Laboratório 3

Filtros Ativos Passa-Alta

Referência

OP AMPs for Everyone Newnes, 2009

1 By replacing the resistors of a low-pass filter with capacitors, and its capacitors with resistors a high-pass filter is created

General Sallen-Key Low Pass Topology
$(G \neq 1)$

Unit Gain Sallen-Key Low Pass Topology ($\mathrm{G}=1$)

General Sallen-Key High Pass Topology
$(G \neq 1)$

Unit Gain Sallen-Key High Pass Topology
($\mathrm{G}=1$)

2 To plot the gain response of a high-pass filter mirror the gain response of a low-pass filter replacing Ω with $1 / \Omega$ and s with $1 / s$

$$
A(s)=\frac{A_{0}}{\prod_{i}\left(1+a_{i} s+b_{i} s^{2}\right)} \quad A(s)=\frac{A_{\infty}}{\prod_{i}\left(1+\frac{a_{i}}{s}+\frac{b_{i}}{s^{2}}\right)}
$$

$$
\begin{aligned}
& \text { High Pass Filters } \\
& \text { First Order Topology }
\end{aligned}
$$

Inverting

Noninverting

$$
A(s)=-\frac{-\frac{R_{2}}{R_{1}}}{1+\frac{1}{\omega_{c} R_{1} C_{1}} \cdot \frac{1}{s}}
$$

$$
A_{\infty}=-\frac{R_{2}}{R_{1}}
$$

Designing High Pass Filters First Order Topology

Inverting

Noninverting

1 Specify f_{C}, A_{∞}, C_{1}
$2 \mathrm{R}_{1}=\frac{1}{2 \pi f_{c} \mathrm{a}_{1} \mathrm{C}_{1}}$
$3 \mathrm{R}_{2}=-\mathrm{R}_{1} \mathrm{~A}_{\infty}$

$$
\begin{array}{ll}
\mathbf{1} & \text { Specify } \mathrm{f}_{\mathrm{C}}, \mathrm{~A}_{\infty}, \mathrm{C}_{1} \\
\hline \mathbf{2} & \mathrm{R}_{1}=\frac{1}{2 \pi f_{c} \mathrm{a}_{1} \mathrm{C}_{1}} \\
& \\
\mathbf{3} & \mathrm{R}_{2}=\mathrm{R}_{3}\left(\mathrm{~A}_{\infty}-1\right)
\end{array}
$$

Pick R_{2} and detemine R_{3}

High Pass Filters Second Order Topology

Sallen-Key Topology

General Sallen-Key Topology

$$
A(s)=\frac{\alpha}{1+\frac{R_{2}\left(C_{1}+C_{2}\right)+R_{1} C_{2}(1-\alpha)}{\omega_{c} R_{1} R_{2} C_{1} C_{2}} \cdot \frac{1}{s}+\frac{1}{\omega_{c}^{2} R_{1} R_{2} C_{1} C_{2}} \cdot \frac{1}{s^{2}}}
$$

$$
\alpha=1+\frac{\mathrm{R}_{4}}{\mathrm{R}_{3}}
$$

Multiple Feedbak Topology

The MFB topology is commonly used in filters that have high Qs and require a high gain

$$
A(s)=-\frac{\frac{C}{C_{2}}}{1+\frac{2 C+C_{2}}{\omega_{\mathrm{c}} R_{1} C C_{2}} \cdot \frac{1}{\mathrm{~s}}+\frac{2 \mathrm{C}+\mathrm{C}_{2}}{\omega_{\mathrm{c}} R_{1} C C_{2}} \cdot \frac{1}{s^{2}}}
$$

$$
\mathrm{A}_{\infty}=\frac{\mathrm{C}}{\mathrm{C}_{2}}
$$

$$
\begin{gathered}
\text { Designing } \\
\text { High Pass Filters } \\
\text { Second Order Topology }
\end{gathered}
$$

Sallen-Key Topology (unit gain)

$$
A(s)=\frac{1}{1+\frac{2}{\omega_{c} R_{1} C} \cdot \frac{1}{s}+\frac{1}{\omega_{c}^{2} R_{1} R_{2} C^{2}} \cdot \frac{1}{s^{2}}}
$$

1 Get the filter coefficients
2 Specify C
$3 \quad R_{1}=\frac{1}{\pi f_{c} C a_{1}}$
$4 \quad \mathrm{R}_{2}=\frac{\mathrm{a}_{1}}{4 \pi \mathrm{f}_{\mathrm{c}} \mathrm{Cb}_{1}}$

