permutation, Moran’s / is computed. This provides a
simulated sample of draws of Moran’s / from the randomisation null
hypothesis. The true Moran’s [ is then computed from the data. If the null
hypothesis is true, then the probability of drawing the observed data is the
same as any other permutation of the z; among the polygons. Thus, if m just

the number if simulated Moran’s I values exceeding the observed one, and

M 1s the total number of simulations, then the probability of getting the
observed Moran’s [ or a greater one is



(7.9)

This methodology is due to Hope (1968). The function moran.mc in spdep
allows this to be computed:

moran.me (smk, penn.state. 1w, 10000)

4

E Monte-Carlo simulation of Moran's T

F#

## data: amk

% weights: penn.state.lw

## number of simulatioms + 1: 10001

F#

¥4 statistic = 0.4044, ckasrved rank = 10001, p-valus =
§.599%-05

$#% alternative hypothesis: greater

Note that the third argument provides the number of simulations. Once
again, there is evidence to reject the null hypothesis that any permutation of
z; 1s equally likely in favour of the alternative that / > 0.

7.5 SPATIAL AUTOREGRESSION

Moran’s I, which has been discussed in the previous sections, can be
thought of as a measure of spatial autocorrelation. However, up to this point
no consideration has been given to a model of a spatially autocorrelated
process. In this section, two spatial models will be considered — these are
termed spatial autoregressive models. Essentially they regress the z; value
for any given polygon on values of z; for neighbouring polygons. The two
models that will be considered are the simultaneous autoregressive (SAR)
and conditional autoregressive (CAR) models. In each case, the models can
also be thought of as multivariate distributions for z, with the variance—
covariance matrix being dependent on the W matrix considered earlier.
The SAR model may be specified as

z. u+—§hU[zI—u}+rI (7.10)
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where ¢; has a Gaussian distribution with mean 0 and variance o (often
o; =<* for all i, so that the variance of ¢; is constant across zones), E(z;) = u
and b;; are constants, with b; = 0 and usually b;; = 0 if polygon 7 is not
adjacent to polygon j — thus, one possibility is that b;; is Aw; Here, 1 is a
paramater specifying the degree of spatial dependence. When A = 0 there is
no dependence; when it is positive, positive autocorrelation exists; and
when it is negative, negative correlation exists. u is an overall level constant

(as it 1s in a standard normal distribution model). If the rows of W are
normalised to sum to 1, then the deviation from u for z; is dependent on the

deviation from u for the z; values for its neighbours.
The CAR model is specified by
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where, in addition to the above definitions, N (.,.) denotes a normal
distribution with the usual mean and variance parameters, % 1is the
conditional variance of z; given {z; : j # i} and c;; are constants such that c;

= 0 and, as with b;; in the SAR model, typically ¢;; = 0 if polygon i/ is not
adjacent to polygon j. Again, a common model is to set ¢; = Aw;; ¢ and 4

have similar interpretations to the SAR model. A detailed discussion in
Cressie (1991) refers to the matrices B = [b;; ] and C = [¢;; ] as 'spatial

dependence' matrices. Note that this model can be expressed as a
multivariate normal distribution in z as

=~ N(ul{I-C)'T) (712)

where 1 is a column vector of Is (of size n) and T is a diagonal matrix
composed of the z; — see Besag (1974), for example. Note that this suggests

that the matrix (I — C)”'T must be symmetrical.® If the W matrix is row-
normalised, and the ¢;; = Aw;; model is used, then this implies that 7; must be

proportional to [5;c, ] .

7.6 CALIBRATING SPATIAL REGRESSION
MODELS IN R



The SAR model may be calibrated using the spautoim function from spdep.
This uses the notation also used in the 1m function — and related functions —
to specify models. In the next section, the SAR and CAR models will be
expanded to consider further predictor variables, rather than just
neighbouring values of z;, However, for now the basic model may be

specified by using the notation for a linear model with just a constant term
for the mean of the predicted variable — this is u in equation (7.11) or
(7.10). This is simply var.Name ~ 1, with var.Name replaced with the
actual variable name of interest (for example, smk in the smoking rate
examples used in previous sections). A further parameter, family, specifies
whether an SAR or a CAR model is fitted. The function returns a regression
model object — among other things, this allows the values of coefficients,
fitted values and so on to be extracted. An example of use is as follows:

sar.res <— sgpautolm(smk~1,listw=penn.state.lw)

3ar.res

¥+ Call:

## spautolm(formula = smk ~ 1, listw = penn.state.lw)

##f Coefficients:
## (Intercept) lamizda

:!:;t >3 ThAS 0.m179

## Log likelihood: -142.9

From this it can be seen that 4 = 0.618 and u = 23.769, to 3 decimal places.
While the estimate for u is easily interpretable, deciding where the reported
level of 4 is of importance is harder. One possibility is to find the standard
error of 4 — this is reported as the 1ambda.se component of the spatial
autoregression object:

An approximate 5% confidence interval can be found in the standard way —
by finding a band given by the estimate of 4 plus or minus twice the


http://var.name/
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standard error:

sar.resflambda + o(-Z,2) *sar.resflambda.se

$# [1] 0.3919 0.8440

As before, this suggests that a null hypothesis of 4 = 0 is highly unlikely.

It is also possible to calibrate CAR models in the same way, and
similarly obtain an approximate confidence interval for A. This is
achieved — in our example — via the fami 1y parameter to spautolm:

car.res <— gpautolm(smk~1,listw—penn.state.lw,

family="CRR")

car.res

However, at the time of writing, the help document for this function
points out:

the function does not (yet) prevent asymmetric spatial weights
being used with 'CAR' family models. It appears that both
numerical issues (convergence in particular) and uncertainties
about the exact spatial weights matrix used make it difficult to
reproduce ... results,

Experimentation with the above code suggests similar convergence
1ssues occur here, hence attention will be focused on SAR model for
the R examples.

