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Abstract
Background  Reductions in muscle size and strength occur with aging. These changes can be mitigated by participation in 
resistance training. At present, it is unknown if sex contributes to differences in adaptation to resistance training in older 
adults.
Objective  The aim of this systematic review was to determine if sex differences are apparent in adaptations to resistance 
training in older adults.
Design  Systematic review with meta-analysis.
Data Sources  Web of Science; Science Direct; SPORTDiscus; CINAHL; and MEDLINE were searched from inception to 
June 2020.
Eligibility Criteria  Studies where males and females older than 50 years of age performed identical resistance training inter-
ventions and had outcome measures of muscle strength or size.
Results  We initially screened 5337 studies. 30 studies (with 41 comparison groups) were included in our review (1410 partici-
pants; 651 males, 759 females). Mean study quality was 14.7/29 on a modified Downs and Black checklist, considered moder-
ate quality. Females gained more relative lower-body strength than males (g = − 0.21 [95% CI − 0.33, − 0.10], p = 0.0003) but 
there were no differences in relative change for upper-body strength (g = − 0.29 [95% CI − 0.62, 0.04], p = 0.08) or relative 
muscle size (g = 0.10 [95% CI − 0.04, 0.23], p = 0.16). Males gained more absolute upper-body strength (g = 0.48 [95% CI 
0.09, 0.88], p = 0.016), absolute lower-body strength (g = 0.33 [95% CI 0.19, 0.47], p < 0.0001), and absolute muscle size 
(g = 0.45 [95% CI 0.23, 0.66], p < 0.0001).
Conclusion  Our results indicate that sex differences in adaptations to resistance training are apparent in older adults. However, 
it is evident that the interpretation of sex-dependent adaptations to resistance training is heavily influenced by the presenta-
tion of the results in either an absolute or relative context.
Study Registration  Open Science Framework (osf.io/afn3y/).
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Key Points 

Following resistance training, older males gain more 
absolute upper and lower-body strength than older 
females.

Older females gain more relative lower-body strength 
than older males.

Older males gain more absolute muscle size than older 
females.

There are no sex differences in changes in relative mus-
cle size or upper-body strength in older adults.

Older males may benefit from higher intensity programs, 
whereas older females may benefit from higher weekly 
repetitions (volume).

1  Introduction

Reductions in muscle size, strength and function (physi-
cal performance) along with changes in fiber type occur 
with aging [1], with these age-related changes referred to 
as sarcopenia [2]. The definition and diagnostic criteria for 
sarcopenia have evolved considerably within the last dec-
ade. Examples of common consensus statements include 
the International Working Group on Sarcopenia (IWGS), 
European Working Group on Sarcopenia in Older People 
(EWGSOP) and the Asian Working Group for Sarcopenia 
(AWGS), with the AWGS and EWGSOP recently updating 
their initial consensus statements [3–5]. While each of these 
consensus statements utilises slightly different strategies 
to define sarcopenia and cutpoints, all recommend formal 
assessment of muscle mass, muscle strength and physical 
performance. Sarcopenia is significantly associated with 
many adverse events and diseases in older age [6–8] and 
predicts disability later in life [2]. Specifically, individuals 
with sarcopenia have a significantly higher risk of falls and 
falls-related fractures compared to individuals with normal 
levels of skeletal muscle [9], with falls among females more 
common than in males [10]. Higher levels of muscle size and 
strength are associated with greater bone mineral density; 
conversely, sarcopenic individuals are much more likely to 
have osteopenia or osteoporosis [11].

While males typically have greater absolute levels of 
muscle size and strength than females, the absolute age-
related decreases in muscle size and strength for males may 
be almost twice that compared to females [13, 14]. These 
sex-related differences in the maximal amount of muscle 

size and strength accrued across the lifespan, and the mag-
nitude of age-related decline, suggest there is the potential 
for differences in the prevalence and risk factors of sarco-
penia in different cohorts of older adults. Currently, there 
is equivalence in the sarcopenia prevalence literature, with 
some studies reporting greater prevalence in males [6, 8], 
females [15] or no sex-related differences [7, 16]. Regardless 
of this equivalence, sex-related differences in risk factors 
for developing sarcopenia have been identified [7, 17]. The 
sex-related differences in levels of muscle size and strength, 
sarcopenia prevalence, and risk factors may need to be taken 
into account when looking to develop sex-specific interven-
tions to minimise these age-related losses of muscle mass 
and strength.

