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Lecture 4 – Crystal Oscillators 

Classification of oscillators. Crystals. Ceramic resonators. Oscillation 
conditions. Oscillator configurations. The Pierce oscillator using digital IC 
inverters. Analysis of oscillators. Analysis of the Pierce oscillator. 

Introduction 

An electronic oscillator is an electronic circuit that produces a repetitive 

electronic signal, often a sine wave or a square wave. The output frequency is 

determined by the characteristics of the devices used in the circuit. 

A harmonic oscillator produces quasi-sine-wave oscillations. In order to realize 

harmonic oscillations, the following are required: 

1. An active element producing amplification. 

2. Positive feedback. 

3. A frequency selective network which mainly determines the oscillation 

frequency. 

4. A nonlinearity, called “limiting”, to maintain the oscillation amplitude 

in stable equilibrium. 

The basic form of a harmonic oscillator is an electronic amplifier connected in 

a feedback loop with its output fed back into its input through a frequency 

selective electronic filter to provide positive feedback: 
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Figure 4.1 – The basic form of a harmonic oscillator 

Harmonic oscillator 
defined 
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When the power supply to the amplifier is first switched on, the amplifier's 

output consists only of noise. The noise travels around the loop and is filtered 

and re-amplified until it increasingly resembles a sine wave at a single 

frequency. 

Harmonic oscillator circuits can be classified according to the type of 

frequency selective filter they use in the feedback loop: 

 In an RC oscillator circuit, the filter is a network of resistors and 

capacitors. RC oscillators are mostly used to generate lower 

frequencies, for example in the audio range. Common types of RC 

oscillator circuits are the phase shift oscillator and the Wien bridge 

oscillator. 

 In an LC oscillator circuit, the filter is a tuned circuit (often called a 

tank circuit) consisting of an inductor and capacitor connected together. 

Charge flows back and forth between the capacitor's plates through the 

inductor, so the tuned circuit can store electrical energy oscillating at its 

resonance frequency. There are small losses in the tank circuit, but the 

amplifier compensates for those losses and supplies the power for the 

output signal. LC oscillators are often used at radio frequencies, when a 

tunable frequency source is necessary, such as in signal generators, 

tunable radio transmitters and the local oscillators in radio receivers. 

Typical LC oscillator circuits are the Hartley, Colpitts and Clapp 

circuits. 

 A crystal oscillator is a circuit that uses a piezoelectric crystal 

(commonly a quartz crystal) as a frequency selective element. The 

crystal mechanically vibrates as a resonator, and its frequency of 

vibration determines the oscillation frequency. Crystals have a very 

high Q-factor and also better temperature stability than tuned circuits, 

so crystal oscillators have much better frequency stability than LC or 

RC oscillators. They are used to stabilize the frequency of most radio 

transmitters, and to generate the clock signal in computers and quartz 

clocks. Crystal oscillators often use the same circuits as LC oscillators, 

RC oscillators 

LC oscillators 

Crystal oscillators 
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with the crystal replacing the tuned circuit. Surface acoustic wave 

(SAW) devices are another kind of piezoelectric resonator used in 

crystal oscillators, which can achieve much higher frequencies. They 

are used in specialized applications which require a high frequency 

reference, for example, in mobile phones. 

A relaxation oscillator produces a non-sinusoidal output, such as a square, 

sawtooth or triangle wave. It contains an energy-storing element (a capacitor 

or, more rarely, an inductor) and a nonlinear trigger circuit (a latch, Schmitt 

trigger, or negative resistance element) that periodically charges and discharges 

the energy stored in the storage element thus causing abrupt changes in the 

output waveform. 

An example of a relaxation oscillator that produces both a triangle and 

rectangular waveform is shown below: 
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Figure 4.2 – A relaxation oscillator 
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defined 

Triangular and 
rectangular 
waveform generator



4.4 

Digital Electronics Autumn 2014 

Classification of Oscillators 

There are many ways in which an oscillator can be classified: 

1. Frequency range 

2. Power output range 

3. Function (e.g., the frequency can be readily modulated or shifted by an 

externally applied voltage) 

4. Number of active devices (e.g. “single transistor” where the same 

transistor provides the amplification and the limiting) 

5. Manner its frequency is stabilized for the changes in environment 

(e.g. oven controlled) 

6. Manner of limiting (e.g. self-limiting, automatic level control) 

7. Degree of frequency stability 

To facilitate the classification process, a system of abbreviations has been 

gradually devised. Some of these abbreviations are: 

Abbreviation Meaning 

O oscillator 

X crystal 

LC inductor capacitor 

VC voltage controlled 

OC oven controlled 

ALC automatic level controlled 

Table 4.1 – Oscillator abbreviations 

These basic abbreviations can be combined to form a new abbreviation. For 

example, an OCXO would be an oven-controlled crystal oscillator. 
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Crystals 

A “crystal” is a carefully oriented and dimensioned piece of quartz or other 

suitable piezoelectric material to which adherent electrodes have been applied. 

The crystals are held within sealed enclosures by mounting supports that also 

serve as connections between the electrodes and the external leads. Crystal 

enclosures are designated by HC- numbers (Holder, Crystal). 

 

 

 

 

Figure 4.3 – Crystal enclosures and mounting 

Crystals are unique not only because of the achievable combinations of circuit 

parameter values (i.e. high frequencies of resonance, small capacitance, etc.) 

but also because of other important features such as cost, size, and stability 

with time, temperature and other environmental changes. 

Crystal enclosures 
and mounting 
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Frequency Range 

Crystal resonators are available to cover frequencies from below 1 kHz to over 

200 MHz. At the low-frequency end wristwatch and real-time clock 

applications operate at 32.768 kHz and powers of two times this frequency. 

More conventional resonators span the range 80 kHz to 200 MHz; these utilise 

what is known as bulk acoustic waves (BAWs) that propagate within the 

crystal. Surface acoustic waves (SAWs) travel along the surface. Devices based 

on SAWs are available for the range above 50 MHz into the low GHz region. 

Frequency Accuracy 

The absolute frequency accuracy of crystal-stabilized commercial oscillators is 

between 610  and 710 . This figure includes variations over all environmental 

conditions, such as temperature, mechanical shock, and aging. 

Frequency Stability 

Precision quartz oscillators, held at constant temperature and protected from 

environmental disturbances, have fractional stabilities from 1010  to 1210 . 

Aging Effects 

Slow changes in frequency with time are referred to as aging. The principal 

causes of aging are contamination within the enclosure that is redistributed 

with time, slow leaks in the enclosure, mounting and electrode stresses that are 

relieved with time, and changes in atmospheric pressure. Changes in the quartz 

are usually negligible for most applications. 

Environmental Effects 

The frequency of a crystal resonator can vary due to a variety of environmental 

disturbances. Such disturbances include: thermal transients, mechanical 

accelerations in the forms of vibration, shock and turning the crystal over in a 

gravitational field (tip-over), magnetic fields, radiation, DC voltages, and 

variations in the drive level (the amount of power dissipated in the crystal). 
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Crystal Cuts 

The resonator plate can be cut from the source crystal in many different ways. 

The orientation of the cut influences the crystal's aging characteristics, 

frequency stability, thermal characteristics, and other parameters. Some of the 

more popular cuts are: 

Cut Frequency 

Range 

Description 

 

 

AT 

 

 

0.5 – 300 MHz 

The most common cut, developed in 1934. The 
frequency-temperature curve is a sine-shaped 
curve with an inflection point at around 
25–35°C. The optimum AT cut has a frequency 
variation with temperature of only ±12 ppm from 
-50C to +100C. Most (estimated over 90%) of 
all crystals are this variant. Sensitive to 
mechanical stresses, whether caused by external 
forces or by temperature gradients. The upper 
limit for the fundamental mode of vibration is 
around 30-40 MHz. 

