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This book is dedicated not to a person but rather to an amusing mathe-
matical wonder: the Apocalyptic Magic Square—a rather bizarre six-by-six
magic square in which all of its entries are prime numbers (divisible only
by themselves and 1), and each row, column, and diagonal sum to 666,
the Number of the Beast.

T H E A P O C A L Y P T I C M A G I C S Q U A R E
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For additional wondrous features of this square, see Chapter 101.



We are in the position of a little child entering a huge library
whose walls are covered to the ceiling with books in many

different tongues.The child does not understand the
languages in which they are written. He notes a

definite plan in the arrangement of books,
a mysterious order which he does not

comprehend, but only
dimly suspects.

—Albert Einstein

Amusement
is one of humankind's

strongest motivating forces.
Although mathematicians sometimes
belittle a colleague's work by calling it

"recreational" mathematics, much serious
mathematics has come out of recreational problems,

which test mathematical logic and reveal mathematical truths.
—Ivars Peterson, Islands of Truth

The mathematician's job is to transport us to new seas,
while deepening the waters

and lengthening
horizons.

—Dr. Francis 0. Googol
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A Word from the
Publisher about
Dr. Googol

Francis Googol's date of birth is unknown. According to court records, he was
born in London, England, and has held various "jobs" including mathematician,
world explorer, and inventor. A prolific author of over 300 publications, Googol
achieved his greatest fame with his book Number Madness, in which he argued that
Neanderthals invented a primitive form of calculus. He also conducted pioneering
studies of parabolas and statistics and was knighted in 1998. Dr. Googol is a prac-
tical scientist, always testing his theories using apparatuses of his own design.

Today, Dr. Googol has an obsessive predilection for quantifying anything that
he views—from the curves of women's bodies to the number of brush strokes
used to paint his portrait. It is rumored that he even published anonymously a
paper in Nature on the length of rope necessary for breaking a criminal's neck
without decapitation. In short, Googol is obsessed with the idea that anything
can be counted, correlated, and understood as some sort of pattern. Clements
Markham (former president of the Geographical Society) once remarked, "His
mind is mathematical and statistical with little or no imagination."

When asked his advice on life, Googol responded: "Travel and do math-
ematics."

Francis Googol, great-great-great-grandson of Charles Darwin, was born to a
family of bankers and gunsmiths of the Quaker faith. His family life was happy.
Googol's mother, Violetta, lived to 91, and most of her children lived to their
90s or late 80s. Perhaps the longevity of his ancestors accounts for Googol's very
long life.

When Francis Googol was born, 13-year-old sister Elizabeth asked to be his
primary caretaker. She placed Googol's cot in her room and began teaching him
numbers, which he could point to and recognize before he could speak. He
would cry if the numbers were removed from sight.

As an adult, Googol became bored by life in England and felt the urge to
explore the world. "I craved travel," he said, "as I did all adventure." For the next
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decade, he embarked on a shattering odyssey of self-discovery; in fact, his biog-
raphy reads more like Pirsig's Zen and the Art of Motorcycle Maintenance or
Simon's Jupiter's Travels than like the life story of a mathematical genius. Googol
suddenly moved like a roller coaster over some of the world's most mysterious
physical and psychological terrain: studies of the female monkeys at Kathmandu,
camel rides through Egyptian desserts, death-defying escapes in the jungles of
Tanzania. . . . Anyone who hears about Googol's journeys is enthralled by
Googol's descriptions of the exotic places and people, by his ability to adjust to
adversity, by his humor and incisiveness, but above all by the realization that to
understand his world, he had to make himself vulnerable to it so that it could
change him.



Preface

One Fish, Two Fish, and Beyond . . .

The trouble with integers is that we have examined only the small ones.
Maybe all the exciting stuff happens at really big numbers, ones we can't
get our hands on or even begin to think about in any very definite way.

So maybe all the action is really inaccessible and we're just fiddling
around. Our brains have evolved to get us out of the rain, find where the
berries are, and keep us from getting killed. Our brains did not evolve to

help us grasp really large numbers or to look at things in a hundred
thousand dimensions.

—Ronald Graham

Mathematics, rightly viewed, possesses not only truth, but supreme
beauty—a beauty cold and austere, like that of sculpture.

—Bertrand Russell, Mysticism and Logic, 1918

The primary source of all mathematics is the integers.
—Herman Minkowski

Dr. Googol loves numbers. Whole numbers. Big ones like 1,000,000. And lit-
tle ones like 2 or 3. In this book, you will see integers more often than fractions
like 1/2, trigonometic functions like "sine," or complicated, long-winded num-
bers like it = 3.1415926. . . . He cares mainly about the integers.

Dr. Googol, world-famous explorer and brilliant mathematician, knows that
his obsession with integers sounds silly to many of you, but integers are a great
way to transcend space and time. Contemplating the wondrous relationships
among these numbers stretches the imagination, and the usefulness of these num-
bers allows us to build spaceships and investigate the very fabric of our universe.
Numbers will be our first means of communication with intelligent alien races.

Ancient people, like the Greeks, had a deep fascination with numbers. Could
it be that in difficult times numbers were the only constant thing in an ever-
shifting world? To the Pythagoreans, an ancient Greek sect, numbers were tan-
gible, immutable, comfortable, eternal—more reliable then friends, less threat-
ening than Zeus.

The mysterious, odd, and fun puzzles in this book should cause even the most
left-brained readers to fall in love with numbers. The quirky and exclusive surveys
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on mathematicians' lives, scandals, and passions will entertain people at all levels
of mathematical sophistication. In fact, this book focuses on creativity, discovery,
and challenge. Parts 1 and 4 are especially tuned for amusing classroom explo-
rations and experiments by beginners. Part 2 is for classroom debate and for caus-
ing arguments around the dinner table or on the Internet. Part 3 contains prob-
lems that sometimes require a little bit more mathematical manipulation.

When Dr. Googol talks to students about the strange numbers in this book,
they are always fascinated to learn that it is possible for them to break numeri-
cal world records and make new discoveries with a personal computer. Most of
the ideas can be explored with just a pencil and paper!

Number theory—the study of properties of the integers—is an ancient disci-
pline. Much mysticism accompanied early treatises; for example, Pythagoreans
explained many events in the universe in terms of whole numbers. Only a few
hundred years ago courses in numerology—the study of mystical and religious
properties of numbers—were required for all college students, and even today
such numbers as 13, 7, and 666 conjure up emotional reactions in many people.
Today, integer arithmetic is important in a wide spectrum of human activities
and has repeatedly played a crucial role in the evolution of the natural sciences.
(For a description of the use of number theory in communications, computer
science, cryptography, physics, biology, and art, see Manfred Schroeder's Number
Theory in Science and Communication.}

One of the abiding sins of mathematicians is an obsession with complete-
ness—an urge to go back to first principles to explain their works. As a result,
readers must often wade through pages of background before getting to the
essential ingredients. To avoid this problem, each chapter in this book is less
than 5 pages in length. Want to know about undulating numbers? Turn to
Chapter 52, and in a few pages you'll have a quick challenge. Interested in
Fibonacci numbers? Turn to Chapter 71 for the same. Want a ranking of the 8
most influential female mathematicians? Turn to Chapter 33. Want a list of the
Unabomber's 10 most mathematical technical papers? Turn to Chapter 40. Want
to know why Roman numerals aren't used anymore? Turn to Chapter 2. What
are the latest practical applications of fractal geometry? Turn to the "Further
Exploring" section of Chapter 54. Why was the first woman mathematician
murdered? Turn to Chapter 29. You'll quickly get the essence of surveys, prob-
lems, games, and questions!

One advantage of this format is that you can jump right in to experiment and
have fun, without having to sort through a lot of detritus. The book is not
intended for mathematicians looking for formal mathematical explanations. Of
course, this approach has some disadvantages. In just a few pages, Dr. Googol
can't go into any depth on a subject. You won't find much historical context or
extended discussion. That's okay. He provides lots of extra material in the
"Further Exploring" and "Further Reading" sections.

To some extent, the choice of topics for inclusion in this book is arbitrary,
although they give a nice introduction to some common and unusual problems
in number theory and recreational mathematics. They are also problems that Dr.
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Googol has researched himself and on which he has received mail from readers.
Many questions are representative of a wider class of problems of interest to
mathematicians today. Some information is repeated so that you can quickly
dive into a chapter picked at random. The chapters vary in difficulty, so you are
free to browse.

Why care about integers? The brilliant mathematician Paul Erdos (discussed in
detail in Chapter 46) was fascinated by number theory and the notion that he
could pose problems, using integers, that were often simple to state but notori-
ously difficult to solve. Erdos believed that if one can state a problem in mathe-
matics that is unsolved and over 100 years old, it is a problem in number theo-
ry. There is a harmony in the universe that can be expressed by whole numbers.
Numerical patterns describe the arrangement of florets in a daisy, the repro-
duction of rabbits, the orbit of the planets, the harmonies of music, and the
relationships between elements in the periodic table. Leopold Kronecker
(1823-1891), a German algebraist and number theorist, once said, "The inte-
gers came from God and all else was man-made." His implication was that the
primary source of all mathematics is the integers. Since the time of Pythagoras,
the role of integer ratios in musical scales has been widely appreciated.

More important, integers have been crucial in the evolution of humanity's
scientific understanding. For example, in the 18th century, French chemist
Antoine Lavoisier discovered that chemical compounds are composed of fixed
proportions of elements corresponding to the ratios of small integers. This was
very strong evidence for the existence of atoms. In 1925, certain integer relations
between the wavelengths of spectral lines emitted by excited atoms gave early
clues to the structure of atoms. The near-integer ratios of atomic weights was
evidence that the atomic nucleus is made up of an integer number of similar
nucleons (protons and neutrons). The deviations from integer ratios led to
the discovery of elemental isotopes (variants with nearly identical chemical
behavior but with different radioactive properties). Small divergences in pure
isotopes' atomic weights from exact integers confirmed Einstein's famous equa-
tion E = me2 and also the possibility of atomic bombs. Integers are everywhere
in atomic physics. Integer relations are fundamental strands in the mathematical
weave—or, as German mathematician Carl Friedrich Gauss said, "Mathematics
is the queen of sciences—and number theory is the queen of mathematics."

Prepare yourself for a strange journey as Wonders of Numbers unlocks the
doors of your imagination. The thought-provoking mysteries, puzzles, and
problems range from the most beautiful formula of Ramanujan (India's most
famous mathematician) to the Leviathan number, a number so big that it makes
a trillion pale in comparison. Each chapter is a world of paradox and mystery.
Grab a pencil. Do not fear. Some of the topics in the book may appear to be
curiosities, with little practical application or purpose. However, Dr. Googol
has found these experiments to be useful and educational—as have the many
students, educators, and scientists who have written to him during his long
lifetime. Throughout history, experiments, ideas, and conclusions originating
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in the play of the mind have found striking and unexpected practical applica-
tions. In order to encourage your involvement, Dr. Googol provides computa-
tional hints.

As this book goes to press, Oxford University Press is delighted to announce
a web site (www.oup-usa.org/sc/0195133420) that contains a smorgasbord of
computer program listings provided by the author. Readers have often request-
ed online code that they can study and with which they may easily experiment.
We hope the code clarifies some of the concepts discussed in the book. Code is
available for the following:

© Chapter 2. Why Don't We Use Roman Numerals Anymore (BASIC pro-
gram to generate Roman numerals when you type in any number)

© Chapter 16. Jerusalem Overdrive (C program to scan for Latin Squares)

© Chapter 17. The Pipes of Papua (Pseudocode for creating Papua rhythms)

© Chapter 22. Klingon Paths (C and BASIC code to generate and explore
Klingon paths)

© Chapter 49. Hailstone Numbers (BASIC code for computing hailstone
numbers and path lengths)

© Chapter 50. The Spring of Khosrow Carpet (BASIC code for Persian carpet
designs)

© Chapter 51. The Omega Prism (BASIC code for finding the number of
intersected tiles)

© Chapter 53. Alien Snow: A Tour of Checkerboard Worlds (C code for ex-
ploring alien snow)

© Chapter 54. Beauty, Symmetry, and Pascal's Triangle (BASIC code for com-
puting and drawing Pascal's Triangle)

© Chapter 56. Dr. Googol's Prime Plaid (BASIC code for exploring prime
numbers and plaids)

© Chapter 62. Triangular Numbers (BASIC code for computing triangular
numbers)

© Chapter 63. Hexagonal Cats (BASIC code for computing polygonal num-
bers)

© Chapter 64. The X-Files Number (BASIC code for computing X-Files "End-
of-the-World" Numbers)

© Chapter 66. The Hunt for Elusive Squarions (BASIC code for generating
pair square numbers)

© Chapter 68. Pentagonal Pie (BASIC code for computing Catalan numbers)

© Chapter 71. Mr. Fibonacci's Neighborhood (BASIC code for computing
Fibonacci numbers)

www.oup-usa.org/sc/0195133420
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© Chapter 73. The Wonderful Emirp, 1597 (REXX code for computing prime
Fibonacci numbers)

© Chapter 83. The Leviathan Number (C and BASIC code for comparing
Stirling and factorial values)

© Chapter 85. The Aliens in Independence Day (C and BASIC code for com-
puting number and sex of humans)

© Chapter 88. The Latest Gossip on Narcissistic Numbers (BASIC code for
searching for all cubical narcissistic numbers. Also, C code for factorion
searches)

© Chapter 89. The abcdefgh problem (REXX code for finding solutions to the
abcdefgh problem)

© Chapter 94. Perfect, Amicable, and Sublime Numbers (BASIC code for
finding perfect and amicable numbers)

© Chapter 96. Cards, Frogs, and Fractal Sequences (REXX code for comput-
ing fractal signature sequences. Also, BASIC code to compute Batrachions)

© Chapter 99. Everything You Wanted to Know about Triangles but Were
Afraid to Ask (BASIC code for generating Pythagorean triangles and for
computing side lengths of triangles that pray)

© Chapter 100. Cavern Genesis as a Self-Organizing System (C code for
exploring stalactite formation)

© Chapter 123. Zen Archery (Java code for solving Zen problems)

For many of you, seeing computer code will clarify concepts in ways mere
words cannot.
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Part i

Fun Puzzles

and Quick

Thoughts

Your vision will become clear only when you can look
into your own heart. Who looks outside, dreams;

who looks inside, awakens.
—Carl Jung

Where there is an open mind, there will always be a frontier.
—Charles Kettering

Mathematics is the hammer that shatters the ice
of our unconscious.

—Dr. Francis 0. Googol



Chapter 1

Attack of the
Amateurs

Every productive research scientist cultivates and relies upon nonrational
processes to direct his or her own creative thinking. Watson and Crick

used visualization to conceive the DNA molecule's configuration.
Einstein used visualization to imagine riding on a light beam.

Mathematician Ramanujan usually saw a vision of his family Goddess
Narnagiri whenever he conceived of a new mathematical formula. The

heart of good science is the harmonious integration of good luck in mak-
ing uncommonly made observations, nonrational processes that are only

poorly suggested by the words "creativity" and "intuition."
—John Waters, Skeptical Inquirer

Amazingly, lack of formal education can be an advantage. We get stuck in
our old ways. Sometimes, progress is made when someone from the out-

side looks at mathematics with new eyes.
—Doris Schattschneider, Los Angeles Times

Are you a mathematical amateur? Do not fret. Many amazing mathematical find-
ings have been made by amateurs, from homemakers to lawyers. These amateurs
developed new ways to look at problems that stumped the experts.

Have any of you seen the movie Good Will Hunting, in which 20-year-old
Will Hunting survives in his rough, working-class South Boston neighborhood?
Like his friends, Hunting does menial jobs between stints at the local bar and
run-ins with the law. He's never been to college, except to scrub floors as a jani-
tor at MIT. Yet he can summon obscure historical references from his photo-
graphic memory and almost instantly solve math problems that frustrate the
most brilliant professors.

This is not as far-fetched as it sounds! Although you might think that new
mathematical discoveries can only be made by professors with years of training,
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beginners have also made substantial contributions. Here are some of Dr.
Googol's favorite examples:

© In the 1970s, Marjorie Rice, a San Diego housewife and mother of 5, was
working at her kitchen table when she discovered numerous new geometrical
patterns that professors had thought were impossible. Rice had no training
beyond high school, but by 1976 she had discovered 58 special kinds of pen-
tagonal tiles, most of them previously unknown. Her most advanced diploma
was a 1939 high school degree for which she had taken only one general
math course. The moral to the story? It's never too late to enter fields and
make new discoveries. Another moral: Never underestimate your mother!

© In 1998, college student Roland Clarkson discovered the largest prime num-
ber known at the time. (A prime number, like 13, is evenly divisible only by
1 and itself.) The number was so large that it could fill several books. In fact,
some of the largest prime numbers these days are found by college students
using a network of cooperating personal computers and software download-
able from the Internet. (See "Further Exploring" for Chapter 56 to view the
latest prime number records.)

© In the early 1600s, Pierre de Fermat, a French lawyer, made brilliant discov-
eries in number theory. Although he was an "amateur" mathematician, he
created mathematical puzzles such as Fermat's Last Theorem, which was not
solved until 1994. Fermat was no ordinary lawyer indeed. He is considered,
along with Blaise Pascal, as the founder of probability theory. As the coin-
ventor of analytic geometry along with Rene Descartes, he is considered one
of the first modern mathematicians.

© In the mid-1990s, Texas banker Andrew Beal posed a perplexing mathemat-
ical problem and offered $5,000 for its solution. The value of the prize
increases by $5,000 per year up to $50,000 until it is solved. In particular,
Beal was curious about the equation Ax + By = Cz. The 6 letters represent
integers, with x, y, and z greater than 2. (Fermat's Last Theorem involves the
special case in which the exponents x, y, and z are the same.) Oddly enough,
Beal noticed, when a solution of this general equation existed, then A, B,
and Chave a common factor. For example, in the equation 36 + 183 = 38,
the numbers 3, 18, and 3 all have the factor 3. Using computers at his bank,
Beal checked equations with exponents up to 100 but could not discover a
solution that didn't involve a common factor. He wondered if this is always
true. R. Daniel Mauldin of the University of North Texas commented in the
December 1997 Notices of the American Mathematical Society, "It is remark-
able that occasionally someone working in isolation, and with no connec-
tions to the mathematical community, formulates a problem so close to
current research activity."

© In 1998, 17-year-old Colin Percival calculated the five trillionth binary digit
of pi. (Pi is the ratio of a circle's circumference to its diameter, and its digits
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1.1 In 1998,17-year-old Colin Percival calcu-
lated the five trillionth binary digit of pi. His
accomplishment is significant not only because
it was a record-breaker but because, for the
first time ever, the calculations were distrib-
uted among 25 computers around the world.
(Photo by Marianne Meadahl.)

school in June 1998, had been attending
concurrently since he was 13.

go on forever. Binary numbers are
defined in Chapter 2 I s "Further
Exploring" section.) In 1999,
computer scientist Yasumasa
Kanada and his coworkers at the
University of Tokyo Information
Technology Center computed pi
to 206,158,430,000 decimal dig-
its. Percival (Figure 1.1) discov-
ered that pi's five trillionth bit, or
binary digit, is a 0. His accom-
plishment is significant not only
because it was a record-breaker
but because, for the first time
ever, the calculations were distrib-
uted among 25 computers around
the world. In all, the project,
dubbed PiHex, took 5 months of
real time to complete and a year
and a half of computer time.
Percival, who graduated from high

Simon Fraser University in Canada

© In 1998, self-taught inventor Harlan Brothers and meteorologist John Knox
developed an improved way of calculating a fundamental constant, e (often
rounded to 2.718). Studies of exponential growth—from bacterial colonies
to interest rates—rely on e, which can't be expressed as a fraction and can
only be approximated using computers. Knox comments, "What we've done
is bring mathematics back to the people" by demonstrating that amateurs
can find more accurate ways of calculating fundamental mathematical con-
stants. (Incidentally, e is known to more than 50 million decimal places.)

© In 1998, Dame Kathleen Ollerenshaw and David Bree made important
discoveries regarding a certain class of magic squares—number arrays whose
rows, columns, and diagonals sum to the same number. Although their
particular discovery had eluded mathematicians for centuries, neither dis-
coverer was a typical mathematician. Ollerenshaw spent much of her profes-
sional life as a high-level administrator for several English universities. Bree
has held university positions in business studies, psychology, and artificial
intelligence. Even more remarkable is the fact that Ollerenshaw was 85
when she and Bree proved the conjectures she had earlier made. (For more
information, see Ian Stewart, "Most-perfect magic squares." Scientific
American. November, 281 (5): 122-123, 1999)

Hundreds of years ago, most mathematical discoveries were made by lawyers,
military officers, secretaries, and other "amateurs" with an interest in mathemat-
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ics. After all, back then, very few people could make a living doing pure mathe-
matics. Modern-day French mathematician Olivier Gerard wrote to Dr. Googol:

I believe that amateurs will continue to make contributions to science and math-
ematics. Computers and networks allow amateurs to work as efficiently as profes-
sionals and to cooperate with one another. When one considers the time wasted
by many professionals in grant writing and for other paperwork justifying their
activity, the amateurs may even have a slight edge in certain cases. However, the
amateurs often lack the valuable experience of teaching or having a mentor.

This is not to say that amateurs can make progress in the most obscure areas
in mathematics. Consider, for example, the strange list in Chapter 42 that
includes the 10 most difficult-to-understand areas of mathematics, as voted on
by mathematicians. It would be nearly impossible for most people on Earth to
understand these areas, let alone make contributions in them. Nevertheless, the
mathematical ocean is wide and accommodating to new swimmers. Wonderful
mathematical patterns, from intricately detailed fractals to visually-pleasing
tilings, are ripe for study by beginners. In fact, the late-1970s discovery of the
Mandelbrot set—an intricate mathematical shape that the Guinness Book of
World Records called "the
most complicated object
in mathematics"—could
have been made and
graphically rendered by
anyone with a high
school math education
(Figure 1.2). In cases
such as this, the com-
puter is a magnificent
tool that allows amateurs
to make new discoveries
that border between art
and science. Of course,
the high schooler may
not understand why the
Mandelbrot set is so
complicated or why it is
mathematically signifi-
cant. A fully informed
interpretation of these
discoveries may require a L2 The Mandelbrot set is described in the 1991
trained mind; however, Guinness Book of World Records as the most compli-
exciting exploration is cated object in mathematics. The book states, "a
often possible without mathematical description of the shape's outline would
erudition. require an infinity of information and yet the pattern

can be generated from a few lines of computer code."



Chapter 2

Why Don't We Use
Roman Numerals
Anymore?

Rarely do I solve problems through a rationally deductive process. Instead
I value a free association of ideas, a jumble of three or four ideas bounc-
ing around in my mind. As the urge for resolution increases, the bounc-

ing around stops, and I settle on just one idea or strategy.
—Heinz Pagels, Dreams of Reason

Science and art are similar. New scientific theories do not automatically
result from tedious data collection. To conceive a hypothesis is as creative
an act as writing a poem. When a hypothesis elegantly explains an aspect

of reality more clearly than ever before, there is cause for great wonder
and aesthetic pleasure.

—Lucio Miele, Skeptical Inquirer

Dr. Googol was walking through the ruins of the Roman Coliseum, daydream-
ing about his favorite of all things—numbers. Suddenly, he was accosted by a
small boy.

"Sir," said the boy, "why don't we use Roman numerals anymore?"
Dr. Googol took a step back. "Are you talking to me?"
"You are the famous Dr. Googol?"
"Ah, yes," said Dr. Googol, "I can answer your question, but before I tell you,

you must solve a small puzzle with Roman numerals. I don't think this puzzle
dates back to Roman times, but it looks so simple that it could well be quite
ancient." Dr. Googol drew the Roman numerals I, II, and III on 6 columns as
schematically illustrated in the aerial view in Figure 2.1.

Dr. Googol took a pad of paper from his pocket and started drawing. "Given
the 6 columns (represented by circles I, II, and III), is it possible to connect
circle I to I, II to II, and III to III, with lines that do not cross or go outside
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Si visfeire utrum mulier tuafit cafta

2.1 The Coliseum puzzle.

the surrounding frame? Your lines must be along the floor. They may be curvy,
but they cannot touch or cross one another. You can't draw lines through the
columns."

The boy studied the figure for several minutes. "Sir, surely this puzzle is
impossible to solve."

"It is possible, but I find most people who can't solve the puzzle can solve it if
they put it away for a day and then look at it again."

"Wait!" the boy said. "Before attempting your problem, try mine." He
handed Dr. Googol a card:

The boy looked deeply into Dr. Googol's eyes. "Without using a pencil, how
would you make this equation true?"

As Dr. Googol and the boy pondered the puzzles, Dr. Googol also began to
tell the boy why Roman numerals survived for so many centuries but eventually
were discarded like old shoes.

Today we rarely use Roman numerals except on monuments and special docu-
ments—and for dates at the end of movie credits to make it difficult to deter-
mine when a movie was actually made. You also sometimes see Roman numerals
on clock faces, which, incidentally, almost always show four as IIII instead of
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the traditional IV. (Ever wonder why? See the
"Further Exploring" section.) We are familiar with
Roman numerals because they were the only ones
used in Europe for a thousand years. The Roman
number system was based on similar ones used by
the Etruscans, with the letters I, V, X, L, and C
being based on the Etruscan originals. The Roman
number system was useful because it expressed all
numbers from 1 to 1,000,000 with a total of 7
symbols: I for 1, V for 5, X for 10, L for 50, C for
100, D for 500, and M for 1,000. Roman numer-
als are read from left to right. The symbols repre-
senting the largest quantities are placed at the left.
Immediately to the right are the symbols represent-
ing the next largest quantities, and so on. The sym-

bols are usually added together. For example, LX = 60, and MMCIII = 2103.
M represents 1,000,000—a small bar placed over the numeral multiplies the
numeral by 1,000. Using an infinite number of bars, Romans could have repre-
sented the numbers from 1 to infinity! In practice, however, 2 bars were the most
ever used.

Numerals are written symbols for numbers. The earliest numerals were simply
groups of vertical or horizontal lines, each line corresponding to the number 1.
Today, the Arabic system of number notation is used in most parts of the world.
This system was first developed by the Hindus and was used in India by the 3rd
century B.C. At that time, the numerals 1, 4, and 6 were written as they are
today. The Hindu numeral system was probably introduced into the Arab world
about the 7th or 8th century A.D. The first recorded use of the system in Europe
was in A.D. 976.

Most of Europe switched from Roman to Arabic numerals in the Middle
Ages, partly due to Leonardo Fibonacci's 13th-century book Liber Abaci, in
which he extols the virtues of the Hindu-Arabic numeral system. (This is the
same beloved Mr. Fibonacci discussed by Dr. Googol in Chapter 71.) Islamic
thinking wasn't far away from the European minds of the Middle Ages. After all,
the Muslims had ruled Sicily, Spain, and North Africa, and when the Europeans
finally kicked them out, the Muslims left behind their important mathematical
legacy. Many of us forget that Islam was a more powerful culture—and more sci-
entifically advanced—than European civilizations in the centuries after the
Western Roman Empire fell. Baghdad was an incredible center of learning.

This isn't to say Roman numerals disappeared entirely in the Middle Ages.
Many accountants still used them because additional and subtraction can be
easy with Roman numerals. For example, if you want to subtract 15 from 67, in
the Arabic system you subtract 5 from 7, and 1 from 6. But in the Roman
system, you'd simply erase an X and a V from LXVII to get LII. It's subtrac-
tion by erasing.
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However, Arabic numerals hold greater power. Because we switched from the
Roman to the Arabic system, humankind can now formulate exotic theories
about space and time, contemplate gravitational wave theory, and explore the
stars. Arabic numerals are superior to Roman numerals because Arabic numerals
have a "place" system in which the value of a numeral is determined by its posi-
tion. A 1 can mean one, ten, one hundred, or one thousand, depending on its
position in a numerical string. This is one reason why it's so much easier to write
1998 than MCMXCVIII—one thousand (M) plus one hundred less than a
thousand (CM) plus ten less than a hundred (XC) plus five (V) plus one plus
one plus one (III). Try doing arithmetic with this Roman monstrosity. On the
other hand, positional notation greatly simplifies all forms of written numerical
calculation.

Around A.D. 200, the Hindus, possibly with Arab help, also invented 0, the
greatest of all mathematical inventions. (The Babylonians had a special symbol
for the "absence" of a number around 300 B.C., but it wasn't a true zero symbol
because they didn't use it consistently. Nor did they think of this "absence of a
number" as a kind of number, anymore than we think that the "absence of an
ear" is a kind of ear.) The number 0 makes it possible to differentiate between
11, 101, and 1,001 without the use of additional symbols, and all numbers can
be expressed in terms of 10 symbols, the numerals from 1 to 9 plus 0. During the
Middle Ages, the calculational demands of capitalism broke down any remaining
resistance to the "infidel symbol" 0 and ensured that by the early 17th century
Hindu numerals reigned supreme. Even during Roman times, Roman numerals
were used more to record
numbers, while most calcu-
lations were done using the
abacus and piling up stones.

How far back in time do
numerals go? Imagine your-
self transported back to the
year 20,000 B.C. You are 40
kilometers from the Spanish
Mediterranean at the cave of
La Pileta. You shine your
flashlight on the wall and see
parallel marks, groups of 5,
6, or more numbers (Figure
2.2). Clusters of lines are
connected across the top
with another line, like a
comb, or crossed through in
a way that reminds you of
the modern way of checking
things in groups of 5. Were

2.2 Designs on the wall of the Number Cave. Some
researchers believe the markings represent numbers, if
you were to explore the cave and consider the teeth of
the "combs" as units, you could read all numbers up to
14. in one area of the cave, the numbers 9,10,11, and
12 appear close together. Could it be that the artist
was counting something, recording data, or experi-
menting with mathematics?
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the cave people counting something? You can visit the "Number Cave" today,
but modern archeologists are not sure of the markings' significance. Neverthe-
less, the discovery of the Number Cave certainly contradicts old-fashioned
notions that cave people of this period made guttural noises and were only con-
cerned with feeding and breeding. If the people who drew these designs mas-
tered numbers, they had intellects beyond the minimal demands of hunting.
Also remember that if we were to still regard Mayan friezes and decorated pyra-
mids as merely art, we'd be wrong. Luckily, mathematically minded scholars
studied them and discovered their numerical significance.

The earliest forms of number notation that used straight lines for grouping Is
were inconvenient when dealing with large numbers. By 3400 B.C. in Egypt, and
3000 B.C. in Mesopotamia, a special symbol was adopted for the number 10.
The addition of this second number symbol made it possible to express the
number 11 with 2 symbols instead of 11, and the number 99 with 18 symbols
instead of 99.

In Babylonian cuneiform notation, the numeral used for 1 was also used for
60 and for powers of 60; the value of the numeral was indicated by its context.
The Egyptian hieroglyphic system evolved special symbols (resembling ropes,
lotus plants, etc.) for 10, 100, 1000, and 10,000. The ancient Greeks had 2
systems of numerals. The earlier of these was based on the initial letters of the
names of numbers: The number 5 was indicated by the letter^?/'; 10 by the letter
delta-, 100 by the antique form of the letter H\ 1000 by the letter chi; and 10,000
by the letter mu. The second system, introduced in the 3rd century B.C., used all
the letters of the Greek alphabet plus 3 letters borrowed from the Phoenician
alphabet as number symbols. The first 9 letters of the alphabet were used for
the numbers 1 to 9, the second 9 letters for the tens from 10 to 90, and the last
9 letters for the hundreds from 100 to 900. Thousands were indicated by
placing a bar to the left of the appropriate numeral, and tens of thousands by
placing the appropriate letter over the letter M. This more advanced Greek sys-
tem had the advantage that large numbers could be expressed with a minimum
of symbols, but it had the disadvantage of requiring the user to memorize a total
of 27 symbols.

$ See the "Further Exploring" section for discussions of the puzzles.
See [www.oup-usa.org/sc/0195133420] for computer code that generates

Roman numerals.

www.oup-usa.org/sc/0195133420


Chapter 3

in a Casino

The heavens call to you and circle about you, displaying to you their
eternal splendors, and your eye gazes only to earth.

—Dante

Some individuals have extraordinary memories when it comes to memorizing
cards in a standard playing-card deck. For example, Dominic O'Brien from
Great Britain memorized, on a single sighting, a random sequence of 40 separate
decks of cards (2,080 cards in all) that had been shuffled together, with only one
mistake! The fastest time on record for memorizing a single deck of shuffled
cards is 42 seconds.

Dr. Googol was interested in similar feats of mental agility and was attending
a card-memorization contest at the largest casino in the world—the Foxwoods
Resort Casino in Ledyard, Connecticut. One of the casino's employees, dressed
as a Roman gladiator, came to him and slammed a deck of cards (Figure 3.1) on
the table.

3.1 A deck of cards.
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"My good man," Dr. Googol said, "I personally don't have such a good
memory."

"Don't worry," the huge man said with a grin. "This tests another kind of card
ability. If a pack of playing cards measures 1.3 centimeters when viewed side-
ways, what would the measurement be if all the Kings were removed?"

The gladiator handed Dr. Googol a ruler in case Dr. Googol needed it.

Can you help Dr. Googol? Hurry! The casino employee will give him $1,000 if
you can solve this problem within a minute.

For a solution, see "Further Exploring."

Chapter 4

The Ultimate Bible
Code

The aim of science is not to find the "meaning" of the world.
The world has no meaning. It simply is.

—John Bainville, "Beauty, Charm and Strangeness:
Science as Metaphor," Science 281, 1998

Dr. Googol was visiting Martin Gardner, the planet's foremost mathematical
puzzle expert and an all-around wonderful human. It was nearly dusk when Dr.
Googol followed Gardner around his North Carolina mansion filled with all
manner of mathematical oddities—from glass models of Klein bottles (objects
with just 1 surface) to strange tiles arranged in attractive shapes to metallic frac-
tal sculptures of unimaginable complexity.

"Dr. Googol, let me show you something." Martin Gardner withdrew an
ancient King James Bible from a bookshelf and drew a box around the first 3
verses of Genesis.
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Gardner pointed to the Bible. "Select any of the 10 words in the first verse: In
the beginning God created the heaven and the Earth'"

"Got it," Dr. Googol said.
"Count the number of letters in the chosen word and call this number n\.

Then go to the word that is n\ words ahead. (For example, if you picked the first
the, go to created?) Now count the number of letters in this new word—call it
HI—then jump ahead another «2 words. Continue until your chain of words
enters the third verse of Genesis."

Dr. Googol nodded. "Okay, I am in the third verse."
"On what word does your count end?"
"God!"
"Dr. Googol, consider my next question carefully. Your saitl may depend on

it. Does your answer prove that God exists and that the Bible is a reflection of
ultimate reality?"

 For the mind-boggling answer, see "Further Exploring." Your view of real-
ity will change as you embark on this shattering odyssey of self-discovery.

Chapter 5

How Much Blood?

Why does there seem to be something inhuman about regarding human
beings like roses and refusing to make any distinction between the inside

of their bodies and the outside?
—Yukio Mishima

Dr. Googol was lying in a hospital room, receiving a blood transfusion to
rid him of a parasite he had recently picked up while exploring the Congo.
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He began to wonder. . . What is the volume of human blood on Earth today?
In other words, if all approximately 6 billion people from every country on
Earth were drained of their blood by some terrible vampire machine, what size
container would the machine require to store the blood? The answer to this is
quite surprising. Think about it before reading further.

The average adult male has about 6 quarts of blood, but a large part of the
Earth's human population is women and children, so let's assume that each per-
son has an average of a gallon of blood. This gives 6 billion gallons of blood in
the world. Given that there are 7.48 gallons per cubic foot, this gives us roughly

* 800,000,000 cubic feet of human blood *

in the world. The cube root of this value indicates that all the blood in the world
would fit in a cube about 927 feet on a side. To give you a feel for this figure, the
length of each side of the base of the Great Pyramid in Egypt is 755 feet. The
length of the famous British passenger ship SS Queen Mary WAS close to 1,000
feet. The height of the Empire State Building, with antenna, is 1,400 feet. This
means that a box with a side as long as the SS Queen Mary could contain the
blood of every man, woman, and child living on Earth today. Most people would
guess that a much bigger container would be needed.

John Paulos, in his remarkable book Innumeracy, discusses blood volumes as
well as other interesting fluid volumes, such as the volume of water rained down
upon the Earth during the Flood in the book of Genesis. Considering the bibli-
cal statement "All the high hills that were under the whole heaven were covered,"
Paulos computed that half a billion cubic miles of water had to have covered the
Earth. Since it rained for 40 days and 40 nights (960 hours), the rain must have
fallen at a rate of at least 15 feet per hour. Paulos remarks that this is "certainly
enough to sink any aircraft carrier, much less an ark with thousands of animals
on board."

$ If all this talk about blood hasn't disturbed you too much, see "Further
Exploring" for additional bloody challenges.



Chapter 6

Where Are the Ants?

The ants and their semifluid secretions teach us that pattern, pattern,
pattern is the foundational element by which the creatures of the physical

world reveal a perfect working model of the divine ideal.
—Don DeLillo, Ratner's Star

As a child, Dr. Googol had an "ant farm" consisting of sand sandwiched between
2 plates of glass separated by several millimeters. When ants were added to the
enclosure, they would soon tunnel into the sand, creating a maze of intricate
paths and chambers. Since the space between the glass plates was very thin, con-
fining the ants to a 2-dimensional world, it was always easy to observe the ants
and their constructions. Every day, Dr. Googol added a little food and water to
the enclosure.

As an adult, Dr. Googol brought an ant farm, schematically illustrated in Figure
6.1, to his students. It had 3 chambers marked A, B, and C. Dr. Googol added 25

ants to the upper area on top above
the soil. He then covered the glass
with a dark cloth and waited 25
minutes.

Dr. Googol looked at his class of
attentive students. "Assuming that
the ants wander around randomly,
can any of you tell me in which
chamber reside the most ants? How
would your answer change if there
were an additional tunnel connect-
ing chamber Cto vl?"

One of the students raised his
hand. "And what do we get if we
give you the correct answer?"

6.1 An ant farm. After the ants randomly
walk for a few hours, where do you expect
the ants most likely to be: in chamber A, B,
or C? (Drawing by April Pedersen.)
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"A box of delicious chocolate-covered ants."
"Not very appetizing," said a girl with a pierced tongue.
Dr. Googol nodded. "Okay, to the students who get this correct and can

explain their reasoning, I will give free copies of Dr. Cliff Pickover's phenomenal
blockbuster Time:A Traveler's Guide"

"All right!" the students screamed. With this special incentive, the students
became excited and tried their best to predict the chamber holding the most
ants. What is your prediction?

For the solution, see "Further Exploring."

Chapter 7

Spidery Math

The structures with which mathematics deals are more like lace, the leaves
of trees and the play of the light and shadow on a human face than they

are like buildings and machines, the least of their representatives.
—Scott Buchanan

Dr. Googol has always been interested in spiderwebs, and he continually
searches for beautiful specimens throughout the world. Spiderwebs come in all
shapes, sizes, and orientations. The largest of all webs are the aerial ones spun by
tropical orb weavers of the genus Nephila—they can grow up to 18 feet in cir-
cumference!

Spiders sometimes make mistakes. Researchers have found that spiders under
the influence of mind-altering drugs spin abnormal webs. Marijuana, for exam-
ple, causes spiders to leave large spaces between the framework threads and inner
spirals. Spiders on benzedrine produce an erratic, seemingly unfinished web, and
caffeine leads to haphazardly spun threads.
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How does all this relate to a fascinating
mathematical puzzle? One day while walk-
ing through the woods, Dr. Googol came
upon a huge orb web more than a foot in
diameter. As the sun reflected from its shiny
surfaces, he developed this brain boggier.

Consider a spider hallucinating under
the influence of some drug. While spinning
the web, the spider leaves certain gaps in it.
In Figure 7.1, there are three gaps. Dr.
Googol calls this simple web a (2, 2) web
because it is made from 2 radial lines and 2
circular lines.

At each node (intersection) in the web,
the spider constructs a little number that
indicates the number of other nodes along
the same radial line and circular line he
would get to before being stopped by some-
thing—either a gap or an outer edge. In
Figure 7.2 the spider has marked the top
node 4, because as he slides down radially,
he gets to 1 node before the gap, and as he
slides circularly, he hits 3 other nodes—1 as
he heads counterclockwise, and 2 in the
clockwise direction.

Figure 7.3 shows a (4, 3) web. The wife
of the spider who spun it has come home,
devoured her husband (as is the custom of
some female spiders), and repaired the web.
She has left his numbers in place as a
reminder not to become romantically in-
volved with addicted spiders. Can you
determine where the gaps in the web would
have been located?

Finally, "spider numbers" are defined as
the sum of the numbers at each node in a
web. For example, the (2, 2) web in Figure
7.2 has a spider number of 44. Using just 4
gaps, what are the smallest and largest spi-
der numbers you can produce for a (2, 2)
web and a (4, 3) web?

$ For solutions to this spidery prob-
lem, see "Further Exploring."

7.3 A (4,3) web.



Chapter 8

Lost in Hyperspace

Imagination is more important than knowledge.
—Albert Einstein

Dr. Googol has invented numerous problems for the Star Trek scriptwriters.
Many involve mathematical problems that test their understanding of space,
time, and higher dimensions. Here's his favorite puzzle.

Two starships, the Enterprise and the Excelsior, start at opposite ends of a cir-
cular track (Figure 8.1). When Captain Kirk
says "go," the ships start to travel in opposite
directions with constant speed. (In other
words, one ship goes clockwise, the other
counterclockwise.)

From its departure point to the first time
they cross paths, the Enterprise travels 800
light-years. And from the first time they cross
to the second time they cross, Excelsior travels
200 light-years. With so little information, is
it possible to determine the length of the
track? Would your answer change if the track
were another closed curve, but not a circle?

$• For a wonderful solution, see "Further
Exploring."

8.1 The starships Enterprise and
Excelsior, before they start
their journeys to where no man
has gone before.



Chapter 9

Along Came
a Spider

It's the sides of the mountain which sustain life, not the top.
Here's where things grow.

—Robert Pirsig, Zen and the Art of Motorcycle Maintenance

Dr. Googol was in a Peruvian rain forest, 15 miles south of the beautiful Lake
Titicaca, when he dreamed up this tortuous brain boggier. A month later, while
in Virginia, Dr. Googol gave this puzzle to all CIA employees to help them
improve their analytical skills.

Three spiders named Mr. Eight, Mr. Nine, and Mr. Ten are crawling on a
Peruvian jungle floor. One spider has 8 legs; one spider has 9 legs; one spider has
10 legs. All of them are usually quite happy and enjoy the diversity of animals
with whom they share the jungle. Today, however, the hot weather is giving them
bad tempers.

"I think it is interesting," says Mr. Ten, "that none of us have the same num-
ber of legs that our names would suggest."

"Who the heck cares?" replies the spider with 9 legs.
How many legs does Mr. Nine have? Amazingly, it is possible to determine

the answer, despite the little information given.

Now for the second part of the puzzle. The same 3 spiders have built 3 webs.
One web holds just flies, the other just mosquitoes, and the third both flies and
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mosquitoes. They label their 3 webs "flies," "mosquitoes," and "flies and mos-
quitoes." All 3 labels are incorrect. The insects are wrapped up tightly in web
strands. How many insects does a spider have to unwrap to correctly label the
webs?

Please try to solve at least one of these tantalizing problems. If too difficult,
draw diagrams and think about them with some friends. If you are a teacher,
have students work on the puzzles in teams. Whatever you do, don't skip this
problem and go to the next one. If you take this lazy approach, a live, 2-dimen-
sional spider will emerge from the tiny web, which the publisher's overworked
typesetter has with luck placed right here: Hi

M For a solution, see "Further Exploring."

Chapter 10

Numbers beyond
imagination

The study of the infinite is much more than a dry, academic game. The
intellectual pursuit of the Absolute Infinite is a form of the soul's quest
for God. Whether or not the goal is ever reached, an awareness of the

process brings enlightenment.
—Rudy Rucker, Infinity and the Mind

For a human, there are gigaplex possible thoughts. [A gigaplex is the
number written as 1 followed by a billion zeros.]

—Rudy Rucker, Infinity and the Mind

Dr. Googol sat on a sandy beach, typing on his notebook computer while down-
loading the results of his Big Number Contest via a satellite link to the Internet.
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A few minutes ago, he had asked his fellow Web-heads to construct an expres-
sion for a very large number using only the following 8 symbols:

1 2 3 4 Q . -

Each digit could be used only once.
Within a half hour, a teenager in Florida came up with 43 - 12 = 52. (The

expression 43 denotes exponentiation and is simply 4 x 4 x 4 . )
"Not bad for a start," Dr. Googol typed on his notebook computer. "Can

anyone come up with a solution greater than 52?"
Dr. Googol got up, stretched, and wiggled his toes in the sand. By the time he

got back to his computer a gentleman from North Carolina had come up with
3142. This huge number had 63 digits.

"You can do better," Dr. Googol typed as his pulse rose with exponentially
increasing anticipation.

From various locations around the country came the reply 3421. It had 201
digits!

"Very good," he said, shaking with pleasure.
A woman from New York exclaimed, "I take the prize with .1~432. It has 433

digits!"
"Excellent," he yelled aloud, although no one could hear him but the seagulls.

A nearby bird quickly took to the sky. He typed back to the woman, "Good
work. You recalled that a number raised to a negative power is simply 1 over
the number raised to the positive value of the power. You also realized that to
determine the number of digits in a number you simply take the log of the
number and add 1. This means that .T432 = 1/.1432= 10432. The log of 10432

is 432, and the number of digits is 433."
Dr. Googol wondered: Is it possible to beat the woman's fantastic 433-digit

answer!

$ For the world-record holder and more information on numbers too large
to contemplate, see "Further Exploring."



Chapter 11

Cupid's Arrow

The mathematician may be compared to a designer of garments who is
utterly oblivious of the creatures whom his garments may fit.

To be sure, his art originated in the necessity for clothing such creatures,
but this was long ago; to this day a shape will occasionally appear which

will fit into the garment as if the garment had been made for it.
Then there is no end of surprise and delight!

—Tobias Dantzig

It is Valentine's Day 2000. Dr. Googol is ambling along the Tiber River, watch-
ing the beautiful passers by and enjoying the crisp weather, when a sudden
wrenching pain in his right atrium interrupts his stroll. As he clutches at his
heart and falls to the ground, he has a vision of a peculiar man with wings and a
bow who lands nearby.

"Just trying out a new arrow my uncle Divisio, God of Arithmetic, gave me,"
the man says. Reaching toward Dr. Googol, the man pulls an arrow studded with
5 disks out of Dr. Googol's chest
(Figure 11.1). "Not like the old
one, this," he continues, run-
ning his hand lovingly over the
disks. "You get to choose who
you want as your sweetheart if
you can solve the puzzle."

"Use the numbers 1 through
9," the man tells Dr. Googol,
"placing 1 digit in each of the
circles according to the follow-
ing rule: Each pair of digits con-
nected by a line must make a
2-digit number that is evenly
divisible by either 7 or 13. For 11.1. Cupid's arrow.
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example, 7 and 8 connected by a line would be appropriate because the number
78 is divisible by 13. You can consider the 2 digits in either order, and no digit
can be used more than once."

"For every solution you find," the winged man adds before flying off, "you
win someone's heart. If you can find a solution in which lines connect the top
and bottom disks to the base at left as well, you will always be lucky in love.
There are at least 5 hearts out there for you. Can you win the others?"

For a solution, see "Further Exploring."
[Editor's note: Dr. Googol shortly woke up from his fainting spell. Physicians

pronounced his heart normal. His "heart pain" was diagnosed as severe indiges-
tion resulting from a recently eaten wasabi-pepperoni pizza.]

Chapter 12

Poseidon Arrays

Truly the gods have not from the beginning revealed all things to mortals,
but by long seeking, mortals make progress in discovery.

—Xenophanes of Colophon

Poseidon arrays are those in which successive rows are equal to the first row mul-
tiplied by consecutive numbers. That's a mouthful! An example will help clarify
this. The following pattern

1

2

3

1

2

3

1

2

3
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is such an array because the second row is twice the first, and the third row is 3
times the first. Dr. Googol began to wonder if there were similar Poseidon arrays
where each digit is used only once. After much thought, he discovered

1

3

5

9

8

7

2

4

6

Notice that 384 is twice the number in the first row, and that 576 is 3 times
the number in the first row. Are there other ways of arranging the numbers to
produce the same result, using each digit only once and the same rules?
Remember, the second row must be twice the first. The third row must be 3
times the first row.

$ For a solution and additional speculation, see "Further Exploring."

Chapter 13

Scales of Justice

The popular image of mathematics as a collection of precise facts,
linked together by well-defined logical paths, is revealed to be false.

There is randomness and hence uncertainty in mathematics, just
as there is in physics.

—Paul Davis, The Mind of God
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Dr. Googol was trapped in the laboratory of a crazy Egyptian entomologist.
All manner of beetles and bugs flew within jars, climbed the walls, and dangled
from the ceiling.

"This is sick," Dr. Googol screamed.
"Sick?" the scientist said. "I'll show you sick."
He went to a piece of paper on the table where he had cutouts of his favorite

insects. He placed the cutouts on schematic drawings of scales. For example, on
the first scale 2 ants were in one pan and exactly balanced a grasshopper and
wasp in the other pan:

Ant Ant Grasshopper Wasp

Ant Cockroach Grasshopper

Cockroach

"The first 2 sets of scales are in balance," he said while popping a few ants
into his mouth as a snack. "I want you to assign values to the insects' weights and

?
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tell me which insect or sets of insects replaces the empty side of the third scale in
order to balance it. Each insect species is of a different weight. Assume that the
cockroach is balanced by some collection of insects."