Resistance training (RT) is an exercise modality that elic-
its numerous health benefits, especially for older adults. RT 
is the current gold standard exercise modality for accrual 
of skeletal muscle [18], with adaptations possible through-
out the lifespan, even in nonagenarians [19]. RT also plays 
an important role in the preservation and maintenance of 
bone mineral density [20] and has numerous documented 
benefits in both the prevention and treatment of chronic dis-
ease [21, 22]. RT contributes to healthy aging [23] includ-
ing unique benefits like improving functional movements, 
such as stair climbing power and chair rise time [24], and 
improving depressive symptoms, morale, and quality of 
life in depressed older adults [25]. Recently, the National 
Strength and Conditioning Association released a position 
statement regarding RT for older adults [26]. The statement 
concluded that RT is safe and beneficial for older adults 
and can improve muscle strength, power, ability to perform 
activities of daily living, physical functioning, and psycho-
social well-being [26]. In addition to evidence surrounding 
the efficacy of RT in this population, a series of prescriptive 
recommendations were made regarding intensity, volume, 
etc. However, these recommendations, and current govern-
ing body recommendations for adults regarding prescriptive 
parameters for RT do not consider sex [27, 28].

There is a physiological rationale as to why sex differ-
ences in adaptation to RT may be present. For example, there 
are known variations between sexes in fatiguability [29–31], 
inflammatory responses following muscle damaging eccen-
tric exercise [32], and the time course of recovery after RT 
[33]. Sex differences are also present in muscle fibre size and 
composition [34, 35]. Sex differences in adaptations to RT 
were first examined by Wilmore [36], who found that both 
sexes made similar relative gains in muscle strength and lean 
body mass. Since then, numerous studies have examined this 
topic with equivocal results [37–42], possibly in part due 
to whether the results are presented in a relative or abso-
lute manner. Recently, Roberts and colleagues conducted 
a meta-analysis on sex differences following RT in adults 
aged 18–50 years [43]. These authors found that males and 
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females responded similarly with regard to relative changes 
in muscle size, and lower-body strength, but that females 
had greater levels of relative strength gain in the upper 
body. At present, it is unclear whether sex differences in 
these responses are present in an aging population. As such, 
the aim of this systematic review and meta-analysis was to 
determine if there are sex differences in changes in absolute 
and relative muscle size and strength following RT in older 
adults. We hypothesised that older females would gain more 
relative muscle strength, whereas older males would gain 
more absolute muscle strength, size, and relative size.

2 � Methods

2.1 � Protocol, Registration, and Data Availability

This review followed the Preferred Reporting Items for Sys-
tematic Reviews and Meta-Analyses (PRISMA) statement 
[44]. The review protocol was uploaded to the Open Science 
Framework under a 1-year embargo in October 2019 (https​://
osf.io/afn3y​/). The data and analytic codes used in the meta-
analyses are also available on the Open Science Framework.

2.1.1 � Deviations from Protocol

We made two deviations from our registered protocol. First, 
this review originally intended to analyse three groups: 
adults, older adults, and youth. During our conduct of the 
review, a similar review was published for adults between 
18 and 50 years of age [43], with results near identical to 
our own. On the advice of peer reviewers, we reframed our 
manuscript to focus exclusively on older adults (as only 
three studies in youth were identified, rendering inconclusive 
results). Second, we included a modified Downs and Black 
checklist to provide a numerical indicator of study quality.

2.2 � Eligibility Criteria

We included prospective trials published in English that 
examined a RT intervention in healthy males and females 
older than 50 years of age. While 50 years is not typically 
considered an ‘older adult’, we selected 50 as the threshold a 
priori because of important changes that occur during meno-
pause that alter hormone levels and may moderate the effect 
of RT interventions. Studies must have utilised dynamic RT 
against constant external load, and males and females must 
have performed the same program (i.e. frequency, volume, 
intensity). Studies were excluded if participants were diag-
nosed with medical conditions or musculoskeletal injuries 
or when RT was delivered concurrently with nutritional or 
other exercise interventions (e.g. aerobic training). Placebo 
groups in nutritional studies were also excluded. Outcomes 

were changes in maximal upper and lower-body muscle 
strength, and changes in muscle size. Only studies that pre-
sented relevant outcome data for males and females sepa-
rately were included, regardless of whether the groups were 
directly compared within the study.