 

 

SC 

 

 

0.5 – 200 MHz 

A special cut (Stress Compensated), developed in 
1974, is for oven-stabilized oscillators with low 
phase noise and good aging characteristics. 
Compared to the AT cut, it is less sensitive to 
mechanical stresses, has a faster warm-up speed, 
higher Q, better close-in phase noise, less 
sensitivity to spatial orientation against gravity, 
and less sensitivity to vibrations. The frequency-
temperature curve has an inflection point at 
96°C and the optimum SC cut has a much lower 
temperature sensitivity than the optimum AT cut. 
It is suitable for OCXOs, e.g. space and GPS 
systems. Aging characteristics are 2 to 3 times 
better than of the AT cuts. 

 

BT 

 

0.5 – 200 MHz 

A special cut, similar to the AT cut. It has well 
known and repeatable characteristics. It has poorer 
temperature characteristics than the AT cut. It is 
used for oscillators vibrating at a fundamental 
mode which is higher than the AT cut, up to over 
50 MHz. 

The most common 
crystal cuts and their 
characteristics 
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Equivalent Circuit 

Since a crystal is piezoelectric, the crystal changes shape when a signal is 

applied to the electrodes. If the applied signal frequency approaches a natural 

mechanical resonance, then these high-amplitude mechanical vibrations are 

very narrow in frequency and are ideally suited to oscillators (the crystal has a 

high “Q-factor”). The piezoelectric effect is responsible for converting the 

electrical signal to mechanical motion and it reconverts the vibratory motion of 

the crystal back into an electrical signal at its terminals. Therefore, looking at 

the crystal simply as a circuit component consisting of an enclosure and leads, 

we can formulate an equivalent circuit model that is valid around a particular 

region of mechanical vibration. The crystal circuit symbol, and a simplified 

equivalent circuit, are shown below: 

 

R1
C1L 1
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Figure 4.4 – Simplified equivalent circuit of a crystal 

The series RLC portion is referred to as the motional arm of the circuit and 

arises from the mechanical crystal vibrations. It is a valid electrical model in 

the vicinity of a single mechanical resonance. The 1R  represents the heat losses 

due to mechanical friction in the crystal. The inductor 1L  is the electrical 

equivalent of the crystal mass, the capacitor 1C  represents the crystal elasticity. 

0C  is called the static capacitance – it is the capacitance associated with the 

crystal and its adherent electrodes plus the stray capacitance internal to the 

crystal enclosure. It is a measured quantity that is specified on a datasheet. The 

value of 0C  does not include stray or wiring capacitance external to the 

enclosure. 

Simplified equivalent 
circuit of a crystal 

Motional arm 
defined 

Static capacitance 
defined 
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Resonance 

If we define: 

0
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and: 
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then the impedance of the equivalent circuit in Figure 4.4 at any frequency is 

given by: 
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For a resonance to occur, eZ  must be resistive and, therefore: 
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Using the quadratic formula and solving for 2
r  gives: 
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Therefore: 
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We now consider the quantity in the inner square root: 
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Therefore, the exact equation for the resonance condition is: 
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For any practical crystal, however, it is normally true that:  
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(4.12) 

For example, typical values for an 8 MHz crystal are mH 141 L , fF 271 C , 

  81R  and pF 6.50 C . Thus the inequality above is 

1721 10693.110972.7  , which is certainly true. 
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Then: 
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We now have an approximate formula for the resonance frequencies: 
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This equation gives two resonance frequencies; the first, obtained using the 

minus sign, is series resonance: 
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and the other is parallel resonance: 
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We make the further observation that a typical crystal has: 
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For example, for the crystal considered earlier, we have 

513 10265.310276.1  . Then: 
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(4.18)

The approximate 
series resonance 
frequency of a 
crystal 

The approximate 
parallel resonance 
frequency of a 
crystal 
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 Furthermore, the parallel resonance frequency can be written as: 
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But 101 CC . Therefore, the binomial approximation: 
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may be used, and: 
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Hence, the frequency separation, f , between rpf  and rsf  is: 
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The frequency separation is very small, typically <0.3% of the series resonance 

frequency. The frequency range f  is known as the pulling range. 

The approximate 
frequency 
separation between 
the series and 
parallel resonance 
frequencies of a 
crystal 
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Typical real and imaginary parts of the impedance plots versus frequency of 

the crystal impedance are shown below: 
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Figure 4.5 – Typical real and imaginary plots of a crystal’s impedance 

Note that the horizontal scale has been zoomed into the frequencies around 

resonance to show how the reactance is positive for only a very small range of 

frequencies between rsf  and rpf . 

Also note that the approximate formula for parallel resonance, given by 

Eq. (4.18), will make 0d  in Eq. (4.3). Such a substitution in Eq. (4.3) will 

give   cjbae Z , which has a non-zero imaginary component.  However, 

the impedance is highly sensitive to frequency, and at the exact rpf , the 

impedance eZ  will be purely resistive. 

Typical real and 
imaginary plots of a 
crystal’s impedance 

Beware of using the 
approximate formula 
for parallel 
resonance – the 
reactance curve is 
nearly vertical in this 
region 



4.15 

Digital Electronics Autumn 2014 

Typical magnitude (note the log scale) and phase plots of a crystal’s impedance 

versus frequency are shown below: 
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Figure 4.6 – Typical magnitude and phase plots of a crystal’s impedance 

This plot shows that the circuit has a series and a parallel resonance. At the 

series resonance frequency rsf , 
11 CL XX   and the crystal branch impedance 

is simply 1R . The resistor 1R  is also called the equivalent series resistance 

(ESR) at series resonance. At series resonance, the resistor 1R  appears in 

parallel with the reactance 
0CX . However, 10

RX C   at this frequency, so the 

crystal essentially appears resistive. Between rsf  and rpf  the impedance is 

inductive with the phase being close to 90. This is an important region of 

operation, which is called the parallel-resonance region. 

Typical magnitude 
and phase plots of a 
crystal’s impedance

The parallel-
resonance region 
defined 

ESR defined 
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Equivalent Circuit Near Resonance 

The crystal is inductive in the parallel-resonance region between rsf  and rpf , 

and so in this “region of operation” it seems appropriate to represent the crystal 

by its equivalent series resistance and inductance: 
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Figure 4.7 – Equivalent model of a crystal in the parallel-resonance region 

If we let: 
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then the impedance of the crystal is: 
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(4.24)

This equivalent series impedance will be useful later when we analyse 

oscillators that use crystals. 

 

Equivalent model of 
a crystal in the 
parallel-resonance 
region 
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Modes of Crystal Operation 

Because of its resonant characteristics, a crystal is operated either as a series 

resonant circuit or in the parallel-resonance region. 

A series-mode oscillator uses a crystal in a series-resonant configuration where 

it appears as a pure resistor of value 1R  ( 0C  is ignored) at the frequency rsf . 

A parallel-mode oscillator uses a crystal in the parallel-resonance region, 

where a “load capacitance” LC  is specified to be in parallel with the crystal, as 

shown below: 
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Figure 4.8 – Equivalent model of a crystal with a load capacitance 

In the parallel mode of operation the crystal appears inductive. Its parallel 

resonance, denoted as the load-resonance frequency Lf , is given by: 
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(4.25) 

This equation follows from Eq. (4.21) with 0C  replaced by LCC 0 . 

Crystals in the parallel mode are specified by the manufacturer to resonate at 

the frequency Lf  with a specific load capacitance LC . 