Multiple Feedbak Topology

$$
A(s)=-\frac{\frac{c}{C_{2}}}{1+\frac{2 C+C_{2}}{\omega_{c} R_{1} C C_{2}} \cdot \frac{1}{s}+\frac{2 C+C_{2}}{\omega_{c} R_{1} C C_{2}} \cdot \frac{1}{s^{2}}}
$$

$$
\mathrm{A}_{\infty}=\frac{\mathrm{C}}{\mathrm{C}_{2}}
$$

1 Get the filter coefficients

2 Pick C and C_{2}

$$
\begin{array}{ll}
3 & R_{1}=\frac{1-2 A_{\infty}}{2 \pi f_{c} \cdot C \cdot a_{1}} \\
4 & R_{2}=\frac{a_{1}}{2 \pi f_{c} \cdot b_{1} C_{2}\left(1-2 A_{\infty}\right)}
\end{array}
$$

$$
\begin{gathered}
\text { Designing } \\
\text { High Pass Filters } \\
\text { Higher Order Topology }
\end{gathered}
$$

Exemple 1:

Design a third-order Sallen-Key unity-gain Bessel high-pass filter with the corner frequency $\mathrm{f}_{\mathrm{C}}=1 \mathrm{kHz}$.

1 Get the Bessel coefficients

Table 16-4. Bessel Coefficients					
n	i	a_{i}	b_{i}	$\begin{gathered} \mathrm{k}_{\mathrm{i}}= \\ \mathrm{f}_{\mathrm{Ci}} / \mathrm{f}_{\mathrm{C}} \end{gathered}$	Q_{i}
1	1	1.0000	0.0000	1.000	-
2	1	1.3617	0.6180	1.000	0.58
3	1 2	$\begin{aligned} & 0.7560 \\ & 0.9996 \end{aligned}$	$\begin{aligned} & 0.0000 \\ & 0.4772 \end{aligned}$	$\begin{aligned} & 1.323 \\ & 1.414 \end{aligned}$	- $\overline{0.69}$
4	1 2	$\begin{aligned} & 1.3397 \\ & 0.7743 \end{aligned}$	$\begin{aligned} & 0.4889 \\ & 0.3890 \end{aligned}$	$\begin{aligned} & 0.978 \\ & 1.797 \end{aligned}$	$\begin{aligned} & 0.52 \\ & 0.81 \end{aligned}$
5	1 2 3	$\begin{aligned} & 0.6656 \\ & 1.1402 \\ & 0.6216 \end{aligned}$	$\begin{aligned} & 0.0000 \\ & 0.4128 \\ & 0.3245 \end{aligned}$	$\begin{aligned} & 1.502 \\ & 1.184 \\ & 2.138 \end{aligned}$	- 0.56 0.92

First Filter: first order non-inverting with unit gain

2 Bessel coefficientes: $\mathrm{a}_{1}=0.756, \mathrm{~b}_{1}=0$
3 Pick $\mathrm{C}_{1} \longrightarrow \mathrm{C}_{1}=100 \mathrm{nF}$
4 Get $R_{1} \longrightarrow R_{1}=\frac{1}{2 \pi f_{c} a_{1} C_{1}}=\frac{1}{2 \pi \cdot 10^{3} \mathrm{~Hz} \cdot 0.756 \cdot 100 \cdot 10^{-9} \mathrm{~F}}=2.105 \mathrm{k} \Omega$

Second Filter: second order SK with unit gain

5 Bessel coefficientes: $\mathrm{a}_{2}=0.996, \mathrm{~b}_{2}=0.4772$

6 Pick C $\longrightarrow C=100 n F$
$7 \quad R_{1}=\frac{1}{\pi f_{c} C a_{1}} \longrightarrow \quad \mathrm{R}_{1}=\frac{1}{\pi f_{c} \mathrm{Ca}} 1 \mathbf{}=\frac{1}{\pi \cdot 10^{3} \cdot 100 \cdot 10^{-9} \cdot 0.756}=3.18 \mathrm{k} \Omega$
$8 \quad R_{2}=\frac{a_{2}}{4 \pi f_{c} C a_{2}} \quad \longrightarrow \quad \mathrm{R}_{2}=\frac{\mathrm{a}_{1}}{4 \pi f_{c} \mathrm{Cb}_{1}}=\frac{0.9996}{4 \pi \cdot 10^{3} \cdot 100 \cdot 10^{-9} \cdot 0.4772}=1.67 \mathrm{k} \Omega$

Third-order Sallen Key unity-gain Bessel high-pass filter with the corner frequency $f_{c}=1 \mathbf{k H z}$.