2.3 � Literature Search

Five electronic databases were searched from inception to 
June 2019: Web of Science; Science Direct; SPORTDiscus; 
CINAHL; and MEDLINE. The complete search strategy 
for MEDLINE was as follows: ("Resistance exercise" OR 
"Resistance training" OR "Strength training" OR "Strength 
Exercise" OR "Weightlifting" OR "Weight training") AND 
("female and male" OR "women and men" OR "sex differ-
ence" OR "gender difference" OR "gender" OR "sex" OR 
"boys and girls”). Following duplicate deletion, two authors 
(MJ, MW) independently screened articles via title/abstract 
and then full text using Rayyan [45]. At each stage, dis-
crepancies were resolved via discussion, with arbitration 
by a third author (AH) if required. Additional articles were 
identified by conducting manual searches of the reference 
lists of included articles and by forward citation tracking of 
included articles using Google Scholar.

2.4 � Outcomes

The outcomes for this review were the differences in adap-
tations following RT between males and females for (1) 
maximal upper-body strength; (2) maximal lower-body 
strength; and (3) muscle size. Absolute and relative (per-
centage) changes were determined for each of these three 
general outcomes.

Changes in maximal dynamic muscle strength for the 
upper and lower bodies were extracted separately using the 
following hierarchy [46]: 1 repetition maximum (RM); mul-
tiple repetition maximum (e.g. 3-RM or 10-RM); isokinetic 
dynamometry. For the lower body, the following hierarchy 
was used: leg press; squat; deadlift; leg extension; leg curl; 
calf raise. That is, if a study reported results for leg press 
and leg extension, data for the leg press were used for the 
meta-analysis. For the upper body, the hierarchy was: chest 
press; bench press; military press; biceps curl; triceps exten-
sion. The hierarchies were chosen so that less-skilled biar-
ticular movements were a priority, followed by biarticular 
skilled movements, and lastly, uniarticular movements.

For changes in muscle size, the following hierarchy was 
used: dual-energy X-ray absorptiometry (DXA); hydro-
densitometry; whole-body air plethysmography; magnetic 
resonance imaging (MRI); computerized tomography (CT); 
ultrasound. Whole-body measures of body composition were 
preferred, but if a study presented multiple outcomes for 
muscle size, we extracted the measure most relevant to the 

https://osf.io/afn3y/
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RT intervention. That is, if the intervention focused solely 
on the lower body and provided measures of whole-body 
lean mass and quadriceps thickness, we extracted the meas-
ure for quadriceps thickness. Any of the above outcome 
measurements were termed ‘muscle size’ for the purposes 
of this review. DXA was chosen as the top of the hierarchy 
as it is accurate and repeatable when compared to MRI [47], 
yet more accessible and likely used in a greater number of 
studies. We chose to exclude muscle fiber size analyses and 
focus only on macroscopic methods of whole body or local 
muscle size as Haun et al. [48] note that fiber CSA changes 
in response to resistance training are often larger than any 
other methods of assessing hypertrophy, and as such, we 
did not want to overestimate the potential effect of RT on 
improving measures of whole body or local muscle mass.

2.5 � Data Extraction

All authors except J.K. extracted data. Two authors indepen-
dently extracted data from each study into a custom-built 
spreadsheet, after which discrepancies were resolved via dis-
cussion. For all relevant outcomes, the absolute [mean and 
standard deviation (SD)] and relative (percentage change 
and SD) changes from baseline for males and females were 
extracted. If only absolute change was reported, we cal-
culated percentage change and SD by dividing both abso-
lute change and SD by the group’s baseline mean. If only 
relative change was reported, we back-calculated absolute 
change and SD by rearranging the aforementioned formula.

