Mudanças bioquímicas em alimentos crus: cereais

Prof. Severino Matias de Alencar

ORIGEM

A palavra cereal vem de Ceres, a deusa da agricultura que zelava pelos grãos cultivados para a alimentação e por sua colheita;

CONCEITO

Cereais são grãos ou sementes de gramíneas, cujas sementes dão em espigas.

- Membro da família da monocotiledôneas (gramíneas);
- Maior importância: trigo, milho, arroz cevada e sorgo;
- Base da alimentação para a população mundial: contribuem com 70% das calorias da dieta;
- Estima-se que a produção mundial de cereais seja de 3.555 milhões de toneladas.

Consumo per capita de cereais: atualmente em torno de 378 Kg

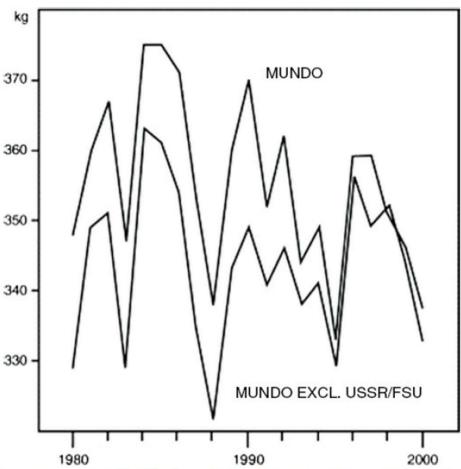
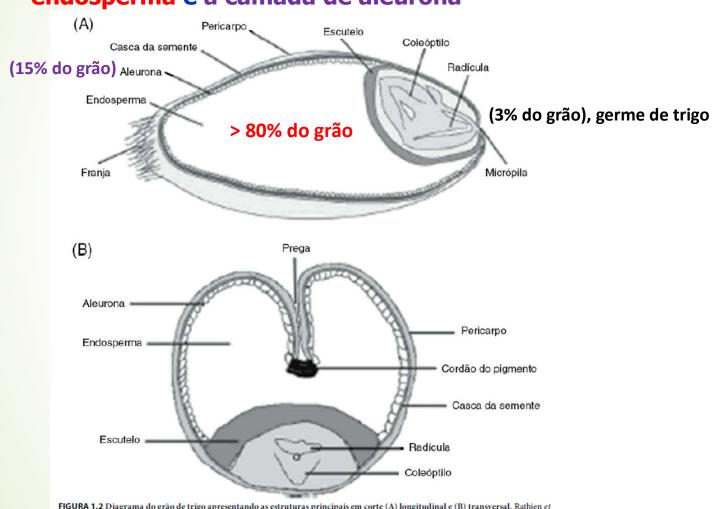
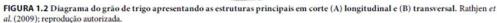
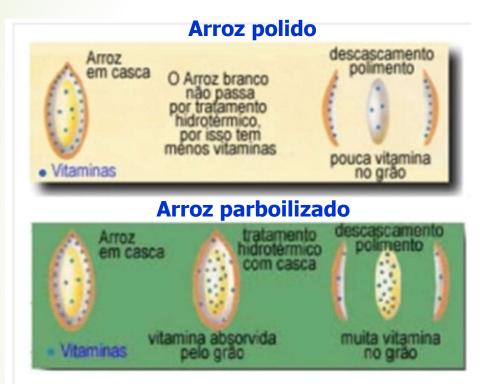




FIGURA 1.1 Produção de cereais per capita 1980-2000. Fontes: FAOSTAT; Escritório do Censo, Estados Unidos. Adaptado de Gilland (2002).