7.6.1 Models with Predictors: A Bivariate
Example



Both the CAR and SAR models can be modified to include predictor
variables as well as incorporate autocorrelation effects. This 1s achieved by
replacing a constant x4 by an observation-specific u; for each z;, where y; 1s

some function of a predictor variable (say, P;). If the relationship between y;
and P; is linear, we can write, for the SAR case:

n F % :
z; =dy+a P+ '}_I‘-U | z;—ay —aF; :I +E (7.13)

i P}

where a and a; are effectively intercept and slope terms in a regression

model. The key difference between this kind of model and a standard
ordinary least squares (OLS) model is that for the OLS case the z; values are

assumed to be independent, whereas here nearby z; values influence z; as

well as the predictor variable.

Calibrating models such as that in equation (7.13) in R is straigh forward,
and involves including predictor variables in the model argument for
spautolm. In the following example, a new data item, the per-county lung
cancer rate for Pennsylvania in 2002, is computed and used as the z;

variable. This time the role of the smoking uptake variable is changed to
that of the predictor variable, P,. This is acheived via a two-stage process:

Compute the per-county lung cancer rates

Compute the regression model

For stage 1, the p1yr package is used to manipulate the data. Recall that
pennLC 1s a list, and one of the elements (called data) is a data frame giving
the counts of population, and lung cancer incidence, for each county in
Pennsylvania subdivided by race (‘white’ or ‘other’), gender (‘male’ or
‘female’) and age (‘under 40°, ‘40 to 59°, ‘60 to 69°, and ‘over 70’). The
format of the data frame uses a county column and three substrata columns
— together specifying a combination of county, age, gender and ethnicity.
Two further columns then specify the count of cases for that county—
substrata combination, and also the overall population for the same county—
substrata combination:



head (pennl.CEdata)

if county casss population race gender age
t+ 1 adams 0 1452 o f Under.4d
t¥ 2 adams 0 365 o £ 470.54%
t¥ 3 adams 1 3] a f 60.85
$% 4 adams 1] 73 s f T+
¥ 5 adams H 23351 W B Under.40
$¥ 6 adams 5 1213¢ i i 40.59

For example, it may be seen that Adams County has O incidents of lung
cancer for non-white’ females under 40 out of a total population of 1492
female non-white people under 40 in Adams County. Using the plyr
package, it is possible to create a data frame showing the total number of
cases over all combinations of age, race and gender for each county:

require (plyr)

totcasss <- ddply (pennlLCidata,c ("county"), numcolwise (sum) )

plyr is a very powerful package very much worth reading more about
— see Wickham (2011). It applies a split—apply—combine approach to
data manipulation. A number of functions are supplied to apply this
approach for various formats of variable. Here, ddply is used. A
dataset is supplied, penniCc$data, and one of the factor (or character)
column names is given (county) in this example. The data frame is
split into a list of smaller data frames, one for each value of the county
variable. Next, a function is applied to each of these data frames,
giving a list of transformed data frames — quite often the new data
frame is a smaller one, often having only one row consisting of
summary statistics (or sums or counts) for some selected rows of the
data frames arising from the split. Finally, the list of transformed data
frames is combined by row-wise stacking to create a new data frame.
Hence split-apply—combine.




In the code above, the function applied to a subset data frame for each
county is created via numcolwise (sum). This transforms the basic sum
function, which applies to vectors, to a new function which sums all
numeric columns in a data frame, yielding a one-row data frame with sums
of numeric columns. Here these columns are the number of incidents of
lung cancer, and the population. After applying this function to each subset
of the data, the countywise totals for lung cancer incidents and populations
are recombined to give a data frame with county name, county total lung
cancer cases, and county total population — in the data frame totcases:

head (totcases)

## COUncy cases population
% 1 adams 5 91292
F Z alleghen 275 1281666
= % 3 armstrong 45 72382
F 4 beaver 172 181412
F 5 bedford 37 495684
3 & berks 308 3736348

The expression numcolwise(sum) may look a little strange.
numcolwise 1S a function, but, unusually, it takes another function as its
input, and returns yet another function as output. The input function is
assumed to apply to standard R numerical vectors — it is modified by
numcolwise to produce a new function that applies the input function
to data frames on a row-by-row basis, and returns a single row data
frame of the results. Note that since in this example sum is the input
function, it is only valid for numerical data columns. The numcolwise
column allows for this, and the modified function only returns entries
in the output data frame for numerical columns. Although it would not
make much sense in this example, functions like mean and median
could also be used as inputs to numcolwise — or indeed user-defined
numeric functions.

In the example the output function is then fed into ddp1y to provide
the apply stage function in the split-apply—combine procedure.