If change scores were not reported, we extracted base-
line and post-intervention outcome data to estimate absolute 
change from baseline using paired-samples formulae in the 
Cochrane Handbook for Interventions [49] and Borenstein et 
al. [50]. Correlations required for calculating paired-samples 
SD were estimated using available data from the included 
studies in our original review, due to the scarcity of data 
for the older adult age group. We pooled available correla-
tions for each outcome across males and females, identi-
fied the median correlation, and subtracted 0.1 to establish 
a conservative estimate for our analysis. For the primary 
analysis, we used r = 0.78 for upper-body strength, r = 0.7 for 
lower-body strength, and r = 0.87 for muscle size. To inves-
tigate the influence of these decisions, we also performed 
sensitivity analyses with r = 0.5 for all analyses. The exact 
correlations used are provided in Electronic Supplementary 
Material Table S1.

If no data were available, we contacted the study’s cor-
responding author via email twice in a two-week period to 
request data. If data were still unavailable (due to the age of 
the data or no reply from authors), we estimated values from 
the study’s figures using the data extraction software GRA-
BIT (MATLAB version R2016b, MA, USA), then converted 

data into a form appropriate for meta-analysis [51]. This was 
done for four studies [52–55].

2.6 � Study Quality and Reporting

A modified version of the Downs and Black checklist was 
used to evaluate the included studies’ quality as reported in 
a previous review [46, 56]. Briefly, the tool consists of 29 
items rated as No = 0, Unable to be determined = 0 (for cer-
tain items) and Yes = 1. Additionally, some items were rated 
as partially met = 0.5 (for example, if blinding of assessors 
was reported for muscle size but not strength (item 15). Stud-
ies were rated by one reviewer (D.H.), with scores entered 
into our spreadsheet. Scores could range from 0 to 29 points, 
with higher scores reflecting higher study quality. Scores 
above 20 were considered good; scores of 11–20 were con-
sidered moderate; and scores below 11 were considered 
poor methodological quality [57]. In addition, we utilised 
the Consensus on Exercise Reporting Template (CERT), a 
16-item checklist that provides the minimum requirements 
for describing exercise interventions [58]. While CERT is 
not typically a tool used to measure study quality, it is rel-
evant in the context of this review because our study ques-
tion related to whether or not males and females responded 
differently to the same RT intervention. Therefore, adequate 
reporting of the RT intervention was required.

2.7 � Data Synthesis

Meta-analyses were performed in R using the metafor pack-
age with a random-effects model and “restricted maximum-
likelihood estimator” method to calculate summary effect 
sizes (Hedges’ g) and 95% confidence intervals. We consid-
ered the threshold for significance as p < 0.05. We calculated 
heterogeneity and inconsistency between studies, which we 
considered important with Cochran Q (p < 0.1) and Hig-
gins’ I2 (> 50%). We assessed publication bias using con-
tour-enhanced funnel plots and, if > 10 studies were avail-
able, Egger’s regression test. In all analyses, positive values 
favoured males and negative values favoured females. We 
considered g < 0.2 as a small difference, 0.5 as a moderate 
difference, and > 0.8 as a large difference [59].

For each analysis, we performed univariate meta-
regression with three variables: study duration (weeks); 
weekly repetitions/volume, calculated as number of exer-
cises × sets × repetitions; and intensity, calculated as percent-
age of 1-RM. To minimise heterogeneity between training 
methodologies and offer more practical interpretation, we 
limited meta-regression only to studies that performed 
full-body programs. For studies that prescribed training 
intensities based on RM, the relative loads (%1-RM) were 
calculated using an estimated repetitions at %1-RM chart 
[60]. When prescriptive ranges were provided (i.e. 8–12 
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repetitions per set, or 2–4 sets), the midpoint was chosen for 
input into the analysis (i.e. 10 repetitions, 3 sets for the above 
example). Positive associations (coefficients above zero) 
indicated effects favouring males while negative associations 
(coefficients below zero) indicated effects favouring females, 
in line with the way we conducted the meta-analysis.