Estrutura dos grãos de cereais


A semente de cereais é composta de três tecidos principais: o embrião, o endosperma e a camada de aleurona

Diferença entre arroz polido e parboilizado

Tabela Nutricional	Arroz Parboilizado	Arroz Branco
Fibras	0,63g	0,49g
Proteínas	3,2g	2,32g
Gorduras	0,6g	1,18g
Calorias	123kcal	124kcal

COMPOSIÇÃO DOS GRÃOS DE CEREAIS

- 10 a 15% de proteínas;
- Os carboidratos não digeríveis têm recebido atenção cada vez maior como importante fonte de fibras nas dietas e apresentam efeitos benéficos na saúde;
- Além disso, os polissacarídeos dos cereais estão associados a muitas outras substâncias, principalmente proteínas, polifenóis e fitatos, que podem modificar as ligações dos minerais pelas fibras dietéticas.

Amiloplastos

Organelas responsáveis pelo armazenamento dos grânulos de amido

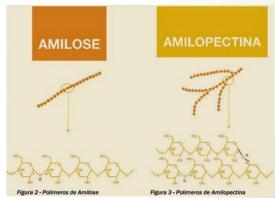
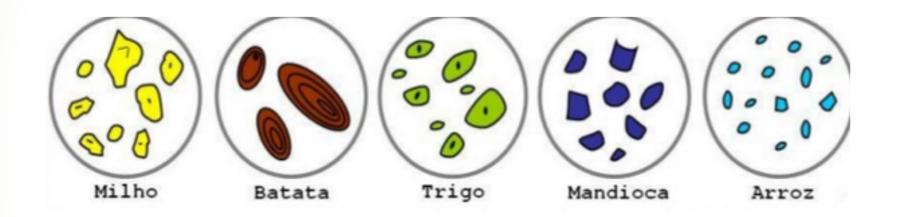
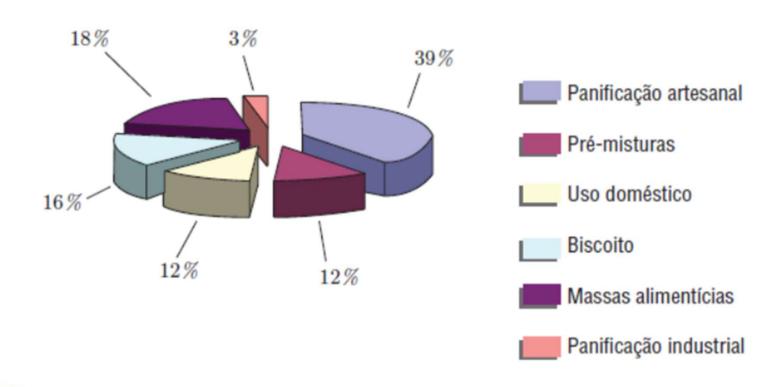

Grânulo de amido

TABELA 1.1 Estrutura e conteúdo de amilose de alguns grânulos de amido de cereais

Fonte	Formato do grânulo	Tamanho do grânulo (nm)	Conteúdo de amilose (%)
Trigo	Lenticular ou redondo	20-25	22
Milho	Redondo ou poliédrico	15	28
Milho ceroso	Redondo	15 (5-15)	1
Alto teor de amilose	Redondo ou formato de salsicha irregular	25	52
Cevada	Redondo ou elíptico	20-25	22
Arroz	Poligonal	3-8	17-19 ^a 21-23 ^b
Aveia	Poliédrico	3-10	23-24

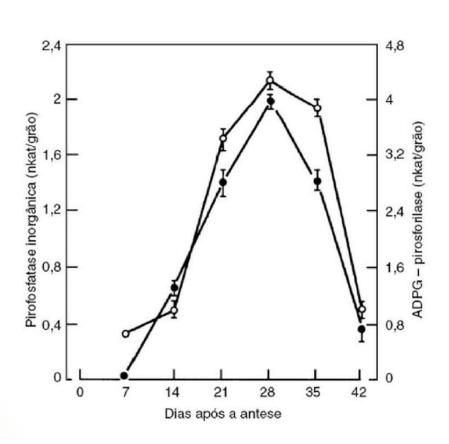

^a Japônica

Fonte: Adaptado de Lineback (1984).