Can you help Dr. Googol solve this puzzle and win his release? What strategy
did you use?

$• For a solution, see "Further Exploring."

Chapter 14

Mystery Squares

He calmly rode on, leaving it to his horse's discretion to go which way it
pleased, firmly believing that in this consisted the very essence of adventures.

—Cervantes, Don Quixote

Dr. Googol has placed the numbers 1, 2, 3, and 4 at the corners of a square. Can
you try to arrange 5, 6, 7, 8, 9, 10, 11, and 12 along the sides of the square so
that the numbers along each side all add up to the same number? (If you don't at
least try to solve this intriguing enigma, Dr. Googol may visit you at home—not
entirely pleasant, since Dr. Googol doesn't stop talking and posing problems.)

Below is an example where the sums are all unequal. For instance, the top row
adds up to 18, and the left column adds up to 16. (Notice the 1, 2, 3, and 4 at
the corners.)

6

5

7 8

11 12

9

10
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How many solutions can you find in which the numbers along each side add
up to the same sum? Remember, the numbers 1, 2, 3, and 4 are to remain fixed
in place.

$ For a solution, see "Further Exploring."

Chapter 15

Quincunx

We think of the number "five" as applying to appropriate groups of any
entities whatsoever—to five fishes, five children, five apples, five days. . . .
We are merely thinking of those relationships between those two groups
which are entirely independent of the individual essences of any of the
members of either group. This is a very remarkable feat of abstraction;

and it must have taken ages for the human race to rise to it.
—Alfred North Whitehead

Applications, computers, and mathematics form a tightly coupled system
yielding results never before possible and ideas never before imagined.

—Lynn Arthur Steen

The enormous usefulness of mathematics in natural sciences is something
bordering on the mysterious, and there is no rational explanation for it. It
is not at all natural that "laws of nature" exist, much less that man is able
to discover them. The miracle of the appropriateness of the language of

mathematics for the formulation of the laws of physics is a wonderful gift
which we neither understand nor deserve.

—Eugene P. Wigner, "The Unreasonable Effectiveness
of Mathematics in the Natural Sciences"

Five is Dr. Googol's favorite number, and 5-fold symmetry is his favorite sym-
metry. Would you care for a barrage of mathematical trivia befitting only the
most ardent mathophiles?
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© Not only is 5 the hypotenuse of the smallest Pythagorean triangle, but it is
also the smallest automorphic number. Let me explain. A Pythagorean trian-
gle is a right-angled triangle with integral sides. For example, the smallest
Pythagorean triangle has side lengths 3, 4, and 5. An automorphic number
n, when multiplied by itself, leads to a product whose rightmost digits are
n. Not counting the trivial case of the number 1, 5 and 6 are the smallest
automorphic numbers because 5 x 5 = 25 and 6 x 6 = 36. Examining a
larger number, the square of 25 is 625. Note that 25 appears as the final 2
digits of 625.

© Five is probably the only odd untouchable number. (The legendary and
bizarre mathematician Paul Erdos called a number "untouchable" if it is
never the sum of the proper divisors of any other number. The sequence of
untouchable numbers starts 2, 5, 52, 88, 96, 120. A "divisor" of a number N
is a number d which divides N\ it's also called a factor. A "proper divisor" is
simply a divisor of a number TV excluding //itself.)

© Also, there are 5 Platonic solids. (The 5 Platonic solids are the tetrahedron,
cube, octahedron, dodecahedron, and icosahedron. All the faces of a
Platonic solid must be congruent regular polygons.)

© The word quincunx is the name for the pattern

on a die, and it involves both 5 and 1. It's also the name for a particular type
of 5-domed cathedral, like St. Mark's Cathedral in Venice. (Certain Khmer
temples in Southeast Asia also use this configuration.)

Dr. John Lienhard of the University of Houston points out to Dr. Googol
that most 19th-century forts were square or pentagonal (Figure 15.1), with "bas-
tions" on each corner that gave the old forts the shape of great stone
"snowflakes." (Bastions are spade-shaped widenings of the corners that let
defenders fire parallel to the walls.)

Fort Sumter was 5-sided and sat on the tip of an island in Charleston Bay.
(The first engagement of the Civil War took place at Fort Sumter, and in a few
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FORTIFICATION.

15.1 A typical early 19th-century pentag-
onal fortification. (From the 1832
Edinburgh Encyclopedia.)

years most of the fort was reduced
to brick rubble.) Water came right
up to 4 of its walls. Only the fifth
wall needed the protection of bas-
tions. Dr. Lienhard suspects that 5
was a typical solution to the problem
of placing bastions close enough
together without increasing the costs
of construction and manning the
walls.

Five occurs in the symmetry of
several creatures in science-fiction
literature. For example, Naomi
Mitchison's Memoirs of a Spacewoman
describes "Radiates," intelligent 5-
armed creatures resembling starfish
(Figure 15.2). They live in villages
composed of long, low buildings dec-
orated with fungi that grow in spiral
patterns. Radiates don't think in
terms of dualities, having instead a 5-
valued system of logic.

Five-fold symmetrical organs are
sometimes described in science-fic-
tion stories. For example, the Old
Ones in H. P. Lovecraft's At the
Mountains of Madness are incredibly
tough and durable creatures, having
characteristics of both plants and ani-
mals. They also possess an extraordi-
nary array of senses to help them
survive. Hairlike projections and eyes
on stalks at the top of their heads permit vision. The colorful, prismatic hairs
seem to supplement the vision of the eyes, and in the absence of visible light, the
species is able to "see" using the hairs. Their complex nervous system and 5-
lobed brains process senses other than the human ones of sight, smell, hearing,
touch, and taste. When the Old Ones open their eyes and fully retract their eye-
lids, virtually the entire surface of the eye is apparent.

The number 5 is also remarkable for its appearance in Earthly biology and in art.
Five-fold symmetry in biology is fairly common, as evidenced by a variety of
animal species such as the starfish and other invertebrates. Five-fold symmetry

15.2 A Radiate from Naomi Mitchison's
novel Memoirs of a Spacewoman.
(Drawing by Michelle Sullivan.)
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15.3 Several terra-cotta inlays from the smaller dome
chamber of the Masjid-i-Jami in Isfahan (A.D. 1088).

15.4 The 5-pointed Star
of Bethelehem.

15.5. Badge from the
Leicester family.

15.6. Several Japanese crests exhibiting 5-fold
symmetry.

also appears in mathematics; for example, in numerous uniform polyhedra. Five-
fold symmetry is relatively rare, however, in the art forms produced by humans.
Perhaps partly because pentagonal motifs do not tightly pack on the plane, they
are much rarer than other symmetries in historic and artistic ornament.
Nevertheless, there are occasional interesting examples of pentagonal ornaments
in artistic symbols and designs. The oldest and most important examples of 5-
fold symmetry and odd-number symmetry are the 5-pointed star and triangle,
first used in cave paintings and in the Near East since about 6000 B.C. Since then
they have been used in sacred symbols by the Celts, Hindus, Jews, and Moslems.
Later (circa 10th century A.D.) the 5-pointed star was adopted by medieval
craftspeople such as stonecutters and carpenters. In the 12th century, it was
adopted by magicians and alchemists.
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15.7 Pentagon with Fishes, by Peter
Raedschelders.

15.8 Tropical Fishes, by Peter
Raedschelders.

To begin this picture essay, Dr. Googol invites you to consider some of the
Persian designs and motifs with pentagonal symmetry. Over the centuries, Persia
(Iran) has been periodically invaded, and elements of the invading cultures were
incorporated into the native artistic traditions. Much of Persian art contains
highly symmetrical designs. Examples of symmetrical ornaments appear on silk
weaves, printed fabrics, carpets, ceramics, stone, and calligraphy. Occasionally,
we find a 5-fold symmetrical design in Persian ornament. Figure 15.3 shows
terra-cotta inlays from the smaller dome chamber of the Masjid-i-Jami in Isfahan
(A.D. 1088).

Religious symbols sometimes contain pentagonal symmetry; an example,
shown in Figure 15.4, is the 5-pointed Star of Bethelehem. Various symmetrical
designs have also appeared in heraldic shapes. In the Middle Ages these designs
on badges, coats of arms, and helmets generally indicated genealogy or family
name. Figure 15.5 shows a badge from the Leicester family. The Japanese also
had similar family symbols for the expression of heraldry. The family symbol, or
man, was known in Japan as early as A.D. 900 and reached its highest develop-
ment during feudal times. Figure 15.6 shows several Japanese crests containing
5-fold symmetry. These kinds of crests are found on many household articles,
including clothing.

Symmetrical ornaments, such as those in this chapter, have persisted from
ancient to modern times. The different kinds of symmetry have been most fully
explored in Arabic and Moorish design. The later Islamic artists were forbidden
by religion to represent the human form, so they naturally turned to elaborate
geometric themes. To explore the full range of symmetry in historic ornament,
you may wish to study the work of Ernst Gombrich, who discusses the psychol-
ogy of decorative art and presents several additional examples of 5-fold symmetry.

Finally, Belgian artist Peter Raedschelders frequently uses 5-fold symmetry in
his art, and several of his recent works are presented here (Figures 15.7-15.10).
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One of his passions is to deter-
mine mathematically interesting
ways to pack regular pentagons
with fish and snakes (Figures
15.7-15.9). He enjoys the chal-
lenge because other artists often
shy away from the difficult pack-
ing of a pentagon. Notice that the
snakes are moving along a
strangely shaped single surface.
Figure 15.10 illustrates a train
that is able to ride along the vari-
ous seemingly planar surfaces of
this weird star. Hop on, and take a
long, exciting ride! 15.9 Five Snakes, by Peter Raedschelders.

15.10 Train, by Peter Raedschelders.
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Jerusalem Overdrive

Who carved the nucleus, before it fell, into six horns of ice?
—Johannes Kepler

Dr. Googol was in Jerusalem, overseeing the construction of a new multidenom-
inational religious center that would house prayer rooms for the 3 major reli-
gions: Judaism ($), Christianity (fr), and Islam (G). To make it more difficult
for terrorists to bomb any single religious group, and to minimize religious con-
flicts, the architect is to design the center as a 3-by-3 matrix of prayer rooms so
that (when viewed from above) each row and column contains only 1 prayer
room of a particular religious denomination. An aerial view of the religious cen-
ter looks like a tic-tac-toe board in which you are not permitted to have 2 of the
same religions in any row or column. Is this possible?

The following is an arrangement prior to your attempt to minimize conflict:

For a second problem, consider that you must place the prayer rooms so that
each row and column contains exactly 2 religions. Is this possible?

You can design a computer program to solve this problem by representing the 3
religions as red, green, and amber squares in a 3-by-3 checkerboard. The program
uses 3 squares of each color. Have the computer randomly pick combinations, and
display them as fast as it can, until a solution is found. The rapidly changing ran-
dom checkerboard is fascinating to watch, and there are quite a lot of different pos-
sible arrangements. In fact, for a 3-by-3 checkerboard there are 1,680 distinct
patterns. If it took your computer 1 second to compute and display each 3-by-3
random pattern, how long would it take, on average, to solve the problem and dis-
play a winning solution? (There is more than 1 winning solution.)

$ For a solution, and more on religious patterns and magic squares, see
"Further Exploring."
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The Pipes of Papua

In Samoa, when elementary schools were first established, the natives
developed an absolute craze for arithmetical calculations. They laid aside
their weapons and were to be seen going about armed with slate and pen-
cil, setting sums and problems to one another and to European visitors.

The Honourable Frederick Walpole declares that his visit to the beautiful
island was positively embittered by ceaseless multiplication and division.

—T. Briffault

I like that abstract image of life as something like an efficient factory
machine, probably because actual life, up close and personal, seems
so messy and strange. It's nice to be able to pull away every once in

awhile and say, "There's a pattern there after all! I'm not sure
what it means, but by God, I see it!"

—Stephen King, Four past Midnight

Late last autumn, while enjoying the brisk New England air, Dr. Googol took a
walk with Omar Khayyam, his octogenarian friend. Omar whispered a tale
about his buddies who had once explored Papua New Guinea in the southwest-
ern Pacific Ocean. Dr. Googol should tell you right up front that he can never be
certain as to the accuracy of Omar's tales. During the past 10 years his stories
have evolved into highly embellished tales, composed of myth and truth, per-
haps more of the former than the latter, depending on his mood. Whatever the
case, Dr. Googol recounts his colorful story here and lets you decide about the
authenticity of Omar's old recollections.

Omar's friends were camping on a riverbank when they heard strange flutes or
wooden pipes. There was a certain rhythm to the pipes, but the tones never quite
repeated themselves. Occasionally a drum seemed to beat the same rhythm. A
few men explored the surrounding bush but, even after much searching, never
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succeeded in locating the source of the sounds. Sometimes the sounds seemed to
come from the north, at other times from the east.

The sounds emanated from a 2-tone pipe. Edward Fitzgerald was one of the
explorers on the journey, and he was sufficiently interested in this peculiar phe-
nomenon to record it in his tattered notebook, using t> and <f to represent the
long and short tones he heard. Luckily the pipe sounds were slow enough to allow
the explorer to accurately record the rhythmic pattern. The first few entries were:

Then the player would pause for a minute and then start again. On the next
line of the notebook were the drawings:

The notebook contained several pages of these symbols. By midnight, the
pages of the notebook were exhausted.

Years later, Omar came into possession of the notebook from Fitzgerald, who
croaked, "It's the strangest thing ye ever heard. It ain't exactly irregular and it ain't
exactly regular, either." Omar, who has some mathematical training, spent many
days examining the pages of ̂  and <f symbols. His conclusion was startling.

Dr. Googol and Omar continued their walk in the cool night air. Suddenly,
Omar stopped dead in the middle of the sidewalk under an amber streetlight. He
looked Dr. Googol in the eye. "You might not believe this, but that strange pat-
tern of 4) and <f symbols turned out to be a well-known, exotic pattern of binary
numbers called the Morse- Thue sequence—it's visually represented with a string
of Os and Is." Omar went on to explain that the sequence is named in honor of
the Norwegian mathematician Axel Thue (1863-1922) (pronounced "tew") and
Marston Morse of Princeton (1892-1977). Thue introduced the sequence as an
example of a nonperiodic, recursively computable string of symbols—a phrase
that should become clear to you in the following discussion. Morse did further
research on the sequence in the 1920s.

There are many ways to generate the Morse-Thue sequence. One way is
to start with a 0 and then repeatedly do the following replacements: 0-^01 and
1 -^ 10. In other words, whenever you see a 0 you replace it with 01. Whenever
you see a 1 you replace it with 10. Starting with a single 0, we get the following
successive "generations":

0
01
0 1 1 0
0 1 1 0 1 0 0 1
0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0
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Try generating this with a pencil and paper. You begin with 0, and replace it
with 01. Now you have a sequence of two digits. Replace the 0 with 01 and the
1 with 10. This produces the sequence 0110. The next binary pattern is
01101001. Notice that 0110 is symmetrical, a palindrome, but the next pattern,
01101001, is not. But hold on! The very next pattern, 0110100110010110, is a
palindrome again. Does this pattern continue to hold for alternate sequences?
The mysteries of this remarkable sequence have only begun.

Notice that the fourth line of the sequence can translate into the
^^ifc^i)^^!) sounds in Omar's story if you let <f represent 0 and & repre-
sent 1. Amazing!

You can generate the pipe sequence in another way: each generation is
obtained from the preceding one by appending its complement. This means that
if you see a 0110 you append to it a 1001. There is yet a third way to generate
the sequence. Start with the numbers 0, 1, 2, 3, ... and write them in binary
notation: 0, 1, 10, 11, 100, 101, 110, 111, . . . . (Binary numbers are explained
in detail in the "Further Exploring" for Chapter 21. Hop there now if you need
background information.) Now calculate the sum of the digits modulo 2 for
each binary number. That is, divide the number by 2 and use the remainder. For
example, the binary number 11 becomes 2 when the digits are summed, which is
represented as 0 in the final sequence. This yields the sequence 0, 1, 1,0, 1,0, 0,
1, . . . , which is the same sequence yielded by the other methods!

Let Dr. Googol tell you why this sequence is so fascinating. For one, it is self-
similar. This means you can take pieces of the sequence and generate the entire
infinite sequence! For example, retaining every other term of the infinite
sequence reproduces the sequence. Try it. Similarly, retaining every other pair
also reproduces the sequence. In other words, you take the first 2 numbers, skip
the next 2 numbers, etc. Also, the sequence does not have any periodicities, as
would a repetitious sequence such as 00, 11, 00, 11. However, although aperi-
odic, the sequence is anything but random. It has strong short-range and long-
range structures. For example, there can never be more than 2 adjacent terms
that are identical. One method for finding patterns in a sequence, the Fourier
spectrum, shows pronounced peaks when used to analyze the sequence. Using
this mathematical method, you can make a graph showing the frequencies in the
data plotted versus position in the sequence, with the more intense frequency
components shown in the third dimension, or more simply as a darker point on
a 2-dimensional graph.

The sequence grows very quickly. The following is the sequence for the eighth
generation.

0110100110010110100101100110100110010110011010010110100110

0101101001011001101001011010011001011001101001100101101001

0110011010011001011001101001011010011001011001101001100101

1010010110011010010110100110010110100101100110100110010110

011010010110100110010110
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0110100110010110100101100110100110010110011010010
1101001100101101001011001101001011010011001011001
1010011001011010010110011010011001011001101001011
0100110010110011010011001011010010110011010010110
1001100101101001011001101001100101100110100101101
0011001011010010110011010010110100110010110011010
0110010110100101100110100101101001100101101001011
001101001100101100110100101101001100101100110100
1100101101001011001101001100101100110100101101001
1001011010010110011010010110100110010110011010011
0010110100101100110100110010110011010010110100110
0101100110100110010110100101100110100101101001100
1011010010110011010011001011001101001011010011001
0110011010011001011010010110011010011001011001101
001011010011001011010010110011010010110100110010
1100110100110010110100101100110100101101001100101
1010010110011010011001011001101001011010011001011
0100101100110100101101001100101100110100110010110
1001011001101001100101100110100101101001100101100
1101001100101101001011001101001011010011001011010
0101100110100110010110011010010110100110010110100
1011001101001011010011001011001101001100101101001
0110011010010110100110010110100101100110100110010
1100110100101101001100101100110100110010110100101
1001101001100101100110100101101001100101101001011
0011010010110100110010110011010011001011010010110
0110100101101001100101101001011001101001100101100
1101001011010011001011010010110011010010110100110
0101100110100110010110100101100110100110010110011
0100101101001100101100110100110010110100101100110
1001011010011001011010010110011010011001011001101
0010110100110010110011010011001011010010110011010
0110010110011010010110100110010110100101100110100
1011010011001011001101001100101101001011001101001
1001011001101001011010011001011001101001100101101
0010110011010010110100110010110100101100110100110
0101100110100101101001100101101001011001101001011
0100110010110011010011001011010010110011010010110
1001100101101001011001101001100101100110100101101
001100101100110100110010110100101100110100110010
1100110100101101001100101101001011001101001011010
011001011001101001100101101001011001101001

Table 17.1 A Morse-Thue sequence for the llth generation.

Table 17.1 shows the sequence for the eleventh generation. Sometimes certain
patterns emerge when a sequence is stacked up on itself in this manner. Can you
see any patterns here? Another way to represent the Morse-Thue sequence is to
redraw it as a "bar code" of sorts, placing vertical lines wherever a 1 occurs and
skipping a space wherever a 0 occurs. To make the positions of "11" entries clear
to the human eye, wherever two Is appear consecutively, try joining them by
short ladder-like steps. Dr. Googol also likes to draw the Morse-Thue sequence
with botanical shapes. Here the Is are replaced by flowers and the Os by spaces:
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0110100110010110100101100110100110010110011010010110100

1100101101001011001101001011010011001011001101001100101

1010010110

The diagram looks even better when tall trees are used. Can you arrange the
rows and columns in a way that better reveals the sequence's patterns? What
would it be like to walk through this strangely spaced forest? Imagine holding
the hand of someone you love as you explore an infinite Morse-Thue forest that
stretches for as far as your eye can see.

$ For more on the musical qualities of these patterns, see "Further
Exploring."

9 For computer hints, see [www.oup-usa.org/sc/0195133420].

Chapter 18

The Fractal Society

I believe that scientific knowledge has fractal properties, that no matter
how much we learn, whatever is left, however small it may seem, is just as

infinitely complex as the whole was to start with. That, I think,
is the secret of the Universe.

—Isaac Asimov, I, Asimov.

God gave us the darkness so we could see the stars.
—Johnny Cash, "Farmer's Almanac"

Dr. Googol belongs to a group of mathematicians who meet each month in a
secret club. Status in their Fractal Society is based on the prowess with which an

www.oup-usa.org/sc/0195133420
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18.1 Fractal Fantasies playing board (degree 2).

individual plays mathematical games and proves mathematical theorems. The
center of such activity is a building called the Imaginarium, which is shaped like a
Mandelbrot set. There are various pleasurable rewards bestowed upon club mem-
bers in proportion to the novelty of theorems they solve. Dr. Googol's favorite
society game is called Fractal Fantasies.

The playing board for the Fractal Fantasies is a fractal nesting of intercon-
nected rectangles. (Figure 18.1). Dr. Googol is so enthralled with this game that
he has cut the design into the roofing slabs of his home and the surface of his
kitchen table. The board for Fractal Fantasies contains rectangles within rectan-
gles interconnected with dashed lines as shown in Figure 18.1. There are always
two rectangles within the rectangles that encompass them. The degree of nesting
can be varied. Beginners play with only a few nested rectangles, while grand mas-
ters play with many recursively positioned rectangles. Tournaments last for days,
with breaks only for eating and sleeping. The playing board illustrated in Figure
18.1 is called a "degree 2" board, because it has two different sizes of rectangles
within the large bounding rectangle. Beginners usually start with a degree 1
board, and grand masters have been known to use a degree 20 board. One player
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uses white playing pieces (like stones); the other uses black. Each player starts
with a number of pieces equal to half the number of vertices (dots) on the board
minus 2. For the board here, each player gets 19 stones. With alternate moves, the
players begin by placing a stone at points on the black dots that are empty. As
they place stones, each player attempts to form a row of 3 stones along any 1 of
the horizontal sides of any rectangle. This 3-in-a-row assembly of stones is called
a Googol. When all the stones have been placed, players take turns moving a piece
to a neighboring vacant space along one of the dashed or straight connecting
lines. When a player succeeds in forming a Googol (either during the alternate
placement of pieces at the beginning of the game, or during alternate moves along
lines to adjacent empty points), then the player captures any 1 of the opponent's
pieces on the board and removes it from the board. These removed stones may be
kept in star-shaped receptacles represented by the black stars at the top and bot-
tom of the board in Figure 18.1 (In some versions of the game, an opposing stone
cannot be taken from an opposing Googol.) A player loses when he or she no
longer has any pieces or cannot make a move.

Mathematicians and philosophers will no doubt spend many years ponder-
ing a range of questions, particularly for boards with higher nesting. Computer
programmers will design programs allowing the board to be magnified in differ-
ent areas, permitting convenient playing at different size scales. They'll all wish
they had fractal consciousnesses allowing the contemplation of all levels of the
game simultaneously.

Many of Dr. Googol's dearest friends have spent years of their lives ponder-
ing the following questions relating to Fractal Fantasies. No one has succeeded
in answering these questions for games with degree higher than 2. Various
centers have been established and funded in order to answer the following
research questions:

1. What is the maximum number of pieces that can be on the board without
any forming a row?

2. Is there a best opening move?

3. If the large bounding square has a side 1 foot in length, and each successive
generation of square has a length 116 of the previous, what is the total length
of lines on the board?

4. If a spider were to start anywhere on the board and walk to cover all the
lines, what would be the shortest possible route on the board?

5. How many positions are possible after 1 move by each player?

6. How large would a degree 100 board have to be in order for the smallest
squares to be seen? How many playing pieces would be used? What length of
time would be required to play such a bizarre game?

$• For reader comments, see "Further Exploring."
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The Triangle Cycle

The mathematical rules of the universe are visible to men
in the form of beauty.

—John Michel

Dr. Googol spends long hours contemplating a number puzzle called the
Triangle Cycle. The puzzle begins with that simple shape of geometry—the tri-
angle—and soon becomes fiendishly complex. Place a single digit at each corner
of a triangle so that the lines that connect adjacent digits create 2-digit numbers
that are multiples of either 7 or 13.
(The 2-digit number needs to be a
multiple in only 1 direction.) For
example, a line connecting 1 and 9
is valid because you can read it as 19
or 91, and 91 equals 13x7. We can
make a triangle starting with these
two digits by putting a 3 in the third
corner, as seen in Figure 19.la. One
of these lines connects 1 and 3,
forming the number 13 (13 times
1), while the other connects 3 and 9,
forming 39 (13 times 3).

But the puzzle is far from over.
Draw a new triangle inside the first,
with its corners cutting the sides of
the larger triangle in half. Now pick
3 more numbers for the new cor-
ners. Be careful: you've actually cre-
ated 4 triangles, and each has to
obey the rules outlined above.

19.1 Playing board for the Triangle Cycle game,
(a) A starting position, (b) Triangles within
triangles, (c) A cycle 1 solution, (d) A cycle
2 solution
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The easiest solution uses the same 3 numbers (see Figure 19.1b). Let's first
take a look at the 6 lines that make up the outer triangle. In clockwise order
starting from the top corner, they form the following valid numbers: 39, 91, 13,
39, 91, and 13. On the inner triangle, counterclockwise from the top left corner,
the numbers are 13, 39, and 91.

You can draw a third triangle inside the second that is a copy of the first, as
shown in Figure 19. Ic—and a fourth and a fifth and so on until infinity. The tri-
angles flip up and down (A V A V . . . ) forever. Dr. Googol likes to call this a
cycle 1 solution because it can repeat the same triangle forever. A cycle 2 solu-
tion, on the other hand, flips back and forth between two different triangles;
Figure 19.Id shows one example.

A cycle 4 solution, as you might expect, uses 4 different triangles. Can you
figure 1 out? Can you find higher cycles?

$ For a solution and additional challenges, see "Further Exploring."

Chapter 20

IQ-Block

Even if the rules of nature are finite, like those of chess, might not science
still prove to be an infinitely rich, rewarding game?

—John Morgan, Scientific American 267(6), 1992.

An interesting example of cultural contamination occurred in a secluded
West African valley when Dr. Googol left behind a mathematical puzzle called
IQ-Block (manufactured by Hercules, designated as Item No. P991A, UK
Registered No. 2013287, and made in Hong Kong). The puzzle, schematically
illustrated in Figure 20.1, consists of 10 brightly colored polygonal pieces of
plastic. The 10 pieces fit together to form a square. Only 1 piece is shaped like a
rectangle. The others are more complex. One is shaped like a Z. The remainder
are L-shaped. To play IQ-Block, first choose a shape you like, place it in the
upper left, and do not change its position as you try to place the other 9 blocks
into the remaining space on the square playing board. The manufacturer boasts,
"There are more than 60 different kinds of arrangements" of pieces that will fill
in the square playing board. The company also states, "It is an incredible game.
Join us in challenging your IQ."
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20.1. IQ-Block. Scramble the puzzle pieces and see if your
friends can put them together again in a square. Is there
more than 1 way to do this?

After the natives found IQ-Block protruding from the jungle floor in the
Congo, they quickly translated the playing manual and passed out copies to all
members of their local clan. They began to study the game and hold tourna-
ments. During these tournaments, masters attempted to form as many possible
different arrangements of pieces within the bounding square as possible before a
10-minute alarm rang.

Here are some challenges and digressions:

© The manufacturer of IQ-Block boasts that there are over 60 different ways
of placing the pieces together to form a square. Is this correct? Just how
many different arrangements are there? Some Congo philosophers argued
that there are only 10 different unique arrangements, while others asserted
that there are over 1000 ways of solving the puzzle! Who is closer to the
truth?

© On a particularly frigid evening, in a fit of frustration, a master at the game
swallowed a polygonal playing piece to prevent his opponent from finding
any solutions. Their glistening eyes locked in open warfare. Suddenly a
blush of pleasure rose to his opponent's cheeks—and she then created a
square of slightly smaller dimensions. Can you create a square after remov-
ing a piece, using all the remaining pieces?
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© After giving this puzzle to 5 friends, Dr. Googol found that none could cre-
ate a square by arranging the 10 pieces. So, even if there are "60 different
ways" of solving this, you should not despair if the task seems too difficult.
Try IQ-Block on your friends, colleagues, children, and students to see if
any can even find a single way of arranging the pieces to form a square. Dr.
Googol looks forward to hearing from you regarding this intriguing puzzle.

$ For a solution and additional challenges, see "Further Exploring."

Chapter 21

Riffraff

The ratio of the height of the Sears Building in Chicago
to the height of the Woolworth Building in New York is the same to
four significant digits (1.816 vs. 1816) as the ratio of the mass of a

proton to the mass of an electron.
—John Paulas, Innumeracy

After weeks of searching, Dr. Googol has finally found a beautiful, spacious, low-
rent apartment with French doors and a southern exposure. But on his first
night, he discovers a slight disadvantage: all the apartments surrounding his are
filled with musicians who practice only after the sun goes down. Not only can't
Dr. Googol sleep, but each musician plays the most unmelodious pattern. Above
him is the maniacal mathematical trumpeter Fermats Navarro. Every night he
plays the same thing. He starts with a long note (shown on the next page as a ©),
then plays a long note followed by a short blast (shown on the next page as a ®),
and then plays a longer phrase of long and short blasts, continuing through the
night, each phrase longer than the last:
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Below Dr. Googol is the similarly maniacal trombone player Curtis Euler. He
jams his fist into the mouth of the trombone to create normal and muted sounds
symbolized by 1C7 (when the trombones mouth is open) and CH (when his fist
closes the opening). The odious melody grows ever longer:

The apartment to the east of Dr. Googol's is occupied by violinist Itzhak
Pythagoras. He plays his seemingly random riff of short and long notes over and
over again:

©<8><8>©<8>0<8>©©©<8>©<8>©©©<8>©<8>©©0<8>00©0
0(8)0(8)00000(8)00000(8)9 ...

This can be represented as a string of Os (long notes) and Is (short notes):

01101010001010001010001000001010000010001010 . . .

On the west side is the great saxophonist Hank Mobius. He plays a run of
77 notes, then a run of 49, then one of 36 ( f l f l f l f l f l f l f l f l f l f l f l f l
fl fl fl fl fl fl), one of 18 (fl fi fl fl fl fl fl fl fl), and finally one of 8
(J3J3.C J3).

After a week without sleep, Dr. Googol goes to all his neighbors and asks
them if they could play during the day. They all give him the same response: "If
you can figure out the pattern in my playing, I'll stop playing at night."

Can you help Dr. Googol with his very difficult problem? If you are a teacher,
have your students work in teams.

$ For solutions to these difficult problems, and for more odd and challeng-
ing number sequences, see "Further Exploring."
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Klingon Paths

The advancement and perfection of mathematics are intimately con-
nected with the prosperity of the State.

—Napoleon

Dr. Googol was watching Star Trek on television when he invented this grue-
some puzzle. This grid of numbers is Klingon City, and it's a tough place to live.
Each Klingon inhabiting this world carries a bomb worn at the hip as a testa-
ment to his courage. As a Klingon walks through the grid of squares, the first
time he comes in contact with a number, his bomb receives a signal; if the bomb
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is exposed to that number a second time, the bomb explodes and the Klingon
dies. Klingons, being brave warriors, never show fear—in fact, they love the bru-
tal challenge of the game.

A Klingon can walk on any square in Klingon City and can move horizontally
or vertically but not diagonally. What is the longest path the Klingon can take
without dying? Remember, the Klingon must wander around while trying to
avoid numbers encountered previously—otherwise the Klingon explodes.

$• For the solution and additional challenges, see "Further Exploring."
3 For a computer program to study this class of puzzles, see [www.oup-

usa.org/sc/0195133420].

Chapter 23

Ouroboros Autophagy

Blindness to the aesthetic element in mathematics is widespread and can
account for a feeling that mathematics is dry as dust, as exciting as a

telephone book. . . . Contrariwise, appreciation of this element makes the
subject live in a wonderful manner and burn as no other creation of the

human mind seems to do.
—Philip J. Davis and Reuben Hersh, The Mathematical Experience

Ouroboros, the mythical serpent always seen chewing or swallowing its own tail,
is a symbol of growth, destruction, and the cyclic nature of the universe. Our
Ouroboros is made up of 13 sections, each of which houses a number (Figure
23.1). Wrapped inside the outer serpent, which contains the numbers 0 through
12, are 4 generations of circular serpents, each also marked by 13 sections. These
sections, though, do not have their numbers yet. You must use the numbers in
the first (outer) serpent to find the numbers in the second, the numbers in the
second to find those in the third, and so on. Here's how it works: The number
you put in the first section of the second serpent will indicate the total number
of Os to be found among the second serpent's sections. The section below the 1
of the first serpent indicates the total number of Is in the second serpent. The
section below the 2 indicates the total number of 2s in the second serpent, and
so on. For example, the 3 in the section below the 0 of the first serpent would

www.oupusa.org/sc/0195133420
www.oupusa.org/sc/0195133420
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Snake's Body
23.1 Each Ouroboros is made of 13 sections containing a number. (The concentric
snakes get smaller and smaller as they progress toward the middle of the figure.)

indicate that there must be exactly 3 zeros in the second serpent (but there's no 3
in that position in the real answer).

Use the second serpent to find the numbers in the third. The number in the
section under our fictional 3 would indicate how many 3s appear in the third
serpent. When you've found all the numbers in the third serpent, use them to
figure out the number in the fourth, then use the fourth serpent to solve the
fifth. Eventually Ouroboros will begin to cycle with the same 2 sets of numbers.
How many serpents does it take before it begins to cycle?

What would happen if each serpent were made up of 10 sections, the first
with the numbers 0, 1,2, 3, 4, 5, 6, 7, 8, 9? What if each serpent were made of
20 sections, the first with the numbers 0 to 19? A hundred sections, numbers 0
to 99? How about 0 to 5? What if the outer serpent's numbers were 1, 2, 2, 3, 3,
3, 4, 4, 4, 4? Can you think of any other Ouroboros numbers that need more
serpents before they cycle (or don't cycle)?

$• See "Further Exploring" for more ophidian delights.



Chapter 24

interview with a
Number

The natural numbers came from God and all else was man-made.
—Leopold Kronecker

If we are to believe bestselling novelist Anne Rice, vampires resemble humans in
many respects but live secret lives hidden among the rest of us mortals. There are
also vampires in the world of mathematics, numbers that look like normal fig-
ures but bear a disguised difference. They are actually the products of 2 progeni-
tor numbers that when multiplied survive, scrambled together, in the vampire
number. Consider 1 such case: 27 x 81 = 2,187. Another vampire number is
1,435, which is the product of 35 and 41.

Dr. Googol defines true vampires, such as the 2 previous examples, as meeting
3 rules. They have an even number of digits. Each of the progenitor numbers
contains half the digits of the vampire. And finally, a true vampire is not created
simply by adding Os to the ends of the numbers, as in

270,000 x 810,000 = 218,700,000,000

True vampires would never be so obvious.
Vampire numbers secretly inhabit our number system, but most have been

undetected so far. When Dr. Googol grabbed his silver mirror and wooden stake
and began his search for them, he found, in addition to the 2 listed above, 5
other 4-digit vampire numbers. Can you find others? Can you find any vampire
numbers with more digits in them?

See "Further Exploring" for a solution
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The Dream-Worms of Atlantis

There is no such thing as a problem without a gift for you in its hands.
You seek problems because you need their gifts.

—Richard Bach, Illusions

On the Pacific Ocean floor lives a group of mathematician mermaids who spend
their days in contemplation of the following game called Ocean Dreams. The
mermaids use bits of coral and trained marine worms, but we dry-landers can
play with a pencil and paper on graph paper.

First make a 10-by-10 array of dots (Figure 25.1). Each worm consists of 5
connected lines that stretch over 6 dots. One of the dots at the end of the worm's

25.1 The Ocean Dreams playing board.
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!_ at end (The Zombies):

U at end (The Peasants):

at end (The Lords):

25.2 Several worm contortion patterns.

body is circled to indicate its head. The worms can contort their bodies at right
angles to form different shapes, but they can't reuse a grid point through which
another part of their body passes. The allowed movements are up, down, right,
and left. Figure 25.2 shows some, but not all, worm contortion patterns. The
Zombies have a l_ at one end. The Peasants have a l_l at one end. The Lords have
a at one end. (Hint: There is 1 worm missing from the Zombies collection
and 1 worm missing from the Peasants collection. Can you complete these sets
in Figure 25.2?)

In the game, each player, on his or her turn, has to position a worm on the
grid points. In Figure 25.1, player 1 has first placed a Lord with a black head.
Player 2 has placed a peasant (at right) with a white head. Player 1 next places a
Zombie with a black head. The worms of two players cannot overlap or share the
same dot. In other words, every dot in the grid can only be occupied once. The
worms cannot lie across one another but can be tightly folded and intertwined.
The game is over when no one can add another worm to the grid. To determine
who wins, count the number of Lords, Peasants, and Zombies. Each Lord is
worth 3 points, each Peasant 2 points, each Zombie 1 point. One player may use
open circles on the ends of his or her worms to denote their heads, while the
other can use closed circles.

To make matters more interesting, there are 2 final constraints. There is a
whirlpool created by a strange undertow at the center of the grid—denoted by a
W'with a circle around it. As a result of the undertow, the worms are pulled
toward it. Therefore, the head of each worm must be closer to the center of the
grid than the tail of each worm. Additionally, the worms discharge toxins—so,
to play it safe, their heads may not be on adjacent, orthogonal grid units. (This



means that the heads may not be next to one another in the up, down, left, or
right direction.)

Dr. Googol looks forward to hearing from readers who have played Ocean
Dreams. What is the best strategy? Does the first player have an advantage? Does
this change when there are 3 or more players competing? What happens with
bigger boards?

Remember: Dr. Googol has not listed all of the possible worm contortion pat-
terns; there are more Zombies and Peasants than shown here. How many unique
worm contortion patterns are there?

$ For a solution, see "Further Exploring."

Chapter 26

Satanic Cycles

I'm one of those people who believe that life is a series of cycles—wheels
within wheels, some meshing with others, some spinning alone, but all of

them performing some finite, repeating function.
—Stephen King, Four past Midnight

Dr. Googol brought a large unicycle to his classroom and started riding up and
down the aisles.

"Sir," said a student after several minutes, "why are you doing this?"
Dr. Googol hopped off the unicycle. "Why? I'll tell you why. Listen to my tale

about a demon bicyclist riding through the burning depths of Hell."
Most of Dr. Googol's students sat in rapt attention, although a boy with
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26.1 You can solve this wheel by inserting a multiply symbol
between 5 and 3 to form 5 x 3 = 15.

spiked orange hair promptly got up and left the room. Dr. Googol did not seem
to notice.

"In the crimson caves of Hell rides a bicyclist," Dr. Googol said. "He rides
by the lost human souls and allows them to view his bicycle wheels for 1 min-
ute. Surprisingly, each of his wheels has a mathematical formula that can be
written out by starting at the correct number and following around the wheel's
circular tire in a clockwise or counterclockwise direction until the formula is
determined."

Dr. Googol went to the blackboard and drew the wheel in Figure 26.1. "For
example, this bicycle wheel contains the formula 5 x 3 = 1 5 . (You start at the 5
and proceed clockwise, inserting the appropriate mathematical symbols as
needed.) If you are not able to determine the correct formula within 1 minute,
you are relegated to the Stygian depths for all eternity. However, if you can cor-
rectly identify the formula before the bicyclist rides on, then you enter the
empyrean realm of Paradise—not to mention getting an A in my class."

Dr. Googol held up a plaque inscribed with the bicycle wheels in Figure
26.2. Can you help his students identify the formulas they contain? Only the
symbols +, -, x, /, and = and exponentiation are permitted. You may use each of
these symbols, at most, 2 times in your formulation. For example, 1 x 2 x 3 x 4



26.2. The eternal bicyclist. Can you solve these wheels?

would not be permitted because the multiplication symbol is used 3 times. Con-
catenation of digits to form multidigit numbers is allowed as often as needed.
(You must proceed around the wheel back to the starting point, or beyond the
starting point as in the 5 x 3 = 15 example). Can you solve Dr. Googol's wheels
in Figure 26.2?

See "Further Exploring" for solutions and further classroom experiments.

Chapter 27

Persistence

Science is not about control. It is about cultivating a perpetual condition
of wonder in the face of something that forever grows one step richer and
subtler than our latest theory about it. It is about reverence, not mastery.

—Richard Power, The Gold Bug Variations

Dr. Googol once lectured during a summer session at Harvard University. As he
looked over his class of eager postdoctoral students, he smiled at Monica, his best
pupil.

Dr. Googol started by drawing on the blackboard:
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He turned back to the class. "Can anyone tell me how the following sequence
arises.''

Monica instantly stuck up her hand. "Sir, in '969, 486, 192, 18, 8' each term
is the product of the digits of the previous term."

"Monica, you are amazing. Now let me tell you about 969's persistence. The
persistence of a number is the number of steps (4 in our example) before the
number collapses to a single digit. Now, consider 2 mighty difficult questions:

"1. What is the smallest number with persistence 3?
"2. What is the smallest number with the persistence of 12? (Hint: This one

is so difficult, don't even bother trying to solve it.)"
Dr. Googol looked at the befuddled students. Even Monica seemed distressed

as she ran her shaking fingers through her dark hair.
Dr. Googol stared Monica straight in the eyes. "Monica, I will give a $100 bill

to anyone who can answer question 1, and a $1,000 bill to anyone who can
answer question 2. Take as long as you like to think about this extraordinarily
delightful and devilish problem."

$ For some commentary, see "Further Exploring."

Chapter 28

Hallucinogenic Highways

We live on a placid island of ignorance in the midst of black seas of infin-
ity, and it is not meant that we should voyage far.

—H. P. Lovecraft, The Call of Cthulhu

<s> Number Maze 1,
a visual intermission before
the next book part....

Dr. Googol was driving the interstate highways in Colorado when he devel-
oped this simple-looking but fiendishly difficult problem. Starting at the bottom
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29.1 Hallucinogenic Highways. Can you reach the Finish with a sum
of 84? (Drawing by Brian Mansfield.)

in Figure 28.1, you must find a path to the Finish in the Rocky Mountains by
traveling the roads. Each time you pass a sign, you add the sign's number to a
cumulative sum. Can you reach the Finish with a sum of 84?

If you are a teacher, have your students work in teams to solve this problem.
What strategy did your students use? Have them develop their own highway
puzzles using other operations including minus and multiply. For safety's sake,
make sure students have not imbibed too many caffeinated beverages before
embarking on these strange highways. (Your car is small, so you can avoid signs
at intersections, like 27 and 7, if you turn sharply.)

r a solution to this hellishly difficult maze, see "Further Reading."



Part ii

Quirky Questions,

Lists, and

Surveys

God exists since mathematics is consistent, and the devil exists
since we cannot prove the consistency.

—Morris Kline, Mathematical Thought
from Ancient to Modern Times

Goethe opposed the use of the microscope, since he believed that
what cannot be seen with the naked eye should not be seen, and that
what is hidden from us is hidden for a purpose. In this, Goethe was a
scandal among scientists, whose first, firm, and necessary principle is

that if something can be done, then it should be done.
—John Bainville, "Beauty, Charm and Strangeness: Science as

Metaphor," Science 281, 1998

In addition to being fascinated with integers, Dr. Googol has always been
fond of making mathematical lists. He is always asking questions. What if this?
Who is that? Rank this! Why this? Many of the lists that follow have been con-
structed using information provided by exclusive surveys and discussions with
mathematicians around the world. The rankings are not the definitive word on
the subject. Rather, in the Talmudic tradition of presentation and analysis, the
lists are open for discussion. You will no doubt disagree with some of the rank-
ings, but this makes for lively, philosophical debate. Enjoy! Dr. Googol wel-
comes your comments.



Chapter 29

Why Was the First Woman
Mathematician Murdered?

The mathematical world of today owes Hypatia a great debt. . . . At the
time of her death, she was the greatest mathematician then living in the

Greco-Roman world, very likely the world as a whole."
—M. Deakin, American Mathematical Monthly, 1994

Reserve your right to think, for even to think wrongly is better
than not to think at all.

—Hypatia

The Pythagoreans of ancient Greece were fascinated by numbers, such as the tri-
angular numbers mentioned in Chapter 62. In fact, the Pythagoreans worshiped
numbers as gods. What ever became of Pythagorean thoughts and ideas once
Pythagoras died? It turns out that Pythagoras's philosophy, modified by Plato,
outlasted all other philosophies of ancient Greece. Even up to the 6th century
A.D., the numerical gods were still worshiped, but during the Dark Ages their
meaning was lost.

The Pythagoreans and their offshoot Platonists were the only ancient philo-
sophical schools to allow women to share in the teaching and the only sects
that produced outstanding woman philosophers. Unfortunately, one of their
best, Hypatia of Alexandria (370-415), was martyred by being torn into shreds
by a Christian mob—partly because she did not adhere to strict Christian prin-
ciples. She considered herself a neo-Platonist, a pagan, and a follower of Pythag-
orean ideas. Interestingly, Hypatia is the first woman mathematician in the
history of humanity of whom we have reasonably secure and detailed knowledge
(Figure 29.1).

Hypatia was born in Alexandria during times of turbulent power struggles
between Romans and militant Christians. Her father, Theon, was a respected
mathematician and astronomer. When he recognized Hypatia's talents and desire
to learn, he educated her even though most people of their era did not support
the idea of educating women. Together they began writing books on Euclid's and
Diophantus's works.

Hypatia was a respected, charismatic teacher, well liked by all her students.
Because she was famous for being the greatest of problem solvers, mathemati-
cians who had been stuck for months on particular problems would write to her
seeking her advice. She was said to be physically attractive and determinedly celi-
bate. When asked why she was obsessed with mathematics and would not marry,
she replied that she was wedded to the truth.
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29.1 Hypatia.

Hypatia edited books on geome-
try, algebra, and astronomy. Her
main focus was on Euclidean geom-
etry and solving integer equations,
and she authored a popular treatise
on the conies of Apollonius. In one
of her mathematical problems for
her students, she asked them for the
integer solution of the pair of simul-
taneous equations: x-y = a, x2-y2

= (x - y) + b, where a and b are
known. Can you find any integer
values for x, y, a, and b that make
both of these formulas true?

Aside from being a mathemati-
cian, Hypatia assisted in the design
of astrolabes, mechanical devices that
replicate the motion of the planets.
She also helped design urinonmeters
to measure the specific gravity of
urine. These were of potential use in
determining the proper dosages of
diuretics used to treat illnesses.

Sadly, we know more about Hypatia's death than about other significant
events in her life. The Christians were her strongest philosophical rivals, and
they officially discouraged her teachings, which were Pythagorean in nature with
a religious dimension. Donning a philosopher's cloak and making her way
through the city, she spoke publicly about the writings of Plato, Aristotle, and
other philosophers to anyone who wished to hear.

On a warm March day in A.D. 414, after having engaged her students in a
brilliant philosophical discussion, Hypatia guided her chariot confidently down
the streets of Alexandria toward her home. She noticed a crowd in front of a
church, and before she could turn her chariot away, two men pulled her out.
"Kill the pagan!" they shouted. Like many victims of terrorists today, she may
have been seized merely because she was a well-known figure and prominent on
the other side of the religious divide.

The historian Edward Gibbon provided a sad account of her death:

On a fatal day, in the holy season of Lent, Hypatia was torn from her chariot,
stripped naked, dragged to the church, and inhumanely butchered by the hands
of Peter the Reader and a troop of savage, merciless fanatics; her flesh was scraped
from her bones with sharp oyster-shells, and her quivering limbs were delivered to
the flames.

Her horrible death was recorded by 5th-century Christian historian Socrates
Scholasticus. After reporting her murder to Rome, Orestes, a former student of
Hypatia, requested an investigation. The investigation never took place, suppos-
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edly because of the lack of evidence and witnesses. Her murder adversely affect-
ed educational freedom for many years. Mathematics entered a period of stagna-
tion, and it was not until after the Renaissance that another woman, Maria
Agnesi, made her name as a mathematician.

Chapter 30

What if We Receive
Messages from the
Stars?

We feel certain that the extraterrestrial message is a mathematical code of
some kind. Probably a number code. Mathematics is the one language we
might conceivably have in common with other forms of intelligent life in
the universe. As I understand it, there is no reality more independent of

our perception and more true to itself than mathematical reality.
—Don DeLillo, Ratner's Star

What if spaceships from another world suddenly appeared in our skies? What if
tomorrow morning you turned on your radio and heard a strange, pulsating tone,
and what if you learned that the same thing was happening across our planet?

Dr. Googol often fantasizes that he is a handsome computer genius watching as
a giant alien mothership arrives in Earth orbit and immediately begins to transmit
a cyclic tone down to the nations of Earth. The world frantically tries to under-
stand the aliens' intentions—until Dr. Googol deciphers the alien message: it's a
countdown to weapon firing. The President of the United States attempts to rea-
son with the creatures, who give Earthlings one choice: become their slaves, or die.
The aliens demonstrate their massive orbital firepower by destroying large U.S.
cities, and the military forces of many nations try to retaliate with little effect.