The frequency listed 
on a crystal package 
is the desired 
frequency of 
operation - it can be 
for a series-mode 
oscillator or for a 
parallel-mode 
oscillator with a 
specific load 
capacitance 

A “loaded” crystal’s 
resonance 
frequency 
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Ceramic Resonators 

A ceramic resonator (CR) is a polycrystalline ferroelectric material in the 

barium titanate and zirconate families of ceramic. A ceramic resonator is made 

by forming the ceramic mixture to the desired shape and then heating it above 

its ferroelectric transition point. A high voltage is applied, and the molecular 

electric dipoles align with the strong electric field. The ceramic is then slowly 

cooled, and the high voltage is disconnected. The preferential orientations of 

the electric dipoles of the polycrystalline aggregate yield a permanent electric 

moment which is equivalent to piezoelectricity. 

 

 

 

Figure 4.9 – Ceramic resonators 

The circuit symbol of a ceramic resonator is the same as that of a crystal, and 

the equivalent electrical circuit is the same, except for the addition of a shunt 

resistance, 0R . It comes about from the presence of DC conduction paths 

around the polycrystalline material and is intrinsic to the material. 

The performance of a CR oscillator is better than an LC tuned oscillator, and 

less than that of a crystal oscillator. CRs are smaller in size and less expensive 

than crystals, and are therefore used in lower-frequency applications where 

moderate stability is suitable and cost is an overriding consideration. One 

drawback is their relatively large temperature coefficient of frequency, being in 

the range -40 to -80 ppm / °C. Some ceramic resonators are pre-packaged with 

their “load capacitances” and therefore have three terminals. 

Ceramic resonators 
defined 

Ceramic resonators 
are similar to 
crystals, but have 
poorer performance 
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Oscillation Conditions 

A basic feedback oscillator is shown below: 

 

noise



A
VoVs

feedback
network

amplifier

Vf

 

 

Figure 4.10 – The basic form of a harmonic oscillator 

The amplifier’s voltage gain is  jA , and the voltage feedback network is 

described by the frequency response   j . In many oscillators, at the 

frequency of oscillation, the amplifier is operating in its midband region where 

 jA  is a real constant, denoted by oA . 

The summing junction in the figure suggests that the feedback is positive. 

However, the phase of fV  determines if fV  adds or subtracts from sV . From 

the figure we have: 

 
of

fso A

VV

VVV




 

(4.26a) 

(4.1b) 

Thus, the closed-loop voltage gain is: 

A

A

s

o




1V

V
 

 

(4.27) 

The loop gain is defined as A . 

The basic form of a 
harmonic oscillator 

Loop gain defined 
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For oscillations to occur, an output signal must exist with no input signal 

applied. With 0sV  it follows that a finite oV  is possible only when the 

denominator of Eq. (4.27) is zero. That is, when: 

1A  
(4.28)

Thus, for oscillations to occur, the loop gain must be unity. This relation is 

known as the Barkhausen criterion. Since A  and   are complex, it follows 

that: 





360

1

nA

A




 

(4.29a)

(4.4b)

where n is an integer. 

If the amplifier is operating in the midband, and oA  is a negative number (i.e. 

the amplifier is an inverter), then the phase shift through the amplifier is 180 . 

In this case the feedback network   needs to provide an additional phase shift 

of  360180 n , so that the total phase shift associated with the closed-loop is 

0  or a multiple of 360 . 

From circuit theory we know that oscillation occurs when a network has a pair 

of complex conjugate poles on the imaginary axis. However, in electronic 

oscillators the poles are not exactly on the imaginary axis because of the 

nonlinear nature of the loop gain. There are different nonlinear effects that 

control the pole location in an oscillator. One nonlinear mechanism is due to 

the saturation characteristics of the amplifier.  

A saturation-limited sinusoidal oscillator works as follows. To start the 

oscillation, the closed-loop gain in Eq. (4.27) must have a pair of complex-

conjugate poles in the right-half plane. Then, due to the noise voltage generated 

by thermal vibrations in the network (which can be represented by a 

superposition of input noise signals sv ) or by the transient generated when the 

DC power supply is turned on, a growing sinusoidal output voltage appears. 

The Barkhausen 
criterion for 
oscillation in a 
harmonic oscillator 

An intuitive 
explanation of the 
operation of a 
harmonic oscillator 
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The characteristics of the growing sinusoidal signal are determined by the 

complex conjugate poles in the right-half plane. As the amplitude of the 

induced oscillation increases, the amplitude-limiting capabilities of the 

amplifier (i.e., a reduction in gain) produce a change in the location of the 

poles. The changes are such that the complex-conjugate poles move towards 

the imaginary axis. Once the poles move to the left-half plane the amplitude of 

the oscillation begins to decrease, moving the poles toward the right-half plane. 

The process of the poles moving between the left-half plane and the right-half 

plane repeats, and some steady-state oscillation occurs with a fundamental 

frequency, as well as harmonics. This is a nonlinear process where the 

fundamental frequency of oscillation and the harmonics are determined by the 

location of the poles. Although the poles are not on the imaginary axis, the 

Barkhausen criterion in Eq. (4.28) predicts the fundamental frequency of 

oscillation fairly well. It can be considered as providing the fundamental 

frequency of the oscillator based on some sort of average location for the poles. 
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Oscillator Configurations 

Oscillator circuits normally take on the name of their inventor. The Pierce, 

Colpitts and Clapp oscillators are the same circuit but with the ground point at 

a different location. 

Pierce Oscillator 

The most popular configuration is the Pierce oscillator shown below: 

 

X1

C1 C2

-G



A

 

 

Figure 4.11 – The Pierce oscillator configuration 

It has many desirable characteristics. It will work at any frequency from the 

lowest to the highest – from 1 kHz to 200 MHz. It has very good short-term 

stability because the crystal’s source and load impedances are mostly 

capacitive rather than resistive, which give it a high in-circuit Q. The circuit 

provides a large output signal and simultaneously drives the crystal at a low 

power level. Large shunt capacitances to ground on both sides of the crystal 

make the oscillation frequency relatively insensitive to stray capacitance, as 

well as giving the circuit a high immunity to noise. 

The Pierce configuration does have one disadvantage – it needs a relatively 

high amplifier gain to compensate for relatively high gain losses in the circuitry 

surrounding the crystal. 

The Pierce oscillator 
configuration - the 
amplifier in a Pierce 
oscillator is an 
inverting amplifier 

The Pierce oscillator 
has many desirable 
characteristics 
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Colpitts Oscillator 

The configuration of the Colpitts oscillator is shown below: 

 

X1

C1

C2

G



A

 

 

Figure 4.12 – The Colpitts oscillator configuration 

The main advantage over the Pierce configuration is a very low current 

consumption, although the component selection is more critical. It also has the 

advantage of producing low amplitude sinusoidal oscillations, which reduces 

RF emissions. 

Other Configurations 

There are many other circuit configurations, such as the Clapp, Butler and 

Meacham oscillators. They are generally more complicated to design, and use a 

greater number of parts, than the Pierce and Colpitts circuits. They can be 

based on discrete transistor amplifiers or on digital IC gates. Some 

configurations are suitable only in particular applications. 

 

The Colpitts 
oscillator 
configuration - the 
amplifier in a 
Colpitts oscillator is 
a noninverting 
amplifier 
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The Pierce Oscillator using Digital IC Inverters 

The popular Pierce oscillator, using digital IC inverters, is shown below: 

 

Rs

Rb

X1

C1 C2

vo

integrated
circuit

 

 

Figure 4.13 – The Pierce oscillator using digital IC inverters 

The resistor bR  is necessary to bias the IC inverter so that it operates in the 

linear region of its input-output voltage characteristic. Thus, the inverter acts as 

a high gain inverting amplifier. This resistor is usually built into the dedicated 

clock module of a microcontroller. The resistor sR  is used to control the 

“crystal drive”, i.e. the crystal current. The second inverter is used as a digital 

inverter and will produce a square wave signal instead of a sinusoid. 