b Índica

Aparência dos grânulos de amido das principais fontes


Destinações da farinha de trigo

Biossíntese do amido

Sacarose é considerada a maior fonte de carbono para a síntese de amido

ATP + Glicose-1P ADPG-pirofosforilase Adenosina difosfatoglicose (ADPG) + PPi

Pirofosfatase alcalina

2Pi

Conversão de amido em sacarose no grão de cereais em desenvolvimento

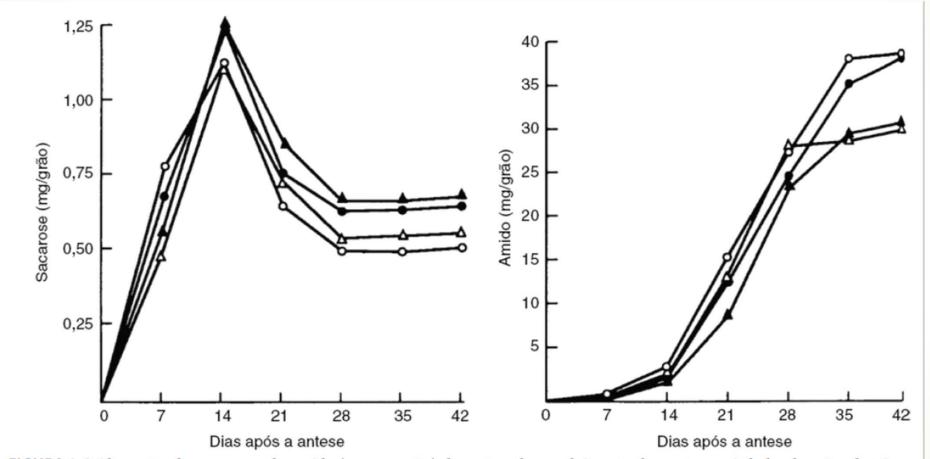


FIGURA 1.4 Alterações da sacarose e do amido (mg por grão) durante o desenvolvimento de quatro variedades de grãos de trigo. Kumar e Singh (1981).

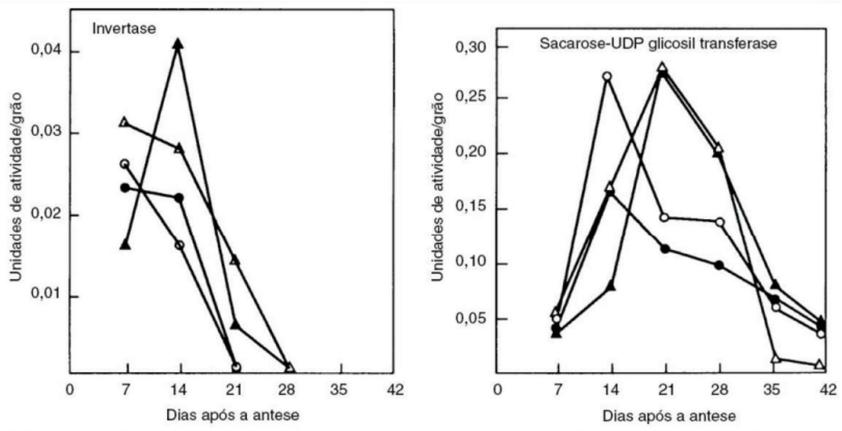
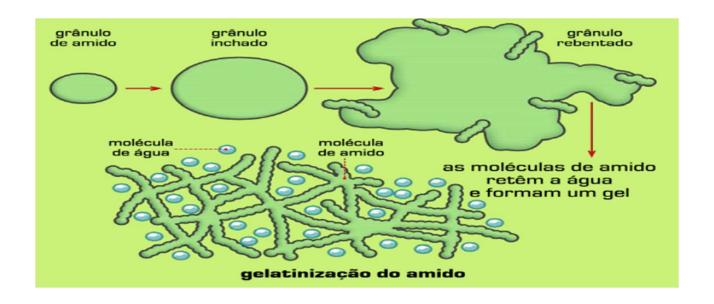



FIGURA 1.5 Alterações na invertase e sacarose-UDP glicosil transferase durante o desenvolvimento de grãos de trigo. Kumar e Singh (1980).