3 � Results

3.1 � Included Studies

We screened 5337 records from electronic databases, 
assessed 191 articles for eligibility, and included 28 studies 
(Fig. 1). We also searched reference lists and conducted for-
ward citation tracking on the included studies, from which 
we added two more studies. Ultimately, 30 studies [37, 38, 
42, 52–55, 61–83] were included in the review, compris-
ing 41 comparison groups for older adults. The details of 

included studies are outlined in Electronic Supplemen-
tary Material Table S2. Briefly, RT interventions averaged 
19 weeks in duration and consisted of 3 sessions per week 
at approximately 70% 1-RM for 3 sets of 9 repetitions per 
exercise. Average ages of included participants ranged from 
53.1 ± 2.7 to 76.9 ± 10.1 years and the majority of partici-
pants were inactive with no resistance training experience 
(Electronic Supplementary Material Table S3). No studies 
reported sarcopenia status. Moreover, functional outcomes 
often used as surrogates for sarcopenia (e.g. grip strength, 
gait speed) were only measured in two studies [54, 73]. 
Hence, we are unable to make any inference about the sar-
copenia status of participants in the included studies.

3.2 � Meta‑analyses

For upper-body strength (7 comparison outcomes; 80 males, 
80 females), there was no difference in relative change 
between males and females (g = − 0.29 [95% CI − 0.62, 

Fig. 1   PRISMA flow diagram
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0.04], p = 0.08; I2 = 5%, p = 0.36; Fig. 2). Males gained more 
absolute upper-body strength (g = 0.48 [95% CI 0.09, 0.88], 
p = 0.016; I2 = 30%, p = 0.18; Fig. 3). 

For lower-body strength (35 comparison outcomes; 566 
males, 630 females), females displayed greater relative 

change (g = − 0.21 [95% CI − 0.33, − 0.10], p = 0.0003; 
I2 = 0%, p = 0.88; Fig.  4). Males gained more abso-
lute lower-body strength (g = 0.33 [95% CI 0.19, 0.47], 
p < 0.0001; I2 = 19%, p = 0.06; Fig. 5).

Fig. 2   Forest plot of effect sizes with 95% confidence intervals for the effects of resistance training on sex differences in relative changes in 
upper-body strength. y years

Fig. 3   Forest plot of effect sizes with 95% confidence intervals for the effects of resistance training on sex differences in absolute changes in 
upper-body strength. y years



Sex Differences in Response to RT in Older Adults

For muscle size (30 comparison outcomes; 504 males, 
560 females), there was no difference in relative changes 
between males and females (g = 0.10 [95% CI − 0.04, 
0.23], p = 0.16; I2 = 10%, p = 0.23; Fig. 6). Two compari-
sons did not provide absolute change data for muscle size 
[70]. In 28 comparisons (492 males, 548 females), males 
gained more absolute muscle size (g = 0.45 [95% CI 0.23, 
0.67], p < 0.0001; I2 = 62%, p < 0.0001; Fig. 7).

3.3 � Sensitivity Analyses and Publication Bias

Sensitivity analyses (with correlation set to 0.5) are avail-
able in Electronic Supplementary Figures S1–S6. One 
effect changed to cross the null: absolute change in upper-
body strength (g = 0.30 [95% CI − 0.01, 0.62], p = 0.06; 
Electronic Supplementary Figure S2). In all other analy-
ses, effect sizes were not meaningfully changed (effects 
did not decrease substantially, nor did they cross the 
threshold for statistical significance). Funnel plots for 
each analysis are presented in Electronic Supplementary 
Figures S7–S18. We observed no evidence of publication 
asymmetry.

3.4 � Meta‑regression

Results from meta-regression are available in Electronic 
Supplementary Material Table S4. In summary, study dura-
tion was associated with effects favouring females for abso-
lute changes in upper-body strength (β = − 0.029 (95% CI 
− 0.054, − 0.005), p = 0.023), while study duration was asso-
ciated with effects favouring males for relative (β = 0.023 
(95% CI 0.005, 0.041), p = 0.013) and absolute changes 
(β = 0.039 (95% CI 0.012, 0.065), p = 0.004) in muscle 
size; weekly repetitions was associated with effects favour-
ing females for relative [β = − 0.0008 (95% CI − 0.0015, 
− 0.0001), p = 0.034] and absolute changes [β = − 0.0012 
(95% CI − 0.0021, − 0.0003), p = 0.010] in lower-body 
strength; and intensity was associated with effects favouring 
males for absolute changes in upper-body strength [β = 0.059 
(95% CI 0.001, 0.106), p = 0.016] and lower-body strength 
[β = 0.019 (95% CI 0.004, 0.034), p = 0.012]. In addition, 
meta-regressions were performed individually for studies 
utilising an upper or lower body only design (Electronic 
Supplementary Table S4). No meta-regression was per-
formed for upper body only designs due to a lack of stud-
ies. No relationships were found for lower-body strength. 