If we really ever do receive a message from the stars intended to be deciphered
by us, just how will it be sent, and how difficult will it be to interpret? If we
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decided to reply, how would we send a message? One possibility is that we or
aliens would use radio waves beamed into space at frequencies between 1 and
10,000 megahertz, because these frequencies travel relatively easily through
space and through the atmosphere of planets like our own. The first part of the
message would be easy to understand so it would attract attention, such as a
series of pulses representing the numbers 1, 2, 3. ... This could be followed by
more intricate communications.

Many science-fiction novels have dealt explicitly with alien signals and their
decipherment. For example, in Buzz Aldrin and John Barnes's bestselling novel
Encounter with Tiber, Earth's astronomers detect a signal from Alpha Centauri,
the triple star of which the faintest component is the closest star to Earth, about
4.3 light-years away. Scientists first attempt to determine around which of the
stars the alien transmitter is orbiting by analyzing the Doppler shift (change in
frequency) occurring for waves coming from a moving object.

Bits and pieces of the signal seem to be strangely ordered, like a sequence of
tones, 2 different pitches stuttering at an enormous rate. Unfortunately, the Earth's
atmosphere is nearly opaque to radio at the transmission wavelength of 96 meters,
because the signal cannot easily penetrate the ionosphere. Thus it is impossible to
catch more than brief snatches of the message even with the most sensitive radio
telescopes on the ground. Luckily, the scientists find a way to make use of a space
station upon which they mount simple antennas to listen to the signal.

Despite their skepticism, the scientists continue to study the signal and dis-
cover it is a pattern of high tones, low tones, and silences. Assuming that the
silences are spaces, and because the transmission comes as triple beeps, it seems
likely that the message is in base 8.

Scientists call the high tones "beeps" (represented below by a 9) and the low
tones "honks" (represented by a $). A group of 3 beep-or-honk choices has 8
different arrangements:
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The digits are likely to stand for the digits 0-7, which are the 8 digits for a
base 8 system. The string of digits in the message could represent pictures or text.

The most common numbering system on Earth is base 10. In other words, we
have 10 digits, 0 through 9. In our base 10 representation, each digit represents
a power of 10. For example, the number 2,010 is 2 x 103 + 0 x 102 + 1 x 101 +
0 x 10° where 103 = 1000, 102 = 100, 101 = 10, and 10° = 1. However, there's
no reason to assume that aliens would use a base 10 number system, and it's
unlikely that a message from the stars would arrive in base 10 numbers. On
Earth, our mathematical calculations are based on 10 because we have 10 fin-
gers. In fact, our language suggests the connection between fingers and our num-
ber system—we use the world digit to designate both a number and a finger.
Because our base 10 system comes from our use of 10 fingers, what would a base
8 system tell us about the anatomy of aliens? Perhaps a base 8 system would
denote an alien with a thumb and 3 fingers on each hand, or a creature with 8
tentacles, or a thumb and a finger on each of its 4 arms. An even wilder possibil-
ity is that the aliens have 3 heads and these are all the combinations of nodding
and shaking that are possible! (Of course, it is possible that their number system
tells us nothing about their anatomy. After all, what did the Babylonian's base 60
system tell us about their anatomy?)

As scientists study the message, they find it repeats every 11 hours and 20
minutes. Each group of 16,769,021 base 8 numbers takes about 2l/2 seconds to
be received, so there are 16,384 such groups in all. What could it mean?

The first thing to check is the number 16,769,021. Does it have any unusual
properties? It turns out that you can use a simple factoring program to determine
it is equal to 4,093 times 4,097—2 prime numbers. Since a prime number isn't
evenly divisible by another number (except itself and 1), an alien could transmit
a gridlike pattern whose size is the product of two prime numbers. As a result,
there are only a couple of possible arrangements for the numbers in the grid. (In
fact, the pattern could be a photo consisting of an array of pixels as on your com-
puter screen.) On the other hand, if the image were composed of, for example,
10,000,000 pixels with many factors, there would be a very large number of pos-
sible arrangements, such as 5 x 200,000, 10,000 x 1,000, and many others, and
this would make the image difficult to decode.

In Encounter with Tiber, it turns out that the 8 groups of honks and beeps repre-
sent 8 different intensity values in an image: 0 for black, 7 for white, and 1-6 for
intermediate intensities. By representing these brightness values on a 4,093-by-
4,097 grid, the astrophysicists determine that each transmission is a frame of a
movie. When played sequentially on a computer, 8 creatures are seen waving as
they climb into a spacecraft! Other more technical information follows including
instructions on how to find an alien encyclopedia containing poems, paintings,
music, literature, science, engineering, and jokes of a civilization centuries in
advance of Earth's.

Would you like to view such an alien encyclopedia? In Encounter with Tiber,
some people worry that humanity is not ready for advanced knowledge from the
encyclopedia. "What if you'd given Napoleon the atomic bomb?" scientists and
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politicians ask. "What if the Civil War had been fought with airplanes dropping
poison gas on cities?" Should the encyclopedia be made available to all the
nations on Earth?

Do you think that communication with aliens would create widespread hys-
teria? The psychologist Carl Jung believed that contact with superior beings
would be devastating and demoralizing to us because we'd find ourselves no
more a match for them intellectually than our pets are for us. Such fears and jeal-
ousies might cause various extremists groups, such as the Ku Klux Klan, to try to
kill the aliens.

9 For further information on aliens, numbers, and messages from the stars,
see "Further Exploring."

Chapter 31

A Ranking of the 5 Strangest
Mathematicians Who Ever Lived

Erdb's covered the floor with cereal. He couldn't close a window by
himself. He woke you up at 4 A.M. shouting about number theory.
Paul Erdos may have been the world's worst houseguest, but he was

also the world's most generous and prolific mathematician.
—Paul Hoffman, The Man Who Loved Only Numbers

Most classmates regarded Ted Kaczynski as alien, or not at all.
—Robert McFadden, New York Times

Freedom means having power; not the power to control other people but
the power to control the circumstance of one's own life.

—Unabomber Manifesto

There were five clear winners when respondents were asked to name the five
strangest mathematicians who ever lived.

1. Paul Erdbs (1913-1996) This legendary mathematician, one of the most
prolific in history, was so devoted to math that he lived as a nomad with no
home and no job. As discussed in fantastic detail in Chapter 46, sexual pleasure
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revolted him; even an accidental touch by anyone made him feel uncomfortable.
During the last year of his life, at age 83, he continued churning out theorems
and delivering lectures, defying conventional wisdom that mathematics is a
young person's sport. On this subject, Erdos once said:

The first sign of senility is when a man forgets his theorems. The second sign is
when he forgets to zip up. The third sign is when he forgets to zip down.

Paul Hoffman, author of The Man Who Loved Only Numbers, notes:

Erdos thought about more problems than any other mathematician in history and
could recite the details of some 1,500 papers he had written. Fortified by coffee,
Erdos did mathematics 19 hours a day, and when friends urged him to slow down,
he always had the same response: "There'll be plenty of time to rest in the grave."

2. Srimvasd Ramanujan (1887-1920) Ramanujan, who started life as a
clerk in the accounting department of the Madras post office, became India's
greatest mathematical genius and one of the greatest 20th-century mathemati-
cians. Ramanujan made substantial contributions to the analytical theory of
numbers and worked on elliptic functions, continued fractions, and infinite
series. He came from a poor family, and his mother took in boarders, which cre-
ated a crowded home. Ramanujan was very shy and found it hard to speak. He
excelled in math but usually failed all his other courses. When he was 13, he bor-
rowed a high school student's math book and mastered it in a week. Because he
was deprived of manuals that could teach him about rigorous proofs, Ramanujan
developed rather strange methods to establish mathematical truths. Mathema-
tician G. H. Hardy remarked:

His ideas as to what constituted a mathematical proof were of the most shadowy
description. All his results, new or old, right or wrong, had been arrived at by a
process of mingled argument, intuition, and induction, of which he was entirely
unable to give any coherent account.

Ramanujan, although self-taught in mathematics, was given a fellowship to
the University of Madras in 1903, but the following year he lost it because he
devoted all his time to mathematics and neglected his other subjects. Hardy, a
professor at Trinity College, invited him to Cambridge on the basis of a now-
historic letter Ramanujan wrote him, which contained some 100 theorems. A
leading expert in calculus, Hardy found himself dealing with a collection of for-
mulas completely unfamiliar to him. He said:

These relations defeated me completely; I had never seen anything in the least like
them before. A single look at them is enough to show that they could only be
written down by a mathematician of the highest class.

Some years later, Ramanujan, weakened by his strict vegetarianism, became
quite sick with tuberculosis. However, neither physicians nor his family could
persuade him to stop his studies. He returned to India in February 1919 and
died in April 1920 at the age of 32. During that period he wrote down about
600 theorems on loose sheets of paper. These were discovered only in 1976 by
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Professor George Andrews of Pennsylvania State University, who termed them
the Lost Notebook of Ramanujan. Many of Ramanujan's formulas came to occu-
py central places in modern theories of algebraic number theory, and today
scholars wonder how he could envision such equations when he didn't have any
of the supporting knowledge to understand them.

3. Pythagoras (580-500 B.C.) A Greek philosopher, Pythagoras was
responsible for important developments in mathematics, astronomy, and the
theory of music. Philosopher Bertrand Russell once wrote that Pythagoras was
intellectually one of the most important men who ever lived, both when he was
wise and when he was unwise. Pythagoras is also the most puzzling mathemati-
cian in history, because he founded a numerical religion whose main tenets were
transmigration of souls and the sinfulness of eating beans, along with a host of
other odd rules and regulations.

4. Theodore Kdczynskl (b. 1942) Ted Kaczynski, also known as the Una-
bomber, was a mathematican who rose swiftly to academic heights even as he
became an emotional cripple, loner, and murderer. Kaczynski's 25-year self-
imposed exile in the Montana woods was particularly appropriate for this man
who had always been alone. The May 26, 1996, New York Times noted that the
cabin "suited this genius with gifts for solitude, perseverance, secrecy and metic-
ulousness, for penetrating the mysteries of mathematics and the dangers of tech-
nology, but never love, never friendship." The remoteness of the cabin was
probably as much a means of limiting others' access to him as it was a symbol of
freedom. Before he became a hermit, Kaczynski wrote several notable papers on
the mathematical properties of functions in circles and boundary functions.
Although his IQ was measured as 170, he exhibited many odd characteristics:
excessive (pathological) shyness, fascination with body sounds, a metronomic
habit of rocking, and frequent concerns about germs, infections, and other
health matters. His room at school stank of rotting food and was piled high with
trash. After teaching for 2 years and publishing mathematical papers (Chapter
40) that impressed his peers and put him on a tenure track at one of the nation's
most prestigious universities, he suddenly quit, spent nearly half his life in the
woods, and killed three strangers and injured 22 others. Throughout his life,
Kaczynski found it painful to make errors and corrected minor errors in others.
He shut himself up in his bedroom for days at a time and seemed incapable of
sympathy, human insight, and simple connections with people. Although
Kaczynski does not have the eminence of Erdb's, Ramanujan, or Pythagoras, his
mathematics papers were sufficiently complex to warrant his inclusion on this
brief list.

5. John Nash (1928-) This brilliant mathematician received the 1994
Nobel Prize in Economics. Nash's prize-winning work appeared almost half a
century earlier in his slender 27-page Ph.D. thesis written at the age of 21.

In 1950, Princeton graduate student John Nash formulated a theorem that
enabled the field of game theory to become an important influence in modern
economics. Compulsively rational, he often turned life's decisions—whether
to take the first elevator or wait for the next one, or whether to marry—into
calculations of advantage and disadvantage, mathematical rules divorced from
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emotion. In 1958, Fortune singled Nash out for his achievements in game theo-
ry, algebraic geometry, and nonlinear theory, calling him the most brilliant of the
younger generation of mathematicians. He seemed destined for continued
achievements, but in 1959 he was institutionalized and diagnosed as schizo-
phrenic. Brilliant when he was young, Nash slipped into and out of schizophre-
nia for decades, believing that aliens had made him emperor of Antarctica. At
other times he believed himself to be a messianic figure. Princeton and its aca-
demic staff stood by Nash and kindly let him wander about the math depart-
ment for almost thirty years. There he became a mute figure who scribbled
bizarre equations on blackboards in the mathematics building and searched for
secret messages in numbers. He believed that ordinary things—a telephone
number, a colorful necktie, a dog racing across the grass, a Hebrew letter, a sen-
tence in the newspaper—had hidden and important significance. Sadly, Nash's
son was also schizophrenic, but he was sufficiently versed in math that Rutgers
University granted him a Ph.D. John Nash once remarked: "I would not dare to
say that there is a direct relation between mathematics and madness, but there is
no doubt that great mathematicians suffer from maniacal characteristics, deliri-
um, and symptoms of schizophrenia." The most famous biography on John
Nash is Sylvia Nasar's A Beautiful Mind.

Chapter 32

Einstein, Ramanujan, Hawking

There is no branch of mathematics, however abstract, which may not
someday be applied to the phenomena of the real world.

—Nicolai Lobachevsky

Dr. Googol surveyed many mathematicians on the following question:
Which of the following would have had the most profound effect on our

world today?

1. Physicist Albert Einstein lived another 20 years with a
clear mind.

2. Mathematician Srinivasa Ramanujan lived another 20
years with a clear mind.

3. Astronomer Stephen Hawking was not afflicted with Lou
Gehrig's disease.
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Several respondents suggested that Stephen Hawking's affliction forced him
to concentrate on black hole theory and also increased public interest in these
theories. Therefore, they thought that removal of his affliction would not have
had a favorable effect on the world.

Some mathematicians believed that Albert Einstein could have made great
contributions to the "theory of everything" if he had lived longer, but others
suggested that Einstein (and Ramanujan) had reached their peak during their
lives and would not have contributed significant additional information. For
example, Einstein made early, important discoveries in the theory of Brownian
noise as a model for microscopic phenomena, energy and charge as a quantified
phenomena, light speed and mass as constraints on spacetime, and fundamental
forces as a deformation of space. But all these achievements came from very
peculiar analyses and interpretations of older works that were in place in the
early 1900s. Toward the end of his life, he made little progress in synthesizing
new theories.

Nevertheless, debate on Dr. Googol's questions still rages. Mathematician
Charles Ashbacher suggests to Dr. Googol:

There is no doubt in my mind that if Albert Einstein had lived another 20 years
the world would be profoundly impacted. Einstein was not only the greatest
physicist of the 20th century with obvious major accomplishments, but he was
also very influential in other ways. It was the letter from Einstein to President
Franklin Roosevelt that tilted the balance in favor of the Manhattan Project. He
commanded so much respect in the world that it is possible he could have tem-
pered some of the events of the world well into the 1980s. Any changes as a result
of any new discoveries in physics would be icing on the cake.

Philosopher of science Dennis Gordon says:

If Albert Einstein had been so fortunate to have had 20 additional years with a
sound mind, perhaps he would have collaborated with a young and vigorous
Stephen Hawking to either demonstrate or disprove the existence of the long-
speculated gravitons.

Given the same good fortune, maybe we would have gained some insight into
Ramanujan's extraordinary intuition and thought processes. How was Ramanujan
able to generate such astounding results when even he himself was often unable to
offer proofs? I am reminded of the scene in the movie Amadeus in which Mozart is
shown producing perfectly written symphonies on the first draft; maybe the
thought processes of both geniuses were very similar. And, further, with 20 addi-
tional years, Ramanujan might have solved all of David Hilbert's famous 23 prob-
lems [discussed in Chapter 36] and then later humbled Hilbert with solutions to
several more then-unknown problems.

Ramanujan, described in detail in Chapter 31, was a self-taught mathematical
genius, who used his gut instinct to attack the frontiers of mathematical analysis
of his time (modular functions, analytic number theory, partitions, iteration
theory, transcendance properties). However, he sometimes advanced slowly and
was unable to transfer his insights to others and other fields. Perhaps 20 years
more of activity would not have changed his approach. On the other hand,
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respondents suggested that 20 years more would have been very significant for
mathematicians like Archimedes, Roger Cotes, Niels Abel, Evariste Galois,
Bernhard Riemann, Henri Poincare, Jacques Herbrand, and Allan Turing, all of
whom were extremely creative when they died.

Perhaps a greater effect would have resulted if Evariste Galois, the founder of
modern algebra and group theory, had not been killed at age 21 in a gun duel.
(Galois, a genius and child prodigy, is discussed in Chapter 36.) His mathemati-
cal ideas and innovative methods were too advanced for his time; therefore, few
contemporaries could understand his insights. Many had trouble filling in the
steps he saw as obvious. If Galois had lived longer and continued his work in
group theory and algebraic equations, the world would have been affected
immensely.

Given all these thoughts, it is not clear which of the 3 situations would yield the
biggest impact on humanity. Respondents generally thought that Hawking's
affliction, while sad on a personal level, did not hinder his effect on math and
science. A longer life for Einstein would have given the world a scientist hero for
a longer period of time and therefore increased public interest in science. Perhaps
a long life for Ramanujan would have had the greatest impact, especially consid-
ering his fantastic mathematical output and short life. This leads to other ques-
tions. What if Ramanujan had developed in a more nurturing environment?
Although he would have been a better-trained mathematician, would he have
become such a unique thinker? Could he have discovered so many wonderful
formulas if he had been taught the rules of mathematics early on and pushed to
publish his results with rigorous proofs? Perhaps his relative isolation and pover-
ty enhanced the greatness of his mathematical thought. For Ramanjuan, equa-
tions were not just the means for proofs or calculations. The beauty of the
equation was of paramount value. The intrinsic elegance of his formulas causes
them to play key roles in the most unusual circumstances.

Ramanujan's most "beautiful" formula draws a shocking connection between
an infinite series (at left) and a continued fraction (middle). It is wonderful that
neither the series nor the chain fraction can be expressed through the famous
numerical constants TT and e, and their sum mysteriously equals ^Tte/2 , Try
to compute the value on the left side of the equals sign, for several terms, and
see how it compares with the right side when substituting IT = 3.141592 and
^ = 2.718282.

Ramanujan's Most Beautiful Formula

(Please send the publisher a note of thanks for allowing Dr. Googol to insist
on adding this typographical monstrosity to this book.)



Chapter 33

A Ranking of the 8 Most influential
Female Mathematicians

It is impossible to be a mathematician without being a poet in soul.
—Sofia Kovalevskaya, quoted in Agnessi to Zeno by Sanderson Smith

Despite horrible prejudice in earlier times, several women fought against the
establishment and persevered in mathematics. Until the 20th century, very few
women received much education, and the path to more advanced studies was
usually blocked. Many of these women had to go against the wishes of their fam-
ilies if they wanted to learn. Some were even forced to assume false identities,
study in terrible conditions, and work in intellectual isolation. Consequently,
very few women contributed to mathematics. The following ranking of the 8
most influential female mathematicians was compiled through extensive research
and by surveying mathematicians. These women did more than just influence
the course of mathematics. They also affected people's perceptions of women's
role in all intellectual endeavors.

Many of these women came from mathematical families. Emmy Noether,
Hypatia, Maria Agnesi, and others never married, partly because it was not
socially acceptable for women to pursue mathematical careers, and, therefore,
men were not likely to wed brides with such controversial backgrounds. Russian
mathematician Sofia Kovalevskaya was an exception to this rule; she arranged a
marriage of convenience to a man who was agreeable to a platonic relationship.
For Sofia and her husband, the marriage allowed them to escape their families
and concentrate on their respective research. The marriage also allowed Sofia a
greater freedom to travel because, at the time, it was more suitable for a married
woman to travel around Europe than a single woman.

When Dr. Googol asked dozens of mathematicians, "Who were the most influ-
ential female mathematicians in history?" there were several clear favorites, listed
below. Again, this list is not meant to be definitive; rather, it should stir debate and
discussion. Much of the biographical information comes from Dr. John J.
O'Connor and Professor Edmund E Robertson's "MacTutor History of Mathe-
matics Archive," http://www-history.mcs.st-andrews.ac.uk/history/index.html.

1. Hypatia (370-415) Hypatia, who is discussed more extensively in
Chapter 29, was famous for giving the most popular discourses in Western
civilization and for being the greatest of problem solvers. She was the first
woman to make a significant contribution to the development of mathematics.
The daughter of the mathematician Theon, she eventually became head of the
Platonist school at Alexandria. She came to symbolize scientific ideas, which,
unfortunately, the early Christians identified with paganism. She met her death

http://www-history.mcs.st-andrews.ac.uk/history/index.html
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at the hands of a mob who dragged her from her chariot and peeled off her skin
with oyster shells.

2. Sofia Kovalevskaya (1850-1891) Kovalevskaya made valuable contri-
butions to the theory of differential equations and was the first woman to receive
a doctorate in mathematics. (Note: In case you are confused when searching for
information on S. K., both her first and last names seem to be spelled in various
ways in English translation including Sonia, Sofya, and Sonya, and Kovalevsky,
Kovalevski, Kovalevskia.) Like most other mathematical geniuses, Sofia fell in
love with mathematics at a very young age. Sofia wrote in her autobiography:
"The meaning of these concepts I naturally could not yet grasp, but they acted
on my imagination, instilling in me a reverence for mathematics as an exalted
and mysterious science which opens up to its initiates a new world of wonders,
inaccessible to ordinary mortals." When Sofia was 11 years old, she hung calcu-
lus papers on all the walls of her bedroom. When learning mathematics from the
family's tutor, she said, "I began to feel an attraction for my mathematics so
intense that I started to neglect my other studies." Sofia's father decided to put a
stop to her mathematics lessons, but she secretly read math books late at night.
Sofia was forced to marry so that she could go abroad to pursue higher educa-
tion. (Her father forbid her to study at a university, and Russian women were
not permitted to live apart from their families without the written permission of
their father or husband.)

At the age of 18, Sofia entered a sad and tense marriage with Vladimir
Kovalevski, a young paleontologist. In 1869, Sofia went to Heidelberg to study
mathematics but discovered that women could not go to the university.
Eventually she persuaded the university authorities to let her attend lectures
unofficially. Sofia immediately attracted the teachers' attention with her mathe-
matical brilliance, and virtually all of her professors were delighted about their
gifted student and spoke about her as an extraordinary phenomenon. (Spending
the summer of 1869 in England, Sofia and her husband met Charles Darwin,
Thomas Huxley, and George Eliot.)

In 1871, Sophia Kovalevskaya moved to Berlin to study with mathematician
Karl Weierstrass, but again she was not allowed to attend courses at the universi-
ty. Ironically, this actually helped Sofia, because it forced Weierstrass give her
more personal attention. By the spring of 1874, Kovalevskaya had completed 3
papers, each of which Weierstrass deemed worthy of a doctorate. (The 3 papers
were on partial differential equations, abelian integrals, and Saturn's rings.) In
1874, Kovalevskaya received her doctorate, summa cum laude, from Gb'ttingen
University. However, despite this doctorate and enthusiastic letters of recom-
mendation from Weierstrass, Kovalevskaya was unable to obtain an academic
position because she was a woman. Her crushing rejections resulted in a bitter 6-
year period during which she did no research. In 1878, Kovalevskaya gave birth
to a daughter, and then returned to her study of mathematics. In 1882, she
began work on the refraction of light and wrote 3 articles on the topic.

She began to lecture on mathematics in Stockholm and was appointed to a
professorship in June of that year. She taught courses on the latest topics in
analysis, became an editor of the journal Acta Mathematica, interacted with all
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the famous mathematicians of Paris and Berlin, and organized many interna-
tional conferences. In 1886, Kovalevskaya was awarded the Prix Bordin of the
French Academy of Sciences for her paper on the solution on the rotation of a
rigid body around a fixed point.

3. Emmy Amalie Noether (1882-1935) Noether was described by Albert
Einstein as "the most significant creative mathematical genius thus far produced
since the higher education of women began." She is best known for her contri-
butions to abstract algebra and, in particular, for her study of "chain conditions
on ideals of rings." Moreover, in 1915, she discovered a result in theoretical
physics sometimes referred to as Noether's Theorem, which proves a relationship
between symmetries in physics and conservation principles. This basic result in
the general theory of relativity was praised by Einstein. Noether's work in the
theory of invariants led to formulations for several concepts of Einstein's general
theory of relativity. In 1933, despite her amazing accomplishments, the Nazis
caused her dismissal from the University of Gottingen because she was Jewish.
She later lectured at the Institute for Advanced Study in Princeton.

4. Sophie Germain (1776-1831) Germain made major contributions to
number theory, acoustics, and elasticity. When she was 13, Sophie read a book
about the death of Archimedes at the hands of a Roman soldier. She was so
moved by this story that she decided to become a mathematician. (Legend had it
that Archimedes was so engrossed in the study of a geometric figure in the sand
that he failed to respond to the questioning of a Roman soldier. As a result he
was speared to death. This sparked Sophie's interest; if someone could be so
engrossed in a problem as to ignore a soldier and then die for it, the subject must
be interesting!) Sophie's parents felt her interest in mathematics was inappropri-
ate, so at night she secretly began studying the works of Isaac Newton and math-
ematician Leonhard Euler. Her parents responded by taking away her clothes
once she was in bed and depriving her of heat and light so that she would be
forced to stay in her bed at night instead of studying. This did not work as
planned. Sophie would wrap herself in quilts and use candles she had hidden in
order to study at night. Finally her parents realized that Sophie's passion for
mathematics was "incurable," and they let her learn. Sophie obtained lecture
notes for many courses from the Ecole Polytechnique. (Note the oddly similar
situation of the young mathematician Mary Somerville, whose father took away
her candles for studying and said, "We must put a stop to this, or we shall have
Mary in a straitjacket one of these days.")

After reading Joseph-Louis Lagrange's lecture notes on analysis, Sophie used
the pseudonym M. LeBlanc to submit a paper whose originality and insight made
Lagrange search desperately for its author. When he discovered "M. LeBlanc"
was a woman, his respect for her work remained, and he became her sponsor
and mathematical counselor. Sophie proved that if x, y, and z are integers and if
x5 + y5 = z5, then either x, y, or z must be divisible by 5. "Germain's theorem"
was an important step toward proving Fermat's Last Theorem for the case
where n equals 5. This was to remain the most important result related to
Fermat's Last Theorem from 1738 until the contributions of Ernst Eduard
Kummer in 1840. (Fermat's Last Theorem says that if A:, y, z, and n are positive
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integers, then x" + yn = zn cannot be solved for any n greater than 2.) Sophie
also worked on theories of elasticity, publishing several memoirs on the sub-
ject. The most important of these deals with the "nature, bounds, and extent of
elastic surfaces."

5. Maria Agnesi (1718-1799) Agnesi is noted for her work in differential
calculus. When she was 7 years old, she mastered the Latin, Greek, and Hebrew
languages, and at the age of 9 she published a Latin discourse defending higher
education for women. During her teens, she privately studied the mathematics
of Descartes, Newton, Leibniz, and Euler. She also tutored the family's younger
children and was hostess at scientific and mathematical meetings arranged by her
father. At the age of 20, she published Propositiones Philosophicae, a treatise on
philosophy. For the next decade, she worked on her 2-volume mathematics book
Analytic Institutions for the Use of Italian Youth, which was finally published in
1748. Volume 1 dealt with algebra and precalculus mathematics, and volume 2
discussed differential and integral calculus, infinite series, and differential equa-
tions. Her clearly written textbooks included a discussion of the cubic curve now
know as the "witch of Agnesi." (The word witch is in fact a mistranslation of ver-
siera, which can mean either "curve" or "witch.") Agnesi's book received imme-
diate praise, and the Bologna Academy of Science elected her a member. In
1749, Pope Benedict XIV awarded her a gold medal, and the next year he
appointed her to teach mathematics at the University of Bologna, an extremely
rare position for a woman because very few women were allowed to even attend
a university. However, she turned down the appointment, and, after the death of
her father two years later, she stopped doing scientific work altogether. Agnesi
devoted the last 47 years of her life to caring for sick and dying women.

6. Helena Raisowa (1917-1994) Raisowa grew up in Warsaw, at a time
when the German invasion of Poland in 1939 made it very dangerous for her to
pursue mathematics. Nevertheless, she persevered and studied for her master's
degree. In 1944, when the Germans suppressed the Warsaw Uprising, Rasiowa's
thesis burned together with her entire house. She survived with her mother in a
cellar covered by ruins of the building. Her 1950 doctoral thesis (Algebraic
Treatment of the Functional Calculus of Lewis and Heyting), presented to the
University of Warsaw, was on algebra and logic. Rasiowa was promoted continu-
ally, reaching the rank of full professor in 1967. Her main research was in alge-
braic logic and the mathematical foundations of computer science. She always
believed that there are deep relations among the methods of algebra, logic, and
the foundations of computer science. In 1984, Rasiowa developed techniques
that are now central to the study of artificial intelligence. Rasiowa wrote hun-
dreds of papers and books and edited numerous journals.

7. Nina Karlovna Bah (1901-1961) Bari was an outstanding Russian
mathematician, the first woman student at Moscow State University, and author
of over 50 research articles and textbooks such as Higher Algebra (1932) and The
Theory of Series (1936). She edited the complete works of mathematician Nikolai
Luzin and was the editor of 2 important mathematics journals. She also translat-
ed Henri Lebesgue's famous book (on integration) into Russian. Her extensive
research monograph on trigonometric series became a standard reference for
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mathematicians specializing in the theory of functions and trigonometric series.
8. Grace Hopper (1906-1992) Hopper taught mathematics at Vassar and

in 1944 worked with mathematician Howard Aikin on the Harvard Mark I
computer. At this time she coined the term bug for a computer fault. (The orig-
inal "bug" was actually a gypsy moth that caused a hardware fault in the Mark I!)
In 1949, Hopper designed improved computer compilers. She also helped devel-
op Flow-Matic, the first English-language data-processing compiler. She retired
from the Navy with the rank of commander in 1966, but she continued to help
standardize the Navy's computer languages. In 1991, she was awarded the
National Medal of Technology.

Some runners-up: Julia Robinson (1919-1982), who studied number the-
ory and was the first woman mathematician to be elected to the National
Academy of Sciences and first woman president of the American Mathematical
Society; Mary Cartwright (1900-1998), who studied analytic function the-
ory and was the first woman mathematician to be elected a Fellow of the Royal
Society of England; Sun-Yung Alice Chang (b. 1948), who studies nonlinear
partial differential equations and various problems in geometry; and Karen
Keskulla Uhlenbeck (b. 1942), a leading expert on partial differential equa-
tions whose work has provided analytic aids for using instantons as an effective
geometric tool. (Instantons are particle-like wave packets that occupy a small
region of space and exist for a tiny instant.)

Chapter 34

A Ranking of the 5 Saddest
Mathematical Scandals

Contrary to popular belief, mathematics is a passionate subject.
Mathematicians are driven by creative passions that are difficult to

describe, but are no less forceful than those that compel a musician to
compose or an artist to paint. The mathematician, the composer, the

artist succumb to the same foibles as any human—love, hate, addictions,
revenge, jealousies, desires for fame, and money.

—Theoni Pappas, Mathematical Scandals
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Here's a quick quiz on (and ranking of) quirky, sad mathematical scandals.
Dr. Googol has never found a person who could identify all the people referred
to below:

1. What brilliant, famous, and beautiful woman mathematician died in incred-
ible pain because her mother withdrew all pain medication? (Hint: The
woman is recognized for her contributions to computer programming. The
mother wanted her daughter to die painfully so that her daughter's soul
would be cleansed.)

2. Which brilliant mathematician was forced to become a human guinea pig
and subjected to drug experiments to reverse his homosexuality? (Hint: He
was a 1950s computer theorist whose mandatory drug therapy made him
impotent and caused his breasts to enlarge. He also helped to break the
codes of the German Enigma machines during World War II.)

3. What famous mathematician deliberately starved himself to death in 1978?
(Hint: He was perhaps the most brilliant logician of the 1900s.)

4. Which innovative mathematician suffered from a series of nervous break-
downs over a period of 30 years and died in a mental institution? (Hint: He
was one of the most brilliant mathematicians of the 19th century and an
avid explorer of the infinite.)

5. What important 1 Ith-century mathematician pretended he was insane so he
would not be put to death? (Hint: He was born in Iraq and made contribu-
tions to optics.)

$• For answers, see "Further Exploring." Do you know anyone who can iden-
tify all 5 people?

Chapter 35

The 10 Most important Unsolved
Mathematical Problems

If we wish to make a new world we have the material ready. The first one,
too, was made out of chaos.

—Robert Quillen, OMNI magazine
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In this section, Dr. Googol presents a ranking of the 10 most famous and/or
unsolved mathematical "problems" today, as voted on by other mathematicians.
Notice that many of the items on the list have a "classic" flavor in the sense that
most of these problems were posed before 1900. A few have their roots in the
mathematics of ancient Greece. Also, many of these problems can be stated sim-
ply (at least to mathematicians), and solutions are likely to have a great impor-
tance for mathematics and its development in the next century. Some of these
problems are excruciatingly difficult, so Dr. Googol advises you to skip the
tongue-twisting mathematical jargon to get an overall feeling for the problems.
The proof of the Riemann hypothesis was mentioned most often by the mathe-
maticians Dr. Googol interviewed.

1. Proof of the Riemann Hypothesis The "zeta function" can be repre-
sented by a complicated-looking curve that is useful in number theory for inves-
tigating properties of primes. Written as £(*), the function was originally defined
as the infinite sum £(x) = 1 + (1/2)* + (1/3)* + (1/4)* + . . . etc. When x = 1, this
series has no finite sum. For values of x larger than 1, the series adds up to a finite
number. If x is less than 1, the sum is again infinite. The actual zeta function,
studied and discussed in the literature, is a more complicated function that is
equivalent to this series for values of x greater than 1, but has finite values for any
real or complex number, the real part of which is different from 1. (Complex
numbers are of the form a + hi where i= V-l and a and b are real numbers). Here's
the big question: For what values does this function equal 0? We know that the
function equals 0 when xis -2, -4, -6,..., and that the function has an infinite
number of 0 values for the set of complex numbers, the real part of which is
between 0 and 1—but we do not known exactly for what complex numbers these
Os occur. Mathematician Georg Bernhard Riemann (1826-1866) conjectured
that these Os probably occur for those complex numbers the real part of which
equals 1/2. Although there is vast numerical evidence favoring this conjecture, it
is still unproven. The proof of Riemann's hypothesis would have profound conse-
quences on the theory of prime numbers and on our understanding of the prop-
erties of complex numbers.

2. Proof of the Goldbach Conjecture Christian Goldbach (1690-
1764) conjectured that every even positive integer is equal to the sum of 2 prime
numbers (numbers not divisible by any integer greater than 1 except themselves).
There are many examples where this is true, such as 10 = 5 + 5 and 100 = 47 + 53.
Is it always true? He also conjectured that every positive integer greater than 2,
even or odd, is equal to the sum of 3 primes. Although the first conjecture has been
verified for all even integers at least as high as 100,000,000, no definitive proof for
it has been found. Only a partial proof of the second conjecture was presented in
1937 by the Soviet mathematician Ivan Matveyevich Vinogradov.

3. Poincare Conjecture French mathematician Henri Poincare (1854-
1912) conjectured that a simply connected closed 3-dimensional manifold is a
3-dimensional sphere. ("Simply connected" means that any closed path can be
contracted to a point. In general, a manifold may mean any collection or set of
objects. It is sometimes convenient to think of a manifold as an abstract general-
ization of a surface. Despite many attempts, no one has proven this conjecture,
and it remains a cause celebre in mathematics. The conjecture is important in
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the history of mathematics partly because it focused attention on manifolds as
objects of study. As a result, Poincare influenced much of 20th-century mathe-
matics, which emphasizes geometric objects.

4. Langlands Philosophy In January 1967, Robert Langlands, a 30-
year-old Princeton mathematics professor, wrote a letter to the famous number
theorist Andre Weil. Langlands asked for Weil's opinion about two new con-
jectures: "If you are willing to read [my letter] as pure speculation, I would
appreciate that. If not—I'm sure you have a waste basket." According to the
February 4, 2000, issue of Science, Weil never wrote back, but Langlands letter
turned out to be a "Rosetta stone" linking two different branches of mathemat-
ics [See Dana Mackenzie, "Fermat's Last Theorem's First Cousin," Science
287(5454): 792-793, 2000]. In particular Langlands posited that there was an
equivalence between Galois representations (relationships among solutions to
equations studied in number theory) and automorphic forms (highly symmetric
functions). Part of the problem is to work out what the correct formulation of
the conjecture should be. Langlands philosophy asserts that one can associate
automorphic representations to Galois representations, and that for irreducible
representations one obtains cuspidal representations. This is also sometimes
referred to as the Langlands program. Robert Langlands's vision is to bring group
representation methods into the arithmetic theory of automorphic forms. (Does
this all sound like mathematical gibberish? See "Further Exploring.")

5. Various Prime Number and Perfect Number Questions For
centuries, mathematicians have tried to explain the underlying pattern behind
the primes. Perhaps no pattern exists. Certain prime numbers occur in pairs, just
two apart; these are called twin primes. Here are some twin primes: (3,5),
(5,7), (11,13,) (17,19), (29,31). A long-standing conjecture of mathematics
holds that there are an infinite number of twin primes. So far, no proof or
disproof has come forth. (Notice that twin primes differ by only 2, which is as
close as primes can be to each other. If they differed by 1, one of the numbers
would have to be even and therefore divisible by 2.) Will we ever develop a for-
mula that generates all prime numbers or that counts the number of primes up to
a particular large number?

As discussed in Chapter 95, a perfect number's proper divisors add up to the
number itself. For example, 6 is perfect because 6 = 1 + 2 + 3, and 1, 2, and 3
divide into 6. (A "proper divisor" is simply a divisor of a number N excluding
TVitself.) Are all perfect numbers even? Is there an inexhaustible supply of perfect
numbers?

6. The Structure of Pi Pi (expressed by the Greek letter Jt) has been
calculated to billions of digits. What significant patterns, if any, exist in the
seemingly-random digits of pi? (In 1991, the Chudnovsky brothers, two emi-
nent pi researchers, wrote: "The decimal expansion of pi in billion plus range
passes with flying colors all classical randomness tests: frequency, chi square,
poker, arctan law, . . . etc." (See "Further Reading".)

7. Does P = NP? This relates to the number of steps required by computer
algorithms. Very generally speaking, problems for which proposed solutions can
be verified easily are sometimes referred to as NP problems. The P stands for
polynomial time, which is the formal definition of fast. The TV stands for nonde-
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terministic, referring (misleadingly) to a notion that these problems could be
solved easily if we were able to build computers that can nondeterministicially
guess good solutions. This area is associated with the currently hot research area
of "computational complexity," where problems are encountered that are solv-
able only by running a computer for millions of years. For example, Martin
Gardner in Gardner's Whys 6" Wherefores notes that the infamous "traveling-sales-
man problem" asks for the shortest route that visits n points on the plane.
Computers can hope to solve this problem when n is small, but as n increases,
running time rapidly accelerates to impractical lengths. These kinds of problems
belong to a category known as NP complete. Gardner suggests that these prob-
lems are connected in such a way that if a procedure is ever found for solving one
of them in a reasonable time, all others will be solved.

8. Artin Conjecture This conjectures that Artin L-series are holomorphic
for irreducible Galois representations. (This is the apparently simplest case of
Langlands philosophy, at present unapproachable.)

9. Various Computer/Mathematical Problems Can we develop a
rigorous mathematical theory of computer programming? (The world grows
more dependent on computer software, but there is no rigorous theory that can
be applied to verify program correctness.) Can a Turing machine do everything
that any digital computer can do? Can we develop a rigorous theory of artificial
intelligence? (For computers to replace humans in dangerous or routine tasks,
the machines must be able to deal with a wide range of possibilities.)

10. What are the limits of human and machine intelligence?
How are the brain and computer alike? Can mathematics be used to answer this
question?

Outrageously difficult runners-up suggested by colleagues in e-mail: various
problems in sphere packing

© Which model of set theory best describes the "real world"?

© Hilbert's 18th conjecture

© the abc conjecture

© Can numbers be factored in polynomial time (related to problem 7)?

© various problems relating to the axiom of choice . . .

In the spring of 2000, the Clay Mathematics Institute (www.claymath.org)
announced a most-wan ted list of seven of the most intractable math problems in
the world. With a reward of $1 million for each problem solved, this was the
biggest math prize ever announced. The seven problems are: P versus NP, the
Hodge Conjecture, the Poincare Conjecture, the Riemann hypothesis, Yang-
Mills existence and mass gap, Navier-Stokes existence and smoothness, and the
Birch and Swinnerton-Dyer Conjecture. (For more information, see Charles
Seife, "Is that your final equation?" Science, May 26, 288(5470): 1328-1329.)

If you think the brief explanations for Langlands philosophy and the
Artin conjecture sound like gibberish and want more information, see "Further
Exploring."

www.claymath.org


Chapter 36

A Ranking of the 10 Most
influential Mathematicians
Who Ever Lived

Taking mathematics from the beginning of the world to the time of
Newton, what he has done is much the better half.

—Gottfried Leibnitz

No great discovery was ever made without a bold guess.
—Isaac Newton

Of the thousands of famous and important mathematicians who have affected
the course of human history, which have most influenced our lives and our
thoughts? Here is a ranking of the 10 most influential mathematicians who ever
lived, starting with the most influential, Isaac Newton. (Anonymous persons,
such as the first cave person to scratch numerical representations on cave walls,
were disqualified from the list.)

Dr. Googol was surprised at the remarkable agreement among many respon-
dents' lists. He urges you to experiment by composing your own list, which will
no doubt differ from the one presented here.

1. Sir Isaac Newton (1643-1727) Brilliant English mathematician, physi-
cist, and astronomer. He and Gottfried Leibniz invented calculus independently.
Isaac Newton was so influential that some extra background on his odd life
may appeal to you. Newton was a posthumous child born with no father on
Christmas Day 1642. In his early 20s, he invented calculus, proved that white
light was a mixture of colors, explained the rainbow, built the first reflecting
telescope, discovered the binomial theorem, introduced polar coordinates, and
showed that the force causing apples to fall is same as the force driving planetary
motions and producing tides. Many of you probably don't realize that Newton
was also a biblical fundamentalist, believing in the reality of angels, demons, and
Satan. He subscribed to a literal interpretation of Genesis and believed the Earth
to be only a few thousand years old. In fact, Newton spent much of his life try-
ing to prove that the Old Testament is accurate history. One wonders how many
more problems in physics Newton would have solved if he had spent less time on
his biblical studies. Newton said many of his physics discoveries resulted from
random playing rather than directed and planned exploration. He likened him-
self to a little boy "playing on the seashore, and diverting myself now and then in



A Ranking of the 10 Most influential Mathematicians Who Ever Lived 0 79

finding a smoother pebble or a prettier shell than ordinary whilst the great ocean
of truth lay all undiscovered before me." Newton, like other great scientific
geniuses (such as Nikola Tesla or Oliver Heaviside), had a rather strange person-
ality. For example, he had not the slightest interest in sex, never married, and
almost never laughed (although he sometimes smiled). Newton suffered a mas-
sive mental breakdown, and some have conjectured that throughout his life he
was a manic depressive with alternating moods of melancholy and happy activi-
ty. Today we would classify this as bipolar disorder.

2. Johann Carl Friedrich Gauss (1777-1855) Worked in a wide vari-
ety of fields of math and physics including algebra, probability, statistics, num-
ber theory, analysis, differential geometry, geodesy, magnetism, astronomy, and
optics. His work has had an immense influence in many areas. As a boy his great
mathematical precocity came to the attention of the Duke of Brunswick, who
paid for his education. A notebook kept in Latin by Gauss as a youth was dis-
covered in 1989 showing that, from the age of 15, he had conjectured many
remarkable results, including the prime number theorem and ideas of non-
Euclidean geometry. He published papers in astronomy, the theory of errors, dif-
ferential equations, optics, and magnetism. Manuscripts unpublished until long
after his death show that he had made many other discoveries including the the-
ory of elliptic functions.

3. Euclid (365-300 B.C.) Greek geometer, number theorist, astronomer, and
physicist, famous for his treatise on geometry The Elements, a 13-book extrava-
ganza and the earliest substantial Greek mathematical treatise to have survived.
The enduring nature of The Elements makes Euclid the leading mathematics
teacher of all time. Euclid's Elements has essentially served as the standard means
of teaching geometry for some 2,500 years and has taught the world how to
think systematically. When Abraham Lincoln wanted to learn the meaning of
demonstrate in practicing law, he turned to reading Euclid by candlelight in his
Kentucky log cabin. Euclid also wrote other works on geometry, astronomy,
optics, and music, many of which are lost forever.

4. Leon hard Euler (1707-1783) Swiss mathematician, and the most pro-
lific mathematician in history. Even when he was completely blind, he made
great contributions to modern analytic geometry, trigonometry, calculus, and
number theory. Euler published over 8,000 books and papers, almost all in
Latin, on every aspect of pure and applied mathematics, physics, and astronomy.
In analysis he studied infinite series and differential equations, introduced many
new functions (e.g., the gamma function and elliptic integrals), and created the
calculus of variations. His notations such as e and Ji are still used today. In
mechanics, he studied the motion of rigid bodies in 3 dimensions, the construc-
tion and control of ships, and celestial mechanics. Leonhard Euler was so prolif-
ic that his papers were still being published for the first time 2 centuries after his
death. His collected works have been printed bit by bit since 1910 and will even-
tually occupy more than 75 large books.

5. David Hilbert (1862-1943) German mathematician and philoso-
pher, judged by many as the foremost mathematician of the 20th century, who
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contributed to the theory of algebra, number fields, integral equations, func-
tional analysis, and applied mathematics. Measured in terms of influence,
Hilbert's work in geometry is second after Euclid's. Hilbert published Grund-
lagen der Geometric in 1899, which added immensely to the field of geometry.
His famous 23 Paris problems still challenge mathematicians with important
mathematical questions. (At the second International Congress of Mathema-
ticians, which met at Paris in 1900, Hilbert reviewed the basic contemporary
trends of mathematical research, then formulated 23 problems, extending over
all fields of mathematics, that he believed should occupy the attention of mathe-
maticians in the following century.) Because of Hilbert's prestige, mathemati-
cians spent a great deal of time tackling the problems, and many were solved.
Some, however, have been solved only very recently, and still others continue to
daunt us.

6. Jules Henri Poincare (1854-1912) Great French mathematician,
mathematical physicist, astronomer, and philosopher. He was the originator of
algebraic topology and of the theory of analytic functions of several complex
variables. In applied mathematics, he studied optics, electricity, telegraphy, cap-
illarity, elasticity, thermodynamics, potential theory, quantum theory, and the
theory of relativity and cosmology. In the field of celestial mechanics, he studied
the 3-body problem and theories of light and electromagnetic waves. He is
acknowledged as a codiscoverer, with Albert Einstein and Hendrik Lorentz, of
the special theory of relativity. In his work on planetary orbits, Poincare was first
to consider the possibility of chaos in a deterministic system.

7. Georg Friedrich Bernhard Riemann (1826-1866) German math-
ematician who made important contributions to geometry, complex variables,
number theory, topology, and mathematical physics. His ideas concerning the
geometry of space had an important influence on modern relativity theory. He
clarified the notion of integrals by defining what we now call the Riemann inte-
gral. His first publication, in 1851, was on the theory of complex-variable func-
tions including the result now known as the Riemann mapping theorem. In this
and a later paper (1857) on abelian functions, he introduced the concept of
"Riemann surface" to deal with multivalued algebraic functions; this was to
become a major idea in the development of analysis. His famous lecture "On the
Hypotheses That Underlie Geometry," given in 1854 in the presence of the aged
Gauss, first introduced the concept of a "manifold," an ^-dimensional curved
space, greatly extending the non-Euclidean geometry of Janos Bolayai and
Nikolai Lobachevski. Riemann's ideas led to the modern theory of differentiable
manifolds, playing an important part in current attempts to unify relativity and
quantum theory. Riemann's name is associated with the Riemann hypothesis, a
famous unsolved problem concerning the zeta function, which is central to the
study of the distribution of prime numbers.

8. £variste Galois (1811-1832) Responsible for Galois theory. Famous
for his contributions to group theory, Evariste Galois produced a method of
determining when a general equation could be solved by radicals. Although he
obviously knew more than enough mathematics to pass the Lycee's examinations,
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Galois's solutions were often so
innovative that his university-
examiners failed to appreciate
them. Also, Galois would per-
form so many calculations in his
head that he would not bother to
outline his arguments clearly on
paper. These facts in addition to
his temper and rashness denied
him admission to the Ecole Poly-
technique.

When he was taunted into a
duel, he accepted, knowing he
would die. The circumstances
that led to Galois's death have
never been fully explained. It has
been variously suggested that it
resulted from a quarrel over a
woman, that he was challenged
by royalists who detested his re-
publican views, or that an agent
provocateur of the police was
involved. In any case, preparing
for the end, he spent the entire
night feverishly writing his
mathematical ideas and discover-
ies in as complete a form as he could. Figure 36.1 shows a pajge from his last
night's writing on quintic equations (equations with the term x^).

The next day, Galois was shot in the stomach. He lay helpless on the ground.
There was no physician to help him, and the victor casually walked away, leaving
Galois to writhe in agony.

Not until 1846 had group theory progressed sufficiently for his discoveries to
be appreciated. Galois never received recognition for his extraordinary work and
advanced ideas, but his legacy has had a great impact on 20th-century mathe-
matics. His mathematical reputation rests on fewer than 100 pages of posthu-
mously published work of original genius.