...continuação Biossíntese do amido

UDP = Uridina difosfato ATP = Adenosina trifosfato

Gelatinização do amido

A gelatinização é o fenômeno que ocorre pelo rompimento das ligações de hidrogênio quando os grânulos de amido da farinha são aquecidos em presença de água. Os grânulos aumentam de volume e rompem-se irreversivelmente, formando um gel viscoso e translúcido.

Retrogradação do amido

Retrogradação do amido ocorre quando o gel de amido é resfriado, tornando-se mais opaco (menos transparente) e é acompanhado de perda da água e da formação de rachaduras no gel. Um exemplo prático desse processo é o pão envelhecido.

Corpos proteicos

- Corpos de proteína são organelas unidas às membranas celulares, que contêm proteínas de reserva no endosperma amiláceo dos cereais;
- Eles também são encontrados na camada de aleurona, apesar de possuírem composição, estrutura e funções diferentes das anteriores;
- Enquanto os corpos de reserva de proteínas do endosperma exercem somente a função de armazenamento, os da camada de aleurona desempenham funções sintéticas e de secreção.

spécies	Camadas de aleurona			Endosperma		
species	Diâmetro (µm)	Estruturas	Diâmetro (µm)	Estruturas		
rigo	2-3	Dois tipos de inclusões	0,1-8	Nenhuma inclusão; estrutura granula		
	4-5	Um globoide e um cristaloide	1-2	Nenhuma inclusão; estrutura granula		
Cevada	2-3	Dois tipos de inclusão	2	Nenhuma inclusão; estrutura lamelar		
	4-5	Um globoide e um cristaloide	1-1	Nenhuma inclusão; homogênea		
Arroz	1,5-4	Globoide	2-5	Nenhuma inclusão; homogênea		
	1-3	Globoide	2-5	Nenhuma inclusão; homogênea		
Milho			1-2	Nenhuma inclusão; homogênea		

Corpos proteicos

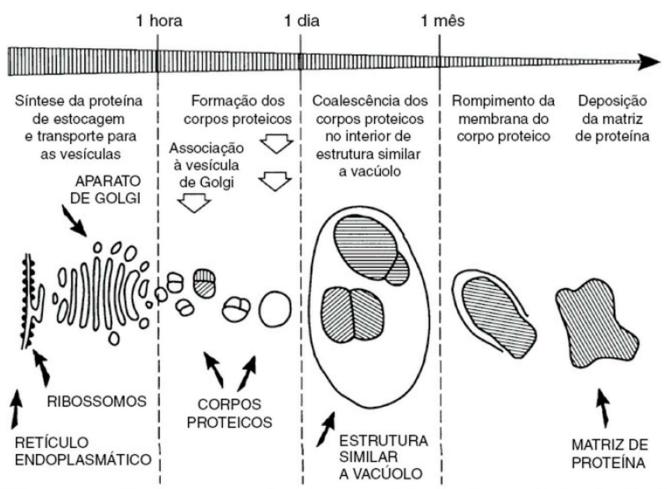
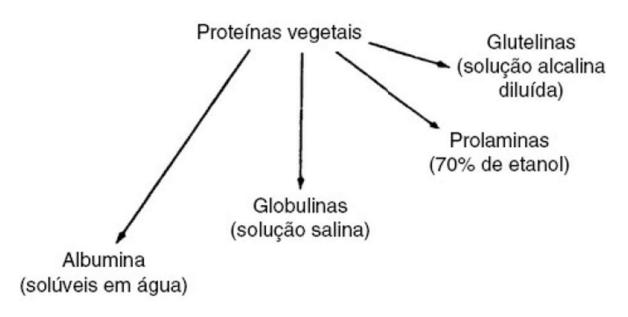



FIGURA 1.7 Diagrama esquemático da formação e evolução dos corpos proteicos do endosperma de trigo. Pernollet e Camilleri (1983).