Having created a data frame of county-based lung cancer incident and
population counts, the cancer rates per 10,000 population are computed.
These are added as a new column to the totcases data frame:

totcases <- transform{totcases,rate=10000%cases/

population)

Thus, totcases now has three columns, and is ready to provide input to the
regression model — below this variable is inspected (using head) and a box-
and-whisker plot drawn in Figure 7.9:

head (totcases)

H
i

i

% county cases population T
3 1 acdams 55 91292 6.025
3 2 allegheny 1275 1261666 9.948
: £ 3 Arm3crong 44 72352 6.7689
- 4 beaver 172 1g1412 9.481
## 5 bedford 37 49334 T7.402
4 g berks 308 373636 8.243
boxplot (totcasesfrate, horizontal=TRUE,
xlab="Cancer Rate (Cases per 10,000 Popn.) ")
Q |— —————— -—— [+ [+
4 B a 10 12

Cancer Rate (Cases per 10,000 Population}

Figure 7.9 Boxplot of cancer rates, Pennsylvania, 2002

It 1s now possible to calibrate the spatial regression model. As stated
earlier, the z; variable here is related to the cancer rate, and the predictor is

smoking uptake. Note that in this case an additional weighting variable is



added, based on the population variable, and also that z; is actually the

square root of the cancer rate. This allows for the fact that the random
variable here is actually the count of cancer cases — and that this is possibly
a Poisson distributed variable — since the square root transform can stabilise
the variance of Poisson count data (Bartlett, 1936). Since the square root
rate 1s essentially

fiﬁ%ﬁﬁﬁﬂ;{ (7.14)
and population is assumed a fixed quantity, the numerator above will have
an approximately fixed variance and be reasonably approximated by a
normal distribution. Dividing this by the square root of population then
makes the variance inversely proportional to the population. Hence,
weighting by population is also appropriate here. Taking these facts into
account, the SAR model may be calibrated and assessed:

sar.mod <- spautolm{rate-~agrt (smk),listw=penn.

=]
reight=population, data=totcases)

summary (Sar.mod)



3

$$ Call:

$# spautolm{formula = rate ~ sgrt(smk), data = totcases,
listw = penn.state.lw,

$$# weights = population)

3

¥%¥ Residuals:

£F Min 1Q Median 30 Max

¥%# -5.451E3 -1.10235 -0.3154% 0.5%9%01 5.00115

==

t§ Coefficients:

- % Eatimate 5td. Error z wvalue Pr(>|z|)

% (Intercept) -0.352&3 2.26T795 -0.15 BE7E4

$# =sgrtismk) 1.80876 0.46064 3.92B8 8.537e-05

£3

$$# Lambda: 0.3806 LE test walue: 6.312 p-value: 0.0115%

$# Numsrical Hessian standard error of lambda: 0.139B

3

$# Log likelihood: -123.3

$# ML residual wvariance (sigma sguared): 209030,

{sigma: 457.2)

I,

¥F Number of observations: &7
$F Number of parameters sstimated: 4

$% ATIC: 254.86

The ‘coefficients’ section in the output may be interpreted in a similar way
to a standard regression model. From this it can be seen that the rate of
smoking does influence the rate of occurrence of lung cancer, or at least that
there is evidence to reject a null hypothesis that it does not effect cancer
rates, with p = 8.537 x 107>, The 'lambda' section provides a p-value for the
null hypothesis that A = 0 — that is, that there is a degree of spatial
autocorrelation in the cancer rates. Here, p = 0.01199, so that at the 5%
level there is evidence to reject the null hypothesis, although the strength of
evidence just falls short of the 1% level.

Thus, the analysis here suggests that smoking is linked to lung cancer,
but that lung cancer rates are spatially autocorrelated. This is possibly
because other factors that influence lung cancer (possibly age, or risk
associated with occupation) are geographically clustered. Since these
factors are not included in the model, information about their spatial
arrangement might be inferred via nearby occurrence of lung cancer.

7.6.2 Further Issues



The above analysis gave a reasonable insight into the occurrence of lung
cancer in Pennsylvania as a spatial process. However, a number of
approximations were made. A more exact model could have been achieved
if a direct Poisson model had been used, rather than using an approximation
via square roots. Indeed, if an independent z; model were required, where

the z; were case counts, then a straighforward Poisson regression via gim

could have achieved this. However, a Poisson model with an autocorrelated
error term is less straightforward. One approach might be to use a Bayesian
Markov chain Monte Carlo approach for this kind of model — see Wolpert
and Ickstadt (1998) for an example. In R, this type of approach can be
achieved using the rJags package.®

7.6.3 Troubleshooting Spatial Regression

In this section, a set of the issues with spatial models based on W matrices
will be explored. These issues are identified in Wall (2004). The issues
identify certain strange characteristics in some spatial models — and
possibly interactive exploration via R is an important way of identifying
whether these issues affect a particular study. For this exercise you will look
at the Columbus crime data supplied with the spdep package.” Typing in the
following will load the shapefile of neighbourhoods in Columbus, Ohio,
and create a map (Figure 7.10):

columbus <- readShapePoly |
system.file ("etc/shapesa/columbus. shp",
ckage="spdep™) [1])
plot (columbus, col = "wheat")
text (coordinates (columbus), asg.character(l:4%), csx = 0.8)

bt e Tl S e S e R
box (which = Mouter™, lwd = Z2)

This dataset has been used in a number of studies. For each
neighbourhood, a number of attributes are provided, including 'average
house price', 'burglary rate' and 'average income’. However, here these will
not be considered, as the focus will be on the correlation structure implied
by the W matrix. Here, a queen’s case matrix is extracted from the data.



The adjacency plays an important role in a SAR model. Recall there are
also several options in terms of specifying the definition of polygon
adjacency — in particular the rook’s case and queen’s case. Both of these can
be computed from columbus, which 1s a SpatialPolygonsDataFrame
object.

col.queen.nb <- poly2nb{columbus, queen=TRUE)
col.guesen.nb

$## MNeighbour list object

$## HNumber of regions: 48

## Number of nonzero links: 236

$## Percentage nonzero weighta: ©.829
$## Lverage numbsr of links: 4.81¢6

col.rook.nb <- poly2nb(columbus, quesn=FALSE)

$## Neighbour list object:

$# Number of regions: 48

$# Number of nonzero links: 200

$# Percentage nonzero weighta: §5.33
$# LAverage numbsr of links: 4.082



The two variables col.queen.nb and col.rook.nb respectively contain the

adjacency information for the queen’s and rook’s case adjacency. It can be

seen that the queen’s case has 36 more adjacencies than the rook’s case.
Wall (2004) and others demonstrate that for the SAR model with a

constant o2 term,

Var(z) = (I - AW)~! [(1 —awy! ] a2 (7.15)

provided (I — AW) is invertible. Thus, as stated before, the spatial
autoregressive model is essentially a regression model with non-
independent error terms, unless 4 = 0 in which case it is equivalent to a
model with independent observations. The variance—covariance matrix is
therefore a function of the variables W, o2 and A. Without loss of generality,
we can assume that Y is scaled so that ¢®> = 1. Then, for any given definition
of adjacency for the study area, it is possible to investigate the correlation
structure for various values of . In R, the following defines a function to
compute a variance—covariance matrix from 4 and W. Here, the adjacency
object is used (rather than supplying a W matrix), but this contains the same
information.

covmat <— function (lambda,adi) {
solve (Corosaprod{diag({lengthiad]j) ) — lambda¥®
listwZ2mat (nb2listwi(adj)})})

The tcrossprod function takes a matrix X and returns XXT. The function
solve finds the inverse of a matrix. This can also be used as the basis for
finding the correlation matrix (rather than the variance—covariance matrix):

cormat <- function{lambda,adi) |
covaZcor (covmat (lambda,adj))

We can now examine the relationship between, say, the correlation between
zones 41 and 47, and 4 — the plot created is shown in Figure 7.11.



lambda.range <- s2q(-1.3,0.9%9,1=101)

cor.41.47 = ambda . range®

for (1 in 1:101) ecor.41.47[1 — gpormat {
lambda.range[1i],col.rock.nb) [41,47]

plot (lambda.ranqge,cor.41.47,type="1")

This seems reasonable — larger values of A lead to higher correlation
between the zones, 4 = 0 implies no correlation, and the sign of 4 implies
the sign of the correlation. However, now consider the same curve, but
between zones 40 and 41 (see Figure 7.12).

plet (lambda.range,cor.41.47, cype="1", xlab=expressicon
{(lambda) , vlab="Correlation’,lty=2)
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Figure 7.11 Relationship between A and the correlation between zones 40
and 41



cor.40.41 <- lambda.range¥%0

for (i im 1:101) cor.40.41[i] <- cormat{
lambda.range[i] ,col.rook.nb) [40,41]

lineas (lambda.ranges, cor.40.41)

Here, something strange is happening. When A drops below around —0.5
the correlation between zones 40 and 41 begins to increase, and at a point at
around —0.7 it becomes positive again. This is somewhat counter-intuitive,
particularly as A is often referred to as an indicator of spatial association.
For example, Ord (1975) states that w;; 'represents the degree of possible

interaction of location j on location i’. Although initially for positive A the
correlation between zones 40 and 41 is less than that for zones 41 and 47,
when A exceeds around 0.5 the situation is reversed (although this is a less
pronounced effect than the sign change noted earlier). A useful diagnostic
plot is a parametric curve of the two correlations, with parameter 4 (see
Figure 7.13):
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Figure 7.12 Relationship between 4 and the correlation between zones 41
and 47

We term this a Battenburg'® plot. Tracing along this line from top right
shows the relationship between the two correlations as A decreases from its
maximum value. The dotted line is the x = y reference point — whenever the
curve crosses this, the values of the two correlations change order. Perhaps
the key feature is that the curve 'doubles back' on itself — so that for some
ranges of 4 one of the correlations increases while the other decreases. The
quadrants are also important — if a curve enters one of the pink quadrants,
this suggests that one of the correlations is positive while the other is
negative. Again this is perhaps counter-intuitive, given the interpretation of
A as a measure of spatial association. Note in this case after the 'doubling
back' of the curve it does enter the pink quadrant.
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Figure 7.13 Parametric plot of correlations between two polygon pairs
(40,41) and (41,47)

A selection of 100 random pairs of correlations (chosen so that each pair
has one zone in common) can be drawn (see Figure 7.14). This seems to
suggest that 'doubling back' and curves going inside the pink quadrants are
not uncommon problems. In addition, for positive A values, there is a fair
deal of variation in the values of correlation for given /4 values. In addition,
the variability is not consistent, so that the order of values of correlation
changes frequently.

Plot ({1, 1) ;e {-1,1);type="n" ,, xlim=c{=1, ¥}, ylim=c {-1,.1],
wr T =1 [ .=|:_.__._: i

oy i B R i P [ ='pink"', er=HA

reak {12, -1 o2 0,1 ="lightyellow', er=HA)

rect (0, 0,12, 1.2 col="1lightyellow' r =NL



abline {z=0,b=1, 1ty=3)

set.seed (310712)

for {f im 1:Il0d) {

rl <- sample{l:length (col.rook.nb) .1}
r2 <- sample{col.rock.nbf[[rli]],2)
cor.ijl <- lambda.range®(
cor.ij2 <- lambda.range®0
for {(k im 1:101)
cor.ijl[E] <- cormat (lambda.rangelk],
col.roock.nb) [rl1.72[1]]
for {k In 1:101)
cor.ij2[k] — cormat {lambda.range [k],

col.ropk.mb) [F1,r2[2]]
lines{cor.ijl,cor.ij2)

1.0 4
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Figure 7.14 Parametric plots of 100 sampled correlations

This shows a pattern very similar to those seen in Wall (2004).
Essentially, for negative 4 values, some correlations become positive while
others remain negative. The ordering can also change as 4 changes, as noted
earlier, so that some adjacent zones are more correlated than others for
certain 4 values, but this situation can alter. Finally, some adjacent zone
pairs experience a sign change for negative values of 4, while others do not.