9. Rene Descartes (1596-1650) French philosopher and mathematician
whose work La geometric became one of the most influential geometry books in
history. Descartes was a Catholic all his life, and he was careful to modify or even
suppress some of his later scientific views—for example, his sympathy with
Copernicus—perhaps fearing the wrath of the Inquisition. Nevertheless, he
made important contributions in astronomy, including his theory of vortices,
and more especially in mathematics, where he reformed algebraic notation and
helped found coordinate geometry. Descartes had a lifetime habit of staying in
bed meditating and reading until 11 A.M.

36.1 The frantic mathematical scribblings Galois
made during the night before his fatal duel. On this
page, on the left below the center, are the words
Une femme, with femme crossed out—a reference
to the woman at the center of the duel.
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10. Bldise Pascal (1623-1662) French geometer, probabilist, combina-
torist, physicist, and philosopher. Pascal and Pierre de Fermat founded probabil-
ity theory independently. Pascal also invented the first calculating machine,
studied conic sections, and produced important theorems in projective geome-
try. His father, a mathematician, was responsible for his education. Blaise was
not allowed to begin a subject until his father thought he could easily master it.
As a result, the 11-year-old boy worked out for himself in secret the first 23
propositions of Euclid. At 16, he published essays on conies that Descartes
refused to believe were the handiwork of a teenager. In 1654, Blaise Pascal decid-
ed that religion was more to his liking, so he joined his sister in her convent and
gave up mathematics and social life.

Runners-up: Gerolamo Cardano, Kurt Godel, Georg Cantor, and
John Napier. Napier's invention of logarithms was a major advance and freed
people from a considerable amount of mathematical drudgery.

Chapter 37

What is Godel's Mathematical
Proof of the Existence of God?

Were theologians to succeed in their attempt to strictly separate science
and religion, they would kill religion. Theology simply must become a
branch of physics if it is to survive. That even theologians are slowly

becoming effective atheists has been documented.
—Frank Tipler, The Physics of Immortality

Perhaps the most interesting example of a mathematician studying cosmic ques-
tions is Austrian mathematician Kurt Godel, who lived from 1906 to 1978.
Sometime in 1970, Godel's mathematical proof of the existence of God began to
circulate among his colleagues. The proof was less than a page long and caused
quite a stir:
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(SiiJoeFs ^atijettraticai Pr00f af OSafr's ^Existence
Axiom 1. (Dichotomy) A property is positive if and only if its negation is

negative.

Axiom 2, (Closure) A property is positive if it necessarily contains a pos-
itive property.

Theorem 1 A positive property is logically consistent (i.e., possibly it has
some instance.)

Definition. Something is God-like if and only if it possesses all positive
properties.

Axiom 3. Being God-like is a positive property.

Axiom 4. Being a positive property is (logical, hence) necessary.

Definition. A property P is the essence of x if and only if x has P and P is
necessarily minimal.

Theorem 2 If x is God-like, then being God-like is the essence of x

Definition. NE(x): x necessarily exists if it has an essential property.

Axiom 5. Being NEis God-like.

Theorem 3. Necessarily there is some x such that x is God-like.

How shall we judge such an abstract proof? How many people on Earth can
really understand it? Most logicians and mathematicians that Dr. Googol consult-
ed were not able to explain all aspects of the proof, and so it is difficult to assess its
full nature. Is the proof a result of profound contemplation or the raving of a
lunatic? Recall that Godel's academic credits were impressive. For example, he was
a respected mathematician and a member of the faculty of the University of
Vienna starting in 1930. He emigrated to the United States in 1940 and became
a member of the Institute of Advanced Study in Princeton, New Jersey. Godel is
most famous for his theorem that demonstrated there must be true formulas in
mathematics and logic that are neither provable nor disprovable, thus making
mathematics essentially incomplete. (This theorem was first published in 1931 in
Monatshefte fiir Mathematik undPhysick, volume 38.) Godel's theorem had quite
a sobering effect upon logicians and philosophers because it implies that within
any rigidly logical mathematical system there are propositions or questions that
cannot be proved or disproved on the basis of axioms within that system, and
therefore it is possible for basic axioms of arithmetic to give rise to contradictions.
The repercussions of this fact continue to be felt and debated. Moreover, Godel's
article in 1931 put an end to a centuries-long attempt to establish axioms that
would provide a rigorous basis for all of mathematics.
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Over the span of his life, Godel kept voluminous notes on his mathematical
ideas. Some of his work is so complex that mathematicians believe many decades
will be required to decipher all of it. Author Hao Wang writes on this very sub-
ject in his Reflections on Kurt Godel (Cambridge, Mass.: MIT Press, 1987):

The impact of Godel's scientific ideas and philosophical speculations has been
increasing, and the value of their potential implications may continue to
increase. It may take hundreds of years for the appearance of more definite confir-
mations or refutations of some his larger conjectures.

Godel himself spoke of the need for a physical organ in our bodies to handle
abstract theories. He also suggested that philosophy will evolve into an exact the-
ory "within the next hundred years or even sooner." He even believed that
humans will eventually disprove propositions such as "there is no mind separate
from matter."

Alas, Dr. Googol is not a logician and cannot appreciate Godel's 11-step
proof of God's existence. Dr. Googol welcomes comments from more erudite
readers on this proof, which he obtained from: Wang's Reflections, page 195.

Chapter 38

A Ranking of the 10 Most
influential Mathematicians
Alive Today

Music is the pleasure the human mind experiences from counting without
being aware that it is counting.

—Gottfried Leibnitz

Here is a ranking of the 10 most influential mathematicians alive today, based on
surveys and interviews with mathematicians.

1. Andrew Wiles (b. 1953) Wiles is Eugene Higgins Professor of Math-
ematics at Princeton. His famous paper proving Fermat's Last Theorem is titled
"Modular Elliptic Curves and Fermat's Last Theorem," published in the 1995
Annuals of Mathematics. (Fermat's Last Theorem says that if x, y, z, and n are pos-
itive integers, then xn + yn = zn cannot be solved for any n greater than 2.)
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During his 8-year search for a proof, Wiles had brought together most of the
breakthroughs in 20th-century number theory and incorporated them in one
stupendous proof. Along the way, he created completely new mathematical
methods and combined them with traditional ones in novel ways. In doing this,
Wiles opened up novel lines of attack on many other mathematical problems
and made tremendous contributions toward the resolution of long-standing fun-
damental problems in number theory. The problems that he has addressed on his
own and jointly with others include the Birch and Swinnerton-Dyer conjectures,
the main conjecture of Iwasawa theory, and the Shimura-Taniyama-Weil conjec-
ture. Wiles has been awarded the Schock Prize in Mathematics from the Royal
Swedish Academy of Sciences and the Prix Fermat from the Universite Paul
Sabatier. He also received the 1995-96 Wolf Prize "for spectacular contributions
to number theory and related fields, for major advances on fundamental conjec-
tures, and for settling Fermat's Last Theorem." In 1995, mathematician John
Coates announced:

In mathematical terms, the final proof is equivalent of splitting the atom or find-
ing the structure of DNA. A proof of Fermat is a great intellectual triumph, and
one shouldn't lose sight of the fact that it has revolutionized number theory in one
fell swoop.

Mathematician Ken Ribet notes:

There's an important psychological repercussion, which is that people now are
able to forge ahead on other problems that they were too timid to work on before.

2. Harold (Donald) Coxeter (b. 1907) Coxeter made significant
advances in geometry. In particular he made contributions of major importance
in the theory of polytopes (polygons in higher dimensions) and non-Euclidean
geometry. His hundreds of books and articles cover diverse areas. Coxeter met
M.C. Escher in 1954, and the two became close friends. Coxeter also had an
influence on architect Buckminister Fuller.

3. Roger Penrose (b. 1931) This British mathematician and physicist pre-
dicted singularities in black holes. A professor of mathematics at the University
of Oxford in England, Penrose also pursues an active interest in recreational
math, which he shares with his father. While most of his work pertains to rela-
tivity theory and quantum physics, he is fascinated with a field of geometry
known as tessellation, the covering of a surface with tiles of prescribed shapes.
Penrose received his Ph.D. at Cambridge in algebraic geometry. While there, he
became interested in a geometrical puzzle involving the covering of a flat surface
with tiles so that there were no gaps and no overlaps. In particular, Penrose
found shapes that could tile a surface but did not generate a repeating pattern
(known as quasi-symmetry). These tilings are useful in understanding certain
chemical substances that form crystals in a quasi-periodic manner. A French
company has recently found a practical application for substances that form
these quasi-crystals: they make excellent nonscratch coating for frying pans.
Professor Penrose was knighted in 1994 and awarded the prestigious Wolf Prize
for Physics in 1988, which he shared with Professor Stephen Hawking.
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4. Edward Witten (b. 1951) Witten, an American, is one of the foremost
leaders in reviving the symbiosis between physics and mathematics and is famous
for his work with superstring theory and other areas of mathematical physics.
When modern science was born in the 1600s, physics and mathematics were
united in one discipline. They gradually evolved into different fields, and by the
middle 1900s research in these fields had little in common. Witten's work on
string theory has inspired a new generation of theoretical physicists and also led
to new research in pure mathematics. He is the first and only physicist to be
awarded the Fields Medal; the mathematical equivalent of the Nobel Prize, it is
awarded to mathematicians under 40 years of age for outstanding, seminal
research in mathematics.

5. William Thurston (b. 1946) Thurston conducted pioneering work in
geometry, particularly 3-dimensional topology and foliations. He was appointed
a full professor at Princeton University only 2 years after receiving his Ph.D. and
is widely regarded as being among the most creative mathematicians in the
world. He has solved or clarified dozens of fundamental problems in geometry
and topology. In his work on foliations, Thurston transformed an existing field
of mathematics. Thurston is a member of the National Academy of Sciences and
a Fields medalist. At the International Congress of Mathematicians in 1983,
Professor C.T.C. Wall spoke of Thurston's work: "Thurston has fantastic geo-
metric insight and vision; his ideas have completely revolutionized the study of
topology in 2 and 3 dimensions and brought about a new and fruitful interplay
between analysis, topology and geometry."

6. Stephen Smale (b. 1930) A Fields Medal recipient, Smale is famous for
work on the Poincare conjecture, Morse theory, topology, and various aspects of
chaos theory. In June 1996, he received the National Medal of Science, the high-
est honor in science and technology awarded in the United States. Although
Smale has worked in many areas, including differential topology, nonlinear analy-
sis, economic theory, computation, and mechanics, his work in chaos and dynam-
ical systems will be best known to many readers. Smale's 1960s work on the
structure stability of vector fields led to the construction of the horseshoe map and
his early study of chaotic phenomena. (To make a simple version of Smale's horse-
shoe, you take a bar and repeatedly fold, stretch, and squeeze it, like a mechanical
taffy-maker with rotating arms stretching taffy, doubling it up, stretching it again,
and so on. This topological transformation provided a basis for understanding the
chaotic properties of dynamical systems.) In 1967, he published a landmark sur-
vey article on hyperbolic systems, which outlined a number of outstanding prob-
lems, stimulating much of the work that followed in the next 20 years.
Subsequently he applied dynamical systems ideas to various physical processes,
including the w-body problem and electric circuit theory, and to economics.

7. Robert P. Langlands (b. 1950) This pioneering mathematician and
1982 Cole Prize recipient works on automorphic forms, Eisenstein series, and
product formulas. Langlands, of the Institute for Advanced Study, in Princeton,
and Andrew J. Wiles of Princeton University shared the 1995-1996 Wolf Prize
in Mathematics; Langlands received it for "his path-blazing work and extraordi-
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nary insight in the fields of number theory, automorphic forms, and group rep-
resentation." Langlands shaped the modern theory of automorphic forms with
foundational work on Eisenstein series, group representations, /.-functions and
the Artin conjecture, the principle of functoriality, and the formulation of the
far-reaching Langlands program. His contributions inspire present and future
researchers in these fields.

8. Michael Freedman (b. 1951) Freedman has received many honors,
including a Fields Medal in 1986 for his work on a dimension 4 analogue of the
Poincare conjecture—one of the famous problems of 20th-century mathematics,
which asserts that a simply connected closed 3-dimensional manifold is a 3-
dimensional sphere. He was California Scientist of the Year in 1984, and in that
same year he was made a MacArthur Foundation Fellow and elected to the
National Academy of Sciences. In 1985, he was elected to the American
Academy of Arts and Sciences. In June 1987, Freedman was presented with the
National Medal of Science at the White House by President Ronald Reagan. The
following year, he received the Humboldt Award, and in 1994 he received the
Guggenheim Fellowship Award.

9. John Morton Conway (b. 1937) John von Neumann Professor of
Mathematics at Princeton University. Author of numerous publications in math-
ematics, and the inventor of The Game of Life. (His coauthored books include
On Numbers and Games; Winning Ways for Your Mathematical Plays; Sphere
Packing, Lattices and Groups; and The Book of Numbers?) To develop Life,
Conway used the basic premise of von Neumann's automata and created a
checkerboard world. This world is inhabited by single cells who live or die based
on the state of the cell and its neighbors. Therefore, at any instant, a Life uni-
verse can be described completely by specifying which cells are on and which are
off. This type of world has come to be known as a cellular automaton and is an
important tool for artificial life research.

10. Alexander Grothendieck (b. 1928) Grothendieck provided unifying
themes in geometry, number theory, and topology. He was born in Berlin, where
his Russian father was murdered by the Nazis. Grothendieck moved to France
in 1941 and later entered Montpellier University. After graduating from
Montpellier he spent the year 1948-49 at the Ecole Normale Superieur in Paris,
then moved to the University of Nancy, where he worked on functional analysis
and became one of the Bourbaki group of mathematicians.

Grothendieck's years between 1959 and 1970 are described as a golden age
during which mathematics flourished under his energetic leadership. During this
period, Grothendieck's work provided unifying themes in geometry, number
theory, topology and complex analysis. He received the Fields Medal in 1966.

Martin Gardner (b. 1914) appeared on many lists. While he is not a
mathematician, many respondents felt that his regular columns in Scientific
American and numerous books have done more to heighten modern interest in
mathematics than any other writing in history. Therefore, his influence is great
and may warrant his inclusion on this list. In 1996, Martin Gardner received the
Forum Award of the American Physical Society. The citation read:
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. . . for his popular columns and books on recreational mathematics which intro-
duced generations of readers to the pleasures and uses of logical thinking; and for
his columns and books which exposed pseudoscientific and antiscientific bunk
and explained the scientific process to the general public.

Kendrick Frazier in the April 1998 Skeptical Inquirernotes:

Gardner's mind is highly philosophical, at home with the most abstract concepts,
yet his thinking and writing crackle with clarity—lively, crisp, vivid. He achieved
worldwide fame and respect for the three decades of his highly popular mathemat-
ical games column for Scientific American, yet he is not a mathematician. He is by
every standard an eminent intellectual, yet he has no Ph.D. or academic position.
He has a deep love of science and has written memorable science books (The Ambi-
dextrous Universe and The Relativity Explosion, for instance), and yet he has devot-
ed probably more time and effort to—and has been more effective than any
thinker of the twentieth century in—exposing pseudoscience and bogus science.

Runners-up: Jean-Pierre Serre (b. 1926; number theory, algebraic
geometry), Vladimir Arnold (b. 1937; dynamical systems, geometry),
Richard Borcherds (b. 1959; group theory), William Timothy Gowers
(b. 1963; Banach space theory and combinatorics), Maxim Kontsevich (b.
1964; algebraic curves and manifolds), and Curtis T. McMullen (b. 1958;
theory of computation, dynamical systems, 3-manifolds).

Chapter 39

A Ranking of the 10 Most
interesting Numbers

The tantalizing and compelling pursuit of mathematical problems offers
mental absorption, peace of mind amid endless challenges, repose in

activity, battle without conflict, refuge from the goading urgency of con-
tingent happenings, and the sort of beauty changeless mountains present

to senses tried by the present-day kaleidoscope of events.
—Morris Kline
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Here is a ranking of the 10 most interesting numbers, based on surveys and
interviews with mathematicians.

1. 0 See Chapter 2 on the importance of 0 in history and positional nota-
tion. 0 is the additive identity for a + 0 = a.

2. 7T Normally we think of Jt (3.1415 . . . ) as the ratio of the circumference
of a circle to its diameter. So did pre-17th-century humanity. However, in the
17th century, Jt was freed from the circle. Many curves were invented and stud-
ied (e.g., various arches, hypocycloids, witches), and it was found that their areas
could be expressed in terms of Jt. Finally Jt ruptured the confines of geometry
altogether. For example, today Jt relates to uncountably many areas in number
theory, probability, complex numbers, and series of simple fractions such as
Jt/4 = 1 - 1/3 + 1/5 - 1/7.... As another example of how far Jt has drifted from
its simple geometrical interpretation, consider the book Budget of Paradoxes,
where Augustus De Morgan explains an equation to an insurance salesman. The
formula, which gives the chances that a particular group of people would be alive
after a certain number of days, involves the number Jt. The insurance salesman
interrupts and exclaims, "My dear friend, that must be a delusion. What can a
circle have to do with the number of people alive at the end of a given time?"

Even more recently, Jt has turned up in equations that describe subatomic
particles, light, and other quantities that have no obvious connection to circles.
John Polkinghorne (a physicist at Cambridge University before he became an
Anglican priest in 1982) believes this points to a very deep fact about the nature
of the universe, namely that our minds, which "invent" mathematics, conform
to a reality of the universe. We are tuned to its truths. (See Sharon Begley's
"Science Finds God" in the July 20, 1998, issue of Newsweek.)

3. e The base of the natural system of logarithms; the limit of (1 + \/n)n as
n increases without limit. Its numerical value is 2.7182 . . . (note that if we use
n = 10 in the formula we get (1 + 1/10)10 = 2.59 .. ., and if we use n = 20 we get
(1 + 1/20)20 = 2.65 . . .). The constant e is related to the other important num-
bers, 1, Jt, and /', by eni = — 1. Additionally, e, like Jt, is an example of a transcen-
dental number (see Chapter 44 for more information on transcendentals, which
cannot be expressed as the root of any algebraic equation—for example, a poly-
nomial—with rational coefficients.) Numerous growth processes in physics,
chemistry, biology, and the social sciences exhibit exponential growth typified by
the formula y = ex. This function is exactly the same as its derivative, a fact that
partially explains es frequent occurrence in calculus. Many hanging shapes in
nature (like a rope suspended at two points and sagging in the middle) follow a
catenary curve defined by (a/2)(ex/a + e~x/a).

4. i Imaginary unit. If you were asked to find an xsuch that x2 + 1 = 0, you
would quickly realize that there was no real solution. This fact led early mathe-
maticians to consider solutions involving the square root of negative numbers.
Heron of Alexandria (c. A.D. 100) was probably the first individual who formal-
ly presented a square root of a negative number as a solution to a problem. (For
trivia aficionados, it was J-63). These numbers were considered quite meaning-
less, and hence the term imaginary was used. When imaginary numbers were
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first considered, many people were not sure of their validity. What real-world
significance could they have? Today, amazingly, imaginary numbers are every-
where in science—from hydrodynamics to electrical theory. The space shuttle's
flight software uses them for navigation. They're used by protein chemists for
spatially manipulating models of protein structure. Ted Kaczynski, the Una-
bomber, spoke of imaginary numbers fondly throughout his highly theoretical
mathematical journal articles. Carl Friedrich Gauss coined the word complex in
1832 to describe numbers with both real and imaginary components.
Humanity's expansion into the realm of complex numbers turned many difficult
problems into relatively easy ones.

5. n The square root of 2 has a numerical value of 1.414214.... When it
was first proved to be irrational (that is, it could not be expressed as the ratio of
two integers like 7/5), a whole new area of mathematics was developed. The
Pythagoreans, a mystical brotherhood based on the philosophical teachings of
Pythagoras, discovered that the diagonal of a square with sides of length 1 is not
a rational number. This was considered so shocking that those who knew about
it were sworn to secrecy for fear that it might disrupt the fabric of society! It is
often said that when Hippasus discovered that the ratio between the side and the
diagonal of a rectangle cannot be expressed in integers, this shattered the
Pythagorean worldview. The problem caused an existential crisis in ancient
Greek mathematics. The digits of 1.4142 . . . go on forever without any known
pattern. Pythagoreans dubbed these irrational numbers alogon, or unutterable.

6. 1 A factor of all numbers, 1 has no factors but itself. It is the multiplica-
tive identity for 1 x a = a.

1. 2 The only even prime number. In the words of Richard Guy, this makes
it the oddest prime of all. Notice that 2 + 2 = 2 x 2 , which gives it a unique arith-
metic property. Importantly, it is the basis for the binary system of numbers
upon which all computers are built. Powers of 2 appear more frequently in
mathematics and physics than those of any other number.

8. Euler's Gamma (y) Numerical value, 0.5772. . . . This number links
the exponentials and logs to number theory, and it is defined by the limit of
(1 + 1 / 2 + 1 / 3 + . . . + !/«- log n) as n approaches infinity. In addition to many
infinite series, products, and definite integral representations, Euler's constant y
also plays a role in probability. Calculating y has not attracted the same public
interest as calculating jt, but y has still inspired many ardent devotees. While we
presently know it to billions of decimal places, only several thousand places of y
are known. The evaluation of 7 is considerably more difficult than that of Jt.

9. Chaitin's constant (ft) An irrational number which gives the proba-
bility that a "universal Turing machine" (for any set of instructions) will halt.
The digits in Q are random and cannot be computed prior to the machine halt-
ing. (A Turing machine is a theoretical computing machine that consists of an
infinitely long magnetic tape on which instructions can be written and erased, a
single-bit register of memory, and a processor capable of carrying out certain
simple instructions. The machine keeps processing instructions until it reaches a
particular state, causing it to halt.) Chaitin's constant has implications for the
development of human and natural languages and gives insight into the ultimate
potential of machines.
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10. K 0 (Aleph naught) A "transfmite" number. Even though there are an
infinite number of rational and irrational numbers, the infinite number of irra-
tionals is in some sense greater than the infinite number of rationals. To denote
this difference, mathematicians refer to the infinity of rationals as K0 and the
infinite number of irrationals as C, which stands for continuum. There is a sim-
ple relationship between Cand K0. It is C = 2K0. The "continuum hypothesis"
states that C = K j j however, the question of whether or not C truly equals K t is
considered undecidable. In other words, great mathematicians such as Kurt
Godel proved that the hypothesis was a consistent assumption in one branch of
mathematics. However, another mathematician, Paul Cohen, proved that it was
also consistent to assume the continuum hypothesis is false! Interestingly, the
number of rational numbers is the same as the number of integers. The number
of irrationals is the same as the number of real numbers. (Mathematicians usual-
ly use the term cardinality when, talking about the "number" of infinite numbers.
For example, true mathematicians would say that the "cardinality" of the irra-
tionals is known as the continuum.) Thinking about the number of elements in
infinite sets led to the discovery of transfmite numbers and the fact that there are
different "levels" of infinity.

Chapter 40

The Unabomber's 10 Most
Mathematical Technical Papers

Let .Fbe our finite skew field, F*hs multiplicative group. Let 5 be
any Sylow subgroup F*, of order, say, pa. Choose an element g of order

p in the center of S. If some h G S generates a subgroup of order p
different from that generated by g, then g and h generate a commutative

field containing more than p roots of the equation x? = 1, an impossibility.
Thus 5 contains only one subgroup of order p and hence is either a cyclic

or general quaternion group.
—T. ]. Kaczynski, "Another Proof of Wedderburn's Theorem"

The majority of people engage in a significant amount of naughty behavior.
—Unabomber Manifesto



92 © Wonders of Numbers

Ted Kaczynski, also known as the Unabomber, was a mathematically adept
Harvard graduate (see Chapter 31). After teaching for 2 years and publishing
mathematical papers that put him on a tenure track at one of the nation's most
prestigious universities, he suddenly quit, spent nearly half his life in the woods,
and used homemade bombs to kill 3 strangers and injure 22 others.

Ted Kaczyinski's research into the properties of functions of circles was by all
accounts brilliant, but when he sent his papers to journals for publications, he
did so quietly, without telling his professors or classmates. (This occurred before
Kaczyinski became a hermit in the woods and started killing people.) When his
articles began appearing in respected mathematics journals, professors and stu-
dents were amazed. According to Joel Shapiro, a fellow student now a mathe-
matics professor:

While most of us were just trying to learn to arrange logical statements into coher-
ent arguments, Ted was quietly solving open problems and creating new mathe-
matics. It was if he could write poetry while the rest of us were trying to learn
grammar.

Various mathematicians have said that Kaczynski's papers, such as "Boundary
Functions for Functions Defined in a Disk" and "On a Boundary Property of
Continuous Functions," were cutting-edge mathematics when they were pub-
lished. In order to help judge Kaczynski's work, Dr. Googol acquired his papers
and spread them out on the table. Alas, despite some mathematical training, Dr.
Googol cannot understand Kaczynski's works. Here are some of Kaczynski's eru-
dite titles:

1. Kaczynski, T. J. (1967) Boundary Functions (doctoral dissertation). Ann
Arbor: University of Michigan. (This 80-page thesis won "best thesis of the
year" in the math department at the University of Michigan.)

2. Kaczynski, T. J. (1964) Another proof of Wedderburn's theorem. American
Mathematical Monthly. 71:65 2-6 5 3.

3. Kaczynski, T. J. (1964.) Distributivity and (-l)x = -x (proposed problem).
American Mathematical Monthly. 71: 689.

4. Kaczynski, T. J. (1965) Boundary functions for functions defined in a disk.
Journal of Mathematics and Mechanics. 14(4): 589-612.

5. Kaczynski, T. J. (1965) Distributivity and (-1)* = -^(problem and solution).
American Mathematical Monthly. 72: 677-678.

6. Kaczynski, T. J. (1966) On a boundary property of continuous functions.
Michigan Mathematics journal 13:313-320.

1. Kaczynski, T. J. (1969) Note on a problem of Alan Sutcliffe. Mathematics
Magazine. 41: 84-86.

8. Kaczynski, T. J. (1969) The set of curvilinear convergence of a continuous
function defined in the interior of a cube. Proceedings of the American
Mathematics Society. 23: 323-327.
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9. Kaczynski, T. J. (1969) Boundary functions and sets of curvilinear conver-
gence for continuous functions. Transactions of the American Mathematics
Society. 141: 107-125.

10. Kaczynski, T. J. (1969) Boundary functions for bounded harmonic func-
tions. Transactions of the American Mathematics Society. 137: 203-209.

Dr. Googol shouldn't feel too bad about not comprehending any of the
Unabomber's papers. According to the hype, there are few who can fully ap-
preciate Kaczynski's work without considerable mathematical education.
Professor Maxwell O'Reade, who was on Kaczynski's dissertation committee,
noted, "I would guess that maybe 10 or 12 people in the country understood or
appreciated it."

Chapter 41

The 10 Mathematical Formulas
That Changed the Face of
the World

Perhaps an angel of the Lord surveyed an endless sea of chaos, then trou-
bled it gently with his finger. In this tiny and temporary swirl of equa-

tions, our cosmos took shape.
—Martin Gardner

A few years ago, Nicaragua issued 10 postage stamps bearing las 10 formulas
matemdticas que cambiaron lafaz de la tierra. (the 10 mathematical formulas that
changed the face of the world). Isn't it admirable that a country so respects math-
ematics that it devotes a postage-stamp series to a set of abstract equations? Have
other countries produced a similar series?

Dr. Googol is not sure how the Nicaraguan government determined which
particular formulas should be elevated to so high a status. Perhaps a survey was
conducted among the mathematicians in the country. In addition to scientific
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merit, perhaps such practical issues as space limitations were considered so as to
avoid long formulas on small stamps.

Dr. Googol conducted his own informal survey as to which formulas scien-
tists considered "the 10 mathematical formulas that changed the face of the
world." The survey was conducted via electronic mail networks, and a majority
of the respondents were mathematicians (professors, other professionals, and
graduate students). Here's the answer to this question from approximately 50
interested individuals who gave Dr. Googol their opinions as to the most impor-
tant and influential equations. The equations are ordered from most influential
to least influential, based on the number of different people who listed the same
formulas when they sent their lists to Dr. Googol. For example, E = me2 received
the most votes.

How many of the following formulas can you identify? If you can identify
more than 5, you are probably more knowledgeable than 99% of the people on
Earth. If you can identify all equations in the top 10 and all the equations in the
runners-up list, you are worthy of cavorting with the antediluvian gods. Dr.
Googol identifies these equations later in the chapter.

T H E T O P I O

Here are the 10 most influential and important mathematical expressions, listed
in descending order of importance:

1. E - me2

2. a1
 + h2 = c2

3. eQ$E • dA = ̂ q

4. x=(-b±Jb2-4ac)/(2a)

5. F = ma'

(>. 1 + eiT = 0

7. c - 2irr, a = irr2

8. F - Gm\mi Ir2

9. f(x) = I,cne
inTX/L

10. eie = cos0 + is'mS, tied with an + bn = cn, n > 2

T H E R U N N E R S - U P

These mathematical expressions did not score high enough to be included in the
top 10 but scored favorably. They are listed in no particular order but are num-
bered for reference.

1. f(x) =f(a) + f(a)(x-a) + f"(a)(x-a)2/2l. . .

2. s = vt+ at212
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3. V=IR

4. z-+ z2 + fji (for complex numbers)

5. e = \imn^ao(l + Hn)n

6. c2 = a2 + b2 -2abcosC

7. iKdA = 2irxx

8. dldx$af(t)dt = f(x)

9. ll(2vi)ff(z)/(z-a)dz=f(a)

10. dy/dx = \imh^(f(x + h)-f(x))/h

11. 82\js/dx2 = -[Sn2m/h2(E -V)]tf

N I C A R A G U A L I S T

Here is a list of Nicaragua's postage-stamp equations. Note how many of these
formulas agree with the top 10 list based on Dr. Googol's own informal survey.

1. 1 + 1 = 2

2. F = Gmim2 / r2

3. E = me2

4. elnN = N

5. a2 + b2 = c2

6. S = k\ogW

7. V=Vc\nm0/ml

8. X = /7/wy

9. V2E=(Ku/c2)(d2E/dt2)

10. /71x1 = /^^

Do you recognize several of these formulas?

© © ©

I D E N T I F I C A T I O N O F E Q U A T I O N S

Here are the solutions for the Nicaragua stamp list: (1) Basic addition formula.
(2) Isaac Newton's law of universal gravitation. If the two masses m\ and w2

are separated by a distance, r, the force exerted by one mass on the other is F,
and G is a constant of nature. (3) Einstein's formula for the conversion of matter
to energy. (4) John Napier's logarithm formula. This allows us to do multi-
plication and division simply by adding or subtracting the logarithms of num-
bers. (5) Pythagorean theorem relating the lengths of sides of a right triangle.
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(6) Bolzmann's equation for the behavior of gases. (7) Konstantin Tsiolkovskii's
rocket equation. It gives the speed of a rocket as it burns the weight of its fuel.
(8) De Broglie's wave equation, relating the mass, velocity, and wavelength of a
wave-particle, h is Planck's constant. De Broglie postulated that the electron
has wave properties and that material particles have an associated wavelength.
(9) Equation relating electricity and magnetism, derived from Maxwell's equa-
tions, which form the basis for all computations involving electromagnetic
waves including radio, radar, light, ultraviolet waves, heat radiation, and X rays.
(10) Archimedes' lever formula.

Here are explanations for some of the formulas in Dr. Googol's own lists.
(3) One of Maxwell's equation for electromagnetism. (4) The quadratic formula
for solving equations of the form ax2 + bx + c= 0. (5) Newton's second law, relat-
ing force, mass, and acceleration. (7) Gives the circumference and area of a
circle. (9) represents a Fourier series. Complicated wave disturbances may be
represented as the sum of a group of sinusoidal-like waves. (10) The first formu-
la is Ruler's identity relating exponential and trigonometric functions; the second
formula represents Fermat's Last Theorem. (Runner-up 7) The Gauss-Bonnet
formula, where X is the Euler characteristic. (Runner-up 9) Cauchy's integral
formula in complex analysis.

A few respondents suggested Fermat's Last Theorem be included among the
top 10 influential mathematical expressions because a significant amount of
research and mathematics has been a direct result of attempts to prove the theo-
rem. This theorem by Pierre de Fermat (1601-1665) states that there are no
whole numbers a, h, and c such that an + bn = cn for n> 2. (In 1995, Andrew
Wiles published a famous paper in the Annuals of Mathematics that finally
proved Fermat's Last Theorem.) In 1769, Leonhard Euler stated that he thought
the related formula a* + £4 + c4 = cfi had no possible integral solutions. Two
centuries later, Noam Elkies of Harvard University discovered the first solution:
<* = 2,682,440, b= 15,365,639, c= 18,796,760, and d = 20,516,673. (For more
information, see: Elkies, N. (1988) On a4 + h4 + c4 = d^. Mathematics of
Computation. Oct. 51(184): 825-35.)

C O M M E N T S F R O M C O L L E A G U E S

Clifford Beshers of Columbia University suggested adding a fixed loan payment
formula to the top 10 because populations that govern industrial economies have
had a great impact on our world. The fixed loan payment formula involves vari-
ables such as the monthly interest rate, principal, and duration of the loan.

Roy Smith of the Public Health Research Institute in New York noted the fol-
lowing about c2 = a2 + b2 (the Pythagorean formula for right triangles):

This formula is vital to any vector problem, and hence vital to most of physics.
Any field of study using complex numbers, such as electronics, involves the con-
version between polar and rectangular forms, and this formula has application
here. This formula is one of the first things the Scarecrow in The Wizard of Oz
recited when he got his brain. If you consider the formula's logical extension, the
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law of cosines for non-right triangles (C2 =A2 + B2 - 2ABcos (6)), then you have
the basic formula that surveyors use to measure land. The related formulas for
solving spherical triangles were used for celestial navigation, which allowed people
to explore the entire world by sea.

Charles Ashbacher, editor of the Journal of Recreational Mathematics, wrote to
Dr. Googol with "significant disagreements with the list." For the record,
Charles's top 10, with a few of his explanations, follow:

1. 1 - 2 = -1 (The positive integers are intuitively obvious. This formula estab-
lishes the existence of negative integers, the first "nonintuitive" set of num-
bers imagined by humans.)

2. /2 * m/n (This formula established the existence of irrational numbers and
was the first instance where it was proven that some things, like "all" of the
digits of/2, will never be known.)

3. aO b = a x base x base + 0 x base + b (This formula establishes the concept
of positional notation and the use of 0 as a place-holder. This eliminated
enormously cumbersome systems such as Roman numerals and greatly sped
up all manner of computation. It also allowed arithmetic to be mechanized.)

4. F = ma

5. E = me2

6. V=IR

7. \ = h/mv

8. F = Gmim2 Ir
2

9. c = 2-xr

10. elnN = N

For more reader comments on formulas that changed the world, see
"Further Exploring."



Chapter 42

The 10 Most Difficult-
to-Understand Areas of
Mathematics

In heterotic string theory . . . the right-handed bosons (carrier particles)
go counterclockwise around the loop, their vibrations penetrating 22 com-
pacted dimensions. The bosons live in a space of 26 dimensions (including

time) of which 6 are the compacted "real" dimensions, 4 are the dimen-
sions of ordinary space-time, and the other 16 are deemed "interior
spaces"—mathematical artifacts to make everything work out right.

—Martin Gardner, The Ambidextrous Universe

String theory may be more appropriate to departments of mathematics or
even schools of divinity. How many angels can dance on the head of a
pin? How many dimensions are there in a compacted manifold thirty
powers often smaller than a pinhead? Will all the young Ph.D.'s, after
wasting years on string theory, be employable when the string snaps?

—Sheldon Glashow

String theory is twenty-first-century physics that fell accidentally into
the twentieth century.

—Edward Witten

We can hardly imagine a gorilla's understanding the significance of prime num-
bers, yet the gorilla's genetic makeup—its DNA sequence—differs from ours by
only a few percentage points. These minuscule genetic differences in turn pro-
duce differences in our brains. Additional alterations of our brains would admit a
variety of profound concepts to which we are now totally closed. What mathe-
matics is lurking out there that we can never understand? What new aspects of
reality could we absorb with extra cerebrum tissue? And what exotic formulas
could swim within the additional folds? Philosophers of the past have admitted
that the human mind is unable to find answers to some of the most important
questions, but these same philosophers rarely thought that our lack of knowledge
was due to an organic deficiency shielding our psyches from higher knowledge.

If the yucca moth, with only a few ganglia for its brain, can recognize the
geometry of the yucca flower from birth, how much of our mathematical capac-
ity is hardwired into our convolutions of cortex? Obviously, specific higher
mathematics is not inborn, because acquired knowledge is not inherited, but our
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mathematical capacity is a function of our brain. There is an organic limit to our
mathematical depth.

How much mathematics can we know? The body of mathematics has general-
ly increased from ancient times, although this has not always been true. Math-
ematicians in Europe during the 1500s knew less than Grecian mathematicians
at the time of Archimedes. However, since the 1500s humans have made
tremendous excursions along the vast tapestry of mathematics. Today there are
probably around 300,000 mathematical theorems proved each year.

In the early 1900s, a great mathematician was expected to comprehend the
whole of known mathematics. Mathematics was a shallow pool. Today the math-
ematical waters have grown so deep that a great mathematician can know only
about 5% of the entire corpus. What will the future of mathematics be like as
specialized mathematicians know more and more about less and less until they
know everything about nothing?

The following is a ranking of the 10 most difficult areas of mathematics
today, from most difficult to least. Of course, the question is inevitably biased.
As French mathematician Olivier Gerard notes, a theory can be "difficult" for
many reasons. It can be poorly written. It can also be temporarily difficult
because some pieces are lacking (such as in a jigsaw puzzle). Most mathematics
does not seem to be "eternally" difficult, but many areas are difficult because one
must go through a lengthy initiation, review, and training process before hoping
to say anything useful or new.

The following are the 10 most difficult-to-understand areas of mathematics,
as ranked by mathematicians around the world. Items 1, 2, 3, and 10 are very
closely related.

1. Motivic cohomology (cohomology theory)

2. Special cases of the Langlands functoriality conjecture—examples include
f/(2,l), as applied to Hilbert modular varieties and stabilization of the trace
formula)

3. Advanced Number Theory—includes the mathematics used in the proof of
Fermat's Last Theorem (by Andrew Wiles).

4. Quantum groups

5. Infinite-dimensional Banach spaces

6. Local and micro-local analysis of large finite groups

7. Large and inaccessible cardinals

8. Algebraic topology

9. Superstring theory

10. Non-abelian reciprocity (Langlands philosophy), automorphic representations,
and modular varieties
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Don't ask Dr. Googol to define these for you. Most seasoned mathematicians
don't understand much about these detailed specialties or insanely difficult areas.
Those few mathematicians that do understand these areas can't explain them to
a general audience. Given all this, here is a brief explanation of superstring theo-
ry. Various modern theories of "hyperspace" suggest that dimensions exist
beyond the commonly accepted dimensions of space and time. The entire uni-
verse may actually exist in a higher-dimensional space. This idea is not science
fiction; in fact, hundreds of international physics conferences have been held to
explore the consequences of higher dimensions. From an astrophysical perspec-
tive, some of the higher-dimensional theories go by impressive-sounding names
such as Kaluza-Klein theory and supergravity. In Kaluza-Klein theory, light is
explained as vibrations in a higher spatial dimension. Among the most recent
formulations of these concepts is superstring theory that predicts a universe of
10 dimensions—3 dimensions of space, 1 dimension of time, and 6 more spatial
dimensions. In many theories of hyperspace, the laws of nature become simpler
and more elegant when expressed with these several extra spatial dimensions.

The basic idea of string theory is that some of the most basic particles, like
quarks and fermions (which include electrons, protons, and neutrons), can be
modeled by inconceivably tiny, 1-dimensional line segments, or strings. Initially,
physicists assumed that the strings could be either open or closed into loops, like
rubber bands. Now it seems that the most promising approach is to regard them
as permanently closed. Although strings may seem to be mathematical abstrac-
tions, remember that atoms were once regarded as "unreal" mathematical
abstractions that eventually became observables. Currently, strings are so tiny
there is no way to "observe" them; perhaps we will never be able to. In some
string theories, the loops of string move about in ordinary 3-space, but they also
vibrate in higher spatial dimensions perpendicular to our world. As a simple
metaphor, think of a vibrating guitar string whose "notes" correspond to differ-
ent, "typical" particles such as quarks and electrons along with other mysterious
particles that exist only in all 10 dimensions, such as the hypothetical graviton,
which conveys the force of gravity. Think of the universe as the music of a hyper-
dimensional orchestra. And we may never know if there is a hyper-Beethoven
guiding the cosmic harmonies.

In the last few years, theoretical physicists have been using strings to explain
all the forces of nature—from atomic to gravitational. Although string theory
describes elementary particles as vibrational modes of infinitesimal strings that
exist in 10 dimensions, many of you may be wondering how such things exist in
our 3-dimensional universe with an additional dimension of time. String theo-
rists claim that 6 of the 10 dimensions are "compactified"—tightly curled up (in
structures known as Calabi-Yau spaces) so that the extra dimensions are essen-
tially invisible.

As technically advanced as superstring theory sounds, it could have been
developed a long time ago. This is according to string-theory guru Edward
Witten, a theoretical physicist at the Institute for Advanced Study in Princeton.
For example, he indicates that it is quite likely that other civilizations in the uni-
verse discovered superstring theory, then later derived Einstein-like formulations
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(which in our world predate string theory by more than half a century).
Unfortunately for experimentalists, superstrings are so small that they are not
likely ever to be detectable by humans. Consider the ratio of the size of a proton
to the size of the solar system; this is the same ratio that describes the relative size
of a superstring to a proton.

John Morgan, an editor at Scientific American, recently published an article
describing what other researchers have said of Witten and superstrings in 10
dimensions. One researcher interviewed exclaimed that in sheer mathematical
mind power, Edward Witten exceeds Einstein and has no rival since Newton. So
complex is string theory that when a Nobel Prize-winning physicist was asked to
comment on the importance of Witten's work, he said that he could not under-
stand Witten's recent papers; therefore, he could not ascertain how brilliant
Witten is.

Recently, humanity's attempt to formulate a "theory of everything" includes
not only string theory but membrane theory, also known as M-theory. In the
words of Edward Witten (who Life magazine dubbed the sixth most influential
American baby boomer), "Mstands for Magic, Mystery, or Membrane, accord-
ing to taste." In this new theory, life, the universe, and everything may arise from
the interplay of membranes, strings, and bubbles in higher dimensions of space-
time. The membranes may take the form of bubbles, or they may be stretched
out in 2 directions like a sheet of rubber, or they may be wrapped so tightly that
they resemble a string. The main point to remember about these advanced theo-
ries is that modern physicists continue to produce models of matter and the uni-
verse requiring extra spatial dimensions.

Chapter 43

The 10 Strangest Mathematical
Titles Ever Published

I once asked Gregory Chudnovsky if a certain impression I had of mathe-
maticians was true, that they spend immoderate amounts of time declar-

ing each other's works trivial. "It is true," he admitted.
—Richard Preston, The New Yorker, 1992
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Strange. Weird. Intriguing. The following is a list of 10 serious mathematical
papers with strange, indecipherable, and/or amusing titles. Candidates for this
list were nominated by students, educators, and researchers around the world.

T H E T O P I O

The award for all-time strangest title goes to Dr. A. Granville:

Granville, A. (1992) Zaphod Beeblebrox's brain and the fifty-ninth row of Pascal's
Triangle. American Mathematical Monthly. April, 99(4): 318-331.

Second place goes to Dr. Forest W. Simmons of Portland Community College for:

Simmons, R (1980) When homogeneous continua are Hausdorff circles (or yes,
we Hausdorff bananas). In Continua Decompositions Manifolds (Proceedings of
Texas Topology Symposium 1980). University of Texas Press. (Not too surprisingly,
the illustrations are reminiscent of bananas!)

Third place goes to the romantic S. Strogatz for:

Strogatz, S. (1988) Love affairs and differential equations. Mathematics Magazine.
61(1): 35. (This is an analysis of the time-evolution of the love affair between
Romeo and Juliet.)

Fourth place goes to A. Berezin for:

Berezin, A. (1987) Super super large numbers. Journal of Recreational Mathe-
matics. 19(2): 142-143. (This paper discusses the mathematical and philosophical
implications of the "superfactorial" function defined by the symbol $, where N$ =
MNIN]- The term N\ is repeated TV! times.)

Fifth place goes to Alan Mackay for:

Mackay, A. (1990) A time quasi-crystal. Modern Physics Letters B. 4( 15): 989-991.

Sixth place goes to J. Tennenbaum for:

Tennenbaum, J. (1990) The metaphysics of complex numbers. 21st Century
Science. Spring 3(2): 60.

Seventh place goes to Tom Motley for:

Morley, T. (1985) A simple proof that the world is 3-dimensional. SLAM Review.
27: 69-71. (The article starts, "The title is, of course, a fraud. We prove nothing
of the sort. Instead we show that radially symmetric wave propagation is possible
only in dimensions one and three.")

Eighth place goes to the encyclopedic Professor Akhlesh Lakhtakia, from the
Department of Engineering Science and Mechanics at Pennsylvania State Uni-
versity, for:

Lakhtakia, A. (1990) Fractals and The Cat in the Hat. Journal of Recreational
Mathematics. 23(3): 161-164. (Reprints available from: Prof. A. Lakhtakia, Dept.
of Engineering Science, Pennsylvania State University, University Park, PA 16802.)
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Ninth place goes to R. C. Lyness for:

Lyness, R. C. (1941) Al Capone and the Death Ray. Mathematical Gazette. 25:
283-287.

Tenth place is shared by several individuals:

Englebretsen, G. (1975) Sommers' proof that something exists. Notre Dame
Journal of Formal Logic 16: 298-300. (The review [MR 51 #7803] by K. Inoue,
says "The author points out that F. Sommers's proof that something exists is
invalid.")

Hale, R. (1978) Logic for morons. Mind. 87: 111-115.

Braden, B. (1985) Design of an oscillating sprinkler. Mathematics Magazine. 58:
29-33.

Taylor, C. (1990) Condoms and cosmology: The "fractal" person and sexual risk
in Rwanda. Social Science and Medicine. 31(9): 1023-1028. (This entry might
have been higher up on the list had it been published in a mathematics journal.)

Hoenselaers, C, and Skea, J. (1989) Generating solutions of Einstein's field equa-
tions by typing mistakes. General Relativity Gravity. 21: 17-20. (The authors
made some typing mistakes entering the problem into a computer and came out
with new solutions to the equations.)

Marchetti, C. (1989) On the beauty of sex and the truth of mathematics. Rivista
di Biologia — Biology Forum. 82(2), 209-216.

Khrennikov, A. Yu. (1999) Description of the operation of the human subcon-
scious by means of p-adic dynamical systems. [Russian] Doklady Akademii Nauk.
365(4): 458-460.

Chapter 44

The 15 Most Famous
Transcendental Numbers

"Math is a perfection in expression, like ballet or a shaolin class martial art.
—V. Guruprasad
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In this book's introduction, Dr. Googol explained his love of integers and hinted
he would seldom discuss complicated numbers like it with an infinite number of
digits. Please forgive him for this brief yet fascinating digression into transcen-
dental numbers.

The mathematical constant pi, denoted by the Greek letter JC, represents the
ratio of the circumference of a circle to its diameter. It is the most famous ratio
in mathematics both on Earth and probably for any advanced civilization in the
universe. The number Jt, like other fundamental constants of mathematics such
a s £ = 2 . 7 1 8 . . . , i s a transcendental number. The digits of n and e never end,
nor has anyone detected an orderly pattern in their arrangement. Humans know
the value of n to over a billion digits.

Transcendental numbers cannot be expressed as the root of any algebraic
equation with rational coefficients. This means that Jt could not exactly satisfy
equations of the type Jl2 = 10 or 9Jl4 - 240jt2 + 1492 = 0. These are equations
involving simple integers with powers of Jt. The numbers Jt and e can be
expressed as an endless continued fraction or as the limit of an infinite series.
The remarkable fraction 355/113 expresses Jt accurately to 6 decimal palaces.

Many of you have probably heard of Jt and e. But are there other famous tran-
scendental numbers? After conducting a brief survey of readers, Dr. Googol
made a list of the 15 best-known transcendental numbers. Can you list these in
order of relative fame and/or usage?

1. Jt = 3.1415...

2. *= 2.718...

3. Euler's constant, j = 0.577215 . . . = limn^00(l + 1/2 + 1/3 + 1/4 + ...
l/«-ln(«)) (Not proven to be transcendental, but generally believed to be
by mathematicians.)

4. Catalans constant, G= Z(-l)k/(2£+ 1)2= 1 - 1/9 + 1/25 - 1/49 + . . . (Not
proven to be transcendental, but generally believed to be by mathemati-
cians.)

5. Liouville s number, .110001 . . . (This is an example of a transcendental
number "discovered" much later than pi or e. It was first discussed in 1851
and named after its "inventor," French mathematician J. Liouville. You can
compute this fascinating number with 2|L1tfi{r~k! where a ^ a^ ^ r.
The numbers a^ are integers. The resulting number is a Liouville number of
base r. If the values for a^ are all 1, and r = 10, we get: 1/10 + 1/101 x 2 +
l / 1 0 l x 2 x 3 + . . . Believe it or not, the decimal value can easily be written
down: 0.110001000000000000000001000 . . . which has a 1 in the 1st,
2nd, 6th, 24th, etc., places and Os elsewhere.)

6. Chaitins constant, the probability that a random algorithm halts. (Noam
Elkies of Harvard notes that this number is not only transcendental but also
incomputable.)
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7. Champernowne's number,
0.12345678910111213141516171819202122232425 . . . (This is con-
structed by concatenating the digits of the positive integers. Can you see the
pattern?)