Proteínas

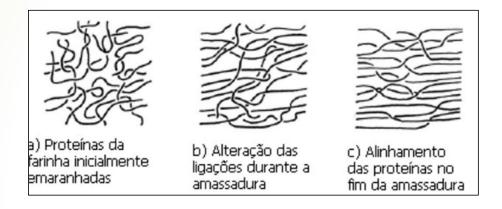
Classificação das proteínas vegetais (Osborne, 1895)

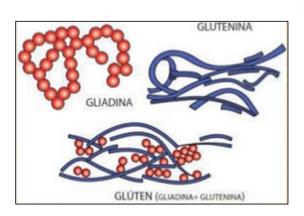
TABELA 1.3	TABELA 1.3 Proporções relativas (%) das frações de proteína nas sementes de cereais, de acordo com Osborne					
Cereal	N Não-proteico	Albuminas	Globulinas	Prolaminas	Glutelinas	Resíduos
Cevada ^a	11,6		15,6	45,2	18,0	5,0
Trigo ^b		33,1		60,7		6,2
Milho ^a	4,4	0,9	1,5	55,4	22,9	-
Arroz c		15,7		6,7	61,5	15,4
Aveia ^d	11		56	9	23	-
b% Sementes re c% Total de pro d% Proteínas re	^{a%} Total de sementes N (%) ^{b%} Sementes recuperadas N (%) ^{c%} Total de proteínas (%) ^{d%} Proteínas recuperadas (%) Fonte: Bright e Shewry (1983); com permissão.					

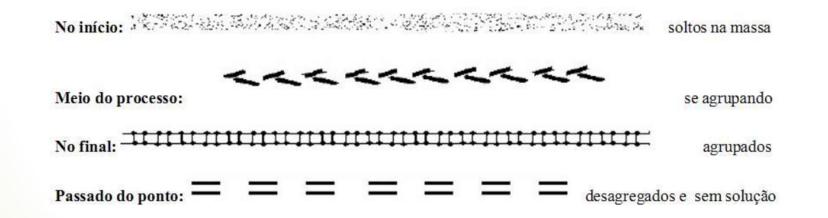
TABELA 1.4 Frações de prolamina em grãos de cereais

Espécies	Nome trivial
Trigo	Gliadina
Milho	Zeina
Cevada	Ordeína
Aveia	Aveninas

TABELA 1.5 Frações de prolamina do trigo, cevada e milho


MM: Massa molecular; HMM: Alta massa molecular


Trigo	MM	Cevada	MM	Milho	MM
G-Gliadina	32.000	b-hordeína	35.000-46.000	20K	20.000-21.000
β-Gliadina	40.000	c-hordeína	45.000-72.000	22K	22.000-23.000
ω-Gliadina	40.000-72.000	d-hordeína	100.000	9K	9.000-10.000
Subunidades HMM	95.000-136.000			14K	13.000-14.000


Glúten

- É uma rede elástica e extensível formada por proteínas gliadinas e gluteninas presentes na farinha do trigo, devido a adição de água e amassamento;
- É a estrutura básica para a produção e pães, massas e outros assados;
 - qualidade e quantidade das proteínas gliadinas e gluteninas;
 - gliadinas e gluteninas são ricas em asparagina, prolina e aminoácidos sulfurados (cistina e cisteína).
- A relação de proporção entre essas proteínas determina as diferentes características do glúten dos diversos tipos de trigo;
- Doença celíaca.

Formação do glúten

Gliadina – responsável pela consistência e viscosidade da massa; Glutenina – responsável pela elasticidade da massa.