Virtually all digital IC clock oscillators are of the Pierce type, as the circuit can 

be implemented using a minimum of components: two digital inverters, two 

resistors, two capacitors, and the quartz crystal. The low manufacturing cost of 

this circuit, and the outstanding frequency stability of the quartz crystal, give it 

an advantage over other designs in many consumer electronics applications. 

The Pierces 
oscillator using 
digital IC inverters 
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Analysis of Oscillators 

The ideal structure of any oscillator configuration is shown below: 

 

VoA Vi

Ro

Vi Ri

 Vo

Vs

A



Vo

 

 

Figure 4.14 – Ideal structure of any oscillator 

It consists of a unilateral open-loop amplifier (the A circuit) and an ideal 

voltage-sampling, voltage-mixing feedback network (the  circuit). The A 

circuit is represented by its Thévenin equivalent, and the  circuit does not load 

the A circuit. 

The circuit of Figure 4.14 exactly follows the ideal feedback model of 

Figure 4.10. Therefore the closed-loop voltage gain is given by: 

A

A

s

o




1V

V
 

(4.30) 

 

Ideal structure of 
any oscillator 
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A practical oscillator is shown below: 

 

VoViVs

Basic
Amplifier

Feedback
Network1 2

 

 

Figure 4.15 – Practical structure of any harmonic oscillator 

In a practical oscillator, the feedback network will not be an ideal voltage-

controlled voltage source, Rather, the feedback network is usually composed of 

reactive elements and hence will load the basic amplifier and thus affect the 

values of A , iR  and oR . 

We need to find the A circuit and the  circuit that corresponds to this practical 

case. The problem essentially involves representing the amplifier and feedback 

network of Figure 4.15 by the ideal structure of Figure 4.14. 

Practical structure of 
any harmonic 
oscillator 
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As a first step, we can represent the two-port feedback network in terms of its h 

parameters (this choice is based on the fact that this is the only parameter set 

that represents the feedback network by a series network at port 1 and a parallel 

network at port 2): 

 

Vs Vi

Basic
Amplifier Vo

I 1

V2h12

h11

h22I 1h21 V2

Feedback network
 

 

Figure 4.16 – Circuit showing the h parameters of the feedback circuit 

The current source 121Ih  represents the forward transmission of the feedback 

network. Since the basic amplifier has a very large input resistance, the current 

1I  will be very small, and therefore the forward transmission 121Ih  of the 

feedback network can be neglected. We will thus omit the controlled source 

121Ih  altogether. 

Circuit showing the 
h parameters of the 
feedback circuit 
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If we now include 11h  and 22h  with the basic amplifier, we obtain the circuit 

shown below: 

 

Vs Vi
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Amplifier Vo

Voh12
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oV

circuit

circuitA

 

 

Figure 4.17 – The previous circuit with 21h  neglected 

If we now insert the Thévenin equivalent of the basic amplifier we get: 
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Figure 4.18 – The previous circuit with the basic amplifier shown 
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We can now determine the A circuit: 
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Figure 4.19 – The A circuit 

where, from Figure 4.18, we have: 
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(4.31) 

We can also determine the  circuit: 

 

 Vo Vo

 

 

Figure 4.20 – The  circuit 

where, from Figure 4.18, we have: 

12h  
(4.32) 

The A circuit’s 
parameters 

The  circuit’s 
parameters 
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Analysis of the Pierce Oscillator 

In many oscillators the feedback network is a frequency-selecting -network: 
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Figure 4.21 – The feedback network for many oscillators 

From this network, we get: 
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(4.33)

Therefore, we have: 
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 (4.34)

and: 

31
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
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 (4.35)

The feedback 
network for many 
oscillators 

The h parameters 
for the typical 
feedback network  
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We have determined the parameters that apply to the ideal model presented in 

Figure 4.14. The loop gain is: 
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(4.36) 

In a Pierce oscillator utilising a gate inverter, the input resistance is very large, 

since the input is connected to the gate of a MOSFET amplifier. Therefore, if 

we let ir , then the loop gain is: 
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(4.37) 

If 1Z , 2Z  and 3Z  are purely reactive impedances given by 11 jXZ , 

22 jXZ  and 33 jXZ ,  then the loop gain can be expressed in the form: 

   
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(4.38) 

Applying the Barkhausen criterion, we set the loop gain to one for stable 

oscillations. The phase shift of the loop gain is zero when the imaginary part of 

Eq. (4.38) is zero. That is, for stable oscillations we must have: 

      0030201   XXX  
(4.39) 

This equation determines the frequency of oscillations, 0 . 

The loop gain 
equation for the 
typical configuration

The first condition 
that must be 
achieved for stable 
oscillations to occur
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At this frequency the loop gain in Eq. (4.38) reduces to: 

     
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 (4.40)

and using Eq. (4.39) we obtain: 
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 02

01
00 


X

X
A 

 (4.41)

For stable oscillations the loop gain in Eq. (4.41) must be unity. To start the 

oscillations, the loop gain must be greater than unity. Remembering that the 

amplifier is an inverter so that   is a negative number, then  01 X  and 

 02 X  must have the same sign. 

Thus, if  01 Z  is capacitive (i.e.   1001 1 CX   ), then  02 Z  must also 

be capacitive (i.e.   2002 1 CX   ). From Eq. (4.39) it also follows that 

 03 Z  must be inductive since      020103  XXX   (i.e. 

  LX 003   ). 

This is precisely the configuration of the Pierce oscillator, where we set the 

feedback network to be: 

 

C2C1
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Figure 4.22 – The feedback network for a Pierce oscillator 

The second 
conditions that must 
be achieved for 
stable oscillations to 
occur 

The feedback 
network for a Pierce 
oscillator 
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For such a configuration, the frequency of oscillations, from Eq. (4.39), is 

given by: 

0
11

0
2010

 L
CC


  

 

(4.42) 

Now we define the load capacitance as seen by the inductor as the series 

combination of 1C  and 2C : 
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(4.43) 

Then the frequency of oscillations is given by: 
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(4.44) 

From Eq. (4.40), we can see that at 0  the gain of the amplifier is A  

(which is a negative number) so the phase shift through the amplifier is 180. 

From Eq. (4.41) we can see that: 
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(4.45) 

Therefore, the phase shift through the feedback network is also 180 (as it must 

be for the loop gain to have a phase shift of  360n ). The gain condition 

follows from Eq. (4.41), namely: 
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(4.46) 

Load capacitance 
defined 

The frequency of 
oscillation for a 
Pierce oscillator 

The feedback 
network provides 
180° of phase shift 
at the frequency of 
oscillation 

The gain condition 
for oscillations to 
occur 
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Intuitive Analysis of the Pierce Oscillator 

At 0 , the load impedance seen by the amplifier: 
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(4.47)

is infinite. Therefore, at 0  the feedback network is: 
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Figure 4.23 – The feedback network at 0  

Since the feedback network appears as an open-circuit from port 2, then no 

current enters the network. Also, there is no current out of port 1 since the 

input impedance of the amplifier, iR , is effectively an open-circuit. KVL 

around the interior mesh gives: 
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(4.48)

The current 3I  can be found from Ohm’s Law across 2C : 

oCj VI 203   
(4.49)

which shows that 3I  is non-zero. 