The aim of this section has been in part to highlight the issues in Wall
(2004), but also to suggest some visual techniques in R that could be used
to explore these — and identify situations in which the counter-intuitive
behaviour seen here may be occurring. As a general rule, the authors have
found this not to happen a great deal when working with zones based on a
regular grid, but that the problems seen here occur quite often for irregular
lattices. This provides empirical back-up to the more theoretical arguments
of Besag and Kooperberg (1995) for CAR models.

ANSWER TO SELF-TEST QUESTION

The following code will apply the modified approach asked for in the
question:

real.data.i <- sample(l:&,1)

for {1 im 1:6% o
if (i == real.data.i) f{
choropleth (penn.state.utm, amk, shades) }
elas |
choropleth (penn.state.utm, sample (snk, replace=TRUE) ,
shades) }



Figure 7.15 Bootstrap randomisation of smoking uptake rates

The only difference between this and the previous code block is the
inclusion of the optional parameter replace=TRUE in the sample function,
which tells the function to return » random samples from the list of smoking
take-up rates with replacement. This is essentially the technique to simulate
the drawing of random samples used by Efron (1979) to carry out the
bootstrap approach to non-parametric estimations of standard error. Thus,
here it is referred to as 'bootstrap randomisation’.
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8.1 INTRODUCTION

In the previous chapters, a number of models of spatial processes have been
used to analyse data. One characteristic of many of the models used was an
assumption of homegeneity in the way that spatial data interacted. For
example, K-functions and related ideas model the interdependence between
points, in terms of the distance between them — K-functions themselves
model the number of points one might encounter within a radius » from a
particular point. However, a general assumption is that these relations
depend only on relative distance. Thus, the expected number of points
within a circle of radius » centred around a point at location x will depend
only on the value of » and not on x. Similarly, in the SAR models
considered in the previous chapter, the coefficient 4 specified the degree to
which an attribute at polygon i depended on the values of nearby polygons.
However, 4 takes the same value for all polygons — suggesting again that
the degree of spatial interdependency is the same regardless of location.
This has an effect on the kind of hypothesis testing that may take place.
For example, in the previous chapter, the hypothesis that 4 = 0 was tested —
and in the examples given it was rejected at the 5% level. This tells us that
there is spatial dependency in the process under investigation (in the
example, rates of smoking) — but of itself it supplies no inference as to
where high or low levels occur geographically, or whether the dependency
occurs in some regions but not in others.! In this chapter, a number of
approaches that attempt to highlight geographical variation in spatial
processes will be introduced. Two key ideas here are index decomposition,
in which indices such as Moran’s [ are decomposed according to the



contribution of data from each locality to identify local effects, and moving
window approaches, where data will be analysed in a moving circular
window, to identify variation in relationships within the data over space.

8.2 SETTING UP THE DATA USED IN THIS
CHAPTER

The main dataset used in this chapter will be the North Carolina sudden
infant death syndrome (SIDS) data, appearing in Getis and Ord (1992). The
data are supplied with the spdep package. The package supplies this as a
shapefile, and readshapePoly is used to read it in. Initially, the shapefile is
supplied in geographical (i.e. latitude and longitude) coordinates. However,
some of the examples in this chapter will require distances between county
centroids and so a projected coordinate system should be used. Here the
geodetic parameters with ID 2264 from the European Petroleum Survey
Group (EPSQG) are used — with units expressed in miles. The code to carry
out this operations follows. The map (in projected coordinates) is shown in
Figure 8.1.

regquire {(maptools)

require {spdep)
require (rgdal)
nc.sids «<- readShapePoly(
system.file ("etc/shapes/sids.shp",
package="aspdep™) [1],
ID="FIPSHO",
roj4string=CRS ("+proj=longlat +ellps=clrkee™))
nc.sids.p <— splransforminc.sids, CEBS ("+init=epsg: 2264
tunits=mi")
plot (nc.3ids.p)
lines (c{4 480,530, 53l (25,20,20, 25
ext (505,1 'S0 Mileg"®



Figure 8.1 North Carolina county map

The last two commands add a scale to the map. Note that the coordinates
are specified to be in miles, hence the base line of the scale bar runs from
480 to 530. This scale bar will recur in several maps. One of the advantages
of R is that it is a programming language — and so the scale bar commands
can be made into a function, to simplify the drawing of the scale bar in
other maps in this chapter:

add.scale <- functi
lines{c (480,480,530

et (EE [} W
text (oUa, 12,

8.3 LOCAL INDICATORS OF SPATIAL
ASSOCIATION

Recalling that the purpose of this chapter is to consider localised forms of
spatial data analysis, Anselin (1995) proposed the idea of local indicators of
spatial association (LISAs). He states two requirements for a LISA:

The LISA for each observation gives an indication of the extent of
significant spatial clustering of similar values around that observation:

The sum of LISAs for all observations is proportional to a global
indicator of spatial association.