Fig. 4   Forest plot of effect sizes with 95% confidence intervals for the 
effects of resistance training on sex differences in relative changes in 
lower-body strength. d/wk days per week, DD ACE genotype DD pol-

ymorphism, ID ACE genotype ID polymorphism, II ACE genotype II 
polymorphism, High high intensity, Low low intensity, Low +  mixed 
low intensity, Moderate moderate intensity, y years



	 M. D. Jones et al.

For absolute muscle size in lower body only programs, a 
significant effect was found for weekly repetitions favour-
ing females [β = − 0.0047, (95% CI − 0.0072, − 0.0021), 
p = 0.0004].

3.5 � Study Quality and Reporting

The mean quality rating score was 14.7 ± 3.4 out of a pos-
sible score of 29 (Electronic Supplementary Material 
Table S5), which was considered moderate-study quality. 
All studies reported aims or purpose, main outcomes, char-
acteristics of subjects, clearly defined interventions, overall 
findings, and estimates of random variability. Additionally, 
all studies utilised interventions considered to be representa-
tive of RT for the subject population, any evidence of data 
dredging was made clear, appropriate statistical tests were 
used, and outcome measures used were accurate (valid and 
reliable). Five studies performed a power calculation to 
determine the sample size required for the study. Exercise 
adherence was reported in 11 studies (37%) and supervi-
sion of training was reported in 18 studies (60%), with 1 
study reporting partial supervision (1 out of 3 sessions 
supervised). Reporting of each individual item on the CERT 
varied from 0 to 94% (Electronic Supplementary Material 

Table S6). In general, the description and progression of the 
RT intervention was well reported. In contrast, reporting of 
supervisor qualifications, adherence, and individual tailoring 
was not well achieved.

4 � Discussion

This systematic review determined that sex differences 
in adaptations following RT are apparent in older adults. 
Females displayed greater relative changes in lower-body 
strength; males displayed greater absolute changes in upper-
body strength, lower-body strength, and muscle size, while 
no differences were identified for relative changes in upper-
body strength and muscle size. In addition, we identified 
associations between RT characteristics and effects.

4.1 � Muscle Strength

In older adults, females exhibited greater relative increases 
compared to males in lower-body strength, with no sex dif-
ferences in change in relative upper-body strength. Abso-
lute changes in muscle strength were greater for older adult 
males.

Fig. 5   Forest plot of effect sizes with 95% confidence intervals for the 
effects of resistance training on sex differences in absolute changes in 
lower-body strength. d/wk days per week, DD ACE genotype DD pol-

ymorphism, ID ACE genotype ID polymorphism, II ACE genotype II 
polymorphism, High high intensity, Low low intensity, Low +  mixed 
low intensity, Moderate moderate intensity, y years
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Fig. 6   Forest plot of effect sizes with 95% confidence intervals for the 
effects of resistance training on sex differences in relative changes in 
muscle size. d/wk days per week, DD ACE genotype DD polymor-

phism, ID ACE genotype ID polymorphism, II ACE genotype II poly-
morphism, High high intensity, Low low intensity, Low +  mixed low 
intensity, Moderate moderate intensity, y years

Fig. 7   Forest plot of effect sizes with 95% confidence intervals for the 
effects of resistance training on sex differences in absolute changes 
in muscle size. d/wk days per week, DD ACE genotype DD polymor-

phism, ID ACE genotype ID polymorphism, II ACE genotype II poly-
morphism, High high intensity, Low low intensity, Low +  mixed low 
intensity, Moderate moderate intensity, y years
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In general, baseline strength is greater in adult males than 
females, which is likely due to greater muscle size in males 
[84, 85], rather than a sex difference in the nervous system’s 
ability to drive the muscle voluntarily (i.e., voluntary activa-
tion) [86]. Interestingly, the baseline sex difference in upper-
body strength is greater than the baseline sex difference in 
lower-body strength [84, 85], which has been attributed to 
males possessing a greater proportion of their muscle in 
their upper bodies [87]. The overall absolute increases in 
strength seen with RT may be a function of males’ larger 
stature and subsequent larger baseline strength values [84, 
85]. For example, an untrained older male who has a base-
line bench press of 45 kg and makes a 20% relative improve-
ment, would see a 9 kg increase in their 1-RM. Conversely, 
an older untrained female who had a baseline bench press of 
30 kg, who also makes a 20% relative improvement, would 
see a 6 kg absolute increase.