The feedback 
network at 
resonance 
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Since 3I  is non-zero, then Eq. (4.48) gives: 
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(4.50) 

which is the condition for oscillation again, and identical to Eq. (4.39). 

We can also determine the voltage fed back to the amplifier: 
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(4.51) 

and thus the feedback factor is:  
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(4.52) 

which is identical to Eq. (4.45). 

In other words, since the feedback network as seen from port 2 appears open-

circuit, the series combination of L  and 1C  must appear inductive to produce 

with 2C  a parallel-resonant tuned circuit. Hence the current 3i  lags ov  by 90, 

and iv  lags 3i  by 90. Consequently iv  lags ov  by 180. Since the amplifier 

provides a phase shift of 180, the total phase shift around the loop is 360, as 

required for oscillation. 

An intuitive 
description of how 
the Pierce oscillator 
works 
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Using a Crystal in the Feedback Network 

One of the problems with using a real inductor in the Pierce oscillator feedback 

network is the fact that real inductors have a finite winding resistance, so that 

the inductor has a relatively low 0Q . As we saw before, a crystal oscillator has 

a very narrow region of frequencies where it appears inductive, and it has an 

extremely high 0Q  in this region, typically greater than 10, 000. 

The feedback network using a crystal is: 

 

C2C1
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Figure 4.24 – The feedback network for a Pierce oscillator using a crystal 

To derive the frequency of oscillation, we start with the loop gain equation, 

Eq. (4.37): 
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and let: 

ee jXRjXjX  32211 ,, ZZZ  
(4.54)

where the impedance 3Z  is the equivalent impedance of the crystal, which 

needs to be evaluated at a certain frequency. 

The feedback 
network for a Pierce 
oscillator using a 
crystal 
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Thus, the equivalent feedback network is: 
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Figure 4.25 – Equivalent feedback network using a crystal 

The loop gain equation is then: 
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(4.55) 

According to the Barkhausen criterion, the imaginary part must be zero for 

oscillation. Hence, we must have: 
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(4.56) 

The derivation of the frequency at which this criterion is met is quite 

complicated, and is detailed in Appendix A. 

The equivalent 
feedback network 
for a Pierce 
oscillator using a 
crystal 

The condition 
required for the loop 
gain to be real 
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If we define the load capacitance on the crystal as the series combination of 1C  

and 2C : 
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(4.57)

Then it turns out that: 
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(4.58)

As stated before, crystal manufacturers will cut the crystal to achieve resonance 

at a specified load capacitance, LC . To design an oscillator, we simply have to 

choose a crystal which is “parallel” and choose 1C  and 2C  to match the 

manufacturer’s specification for the load capacitance. 

Returning to Eq. (4.55), if the imaginary part is zero then the gain requirement 

of 1A  to start oscillations requires that: 

 eoe XXXrRXX  1221  
(4.59)

This puts a requirement on the open-circuit gain of the amplifier,  . 

Since the product 21 XX  for a given value of  21 XX   is largest when 

21 XX  , designers usually choose 21 CC   and therefore: 

LCCC 221   
(4.60)

Crystal load 
capacitance defined 

The oscillation 
frequency of the 
Pierce oscillator – 
this is what 
manufacturers 
specify 

The conditions 
required to start 
oscillations 

The design 
equations for a 
Pierce oscillator 
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Drive Level 

Drive level refers to the power dissipation in the crystal. This is important 

because the power dissipated in the crystal must be limited or the quartz crystal 

can actually fail due to excessive mechanical vibration. Also, the crystal 

characteristics change with drive level due to the nonlinear behaviour of the 

quartz. 

Manufacturers specify the “crystal maximum drive level” which is the 

maximum power dissipation allowable in the crystal. An overdriven crystal 

will deteriorate fast. The oscillator circuit determines the crystal drive level. 

Using the equivalent feedback network: 

 

C2C1

Re
L e

VoVi

Ie

 

 

Figure 4.26 – Equivalent feedback network using a crystal 

we can see that: 

 1XXjR ee

o
e 


V
I

 

 

(4.61) 

At the oscillation frequency we have: 

20110101
01

111

CCC
LX

L
ee 

 
 

(4.62) 

Drive level defined 
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Therefore: 

2
201

1

1
X

C
XX e 

  (4.63)

and: 

22

and
XjXR

o
e

e

o
e

V
I

V
I 




 
(4.64)

where we have made the reasonable assumption that eRX 2  at the 

frequency of oscillation. The drive level can now be calculated as: 

 22012
2

2
2

oe
o

eeeXTAL CR
X

RRP V
V

I 
 (4.65)

where oV  is the RMS value of the fundamental component of the voltage 

appearing at the output of the amplifier, and eR  is the effective resistance of 

the crystal at the frequency of oscillation. In gate oscillators, the peak-to-peak 

variation of the amplifier’s output voltage, ov , is close to the supply voltage, 

DDV , and so  22DDo VV  can be used as a maximum upper bound. In 

oscillators with amplitude limitation control, oV  is different and should be 

replaced with the actual RMS value of the output voltage. 

To reduce the crystal drive level, it may be necessary to introduce a series 

damping resistor, sR , as shown in Figure 4.13. It is important to have a good 

margin of safety between the power dissipated in the crystal and the maximum 

drive level specified by the crystal manufacturer, because loop gain can 

increase with colder temperatures and higher supply voltages, thus increasing 

the risk of overdriving the crystal. If the drive level is too low, the crystal may 

fail to oscillate or have degraded phase noise performance. 

The power 
dissipated in the 
crystal 
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PCB Layout 

The layout of the physical components should ensure that stray inductance in 

the loop containing the crystal and load capacitors is minimised. Therefore, 

careful grounding and routing of tracks around the crystal is usually required. 

An example of a PCB layout for a Pierce oscillator is shown below: 

 

 

 

Figure 4.27 – Example of a PCB layout for a Pierce oscillator 

Notice that the load capacitors (C106 and C107) and the crystal (X101) form a 

small loop, since in the resonance condition there is a circulating current, and 

we wish to minimise parasitic inductance caused by connecting tracks. Also 

note that this is a 4-layer PCB, so the via between the load capacitors connects 

directly to a ground plane on an inner layer. The orientation of the crystal was 

unavoidable, due to surrounding components, and so the crystal tracks leading 

to the integrated circuit  are surrounded by a copper ground plane to minimize 

mutual capacitive coupling from the high-frequency crystal tracks to 

surrounding signal tracks. 

An example of a 
good PCB layout for 
a Pierce oscillator 
feedback network 
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Example 

For a particular microcontroller, we need to design a crystal oscillator for 

8 MHz operation with an accuracy of 200 ppm over the crystal’s operating 

temperature range. The lifetime of the product is 10 years. 

The following data is obtained from the datasheet: 

 

Specification Value 

Nominal Frequency 8.000 MHz 

Frequency tolerance at 25 °C ±30 ppm 

Temperature stability ±50 ppm 

Operating temperature range -10 °C to 60 °C 

Load capacitance 16 pF 

Equivalent Series Resistance (ESR) 70 Ω max 

Shunt capacitance, 0C  5 pF max 

Drive level 100 W max 

Aging ±5 ppm per year 
 

In addition, the microcontroller datasheet gives the following information on 

its oscillator pins: 

 

Specification Value 

Input capacitance 7 pF typ 

Xtal pin-to-pin capacitance 3 pF typ 

Equivalent output capacitance 
(takes into account the internal 
propagation delay of the inverter) 

25 pF typ 

Output voltage level 0-5 V 
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The oscillator circuit diagram for the Pierce configuration is: 

Rs

Rb

X1

C1 C2

microcontroller

vo

7 pF
Ci

25 pF
Co

3 pF
Cx

 

Notice that this is a realistic circuit diagram that shows the input and output 

capacitance, as well as the pin-to-pin capacitance, of the microcontroller’s 

oscillator amplifier. The capacitance of the PCB tracks connecting the 

components to the microcontroller, if kept short, will have capacitances (to 

common) less than 1 pF, so they are not included in the model. 

