Introdução ao Biomagnetismo

Oswaldo Baffa Filho Departamento de Física-FFCLRP Universidade São Paulo Aula # 7 MEG

Esse material se destina a uso interno e educacional e não deve ser compartilhado. Fica proibida a sua distribuição sob qualquer forma, assim como a postagem em redes sociais, em sites da internet, e equivalentes.

Vista do cérebro- lado esquerdo

Córtex somatosensorial (S1) e motor (M1)

AG

Métodos não invasivos para localizar a atividade neuronal: fMRI, EEG e MEG

Arquitetura Celular \rightarrow Fontes

Exploring the Brain

Fontes do MEG e EEG (http://www.ctf.com/)

Magnetoencefalografia (MEG)

Campo Magnético de um Dipolo de Corrente

V

 $B_{z} = \frac{\mu_{0}Q}{4\pi d^{2}} \frac{x}{\left(1 + x^{2} + y^{2}\right)^{3/2}}$

X

Ζ

Campo Magnético de um Dipolo de Corrente

Campo <B_z> no eixo x para um magnetometro

Campo médio **B** registrado ao longo Da direção **X** para uma bobina de raio a e uma fonte localizada a uma profundidade **d**

Campo $\langle B_z \rangle$ no eixo x para um gradiometro de 2^a ordem

Distorção do EEG por Diferenças de Condutividade Elétrica

Detecção das Fontes de MEG (http://www.ctf.com/)

Cálculo das Fontes de MEG

Medidas de MEG - Dor

AG

Sinais evocados - estímulo elétrico

AG

Imagem Multimodal A fonte de corrente é superposta à imagem de RM

Omega 151 and Omega 275 http://www.ctf.com/

Arranjo dos Sensores

Neuromagnetometro 300 canais

Sistema no interior de uma sala magneticamente blindada

Campos Evocados

Interpretação dos Dados

resposta normal a um estímulo auditivo nos dois ouvidos

Magnes II – Sistema Bti

Sensor Dual Magnes II, Bti - 2 x 37 Canais

Montado no Interior de uma Câmara Magneticamente Blindada

25

Vista da Cidade Virtual

Densidade do Espectro de Potência

- Densidade do Espectro de Potência
 - Rejeição de Artefatos
 Piscar os Olhos
 Coração
 - FFT Janelada:
 - Tipo : Hanning
 - Resolução
 - Aprox. 1 Sec.Sobreposição
 - Nenhuma

Banda Teta (4 - 7 Hz)

Ajuste de Dipolos

dipolos foram localizados próximo do giro temporal superior em estruturas profundas em ambos hemisférios

Localização - MSI

- Modelo de um único Dipolo
- Densidade de Dipolos
 - Filtro Gaussiano
 - Kernel Resolução de 2 mm
- Principais Regiões
 - Giro Temporal Superior
 - Estruturas Temporais Mediais

Imagem de RM com a Localização de Atividade Elétrica

Imagens mostrando a matriz de magnetômetro de campo zero QuSpin montada no couro cabeludo de um participante.

Fonte: The University of Nottingham OPM-MEG group are funded by the Wellcome Trust and the Engineering and Physical Sciences Research Council UK. 32

Resultados da primeira experiência de 50 canais

Fonte: The University of Nottingham OPM-MEG group are funded by the Wellcome Trust and the Engineering and Physical Sciences Research Council UK.

MEG versus Outras Técnicas