8. Special values of the zeta function, such as ^(3) (Transcendental functions can
usually be expected to give transcendental results at rational points.
Technically speaking, ^(3) is known to be irrational but not yet proven to be
transcendental, although it is generally believed to be my mathematicians.)

9. ln(2), 0.6931 .. .

10. Hilbert's number, 2^2 (This is called Hilbert's number because the proof of
whether or not it is transcendental was one of Hilbert's famous 23 problems.
In fact, according to the Gelfond-Schneider theorem, any number of the
form a is transcendental where a and b are algebraic, a is neither 0 nor 1,
and b is not rational. Many trigonometric or hyperbolic functions of nonze-
ro algebraic numbers are transcendental.)

11. e*

12. ire (Not proven to be transcendental, but generally believed to be by mathe-
maticians.)

13. Morse-Thues number, 0.01101001 . . . (See Chapter 17 for more informa-
tion.)

14. il (Here / is the imaginary number ,/-!• If ^ is algebraic and b is algebraic
but irrational, then a is transcendental. Since / is algebraic but irrational,
the theorem applies. Note also: i' is equal to e"71"72 and several other values.
Consider /' = e / log z = e z x ? 7 t / 2 . Since log is multivalued, there are other pos-
sible values for /'.)

15. Feigenbaum numbers, e.g. 4.669 . . . (These are related to properties of
dynamical systems with "period-doubling" oscillations. The ratio of succes-
sive differences between period-doubling bifurcation parameters approaches
the number 4.669. . . . Period doubling has been discovered in many physi-
cal systems before they enter the chaotic regime. Feigenbaum numbers have
not been proven to be transcendental but are generally believed to be.)

Keith Briggs from the Mathematics Department of the University of
Melbourne in Australia computed what he believes to be the world record
for the number of digits for the Feigenbaum number:

4JHK)20160910299()671853203820466201617258185577475768632745
6513430041343302113147371386897440239480138171659848551898
1513440862714202793252231244298889089085994493546323671341
1532481714219947455644365823793202009561058330575458617652
2220703854106467494942849814533917262005687556659523398756
03825637225
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Briggs carried out the computation using special-purpose software designed
by David Bailey of NASA Ames running on an IBM RISC System/6000.
The computation required a few hours of computation time. For more
information, see: Briggs, K. (1991) A precise calculation of the Feigenbaum
constants. Mathematics of Computation. 57: 435.

Some final questions: Is -\~l a transcendental number? Is there a compact
formula relating e, pi, /, and phi, the golden ratio described in Chapter 96?
Drum roll please . . . one answer is ein+ 2<j) - /5 .

Chapter 45

What is Numerical Obsessive
Compulsive Disorder?

The rationality of our universe is best suggested by the fact that we can
discover more about it from any starting point, as if it were a fabric that

will unravel from any thread.
—George Zebrowski, "Is Science Rational," OMNI, June 1994

When we learn more about the function gone wrong in obsessive-com-
pulsive disorder, we will also learn more about the most mysterious

secrets of the nature of man.
—Judith Rapoport, M.D., The Boy Who Couldn't Stop Washing

Individuals afflicted with obsessive-compulsive disorder are often compelled to
commit repetitive acts that are apparently meaningless such as persistent hand
washing, counting objects, checking to see if doors are locked, and avoiding
oddly stressful situations such as stepping on the cracks of the sidewalk.
Obsessive-compulsive disorder involving numbers is particularly sad and fasci-
nating. The great inventor Nikola Tesla had "arithromania," or "numerical
obsessive-compulsive disorder." He demanded precisely 18 clean towels each
day. If asked why, Tesla provided no explanation. Table accoutrements and tow-
els were not the only items he demanded come in multiples of 3. For example, he
often felt compelled to walk around the block 3 times, and he always counted his
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steps while walking. He chose room number 207 in the Aha Vista Hotel,
because 207 is divisible by 3. When dining, he always stacked 18 napkins in a
neat little pile because he favored numbers divisible by 3.

Does numerical obsessive-compulsive disorder often involve particular num-
bers? Are obsessions with odd numbers more likely than even? Do obsessions
ever involve numbers larger than 10? To better understand numerical obsessive-
compulsive disorder, Dr. Googol pored through many case histories and created
a list sorted by the number with which the person was obsessed:

© 1. No cases found.

© 2. No cases found.

© 3. A 13-year-old girl (see "9") is compelled to knock 3 times on the edge of
the window and 3 times on a nearby door before unlocking the door.

© 4. Case 1: An 11 -year-old boy's life is ruined because the number 4 domi-
nates his existence. Case 2: A teenage boy must have everything in 4s and
avoids 6s. (He also has the compulsion to see the bottoms of his feet when-
ever he looks at the clock in his room.)

© 5. No cases found

© 6. Case 1: A college boy avoids repeating any actions 6, 13, 60, 66, or 130
times. Multidigit numbers (such as 42 or 33) adding up to 6, 13, or 130
must be avoided. Case 2: A teenage boy begins his day normally, then sud-
denly the only thing on his mind is the repeating numbers "6, 6, 6, 6" or "8,
8, 8, 8." He reports, "I had no control over these numbers; they had a mind
of their own—my mind."

© 7. The 11-year-old boy listed under "4" suddenly switches to a heptaphiliac
when, after a brain operation, he has the very time-consuming compulsion
to touch everything 7 times and ask for everything in 7s. He swallows 7
times. (His heptaphilia is cured by Anafranil, a drug that helps many afflict-
ed with obsessive-compulsive disorder.)

© 8. Case 1: A 12-year-old boy is compelled to turn around exactly 8 times in
a coat room in order to calm himself. Case 2: A boy in the shower strokes
the right side of his head 8 times, applies shampoo, then strokes another 8
times, rinses 8 times, and strokes 8 times again. He repeats the process for
the left side.

© 9. A 13-year-old girl must lift her feet and tap 9 times on the edge of her bed
before climbing into it.

© 22. An 18-year-old boy is compelled to count to 22 over and over again. He
taps on the wall 22 times or in multiples of 22. He walks through doorways
22 times and gets in and out of his chair 22 times. The boy becomes addict-
ed to drugs, which have interesting effects on his 22-ness. For example,
while on amphetamines and cocaine, his 22-tapping increases to the point
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where all his time is spent tapping out 22 all over his walls. LSD makes the
ritual completely disappear.

© 50. A 7-year-old girl must count to 50 in between reading or writing each
word. This time-consuming ritual makes her an extremely slow reader in the
second grade.

© 13, 60, 66, 130. See the college boy listed under "6."

© 100. The 13-year-old girl listed under "9" must also count to 100 after
brushing her teeth.

One wonders if the incidence of "numerical obsessive-compulsive disorder" is
lower in societies with less emphasis on numbers or in pre-literate societies. Most
of the time, people with obsessive-compulsive disorder know that their behavior
is illogical or self-destructive, but like someone with a super-strong addiction,
they find it impossible to stop. For example, a person may spend 5 hours a day
washing himself and still feel dirty. Another sufferer must check the door hun-
dreds of times a day to make sure it is locked. Some pluck out every hair on their
heads. Children may play endlessly with strings or pick up objects with their
elbows to avoid getting their hands dirty. These children usually continue to suf-
fer the same symptoms as adults if untreated.

One of the cures for obsessive-compulsive disorder is the drug Anafranil
(clomipramine), which affects the metabolism of serotonin in the brain. Other
drugs such as fluoxetine (Prozac) and fluvoxamine (Luvox) also are useful.
The success with these drugs leads many researchers to believe that obsessive-
compulsive disorder has a physical basis—just like manic depression (biploar dis-
order) or epilepsy. LSD is another drug that increases serotonin levels and appears
to "cure" obsessive-compulsive disorder. (The use of LSD outside of the laborato-
ry may be dangerous. Mood shifts, time and space distortions, and impulsive or
aggressive behavior are complications possibly hazardous to an individual who
takes the drug.) Amphetamines make the disease worse, probably because they
affect the dopamine system, which acts against the serotonin system.

Medical imaging studies suggest that obsessive-compulsive disorder is caused
by an abnormality in a part of the brain known as the basal ganglia, buried
deep within the brain and in the frontal lobes. In particular, one portion of
the basal ganglia called the caudate nucleus appears to behave differently in
people with obsessive-compulsive disorder. People with Tourette's syndrome
and Parkinson's disease also have abnormalities in these areas. Evidence contin-
ues to mount for obsessive-compulsive disorder's biological basis. For example,
obsessive-compulsive disorder appears to have a genetic component and often
runs in families. Some obsessive-compulsive disorder starts after a first epileptic
seizure. The fact that many obsessive-compulsive disorder sufferers have move-
ment disorders, such as facial tics, at one point during the course of their disease
further suggests a biological cause.



Chapter 46

Who is the Number King?

Mathematics is the only infinite human activity. It is conceivable that
humanity could eventually learn everything in physics or biology. But
humanity certainly won't ever be able to find out everything in mathe-
matics, because the subject is infinite. Numbers themselves are infinite.

—Paul Erdos

Erdos' driving force was his desire to understand and to know. You
could think of it as Erdos' magnificent obsession. It determined

everything in his life.
—Ronald Graham, AT&T Research

Dr. Paul Erdos was a legendary mathematician who was so devoted to math that
he lived as a wanderer with no home and no job. Like Dr. Googol, his best
friends were the integers.

Paul Erdos kept working on mathematics until his death from a heart attack
in 1996 at the age of 83 while attending a mathematics meeting in Warsaw.
Erdos (pronounced air-dosh) was one of the greatest, most eccentric, and most
original mathematicians of all time. His passion was to both pose and solve dif-
ficult problems in number theory (the study of properties of integers) and in
other areas like discrete mathematics, which is the foundation of computer sci-
ence. He was also one of the most prolific mathematicians in history, with more
than 1,500 papers to his name.

Erdos is often remembered as being stooped and slight, and wearing socks
and sandals. In order to pursue his mathematical obsession, he stripped himself
of all the usual burdens of daily life—finding a place to live, driving a car, paying
income taxes, buying groceries, and writing checks—and relied on his friends to
look after him. "Property is nuisance," he said.

Because he focused so intently on numbers, his name is not well known out-
side the mathematical community. He wrote no bestselling books and showed
little interest in worldly success and personal comfort. In fact, he lived out of a
suitcase (which he never learned to pack) for much of his adult life. He gave
away all the money he made from lecturing and mathematical prizes in order to
help mathematics students or to offer cash prizes for solving problems he had
posed. Erdos left behind only $25,000 when he died.

Sexual pleasure revolted him; even an accidental touch by anyone made him
feel uncomfortable. Like many others in this book, Erdos never married or had a
family. He often referred to husbands as "slaves" and wives as "bosses." Yet he
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was not a hermit like Ted Kaczynski (the Unabomber and brilliant mathemati-
cian discussed in Chapter 31) or Henry Cavendish (the eccentric but genius
physicist and chemist). In fact, Erdos hated to be alone, and almost never was; he
loved to attend conferences and enjoyed the attention of mathematicians. His
main aim in life was "to do mathematics: to prove and conjecture."

Concentrating fully on mathematics, Erdos traveled from meeting to meet-
ing, carrying a half-empty suitcase and staying with mathematicians wherever he
went. Ronald Graham of AT&T Research often handled Erdos's money for him,
setting aside an "Erdos room" in his house for helping to manage Erdos's life. In
fact, many of Erdos's colleagues took care of him, lending him money, feeding
him, buying him clothes, and even doing his taxes. In return, he inundated them
with brilliant ideas and challenges—with problems to be solved and masterful
ways of attacking them.

Dr. Joel H. Spencer, a mathematician at New York University's Courant
Institute of Mathematical Sciences, once noted: "Erdos had an ability to inspire.
He would take people who already had talent, that already had some success, and
just take them to an entirely new level. His world of mathematics became the
world we all entered."

Erdos was born into a Hungarian-Jewish family in Budapest in 1913, the only
surviving child of parents who were mathematics teachers. He was educated
mostly at home until 1930, when he entered the Peter Pazmany University in
Budapest, where he was soon at the center of a small group of outstanding young
Jewish mathematicians. Erdos practically completed his doctorate as a second-
year undergraduate. He received his doctorate in mathematics from the Univer-
sity of Budapest and in 1934 came to Manchester on a postdoctoral fellowship.

By the time he finished at Manchester in the late 1930s, it became clear that it
would be an act of suicide for a Jew to return to Hungary. (Most members of his
family who remained in Hungary were killed during the war.) Therefore, in 1938
Erdos sailed for the United States, where he was to stay for the next decade.
During his first year, at the Institute for Advanced Study in Princeton, he wrote
groundbreaking papers that founded probabilistic number theory. He also solved
important problems in approximation theory and dimension theory. When his
fellowship at the institute was not renewed, he started his wanderings, with longer
stays at the University of Pennsylvania, Notre Dame, Purdue, and Stanford.

The great mathematical event of 1949 was an elementary proof of the Prime
Number Theorem, given by Atle Selberg and Erdos. The result, which predicts
the distribution of primes with some accuracy, was first proved in 1896 by
sophisticated methods, and it had been thought that no elementary proof could
be given. Erdos was only 20 when he discovered this elegant proof for the
famous theorem in number theory. The theorem says that for each number
greater than 1, there is always at least 1 prime number between it and its double.

Erdos never saw the need to limit himself to a single university. He needed no
laboratory for his work, no library or equipment. Instead he traveled across
America and Europe from one university and research center to the next,
inspired by making new contacts. When he arrived in a new town he would pres-
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ent himself on the doorstep of the most prominent local mathematician and
announce: "My brain is open." While a guest, Erdos would often work furiously
for a few days and then leave when he had exhausted the ideas or patience of his
host. (He was quite capable of falling asleep at the dinner table if the conversa-
tion was not about mathematics.) He would end sessions with "We'll continue
tomorrow, if I live."

Although his research spanned a variety of areas of mathematics, Erdos con-
tinued his interest in number theory for the rest of his life, posing and solving
problems that were often simple to state but notoriously difficult to solve and
that involved relationships between numbers. Erdos believed that if one can state
a problem in mathematics that is unsolved and over 100 years old, it is probably
a problem in number theory.

Erdos, like many other mathematicians, believed that mathematical truths are
discovered, not invented. He mused about a Great Book in the sky, maintained by
God, that contained the most elegant proofs of every mathematical problem. He
used to joke about what he might find if he could just have a glimpse of that book.

It is commonly agreed that Erdos is the second most prolific mathematician
of all times, being superseded only by Leonhard Euler, the great 18th-century
mathematician whose name is spoken with awe in mathematical circles. In addi-
tion to Erdb's's roughly 1,500 published papers, another 50 or more are still to be
published after his death. (Erdos was still publishing a paper a week in his 70s.)
Erdos undoubtedly had more coauthors (around 500) than any other mathe-
matician in history. He collaborated with so many mathematicians that the phe-
nomenon of the "Erdos number" evolved. To have an Erdos number 1, a
mathematician must have published a paper with Erdos. To have a number of 2,
he or she must have published with someone who had published with Erdos, and
so on. Four and a half thousand mathematicians have an Erdos number of 2.

At the end of 1999, researchers discovered that winners of the Fields medal—
math's Nobel equivalent—all have an Erdos number of 5 or less. In addition,
more than 60 Nobel laureates, many in fields far removed from mathematics,
can brag of single-digit Erdos numbers. Watson and Crick, for example, have
numbers of 7 and 8. (See Constance Holden, "Analyzing the Erdos star cluster"
[Science, February 4, 287(5454): 799, 2000].)

Erdos would always make use of whatever time was available to do mathe-
matics. It was common for him to listen to music and to do mathematics at the
same time; he would even bring notebooks to concerts and start solving prob-
lems. According to legend, on a long train journey he wrote a joint paper with
the conductor.

During his lifetime Erdos had many close friends and faithful and cherished
disciples, but he had the deepest emotional contact with his mother, who started
to accompany him on his incessant travels when she was in her mid-'80s and
continued to do so till her death at the age of 91 in 1971. The death of his
mother was an incredible blow from which he never fully recovered. After she
died he found solace in doing even more mathematics than before. Erdos
launched himself into his work with greater vigor, regularly working a 19-hour
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day. He fueled his efforts almost entirely by coffee, caffeine tablets, and ben-
zedrine. He looked more frail, gaunt, and unkempt than ever, and often wore his
pajama top as a shirt.

In spite, or perhaps because, of his eccentricities, mathematicians revered him
and found him inspiring to work with. He was regarded as the wit of the mathe-
matical world, the one man able to produce short, clever solutions to problems
on which others had suffered through pages of equations.

Chapter 47

What 1 Question Would You Add?

The mathematical spirit is a primordial human property that reveals itself
wherever human beings live or material vestiges of former life exist.

—WilliHartner

After reading through all of these chapters with lists and outrageous questions,
what question would you ask Dr. Googol?

Dr. Googol asked mathematicians from around the world, "What 1 question
would you add to my list of questions?" Here is a sampling of replies:

1. What effect would doubling the salary of every mathematics teacher have on
education and the world at large?

2. How important are new mathematical findings to the advance of science
(including astronomy and physics) in the 21st century?

3. What are the 5 most beautiful ideas in mathematics? (Suggestions included
Riemann surfaces, Fermat's Last Theorem, Euler's equation, the Funda-
mental Theorem of Algebra, and the Fundamental Theorem of Calculus.)

4. What are the 5 mathematical theories you find overrated or so publicized
that serious work in the fields are hindered by the hype?

5. What are the 5 mathematical theories you find most underrated, unknown,
or underused?

6. Who are the 5 mathematicians and nonmathematicans who best communi-
cate their mathematical ideas to nonspecialists?
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7. The discovery of a number or property of a number sometimes opens up
entirely new areas of mathematics. Which discovery had the greatest impact
on the development of modern society?

8. What is your favorite proof of Pythagoras's theorem? (Note that this theo-
rem is the most-proved theorem. A book published in 1940 entitled The
Pythagorean Proposition contained 370 different proofs of it.)

9. Should the National Science Foundation fund a project whose goals were to
determine 1 trillion digits of ft?

10. How profound would it be if mathematicians discovered strange and unusu-
al patterns in the first trillion digits of ft?

11. Would you rather marry the best mathematician in the world or the best
chess player? Why?

12. How important is the mathematical concept of fractals? Should Benoit
Mandelbrot receive the Nobel Prize? Will strange and totally new patterns
be discovered in the Mandelbrot set, or have we already seen all the basic
structural themes and patterns?

13. Answer this question with yes or no. Will your next word be not

Chapter 48

Cube Maze

We should take care not to make the intellect our god; it has, of course,
powerful muscles, but no personality.

—Albert Einstein, Out of My Later Life, 1950

<®> Number Maze 2,
a visual intermission before
the next book part....

Dr. Googol created a cubical array of metallic spheres with numbers painted on
each sphere. Figure 48.1 is a schematic illustration of the original 3-dimensional
model. Although it's more fun to hold the model in your hand and turn it
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48.1 Cube Maze. Can you reach the arrow at the end with a sum of 202? (Drawing by
Brian Mansfield.)

around as needed, you can still have a terrific challenge by trying to trace a path
from the arrow at the top to the arrow at the bottom such that the sum of all the
spheres you pass through is 202.

Dr. Googol originally intended to give the model to all potential girlfriends to
solve before he would even consider marrying them. However, after Monica
threw the puzzle at his head, Dr. Googol reconsidered and has instead published
this illustration here for the first time. He has also sent models to the leaders of
several nations as gifts, and, alas, none could solve the puzzle. In fact, no one on
the planet has yet solved the puzzle. Can you?

 a solution, see "Further Exploring."



Part iii

Fiendishly

Difficult

Digital Delights

I don't need to know where I'm going
to enjoy the road I'm on.

—Deepak Chopra, Ageless Body, Timeless Mind

The mathematician's eye is a mystic mirror,
not only reflecting reality but absorbing it.

—Dr. Francis 0. Googol



Chapter 49

Hailstone Numbers

What could be more beautiful than a deep, satisfying relation between
whole numbers. How high they rank, in the realms of pure thought and

aesthetics, above their lesser brethren: the real and complex numbers.
—Manfred Schroeder, Number Theory in

Science and Communication, 1984

The external world exists; the structure of the world is ordered;
we know little about the nature of the order, nothing at all

about why it should exist.
—Martin Gardner, "Order and Surprise,"

paraphrasing Bertrand Russell, 1985

On a recent trip to the Himalayas, Dr. Googol found himself walking in a blind-
ing hailstorm! The hailstones drifted up and down in the wisps and eddies of
wind. Sometimes the stones shot up for as far as his eye could see and then came
plummeting back to Earth, smashing into the ground like little meteorites. Dr.
Googol smiled because he realized hailstones provide a wonderful metaphor for
one of the most famous and unusual problems in number theory. He whipped
out a piece of paper from his pocket and began scribbling a strange sequence of
numbers: 7, 22,11, 34,17.

"Hailstone number" problems have fascinated mathematicians for several
decades and are studied because they are so simple to calculate yet apparently
intractably hard to solve. To compute a sequence of hailstone numbers, start by
choosing any positive integer you like.

if your number is even, divide it by 2.
if it is odd, multiply by 3 and add 1.
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Next, take your answer and repeat the rule. Again, if your answer is even,
divide it by 2. If it is odd, multiply by 3 and add 1. Repeat this process for as
long as you like. For example, the hailstone sequence for 3 is 3, 10, 5, 16, 8, 4,
2, 1, 4, . . . . (The " . . . " indicates that the sequence continues forever as 4, 2,
1, 4, 2, 1 4, etc.) Dr. Googol sometimes like to draw little melting hailstones
indicating the numbers in the sequence:

Like hailstones falling from the sky through storm clouds, this sequence drifts
down and up, sometimes in seemingly haphazard patterns. Also like hailstones,
hailstone numbers always seem eventually to fall back down to the ground (the
integer 1, represented as a single 4). In fact, most mathematicians believe that
every hailstone sequence ends in the cycle 4, 2, 1, 4, . . . , no matter what num-
ber the sequence starts with:

This hailstone conjecture (about settling back to 1) has been numerically
checked for a large range of starting points, and the current record has been set
by N. Yoneda, who has checked all integers less than 1,000,000,000,000.

Do you think that all hailstone numbers fall back down to 1 ? Various large cash
awards have been offered to anyone who can prove or disprove this. The hailstone
sequence, also known as the 3n + 1 sequence, gives rise to a mixture of regularity
and disorder: it is definitely not random, but the pattern resists interpretation.
(This problem in number theory can be placed in a much larger context of chaos
theory, which involves the study of a range of mathematical and physical phenom-
ena exhibiting a sensitive and often irregular dependence on initial conditions.)
Computer graphics can be used to reveal patterns in this hailstone sequence so that
mathematical structures are made more obvious to the mathematician. Unfor-
tunately, computer graphics has been little exploited in 3« + 1 research.

(repeating over and over again)
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49.1 Hailstone numbers produced by just 1
starting number, 54.

49.2 Hailstone numbers for all starting
numbers between 1 and 1,000 on the x axis.
The paths of the hailstone numbers are
along the y axis.

Figure 49.1 shows a hailstone
sequence for just one starting value, 54.
Its path length (before settling back
down to 1) is 112, and the maximum
value reached is 9,232. The plot sug-
gests a seemingly chaotic trajectory that
eventually settles back down to 1.

Figure 49.2 is a plot for all the start-
ing numbers between 1 and 1,000 along
the x axis. As the hailstone numbers
drift up and down, Dr. Googol plots a
dot along the y axis. (So that he can rep-
resent the information in a small plot,
he excludes all y values of the hailstone
numbers greater than 1,000.) Notice
the plot reveals a pattern of diagonal
lines of varying density that pass
through the origin, a pattern of hori-
zontal lines, and a diffuse "background"
of chaotically positioned dots. Can you
figure out why there are these patterns?
The diffuse horizontal lines represent
certain values that are much more likely
than others. An outstanding example is
state 9,232. Of the first 1,000 integers,
more than 350 have their maximum at
9,232. Why are there other patterns?
The hailstone numbers clearly display
preferred values, but exactly why these
values and clusters of values exist is
unclear. Every possible integer state and
trajectory length (path before returning
to 1) can be produced—but again
some numbers appear more often than
others. As Paul Erdos commented on
the complexity of 3w + 1 numbers,
"Mathematics is not yet ready for such
problems."

For more information on hailstone numbers, see "Further Exploring."
See [www.oup-usa.org/sc/0195133420] for a computer program to gener-

ate hailstone numbers.

www.oup-usa.org/sc/0195133420


Chapter 50

The Spring of Khosrow Carpet

The essences are each a separate glass, through which the sun
of being's light is passed—each tinted fragment sparkles in the sun:

a thousand colors, but the light is one.
—Jami (15th century)

A mathematician, like a painter or a poet, is a maker of patterns.
If his patterns are more permanent than theirs, it is because

they are made with ideas.
—G. H. Hardy, A Mathematician's Apology

I believe the geometric proportion served the creator as an idea
when He introduced the continuous generation of similar objects

from similar objects.
—Johannes Kepler

Dr. Googol was touring Teheran, Iran, when a carpet dealer showed him a frag-
ment of the famous Spring of Khosrow Carpet, an ancient Persian rug.

"Gorgeous," Dr. Googol said. "What is it?"
"It's the most costly and magnificent carpet of all time—made for the

Ctesiphon palace of the Sasanian King Khosrow I. He was king between A.D.
53 land 579."

The merchant told Dr. Googol that the carpet was called the Spring Carpet
because it represented, in silk, gold, silver, and jewels, the blossoming splendor
of spring. It was also called the Winter Carpet because it was used in bad weath-
er, when real gardens were unavailable. In this way, it symbolized the king's
power to command the return of the seasons.

Dr. Googol stooped down to take a closer look and saw a paradise with
streams, paths, rectangular plots of flowers, and flowering trees. Water was repre-
sented by crystals, soil by gold, and fruits and flowers by precious stones. The
merchant told Dr. Googol that when the Arabs captured Ctesiphon in 637, the
carpet, which measured about 84 square feet (7.8 square meters), was cut into
fragments and distributed to the troops as booty.

As Dr. Googol contemplated the sad tale, he recalled his favorite algorithm
for generating Persian carpet designs. Figure 50.1 results from the simplest of
algorithms and shows self-similar patterns, that is, repeated patterns at different
size scales. One part of the recursion recipe requires us to start with a large rec-
tangle, subdivide it into 4 equal rectangles, and continue the process until
we cannot go any further. The carpets look beautiful in color, but even in this
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50.1 Self-similar carpet synthesized using a simple algorithm.

black-and-white representation, we can begin to appreciate the infinite reservoir
of structures. In a computer program, the algorithm colors each cell in a matrix
by assigning a cell a number from 0 to m-\ where m is the number of colors
available.

For more details on the algorithm, see "Further Exploring."
See [www.oup-usa.org/sc/0195133420] for a BASIC code listing.

www.oup-usa.org/sc/0195133420


Chapter 51

The Omega Prism

It may well be doubted whether human ingenuity can construct
an enigma of the kind which human ingenuity may not, by proper

application, resolve.
—Edgar Allan Poe, The Gold-Bug

On a cool night in November, Dr. Googol sees a streaking across the sky. After a
few minutes, there is a glowing in a nearby cornfield. Upon closer inspection, he
finds an object resembling a Rubik's cube protruding from the ground.

When he picks up the crystalline object, he finds that it is nearly cubical, and
its 6 faces are tiled in a colorful substance that luminesces. On the ground by the
object is a note, which reads:

you hold in your hands an Omega Prism, a 230 mm x
23 f mm X 232 mm brick tohose faces are fifed u>ith f
mm X f mm squares, if you Mere to drato a straight fine
on the rectangular faces from one corner to another, on
tohich face does the diagonal line cross the most tiles?
Can you determine the number of tiles crossed for any
face? To solve this puzzle, you are not permitted to trace a
diagonal on a prism face and count the number of tiles
crossed. d)e are Matching, if you fail to soiue the puzzle
toithin a (&eek, 6>e (Aid colonize the £arth and use humans
as food for further thought.

Dr. Googol stares at the Omega Prism for several minutes, clenches his fists,
and throws the prism to the ground. Even if he were allowed to trace the diago-
nal with a marker, the colors are blinking so rapidly that it would be nearly
impossible for him to count the crossed tiles. A wind begins to blow through the
field—a cold wind that sounds like the chanting of monks.

Simultaneously, Omega Prisms land in New York City, London, Tokyo,
Moscow, and Calcutta. Unfortunately, none of the people who find the prisms
can solve the problem. Can you help save the Earth? Given just the side lengths
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51.1 Small version of the Omega Prism. Humans find it difficult to count tiles inter-
sected by a diagonal line without actually using a straightedge and drawing a line.
When the colors blink, it is impossible for humans to count "intersected" tiles by
eye alone.

of Omega Prisms, can you determine the number of square tiles through which
a diagonal crosses? How do solutions change as the faces grow?

Figure 51.1 shows a computer graphics rendition of a smaller Omega Prism.
Renditions of the actual 230-by-231-by-232 prism contain facets so small that
they are impossible to distinguish when printed on a page. The purpose of
Figure 51.1 is to emphasize the difficulty individuals have when they attempt to
count tiles intersected by a diagonal line without actually using a straightedge
and drawing the line. When the colors blink, it is impossible for humans to
count "intersected" tiles by eye alone.

For a solution and additional speculation, see "Further Exploring."
See [www.oup-usa.org/sc/0195133420] for a BASIC code listing that is

explained in "Further Exploring."

www.oup-usa.org/sc/0195133420


Chapter 52

The incredible Hunt
for Double Smoothly
Undulating integers

The essence of mathematics resides in its freedom.
—Georg Cantor

Dr. Googol was exploring the African jungles when he came upon a large snake
whose body undulated up and down, up and down, like waves on the water. He
had to watch out before the snake encircled him in its muscular twists and turns!
Slowly, Dr. Googol began to ponder mathematical undulation.

The term undulation in mathematics has a similar meaning to the up-and-
down bends in the snake's body. For example, if an integer's digits are alternately
greater or less than the digits adjacent to them (consider 4,253,612), then the
number is called an undulating integer. The term smoothly undulating integer
refers to numbers whose adjacent digits oscillate, as in 79,797,979.

A double smoothly undulating integer is one that undulates in both its deci-
mal and binary representations. (Binary numbers are defined in the "Further
Exploring" section of Chapter 21.) For example, 1010 is an undulating binary
number. There are some trivially small smoothly undulating integers, such as 21
(with binary representation 10101). Dr. Googol calls this trivial because a 2-digit
oscillation can hardly be called an oscillation. However, he asks you if there are
any multidigit double smoothly undulating integers. He has searched for such an
integer and never found one, and he has long doubted that such numbers exists.
Of course, his brute-force computer searches provide no real answer to the ques-
tion, and it would be interesting to prove the conjecture that there is no double
smoothly undulating integer. It is also interesting to speculate whether there is
anything special about the arrangement of digits within a decimal number corre-
sponding to a binary undulating number. Casual inspection suggests that the
arrangement is random.

Note that if an w-digit decimal number is selected at random, the chance that
it will be smoothly undulating is81/9x 10""1, which is approximately equal to
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1/10" for large n. This means that if the decimal equivalent of a smoothly undu-
lating binary integer could be considered as a random arrangement of digits, the
probability of it being smoothly undulating becomes exceedingly small. Note
also the interesting fact that there is a constant number, 81, of possible undulat-
ing integers for any given w-digit decimal number. This speeds the search for
double smoothly undulating integers using a computer. You may wish to use
computer graphics to find patterns in the undulation of even/odd numbers in
the decimal equivalents.

For more information on undulating numbers, see "Further Exploring."

Chapter 53

Alien Snow: A Tour of
Checkerboard Worlds

He became aware of a kind of sparkle in the air ahead. Fairy lights
blinking on and off. Cal saw three-dimensional patterns within the cloud,

geometric ratios building and rebuilding in dazzling arrays.
—Piers Anthony, Ox

So begins a science-fiction saga that describes humanity's first encounter with
ephemeral entities resembling points of light on a 3-dimensional checker-
board—lights that move and change shapes according to mathematical laws.
Some readers will recognize the cloud as a 3-dimensional cellular automaton.
The theme saturates Ox, even to the point where each chapter begins with a
small cellular grid decorated by dots. The presence or absence of a dot in a grid
cell indicates which of 2 states a cell is in (that is, the cell is either on or off).

In general, a cellular automaton is an array of cells and a finite collection of
possible states. At any given moment, each cell of the array must be in one of the
allowed states. The rules that determine how the states of its cells change with
time are what determine the cellular automaton's behavior. There is an infinite
number of possible cellular automata, each like a checkerboard world in its own
right. The world can be a 1-dimensional strip of cells, a 2-dimensional grid, or,
as in Ox, a 3-dimensional array. Of course, even higher dimensions are possible,
but they are difficult to represent as clearly as the lower dimensions.
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In this chapter, Dr. Googol explores some personal favorites among the 2-
dimensional cellular automata, and he passes along some algorithms that you
can feed your personal computer.

Cellular automata comprise a class of simple mathematical systems that are fast
becoming important as models for a variety of physical processes. Some cellular
automata act in bizarre and random-looking ways, while others exhibit highly
ordered behavior. It all depends on the rules of the game. Cellular automata have
been used to model the spread of plants, animals, and even forest fires. They have
mimicked fluid flow and chemical reactions. They have even been investigated as
computers in their own right! Cellular automata are also referred to variously as
"homogenous structures," "cellular structures," and "iterative arrays."

The concept of the cellular automaton was introduced in the 1950s by John
von Neumann and Stanislaw Ulam. They saw in cellular automata an idealized
system capable of modeling fundamental qualities of life itself. Self-reproduction
seemed possible. By the 1960s, as computers became widespread in academic
institutions, the Cambridge mathematician John Horton Conway grew interest-
ed in cellular automata. Conway discovered a particular cellular automaton he
called Life, not only because its two states resembled life and death but because
computer experiments with certain configurations of cells produced behavior
that could only be called lifelike. The game was first publicized by Martin
Gardner in his "Mathematical Games" column in the October 1970 issue of
Scientific American. Since that time, cellular automata have become a very popu-
lar area of research for physicists, computer scientists, and mathematicians. They
have particular appeal because any differential equation can be converted into a
corresponding cellular automaton. This one simple fact opened the door to a
brand-new exploration of many differential equations, most of them being mod-
els for various physical processes of great interest to scientists.

The Game of Life makes an ideal introduction to the subject of cellular
automata. It is "played" on a 2-dimensional grid of cells, each cell being in 1 of
2 states (alive or dead) at any one time. During each new generation at a partic-
ular time t, each cell "decides" whether it will be alive or dead. All cells use exact-
ly the same rules. In particular, each cell considers its own state and the state of
its 8 neighbors, 4 along edges and another 4 at the corners. The rules themselves
are simple:

1. If a cell is alive at time /, it will remain alive at time t + 1 if it has no more
than 3 neighbors (otherwise it is too crowded) and no fewer than 2 living
neighbors at time t (which would make it too isolated).

2. If a cell is dead at time /, it will remain dead unless it has exactly 3 living
neighbors. These act as parents.

Using these rules, Life can exhibit fantastically complicated and hard-to-predict
behavior. The cellular game has spawned a software-publishing industry and
hundreds of papers, books, and computer experiments. After exploring differ-
ent sets of Lifelike rules, some scientists have suggested that, given a large enough
array of cells in random states, and given a long enough time, very complicated,
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self-replicating entities would merge. They might even evolve to produce intel-
ligent societies that develop and compete. It would be hard not to call such entities
CC 1 • »alive.

If you believe that only flesh and blood can support consciousness, then you
are probably wondering how Dr. Googol could consider cellular automata
alive—even the supercomplex cellular entities evolving on huge checkerboard
worlds. To his way of thinking, there's no reason to exclude the possibility of
nonorganic sentient beings. If our thoughts and consciousnesses do not depend
on the actual substances in our brains but rather on the structures, patterns, and
relationships among parts, than the automata "beings" could think. If you could
make a copy of your brain with the same structure but using different materials,
the copy would think it was you.

® ® ®

C E L L S T H A T L I V E F O R E V E R

Now let's consider a cellular automaton developed by cellular-automata pioneer
Stanislaw Ulam. Although the automaton grows according to certain rules, it
differs from the Game of Life because the Ulam automaton has no rules for
death. The rules dictate that any configuration will grow without limit as time
progresses. Once a cell is on, it lives forever.

If Dr. Googol represents the two states of growth by 0 and 1, the fate of a sin-
gle 1, isolated amid Os, is interesting to watch. In fact, you can simulate what
happens on a sheet of paper. A 5-by-5 grid suffices to demonstrate the first 2
generations of growth. A black circle represents a 1. An unfilled square repre-
sents a 0. Here is how it all starts:

The Ulam automaton is easy to set up, yet the behavior is intriguing. Given
the nth generation, the n +1 generation arises from just 1 rule: a new cell is
"born" (changes its state from 0 to 1) if it is orthogonally adjacent to 1 and only
1 living (1) cell of the wth generation. (Orthogonal implies the up, down, right,
and left directions.) Thus, if the previous pattern is counted as generation 1,
then generations 1 through 4 are easy to work out:
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53.1 Ulam's automaton at generation 200.

What would the pattern look like at the 200th generation? The answer lies in
the illustration in Figure 53.1.

It is particularly fascinating to watch this pattern grow. It shows fractal ambi-
tions, each corner elaborating a square of its own. A close examination of its
structure reveals a highly orderly tree structure in which each tiny black dot rep-
resents a cell in state 1. It is possible to travel from the center of the configura-
tion to any black cell along a "branch" of black cells.

Dr. Googol's favorite cellular automaton is called Alien Snow. He invented
this automaton, which has a time-dependent rule. Give a cell in state in the »th
generation, the cell will enter state 1 if,

1. when n is even, the cell is orthogonally adjacent to exactly 1 cell in
state 1;

2. when n is odd, the cell touches exactly 1 cell in state 1.
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By touches Dr. Googol means that the cell is adjacent to the cell in state
1 along either an edge or a corner. The rule could be framed in the form of an
algorithm:

Alien Snow Algorithm
for each pair (i,j)
if A(i,j) = 0 then

if n even then add up 4 neighbors A(k,l)
else add up 8 neighbors A(k.l)

if sum = 1 then B(i,j) <r 1 else B(i,j) <- 0

for each pair (i,j)
A(i,j) 4- B(i,j)

53.2 Alien Snow started from a single "seed" at center.
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53.3 A hexacylcic version of the Alien Snow cellular automaton.

(A is the current array used for plotting, and B is a temporary array used to
hold new cell states. The 4- symbol indicates an assignment. Even cycles use
orthogonal neighbors. Odd cycles use all 8 neighbors.)

The Alien Snow algorithm uses the statement "for each pair (i,j)" to indicate
a double loop in a computer program. The size of the loop will depend on the
dimensions of your display as measured in pixels or some other graphic element.
The statement "add up neighbors A(k,l)" refers to a looped or direction enumer-
ation of the cells in each of the two kinds of neighborhood. In the case of even
cycles, the neighborhood of nearby cells will have values (k, 1) equal to (i,j -1),
(i,j + l ) , (i-l,j), (/ + !,/). In odd cycles, £and /will vary from / -1 to /' + 1 and
fromj -1 toy +1, respectively. The same basic program structures can be used to
produce other cellular automata with similar neighborhoods.

The illustration in Figure 53.2 shows what happens when the Alien Snow
rules are applied to a single 1 in the center of the screen. Note the elaborate fes-
toons and barred patterns that predominate.

A second variation on Alien Snow can be found in Figure 53.3. Here, Dr.
Googol has used the same time-dependency rule but with a delayed cycle. On
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the nth generation, the cellular automata use the orthogonal neighborhood pro-
vided that n is a multiple of 6 (i.e., n = 0 mod 6). If not, the cellular automata
use the full neighborhood of 8 neighbors for each cell. One would think that if
this second variation on Alien Snow spends the great majority of its time behav-
ing like the original, unmodified Alien Snow, then it would generate patterns
that resembled it much more closely.

For other experiments with Alien Snow, see "Further Exploring."
See [www.oup-usa.org/sc/0195133420] for program hints.

Chapter 54

Beauty, Symmetry,
and Pascal's Triangle

A mathematician is someone who can take a cup of coffee
and turn it into a theory.

—Paul Erdos

Dr. Googol was climbing Cheops's pyramid in Egypt when he became mes-
merized by the triangular faces created by row upon row of large, rectangular
bricks. He began to imagine a number painted on each face of the pyramid as a
grin of pure delight lit up his face. He was dreaming of Pascal's triangle—one of
the best-known integer patterns in the history of mathematics. The famous
mathematician Blaise Pascal was the first to write a treatise about this progres-
sion of numbers, in 1653—although the pattern had been known by Omar
Khayyam as far back as A.D. 1100. The first 7 rows of Pascal's triangle can be
represented as

www.oup-usa.org/sc/0195133420
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I 1

I I 1 1

1 2 1 1 2 1
1 3 3 1 o r 1 3 3 1
1 4 6 4 1 1 4 6 4 1
1 5 10 10 5 1 1 5 10 10 5 1
1 6 15 20 15 6 1 1 6 15 20 15 6 1

Take a look at the triangle at right. You can see that each entry, other than the
Is, is the sum of the 2 numbers immediately above. For example, to get the 2 in
the third row, we add the two Is above in the second row. This pattern continues
indefinitely. Do you think there are any rows that have all odd entries?

There are infinitely many fascinating patterns in the triangle. For example,
start at any 1 at the left side and go along the diagonal, and you'll find that the
sum is a Fibonacci number (see Chapter 71 for information on the Fibonacci
sequence: 1, 1, 2, 3, 5, 8, 13, ... where each number is the sum of the previous
two). If it's hard to see how to create a diagonal, pick a 1 at left, move 1 number
to the right, and then move up. For example, in this figure add the underlined
numbers 1 + 5 + 6+1 = 13. Try some others: 1+4 + 3 = 8, 1 + 3 + 1 = 5, 1+2
= 3. (The role that Pascal's triangle plays in probability theory, in the expansion
of equations of the form (x + y)", and in various number theory applications has
been discussed extensively by Martin Gardner—see "Further Reading.")

Mathematician Donald Knuth indicated that there are so many relations in
Pascal's triangle that when someone finds a new identity, there aren't many peo-
ple who get excited about it anymore, except the discoverer. Many researchers
have found fascinating geometric patterns in the diagonals, discovered the exis-
tence of perfect square patterns with various hexagonal properties, and extended
the triangle and its patterns to negative integers and higher dimensions.

Computer graphics is a good method by which patterns in Pascal's triangle
can be made obvious. The figures in this chapter represent Pascal's triangle com-
puted with modular arithmetic. For example, Figures 54.1 and 54.2 are Pascal's
triangles, mod 2; that is, points are plotted for all even numbers occurring in the
triangle. (Figure 54.2 is a photographic negative of Figure 54.1.) Figure 54.3 is
the triangle, mod 3. Using the BASIC programming language, you can create
the even/odd triangle by scanning all entries in the triangle using the condition-
al "IF I MOD K = 0", where/is the numerical entry in Pascal's triangle
and K= 2. The "Smorgasboard" section at [www.oup-usa.org/sc/0195133420]
includes computational hints. Patterns computed in this way reveal a visually
striking and intricate class of patterns that make up a family of regular fractal
networks. The patterns are self-similar fractals; that is, if we look at any one of

1

1

1

1

www.oup-usa.org/sc/0195133420
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54.1 Pascal's triangle mod 2. The arrows indi-
cate a size change in the central triangles every
km rows (m = 0,1, 2, 3 . . . . ) where k is the mod
index (in this figure, k = 2). The size-change
relation holds for all triangles mod p where p is
a prime number. The arrows shown indicate 23,
24, 2s, 26, and 27.

54.2 Photographic negative of Figure 54.1. The
numbers on the figure indicate the number of
dots that make up each triangle in the central
stack. All perfect numbers appear in this cen-
tral pattern.

the triangular motifs within Pascal's
triangle we notice that the same
pattern is found at another place in
another size. (These patterns are
also called Sierpinski gaskets, as dis-
cussed in the "Further Reading" ref-
erences.)

In Figure 54.1 we observe that
the central triangles undergo a size
change (starting at the top triangle
with 1 dot) every 2m rows where m
is an integer. If you plot these trian-
gles for other modulus numbers,
you'll find that the higher the mod-
ulus index k the more intricate and
harder-to-define are the symme-
tries. Figure 54.4 shows Pascal's tri-
angle for k = 666.

By visually familiarizing oneself
with Pascal's triangle for various
modulus indices, it is possible at a
glance to determine the prime fac-
tors of k for many Pascal's triangles.
(For training methods, see the vari-
ous Pickover references.) Also
notice that if you were to count the
number of dots in the central trian-
gles starting from the top of Figure
54.2, you would find that each is
made up entirely of an even num-
ber of dots. At the top is 6, then 28,
120, 496, . . . dots. 6, 28, and 496
are perfect numbers because each is
the sum of all its divisors excluding
itself ( 6 = 1 + 2 + 3). The formula
for the number of dots in the mh
central triangle, moving along the
central axis, is 2W~1(2"-1). Because
every even perfect number is of the
form 2W-1(2" -1), where 2n -1 is
prime, all even perfect numbers
appear in the central stacked trian-
gular pattern in Figure 54.2. Look
closely. Can you find other patterns
in the triangle?
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Not only are the patterns pretty
to look at, but these kinds of self-
similar patterns have been discov-
ered and applied in condensed
matter physics, diffusion, polymer
growth, and percolation clusters.
One example given by Professor
Leo Kadanoff is petroleum-bearing
rock layers. These typically contain
fluid-filled pores of many sizes,
which, as Kadanoff points out,
might be effectively understood as
Sierpinski gaskets. These figures
also have a practical importance in
that they can provide models for
materials scientists to produce new
structures with novel properties.
For example, several scientists have
created wire gaskets on the micron-
size scale almost identical to the
mod 2 structure in Figure 54.2. The
area of their smallest triangle was
1.38 ±0.01 /-im2, and researchers
have investigated many unusual
properties of their superconducting
Sierpinski gasket network in a mag-
netic field.

For other wonderful exam-
ples of practical fractals—such as
fractal antennas, reaction chambers,
Internet traffic, and optical devices
—see "Further Exploring."

See [www.oup-usa.org/sc/
0195133420] for Pascal triangle
program hints.

54.3 Pascal's triangle mod 3.

54.4 "Pascal's Beast"—Pascal's triangle mod
666.

www.oup-usa.org/sc/0195133420
www.oup-usa.org/sc/0195133420


Chapter 55

Audioactive Decay

If we wish to understand the nature of the Universe we have an inner hid-
den advantage: we are ourselves little portions of the universe and so carry

the answer within us.
—Jacques Boivin, The Heart Single Field Theory

Dr. Googol was walking along a picturesque street in the German hinterland
when he suddenly came upon a small boy. He handed the boy a slip of slightly
soiled paper.

" Was ist das!" the boy asked.
On the paper was the following sequence of numbers:

Row
1
2
3
4
5
6

Sequence
1
1 1
2 1
1 2 1 1
1 1 1 2 2 1
?

Dr. Googol smiled at the boy and asked if he could guess the numerical
entries in the next row. The boy looked at the paper for a few seconds and said,
"This is the Gleichniszahlen-Reihe Monster. But I'm sorry. I don't know what
comes next. And anyway, I'm not supposed to talk to strangers."

The boy went running down the street.
If you do not read German, the boy's comment may conjure up visions of a

strange animal from a science fiction movie. However, "the Gleichniszahlen-
Reihe Monster" refers to a number sequence with some rather strange and com-
pelling properties, and the German name will be explained shortly. Because the
sequence never seems to contain a number greater than 3, you don't need sophis-
ticated computers to begin exploring.

You probably can't guess the numerical entries for the next row. However, the
answer is actually simple, when viewed in hindsight. To appreciate the answer, it
helps to speak the entries in each row out loud. Note that row two has two
"ones," thereby giving the sequence 2 1 for the third row. Row three has one
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"two" and one "one." Row four has one "one," one "two," and two "ones." From
this, an entire sequence can be generated. This interesting sequence was
described in a German article, where Mario Hilgemeier called it die
Gleichniszahlen-Reihe, which translates into English as "the likeness sequence."
To the best of my knowledge, the sequence first appeared in the early 1980s, at
an international student competition held in Belgrade, Yogoslavia. The sequence
was also extensively studied by mathematician John H. Conway, who called the
growth process "audioactive decay." The sequence grows rather rapidly. For
example, row 16 is:

13211321322113311213211331121113122112132113121113222112
3113112221131112311332111213211322211312113211

Row 27 contains 2,012 entries (see Table 55.1).