It should be possible to apply a statistical test to the LISA for each
observation, and thus test whether the local contribution to clustering
around observation i is significantly different from zero. This provides a



framework for identifying localities where there is a significant degree of
spatial clustering (or repulsion). A good initial example of a LISA may be
derived from the Moran’s 7 index. Recall that this is defined by

L T, T I S = T ==
H L Wil Zp "‘}[‘_I' -z)

I

8.1)
T'T-EL‘-- "'_-I'Z-—E}z i i

] it 1 T |

where z; is a measurement associated with polygon 7; and wy; is a binary

indicator as to whether polygons i and j are neighbours, taking the value 0 if
L, : :

they are not, and the value 77 if they are, with |J; being the number of

polygon neighbours that polygon i has. This expression can be written as
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where

I;=(z;- E]T_.w[i-[z_,- -7)
]

(8.3)
Noting that a(zz, -2 [zkz_,-wkf,.T' does not depend on i, so that for a given set
of z; it may be regarded as a constant, we have

I = const. = E,I,- (8.4)
I

so that /i i1s a LISA. As previously, writing 4;=z;-% — so that the gi are mean
centred values,we can write

WA, (8.5)

so that /i is the product of g; and the mean of the g; values for the
neighbours of polygon i. If both ¢; and the average value of g; for polygon

i’s neighbours are all above average, this quantity will be large, indicating a
cluster of above average values focused on polygon i. This is also the case
if polygon i and its neighbours all have values below average. Thus, it can
be seen that /i is a local measure of clustering (either above or below the
average value). Also, if the signs of ¢; and X, W;q; differ, and J; is a large
negative value, this suggests that a local 'repulsion’ effect may be occurring,
where neighbouring values take opposite extremes. Finally, if the
magnitude of /; is not particularly large (for either positive or negative



values) this suggests that there is little evidence for either clustering or
repulsion.

For each [i, a significance test may be carried out against a hypothesis of
no spatial association. Anselin (1995) provides formulae for the sampling
mean and variance of /i given a randomisation hypothesis as discussed in
the previous chapter (essentially this assumes that any permutation of z;

values among polygons is equally likely), and from these, the quantity

I; —E[I;]

- (8.6)
Var[L.['?

may be used as a test statistic. The R function localmoran In spdep
computes /i values, given a set of z; values and a 1istw object providing

neighbour weighting information for the polygons associated with the z;.
This function returns a matrix of values whose columns are:

1. the local Moran’s [ statistic — /;

E(Zi) under the randomisation hypothesis

2
3. Var(Z;) under the randomisation hypothesis
4. the test statistic from equation (8.6)

5

the p-value of the above statistic, assuming an approximate normal
distribution

The following code computes the SIDS rates for 1979 per 1000 births, then
computes the local Moran’s / and then produces a map (Figure 8.2) — here
the basic /; values are plotted.



nc.lw <- nb2listw(polyZnb(nc.sids.p))

3idsT78 «<- 1000*nc.sids.p$S5ID7%/nc.sids.pS5BIRTY

nc.ll <- localmoran{sids79,nc.lw)
gids.shade <- auto.shading(c{nc.lI[,1];-nc.1I[,1]),
colas=brewer.pal (5; "PRGL") )

choro.legend(120.3,54.9,81ds.shade, fmt="%6.21f™)

title ("Sudden Infant Death Syndrome (Local Moran's I)",
cex.main=2

add.=scale ()

Sudden Infant Death Syndrome {Local Moran's [}

B under 018 |
] 048 to —0.04

—0dto 0.04
[ Ot 042 S0 Miles
[ =] over 018

Figure 8.2 Standardised local Moran’s /-values

The auto.shading(c(nc.1I[,5],-nc.1I[,5]),..) command in the
previous code block perhaps needs some explanation. The aim here is
to create a set of shading categories that are symmetric about zero. The
legend in Figure 8.2 shows that this has happened. This works because,
for a vector x, the expression c (x, -x) returns a symmetrical list, in the

sense that if x; € X then —x; € X. This ensures that computing

regular quantiles will also lead to a symmetric set of values — and the
default for auto.shading returns regular quantiles as shading interval
boundaries. Note that although this creates shading categories that run




from -max (abs (x)) to max (abs (x)), the values of x may not fall into
all of these categories. The idea of using categories that are
symmetrical about zero is in part to identify whether positive and
negative values of x are equally balanced.

The map shows there is some evidence for both positive and negative /i
values. However, it is useful to consider the p-values for each of these
values, as considered above. These are mapped below. In this case a manual
shading scheme (i.e. one in which the shading intervals are specified
directly) is used, based on conventional 'critical' p-values. The code below
produces this (see Figure 8.3).

pval.shade <-— shading (001, 15 al
cols=revi{brewer.pal (4, "PuRd"
choropleth (ne.sids.p,nc.1T[, 5] ! ng=pval.shade)
choro.legend {120.3,54.9,pval.shade, fmt="%&£.2f")
title ("Sudden Infant Death Syndrome (Local p-walue) "
CeX.main=2=)
add.scale ()

The use of rev in the above code chunk reverses the items in a list. In
this case, it reverses the colours in the Brewer palette purd. The palette
runs from purple to red — starting with a light purple and progressing to
a dark red. All of the Brewer palettes from the RColorBrewer package
run from light to dark. Normally this is useful, with the darker colours
corresponding to higher attribute values on a choropleth map.
However, for p-values the 'strongest' effects are associated with low
values, and so a palette running from dark to light is appropriate —
hence the use of rev.
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Figure 8.3 Local Moran’s I p-values

Figure 8.3 shows a number of places where the p-value is notably low (for
example, Washington County), suggesting the possibility of a cluster of
either high or low values. Inspecting the actual rate for Washington (which
1s zero) suggests there may be a cluster of very low rates here. Another
region where the p-value is low is Scotland County — although in this case
the rate is very high — suggesting a cluster of higher values here.

Self-Test Question. Verify the significance figures above by selecting and
listing the counties for which p < 0.05. To help identify locations, the
identify function can be used. At the R prompt, enter

identify(coordinates (nc.sids.p), labels=nc.sids.pS$SNAME)

and then click on locations of interest. When you have selected all of these,
press the Escape key. This should result in the names of the counties in
which you have clicked appearing on the map.