To achieve frequency accuracy, we have to present to the crystal the same load 

capacitance that it was adjusted for. The amplifier’s input capacitance appears 

in parallel with 1C . The resistor sR  provides some isolation between the 

crystal feedback network and the amplifier’s output capacitance oC , as well as 

from the pin-to-pin capacitance,  xC . Let: 

iCCC  11  

Thus, the load capacitance presented to the crystal is: 

21

21

CC

CC
CL 


  
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Using a spreadsheet, set up with standard capacitor values, we can search for 

the series combination of 1C   and 2C  that is closest to LC . Considerations of 

loop gain, start-up time and frequency stability over temperature suggest that 

1C   and 2C  should be about equal. If we choose: 

pF 33andpF 22 21  CC  

then: 

pF 3333andpF 29722 21  CC  

which are approximately equal. Notice that the bulk external capacitors are 

larger than the microcontroller’s internal capacitors, which will vary to some 

extent with temperature and the manufacturing process. 

With these values, the load capacitance presented to the crystal is: 

pF 44.15
3329

3329
21

21











CC

CC
CL

 

We can determine the error in presenting a pF 44.15  load capacitance to the 

crystal instead of a 16 pF load capacitance. We start with: 

 











L

rs CC

C
ff

0

3
01 2

1  

then using the fact that the crystal has a shunt capacitance of 5 pF maximum, 

and was calibrated for pF 16LC : 

 





























12
3

12
3

1042
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C
f

C
f
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The actual frequency of oscillation is: 

 





























12
3

12
3

01

1088.40
1

1044.1552
1

C
f

C
ff

rs

rs

 

Dividing the actual and calibrated values gives: 

12
3

12
3

01

1042
1

1088.40
1

000,000,8











C

C
f

 

To evaluate the error, we need an estimate of 3C , the motional arm 

capacitance, which is not generally specified on manufacturer’s datasheets. 

Using fF 283 C  (which assumes the unloaded crystal 100000 Q ), we get: 

ppm 2025.181

42

028.0
1

88.40

028.0
1

000,000,8

000,000,801

0










 f

f

f
 

The type of capacitors used for 1C  and 2C  would be ceramic class 1, with a 

tolerance of 1% and a temperature coefficient of C0G / NPO. Even with a 

worst case tolerance of 1%, the frequency error is still within  25 ppm. 

We can now tabulate an error budget: 

 

Error Source Error Value 

Capacitors 25 ppm 

Crystal frequency tolerance 30 ppm 

Temperature stability 50 ppm 

Aging (over 10 years) 50 ppm 

TOTAL 155 ppm 
 

Thus, the overall accuracy of the oscillator will be ±155 ppm over the 

operating temperature range and lifetime, which is better than the required 

accuracy of 200 ppm. 
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You can see from this example that the selection of capacitors 1C  and 2C  is 

not critical for the determination of the oscillation frequency, since most of the 

error is introduced by the characteristics of the crystal. 

Next, we check the drive level. The crystal datasheet has already specified the 

maximum ESR at series resonance, which is equal to 3R . Therefore, at the 

oscillation frequency, the effective resistance is: 







 








 
  6.120

16

165
70

22

0
3

L

L
e C

CC
RR  

The power dissipated in the crystal, assuming 0sR , is then: 

 

mW037.1

22

5
103310826.120

2

126

2

201

















 oeXTAL CRP V

 

Since this exceeds the maximum drive level specification of 100 W by a 

factor of about 10 times, we need to add the series resistor sR . This resistor is 

in series with the output resistance of the microcontroller’s inverting amplifier, 

so it modifies the crystal oscillation equations. To take sR , xC  and oC  into 

account, we can perform an analysis as in Appendix B. 

To reduce the gain required by the amplifier, and therefore the crystal drive 

level, we will change the values of 1C  and 2C . Since 12 CC , we can 

derive gain by reducing the value of 1C  and increasing the value of 2C . We 

will therefore set pF 6.51 C  and pF 1002 C . We use a value for the output 

resistance of the gate inverter of around  k 20or . We will also assume that 

the output voltage level of the gate inverter swings between 1 V and 4 V in the 

steady-state (since, from the inverter transfer characteristic, the gain drops off 

to zero beyond these values). The output is therefore assumed to be 3 V peak-

to-peak. 

The value of the series resistor is initially set to approximately match the 

impedance of 2C  at the oscillation frequency. Thus we set   100sR . 
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The MatLab code in Appendix B shows how to determine the frequency of 

oscillation, the voltages in the circuit, the crystal’s equivalent impedance and 

the crystal power. The crystal parameters were derived from the ESR and 

nominal frequency given in the datasheet, and the assumption that the unloaded 

Q of the crystal was 10 000. 

The results of the analysis are: 

f0 = 8000221.39242875 

error = 27.6740535943536 ppm 

Ze = 123.662844964046 + 1308.12253917226i 

mu = -18.4544198701407 

Pxtal = 97.9151575444847 W 

Notice that the frequency error is roughly the same as before ( 25 ppm). Also 

note that the minimum inverter gain required for oscillations is 20 , 

which should be achievable in a single CMOS inverter. The power is also 

under the requirement of 100 W. 

The completed design is shown below: 

X1

C1 C2

microcontroller

8 MHz

Rs

100

100 pF6.2 pF
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To verify the analysis, we can carry out a simulation in PSpice. The circuit 

below was entered into Altium Designer: 

 

The output of the transient simulation is shown below: 
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The next stage would be to carefully lay out the components and the tracks on 

the PCB, taking care to keep tracks short and ensuring a good ground plane 

beneath and around the oscillator components and pads. 

The last task would be to build and test the oscillator. Checking the design is 

virtually impossible without specialised test equipment. One check is to 

monitor the waveforms at the input and output of the inverting gate. This will 

require a high bandwidth oscilloscope and a specialised probe. The normal x10 

oscilloscope probe will have an input impedance of ~10 MΩ in parallel with 

15 pF. The 10 MΩ will form a DC potential divider to GND with the ~1 MΩ 

bias resistor bR  which will alter the inverters bias point. The 15 pF will appear 

directly across 1C  when measuring the inverter input waveform making 

pF 481 C , not the designed 33pF. Any trace observed on the oscilloscope 

will be completely invalid (and most likely the probe will stop the oscillator 

from working anyway). A better choice of oscilloscope probe is an ‘Active’ or 

‘FET’ probe which has a high input impedance buffer built into the probe tip. 

The input impedance of an ‘Active’ probe is typically >10 MΩ in parallel with 

<2 pF, but as before the effect of using this probe must be taken into account 

when probing the oscillator. 

For this design the expected waveforms (assuming a suitable probe is used that 

will not alter the oscillator’s working conditions) are a slightly distorted 8 MHz 

sine wave from 1 V to 4 V at the inverter’s output and a clean 8 MHz sine 

wave of  0.5 V peak-to-peak at the inverter’s input (both waves superimposed 

on the 2.5V bias point). It is important the input waveform peak-to-peak value 

is always less than the inverter’s supply voltage to prevent the input from 

limiting due to the input protection diodes. 

