

Universidade de São Paulo - USP

Faculdade de Zootecnia e Engenharia de Alimentos - FZEA ZEB0562 Cálculo Numérico

Exercícios de fixação - Tópico 02: Introdução ao MS Excel

NOTA: Nesta e nas próximas listas, realize os cálculos numéricos com o auxílio do MS Excel (ou ambiente similar).

- 1. Considere novamente a expressão 0.36443/(17.862 17.798) analisada no exercício 2 da lista 1. Avalie tal expressão e manipule (via botão **Diminuir Casas Decimais**) somente a quantidade de decimais a ser apresentada no resultado numérico: (a) 4 casas, (b) 3 casas, (c) 2 casas, (d) 1 casa.
- 2. Considere as aproximações (a) 22/7 e (b) 355/113 ao número π (exercício 3, lista 1). Admitindo que a função PI() (do MS Excel) forneça um valor "exato", avalie os erros absolutos e relativos associados a cada aproximação acima, apresentando cada erro com 3 algarismos significativos.
- 3. Usando 4 casas decimais, avalie as funções (com a menor quantidade possível de parênteses!):

$$f_1(x) = \frac{1}{0.45(x-1)} + \ln(0.35x) - 1$$
 , $f_2(x) = x\left(-1 + \frac{1}{x-2}\right)$, $f_3(x) = \sqrt{1 + 3\sqrt{x}}$

em x = -1, x = 0, x = 1 e x = 2. Por que alguns valores não puderam ser calculados?

4. A viscosidade é a propriedade física que caracteriza a resistência de um fluido ao escoamento. Em geral, é uma função da temperatura cujo efeito pode ser correlacionado através de equações empíricas como, por exemplo, a equação de Sutherland para a viscosidade de gases, a saber:

$$\mu(T) = \frac{CT^{3/2}}{T + S}$$

em que μ é a viscosidade (dita, dinâmica), T é a temperatura absoluta do gás, C e S são duas constantes empíricas cujos valores dependem do gás em questão. Para temperaturas entre 0°C e 100°C (variando de 20°C em 20°C), avalie a viscosidade dinâmica do ar para o qual tem-se: $S = 110.4 \text{ K e } C = 1.458 \times 10^{-6} \text{ kg/(m·s·K}^{1/2})$. No caso, a viscosidade μ é avaliada em kg/(m·s).

5. Insira e avalie no MS Excel as seguintes expressões algébricas: $(a) = 0 - 2^2$, $(b) = 0 - 2^2$, $(c) = -2^2$ e $(d) = -2^2$. Interprete os resultados numéricos obtidos.

Respostas de exercícios selecionados

- 1. (a) 5.6942, (b) 5.694, (c) 5.69, (d) 5.7
- 2. (a) erro absoluto: -1.26×10^{-3} , erro relativo: -4.02×10^{-4} (b) erro absoluto: -2.67×10^{-7} , erro relativo: -8.49×10^{-8}

X	f ₁ (x)	f ₂ (x)	f ₃ (x)
-1	#NÚM!	1.3333	#NÚM!
0	#NÚM!	0.0000	1.0000
1	#DIV/0!	-2.0000	2.0000
2	0.8655	#DIV/0!	2.2897

5. (a) -4, (b) -4, (c) -4, (d) 4

Gás	S (K)	C (kg m ⁻¹ s ⁻¹ K ^{-1/2})
AR	110.4	1.458E-06
T (°C)	T (K)	$\mu (kg m^{-1} s^{-1})$
0	273.15	1.716E-05
20	293.15	1.813E-05
40	313.15	1.908E-05
60	333.15	1.999E-05
80	353.15	2.087E-05
100	373.15	2.173E-05