When examining the results with respect to relative 
changes, females demonstrated a greater relative improve-
ment in lower-body strength, yet no sex-related difference 
was observed for the upper body. However, few studies 
included in this review conducted upper-body strength 
assessments; further, those that were included were predom-
inantly made up of small sample sizes. As such it is plau-
sible that a sex difference may become apparent with addi-
tional large-scale studies. Alternatively, greater increases in 
relative strength for females may be due to the same rea-
son outlined regarding absolute changes. When maximal 
strength testing is conducted, often the smallest increment 
of increase is typically 2.5 kg. Therefore, if an older female 
has a lower absolute strength than a male at baseline, an 
increase of the smallest increment (2.5 kg) would result in a 
greater relative strength increase. In the context of the above 
example, if older females’ and males’ baseline bench press 
strength scores were 30 and 45 kg, respectively, a female 
who improves her bench press by 2.5 kg has experienced an 
8.3% increase compared to a 5.6% increase for the male. We 
encourage researchers and exercise professionals who work 
with older adults to use fractional weight plates (i.e. 0.25, 
0.5, 0.75 and 1 kg) in their exercise assessments and pre-
scriptions to allow the most accurate assessment of changes 
in muscular strength and progressions in training load.

Our findings are interesting when compared to the recent 
Roberts et al. meta-analyses [43] as the direction of the sex 
effect appears to differ between young and older partici-
pants. Accelerated losses in strength appear to occur in the 
lower body in ageing males [88] which may explain our 
findings showing greater relative lower-body strength adap-
tations in older females compared to older males. In terms 
of the upper body, Roberts et al. [43] found greater relative 
increases in upper-body strength, compared to the lack of 
difference observed in our study. We suggest that this may 
simply be a function of the aforementioned sensitivity of 

the tests, whereby the incremental jumps may have been a 
much larger portion of the older women’s initial baseline 
values. However, we cannot discount that additional factors 
are likely at play here. Perhaps the aging population differs 
in their movement patterns, physical activity choices, nutri-
tion, and recovery which may influence adaptation differ-
ently between the upper and lower body.

4.2 � Muscle Size

Results from our analyses revealed no between sex differ-
ences in changes in relative muscle size, and that changes in 
absolute muscle size favoured older adult males.

These findings are supported by recent advances in our 
understanding of the mechanisms underpinning changes 
in muscle size. Historically, it was thought that hormonal 
responses to RT were key to eliciting muscle growth [89]; 
however, recent evidence has shown that systemic circulat-
ing hormones, including testosterone, are not significantly 
associated with changes in muscle size in adults [90]. Con-
versely, androgen receptor (AR) content appears to be more 
associated with the magnitude of adaptation to RT [90]. AR 
content, however, is not altered by training [90], nor are lev-
els different between the sexes [91], though human studies 
examining this question are lacking. Adaptation to RT is 
also associated with protein synthesis and mTOR signalling 
rates, neither of which differ between the sexes [92].

Similar to the findings regarding absolute strength 
increases favouring males, the absolute gain in muscle size 
may also reflect stature differences. Although males have 
greater levels of muscle size than females, they also lose 
more absolute size with aging [13] and may have a greater 
prevalence of sarcopenia [6, 8]. As such, older males may 
have potential for a greater degree of muscle size adapta-
tion when exposed to an exercise stimulus, such as RT [93], 
although such responses may not occur in individuals whose 
sarcopenia was a result of some underlying health condi-
tion or medication that may blunt the hypertrophic effects 
of resistance training. It is also possible that some of the 
sex-related differences in sarcopenia risk factors/behaviours 
may account for this greater absolute muscle size response 
in men. While exercise that is more intense, and perhaps 
frequent, than regular daily activities acts as a stimulus for 
increasing muscle size, additional factors are required to 
optimise the hypertrophy response. For example, increasing 
muscle size in older adults may also require additional nutri-
tional intake (e.g. some degree of calorie surplus, increased 
protein and vitamin D) and the ability to digest and transport 
the nutrients to the muscles in the required time frame [94, 
95]. Therefore, any sex-related differences in levels of physi-
cal activity (particularly vigorous) [96], nutritional intake 
[97] and digestive symptoms [98] may also influence the 
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degree of relative and absolute muscle size gain associated 
with RT in older males and females.