3113112221131112311332111213122112311311123112111331121113122112132113121113

2221123113112211121312211231131122211211133112111311222112111312211312111322

2112132113213221232112111312111213322112311311222113111221221113122112132113

1211132221123113112221131112311332211211133112111311222112111312211311123113

322112111312211312111322212321121113121112133221121321132132212112311321322

1121113122123211211131221222112112322211231131122211311123113321112131221123

1131112311211133112111312211213211331121321132122212211131221131211132221232

112111312111213322112132113213221133112132113221321123113213221121113122123

211211131221222112112322211213211321322113311213212312311211131122211213211

331121321123123211231131122211211131221131112311332211213211321223112111311

222112132113212221132221222112112322211231131122211311123113321112131221123

1131112311211133112111312211213211312111322211231131122211311123113322113223

1131122211311123113322112111312211312111322111213122112311311123112112322211

213211321322113312211223113112221121113122113111231133221121321132132211331

222113321112131122211332113221122112133221121113122113121113222123211211131

2111213111213211231132132211211131221232112111312211213111213122112132113213

221123113112221133112132123222112111312211312112213211231132132211211131221

131211132221121311121312211213211312111322211213211321322113311213212322211

2311311222113111231132231121113112221121321133112132112211213322112111312211

312111322212311222122132113213221123113112221133112132123222112111312211312

1113222123211211131211121332211213111213122112132113121113222112132113213221

232112111312111213322112132113213221133112132123123112111311222112132113311

2132112211213322112311311222113111231133211121312211231131112311211133112111

3122112132113121113222112311311222113111221221113122112132113121113222112132

113213221133122211332111213322112132113213221132231131122211311123113322112

1113122113121113222123211211131221232112311311221132211231132211131221121321

13213211121332212311322113212221

Table 55.1 Likeness sequence for row 27.



136 © Wonders of Numbers

If you were to study the sequence carefully you would find a predominance of
Is, with 2s and 3s less common. For rows between 6 and 27, there are about
50% Is, 30% 2s, and 20% 3s. As Hilgemeier proved, the largest number the
sequence contains is a 3. Is it possible to prove that 3-3-3 can never occur? Dr.
Googol has looked for three 3s in a row up to row r- 33, which has over 10,000
entries. You can see from the following representation of row 11 (in which 3s are
represented by circles in squares) that 3's occurrence seems erratic, like lost ships
on an infinite sea:

Wouldn't it be fun to sail on such a sea, sipping from a good bottle of wine,
searching for adventure amidst the chaos?

In this chapter, Dr. Googol is particularly interested in the distribution of Is,
2s, and 3s. While you can simply compute the percentage of occurrence of each
digit for a given row, this does not tell us anything about any interesting clusters
or peculiar areas of concentration of one digit over another. To overcome this
drawback, Dr. Googol transforms the digit strings into 2-dimensional patterns
that characterize the sequence. A single digit is inspected and assigned a direc-
tion of movement on a plane. To visualize this (and other) ternary sequences, use
a 3-way vectorgram where the occurrence of a 1 directs the trace one unit at 0°,
a 2 causes a walk at 120°, and a 3 a walk at 240°. Each of these angles is with
respect to the xaxis. Figures 55.1 to 55.3 show patterns for row 15, containing
102 digits, row 25, containing 1,182 digits, and row 33, containing over 10,000
digits. Dr. Googol used different scales to fit the graphs on a page. Notice that if
the string contained only Is, the walk would be only to the right.

As you can see from the figures, the sequence is far from random. The upward
diagonal trend in Figure 55.2 and Figure 55.3 indicates a mixture of predomi-
nantly Is, some 2s, and relatively few 3s. The fact that the trends are fairly linear

55.1 Vectorgram for row 15.
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55.2 Vectorgram for row 25.

55.3 Vectorgram for row 33.

suggests that the ratios are relatively constant throughout the row. Figure 55.2
and 55.3 show the occurrence of sudden upward bumps, which eventually
return to the diagonal baseline. These bumps indicate a temporary change in the
trend to more 2s.

You can understand the resulting patterns by considering the directions trav-
eled by various combinations of entries in the sequence. For example, the
sequence 1-1-1 is totally x-directed. 1-2-3, 1-3-2, and various cyclic permuta-
tions return to the original point (as if traveling along the edges of a A).

For future experiments, you may wish to compute the slope of the vector-
gram's mean (trend) line as a function of the row number, or make a plot of the
slope of the mean line versus the number of entries in a row. It appears, from just
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a few sample points, that the slope of the mean line increases as a function of row
number.

Dr. Googol hopes that you will uncover or solve additional mysteries with
this unusual sequence. If you are interested in the use of 8-way vectorgrams in
the characterization of genetic sequences, see "Further Reading."

Want a quick way to determine how many digits the wth term in this
sequence has? Want to know the largest likeness sequence ever computed? Want
to learn about other related sequences? See "Further Exploring."

Chapter 56

Dr. Googol's Prime
Plaid

The Universe is a grand book which cannot be read until one first learns
to comprehend the language and become familiar with the characters in

which it is composed. It is written in the language of mathematics.
—Galileo, Opere II Saggiatore

Dr. Googol was walking down a back road in the beautiful Scottish countryside,
wearing a dapper plaid kilt, when he started contemplating various patterns pro-
duced by prime numbers. He sat down on a bench at Ardoe House, his hotel,
which was a few miles outside Aberdeen. As he gazed longingly at the Scottish
baronial hall with turrets, heraldic inscriptions, and ornate ceilings, he began to
draw dots on a piece of paper.

A prime is a positive integer that cannot be written as the product of 2 small-
er integers. The number 6 is equal to 2 times 3; therefore it is not prime. On the
other hand, 7 cannot be written as a product of factors; therefore, 7 is a prime
number or prime. Here are the first few prime numbers: 2, 3, 5, 7,11,13,17,19,
23, 29, 31, 37, 41, 43, 47, 53, 59. Notice that the gaps between successive prime
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numbers varies; for example, in these first few primes, the gaps are 1, 2, 2, 4, 2,
4, 2, 4, 6, 2, 6, 4, 2, 4, 6, 6. ... The Greek mathematician Euclid proved that
there are an infinite number of prime numbers. But these numbers do not occur
in a regular sequence, and there is no formula for generating them. Therefore,
the discovery of large new primes requires generating and testing millions of
numbers. (See Chapter 76's "Further Exploring" for some of the largest known
prime numbers and how they were calculated.)

Consider the prime numbers pit where / = 0,1,2,3, . . . and where p0 - 2,
pi = 3, etc. Dr. Googol made a plot ofpt: vs. pi + { for/?/ < 2,000 (not shown) that
yielded a "dusty" (approximately) diagonal line with a slope of about 1. It is
dusty because there are gaps in the prime number sequence, and roughly diago-
nal since pi is roughly equal to pi + j at the size scale of the plot. Try making this
plot yourself.

Dr. Googol generated a visually
interesting "plaid" structure (Figure
56.1) by using different shift values a
and superimposing plots of pi vs. pi+a

where a = 1, 2, 3, . . . , 200 for pi <
2,000. The bottom diagonal edge of the
plaid corresponds to pi vs. pi+l. The gaps
indicate gaps in the prime number
sequence.

As we go to larger and larger integers,
the primes become increasingly rare, so
the plaid also becomes more diffuse.
When Dr. Googol attempts to compute
a fairly good approximation for the
number of primes smaller than or equal
to x, usually designated ir(x), he prefers
to use TT(X) ~ x/(\nx- 1.08366). (This
formula, given by Legendre in 1778, is
much simpler to implement on a com-
puter than other methods, like the
Gauss and Riemann methods, although
this Legendre formula should be used
only for prime numbers less than 5 mil-
lion. Above 5 million, Legendre's for-
mula becomes less accurate.)

Dr. Googol computed the prime
numbers needed to form the plaid pat-
tern in this chapter in just a second or 2,
using the Sieve of Eratosthenes method.

& For other odd facts about prime numbers, see "Further Exploring."
H See [www.oup-usa.org/sc/0195133420] for a computer program that gen-

erates prime numbers.

56.1 A prime plaid. The x axis is P,. The y
axis is P/+0.

www.oup-usa.org/sc/0195133420
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Saippuakauppias

I think that modern physics has definitely decided in favor of Plato. In
fact the smallest units of matter are not physical objects in the ordinary
sense; they are forms, ideas which can be expressed unambiguously only

in mathematical language.
—Werner Heisenberg

Dr. Googol was in Helsinki, Finland, when he glanced at a local newspaper and
saw a curious-looking word:

saippuakauppias

Dr. Googol turned toward the tall blond woman beside him. "Madam, can
you tell me what this wonder word means?"

Her eyebrows raised. "Certainly. It is the Finnish word for 'soap dealer.'"
"Wonderful!"
"Sir, why are you so delighted by this word?"
"Because it is the largest palindrome I have ever seen in any language!"
Dr. Googol merrily walked away.
A palindrome is usually defined as a word, sentence, or set of sentences that

spells the same backward and forward. Dr. Googol doesn't think there are any
common English words of more than 1 letters that are palindromic. Examples of
7-letter palindromes are rotator and reviver. An interesting example of a palin-
dromic sentence in which words, not letters, are the units is:

"You can cage a swallow, can't you,
but you can't swallow a cage, can you?"

In this chapter Dr. Googol is more interested in palindromic numbers than
palindromic words or sentences. Palindromic numbers are positive integers that
"read" the same backward or forward. For example, 12,321,11, 261162, and 454
are all palindromic numbers.

Figure 57.1 is an interesting plot showing the distribution of the first 200
palindromes when multiplied by a constant. To create the plot, start with an
integer x between 1 and 200, multiply it by a constant a, and determine if the
result is a palindrome. The "multiplier" a on the y axis of the plot goes from 1 to
200. A dot on the graph indicates a palindromic number. The various patterns
produced are quite interesting, and Dr. Googol is fond of making a few casual
observations. Note that there is clearly a dense structure below some "hyperbol-
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57.1 Distribution of palindromes. The horizontal axis gives the integers x, and the
vertical axis indicates the integral multiplier a. A dot on the graph indicates that
a x xis palindromic.

ic" boundary. There is a conspicuous vertical line of closely spaced dots at x = 55
corresponding to 10 consecutive odd a values that produce palindromes.
The products are 55 x 91, 55 x 93, 55 x 95, 55 x 97, 55 x 99, 55 x 101,
55 x 103, 55 x 105, 55 x 107, and 55 x 109. Also, when the x-axis value is an
even multiple of 5, there are no y data. When the x-axis value is a nonpalin-
dromic odd multiple of 5, the y data are scarce. When xis palindromic, there are
many j-data points. Notice the plot has symmetry: if x x y is palindromic, y x x
is also palindromic.

Can you find other patterns in this plot? Can you extend this to a 1,000-by-
1,000 plot?

See "Further Exploring" for more fun palindromic sentences and for some
wild challenges.
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Emordnilap Numbers

There is no excellent beauty that hath not some strangeness in the proportion.
—Francis Bacon

About a year ago, Dr. Googol was lecturing a class at Harvard University. "I want
someone in the audience to pick any integer, reverse its digits, add the 2 num-
bers together, and continue to reverse and add."

A boy with punk hair and a pierced nose raised his hand. "Sir, I'll start with
19.1 reverse its digits to make 91 and then add. 19 + 91 = 110. I reverse the dig-
its of 110 to make Oi l , and then I add. 110 + Oil = 121."

Dr Googol stomped his foot on the floor. "Yes!"
u r> • v>Mr, excuse me?
"You just ended up with a palindromic number—that is, the number reads

the same in both directions. With some numbers, this happens in a single step.
For example, 18 + 81 = 99, which is a palindrome. Other numbers may require
more steps. This process of reversing, adding, and looking for palindromes (also
called an Emordnilap process) is quite wonderful. Of all the numbers under
10,000, only 249 fail to form palindromes in 100 steps or less. In 1984, Fred
Gruenberg noted that the smallest number that seems never to become palin-
dromic by this process is 196. (It has been tested through hundreds of thousands
of steps.)"

"Sir, have you done tests yourself?"
"Certainly. Moreover, I have tested the starting number 879 for 19,000 steps,

producing a 7,841-digit number—with no palindrome resulting. Isn't that im-
pressive? The 7,841-digit number starts with the digits 58084187 . . . and ends
with . . . 139075! My statistical tests indicate an approximately equal percent
occurrence of digits 0 through 9 for this large number. Similarly, I have tested
1,997 for 8,000 steps, with no palindrome occurring."

The class loudly applauded Dr. Googol's mathematical accomplishments.

Are there any patterns underlying this reverse-and-add process? Can we make
any predictions? The number of steps needed to make a palindrome (called the
"path length" and represented by/>) is often under 5 steps. Figure 58.1 shows all
path lengths for starting integers n between 1 and 1,000. To produce a conven-
ient graphical representation, Figure 58.1 is truncated in the j-axis direction; in
particular, the search for palindromes is stopped after 25 steps. Notice the inter-
esting periodicity in the path lengths made apparent in the graph. Also notice
that while patterns exist, they are not perfect or entirely regular. A power spec-
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trum can be computed from a
mathematical method called the
Fourier transform in order to
quantify periodic patterns.

The graph poses dozens of
questions that are more difficult
to answer. For example, why are
the periodic large path lengths
absent in the 400-500 integer
range (Figure 58.1)? Also, if we
were to list the palindrome val-
ues for the moderate-size path
lengths, we would find a high per-
centage of occurrence of the digit
8. Why 8? Table 58.1 shows the
palindromic end points for some
of the moderate-size path lengths
for the first 300 starting integers.

Finally, you may wish to look
for patterns for larger starting
integers. For example, the path-
length graph corresponding to
Figure 58.1 for (1000 ^ n < 10000), while displaying similar interesting peri-
odic patterns, looks quite different. There are many fewer 0-length paths because
there are fewer starting palindromes. There are various gaps and peaks. The
resultant graph is left as a curious exercise for you. For those of you who wish to
learn more about this palindrome problem, see Martin Gardner and Charles

Integer n

58.1 Path lengths for the first 1,000 starting
integers. To produce a convenient graphic repre-
sentation, the figure is truncated in the y-axis
direction by stopping the search for palindromes
after 25 steps).

n

89
98
167

177

187

266

276

286

Palindrome

8813200023188
8813200023188
88555588

8836886388

8813200023188

88555588

8836886388

8813200023188

Path Length

24

24

11

5

23

11

15

23

Table 58.1 Palindromic end points for some of the moderately-sized path
lengths.
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Trigg in "Further Reading." Gardner also discusses the problem for other num-
ber systems (e.g., binary numbers).

For just a smidgen more mathematical analysis, see "Further Exploring."

Chapter 59

The Dudley Triangle

One cannot escape the feeling that these mathematical formulae have an
independent existence and an intelligence of their own, that they are

wiser than we are, wiser even than their discoverers, that we get more out
of them than we originally put in to them.

—Heinrich Hertz

After studying Pascal's triangle in Chapter 54, Dr. Googol became interested in
other infinite triangular arrays. He spent many hours contemplating the beauty
and intricacy of the less-known and less-understood Dudley triangular array,
proposed in 1987 and represented as follows:

2

2 2

2 1 2

2 0 0 2

2 6 5 6 2

2 6 4 4 6 2

2 6 3 2 3 6 2

2 6 2 0 0 2 6 2

2 6 1 9 8 9 1 6 2

2 6 0 8 6 6 8 0 6 2

2 6 12 7 4 3 4 7 12 6 2

2 6 1 2 6 2 0 0 2 6 1 2 6 2

2 6 12 5 0 12 11 12 0 5 12 6 2
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Can any of you figure how this triangle was generated? Study it before reading
further. Is there any human on Earth who could write down the next row of the
triangle without reading the next paragraph?

In 1987, Dr. Underwood Dudley conducted extensive research on this trian-
gle. We can denote the location of each array element by its diagonal coordinates
(m,ri), where m signifies the rmh diagonal descending left to right and n signifies
the mh diagonal descending right to left. Every value in the array a is in the
range from 0 to the sum of its coordinates, m+n. One way the array can be
reproduced is by the following formula:

am,n = (m2 + mn + n2 -1) mod n + m + 1

Try experimenting with different values for m and n. The mod function, or
modulo function, yields the remainder after division. A number x mod n gives
the remainder when x is divided by n. This number is anywhere from 0 to n -1.
For example, 200 mod 47 =
12 because 200/47 has 12 as
a remainder.

Like Pascal's triangle rep-
resented graphically in Figure
54.1, the Dudley triangle is
bilaterally symmetric. (That
means a mirror plane could
be drawn down the center of
the triangle.) Notice that the
triangle's values grow more
slowly than those of Pascal's
triangle and that the Dudley
triangle has fewer odd-valued
entries. Figure 59.1 shows the
positions of even entries.

Can you find any other
marvelous patterns in the
Dudley triangle? Experiment!
Search for structure and
rapid ways to generate the tri-
angle. Can you extend the triangle to a 3-dimensional pyramid? See the refer-
ences in "Further Reading" for more information on the properties of this
triangle.

59.1 Dudley's triangle mod 2.



Chapter 60

Mozart Numbers

Of course, we would like to study Mozart's music the way scientists
analyze the spectrum of a distant star.

—Marvin Minsky, Computer Music Journal

Dr. Googol was listening to his favorite Mozart piece, Symphony no. 40 in G
minor, while contemplating mathematics. As the mellifluous music filled the air
like a fragrant scent, he soon realized that in order to estimate any Mozart sym-
phony number S from its Kochel number ./ifyou can use

(The Kochel catalogue is a chronological list of all of Mozart's works, and any
work of Mozart's may be referred to uniquely by its Kochel number. For exam-
ple, the Symphony no. 40 in G minor is K.550.) The formula will give an answer
not more than 2 off, 85% of the time.

Mozart once wrote a waltz in which he specified 11 different possibilities for
14 of the 16 musical bars of the waltz, and 2 possibilities for another bar. How
exciting that Mozart gave us such freedom! This gives 2 x II14 variations of the
waltz. What percentage of the number of these waltzes have humans heard?
What percentage of the waltzes could a human hear in a lifetime?

For more information on the formula for Mozart symphony numbers, see
"Further Reading."



Chapter 61

Hyperspace Prisons

Wise Mystic. What is the best possible question,
and what's the best answer to it?

Dr. Googol: You've just asked the best possible question,
and I'm giving the best possible answer.

He showed me a little thing, the quantity of a hazelnut, in the palm of
my hand, and it was round as a ball. I looked thereupon with the eye of
my understanding and thought: What may this be? And it was answered

generally thus: It is all that is made.
—Julian of Norwich, 14th century

Dr. Googol enjoys simple-looking geometrical puzzles that require you to esti-
mate the number of overlapping triangles within a diagram such as the one in
Figure 61.1 a. Can you guess how many triangles are in this figure? Stop. Take a
guess before reading further. This figure contains a walloping 87 triangles.

Sometimes it is possible to come up with rules that specify the number of tri-
angles in an ever-growing sequence of diagrams, such as the sequence in 6 Lib.
Impress your friends with your ability to compute the number of triangles in the
wth triangular figure: [n(n + 2)(2n + l)]/8, for even n, and [n(n + 2)(2« + 1)
- l ] /8foroddw.

Can you count the number of triangles in Figure 6Lie, a more difficult dia-
gram? Actually, this figure will consume too much of your time; let Dr. Googol
give you the answer—653 triangles—so that you will be free to ponder the more
interesting enigmas that follow. Why not give these 3 triangle puzzles to a friend
to ponder?

One August, while catching fireflies in a jar, Dr. Googol began to develop
puzzles of a similar geometrical variety, and he calls them "flea cages" or "insect
prisons" for reasons you will soon understand. He enjoys these flea cages because



148 © Wonders of Numbers

61.1 Triangle madness, (a) How many overlapping triangles are in this figure? (b) Can you
determine a rule that gives the number of triangles in the nth figure in this sequence?
(c) How many more triangles does this figure have than the one figure in (a)?

they are simpler to analyze than the triangle figures. Also, since the figures con-
sist of a network of perpendicular lines, they are much easier for you (or your
computer program) to draw. Consider a lattice of 4 squares that form 1 large
square (Figure 61.2).

How many rectangles and squares are in this picture? Think about this for a
minute. There are the 4 small squares marked "1," "2," "3," and "4," plus 2 hor-

izontal rectangles containing "1 and 2" and "3
and 4", plus 2 vertical rectangles, plus the 1
large surrounding border square. Altogether,
therefore, there are 9 4-sided overlapping areas.
The lattice number for a 2-by-2 lattice is there-
fore 9, or 1(2) = 9. What is 1(3), L(4], L(5), and
L(n}? It turns out that these lattice numbers
grow very quickly, but you might be surprised
to realize just how quickly. The formula describ-
ing this growth is fairly simple for an n-by-n lat-
tice: L(n) = n\n + l)2/4. The sequence is 1, 9,
36, 100, 225, 441, . . . . For a long time, Dr.
Googol liked to think of the squares and rectan-
gles (quadrilaterals) as little containers or cages
in order to make interesting analogies about

1

3
2
4

61.2 How many overlapping quadri-
laterals does this figure contain?
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how the sequence grows. (Obviously they wouldn't really make very desirable
cages, because they overlap, but even Dr. Googol can dream.) For example, if
each quadrilateral were considered a cage that contained a tiny flea, how big a
lattice would be needed to cage 1 representative for each different variety of flea
(Siphonaptera) on earth? To solve this, consider that siphonapterologists recog-
nize 1,830 varieties of fleas. Using the equation Dr. Googol has just given you,
you can determine that a mere 9-by-9 lattice could contain 2,025 different vari-
eties, easily large enough to contain all varieties of fleas. (For Siphonaptera lovers,
the largest known flea was found in the nest of a mountain beaver in Washington
State in 1913. Its scientific name is Hystirchopsylla schefferi, and it measured up
to 0.31 inches in length, about the diameter of a pencil.)

It is possible to compute the number of cages for 3-D cage assemblies as well.
The formula is L(n) = ((«3) (n + l)3)/8. The first few cage numbers for this
sequence are 1, 27, 216, 1000, 3375.

Can you determine the number of cages for 4-dimensional assemblies?
How many cubes in a 3-D cage assembly would you need to contain 1 of each

species of insect on Earth today? To contain all the people on Earth?

See "Further Exploring" for further analyses and information on amazing
4-dimensional cages.

Chapter 62

Triangular Numbers

Au fond de I'lnconnu pour trouver du nouveau. (Into the depths
of the Unknown in quest of something new.)

—Charles Baudelaire, Le Voyage

Dr. Googol was lecturing the Spice Girls, a famous all-girl British rock band
popular in the late 1990s. The sun shone brightly as they sat together on a bench
beside Abbey Road.

"Let's talk about triangular numbers," Dr. Googol says to Baby Spice, the
blond-haired woman in the band. (Dr. Googol speculates she received her nick-
name because of her innocent, youthful appearance.)

She casually flicks her hair to the side. "A triangular number?"
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"Yes." Dr. Googol drops his voice half an octave and assumes a professorial
demeanor. "Triangular numbers form a series, 1, 3, 6, 10,.. . , corresponding to
the number of points in ever-growing triangles." He takes a piece of chalk and
sketches an array of triangular dots on Abbey Road:

Tl T2 T3 T4 T5

"The early Greek mathematicians noticed that if groups of dots were used to
represent numbers, they could be arranged so as to form geometric figures such
as these."

Baby Spice nods. "Incredible, sir. The possibilities are endless. The fourth tri-
angular number is 10. I wonder what the 100th triangular number is?" She
begins to count using her fingers.

"Baby Spice, there's an easier way. The nth triangular number is given by a
simple formula: n(n + l)/2. The variable n is called the index of the formula. If
you want the 100th triangular number, just use n = 100 for the index. You'll find
that the answer is 5,050."

Perhaps Dr. Googol detects admiration in the Spice Girls' eyes, no doubt
elicited by his mathematical prowess.

"Sir, can we use a computer to determine the 36th triangular number?"
Next to Dr. Googol is a marble statue of Paul McCartney. He reaches into the

statue's stomach, where he has secretly stashed a notebook computer. A hinged
door swings out, and he removes the computer and tosses it to Baby Spice.

Unfortunately, his aim is inaccurate, forcing the Spice Girls to make a leaping
dive for the computer. They catch it but, in doing so, crash into a marble frieze
running along the curb, with representations of Mick Jagger of the Rolling
Stones and Celine Dion. Celine crashes down upon Baby Spice.

Baby Spice struggles to free herself of the horizontal Celine and brushes her-
self off. "Never mind, sir. My youthful appearance can't be hurt by marble." She
begins to type furiously on the computer's keyboard with her well-manicured
fingers. She hands Dr. Googol a computer printout:

Triangular Numbers:

1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 66, 78, 91, 105, 120, 136, 153,
171, 190, 210, . . .
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"Sir, I can't believe it! The 36th triangular number is 666—the Number of the
Beast in the Book of Revelation." Baby Spice begins to quote from the Bible,
"Here is wisdom. Let him that hath understanding count the number of the
beast; for it is the number of a man, and his number is six hundred, three score,
and six."

"Just coincidence, Baby Spice."
"And the 666th triangular number is 222, 111. What a strange arrangement of

digits!"
"Calm down, Baby Spice. It's just coincidence."
"Sir, did you know that each square number is the sum of 2 successive trian-

gular numbers?"
"What are you getting at?" Dr. Googol's voice is low.
"Square numbers are numbers like 5 x 5 = 25 or 4 x 4 = 16. Every time you add

2 successive triangular numbers, you get a square one. For example, 6 + 10 = 16."
Dr. Googol is intimidated by Baby Spice's mental agility, but then he quickly

snaps back with a mathematical gem of his own: "Each odd square is 8 times a
triangular number, plus 1." He begins to draw a grid of squares on Abbey Road.
"Look at this." He points to the diagram (Figure 62.1).

Dr. Googol looks back at Baby
Spice. "The Greek mathematician
Diophantus, who lived 200 years
after Pythagoras, found a simple con-
nection between triangular numbers
T and square numbers K My dia-
gram shows this graphically. It has
169 square cells in an array. This rep-
resents the square number K= 169
(13 x 13). One dark square occupies
the array's center, and the other 168
squares are grouped in 8 triangular
numbers Tin the shape of 8 right tri-
angles. I've darkened 1 of the 8 right
triangles."

Baby Spice gasps, and the Spice
Girls stare at one another. Dr. Googol
feels as if Abbey Road is trembling
with a minor earthquake.

"Sir," Baby Spice whispers with a
trace of hesitation, "no wonder the
Pythagoreans worshiped triangular numbers. You can find an infinite number
of triangular numbers that when multiplied together form a square number. For
example, for every triangular number Tn, there are an infinite number of other
triangular numbers, Tm such that TnTm is a square. For example, T2 x T24 = 302."

Dr. Googol slams his fist down, feeling a slight pain as it makes contact with
the hot asphalt. He needs to outdo Baby Spice. He shouts back, "666 and 3,003
are palindromic triangular numbers. They read the same forward and backward."

62.1 A deep connection between square num-
bers /f and triangular numbers T. A visual
proof that 87*1 = K.
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Baby Spice starts singing the lyrics of her hit song "When Two Become One"
as she types on the notebook computer. "It cannot be," she screams. "The
2,662nd triangular number is 3,544,453, so both the number and its index,
2,662, are palindromic."

Dr. Googol feels a strange shiver go up his spine as he looks into the rock
star's glistening eyes. He feels a chill, an ambiguity, a creeping despair. The Spice
Girls are still. No one moves. Their eyes are bright, their smiles relentless and
practiced. Time seems to stop. For a moment, Abbey Road seems to fill with a
cascade of mathematical symbols. But when he shakes his head, the formulas are
gone. Just a fragment from a dream. But the infuriating Baby Spice remains.

"Baby Spice, I grow weary of our little competition."
"Sir, triangular numbers are fascinating. Are there other numbers like this?

Pentagonal numbers? Hexagonal numbers? What properties might these have?"
"Baby Spice, that's the subject for another day."

$ For other odd facts about triangular numbers, see "Further Exploring."
3 See [www.oup-usa.org/sc/0195133420] for a computer program that gen-

erates triangular numbers.

Chapter 63

Hexagonal Cats

Computers are useless. They can only give you answers.
—Pablo Picasso

Many years ago, Dr. Googol was visiting a Middle Eastern museum. Outside,
the villagers were gathered around dozens of primitive ocelot statues. One of the
bearded men in the gathering began to meticulously arrange the new archeolog-
ical findings on the hot sand amidst the parched and withered cacti. He arranged
the cats in the shape of concentric hexagons, as shown below. After resting for a
few minutes, the wizened man groaned, knelt down, and began to count the

www.oup-usa.org/sc/0195133420
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cats, starting from the center. He noted that there was 1 cat, surrounded by 6
cats, surrounded by 12, and so on:

Dr. Googol stepped closer. "I can tell you how many cats there will be in each
surrounding hexagonal layer."

The old man looked up. "If you do, we will be forever grateful."
Dr. Googol began his lecture and to sketch formulas in the sand.
Can you tell how many cats will be in each layer?
Before giving you the formula, here is some background to polygonal num-

bers, that is, numbers associated with geometric arrangements of objects. As you
read in Chapter 62, the early Greek mathematicians noticed that if groups of
dots were used to represent numbers, they could be arranged so as to form geo-
metric figures, such as triangles, squares, and hexagons. For example, since 1, 3,
6, 10, and 15 dots can be arranged in the form of a triangle, these numbers are
called triangular. (Polygonal numbers appeared in 15th-century arithmetic
books and were probably known to the ancient Chinese, but they were of special
interest to the Pythagoreans due to their mystical interest in the properties of
such numbers.)

The sequence that Dr. Googol derived for the Middle Eastern men was
Hc= 3«(«-l) + 1, n= 1,2,3,.. . , which defines the centered hexagonal numbers.
Let's go a step further and introduce a new term sure to impress your friends,
and hopefully your next Friday-night date. A centered hexagonal number is
called centered hexamorphic if its digits terminate its associated centered hexago-
nal integer. For example, n = 7 is centered hexamorphic because Hc(7) = 127.
The number 17 is also centered hexamorphic because HC(17) = 817. The cen-
tered hexamorphic sequence is fascinating to study! Table 63.1 contains a list of
the first 23 centered hexamorphic integers. Note the interesting fact that all cen-
tered hexamorphic numbers end in the digits 1 and 7.

A convenient notation a5 = aaaaa can be used, where the subscript indicates
the number of times the digit or group appears consecutively. Dr. Googol has
found the following interesting infinite sequence: H^Q^l] = 750^_;150^,1,
k = 0, 1, 2, . . . . Here the k subscripts indicate how many times the 0 is repeat-
ed. For example, k=2 produces #c(5>001) = 75,015,001 (see Table 63.1).

Centered hexagonal numbers have a different generating formula from stan-
dard hexagonal numbers: H(n] = n(2n-l); (see Figure 63.1). On the other hand,
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n
1
7
17
51
67
167
251
417
501
667
751
917

Table 63.1

n
1

5
6
25
26
50
51
75
76
125

H(n)centereci
1
127
817
7651
13267
83167
188251
520417
751501
1332667
1689751
2519917

Centered hexamorphic

H(n)
1
45
66
1225
1326
4950
5151
11175
11476
31125

n
1251
1667
5001
5417
6251
6667
10417
16667
50001
56251
60417

numbers.

n
376
500
501
625
876
4376
5000
5001
5625

H(n)centered

4691251
8331667
75015001
88015417
117206251
133326667
325510417
833316667
7500150001
9492356251
10950460417

H(n)
282376
499500
501501
780625
1533876
38294376
49995000
50015001
63275625

Table 63.2 Hexamorphic numbers.

the infinite sequences for hexamorphic and centered hexamorphic numbers are
similar. For hexamorphic numbers, we have //(50^1) = 50^150^1, k = 0, 1,
2, ... Table 63.2 contains a list of hexamorphic numbers. Dr. Googol invites
your comments on the similarities between the formulas for centered hexamor-
phic and hexamorphic numbers. Why are there similarities?

Additional infinite sequences in centered hexamorphic numbers are Hc(\6k7)



Hexagonal Cats © 155

= 83^16^7, k = 0, 1, 2, . . . and
Hc(6k7) = 13*26*7, *= 0 ,1 ,2 , . . . .
Hexamorphic numbers do not
contain any numbers ending with
7, but they do contain numbers
ending with 1, and these also exist
in the centered hexamorphic
sequence. Those of you who wish
to learn about hexamorphic num-
bers in various bases will enjoy
Charles Trigg's research (see
"Further Reading").

In closing, Leo A. Senneville
and Dr. Googol have noted that
there are some interesting relations
between centered hexagonal and
hexagonal numbers. For example,
the second differences between
successive terms for centered
hexagonal numbers are always 6.
The second differences between successive terms for hexagonal numbers are
always 4. These statements condense to Hc(n + 1) - 2Hc(ri) + Hc(n - 1) = 6,
H(n + 1) - 2H(n) + H(n - 1) = 4. They also have noted the following infinite
series: Hc(n}IH(n] = 3(1/2 - l/(4») - l/(8«2) - 1/(16«3) - . . . ). The sum of
this series approaches 3/2 as a limit, which is also the ratio of the second differ-
ences. Finally, if you plot curves with natural numbers on the horizontal axis and
the corresponding value of the hexagonal functions on the vertical axis, the dif-
ference in height between the two curves is always (n -1)2.

Can you find any additional patterns in these wondrous numbers?

For other odd facts about triangular and hexagonal numbers, see "Further
Exploring."

See [www.oup-usa.org/sc/0195133420] for a computer program that gen-
erates polygonal numbers.

63.1 Hexagonal numbers. Derived from hexagonal
points arranged as shown here, they can be gen-
erated using X(n) = n(2n - 1).

www.oup-usa.org/sc/0195133420
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The X-Files Number

Mulder: Hey, Scully. Do you believe in the afterlife?
Scully: I'd settle for a life in this one.

—"Shadows," The X-Files

Dr. Googol was on the set of The X-Files, the highly acclaimed TV series in-
volving FBI investigations of paranormal phenomena. He turned to David
Duchovny, one of the lead actors in the series.

"David, people have used numbers to predict the end of the world. But pre-
dictions usually don't appear in mathematical journals." Dr. Googol raised his
eyebrows. "This one appeared in the January 1947 issue of the American Mathe-
matical Monthly."

"Dr. Googol, let me see that," David said in a low voice. He grabbed the tat-
tered article from Dr. Googol's hand and began to read:

The famous astrologer and numerologist Professor Umbugio pre-
dicts the end of the eWorld in the year 2f*ff. His prediction is based
on profound mathematical and historical investigations. Professor
Umbugio computed the ualue from the formula

for n = 0, f, 2, 3, and so on up to f^WS, and found that all num-
bers tohich he so obtained in many months of laborious computation
are divisible by fW6. Noa, the numbers ff92, 1770, and f863
represent memorable dates: the Qiscooery of the //66> (dor/d, the
Boston Massacre, and the Gettysburg Hddress. Gbhat important
date may 2f*ff be? That of the end of the toorld, oboiousfy.
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David lowered the slightly soiled slip of paper. "Sir, this is incredible. This is a
perfect case for an X-Files investigation. Could all the numbers produced by the
formula be divisible by 1946? Could it be that 2141 has anything to do with the
end of the world?"

Dr. Googol reached into Gillian Andersons pocketbook and tossed a program-
mable calculator to David. "Write a program, and see what numbers you get."

David began to type, and he soon handed Dr. Googol the results on a small
printout. The £ symbols are the computer's way of representing scientific notation.
For instance, l.OOE + 02 would be another way of denoting 1.00 x 102, or 100.

N
1
2
3
4
5

W
0
206276
1.124106E
4.106015E
1.256519E

+ 09
+ 12
+ 16

N
6
7
8
9
10

W
3
9
2
5
1

.478795E

.035302E

.246103E

.410357E

.272996E

+ 19
+ 22
+ 26
+ 29
+ 33

"Dr. Googol, the numbers grow awfully quickly! If the units were in years, the
fifth value is larger than the number of years required for all the stars to have
died out." David began to pace. "How could scientists in the year 1946 deter-
mine that the results were all divisible by 1946? What is the WValue for n = 100?
Are the Wnumbers always divisible by 1946, or do they cease to have that prop-
erty after n= 1945?"

Dr. Googol nodded. "David, these are all very interesting unanswered ques-
tions. But they'll have to wait." Dr. Googol pointed down the street to an enig-
matic man in black, smoking a cigarette. "David, you're about to have a close
encounter of the third kind."

For more information on X-Files numbers, see "Further Exploring."
See [www.oup-usa.org/sc/0195133420] for a computer program that gen-

erates these numbers.

www.oup-usa.org/sc/0195133420


Chapter 65

A Low-Calorie Treat

The mathematician's patterns, like the painter's or the poet's, must be
beautiful; the ideas, like the colours or the words, must fit together in a
harmonious way. Beauty is the first test: there is no permanent place in

the world for ugly mathematics.
—G. H. Hardy, A Mathematician's Apology

Dr. Googol was enjoying a piece of chocolate cake in Mel's Diner at 1840
Grand Concourse in the Bronx when he invented "cake integers"—a delicious
low-calorie snack for health-conscious readers. Here's the big question. Given a
circular cake, using just 4 straight vertical knife cuts, what's the maximum

number of pieces you can create? Try this puz-
zle on a few friends. With just 1 cut, the
answer is obvious: 2 pieces. With 2 cuts, you
can create, at most, 4 pieces. How many
pieces can you create with 4 cuts? It turns out
that the answer is 11 (see Figure 65.1). Most
of your friends will not get 11 pieces in their
first attempt!

Let us define cake integers as having the
form Cake(n) = (n2 + n + 2)12. Cake inte-
gers indicate the maximum number of pieces
in which a cake can be cut with n slices. (The
cake is represented as a flat disc.) The sequence
goes as 2, 4, 7, 11,16,22,29,37,.. .

An integer n is cakemorphic if the last digits
of Cake(n) = n. For example, if n = 25 and
Cake(n) were to equal 1,325, n would be
cakemorphic because the starting number, 25,
occurs as the last 2 digits. Dr. Googol has not

65.1 Sample dissections of several
delicious cakes. You can see that for
n = 4 (the rightmost cake), C(n) = 11.
Can any of your friends create 11
pieces on their first attempt?
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been able to find a cakemorphic integer even though he searched for all values of
n less than 10,000,000. He therefore has conjectured that no cakemorphic inte-
ger exists.

On the other hand, you can show that hexamorphic and even square pyramor-
phic numbers are quite common (Figure 65.2 and Tables 65.1 and 65.2).

65.2 Distribution of hexamorphic numbers.

n
5625
9376
40625
50000
50001
59376
90625
109376
390625
500000
500001

H(n)
63275625
175809376
3300740625
4999950000
5000150001
7050959376
16425690625
23926109376
305175390625
499999500000
500001500001

n
609376
890625
2109376
2890625
5000000
5000001
7109376
7890625
12890625

H(n)
742677609376
1586424890625
8898932109376
16711422890625
49999995000000
50000015000001
101086447109376
124523917890625
332336412890625

Table 65.1 Large hexamorphic numbers. The table here continues the table in
the previous chapter which lists the hexamorphic numbers less than
63,275,625. Note: this table may contain the most comprehensive list of hexa-
morphic numbers to date, in 1987, the late Charles Trigg searched only as
far as n < 10,000.
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n
I
5
25
40
65
80
160
225
385
400
560
625
785
800

S(n)
1
55
5525
22140
93665
173880
1378160
3822225
19096385
21413400
58695560
81575625
161553785
170986800

n
960
1185
2560
2625
4000
5185
6560
6625
8000
9185
9376
10625

S(n)
295372960
555371185
5595682560
6032742625
21341334000
46478345185
94121656560
96947076625
170698668000
258337319185
274790059376
399877410625

Table 65.2 Square pyramorphic numbers.

Hexagonal numbers have the form H(n) = n (2n -1) (see Chapter 62). A number
is hexamorphic if H(n) terminates with n. The number 125 is hexamorphic
because H(\25) = 31,125. Square pyramidal numbers are related to 3-D objects
rather than 2-D polygons. If cannonballs are piled so that each layer is a square,
then the total number of balls in successive piles will be S(n) = 1,5, 14, 30, . . .
n(n + l)(2n + 1)16, Just like hexamorphic numbers, a number is square pyra-
morphic if S(n) terminates with n.

A crazy challenge: are there any cakemorphic numbers? Another challenge:
Dr. Googol hands you a doughnut. What's the greatest number of pieces you can
create with n cuts?

See "Further Exploring" for additional findings and for challenges requir-
ing doughnut and pretzel cutting.



Chapter 66

The Hunt for Elusive Squarions

All the pictures which science now draws of nature and which alone seem
capable of according with observational fact are mathematical

pictures. . . . From the intrinsic evidence of his creation, the Great
Architect of the Universe now begins to appear as a pure mathematician.

—James H. Jeans, Mysterious Universe

Dr. Googol has always been fascinated by square numbers like 4, 9, and 25.
(They're called square numbers because 22 = 4, 32 = 9, and 52 = 25.) What
follows are 4 fiendishly difficult questions regarding "squarions," a general-
purpose term signifying very elusive arrangements of square numbers in a variety
of settings.

T H E H U N T F O R S Q U A R I O N A R R A Y S

One question that Dr. Googol has pondered is whether or not it is possible to fill
an infinite square array with distinct integers such that the sum of the squares of
any 2 adjacent numbers is also a square. To illustrate, the following is a 4-by-4
array with the desired property:

1836

1248

936

273

105

100

75

560

252

240

180

1344

735

700

525

3920

For example, 752 + 1802 = 1952. Is it possible to create bigger arrays of this
kind? Can you?

T H E HUNT F O R M A G I C S Q U A R I O N S

While on the subject of square numbers, it's not known if there exists a 3-by-3
magic square of square numbers, that is, a 3-by-3 arrangement of 9 distinct integer
squares such that the sum of each row, column, and main diagonal is the same.
However, it is possible to build arrangements that satisfy the 6 orthogonal sums so
that the row and column sums are equal. The following is from Kevin Brown:
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42
322

472

232

442

282

522

172

162

Remarkably, each row and column of this arrangement sums to a square num-
ber: 3,249 = 57 2. Here's a wondrous magic square of this kind constructed using
prime number squares:

II3

612

432

232

412

592

712

172

192

T H E H U N T F O R S T R O N G S Q U A R I O N S

What is the smallest square with leading digit 1 that remains a square when the
leading 1 is replaced by a 2? In other words, if x2 = 1 . . . , is there ajy2 = 2 . . . ?
For example, consider the square number 16. If 26 were also a square, then we
would have found a solution.

We can ask a similar question. What is the smallest square with leading digit
1 that remains a square when the leading 1 is replaced by a 2 and also remains a
square when the leading digit is replaced by a 3?

What is the smallest square with leading digit 1 that remains a square when
the leading 1 is replaced by a 2, and also remains a square when the leading digit
is replaced by a 3, and also remains a square when the leading digit is replaced
by a 4?

T H E H U N T F O R P A I R S Q U A R I O N S

Certain pairs of numbers when added or subtracted give a square number. For
example, 10 and 26 are pair squariom or double squarions since 10 + 26 = 36 (a
square number) and 26 - 10 = 16 (a square number). Stated mathematically, n
and p are pair squarions if n - p = a2 and n + p = h2 where a and b are integers.
This section indicates interesting patterns in the pair squarions and also provides
you a simple computer program with which to generate these numbers.

How are pair squarions distributed? Are they easy to find? What can we know
about their properties? Table 66.1 lists several pair squarions, denoted by n
and p. These were generated using an algorithm like the following (and like the
code at [www.oup-usa.org/sc/0195133420]), which hunts for all pair square
numbers less than 1,000.

www.oup-usa.org/sc/0195133420
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1
2
3
4
5
6
7
8

do p = 0 to 1000
do n = p+1 to 1000
a = sqrt(n+p)
b = sqrt(n-p)
if (a = trunc(a)) & (b = trunc(b))
say p n
end
end

then

n
4
6
8
10
12
12
14
16
16
18
20
20

P
5
10
17
26
13
37
50
20
65
82
29
101

n
22
24
24
24
26
28
28
30

P
122
25
40
145
170
53
197
34

Table 66.1 Pair squarions. 66.1 Pair squarions for 0 < n,p < 1000. The distribu-
tion is symmetric about the line n - p, and the lower
part is not plotted.

Line 5 is used to ensure that both a and b are integers. Figure 66.1 plots the
positions of all pair squarions less than 1,000 (that is, 0 < n,p < 1,000). The dis-
tribution is symmetric about the line n = p, and the lower part is not plotted.
The straight line of points at n = p corresponds to n = b2!2. Other curves seen in
the plot correspond to equations such as n2 -p2 = a2b2. Try connecting the dots
to make a beautiful net-like structure. Can you think of any ways to speed up the
hunt for pair squarions?

For a partial solution to the strong squarion problem, and for more analy-
ses regarding pair squarion numbers, see "Further Exploring."

9 For BASIC code used to search for pair squarions, see [www.oup-
usa.org/sc/0195133420].

www.oup-usa.org/sc/0195133420
www.oup-usa.org/sc/0195133420


Chapter 67

Katydid Sequences

No live organism can continue for long to exist sanely under conditions of
absolute reality. Even larks and katydids are supposed, by some, to dream.

—Shirley Jackson, The Haunting of Hill House

One day while dining at an elegant restaurant in Westchester, New York, Dr.
Googol found a dead katydid in his spinach souffle. He examined the grasshop-
per-like insect, using his fork.

"Disgusting," his friend Monica said to him.
Dr. Googol removed the insect from the spinach. "Monica, this reminds me

of katydid sequences."
Monica took a deep breath and rolled her eyes. "Do I want to hear about this?"
"Sure, it's a remarkable kind of number sequence."
"Okay, tell me more." There was a hesitation in her voice as she looked up

toward the ceiling.
"I call them katydid sequences because they remind me of the rapid (expo-

nentially growing) breeding that katydids and grasshoppers undergo during their
mating seasons." He paused. "Katydid sequences are defined by the following 2
functions, which can be visualized as a growing tree."

Dr. Googol scribbled on a napkin:

"Here, x is an integer. Start with x = 1. These mappings generate two branch-
es of a 'binary' tree. In other words, xhas two children, 2x + 2 and 6x + 6." He
scribbled again:



Pentagonal Pie © 165

"Each generation requires a month to breed. For example, after 1 generation
(1 month) we have 4 and 12 as 'children' of the 'parent' 1. When xis 4, the chil-
dren are 10 and 30. The next month produces 10, 30, 26, 78. All the numbers
that have appeared so far, when arranged in numerical order, are 1,4, 10, 12, 26,
30, 78 , . . . . No number seems to appear twice in a row; for example there is no
1 , 4 , 1 0 , 1 0 , . . . . "

Monica stared at the napkin for nearly half a minute. "So what?"
Dr. Googol looked up at Monica. "Does a number ever appear twice? Maybe

we don't see a repetition yet, but would we see one after a year? Hundreds of
years?" He paused. "If this problem is too difficult for you, consider these simi-
lar katydid sequences. Does a number ever appear twice in the following?"

or

Monica stared at Dr. Googol. "I'll have to think about this for a while. Now
it's time for dessert."

Monica never solved the problems. Can you? Dr. Googol looks forward to
hearing from anyone who can.

$• See "Further Exploring" for further analyses and surprises.

Chapter 68

Pentagonal Pie

The most important sequences, such as square numbers and the
factorials, turn up everywhere. The Catalan sequence is in the Top
Forty in popularity, even if it does not reach the Top Ten. It occurs

especially often in combinatoric problems.
—David Wells, Curious and Interesting Numbers

Dr. Googol was cutting a pentagonal pie with a knife. "Happy birthday, my
dear," he said to Anika.
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Anika pulled her blond hair back. "A pentagonal pie. I've never heard of such
a thing."

"How many ways can you divide the pie into triangles, starting your straight,
downward cuts at one corner and ending at another? Your cuts can't intersect one
another."

After 5 minutes of thought, Anika cut the pie. "Here is one way," she said.
"Let me draw all the different ways."

"Superb!" Dr. Googol said.
"But Dr. Googol, can't we eat it now? I don't wish to talk further about math

on my birthday."
"Wait!" Dr. Googol screamed, just as Anika was about to eat a piece. "Let me

ask this in a different way. How many ways can a regular w-gon—like a square,
pentagon, hexagon, etc.—be divided into n - 2 triangles if different orientations
are counted separately?"

"Different orientations?" Anika said.
"Yes. For example, in the pentagonal pie you cut, the pattern of cuts would

look the same if you roated the pie, but we'll still consider them 5 separate cut-
ting patterns."

Dr. Googol withdrew a pen from his pocket and started drawing the possibil-
ities for a hexagon (Figure 68.1). Just as he started drawing the different cuts for
a 7-sided polygon, Anika decided she'd had enough and walked out the door. Dr.
Googol, deep in concentration, never noticed. He was trying to derive a formu-
la to compute the number of ways the polygonal cakes could be cut into triangles
for any regular polygon. Can such a formula be derived? Are there more ways to
slice a 16-sided polygon then there are people on the planet?

68.1 14 ways to divide a hexagon into triangles.
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For a solution and more graphic examples, see "Further Exploring." Hint:
A sequence called the Catalan sequence can be used to solve this puzzle.

For BASIC code used to study this problem, see [www.oup-usa.org/sc/
0195133420].

Chapter 69

An A?

He remembered exploring those other-worldly curves from one degree to
the next, lemniscate to folium, progressing eventually to an ungraphable

class of curve, no precise slope at any point, a tangent-defying mind marvel.
—Don DeLillo, Ratner's Star

Dr. Googol was in London lecturing a Mensa group. Mensa has a single qualifi-
cation for membership: you must score in the top 2% of the population on a
standardized intelligence test. An IQ between 130 and 140 is usually acceptable.

Dr. Googol went over to a blackboard and drew a single letter:

a
Dr. Googol looked at his audience. "Can anyone tell me what this is?"
A distinguished gentleman with a large mustache raised his hand. "It is an a."
Dr Googol grinned. "Correct!" He wrote down:

ana
"Now what is on the board?" Dr. Googol said.

www.oup-usa.org/sc/0195133420
www.oup-usa.org/sc/0195133420
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A distinguished woman with a small mustache raised her hand. "It is an a, an
«, and an a"

Dr. Googol wrote down:

anaannana
The entire audience screamed with glee and picked Dr. Googol up on their

shoulders. A band started to play as confetti fell from the ceiling. The Mensa
meeting was brought to a close as the members' roars of jubilant exaltation rose
to fever pitch.