8.4 FURTHER ISSUES WITH THE ABOVE
ANALYSIS

The above analysis shows a way in which notable counties — or possibly
clusters of neighbouring counties (in terms of their SIDS rates) can be
identified via mapping the p-values of local Moran’s [ statistics. However,
there are two notable difficulties with using this approach in an unmodified
form. These are:



Multiple hypothesis testing

Assuming that the /; are normally distributed

Although these can be thought of as specific issues for this particular study,
many are relevant in the general case. It is therefore useful to consider these
in turn.

8.4.1 Multiple Hypothesis Testing

In the previous study, there were 100 counties. Using the categories of
shading for the map in Figure 8.3, it may be seen that nine counties have p
<0.05. However, if it is proposed to carry out testing at the 5% level, and if
the null hypothesis is true, then the probability of obtaining a false positive
result (i.e. a significant value of /; when in fact the null hypothesis — of

randomisation — is true) is 0.05. Thus, even if no spatial process is
occurring, we can expect to obtain 100 x 0.05 = 5 counties flagged as
'significant’. Thus, even when no effect is present, this approach can
generate several false positives. One way this could be dealt with is by
comparing the number of significant results observed in the data to the
binomial distribution — but ultimately this loses sight of the main objective
of the local Moran’s I approach, since it then just provides a 'whole-study-
area' test of whether a spatial process occurs, rather than considering
specific localities. If that is all that is required, there is no advantage in the
suggested approach over a test based on the standard Moran’s /.

However, the advertised advantage of a LISA-based approach is its
ability to identify where clustering is occurring, not just whether it occurs.
The problem happens because often the method is required to answer both
of these questions. If the 'false positive rate' — the probability of detecting a
significant /; if the null hypothesis were true — were zero, then any

significant /; would imply with certainty that clustering does occur. But the

false positive rate is not zero — and given that inconvenient fact, one useful
approach is to determine the probability of falsely stating that clustering
exists on the basis of finding one or more significant /;. The individual p-

values, and associated tests, apply to individual counties. Assuming the
tests are applied independently, and each has a false positive probability p,



then the probability of not getting a false positive is 1 — p for each county.
If there are n counties, then the probability of getting no false positives is (1
— p)", and therefore the probability of getting one or more false positives

when looking at all counties denoted by p*, is the complement of this, so
that

p'=1-(1-p) (8.7)

Thus, p* can be regarded as a p-value for the ensemble of tests on each
county — and as a false positive rate for a general test of a 'no clustering'
null hypothesis. A further simplification may be made by noting that for
small p,

.r;:; np (5.8)

Now, if it were desired to find the individual county p-value required to
give a specified overall p*-value, equation (8.7) can be rearranged to give

P J—(J—p*]’-' (8.9)

or using the approximation above,

7
P il

- (8.10)
Here, n = 100 and so if a p*-value of 0.05 is required, R can be used as a
desk calculator to obtain the countywise p:

Thus, to make the overall chance of falsely rejecting the null hypothesis of
no clustering anywhere equal to 0.05, individual counties should be tested
against a p-value of approximately 5 x 107*. The approach using the
approximation in equations (8.8) and (8.10) is known as the Bonferroni p-
value adjustment (see Sidak, 1967, for example). In R, instead of the
'desktop calculator' approach set out above, the function p.adjustmay be
used. This takes a slightly different approach — instead of adjusting the
threshold for countywise p-values to be significant, it adjusts the p-values



themselves, so they may be compared to the critical value of p* required.
Thus to apply the test above, using p.adjust (pvals,
method="'bonferroni') on a set of countywise p-values returns a set of
adjusted countywise p-values that may be compared against the critical

value for p*. Using this approach, anomalous localities can be identified,
but the overall probability of any false positives is controlled. For example,
comparing adjusted county p-values against 0.05 will provide a test where
the overall chance of erroneously rejecting the overall hypothesis of no
spatial pattern is 0.05.

This idea may now be used to provide a map of adjusted local Moran’s /
p-values for the SIDS data analysed earlier (see Figure 8.4).

choropleth (nic.sids.p,

n

p-adjust{nc.1I[, 5],
method="bonferroni'),

shading=pwval.shade)

choro.legend({120.3,54.9,pval.shade, fmt="%6.2I™)

title ("Sudden Infant Death Syndrome (Bonferroni Adjusted
p—valus)} ",
cex.main=2)

add.scale ()

Sudden Infant Death Syndrome (Bonferroni Adjusted p-value)

Figure 8.4 Local Moran’s / Bonferroni adjusted p-values



This reveals that there is in fact a significant pattern (some counties are still
significant even after p-values are adjusted), and that it is the pattern around
Washington County that contributes notably to the departure from an
aspatial process. Interestingly, it is a group of very low rates that is detected
here.

A slightly different approach to explaining the idea of p * is to note that
the probability of erroneously rejecting a null hypothesis of no spatial
association is equivalent to the probability of erroneously rejecting the
smallest p-value of all of the counties. Assuming the same threshold is
applied to all tests, if the smallest p-value falls below this threshold,
this 1s equivalent to the event that at least one county is erroneously
flagged as significant. Noting that typically one is testing with a one-
tailed (upper-tail) alternative hypothesis, so that large I, values relate to

small p-values, an alternative way to compute adjusted p-values is to
compare local standardised Moran’s I against the distribution of the
largest of n standard normal variates.

8.4.2 Issues with the Bonferroni Approach

The Bonferroni approach is very helpful if a major concern is falsely
identifying even one false case — as is the case in a situation where a single
counter-example from several tests is considered notable. However, in some
other situations, alternative approaches may be more appropriate. Permeger
(1998) cites a number of issues with Bonferroni corrections. One of
particular note is related to Type Il errors. Until now this chapter has
focused on so-called Type I errors — these occur when falsely rejecting a
true null hypothesis. Type Il errors occur when a null hypothesis is true, but
the testing procedure fails to reject it. As Permeger states, "Type I errors
cannot decrease ... without inflating type II errors ... And type II errors are
no less false than type I errors.’