The actual crystal power dissipation is not easily measured. Assuming the 

actual crystal current could be measured (with a high bandwidth, ultra low 

inductance AC current probe for example) then we still need to know the actual 

crystal parameters, and not the maximum values as given on the datasheet. This 

requires measurements to be made on the crystal using a specialised crystal 

impedance meter before the crystal is used in the circuit. 
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Appendix A 

Oscillation Frequency for the Pierce Oscillator using a Crystal 

Starting from the condition for oscillation:  

o

e
e r

XR
XXX 2

21   
 

(4A.1) 

we substitute for eR  and eX  from Eq. (4.24), and using the subscript 3 for the 

motional arm of the crystal to avoid confusion with the external 1C , we have:  
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(4A.2) 

Multiplying both sides by  23
2
3 0CXXR  , this simplifies to: 

        2
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2
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2
3

2
321 0000 C

o
CCC XR
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(4A.3) 

Factoring  
033

2
3 CXXXR   gives: 

         2
3

2
32133

2
321 00000 C

o
CCCC XR

r

X
XXXXXXXXRXXX  (4A.4) 

Substituting for the reactances, we get: 
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(4A.5) 
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In order to achieve a polynomial in 0  with positive powers, we multiply both 

sides by 2
321

2
0

3
0 CCCC : 

     
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(4A.6)

Expanding the inner product, we get: 
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(4A.7)

Grouping like powers of 0 , this can be written as: 
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(4A.8)

Making the polynomial monic, we get: 
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(4A.9)

Now we define the load capacitance on the crystal as the series combination of 

1C  and 2C : 

21

111

CCCL

  
(4A.10)

and define the total capacitance in parallel with the motional arm to be:  

21

21
00 CC

CC
CCCC LT 

  
(4A.11)

Load capacitance 
defined 

Total capacitance 
external to the 
motional arm 
defined 
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This simplifies the expression given by (4A.9) to: 
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(4A.12) 

which can be further simplified into: 
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(4A.13) 

This is an exact equation. In order to simplify it further, we call on the 

properties of the typical crystal. Firstly: 

2
3

2
3

30333

112

L

R

CLCLCL T

  
 

(4A.14) 

For example, typical values for an 8 MHz crystal are mH 143 L , fF 273 C , 

  83R  and pF 6.50 C . A typical load capacitance is pF 32LC , giving 

pF 6.37TC . Thus the inequality above is 515 10265.310306.5  , which 

is certainly true. 

Secondly: 
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(4A.15) 

For a typical output of a MOSFET inverter,  k 5or , and the inequality is 

2230 10938.110037.7  , which again is certainly true. 

The exact equation 
that determines 
possible oscillation 
frequencies 
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With these inequalities, we can ignore the terms with 3R  in Eq. (4A.13), so that 

an approximate equation for the oscillation frequencies is: 
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which simplifies to: 
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Thus, the two approximate oscillation frequencies are: 

TCLCL 333
01

11
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(4A.18)

and: 

0333
02

11

CLCL
  

(4A.19)

Note that the first oscillation frequency, 01 , underestimates the true 

frequency, typically by less than 1 ppm. The use of 01  in determining the 

crystal’s equivalent resistance and reactance will not lead to any significant 

error (less than 0.2%). 

The second oscillation frequency, 02 , overestimates the true frequency, 

typically by less than 1 ppm. However, due to the highly sensitive nature of the 

crystal reactance with frequencies near parallel resonance, the use of 02  in 

determining the crystal’s equivalent reactance will lead to large errors. 

See Figure 4.5 for a graphical depiction of why the crystal reactance has 

different sensitivities to the two oscillation frequencies. Note that 0102   . 

The approximate 
equation that 
determines possible 
oscillation 
frequencies… 

…the first of which 
represents a series 
resonance with the 
capacitance external 
to the crystal’s 
motional arm… 

…and the second 
which represents a 
parallel resonance 
with the crystal’s 
static capacitance 
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Equivalent Circuit at the Oscillation Frequency 

In the Pierce configuration, the crystal is inductive at each of its oscillation 

frequencies, and so it is appropriate to represent the crystal by its equivalent 

series resistance and inductance. If we let: 

3
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C
LX


   

 

(4A.20) 

then the impedance of the crystal is: 
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Thus: 
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and: 
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The crystal 
equivalent 
resistance… 

…and reactance 
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At the frequency 
TCLCL 333

01

11
 , we have: 

TCC
L

01301
301

11


   

(4A.24)

and so: 
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Substituting this into the formula for eR  gives: 
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If 3
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2

0
3 







 


L

L
e C

CC
RR  

(4A.27)

This formula has a typical error less than 0.05%. 

The crystal 
equivalent 
resistance at the 
oscillation 

frequency 01  
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The formula for eX  can be rearranged to give: 
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Using Eq. (4A.25), we have: 
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and so: 
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Again, if 3
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and therefore: 
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(4A.32) 

This formula has a typical error less than 0.2%. 

The crystal 
equivalent 
reactance at the 
oscillation 

frequency 01  
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The equivalent circuit of the crystal at the oscillation frequency 01  is then: 
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Figure 4.28 – Equivalent circuit of a crystal at the oscillation frequency 01  
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and so: 
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Substituting this into the formula for eR  gives: 
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and so: 
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(4A.36)

This is accurate to within 0.5%, and its value is usually in the megohm range. 

The crystal 
equivalent circuit at 
the oscillation 

frequency 01  

The crystal 
equivalent 
resistance at the 
oscillation 

frequency 02  
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Dominant Oscillation Frequency 

The two frequencies at which oscillation could occur according to the phase 

criterion are 01  and 02 . However, the gain condition to start oscillations, 

1A ,  still has to be satisfied. 

For 01 , we have seen that the equivalent circuit for the crystal reduces to a 

resistance that is similar in value to 3R  in series with an inductor which has a 

reactance equal in magnitude to the reactance of the crystal’s load capacitance. 

The crystal is effectively a high-Q inductor and we can resort to the equations 

derived for the pure reactance case. In particular: 

1

2

C

C
  

 

(4A.37) 

The load on the amplifier, 22h , is not infinite and the calculation of the gain A 

is algebraically cumbersome. Typical values will result in a gain which is 

roughly half of the open-circuit gain,  . Thus, the required amplifier gain for 

oscillation is not onerous, and is typically required to be 2  (remember 

that   is a negative number). 

For 02 , we have seen that the equivalent circuit for the crystal reduces to a 

resistance that is very much greater than 3R  (with values in the megohms) in 

series with an inductor which also has a very large reactance. Thus, the 

amplifier’s load is   21222 || ZZZZ  eh  and the crystal and 1C  branch of 

the feedback network is effectively an open-circuit. Also, as a result of the 

large crystal impedance, the feedback factor typically has a magnitude 

410 . Thus, to achieve 1A , the amplifier gain magnitude would need 

to be 410A . This large gain is unachievable in a single transistor amplifier 

or logic gate inverter. Therefore, for 02 , we have 1A , and oscillations at 

this frequency do not occur. 

The crystal will only 

oscillate at 01  
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The Approximate Oscillation Frequency 

We have now seen that 01  will be the frequency of oscillation of the Pierce 

oscillator. We saw previously that for a crystal by itself, its series resonance 

frequency was given by Eq. (4.15): 

33

1

CL
rs   

(4A.38)

where the subscripts have been chosen to be 3 for consistency with the notation 

used in this appendix. 

Thus, the approximate oscillation frequency 01  can be written as: 

T
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But 13 TCC . Therefore, the binomial approximation: 
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may be used, and: 
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Therefore: 
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which is exactly the same as Eq. (4.25). The error in using this expression is 

typically less than 1 ppm. 