Quanto mais glúten tiver a farinha mais dura será a massa

Farinhas duríssimas: > 15% de gluten

Farinhas duras: 9 a 15% de gluten

Farinhas moles: 7,5 a 9% de gluten

Lipídeos

TABELA 1.6 Conteúdo de lipídeos em grãos de cereais inteiros			
Cereal Lipídeos (%)			
Trigo	1,8		
Milho	0,4-1,7		
Cevada	3,3-4,6		
Aveia	5,4		
Arroz	1,9-3,1		

Os germes contêm um terço do total de lipídeos do trigo, 80%

GERMINAÇÃO DE CEREAIS

- A germinação de cereais é importante na indústria do malte;
- Porém, na panificação é importante que a maioria dos grânulos se mantenha intacta.

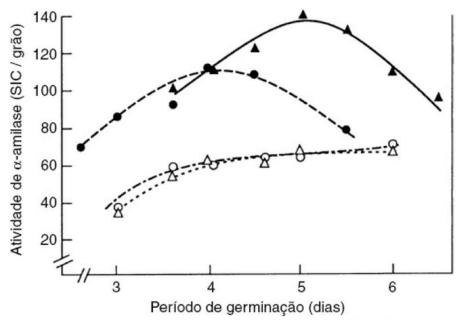


FIGURA 1.9 Atividade de α-amilase em cevada descascada germinada em K_2SO_4 e GA_3 . Sem aditivos (0); K_2SO_4 (50mM) (Δ); e GA_3 (50μg/mL) (•); GA_3 (50μg/mL) e K_2SO_4 (50mM) (

Efeito da germinação na qualidade da farinha de trigo (degradação do amido)

- Há um aumento de 1600 3000 vezes.
- O maior efeito da atividade da α-amilase foi a redução da propriedade da farinha em absorver água em decorrência da degradação do amido gelatinizado;

Consequência: produção de pão com miolo úmido e pegajoso.

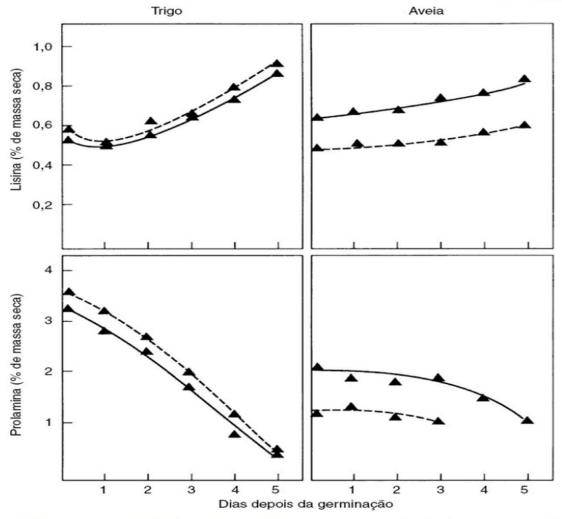
• A brotação pré-colheita na qualidade do trigo durum para preparo da massa para macarrão pode aumentar a atividade de α-amilase de 155 a 320 vezes depois da germinação.

Consequência: Os açúcares redutores produzidos propiciaram uma substancial perda de elementos sólidos e efeito danoso à qualidade do espaguete.

Tratamento do grão germinado: redução da α -amilase

Uso de fosfato trissódico, fosfato dissódico, polifosfato de sódio, SDS, estearoil lactilato de cálcio e ácido cítrico.

TABELA 1.8 Efeito do polifosfato de sódio no valor de Falling Number de trigo germinado danificado


Adaptado de Westermarck et al. (1979).