4.3 � RT Programming

Our meta-regression determined small associations between 
sex-specific adaptations to RT and the prescriptive param-
eters. Longer exercise interventions appeared to favour 
females in absolute upper-body strength adaptations and 
males for relative and absolute muscle size changes. Increas-
ing weekly repetitions seemed to favour females in both rela-
tive and absolute changes in lower-body strength. In terms 
of absolute changes in both upper and lower-body strength, 
increasing exercise intensity (i.e. %1-RM) favoured males’ 
adaptation. When programs had a lower body only focus, 
increasing weekly repetitions (volume) favoured females for 
adaptations in muscle size. It is possible that the increasing 
weekly repetitions favoured females due to females’ higher 
fatigue resistance [29, 31]. The use of higher weekly repeti-
tions inherently means a lower intensity must be utilised. 
Our regression also showed that the use of higher intensity 
loads favoured males, and as such it is logical that lower rep-
etitions would need to be applied for these higher intensities. 
As manipulation of prescriptive parameters impacts other 
parameters, it is necessary to consider these implications 
together. For example, it has previously been shown that 
the optimal exercise prescription for improving muscular 
strength is slightly different than for improving muscle size 
in older adults [99]. Specifically, the greatest gains in mus-
cle size required one additional training session compared 
to muscle strength (3 vs 2 sessions per week, respectively). 
However, this increase in training frequency to improve mus-
cle size required a reduction in the optimal training loads for 
increasing strength (70–79% 1RM) to 51–69% for increasing 
muscle size [99]. As such, logical recommendations may be 
that exercise prescriptions for older women should have a 
focus on higher weekly repetitions (volume), whereas older 
males may benefit from focusing on higher intensity pre-
scriptions. However, the decision surrounding the use of sex-
based prescriptive parameters should still relate to individual 
goals and will require the trainer or exercise professional to 
have an understanding of the relationship of these variables 
as well as the clients’ exercise preferences.

4.4 � Strengths and Limitations

Strengths of this review include the pre-registration of the 
study protocol, the comprehensive search strategy that 
included both forward and backward citation tracking, and 
the open access to the data and analysis code used to enable 
replication of our results. A potential limitation was the het-
erogeneity of the measurements used to assess muscle size 
and strength in the included studies. We chose to include a 

variety of measurement tools as they have been shown to be 
valid and reliable. However, some of these outcomes were 
only presented for regional, not full body, lean mass. We 
chose to include these outcomes so that we could utilise the 
studies that employed either single limb training, or upper/
lower body only; however, attempts were made to address 
this by specifying a priori the outcomes that would be used 
for the meta-analysis. Studies included in our review did 
not clearly define the sarcopenia status of their participants, 
and as such we cannot be sure how many of the individuals 
included in this analyses would have been classified as being 
sarcopenic, or that our findings extend to those individu-
als with sarcopenia. The influence of sarcopenia on mus-
cle adaptation in this cohort is an area of interest for future 
research.

5 � Conclusion

Our results indicate that sex differences in adaptations to 
RT do exist in older adults; however, it is evident that the 
interpretation of sex-dependent adaptations to RT is heav-
ily influenced by the presentation of the results in either an 
absolute or relative context. Exercise specialists can expect 
older males to gain more absolute strength and size com-
pared to females in response to the same program. Con-
versely, it is expected that in a relative context, adaptations 
will tend to favour females, or not be sex-dependent. The 
sexes also appear to be differentially influenced by specific 
program variables, suggesting that older males and females 
may benefit from some slight alterations in RT prescrip-
tion. For example, older females may require longer train-
ing durations to increase absolute upper-body strength and 
an increased number of repetitions per week to increase 
their relative and absolute lower-body strength. Further, 
older males may benefit from a higher exercise intensity to 
improve absolute upper and lower-body strength as well as 
longer training durations to increase relative and absolute 
muscle size.
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