 

The oscillation 
frequency that 
manufacturers tune 
the crystal to for a 
certain load 
capacitance 
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Appendix B 

Analysis of a Realistic Pierce Oscillator using a Crystal 

The realistic circuit diagram for the Pierce configuration, which includes the 

gate oscillator feedback resistor and the various pin-to-pin and pin-to-earth 

capacitances, is: 

Rs

Rb

X1

C1 C2

vo

Ci CoCx

 

We are only interested in the loop gain of this circuit to establish the conditions 

necessary for oscillation. Therefore, we can “break” the feedback loop and 

analyse the quantity A . 
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Consider the general feedback configuration: 

noise



A
VoVs

feedback
network

amplifier

Vf

 

We set the external noise source to zero, and open the feedback loop by 

breaking the connection of oV  to the feedback network and apply a test signal 

tV : 



A Vo

Vt

feedback
network

amplifier

 

It follows that the loop gain will be given by toA VV . It should also be 

obvious that this applies regardless of where the loop is broken. However, in 

breaking the feedback loop of a practical amplifier circuit, we must ensure that 

the conditions that existed prior to breaking the loop do not change. This is 

achieved by terminating the loop where it is opened with an impedance equal 

to that seen before the loop was broken. 

Returning to the Pierce oscillator circuit, we decide to break the loop at the 

input to the CMOS inverter, which is connected to the gate of an n-type and 

p-type MOSFET. The loop at this point effectively sees an open-circuit, so it is 

an easy place to break the loop. 
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We thus need to analyse the gain of the circuit represented by: 
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MOSFET inverter model
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Using impedances, and lumping iC  and 1C  into 1Z , this can be generalised to: 
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ViZ 2Z 1
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Z o VtViVo

Z sZ e

Z x

 

The crystal has been replaced with its equivalent circuit at resonance. Once the 

resonance frequency is found, analysis is straightforward using nodal analysis: 
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(4B.1) 

The algebraic solutions of the resonance frequency and loop gain are 

cumbersome and involve very large expressions for the coefficients. Symbolic 

analysis of this kind is best done on a computer, where the significance of 

terms appearing in the equations can be evaluated with the prospect of 

simplifying the expressions for human consumption. Alternatively, we can 

resort to numerical analysis and “play” with some of the more significant 

parameters of the circuit to achieve a desired outcome. 
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For example, if xC  is very small so that 0xY , then the expression for the 

oscillation frequency is: 
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(4B.2)

where eR  and eX  are given by Eqs. (4A.22) and (4A.23). Again, this is an 

expression which is best solved numerically and a “try and see” approach is 

made to see how the series resistance sR  and output capacitance oC  affect the 

oscillation frequency and required amplifier gain. 
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The following function first finds the oscillation frequency, then solves for the 

required amplifier gain, circuit voltages and crystal power. 

Xtal.m 

% Xtal - calculates oscillator frequency, 
% required amplifier gain and crystal power 
 
clear all; 
close all; 
format long g; 
 
% Xtal parameters 
fnom=8e6; 
R3=70; 
L3=13.9354841820555e-3; 
C3=28.4397636368481e-15; 
C0=5.0e-12; 
xtal=[R3 L3 C3 C0]; 
 
% amplifier parameters 
ro=20e3; 
Cin=7e-12; 
Cout=25e-12; 
Cx=3e-12; 
Rs=0.1e3; 
Cs=33e-12; 
amp=[ro Cin Cout Cx Rs Cs]; 
 
% feedback parameters 
C1=6.2e-12; 
C2=100e-12; 
fb=[C1 C2]; 
C1p=C1+Cin; 
 
% oscillation frequency 
f0=findosc(xtal,amp,fb,fnom*1.0001) 
% error in ppm 
error=(f0-fnom)/fnom*1e6 
% nodal analysis 
w0=2*pi*f0; 
[V, Ze]=nodal(xtal,amp,fb,w0) 
 
% RMS value of the output's fundamental component 
Vdd=3; 
Vs=Vdd/2/sqrt(2); 
 
% evaluate required gain for AB=1 and resulting voltages 
mu=1/real(V(1)) 
V=mu*V*Vs 
 
% evaluate the "crystal drive" 
% i.e. the power dissipated in the crystal 
Vxtal=V(2)-V(1) 
Ixtal=Vxtal/Ze; 
Re=real(Ze); 
Pxtal=Re*abs(Ixtal)^2*1e6          %in microwatts 
myPxtal=Re*(w0*C2*abs(V(2)))^2*1e6 %in microwatts – approx. 
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The following function is used to find the frequency for which the imaginary 

part of the loop gain goes to zero. It uses the MatLab fzero function. 

findosc.m 

function y = findosc(xtal, amp, fb, f0) 

 

% Normalise for numerical accuracy 
wn=2*pi*f0; 
rn=amp(1); 
 
% Extract xtal parameters 
R3=xtal(1)/rn; 
L3=xtal(2)/rn*wn; 
C3=xtal(3)*rn*wn; 
C0=xtal(4)*rn*wn; 
 
% Extract amplifier parameters 
ro=amp(1)/rn; 
Cin=amp(2)*rn*wn; 
Cout=amp(3)*rn*wn; 
Cx=amp(4)*rn*wn; 
Rs=amp(5)/rn; 
Cs=amp(6)*rn*wn; 
 
% Extract feedback parameters 
C1=fb(1)*rn*wn; 
C2=fb(2)*rn*wn; 
 
% Turn off Display 
options = optimset('Display', 'off', 'TolX', 1e-15, 'TolFun', 1e-15); 
y = fzero(@xtalfun, 1, options); 
     
  function y = xtalfun(w) % Compute the polynomial 
    V=nodal([R3 L3 C3 C0], [ro Cin Cout Cx Rs Cs], [C1 C2], w); 
    AB=V(1); 
    % the objective function value 
    y=imag(AB)/abs(AB); 
  end 
 
  AB 
  y=y*f0; 
end 

Note the use of frequency and magnitude scaling to normalise the coefficients 

in the admittance matrix. This avoids creating an “ill-conditioned” matrix and 

reduces round off errors. 
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The following function performs the nodal analysis and evaluates the crystal 

impedance: 

nodal.m 

function [V, Ze] = nodal(xtal, amp, fb, w) 
 
  % Extract xtal parameters 
  R3=xtal(1); 
  L3=xtal(2); 
  C3=xtal(3); 
  C0=xtal(4); 
 
  % Extract amplifier parameters 
  ro=amp(1); 
  Cin=amp(2); 
  Cout=amp(3); 
  Cx=amp(4); 
  Rs=amp(5); 
  Cs=amp(6); 
 
  % Extract feedback parameters 
  C1=fb(1); 
  C2=fb(2); 
  C1p=C1+Cin; 
 
  % feedback network 
  Y1=i*w*C1p; 
  Y2=i*w*C2; 
 
  % crystal equivalent impedance 
  X3=w*L3-1./(w*C3); 
  Z3=R3+i*X3; 
  XC0=-1/(w*C0); 
  den=R3^2+(X3+XC0)^2; 
  Re=R3*XC0*XC0/den; 
  Xe=XC0*(R3^2+X3*(X3+XC0))/den; 
  Ze=Re+i*Xe; 
  Ye=1/Ze; 
 
  % amplifier and strays 
  Yx=i*w*Cx; 
  Ys=1/Rs; 
  %Ys=i*w*Cs; 
  Yo=i*w*Cout; 
  go=1/ro; 
 
  % admittance matrix 
  Y=[Y1+Ye+Yx -Ye -Yx; -Ye Ye+Y2+Ys -Ys; -Yx -Ys Yx+Ys+Yo+go]; 
  % current source vector with mu=1 
  I=[0 0 go]'; 
  % voltage solution 
  V=Y\I; 
 
end 