Agente químico	Concentração ^a (%)	Falling Number
Polifosfato de sódio	0,1	147 ^b
	0,5	175 ^b
	1,0	250 ^c
^a Baseado na quantidade de farinha (conteúdo de baseado na quantidade n	le umidade 15%)	

POLIFOSFATO DE SODIO

Mobilização das proteínas durante a germinação

- Aminoácidos essenciais aumentam durante a germinação ou a brotação de grãos de cereais;
- A dimensão do aumento estava diretamente relacionada com a diminuição do conteúdo de prolamina no grão.

FIGURA 1.11 Alterações no conteúdo de proteína e prolamina durante a germinação do trigo e aveia. Adaptado de Dalby e Tsai (1976).

Efeito da proteólise na produção de aminoácidos livres

	Período de	germinação (horas)
Aminoácido (μmol/g N)	0	122
Triptofano	47	50
isina	5,7	63
Histidina	2,2	72
Ácido glutâmico	64	95
Metionina	2,4	27
soleucina	5,1	140
eucina	6,0	170
îrosina	4,5	72
enilalanina	4,2	150
rolina	7,8	790
Glutamina	12 9	20

Mobilização de lipídeos durante a germinação

A germinação e a brotação de grãos de cereais são acompanhadas de aumento do teor total de lipídeos

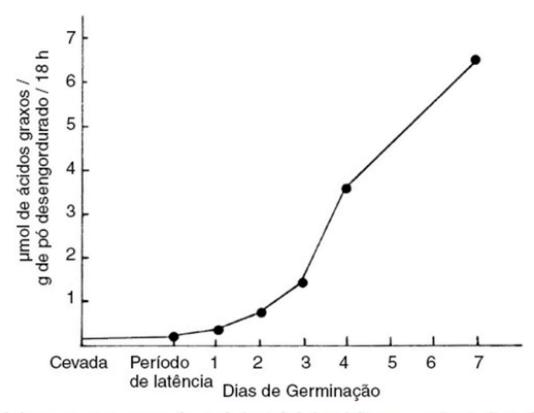
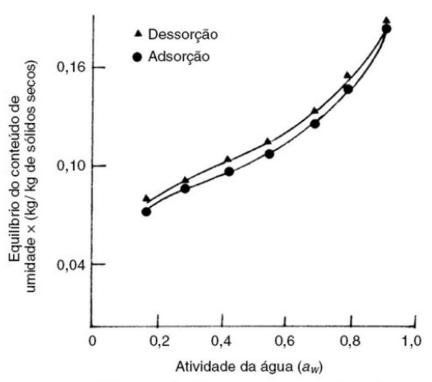
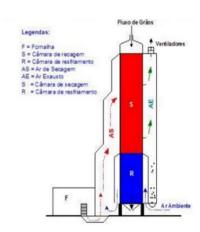


FIGURA 1.12 Atividade da lipase em extrato aquoso de cevada (variedade Sonja) durante germinação. Baxter (1984).

ESTOCAGEM DE GRÃOS

A perda mundial de grãos pós-colheita parece ser em torno de 3% a 10%, podendo atingir até 15%.




FIGURA 1.13 Isoterma de adsorção de umidade para milho (30°C). Impresso com autorização de Denloye e Ade-John (1985). © Pergamon Press.

TEOR DE UMIDADE GRÃOS

Produto	Colheita		Ideal	Armazenamento seguro	
	máximo	ótimo	Após secagem	1 ano	5 anos
Café	62	62	12	11	10
Milho	23	20 - 22	11	11	9 - 10
Arroz	21	17 - 19	11	11 - 12	9 - 11
Soja	-	-	-	11 - 12	9 - 10
Sorgo	26	23 - 26	9	11 - 12	9 - 10
Trigo	23	15 - 17	8	12 - 13	10 - 11

SECAGEM

- O superaquecimento pode provocar reação de escurecimento (Maillard) e no caso do trigo danificar o glúten.
- O objetivo é reduzir o nível de umidade, para garantir sua conservação ao impedir tanto a germinação como o crescimento de microrganismos.

Será disponibilizado material texto na plataforma e-disciplina

Obrigado