An inconvenient side effect of using the Bonferroni procedure — which
places tight control on overall Type II error — is that it reduces the power of
the test to detect anomalies. A number of alternative procedures exist which
have a greater chance of detecting genuine anomalies, albeit with more
chance of obtaining false positive results. However, one notable alternative
approach, due to Holm (1979), guarantees a false positive rate no higher
than the Bonferroni procedure — but always has a lower Type II error. The
procedure is set out below:

1. Sort the basic p-values, labelling them PP~ P! where ppp is the
lowest value, and py,,; the highest.

g

Apply the adjustment p’;;= 1-(1-pp;))” to pyy; (or use the approximate

form)

3. Apply the adjustment p’ ;= 1—(1—]9[2])’”"1 to ppy; (or use the approximate
form)

4. Continue in this way so that p,,;= 1-(1-p[m])”"””’+1 form=2,...,n (or

use the approximate form)

5. If ais the overall maximum acceptable Type I error, reject the null
hypothesis for all p;;;<a

The logic behind this approach is to note that, for the Bonferroni
procedure, if £ of the counties (or more generally polygons) are
genuinely anomalous then the false positive rate is overestimated using
the standard Bonferroni adjustment. In this situation there is only a
need to adjust for n — k£ multiple tests rather than »n. This is because the
remaining k tests actually take place where the null hypothesis is false,
so any significant results are frue positives, rather than false positives.
Thus, if one accepts the possibility that there may be some genuine
departures from the null hypothesis in the data, then the Bonferroni
adjustment 1s conservative — that is, it provides an upper limit to the
Type 1 error, but does not specify it exactly. Since it is not known




which k tests are associated with genuine anomalies, or indeed the
value of k, all that the previous discussion demonstrates is the
conservatism of Bonferroni’s procedure. The Holm adjustment is also
conservative, but notes that if the smallest p-value py;, is associated

with an observation for which the null hypothesis is true, then
adjusting for n multiple tests will ensure the upper limit of a for the
Type I error applies, regardless of the outcome of tests for the other p-
values. However, suppose the lowest p-value is associated with one of
the k tests where there really is an anomaly; then the outcome of the
test does not affect the false positive rate. In this case we consider the
remaining n — 1 p-values. We can apply the previous arguments to this
reduced dataset, and in particular consider the smallest remaining p-
value, pp;. In this case, again the Bonferroni adjustment can be

applied, but this time with just » — 1 multiple tests, not n. Repeatedly
applying the same logic, pp3; can be corrected with n — 2 multiple tests,

and so on. This description rather loosely demonstrates the justification
for Holm’s procedure. Note that apart from p[1], the Holm adjusted
values lead to a greater range of values for which locations would be
flagged as significant than those associated with the Bonferroni
method. However, both methods have the same upper limit for the
Type I error — this implies that there is a greater chance of detecting an
I; value that 1s genuinely anomalous with the Holm approach.

The Holm adjustment may be used in R via the p.adjust function again,
this time using the argument method="holm'. Thus, a revised map (Figure
8.5) of adjusted p-values may be obtained by the following code:



cols=rev (brewer.pal (4, "PuRd®
choropleth (nc.s8ids.p,
p.adjust{nc.1I[,5];
method="holm'),
] =pval.shade)
.9, pval.shade, fmt="%c.2L")
Death S5Svyvndroms (Holm Adjusted

o h
AR R
RSy

DA

Bl under 0.01

00110 0.05 v

[ 005t 040 e
1 over 040 _ 50 Miles

Figure 8.5 Local Moran’s / Holm adjusted p-values

In fact, in this instance it is still the same areas that are highlighted — this
may seem a little disappointing, but it can at least be stated that this version
of the procedure had a greater chance of detecting other anomalies, had they
been present.

It is perhaps also worth noting that for the local Moran’s / there are two
further reasons for conservatism — the calculations for adjustments are
based on the assumption that each test is independent. In fact, due to the

fact that /; depends not only z; but also on z; values for neighbours, there is

in fact positive correlation between tests focussed on polygon pairs where
the polygons share one or more neighbours. In fact Siddk (1967)
demonstrates that where the individual test results are correlated the
Bonferroni adjusted p-values still provide a conservative test — although it is
no longer exact. This is also the case for the Holm procedure. The second
reason for conservatism is the use of the approximation in equations (8.8)



and (8.10) — it may be seen that the approximate adjusted p-value is always
higher than the exact one.

8.4.3 The False Discovery Rate

An entirely different approach to multiple testing is based on the work of
Benjamini and Hochberg (1995), which introduces the concept of the false
discovery rate (FDR). Instead of considering Type I error as the quantity to
control, they suggest controlling for the proportion of tests flagged as
significant that are false alarms. For this proportion, the denominator is
actually the number of flagged tests, rather than the number of tests for
which the null hypothesis is true, as it is for the Type I error. They provide a
stepwise testing procedure, similar to Holm’s procedure. Given a desired
FDR level (denoted FDR here):

1. Sort the p-values into an ordered list firFizr=Pm’ as with Holm’s
procedure

2. Find the largest integer & such that g, _fx FDR

3. Declare as significant all results forj=1, ..., k

Computing the FDR adjustment is R is also via p.adjust, this time with the
argument method="'£fdr":

pval.shade <- shadinp 01, 5,.0.1)
ls=rewv{brewer.pal (4, "FuRd")
ropleth (nc.s8ids.p,
p.adjuscinc.1I[, 5],
method="fdr"),
shading=pwval.shade)

horo.legend(120.3,54.9, pval.shade, fmt="%6c.2f")
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