The rule for generating Ana sequences is to begin with a letter of the alphabet
and to then generate the next row by using the indefinite article a or an as appro-
priate. (This will probably be best understood by English-speaking readers, who
should say the sequences out loud to best understand them.) The most obvious
letter to start with is a:

Generation Sequence
1 a
2 ana
3 ana ann ana
4 ana ann ana ana ann ann ana ann ana

The first row contains an a, giving us ana for the second row. How many dif-
ferent words can you generate with this method? It turns out that only the words
ann and ana occur, but there is an interesting self-similarity cascade here. (For
sequences like this, self-similarity refers to the fact that there are repeated patterns
within patterns for different sequence lengths.) One way of visually representing
the sequence to find patterns is to represent a by a dark icon, such as an alien
head, and n by a less dark icon, such as the figure of a man:
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Here it's easy to see that what-
ever pattern there is, after the
second generation (or row) it is
certainly not symmetrical about
the midpoint of each sequence.
A much better way to see the
structure is to look at Figure
69.1, created by Dr. Googol's
colleague Mike Smithson from
James Cook University. Here a
is represented as a dark rect-
angle, and n is represented by
a white space with no rectangle.
In the sophisticated parlance of
fractal geometry, this structure is
known as an asymmetric Cantor
dust.

As background, a symmetrical Cantor set can be constructed by taking an
interval of length 1 and removing its middle third (but leaving the end points of
this middle third). The top two rows of Figure 69.1 show this removal. This
leaves two smaller intervals, each one-third as long. In the symmetrical case, the
middle thirds of these smaller segments are removed and the process is repeated
over and over to create a symmetrical pattern:

69.1 Anabiotic Ana fractal. The letter a is
represented by a dark bar. The letter n is
represented by a gap. (Rendering by Mike
Smithson.)

Continue removing segments, forever

This symmetrical Cantor set has a "measure zero," which means that a ran-
domly thrown dart would be very unlikely to hit a member of the very sparse set
in higher row numbers. At the same time, it has so many members that it is in fact
uncountable, just like the set of all of the real numbers between 0 and 1. Many
mathematicians, and even George Cantor himself, for a while doubted that a
crazy set with these properties could exist. As you have just been shown, however,
such a set is possible to formulate. The dimension D of the symmetrical Cantor
dust for an infinite number of iterations is less than 1 since D = Iog2/log3 = 0.63.
You can read more about the concept of fractional dimensions, and how 0.63 was
derived, in Manfred Schroeder's Fractals, Chaos, Power Laws. Cantor dusts with
other fractal dimensions can easily be created by removing different sizes (or
numbers) of intervals from the starting interval of length 1. Cantor sets are high-
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69.2 Turtles Forever, by Peter
Raedschelders.

ly useful mathematical models for many
physical phenomena, from the distribu-
tion of galaxies in the universe to the
fractal Cantor-like structure of the rings
of Saturn.

For those of you who are fractal
experts, can you compute the dimension
of the Ana fractal? Does it even have a
single dimension? What happens if you
start the Ana fractal sequence with a let-
ter other than d> Is this new sequence
fractal? Are there other verbal fractals
waiting to be discovered using different
rules?

After converting the as and ns to
tones, Mai Lichtenstein of San Diego,
California, was able to listen to an 81-
element Ana sequence and Morse-Thue
sequence described in Chapter 17. They
sounded very similar to him. He won-
ders if the ratios a/n and 0/1 approach 1

69.3 Fractal Butterflies, by Peter Raedschelders.
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69.4 Seal Recursion, by Peter
Raedschelders.

69.5 Fractal Dinosaurs, by Peter
Raedschelders.

in both sequences. He believes that there are at most 2 of the same elements in
succession for both sequences.

Figures 69.2 through 69.5 are the intricately recursive artworks of Belgian
artist Peter Raedschelders. Like the Ana fractal and Cantor sets, these works rep-
resent a continual repetition of objects at diminishing size scales. If these had
been constructed using mathematical algorithms and computer graphics, in
principle the smaller structures could be continually magnified to reveal yet
smaller structures, like an infinite nesting of Russian dolls within dolls.

For more on Ana fractals, see "Further Exploring."

Chapter 70

Humble Bits

One sign of an interesting program is that you cannot readily predict its output.
—Brian Hayes, "On the Bathtub Algorithm for Dot-Matrix Holograms,"

Computer Language, vol. 3, 1986
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Dr. Googol was lecturing members of YLEM, the California-based organiza-
tion of artists who use science and technology. "The humble bits that lie at the
very foundation of computing have a special beauty all their own. It takes just a
little logical coddling to bring the beauty out. Who would guess, for example,
that intricate fractal patterns lurk within the OR operation applied to the bits of
ordinary numbers?"

A huge man with an orange punk hairdo and Mortal Kombat® tattoos got up
out of his seat. "Binary numbers? Those are the ones that are made up of just the
digits 1 and 0."

Dr. Googol nodded. "Some say they were invented by Leibniz while waiting
to see the pope in the Vatican with a proposal to reunify the Christian churches.
Here are the first 7 numbers represented in binary notation:

0, 1, 10, 11, 100, 101, 110, 111, . . .

The sums of the digits for each number form the sequence (in decimal nota-
tion):

0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4, ...

"Notice, just like the Morse-Time sequence, which I lectured you about earli-
er (see Chapter 17), this sequence is self-similar, if you retain every other term
you still have the same infinite sequence!"

"Amazing!" the big man yelled.
Dr. Googol put up his hand to silence the man. "For the next 10 minutes, I

want to demonstrate that wonderful graphic patterns can emerge when working
with binary numbers. In fact, very complex patterns with scaling symmetry can
arise from the simplest of arithmetic operations that use logical operators such as
AND and OR."

And for the next 10 minutes, Dr. Googol flashed image after image upon the
screen, captivating his audience with his wit, beautiful visuals, and charm.

® ® ®

Figure 70.1 was created using an OR operation, which Dr. Googol will now
explain. For this demonstration we compute the values for a square image con-
sisting of an array of values c,y, in particular c^= i OR j, for (1 < / < 800) and
(1 <;'< 800). For example, if / = 6 and; = 1, c= 7 because 111 = (110 OR 001).
Just apply a logical operation one bit at a time. (For instance: 1 OR 0 is 1; 0 OR
0 is 0; and 1 OR 1 is 1.) The variables /' and j correspond to the x and y axes of
the figures in this chapter. The value of cis represented by shades of gray. Figure
70.1 illustrates c modulo 255. The brightest picture element is therefore 254,
and this corresponds to bright white. 0 is represented by black. The black, trian-
gular, gasket-like structure represents those (c= 255) pixels that are made black
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by the modular arithmetic. The frac-
tal nature of the entire pattern is evi-
dent. The black pattern is called a
Sierpinski gasket, commonly seen in
cellular automata applications. In
fact, the same pattern is seen when
the even entries of Pascal's triangle
are colored black (see Chapter 54).
Let us call this pattern a "logical"
Sierpinski gasket.

Obviously, Dr. Googol has barely
scratched the surface of the subject.
There are endless combinations of
logical (and arithmetic) operators to
be tried on the humble binary num-
bers. In the process, some of you will
discover worlds neither Dr. Googol
nor anyone else has seen.

 For more analysis, see "Further
Exploring."

70.1 Pattern of bits. The pattern was
produced by c(/ = / OR / for (1 < / < 600 )
(!</ '< 800 ). The values of c modulo 255 are
represented by shades of gray.

Chapter 71

Mr. Fibonacci's Neighborhood

For those, like me, who are not mathematicians, the computer can be a
powerful friend to the imagination. Like mathematics, it doesn't only

stretch the imagination. It also disciplines and controls it.
—Richard Dawkins, The Blind Watchmaker

Dr. Googol drove to Mr. Fibonacci's neighborhood pet store and bought a pair
of rabbits to breed. The pair produced a pair of young after a year, and a second
pair after the second year. Then they stopped breeding. Each new pair also pro-
duces 2 more pairs in the same way, and then stops breeding. How many new
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pairs of rabbits would you have each year? To answer this question, write down
the number of pairs in each generation. First write the number 1 for the single
pair you bought from the pet shop. Next write the number 1 for the pair they
produced after a year. The next year both pairs have young, so the next number
is 2. Continuing this process, we have the sequence of numbers: 1, 1, 2, 3, 5,
8, 13, 21, 34, 55, 89, 144, 233, 377, . . . . This sequence of numbers, called
the Fibonacci sequence after the wealthy Italian merchant Leonardo Fibonacci
(1170-1240) of Pisa, plays important roles in mathematics and nature. These
numbers are such that, after the first 2, every number in the sequence equals
the sum of the 2 previous numbers Fn = Fn _\ + Fn _2 . The code at [www.oup-
usa.org/sc/0195133420] shows how to program this sequence on the computer.

T H E A M A Z I N G 1/89

Although not widely known, several mathematicians have discovered that the
decimal expansion of 1/89 (0.01123 . . . ) relates to the Fibonacci series when
certain digits are added together in a specific way. Examine the following
sequence of decimal fractions, arranged so the rightmost digit of the «th
Fibonacci number is in the n + 1th decimal place:

n

1 .01
2 .001
3 .0002
4 .00003
5 .000005
6 .0000008
7 .00000013

.0112359 . . .

Unbelievably, 1/89 = .01123595505 Fantastic! Why should this be so?
Why on Earth is 89 so special?

R E P L I C A T I N G F I B O N A C C I D I G I T S

With these digressions, let us switch gears and discuss numerical world records
with numbers related to Fibonacci numbers. (Maybe you can be the next world-
record holder in the search for these numbers.) In 1989, Dr. Googol discovered
129,572,008 and 251,133,297—new replicating Fibonacci digits (defined in next
paragraph) in the range 100 million to 1 billion. At the time, they were the
largest replicating Fibonacci digits discovered, although today several people
have taken up the challenge and discovered several larger numbers of this kind.

A replicating Fibonacci digit, or repfigit, has the remarkable property that it
repeats itself in a sequence generated by starting with the n digits of a number and
then continuing the sequence with a number that is the sum of the previous n

www.oup-usa.org/sc/0195133420
www.oup-usa.org/sc/0195133420
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terms. An example should clarify this. 47 is a repfigit since the sequence (4, 7, 11,
18, 29, 47) passes through 47. Likewise 1,537 is a repfigit since the sequence (1,
5, 3, 7,16, 31, 57, 111, 215, 414, 797, 1,537) passes through 1,537.

In 1987, Michael Keith introduced the concept of replicating Fibonacci dig-
its. At that time the largest known repfigit was the 7-digit number 7,913,837. In
November 1989, 3 larger repfigits were discovered, and the world's largest rep-
figit was 44,121,607.

Repfigits are interesting for several reasons. For one, the question of whether
or not the number of repfigits is infinite is unsolved. It would be interesting to
find that no repfigit exists for higher numbers of digits, or to discover patterns
by searching for larger numbers. Moreover, progress on certain famous problems
has historically been used as a yardstick for measuring the growth in computer
power. How many hours would your computer require to find Dr. Googol's pre-
vious world record of 251,133,297?

Table 71.1 indicates all known repfigit numbers under 1 billion.

For more information on repfigits and other Fibonacci delights, see
"Further Exploring."

See [www.oup-usa.org/sc/0195133420] for a computer program that gen-
erates Fibonacci numbers. Starting from this, can you create a program that
computes repfigits?

2 14 19 28 47 61 75

3 197 742

4 1104 1537 2208 2508 3684 4788 7385 7647 7909

5 31331 34285 34348 55604 62662 86935 93993

6 120284 129106 147640 156146 174680 183186 298320 355419 694280 925993

7 1084051 7913837

8 11436171 33445755 44121607

9 129572008 251133297

Table 71.1 Replicating Fibonacci digits less than one billion. The first column
indicates the number of digits.

www.oup-usa.org/sc/0195133420
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Apocalyptic Numbers

Never dismiss the intuition of the ancients, who believed that number is
the essence of all things. Number is the secret source of entire cultures,
and men have been killed for their heresies and seductive credos. The

whole history of mathematics is subterranean, taking place beneath histo-
ry itself, a shadow-world scarcely perceived even by the learned.

—Don DeLillo, Ratner's Star

Dr. Googol was contemplating the nature of reality while sitting in St. John the
Divine, the world's largest cathedral, in New York City. He started to read a
book called the Revelation (or Apocalypse) of John. Dr. Googol knew this was
the last book of the New Testament, written using fantastic imagery—blending
Jewish apocalypticism, Babylonian mythology, and astrological speculation.
Various mystics have devoted much energy to deciphering the number 666, said
by John the Apostle to designate the Number of the Beast, the Antichrist. More
recently, mystical individuals of the extreme fundamentalist right have noted
that each word in the name Ronald Wilson Reagan has 6 letters.

Dr. Googol turned to Monica, who sat quietly beside him. "Monica, isn't it
odd that 666 has especially interesting mathematical properties? For example,
the number 666 is a simple sum and difference of the first 3 natural numbers
raised to the sixth power." With very careful penmanship, Dr, Googol wrote on
the back page of a Bible:

"It is also equal to the sum of its digits plus the cubes of its digits."

Dr. Googol looked into Monica's dark eyes and whispered, "I believe that
there are only 5 other positive integers with this property. Can you find them?"

Monica looked down. "Dr. Googol, perhaps you had better not write any-
thing more on the Bible. It's not right."

Dr. Googol nodded. "The sum of the squares of the first 7 primes is 666:

And here's a real gem: A standard function in number theory is (j)(«), which is
the number of integers smaller than n and relatively prime to n. Amazingly, we
find that:
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(Number theorists call 2 numbers A and B that have no common factors rela-
tively prime or coprime.}" The first 144 decimal digits of pi add up to 666, and
144 is special because 144 = (6 + 6) x (6 + 6). Finally, the three decimals of pi
that begin with the 666th are 343 = 7 x 7 x 7 . "

Dr. Googol said the last few words so loudly that all the people in St. John the
Divine turned their heads to stare at him. Without saying another word, Dr.
Googol and Monica quietly left.

About a year ago, Dr. Googol began a computer search for "apocalyptic num-
bers." These are Fibonacci numbers with precisely 666 digits. As described in
Chapter 71, the sequence of numbers (1, 1, 2, 3, 5, 8, ... ), is called the
Fibonacci sequence, and it plays important roles in mathematics and nature.
These numbers are such that, after the first 2, every number in the sequence
equals the sum of the 2 previous numbers Fn = Fn_1 + Fn_2- h turns out that the
3,184th Fibonacci number is apocalyptic, having 666 digits. For numerologist
readers, the apocalyptic number is:

1167243740814955412334357645792141840689747174434394372363

31282736262082452385312960682327210312278880768244979876

073455971975198631224699392309001139062569109651074019651

076081705393206023798479391897000377475124471344025467950
76870699055032297133437094009365444241181520685790404104
34005685680811943795030019676693566337923472186568961365
839903279181673527211635816503595776865522931027088272242
47109476382115427568268820040258504986113408773333220873
616459116726497198698915791355883431385556958002121928147
05208717520674893636617125338042205880265529140335814561

9514604279465357644672902811711540760126772561572867155746

070260678592297917904248853892358861771163

Is the number shown here the only apocalyptic Fibonacci number? Is there
any significance to the fact that the first 4 digits and last 4 digits (1167 and
1163) of the apocalypse number both represent dates during the reign of
Frederick I of Germany, who intervened extensively in papal politics? In fact,
Frederick had set up a series of antipopes in opposition to the reigning pope,
Alexander III. In 1167 Frederick attacked the Leonine City in Rome and was
able to install one of the antipopes, Paschal III, on the papal throne. Notice that
in the middle of the apocalyptic number we find the date 1154. On precisely
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this date, Frederick proceeded to Italy, where he received the Lombard crown at
Pavia. Toward the end of his life, Frederick went on a crusade and drowned—
sometime around the year 1194, another date that appears in the enigmatic
apocalyptic number.

See "Further Exploring" for more oddities involving 666.
For hints on computing Fibonacci numbers, see [www.oup-usa.org/sc/

0195133420] for Chapter 71.

Chapter 73

The Wonderful Emirp, 1,597

There can be no dull numbers, because if there were, the first of them
would be interesting on account of its dullness.

—Martin Gardner, 1992

"I love 1,597!" Dr. Googol said to his friend Monica as they rode horses along
the vast Montana outback.

"I thought you only had eyes for me," Monica said as she brushed back her
hair, which the faint wind had teased out of place.

"I do, but don't you realize that 1,597 is both a prime number and a
Fibonacci number?" Dr. Googol handed Monica a note of explanation. It read:

A prime i& a positioe integer that cannot he written a& the product of 2

smaller integers. The number 6 is equal to 2 times 3, out 7 cannot be

written as a product of factors; therefore, 7 i& called a prime number or

prime. Here are the first feto prime numbers: 2, 3, S, 7, f f, 13, 17, f9,

23, 29, 31, 37, 41, 43, 47, S3, 59. SeeChapter 71 for background on

Fibonacci numbers 1, 1, 2, 3, S, 8, . . . ) The number 1S*)7 is also the

year in u^hich the Edict of Nantes toas drafted, tohich gave French

Protestants (Huguenots) a degree of freedom, opening public offices to

them and permitting them to hold public worship in certain cities.

www.oup-usa.org/sc/0195133420
www.oup-usa.org/sc/0195133420
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Monica folded the note and placed it under her saddle. "Thank you for the
lovely note, but why does it say 'See Chapter 71'?"

"It's for a book I'm writing. Never mind that. More interestingly, 1,597 is fas-
cinating because it is an 'emirp,' a prime number that turns into a different
prime number when its digits are reversed (7,951)."

As the sun began to set, the meadows and hills were awash in a tangle of gold-
en reflections. Dr. Googol began to dream.

1,597 is also the basis for a number problem Dr. Googol dreamed just a year ago
for which a solution seemed unlikely. Consider the formula x = Vl,597y2 + 1 • Is
x ever an integer for any integer y greater than 0? You may wish to first compute
a few values of x in order to get the feel for the formula:

y x

1 39.97
2 79.93
3 119.89

You can see that for y - 1,2, or 3, A: is not an integer. Is it ever an integer? The
first method you might use to answer this question is to write a short computer
program that would simply try thousands of values of y, starting at y = 1. The
program would continually increment y while testing x—for as long as your
patience and machine time allowed. The program could check each x value to see
if it were an integer. Unfortunately, your program would run for weeks, and
probably months, and you would finally toss up your hands and exclaim that
there is no solution. However, it turns out there is an infinite number of solu-
tions, and the first individual to solve the 1,597 problem was Noam D. Elkies of
the Mathematics Department of Harvard University.

The reason it would take your computer so long to find these infinite number
of solutions is the fact that the smallest integer value for x is

x = 519711527755463096224266385375638449943026746349

for a y value of

y = 13004986088790772250309504643908671520836229100

(Note the startling occurrence of 5,197 in x Is this scrambling of 1,597 just a
coincidence? No one knows for sure.)

Dr. Elkies, however, did not solve this through the super-CPU-intensive
search methods. In fact, it has been known at least since the time of French
mathematician Pierre de Fermat (1601-1665) that for any positive integer D
that is not a square, there are infinitely many integers x, y such that x2 = Dy + 1.
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Since Dr. Googol gave you the number 1,597, which is a prime number and
hence cannot be a square, you know immediately that there is a solution.
Furthermore, there is a known algorithm that can be used to solve problems such
as these. These methods involve the use of a continued fraction representation
for VD in order to find the smallest solution. These algorithms are now imple-
mented on several commercially available symbolic computation software pack-
ages, which is what Elkies used to solve the 1,597 problem.

See "Further Exploring" for additional incredible and bizarre 1,597 chal-
lenges.

For hints on finding prime numbers that are also Fibonacci numbers, see
[www.oup-usa.org/sc/0195133420].

Chapter 74

The Big Brain of Brahmagupta

As in our Middle Ages, the scientists of India, for better and for worse,
were her priests.

—WillDurant, Our Oriental Heritage, 1954

A person who can within a year solve x2 - 92y2 = 1 is a mathematician.
—Brah magup ta

Oh, the wonderful Brahmaputra River! Beautiful beyond compare! Last year, Dr.
Googol was exploring the Brahmaputra, the mighty river that flows 1,800 miles
from its source in the Himalayas to its confluence with the Ganges River, after
which the mingled waters of the two rivers empty into the Bay of Bengal. Its
upper course was long an unsolved mystery because exploration was barred by
hostile mountain tribes.

The local tribes never scared Dr. Googol. He boldly went up to a young vil-
lager and said, "Have you ever heard of Brahmagupta?"

The villager backed up a hasty half-step. "Sir, do you mean Brahmaputra, the
riven?"

"No, Brahmagupta. Not to be confused with Brahmacharia, the vow of chastity
taken by the ascetic student—a vow of absolute abstention from all sexual desire."

www.oup-usa.org/sc/0195133420
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The young man raised his eyebrows. "No, I would not confuse those two
words."

Dr. Googol nodded. "Brahmagupta was a great Indian mathematician of
the 7th century and desperately interested in huge numbers. He didn't con-
sider someone a real mathematician unless he could find an integer solution to
x2 -92/= 1."

The villager nodded. "Brahmagupta's brain must have been big."
Dr. Googol continued. "This kind of problem has always made me wonder

about the history of large number problems. How long ago were the first huge
number problems posed, solved, or even considered solvable by humans?"

Dr. Googol's eyes glazed over as the villager walked away, and when Dr.
Googol returned home he began to work with colleagues, such as Chris Long
from Rutgers University, on Brahmagupta numbers, named after the famous
Hindu mathematician and astronomer who was intrigued by huge number solu-
tions to simple-looking problems.

Please don't expect to solve the following problem with pencil and paper! The
solutions involve ratios of numbers so large that if you were to place a dot on a
paper every second until you had a number of dots equal to the Brahmagupta
numbers, our Milky Way galaxy would have rotated many times. (Did you
know that the Milky Way galaxy's period of rotation is 6 x 1015 seconds?)

The problem deals with rational numbers. A rational number is a number that
can be expressed as a ratio of two integers. Here are some fine examples: 1/2,
4/3, 7/1, 8. All common fractions and all expansions with terminating (or
repeating) digits are rational. Trigonometric functions of certain angles are even
rational, for example cos 60° = Vi. (This is in contrast to irrational numbers like
e and Jt—called transcendental numbers—and all surds such as v27. A surd is a
number that is obtainable from rational numbers by a finite number of addi-
tions, multiplications, divisions, and root extractions.)

Our problem can be stated as follows. Find the smallest rational number x
(smallest in the sense of smallest numerator and denominator) such that there
exist rational numbers y and z and

Jim Buddenhagen of Southwestern Bell Advanced Technology Laboratory
gave a behemoth solution:

x = 502401829953380369811377543122940309931350174668896675
84728816492946182669894640083390462472702407772686242505
69744087072701182951626039427524418350855334186472965
460410399610068678034313761 + 5520712785907625818387556946
1342697367786240398108265147202579226331920116659466022
175218717871386078381699548684974799036529476971927068
616591606845144977158476992422410434693821197457720
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y = 4976168309082615289459776489008494215611077198547772938
6907419538978932445636040315578821358685390299974609232
14011511689876046242577636636913029860052304292613303022
945165470508311968736639 * 5520712785907625818387556946134
269736778624039810826514720257922633192011665946602217521
871787138607838169954868497479903652947697192706861659160
6845144977158476992422410434693821197457720

z = 507141683435535895613678348202590043546771901663807172
72112514688668416204079391389484275484099986283966106884
99937346660544850726462041214489884598731864517189496456
476576826531843826804161 + 5520712785907625818387556946134
26973677862403981082651472025792263319201166594660221752
187178713860783816995486849747990365294769719270686165916
06845144977158476992422410434693821197457720

(Notice the division symbols buried in these large digit strings.) Buddenhagan
solved this using theory provided by Don Zagier in a book titled Introduction to
Elliptic Curves and Modular Forms (page 5) by Neal Koblitz—and by using a large-
integer computer software program called Maple from the University of Waterloo.

If you substitute these huge numbers into the previous equations, you will
find that x2 - y1 = 157 and also that x2 - z2 = -157, which are valid solutions
to the problem. But are these the smallest solutions?

See "Further Exploring" for an answer and for further challenges.

Chapter 75

1,001 Scheherazades

I love to count. Counting has given me special pleasure down through the
years. I can think of innumerable occasions when I stopped what I was
doing and did a little counting for the sheer intellectual pleasure of it.

—Don DeLillo, Ratner's Star

Since the age of 13, every 1,001 days Dr. Googol reads the Thousand and One
Arabian Nights. (This means Dr. Googol reads the work every 2.74 years.) With
the exception of the Koran, no other work of Arabic literature has been better
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known and more influential in the West than the Thousand and One Arabian
Nights. This collection of stories is grouped around a central story involving a
sultan and his lovers. Upon discovering that his wife has been unfaithful to him,
the sultan vows to take a bride every day and have her executed at dawn.

When Scheherazade was chosen to be his new wife, each evening she told a
story to the sultan but did not finish it, promising to do so the following night if
she survived. This continued for a thousand and one nights, until the sultan
grew deeply in love with Scheherazade and gave up his cruel execution plans.

One night after reading the Thousand and One Arabian Nights, Dr. Googol
began to wonder about a special number called the Arabian Nights factorial. This
number is defined as the number xsuch that x\ has 1,001 digits. (The exclama-
tion point is the factorial sign: «! = l x 2 x 3 x 4 x . . . x « . ) Factorials grow
rather quickly: 5! = 120, 10! = 3,628,800, and 15! = 1,307,674,368,000. What is
the Arabian Nights factorial?

Table 79.1 shows 1,001 Scheherazade clones and a single sultan at bottom right.
The sultan is getting old but wishes to kiss each woman once and return to his
original position to rest. Part I: What path should he take to make the fewest
possible turns along his amorous journey? What path should he take if he wish-
es to find the shortest path? Part II: Answer these 2 questions if the sultan does
not wish to kiss a woman more than twice along his journey and also wishes to
take a prime number of steps. (A "step" takes place each time the sultan goes
from one woman to the next.)

See "Further Exploring" for a solution and comment regarding the
Arabian Nights factorial.

t I * t t * t t t t t t t t I t M t * t t t t I I i I I I t t t t t T Sultan

Table 79.1 Find the Sultan's path through the 1O01 Scheherazades. (The Sultan
is lifting weights at the bottom in preparation for his arduous journey.)
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73,939,133

It's like asking why Beethoven's Ninth Symphony is beautiful. If you
don't see why, someone can't tell you. I know numbers are beautiful.

If they aren't beautiful, nothing is.
—Paul Erdos

Dr. Googol was invited to the White House for a special reception honoring the
country's 30 brightest minds. Reporters and journalists were everywhere.

The president and first lady began to shake hands with a line of distinguished
luminaries in the world of science. CNN was airing the reception on live TV.

When it was Dr. Googol's turn, he smiled at the first lady, then turned to the
President. "What is special about the number 73,939,133?"

The president's jaw dropped.
Secret service agents immediately stepped between Dr. Googol and the presi-

dent. Other agents were speaking into their concealed collar-microphones, fran-
tically trying to get the answer to Dr. Googol's question so that the president
could wow the press with his mental prowess.

Can you help the president?
What is special about this number? (Hint: This number is a prime number—

a positive integer that cannot be written as the product of 2 smaller integers. But
something is very special about this particular prime number.)

For an answer, see "Further Exploring."
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y-Numbers from Los Alamos

As a teenager I thought that if it's at all possible, or practical, to become a
mathematician, I would want to be one. Of course, from a practical point
of view, it was very difficult to decide on studying mathematics at the uni-

versity because to make a living in mathematics was very, very difficult.
—Stanislaw Ulam, Mathematical People

Many years ago, Dr. Googol was working at Los Alamos, New Mexico, where he
met the great mathematician Stanislaw Ulam. Today Ulam is best known for his
theoretical calculations used for building the hydrogen bomb. However, Ulam
also worked on a range of fascinating topics in his lifetime including iteration,
strange attractors, Monte Carlo methods, the human brain, random number
generators, number theory, and genetics.

"Dr. Googol," Ulam said, "let me show you something interesting."
"Stanislaw, you make my heart race."
Ulam nodded. "Start with any 2 positive integers—for example, 1 and 2.

Next consider positive integers in increasing order that can be expressed in just 1
way as the sum of 2 distinct earlier members of the sequence."

"Stanislaw, speak in simple English!"
"Let me give you an example." Ulam began to write on a blackboard. "Here

are the first few numbers starting with 1 and 2."
Dr. Googol carefully took notes, copying down the numbers onto a card:

U! 2:1 2 3 4 6 8 1113 16 18 26 28 36 38 47 48 53 57 62 69 72 77 82 87 97 99
102 106 114 126 131138 145 148 155 175 177 180 182 189 197 206 209 219

Dr. Googol spoke. "I'm going to call these 'l±J-Numbers' in honor of you, Dr.
Ulam. The l±l symbol is a U(for Ulam) with a + symbol. I pronounce the symbol
just like the letter U. I think I understand how to generate them. For example, 5
is not a l+J-number because there is more than one way to form 5 from summing
previous sequence members: 5 = 3 + 2 and 5 = 4 + 1. On the other hand, 6 is a
l±)-number because it can only be formed by 4 + 2."

Dr. Ulam continued. "If we draw little vehicles every time we find a l±J-num-
ber (and leave a dash where there is no l±)-number), it appears that the l±J-num-
bers are getting ever sparser as we search for them among increasingly larger
numbers." Dr. Ulam drew the following:
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Dr. Googol walked away from the great Ulam and began to make some inter-
esting-looking plots using the following computer recipe:

DO For all Ulam Numbers, l±J
MovePenTo(I±J, 0); DrawTo((±J,W);

END

This looks like a series of unequally spaced vertical lines that gradually rise
(Figure 77.1). The spacing is what Dr. Googol likes the best. It's very erratic,
displaying miscellaneous gaps where no Ulam numbers exist. Many times there
are visually interesting clumps and pairs. In your own computer program, you

can DrawTo(l±l,C), where Cis the vertical-
most (y) coordinate of your graphics screen.
This will give the plot a bar-code appear-
ance. Looking at these kinds of graphs, can
you determine if there are arbitrarily large
gaps in the sequence of l±J-numbers?

Notice that on the l±J-number graph
there are pairs of consecutive l±J-numbers
corresponding to (1,2), (2,3), (3,4), and
(47,48). Are there infinitely many consecu-
tive pairs? In 1966, P. Muller (in his mas-
ter's thesis at the University of Buffalo)
calculated 20,000 terms and found no fur-
ther examples! On the other hand, more

77.1 Visualization of y-numbers. i fc\n/ r u 1 1 u j-rrthan 60% of the l±)-number terms differ
from another by exactly 2.

Dr. Googol's l±)-numbers started with 1 and 2. What are l±)-numbers like for
other starting integers?

l±) See "Further Exploring" for other ideas and an introduction to <8>-numbers.
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Creator Numbers c$

No definition of science is complete without a reference to terror.
—Don DeLillo, Ratner's Star

On a cool April day in Athens, Greece, Dr. Googol approached a woman on
the street who was selling gyro sandwiches. While waiting for the juicy meat to
turn crispy brown, Dr. Googol handed her his card with the following formula:

The young woman took the card and turned it over in her well-manicured
hands. "And what is this supposed to mean?"

Dr. Googol grinned. "It means next to nothing. It is merely meant to
impress."

"Impress?"
"Yes, doesn't it look impressive?"
"Here is your gyro." She reached into her pocket, smiled, and withdrew a

small card upon which she scribbled. She handed him the card. "Why don't you
call me sometime?"

Dr. Googol smiled back and nonchalantly stuck the card into his pocket.
When he arrived at his apartment, he withdrew her card with exponentially
increasing anticipation. Her card was in immaculate condition. On one side was
the handwritten formula

On the other side were the words

Athens Psychiatric Hospital

with a phone number beneath.
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We will probably never know why the woman wrote the enigmatic equa-
tion—Dr. Googol never found her again—but it stimulated Dr. Googol to con-
duct a bizarre contest. Participants were to construct numbers using just Is and
2s, and any number of +, -, and x signs. People were also allowed exponentia-
tion. As an example, let's first consider the problem where only the digit 1 is
allowed. The number 80 could be written

The creator numberTor a number n, symbolized as <Q(n}, is the least number
of digits that can be used to construct n. In the previous example, we see that
$(80) ^13 because thirteen Is were used to create 80. A contest that allows
only Is for forming small numbers turns out not to be very interesting.
However, once the digit 2 is also allowed, the problem becomes deep, fascinat-
ing, and filled with infinite wonders. Here is an example:

Here $(81) < 5. Is this the best you can do with Is and 2s?
The explicit goal of the Creator Numbers Contest is to represent the numbers

20, 120, and 567 with as few digits as possible. Dr. Googol received hundreds of
responses and wishes that he could report all of the observations and entries in
this chapter. Here are some examples. The first triplet of answers came from R.
Lankinen of Helsinki, Finland:

But is this the best one can do for the 3 numbers? Can they be expressed with
fewer digits? It turns out that 567 can be constructed with just 8 digits. Dan
Hoey of Washington, D.C., the contest winner, computed the minimum values
for all 3 numbers. Here are his minimal answers (which, Dr. Googol believes, use
the smallest possible number of digits):

The contest becomes more interesting if we allow concatenation of digits
(thus permitting multidigit numbers such as 11, 12, 121, etc.). For this case, the
winning entries come from Mark McKinzie of the University of Wisconsin's
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Mathematics Department. Here are Mark's answers:

Another equally successful set of answers comes from Ya-xiang, Beijing,
China:

Can you do any better than these solutions?

See "Further Exploring" for detailed analyses and additional challenges,
including the search for hard numbers.

Chapter 79

Princeton Numbers

Jesearc sat motionless within a whirlpool of numbers. He was fascinated
by the way in which the numbers he was studying were scattered,
apparently according to no laws, across the spectrum of integers.

—Arthur C. Clarke, The City and The Stars, 7.956'

In 1991, Dr. Googol visited David P. Robbins, a mathematician from Princeton,
New Jersey, who had published an article in the Mathematical Intelligencer with
the unusual title "The Story of 1, 2, 7, 42, 429, 7436, . . . . " The paper deals
with an interesting sequence of integers starting with 1—but very quickly its
members include behemoth numbers with hundreds of digits. The sequence can



190 © Wonders of Numbers

be represented by R\, R2, R$, . . . . , and it can be computed using the following
formula:

Dr. Googol loves the fancy-looking symbol II. Don't you? It simply indicates
a repeated product. For example, IT/= j / = 1 X 2 X 3 = 6. The exclamation point
is the factorial sign: n\ - 1 X 2 X 3 X . . . n. The computer code at [www.oup-
usa.org/sc/0195133420] gives you additional hints on how to compute this
repeated product for different values of n. For example, for n = 2 we need to
compute the numerator and denominator for / = 0 and / = 1 and multiply the
results: l!/2! X 41131 = Vi X 24/6 = l/2 X 4 = 2. Using the formula for Rn, it is not
too difficult to determine the seventh and eighth terms of the series:

218347, 10850216

Dr. Googol has included a list of the first 25 numbers in Table 79.1 Do more
of these numbers end in 00 than you would expect by chance? The 31st number
(the largest Dr. Googol has computed) is:

745790164537531254584694336446020102450093361981171934259
4448739658061730204945465190362255297438758806424576

Before going further and offering a challenge, let Dr. Googol tell you a bit
about Dr. Robbins and the problem he was working on. Robbins is a mathe-
matician at the Communications Research Division of the Institute for Defense
Analysis in Princeton. He received his formal mathematics education at Harvard
and MIT. Robbins refuses to state any mathematical specialty, insisting that he is
"interested in any mathematical problem as long as its statement is easily under-
stood and surprising." Robbins has enjoyed computers since childhood, begin-
ning with a peculiar fascination with his father's Friden calculator. The sequence
in the Rn equation has the mathematical community all in a quandary. In the
last few years the sequence has arisen in 3 separate and distinct problems dealing
with the analysis of combinations, and no one on Earth has been able to explain
why. The details of the branch of mathematics called combinatorics are beyond
the scope of this book but the next paragraph should whet your appetite by dis-
cussing 1 application.

A L T E R N A T I N G S I G N M A T R I C E S

The Rn sequence seems to be relevant to the number of ways numbers can be
arranged in special kinds of matrices. As most of you probably know, a matrix is
an array of numbers organized in rows and columns. Here is an example of a
matrix with 5 rows and 5 columns:

www.oup-usa.org/sc/0195133420
www.oup-usa.org/sc/0195133420
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n R

1 1

2 2

3 7

4 42

5 429

6 7436

7 218348

8 10850216

9 911835460

10 129534272700

11 31095744852375

12 12611311859677500

13 8639383518297652500

14 9995541355448167482000

15 19529076234661277104897200

16 64427185703425689356896743840

17 358869201916137601447486156417296

18 3374860639258750562269514491522925456

19 53580350833984348888878646149709092313244

20 1436038934715538200913155682637051204376827212

21 64971294999808427895847904380524143538858551437757

22 4962007838317808727469503296608693231827094217799731304

23 639678600348796935600782403668485485893162060205454197694128

24 139195130590028911121955178430809752278606772281224640157476731328

25 51125173829571287017224567391919410147905063533336189533617647958933056

Table 79.1 Robbins Princeton Numbers.

This is a square N-by-TV matrix where N = 5. Its entries are all Os, Is, and
-Is, and its rows and columns sum to 1. Also notice that, upon omitting the
Os, the Is and -Is alternate in every row and column. Such matrices are called
alternating sign matrices. For N = 1 there is 1 alternating sign matrix, and for
N = 2 there exist 2 alternating sign matrices. For N = 3 there are 7 matrices,
including
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Can you find the other matrices? Notice that the number of different N-by-N
alternating sign matrices appears to follow the sequence in the Rn formula at the
beginning of this chapter: 1, 2, 7, . . . . We might be tempted to conjecture that
Rn gives the number of alternating sign matrices with TV rows and TV columns.
In fact Robbins has used a computer to check that this conjecture holds for
all N up to N = 16. Recently, it's been proved that this conjecture holds in
general.

S O M E C H A L L E N G E S

Let us reconsider the first equation in this chapter. It is not obvious from the
equation that the values of Rn are integers! Might there not be a value for n such
that the denominator doesn't divide the numerator evenly? You need not wonder
about this too long. Robbins says that all values of Rn are indeed integers. (Can
you prove this?) Why not test this for yourself by making a list of a few numera-
tor and denominator terms? Even if you do not have access to a computer, a
pocket calculator should suffice for the first few terms.

Can you compute more than the 6 terms in the title of Robbins's article?
Could the 31st term given in this chapter be the largest Robbins number ever
computed? Can you break this record? On a computer, you could compute the
product in the equation using

R=l
FOR 1=0 TO N-l
R = R * factorial(3*1+1)/factorial(N+I)

END
PRINT R

where "factorial" is the factorial function. Perhaps this will give you a hint as to
how to program the formula in the programming language of your choice.

See "Further Exploring" for a zillion more challenges.
For computer recipes, see [www.oup-usa.org/sc/0195133420]

www.oup-usa.org/sc/0195133420


Chapter 80

Parasite Numbers

He dove his thumb into the soft glob of red licorice he held, making it a
little bigger than the parasite which lay on Sarah's neck. . . . He bent for-
ward toward the blistery growth. It was covered in a spiderweb skein of

crisscrossing white threads, but he could see it beneath, a lump of pinkish
jelly that throbbed and pulsed with the beat of her heart.

—Stephen King, Four past Midnight

"Help! Get it off me," Monica screamed.
Dr. Googol and Monica were exploring the deep jungles of Africa when she

discovered a wet leech stuck to her ankle.
Dr. Googol nodded, withdrew a salt shaker from his backpack, and sprinkled

salt on the leech. It began to scream and promptly dropped to the moist forest
floor.

Monica took a deep breath. "Thank you."
They resumed their hike as Dr. Googol told Monica all about parasites.
The number 102,564 is a remarkable number that Dr. Googol discovered one

day during his late-evening computer explorations. He calls this number a para-
site number, for reasons that will soon become clear. In order to multiply
102,564 by 4, simply take the 4 off the right end and move it to the front to get
the answer. In other words, the solution is the same as the multiplicand except
that the number 4 on the right side is moved to the left end:

Isn't this an incredible number? How many numbers with this quality exist
within the numerical jungle, swimming peacefully and undetected in the swamp
of mathematics? These kinds of numbers remind Dr. Googol of a biological
organism that contains a parasite (digit) that roams around the body of the host
organism (the multidigit number in which the parasite resides) as it gains energy
by feeding (the multiplication operation). Dr. Googol has written several pro-
grams to search for parasite-containing numbers (or parasite numbers, for brevi-
ty), such as 102,564. If you search for all potential parasite numbers generated
by different 1-digit multipliers, you'll find that they are exceedingly rare. It
seems that the only parasite number less than 1 million is the 4-parasite
102,564. (The term 4-parasite indicates that the number 4 is the multiplier.)

Do the other digits give rise to any parasite numbers? Are there multipliers for
which no parasite number exists? How much computer time will be spent on
this, now that Dr. Googol has asked this question?
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There do exist occasional "pseudoparasites" lurking within the integers less
than a million. These are numbers like 128,205, which when multiplied by 4
also move the last digit to the first position:

128,205 x 4 = 512,820

(Dr. Googol calls these pseudoparasites only because the last migrating digit is
not the same as the multiplier.) Here are some other 4-pseudoparasites:

Here is a 5-pseudoparasite: 142,857 x 5 = 714,285.
Both parasites and pseudoparasites seem to be as rare as diamonds. As Dr.

Googol searches for parasites during the late-night hours, he challenges you to
beat him in his search using the computer of your choice. On your mark. Get
set. Go!

See "Further Exploring" for more information on parasites so huge that
no sane person should care about them.

Chapter 81

Madonna's Number Sequence

We are like the explorers of a great continent who have penetrated to its
margins in most points of the compass and have mapped the major

mountain chains and rivers. There are still innumerable details to fill in,
but the endless horizons no longer exist.

—Bentley Glass, Scientific American, vol. 267, 1992

On a fine frigid day, Dr. Googol's friend Madonna Mobius gave Dr. Googol and
his disciples a number puzzle. "What is the significance of the following
sequence of digits?" Mobius asked them.



Apocalyptic Powers © 195

425260376469080434957

After rattling off the sequence, Mobius suffered a heart attack and died. The
evening air was as astringent as alcohol, as Dr. Googol continued to study the
sequence while the dead mathematician's body grew cold on the snowy ground.
Even after years of study, no mathematician can fathom the mystery of this
sequence. Can you?

For a solution, see "Further Exploring."

Chapter 82

Apocalyptic Powers

We live on an island of knowledge surrounded by a sea of ignorance. As
our island of knowledge grows, so does the shore of our ignorance.

—John A. Wheeler, Scientific American, vol. 267, 1992

Dr. Googol presented the following number to his disciples and asked them
what was special about it:

1182,687,704,666,362,864,775,460,604,089,535,377,456,991,567,872 I

After much discussion, one young woman spoke: "It is the first power of 2
that exhibits 3 consecutive 6s."

Dr. Googol's disciples applauded with delight. In fact, this number is equal
to 2157. Dr. Googol calls numbers of the form 21 that contain the digits 666
apocalyptic powers because of the prominent role 666 plays in the last book of the
New Testament. In this book, called the Revelation (or Apocalypse) of John, 666
is designated as the Number of the Beast, the Antichrist.

Are there any other apocalyptic powers for higher values of /', or is this the
only one? Dr. Googol has enlisted the help of IBM's Deep Blue computer in the
computational search for double apocalyptic powers, which contain six 6s in a
row, but he was never able to find an example. Can you find such a number?

For a discussion, see "Further Exploring."
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The Leviathan Number ̂

None is so fierce that dare stir Leviathan up.
—Job 41:10

Dr. Googol's obsession with huge numbers reached maddening heights when he
startled scientists with the monstrous Leviathan number (represented by the
symbol ^)—a number so large as to make the number of electrons, protons,
and neutrons in the universe (1079) pale in comparison. (It also makes a googol
[10100] look kind of small).

^ is defined by the following identity:

where the ! indicates factorial. It derives its name from a huge sea dragon or ser-
pent of some kind that often symbolizes evil in Christian literature and in the
Old Testament. The Leviathan number is also intimidating from a mathematical
standpoint due to its probable incalculability, as we will soon see.

Recently Dr. Googol asked colleagues a number of questions pertaining to the
Leviathan number. For example:

© What are the first 6 digits of "ft"?

© Could modern supercomputers compute the Leviathan, or will this be
beyond the realm of humankind for the next century?

© Even if we cannot compute "&, how many other characteristics of this num-
ber can we write down?

 For the answers, see "Further Exploring."
ee [www.oup-usa.org/sc/0195133420] for code explained in "Further

Exploring."

www.oup-usa.org/sc/0195133420


Chapter 84

The Safford Number:
365,365,365,365,365,365

Mathematics is the only science where one never knows what one is
talking about nor whether what is said is true.

—Bertrand Russell

What is special about the huge number

365,365,365,365,365,365

Dr. Googol's story begins with the calculating prodigy Truman Henry Safford
(1836-1901) of Royalton, Vermont. When Safford was 10 years old, Reverend H. W.
Adams asked him to square, in his head, the number 365,365,365,365,365,365.
Dr. Adams reported:

He flew around the room like a top, pulled his pantaloons over the tops of his
boots, bit his hands, rolled his eyes in their sockets, sometimes smiling and talk-
ing, and then seeming to be in agony, until in not more than a minute said he,
133,491,850,208,566,925,016,658,299,941,583,255!

Truman Safford graduated from Harvard, became an astronomer, and soon
lost the amazing computing powers he had in his youth.

Another prodigy was Johann Dase (1824-1861), who had incredible cal-
culating skills but little mathematical training. He gave exhibitions of his calcu-
lating powers in Germany, Austria, and England. In 1849, while in Vienna, he
was urged to use his powers for scientific purposes, and he discussed projects
with mathematician Carl Gauss and others. In 1844, Dase used his calculating
ability to calculate pi to 200 places. (This was published in Crelles Journal for
1844.) Dase also constructed 7-figure log tables and produced a table of factors
of all numbers between 7,000,000 and 10,000,000. Gauss requested that the
Hamburg Academy of Sciences allow Dase to devote himself full-time to his
mathematical work but, although they agreed to this, Dase died before he was
able to do much more.

Legend has it that to compute pi Johann Dase used JT/4 = arctan(l/2) + arc-
tan(l/5) + arctan (1/8) . . . with a series expansion for each arctangent. He ran
the arctangent job in his brain for almost 2 months. Here is Dase's pi calculation:

?
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3.14159 26535 89793 23846 26433 83279 50288 41971 69399 37510
58209 74944 59230 78164 06286 20899 86280 34825 34211 70679
82148 08651 32832 06647 09384 46095 50582 23172 53594 08128
48111 74502 84102 70193 85211 05559 64462 29489 54930 38196

Dase had an incredible brain. He could give the number of sheep in a flock
after a single glance. He could multiply two 8-digit numbers in his head in 54
seconds, 2 40-digit numbers in 40 minutes, and two 100-digit numbers in 8
hours! Dase is said to have performed such computations for weeks on end, run-
ning as an unattended supercomputer. He would break off his calculation at
bedtime, store everything in memory, and resume calculation after breakfast.
Occasionally, Dase had a system crash.

For Arthur C. Clarke's skeptical comment on Johann Dase, see "Further
Exploring."

Chapter 85

The Aliens from independence Day

Nobody has ever domesticated mankind. We are thus a wild species,
as wild as the day we first went howling across the savanna. Perhaps
the self-taming process of becoming a civilized species did not tame

us to visitors, but only to ourselves. . . and then not very well,
given our violent history.

—Whitley Strieber, Communion

Infinity is where things happen that don't.
—S. Knight

Dr. Googol was once daydreaming about walking through the Nevada desert
with Captain Steven Hiller, the hero of the science-fiction movie Independence
Day. Suddenly Dr. Googol heard a sound in the sky as a huge alien ship appeared
above him veiled in fiery clouds. All over the Earth, alien crafts launched an
incredible attack. The alien destroyers were 15 miles long, and the mother ship
was 200 miles in length, both impossible for any Earthly weaponry to destroy.
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An alien appeared before Dr. Googol. It must be a hoax. If the creature
evolved on an alien world, why should it look so humanoid? The alien stood
upright and was bilaterally symmetric; that is, its left and right sides looked the
same. It had fingers, 2 jointed legs and arms, a head with 2 eyes, and a large cra-
nium. In fact, stripped of its biomechanical armor, the alien looked more like a
human than does an Earthly lemur, with whom we share greater than 95 percent
of our genetic material.

Science-fiction writers have explored a far greater diversity of alien life forms in
books than Hollywood can ever explore in movies, because the Hollywood alien
must trigger instantaneous emotional impact; this requires a design based on rec-
ognizable human facial expressions of threat and menace. In fact, most of the
"evil" Hollywood aliens since the 1953 War of the Worlds have had a tendency to
look mean and cranky, or like skullfaced sex-fiends. In reality, if we ever meet real
aliens we will have a hard time understanding their moods by looking at them.

© © ®

Dr. Googol slowly came out of his dream and began to formulate a mathemati-
cal problem involving aliens abducting humans. In Dr. Googol's scenario, the
scary alien 9 from Independence Day comes down to Earth, captures 1 male
human f (in this case, the U.S. president), and takes him to a large spaceship
hovering in the Earth's upper atmosphere. The creature realizes that the male is
unhappy without a companion, so the next year it abducts 1 female f .

Each succeeding year the creature duplicates its removals of the preceding 2
years, stealing the same number of humans, of the same sex, and in the same
order. Thus, in the third year, the creature captures a male and then a female

In the fourth year, it takes a female, a male, and then a female; and so on. The
sequence goes as M, F, M F, F M F. . . .

Is it possible to determine the sex of the one-billionth human taken? Would
the captured males be satisfied with the ratio of females to males ( f / f ) exist-
ing on the spaceship when the one-billionth human is taken? (Assume that the
humans do not breed for the duration of this experiment.)

It turns out that the sex of the wth human is not too difficult to compute. In
fact, in 1957, an obscure little paper was written on this class of problem, and a
generating formula was discovered by T. F. Mulcrone of Loyola University. The
Mulcrone formula can be adapted to Dr. Googol's questions as follows. Let's
denote a male by the number 1 and a female by the number 2. The sequence of
males and females then becomes Mn = 1, 2,1 2, 2 1 2 , . . . . The rath term Mn can
be quickly computed from Mulcrone's formula: Mn = [kn] - [k(n - 1)], where
k = (V5 + 1 )/2, and the brackets indicate an integer truncation. In other words,
[x] is the greatest integer not exceeding x.
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C and BASIC program listings are provided so that you can compute the wth
term of the sequence. You can also use these programs to compute the ratio of
males to females by maintaining a count of their numbers through time. Why
not make a plot of the growth in the number of males and females through the
years? You should find that by the time the 500th human is taken there will be
191 males and 309 females:

"We women
need more
men."

"We men
are happy!"
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After 1,000 years, there will be 382 males and 618 females.
Armed with these simple yet powerful programs, we can now determine the

sex of the one-billionth abductee. If the first abduction is considered to have
taken place in year 0, then, using the Mulcrone formula, we can determine that
it takes only 42 years for the alien to accumulate 1 billion humans. (This is
about a sixth of the world s population and roughly the number of Chinese.)
The ratio of females to males is 1.618 to 1, which, as one computer programmer
from Boca Raton said, "is better than the ratio in most bars."

# For further alien explorations, see "Further Exploring."
El See [www.oup-usa.org/sc/0195133420] for program examples.

Chapter 86

One Decillion Cheerios

One thing I know and that is that I know nothing.
—Socrates

On Christmas Day 1999, Dr. Googol was eating a bowl of Cheerios® cereal,
staring at all the doughnut-shaped morsels, daydreaming about endless streams
of Os. As he started to line up pieces of breakfast cereal in a row with his left
hand, he used his right hand to list all the special qualities of the number I decil-
lion. First, he noted, a decillion is a very large number: 10 raised to the power of
33, or 1 followed by 33 zeros. He formed the number with Cheerios:

one decillion =
1,OOO,OOO,OOO,OOO,OOO,OOO,

OOO,OOO,OOO,OOO,OOO

Aside from its obvious enormity, there is something unbelievably special
about a decillion, which we can write more succinctly as 1033. Before revealing
the strange answer, let's get an idea about how large 1 decillion is. It's greater
than the number of atoms in a human breath (1021). However, it's smaller than
the number of electrons, protons, and neutrons in the universe (1079). What Dr.
Googol finds most interesting is that 1033 is the largest power of 10 known to

www.oup-usa.org/sc/0195133420
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humans that can be represented as the product of 2 numbers which themselves
contain no zero digits:

For a variety of technical reasons, some mathematicians believe that no one
will ever be able to find a larger power of 10 that can be represented as the prod-
uct of 2 numbers which themselves contain no zero digits.

Oh my! Do you think humanity will ever find such a number? Dr. Googol's
personal opinion is that the answer is "Never!" Could he be wrong?

See "Further Exploring" for additional analysis.

Chapter 87

Undulation in Monaco

Such as say that things infinite are past God's knowledge may just as well
leap headlong into this pit of impiety, and say that God knows not all

numbers. . . . What madman would say so? What are we mean wretches
that dare presume to limit His knowledge?

—St. Augustine

The number 69,696 is a remarkable number and certainly among Dr. Googol's
top 10 favorite integers. For one thing, the number starts with 696, the very year
that Dr. Googol's favorite Chinese poet, Chen Zi'ang, composed the following
haunting poem:

ftaffacfon Cfimoing Youzhau Tower

(Witness not the sages of the past,

Perceioe not the &>/se of the future,

Reflecting on heaven ana* earth eternal,

Tears flowing dou>n / foment in loneliness.

—Chen Zi'ang, fi.D. 696
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Moreover, 69,696 is almost exactly equal to the average velocity in miles per
hour of the Earth in orbit, and it is also the surface temperature in degrees
Fahrenheit of some of the hottest stars. More important are its fascinating math-
ematical properties.

One day while in his Monaco villa, Dr. Googol presented this number to his
friend Dorian and said: "What do you find significant about 69,696?"

Dorian gazed into the Mediterranean Sea as it crashed into huge rocks. In the
fractured sides and grottos of the massive cliffs were strange, rich blues and
weathered aquamarines. After a few seconds, she replied, "That is too easy. It is
the largest undulating square known to humanity."

Dr. Googol pondered this answer, and he himself started to undulate in a
mixture of excitement and perhaps even terror. The sounds of the sea became
deafening as it surged into the cavernous bellies of worn boulders and exploded
in steepled and gabled sprays of foam.

To understand Dr. Googol's passionate response, we must digress to some
simple mathematics. As discussed in Chapter 52, undulating numbers are of the
form ababababab. . . . For example, 171,717 and 28,282 are undulating num-
bers. A square number'is of the form y = x2. For example, 25 is a square number.
So is 16. An undulating square is simply a square number that undulates.

When Dr. Googol conceived the idea of undulating squares a few years ago, it
was not known if any such numbers existed. It turns out that 69,696 = 2642 is
indeed the largest undulating square known to humanity, and most mathemati-
cians believe we will never find a larger one.

Dr. Noam D. Elkies from the Harvard Mathematics Department wrote to Dr.
Googol about the probabilities of finding undulating squares. The chance that a
"random" number around xis a perfect square is about l/Jx. More generally, the
probability is x^~l + l1^ for a perfect <{/th power. Since there are (for any k) only 81
£-digit undulants, one would expect to find very few undulants that are also per-
fect powers, and none that are very large. Dr. Elkies believes that listing all cases
may be impossible using present-day methods for treating exponential Diophan-
tine (integer) equations.

See "Further Exploring" for more information on undulating squares as
well as on other undulants such as undulating prime numbers.
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The Latest Gossip
on Narcissistic Numbers

The brain is a three-pound mass you can hold in your hand that can con-
ceive of a universe a hundred-billion light-years across.

—Marian Diamond

Number is the bond of the eternal continuance of things.
—Plato

Dr. Googol was watching the TV show Xena: Warrior Princess. In this particular
episode, Xena was gazing at her beautiful physiognomy reflected in a pool of
water.

Monica turned to Dr. Googol. "She's such a narcissist!"
"Narcissist?"
"Yes, she can't take her eyes off herself."
"Hold on. This reminds me of something infinitely more interesting than

Xena." Dr. Googol paused to collect himself, then reached for a piece of chalk.
"Narcissistic numbers are the sums of powers of their digits. In other words, they
are w-digit numbers that are equal to the sum of the wth powers of their digits."
Dr. Googol went over to the blackboard attached to the top of his TV. He wrote
an example of a narcissistic number:

"The numbers 370 and 371 are also narcissistic numbers. Variously called
narcissistic numbers, numbers in love with themselves, Armstrong numbers, or
perfect digital variants, this kind of number has fascinated number theorists for
decades. For example, the English mathematician Godfrey Hardy (1877-1947)
said, 'There are just four numbers, after unity, which are the sums of the cubes of
their digits. . . . These are odd facts, very suitable for puzzle columns and likely
to amuse amateurs, but there is nothing in them which appeals to the mathe-
matician.'"

Xena began to slash at a bunch of thieves with her huge, glittering sword.
Dr. Googol continued. "I gave 153 as an example of such a number. Can you

find other narcissistic numbers? Can you find larger narcissistic numbers?"
Monica took the chalk from Dr. Googol's hand. "There's time to think about

that later. Let's just watch the show."
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® ® ®

The largest narcissistic number discovered to date is this incredible 39-digit
number:

115,132,219,018,763,992,565,095,597,973,971,522,401

(Each digit is raised to the 39th power!) Can you beat the world record? What
would Godfrey Hardy have thought of this multidigit monstrosity? What is the
density of narcissistic numbers? In other words, are there 4-digit narcissistic
numbers, 5-digit numbers, 6-digit numbers, etc., or do they get progressively
rarer as one searches for ever-larger examples?

 See "Further Exploring" for more on narcissistic numbers and for the lat-
est gossip on lonely numbers /£• called factorions.

See [www.oup-usa.org/sc/0195133420] for help computing these kinds of
numbers.

Chapter 89

The abcdefghij Problem

I do not know what I may appear to the world, but to myself I seem to
have been only a boy playing on the sea shore, and diverting myself now
and then finding a smoother pebble or a prettier sea shell than ordinary

whilst the great ocean of truth lay all undiscovered before me.
—Isaac Newton

Dr. Googol was visiting the IBM T. J. Watson Research Center in Yorktown
Heights, New York, when he walked up to a blackboard and wrote down:

Several of the IBM researchers stared with amusement at the odd formula.
Others pointed with hyperbolically increasing interest and gestured and took

www.oup-usa.org/sc/0195133420
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notes. From the long hallway came several security guards, evidently curious as
to how Dr. Googol had gotten into the building without a proper security pass.

Dr. Googol bowed and then motioned to the wonderful-looking equation.
"Each letter stands for a number from 0 to 9. Can you find values for a, b, c, d,
e,f,g, h, i, and j that make this equation correct? Each digit must be unique. For
example, the first expression could be 12 3 but not 122 because the 2 is repeated."

The researchers jolted away to the nearest computers and began to furiously
code the problem.

Dr. Googol clapped his hands. "I'm sure your managers will realize that this is
a wonderful programming exercise and justify the time you are spending on the
problem. As a reward, I will give the first person who solves this autographed
copies of Dr. Cliff Pickover's recent books The Science of Aliens and Strange
Brains and Genius: The Secret Lives of Eccentric Scientists and Madmen"

The scientists and programmers roared with delight as their nimble fingers
raced across their keyboards like angelfish swimming through clear water.

See "Further Exploring" for a solution and for much tougher problems.
See [www.oup-usa.org/sc/0195133420] for computer code used to solve

this problem.

Chapter 90

Grenade Stacking

Students must learn that mathematics is the most human of endeavors.
Flesh-and-blood representatives of their own species engaged in a

centuries-long creative struggle to uncover and to erect this magnificent
edifice. And the struggle goes on today. On the very campuses where

mathematics is presented and received as an inhuman discipline, cold and
dead, new mathematics is created. As sure as the tides.

—/. D. Phillips, Humanistic Mathematics Network Journal,
no. 12, Oct. 1995

While on his tour of duty in Vietnam, Dr. Googol was stacking grenades in such a
way that each layer formed a square array of grenades. For example, the top of the
square pyramid contained 1 grenade, the next 4 grenades, the next 9, and so on.

www.oup-usa.org/sc/0195133420


The number of grenades in the entire pyramid was therefore a sum of consec-
utive squares, beginning with 1:

"I have an amazing problem!" he thought.
He began to wonder if he could find a sum of consecutive squares, beginning

with 1, that equaled a square number «; for example, I2 + 22 + 32 + 42 + . . . .
= rfi. It turns out that the only nontrivial solution known to humanity is
I2 + 22 + 32 + 42 + + 242 = 702.

Are there other solutions if we allow any set of k consecutive squares (not nec-
essarily beginning with 1) such that the sum is a square number? Are there solu-
tions for consecutive cubes such that the sum is a cubical number? Would you
like to be the first person on Earth to find these?

See "Further Exploring" for more comments and challenges.

Chapter 91

The 450-Pound Problem

Mathematicians study structure independent of context, and their science
is a voyage of exploration through all the kinds of structure and order

which the human mind is capable of discerning.
—Charles Pinter, A Book of Abstract Algebra

On New Year's Eve 1994, Dr. Googol was leafing through the Sunday Telegraph
of London. The newspaper offered a cash prize (450 pounds sterling) to the first
person who sent them a solution, in coprime positive integers greater than 100,
for this equation:

The 450-Pound Problem © 207
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Let's say that again in simple English. Two integers are said to be coprime if
their greatest common divisor equals 1. For example, 5 and 9 are coprime, while
6 and 9 are not coprime because their greatest common divisor is 3.
Unfortunately, Dr. Googol had no time to solve this problem, and mathematician
Kevin Brown beat him to the prize. Finding the solution was quite a challenge,
and Kevin determined that the solutions involved incredibly large numbers:

>4=79222057266254960819025292611212161768608793943824566
5806051608621113641830336450448115419524772568639

C= 677959805103821424723263992665061838773573375138707379
34706199386093375292356829747318557796585767361

B = D = 4360668418820711170950024593240851673665433429374
77344818646196279385305441506861017701946929489111120

Let's see you solve this with pencil and paper! The offer turned out to be legit-
imate, and the Telegraph actually did send Kevin Brown £450 ($706.50). (Kevin,
a controls engineer at the Boeing Company in Seattle, Washington, graduated
from the University of Minnesota with a bachelor's and master's degrees in
engineering. See his fascinating math Web page at http://www.seanet.com/
-ksbrown/index.htm.)

The famous mathematician Adrien Marie Legendre (1752-1833) once stated
that this particular equation had no solutions, although it's not clear why he
thought so. (Technically speaking, when B = D, B and D are usually not con-
sidered coprime; perhaps Legendre was right after all!) In any case, if we permit
B = D, there is a smaller solution, namely (17/21)3 + (37/21)3 = 6. (But the
Telegraph's stipulation that the integers be greater than 100 was clearly intended
to exclude this easier solution.)

Incidentally, mathematicians currently do not believe that there are any posi-
tive integer solutions such that x2+y3=z6. (In other words, x, y, and z must be
three positive integers.)

Here are some other examples that appear to have no integer solutions.
Except f o r « = l , » z = l ; w = 2 J 7 w = l ; and n = 3, m = 2, there appear to be no
other solutions for this deceptively simple-looking formula:

Even more interesting, the equation a" - bm = 1 has no positive integer solu-
tions with m,n > 1 other than a = 3, n = 2, b = 2, m = 3. Dr. Googol believes that
mathematicians have proved that I 2" - 3m I > (2n)e^~ w /10^ for n > 27, and also
that there exists a number c > 1 such that I 2" - 3m I > (2n)/(nc).

Dr. Googol does not know if there are other solutions to the problems in this
chapter.

For more on coprime numbers, see "Further Exploring."

http://www.seanet.com/~ksbrown/index.htm
http://www.seanet.com/~ksbrown/index.htm
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The Hunt for Primes in Pi

On the basis of my historical experience, I fully believe that mathematics
of the twenty-fifth century will be as different from that of today as the

latter is from that of the sixteenth century.
—George Sarton, A History of Science, 1959

Last summer, Dr. Googol jumped from a C-130's cargo ramp at 29,000 feet—
the height he needed to carry him within striking distance of his target. From his
pistol belt was suspended a Heckler & Koch USP 9mm semiautomatic pistol.
His vest was equipped with class II body armor. He breathed oxygen through a
small tank on his back. The jump—a HALO (high altitude, low opening) inser-
tion—would bring him right on target: Beijing, China.

As he fell through the dark sky, he turned to Monica, his partner in the covert
operation.

"Monica, 3 is a prime number. So is 31. These numbers are also the first and
first 2 digits in the decimal expansion of it = 3.14159. . . . I'm wondering if
there are other integers k such that the first k decimal digits of Ji are prime? Can
you find any? Do you think they are commonplace?"

The rushing wind whipped through Monica's hair like a flock of seagulls. "Dr.
Googol, it turns out that 314,159 (k = 6) is also a prime number."

"Oh, Monica, you've made me so happy!"
"Dr. Googol, can you tell me why we are going to infiltrate military installa-

tions around the world? Are we going to disable the small computers of rogue
terrorists? Are we going to disable the atomic weapons of the less stable super-
powers?"

"In a manner of speaking, yes. We are going to have their computers begin to
hunt for pi-primes. This will render the military ineffective and bring world
peace."

Before Dr. Googol and Monica opened their chutes, Dr. Googol wondered if
the next pi-prime would ever be found. Would it be so large that it is beyond the
reach of modern supercomputers? Perhaps the next pi-prime (symbolized by
Jt°) will be relegated to the realm of myth, like the superhuman Olympian gods
of yore.

See "Further Exploring" for more comments on pi-primes.
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Schizophrenic Numbers

The pursuit of mathematics is a divine madness of the human spirit.
—Alfred North Whitehead, Science and the Modern World

Brilliant mathematician Kevin Brown seems to have discovered a wonderfully
weird set of numbers called schizophrenic numbers, $$. For any positive integer
n, let f(n) denote the integer given by the recurrence

with the initial value /(O) = 0. Think of this as a mathematical feedback loop.
You plug in a number, and out comes a solution. You plug the solution back into
the formula, and out comes a new solution, and so on. For example:

"This sequence looks boring," you say to Dr. Googol? Ah, but here's where
the schizophrenia begins. The square roots of these numbers /(«) for odd inte-
gers n give a bizarre, persistent pattern. The square roots appear to be "rational"
for periods—that is, a number that can be expressed as a ratio of 2 integers—and
then disintegrate into irrationality. (Recall that rational numbers sometimes have
infinitely repeating strings of a digit; for example, 1/3 = 0.33333333. . . .) This
mathematical schizophrenia is exemplified below by the first 500 digits of $$ =
>//(49) (typeset to show the interesting patterns):
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0426563940928819
4444444444444444444444444444444

38775551250401171874
9999999999999999999999999999

808249687711486305338541
66666666666666666666666

5987185738621440638655598958
33333333333333333333

0843460407627608206940277099609374
99999999999999

0642227587555983066639430321587456597
222222222

1863492016791180833081844 . . .

Isn't this a splendid arrangement of digits? If you look closely at .gj (49), you'll
see that the digit sequence consists of repeated digits alternating with "random-
looking" strings. The repeating strings become progressively smaller, and the
irregular strings become larger, until eventually the repeating strings disappear—
as if a numerical God has turned off water from a mathematical fire hose.
However, by increasing n we can slow down the eventual demise of repeating
digits. Oddly enough, the repeating digits are always 1, 5, 6, 2, 4, 9, 6, 3, 9, 2,
. . . . Why is this so? We may call this sequence (1, 5, 6, 2, . . . ) the schizophrenic
sequence—the key to calmness in an otherwise chaotic world.

The construction and discovery of schizophrenic numbers was prompted by a
claim (posted in the Usenet newsgroup sci.math) that the digits of an irrational
number chosen at random would not be expected to display obvious patterns in
the first 100 digits. It was said that if such a pattern were found, it would be
irrefutable proof of the existence of either God or extraterrestrial intelligence.
(An irrational number is any number that cannot be expressed as a ratio of 2
integers. Transcendental numbers like e and pi, and noninteger surds such as
v27are irrational.)

It's obvious from J^J (49) that certain easy-to-construct irrational numbers are
filled with wonderful patterns that are ripe for future exploration. Dr. Googol
looks forward to hearing from anyone who makes other wonderful discoveries in
the little-researched area of large schizophrenic numbers.
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Perfect, Amicable, and
Sublime Numbers

Just as the beautiful and the excellent are rare and easily counted,
but the ugly and the bad are prolific, so also abundant and deficient
numbers are found to be very many and in disorder, their discovery

being unsystematic. But the perfect are both easily counted and drawn
up in a fitting order.

—Nichomachus, A.D. 100

Man ever seeks perfection but inevitably it eludes him. He has sought
"perfect numbers" through the ages and has found only a very few—

twenty-three up to 1964.
—Albert H. Beiler, Recreations in the Theory of Numbers

Dr. Googol raises his hand. "Monica, I want to tell you about perfection." His
voice is a whisper, as if he is afraid he is being watched.

"Perfection, sir?"
Dr. Googol nods. "Perfect numbers are the sum of their proper divisors.

For example, the first perfect number is 6 because 6 = 1 + 2 + 3. (A proper
divisor is simply a divisor of a number TV excluding TV itself.) The next perfect
number is 28 because its divisors are 1, 2, 4, 7, and 14—and 28 also equals
1 + 2 + 4 + 7 + 14."

Monica's eyes seem to be locked onto Dr. Googol's hairy mustache and gold-
en birthmark. "Dr. Googol, there must be other perfect numbers."

"Yes, but these numbers are so rare that they have a special significance in my
heart." Dr. Googol pauses. "I think perfection is rare in numbers just as good-
ness and beauty are rare in humans. On the other hand, imperfect numbers are
common, and so is ugliness and evil."

"Imperfect numbers?"
"Those where the sum of the factors is greater or less than the number itself."
Monica nods. "My friend Bill mentioned abundant numbers to me. Can you

explain what these numbers are?"
Dr. Googol pinches his lower lip with his teeth. "How dare he reveal that

secret!" Dr. Googol then takes a deep breath. "If the original number is less than
the sum of its factors, I call it abundant. As an example, the factors of 12 are 1,
2, 3, 4, and 6. And these factors add up to 16. If greater, the number is deficient.
For example, the factors of 8—1, 2, and 4—add up only to 7."
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"Most numbers are either abundant or deficient? Perfection is rare."
Dr. Googol nods. "You've got it!" Then he leans toward Monica as if observ-

ing a painting in a museum. "Monica, two numbers are amicable, or friendly, if
the sum of the divisors of the first number is equal to the second number, and
vice versa. The ancient philosophers considered them to have the same parent-
age, and in their divine world these numbers are more congenial than numbers
that are unfriendly."

"I don't get it."
"Here's an example. 220 and 284 are amicable. Let's list all the numbers by

which 220 is evenly divisible."
Monica leans forward and clasps her hands together like an eager child. "Uh,

let's see—1, 2, 4, 5, 10, 11, 20, 22, 44, 55 and 110, all go into 220."
"Excellent. Now add up all those divisors. What do you get?"
"1 + 2 + 4 + 5 + 10 + 11 + 20 + 22 + 44 + 55 = 284."
"Very good, Monica. The answer is 284. Now let's try the same trick with

284. Its perfect divisors are 1, 2, 4, 71, and 142. Now, add them up."
"You get 220, Dr. Googol."
"Yes! Therefore 220 and 284 are amicable numbers. The sums of their divisors

are equal to each other."
Monica nods. "Interesting. Amicable numbers, like perfect ones, are quite rare."
"War is always easier than peace."
"220 and 284 would be perfect marriage partners in the eyes of a numerical

God."
Dr. Googol nods. "A perfect marriage."
Dr. Googol walks over to a wall of the White House and scrawls on it with a

piece of charcoal. He lowers his voice an octave, and he thinks he sees awe in
Monica's eyes. "The first 4 perfect numbers—6, 28, 496, and 8,128—were
known to the late Greeks. Nicomachus and lamblichus knew about these."

Monica raises her hand. "Do all perfect numbers end in an 8 or 6?"
"I'm not sure. But I do know that every even perfect number is also a triangu-

lar number." He pauses. "Perfect numbers are very rare. The fifth perfect num-
ber, 33,550,336, was found recorded in a medieval manuscript. To date,
mathematicians know only about 30 perfect numbers. No one knows if the
number of perfect numbers is infinite."

A chill goes down Dr. Googol's spine when he says the word infinite.
He begins to pace. "Perfect numbers thin out very quickly as you search larg-

er and larger numbers. They might disappear completely—or they might con-
tinue to hide among the multidigit monstrosities that even our computers can't
find."

Monica raises her hand. "What about amicable numbers?"
Dr. Googol nods. "Over a thousand amicable numbers have been found.

Another pair includes 17,296 and 18,416."
On her notebook computer, Monica begins to furiously type a program to

search for and print amicable numbers. The computer soon prints several num-
bers on a slip of paper:
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Amicable Numbers
220 and 284 5,020 and 5,564
1,184 and 1,210 6,232 and 6,368
2,620 and 2,924 10,744 and 10,856

"Good work, Monica."
Monica takes the slip of paper and studies it.
Dr. Googol continues his discussion. "Mathematicians have also studied

sociable numbers. In these sets of numbers, the sum of the divisors of each num-
ber is the next number of a chain. For example, in 1918 a man named Poulet
found the following sociable number chain:

Sociable chains always return to the starting number. Poulet's chain and a 28-
link chain starting with 14,316 were the only sociable chains known until 1969,
when suddenly Henri Cohen discovered seven new chains, each with 4 links."
(See Figure 94.1)

94.1 A wonderful 28-link amicable number chain.
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Dr. Googol's voice grows in intensity and speed. "A pair of amicable numbers,
such as 220 and 284, is simply a chain with only 2 links. A perfect number is a
chain with only 1 link." He takes a deep breath. "No chains with just 3 links
have been found, despite massive searches. There are certainly none with a
smallest member less than 50 million! These hypothetical 3-link chains are called
crowds. Mathematically speaking, a crowd is a very elusive thing and may not
exist at all."

"Dr. Googol, you talk about discovering numbers as if we're searching for
stars in the heavens."

"It's a little like that. There's a lot of unexplored territory."
Just then the floor begins to shake. Dr. Googol and Monica look warily from

one to the other like condemned criminals.
"Dr. Googol, we never should've stayed here so long. What if the White

House staff found one of our computers? We could be in deep trouble."
"It's okay. I'm friends with the president. He lets me use this office. In return,

I advise his staff on economic issues."
"Okay."
"Before we leave, I want to tell you about some numerical beasts even rarer

than the perfect numbers." Dr. Gogool walks over to a wall and begins to sketch.
"For any positive integer n let ^(n) and W(ri) denote the number of divisors of n
and sum of the divisors of n, respectively. A number Nis called sublime if ^(N)
and W(AO are both perfect numbers. The only 2 known sublime numbers are 12
and this one:"

60865556702383789896703717342431696226578307733518859705
28324860512791691264

The latter number was discovered by Kevin Brown. (12 is sublime because its
divisors are 12, 6, 4, 3, 2, and 1. The number of divisors is therefore perfect, as
is the sum of its divisors.)"

"Amazing."
"Monica, here are my final questions for you. Will humanity ever be able to

find another sublime number, or prove that no others exist? Can there exist an
odd sublime number?"

 See "Further Exploring" for more on abundant, amicable, and perfect
numbers.

See [www.oup-usa.org/sc/0195133420] for computer code used to find
perfect and amicable numbers.

www.oup-usa.org/sc/0195133420
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Prime Cycles and d

The real voyage of discovery consists not in seeking new landscapes
but in having new eyes.

—Marcel Proust

Any positive integer can be expressed as the product of primes in just one way. For
example, 10 = 5 x 2 and 24 = 2 x 2 x 2 x 3 . Let's define a new function d (ri)
which is the sum of the prime factors of n. For example d (24) = 2 + 2 + 2 + 3 =
9. As far as Dr. Googol can tell, iterations of the form x-$ d (ax + b] invariably
lead to closed loops for any integers a and b. By closed loops, Dr. Googol means a
repeating sequence of integers. For example, mathematician Kevin Brown has dis-
covered that if you use any initial value of x less than 100,000, iteration of
d (8x + 1) always leads to the 23-step cycle

66 •» 46 -> 47 -» 42 •> 337 -» 63 -> 106 -» 286 -> 119 -> 953 -»
76 -> 39 -> 313 -» 175 •> 470 -> 3761 -> 30089 -> 367 -» 103 -> 24 -»
193 -> 111 -> 134 ̂ 66 ...

On the other hand, iteration of d (7x + 3) always leads to 1 of the following
2 cycles for any initial value of x:

cycle #1: 30 -> 74 -» 521 ̂  85 ̂  38 ̂  269 -» 66 ̂  39 -^ 30 ...
cycle #2: 92 -» 647 •> 118 ̂  829 •> 2905 -> 10171 -> 109 -> 385 ̂  92 ...

One particularly long loop occurs for d (13x + 12), which has a period of 59
and appears to be the only possible limit loop for this function. Dr. Googol
wonders if every iteration is eventually periodic, and if there is a finite number of
limit cycles for any given function.

Can you shed further light on these strange prime cycles? The first person to
make a new discovery and mail it to Dr. Googol receives a beautiful fractal print.
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Cards, Frogs, and
Fractal Sequences

A mathematician who is not also something of a poet will never be a
complete mathematician.

—Karl Weierstrass

Make a set of cards numbered 1, 2, 3 , . . . n and hold them face up in your hand.
Take the top card and place it face up on the bottom of the deck. Place the next
card face up on a table. Continue this process until all n cards are face up on the
table. How far down in the pile on the table do you have to look to find the orig-
inal top card?

The answer relates to a sequence that begins with

1,1, 2,1, 3, 2, 4, 1, 5, 3, 6, 2, 7, 4, 8,1, 9, 5,10, 3,11, 6, 12, 2, 13, 7,14,
4, 15, 8, . . .

For example, if you use 5 cards numbered, in order, 1,2,3, 4, and 5, the ini-
tial 1 will be the third card in the deck on the table. Interestingly, this sequence
is fractal, containing infinite "copies" of itself. You can test this for yourself. If
you delete the first occurrence of each integer, you'll see that the remaining
sequence is the same as the original:

1,1, S, 1,3,2,4,1,5, 3,6, 2, ?, 4,8,1,9, 5,10, 3, tt, 6,13, 2, 13, 7,14, 4, M, 8 , . . .

Do it again and again, and you get the same sequence! Can you create a for-
mula to generate the £th member of this sequence? What will the top card be for
a deck of 100 cards? (See "Further Reading" for Clark Kimberling references on
this interesting sequence.)

Another example of a fractal sequence is the "signature sequence" of a positive
irrational number R., such as V 2 . To create this amazing sequence, arrange the set
of all numbers / +jR, where / and y are nonnegative integers, in ascending order:

Then i(\), i(2], /(3), . . . defines the signature of R. For example, the signa-
ture of the square root of 2 starts with
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1, 2,1, 3, 2,1, 4, 3, 2, 5,1, 4, 3, 6, 2, 5, 1, 4, 7, 3, 6, 2, 5, 8,1, 4, 7, 3, 6,
9, 2, 5, 8, ...

If you delete the first occurrence of each integer, you'll see that the remaining
sequence is the same as the original. To compute this sequence, all Dr. Googol
did was to write down the first few possibilities for / + j x ^2 and arrange them
in order from least to greatest:

In this example, / values form the fractal sequence.
Does this work for other irrational numbers, or is there something special

about >/~2? Why does the sequence exhibit such wonderful fractal properties?
Does the initial number have to be irrational? Could it be any random number?
Would you generate a fractal sequence for the schizophrenic irrational number
discussed in Chapter 93?

For more information on fractal signature sequences, see "Further
Exploring."

See [www.oup-usa.org/sc/0195133420] for computer code used to create
these sequences.

Want another example of a fractal sequence? The following one is called the
golden sequence:

10110101101101011010110110101101 . . .

It can be created using the following algorithm. Start with 1, then replace
1 by 10. From then on, we repeatedly replace 1 by 10 and each 0 by 1.
This sequence has many remarkable properties that involve the golden ratio
</> = 1.6180339 . . . = (1 + /5~)/2 . If we draw the line j/ = ̂ xon a graph, (that is,
a line whose slope is </>) then we can see the sequence directly (Figure 96.1).

Whenever the (/> line crosses a horizontal grid line we write 1 by it on the line,
and whenever the (/> line crosses a vertical grid line we write a 0. (The line can
never cross exactly at an intersection of the vertical and horizontal grid lines.)
Now, run your finger along the (j) line starting at (0,0), and you will generate a
sequence of Is and Os—the golden sequence. Ron D. Knott of the University of
Surrey in the United Kingdom has translated the sequence into an audio file by
mapping Is to A notes (220Hz) and Os into the A an octave higher (440Hz),
played at about 5 notes per second. He notes that the rhythm is hypnotic, hav-

www.oup-usa.org/sc/0195133420
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96.1 One way to generate the
golden sequence. The diagonal
line isy = 4>x.

ing a definite beat that keeps changing but holds one's attention. One wonders if
the golden string ever repeats.

The sequence can also be generated by beginning with 1 and 10, then adjoin-
ing successive numbers as follows:

1
10
101
10110
10110101
1011010110110
etc. . . .

Here are some other observations about this unusual sequence:

© The number of Is and Os in this sequence form a Fibonacci sequence, and
the ratio of Is to Os approaches (j) as more terms are added.

© Underline any subsequence of the golden sequence—for example, the subse-
quence 10:10 110 10 110 1 10. ... You'll find that 10 follows the preced-
ing 10 by the following number of places: 2122121 If 2 is replaced by 1
and 1 by 0, the golden sequence is replicated which shows that it is "self-
similar" at different scales—that is, it is a fractal sequence.
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Dr. Googol's favorite fractal sequences are the batrachions. Batrachions form a
class of bizarre and infinite mathematical curves that hop like frogs from one
"lilypad" to the next as they parade along the number system. These little-known
curves derive their name from batrachian, which means frog-like. (To pronounce
the word, note that the ch has a k sound.)

In addition to hopping in a strange manner from integer to integer, they also
have other interesting properties. For example, they are often fractal, exhibiting
an intricate self-similar structure when examined at different size scales. Also,
they evolve from very simple-looking recursive formulas involving integers.

As background, perhaps the most common example of recursion in program-
ming and in mathematics is one that defines the Fibonacci numbers. As men-
tioned several times in this book, after the first 2, every number in this sequence
equals the sum of the two previous numbers: FN = F^_1 + FN_2foT N> 2 and
Fo = F! = 1. This defines the sequence: 1, 1, 2, 3, 5, 8, 13, 21,. ...

With this brief background to recursion, consider Dr. Googol's favorite batra-
chion, produced by this simple, yet weird recursive formula:

The formula for the batrachion is reminiscent of the Fibonacci formula in
that each new value is a sum of 2 previous values—but not of the immediately
previous 2 values. The sequence starts with a(\) = 1 and a(2) = 1. The "future"
values at higher values of n depend on past values in intricate recursive ways.
Can you determine the third member of the sequence? At first, this may seem a
little complicated to evaluate by hand, but you can begin slowly by inserting val-
ues for n, as in the following:

Therefore, the third value of the sequence, a(3), is 2. The sequence a(n) seems
simple enough: 1, 1, 2, 2, 3, 4, 4, 4, 5 , . . . . Try computing a few additional num-
bers. Can you find any interesting patterns? The prolific mathematician John H.
Conway presented this recursive sequence at a talk he gave at AT&T Bell Labs
entitled "Some Crazy Sequences" (see "Further Reading"). He noticed that the
value a(n)/n approaches l/2 as the sequence grows, and n becomes larger. Table
96.1 lists the first 32 terms of the batrachion and the ratio a(n)ln.

Dr. Googol first became interested in this sequence after reading Manfred
Schroeder's delightful book Fractals, Chaos, Power Laws, but, alas, there were no
graphics included to help readers gain insight into the behavior of the batra-
chion. It turns out that this sequence has an incredible amount of hidden struc-
ture. Figure 96.2 is a plot of a(n)ln for values of n between 0 and 1000. Notice
how the curve hops from one value of 0.5 to the next along very intricate paths.
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n
1
2
3
4
5
6
7
8
9
10
11
12
13
14

a(n)
1
1
2
2
3
4
4
4
5
6
7
7
8
8

a(n)/n
1.0
1.0
.666
.5
.6
.666
.5714
.5
.5555
.6
.6363
.5833
.6153
.5714

n
15
16
17
18
19
20
21
22
23
24
25
26
27
28

a(n)
8
8
9
10
11
12
12
13
14
14
15
15
15
16

a(n)/n
.5333
.5
.5294
.5555
.5789
.6
.5714
.5909
.6086
.5833
.6
.5769
.5555
.5714

n a(n) a(n)/n
29 16 .5517
30 16 .5333
31 16 .5161
32 16 .5

Table 96.1 First 32 Terms of the Batrachion

Each hump of the curve
appears to be slightly lower
than the previous, as if a
virtual frog were tiring as it
explored higher and higher
numbers. As the frog nears
infinity, will it stop its
hopping and lie dormant
at a(n}/n = 0.5? Magnifi-
cation of the figure reveals
more and more humps
with an intricate self-simi-
lar arrangement of tiny jig-
gles along the path. 96.2 Batrachion a(n)/n for 0 < n < 1,000.

Want to know a lot more about batrachions and read about the $10,000
cash award? See "Further Exploring."

See [www.oup-usa.org/sc/0195133420] for computer code.

www.oup-usa.org/sc/0195133420
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Fractal Checkers

Eternity is a child playing checkers.
—Heraclitus, 6th-5th century B.C.

Dr. Googol loves a particular class of self-similar objects called fractal checkers,
which can easily be constructed using checkerboards of different sizes. The idea
of producing interesting patterns by repeatedly replacing copies of a pattern at
different size scales dates back many decades and includes the work of mathe-
maticians Helge von Koch, David Hilbert, and Giuseppe Peano. More recently
work has been done by Benoit Mandelbrot and A. Lindenmeyer. Artists such as
M.C. Escher, Victor Vasarely, Roger Shepard, and Scott Kim have also experi-
mented with recursive patterns that delight both the mind and eye. The designs
in this chapter are so intriguing and simple to compute using a personal com-
puter that Dr. Googol will give some computational recipes for those of you who
are computer programmers.

To create the intricate forms, start with a collection of squares called the ini-
tiator lattice. The initial collection of squares represents one size scale. At each
filled (black) location in the initial array Dr. Googol places a small copy of the
filled array. This is the second size scale. At each point in this new array, Dr.
Googol places another copy of the initial pattern. This is the third size scale. He
only uses 3 size scales for computational speed and because an additional size
scale does not add much to the beauty of the final pattern.

In mathematical terms, begin with an S-by-S square array (A) containing all
Os to which Is, representing filled squares or sites, are added at random loca-
tions. Here's an example:
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0 0 0 0 0 0 0

0 0 0 1 1 1 0

0 0 0 1 0 0 0

0 0 0 1 0 0 0

0 1 1 1 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

Just how many patterns can you create by randomly selecting array locations
and filling them with Is? To answer this question, Dr. Googol likes to think of
the process of filling array locations in terms of cherries and wineglasses.
Consider an S-by-Sgrid of beautiful crystal wineglasses. Throw M cherries at the
grid. A glass is considered occupied if it contains at least 1 cherry. With each
throw, a cherry goes into one of the glasses. How many different patterns of
occupied glasses can you make? (A glass with more than 1 cherry is considered
the same as a glass with 1 cherry.)

It turns out that for an S-by-S array and M cherries, the number of different
patterns is Z^; S

2\/[(S2 - »)!»!]. As an example of how large the number of
potential patterns is, consider that 32 cherries thrown at a 9-by-9 grid creates
more than 1022 different patterns. This is far greater than the number of stars in
the Milky Way galaxy (1012) and greater than the number of atoms in a person's
breath (1021). In fact, it is about equal to the estimated number of stars in the
universe (1022).

For Figures 97.1 and 97.2, Dr. Googol used S = 7. Here are the initiator lat-
tices for these figures, respectively from left to right:

Smaller arrays would lead to fewer potential patterns, and greater values of
S sometimes lead to diffuse patterns with the scaling used. Are patterns with
larger starting arrays and greater size scales more aesthetically pleasing to you
than those produced with the 7-by-7 arrays here? Extrapolate the algorithm here
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97.1 Fractal checkers: dual wine glass. 97.2 Fractal checkers: Martian with 2 feet.

to 3-D structures and higher dimensional structures. How many different pat-
terns can you produce in a 9-by-9-by-9 3-D initial array? Generalize the recur-
sive lattice program to nonsquare grids—for example, triangular grids.

Chapter 98

Doughnut Loops

Mathematics is not a science—it is not capable of proving or disproving
the existence of things. A mathematician's ultimate concern is that his or

her inventions be logical, not realistic.
—Michael Guillen, Bridges to Infinity
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Doughnut puzzles are fiendishly difficult, but, as with many problems in math-
ematics and science, the rules of the game are really quite simple. In fact, you can
study them using just a pencil and paper. Dr. Googol enjoys working on them
while actually eating a chocolate doughnut.

Doughnut puzzles are played on an annular (ringlike) board filled with ran-
dom numbers from 0 to 100. Table 98.1 is a typical example, rendered as a rec-
tangular region with a hole in the middle to make the playing board easier to
typeset. Each "site" on the board contains a single-digit number or a 2-digit
number. If you like, create your own puzzle using a graph paper arid pencil.

Imagine an ant that starts on any number on the board. The ant's job is to
find the longest possible path through the board by moving horizontally or
vertically (not diagonally) through adjacent squares. This means the ant takes a
single step (up, down, right, or left) during each movement. There are two addi-
tional constraints: (1) Each number along the ant's path must be different; that
is, the ant can use each number only once along its path. (2) The ant may only
travel in an all-clockwise or ail-counterclockwise direction. In other words, the
ant must go round and round in one direction, but it can orthogonally switch
among the 3 "tracks" as useful.

What is the longest path you can find? How many different unique ant paths
would you expect to find in doughnut puzzles of this size? The puzzle here is more
like a disc, but you could extend the puzzle so that ants tunnel through the inte-
rior of 3-D doughnuts. Use computer graphics to display the longest paths as the
computer finds them. Explore huge doughnut worlds containing thousands of
locations. How would the kinds of solutions (and difficulty of finding solutions)
change as the board size approaches infinity? Given a set of doughnut worlds con-
structed randomly as in this chapter, what is the average "largest path" you would

2 3 11 84 10 92 63 72 19 91 98 68 51 16 46 77 14 12 46 63
23 51 26 34 73 94 27 49 73 98 60 44 36 31 79 73 67 72 56 74
11 71 40 25 22 31 83 31 20 96 23 96 74 3 6 13 97 87 25 33
87 92 73 79 50 3
45 57 61 33 55 81
23 48 43 85 50 28
73 42 29 39 97 92
56 31 61 "Doughnut Puzzle" 17 23 19
88 40 52 13 32 71
54 79 11 51 56 49
9 60 43 11 99 47
99 13 20 34 12 32
12 48 26 67 37 34 49 56 99 32 39 94 11 23 9 29 45 56 62 65
90 70 70 15 25 6 44 77 8 66 14 54 93 3 78 95 99 99 18 69
13 20 62 53 61 6 82 55 43 79 98 37 46 26 97 66 43 49 25 64

Table 98.1 A Typical Doughnut Puzzle.
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expect to find? Is it better to start your path at a particular place in the board? In
other words, do certain regions give rise to longer paths than others?

See "Further Exploring" for a solution.

Chapter 99

Everything You Wanted
to Know about Triangles
but Were Afraid to Ask

You teach best what you most need to learn.
—Richard Bach, Illusions

"Dr. Googol, thank you for coming to visit me."
There is a sudden crackling sound as William Jefferson Clinton walks to Dr.

Googol and, with his right foot, crushes a half-eaten bag of potato chips that Dr.
Googol had brought in.

"Excellent." Dr. Googol pauses. "Let's have a little fun."
"More Pythagorean mysticism?" Clinton says eagerly.
Dr. Googol nods. He draws this diagram on the wall: "As you know,

Pythagoras's famous theorem is that in a right-angled triangle the sum of the
squares of the shorter sides, a and b, is equal to the square of the hypotenuse c,
that is, (c2 = a2+b2}."

Bill Clinton nods.
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"Bill, more proofs have been published of Pythagoras's theorem than of any
other proposition in mathematics! There've been several hundred proofs."

"Dr. Googol, are Pythagorean triangles ones where a, b, and c are integers,
like 3-4-5 and 5-12-13?"

"Correct, but Pythagoras's favorite, 3-4-5, has a number of properties not
shared by other Pythagorean triangles, apart from its multiples such as 6-8-10."

"I know. It's the only Pythagorean triangle whose 3 sides are consecutive num-
bers."

"Very astute, Mr. President. It's also—"
Bill Clinton, beaming at the compliment, lifts his hand to silence Dr. Googol.

"Dr. Googol, it's the only triangle of any shape with integer sides, the sum of
whose sides (12) is equal to double its area (6)."

Dr. Googol continues, slightly annoyed by President Clinton's interruption
and intellectual prowess. "It's truly an amazing triangle. But here's something
that may make you think twice about 666, the Number of the Beast in the Book
of Revelation."

"Go on, Googol."
"There exists only one Pythagorean triangle except for the 3-4-5 triangle

whose area is expressed by a single digit. It's the triangle 693-1924-2045. Its area
is—" He pauses to heighten the suspense. "666,666."

"Wow!" Bill Clinton says. "Let's tell Hillary and Chelsea." His eyes quiver.
For a moment, Dr Googol thinks he hears the whispers of Secret Service

agents. Then he decides it must be the wind.
Dr. Googol calmly reaches for a notebook computer hidden beneath the pres-

ident's desk. "Let me show you a magic set of formulas that will allow you to
search for Pythagorean triangles. They've been known since the time of
Diophantus and the early Greeks:"

One Leg of Triangle: X = m2 - n2

Second Leg of Triangle: Y= 2mn
Hypotenuse of Triangle: Z= m2 + n2

"Dr. Googol, how do you use the formulas?"
"Just select any integers m and n, and you should get a useful result. For

example, if m = 2 and n - 1, we get x = 3, y = 4, z = 5."
"Fascinating, Dr. Googol. Let me write a program to search for Pythagorean

triplets. I learned all about computers from Al Gore."
Bill Clinton furiously types on the notebook computer, then hands Dr.

Googol a printout:

X Y Z
3 4 5
8 6 10
15 8 17
10 24 26, etc.
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"Mr. President, here are some mind-boggling facts about Pythagorean trian-
gles. In every triplet of integers for the sides of the triangles, 1 integer is always
divisible by 3 and 1 by 5. The product of the 2 legs is always divisible by 12, and
the product of all 3 sides is always divisible by 60." Dr. Googol pauses. "Here's a
star showing Pythagorean triangles each having 1 side equal to 120."

Bill Clinton seems breathless from Dr. Googol's endless barrage of facts.
Dr. Googol looks into Bill Clinton's handsome eyes. "Bill, can you find any

triangles, like 3-4-5, that have consecutive leg lengths?"

For an answer, and more mind-boggling information on triangles, see
"Further Exploring."

See [www.oup-usa.org/sc/0195133420] for program code.

www.oup-usa.org/sc/0195133420


Chapter 100

Cavern Genesis as a
Self-Organizing
System

His cave, it seemed, had no right even to be there. It went on and on,
winding and scraping till it came out on the other end at a great domed
railway terminal of a room, hung with dripping stalactites, and with wet
stalagmites like whale penises thrusting up from the floor to meet them."

—/. P. Miller, The Skook

Although Dr. Googol is in his office listening to Andreas Vollenweider's Caverna
Magica on his headphones, 30 miles of caverns plunge and twist away from him
in every direction. There are passages of impenetrable stalagmites (Figure 100.1).

He shines a light into a crevice. The surface of the cave walls is aquamarine.
Above are glittering stalactite chandeliers. He imagines the air smells clean and
wet, like hair after it is freshly shampooed.

He walks a little further. Huddled together like little hobbits, the smaller sta-
lagmites of calcite cluster near a clear pool. The larger ones look like rib bones of
some giant prehistoric creature.

With just a few clicks of the mouse, he's entered another world, a virtual
world created with mathematical simulations and computer graphics.

Ever since he read about the Lechuguilla Cave deep beneath a southern New
Mexico desert and about various European caves, he's been fixated on cavern
synthesis—getting his computer to create a lifelike giant maze whose furthest
chambers are as yet unfathomed. The Lechugilla Cave is one of the newest won-
ders of the subterranean world. Discovered in 1986 and described in the March
1991 National Geographic, the cave includes glittering white gypsum chandeliers
2 feet long, walls encrusted with aragonite bushes, and weird balloons of hydro-
magnesite once inflated by carbon dioxide. Danger is everywhere—funnel-like
pits, 65-mile-an-hour winds, darkness . . .

Naturally, Dr. Googol couldn't resist the lure of creating a virtual cavern in
the safety of his cybernetic surroundings. Little did he know when he began his
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100.1 Virtual cavern produced by simple mathematical simulations and rendered
with computer graphics, if you want to view real caverns, take a look at the World
Wide Web home page for the Speleology information Server at http://hum.amu.edu.
pl/~sgp/spec/links.html. For other computer graphic simulations, see
http://sprott.physics.wisc.edu/pickover/home.htm.

research that the simplest of algorithms would produce stalactite formations of
such incredible beauty and richness. The idea behind cavern synthesis is straight-
forward. In natural caves, stalactites often form due to the deposition of lime-
stone by water slowly dripping from the cavern ceiling. The air space in the
cavern allows gases to escape from water, causing solid material to precipitate.
Generally speaking, his computer recipe for cavern formation

1. starts with a nearly smooth cavern ceiling;
2. randomly examines a few ceiling positions and notes which

is lowest;
3. adds a drop of limestone at the point found in step 2; and
4. repeats steps 2 and 3.

As this computational recipe is repeated thousands of times, a few regions are
gradually selected and accumulate material as they grow longer and longer. This
is similar to what happens in a natural cavern as gravity pulls liquid from the
growing stalactites.

The included program code (see [www.oup-usa.org/sc/0195133420]) will start
you on your way to cavern synthesis. In this example, the initial cave ceiling is
represented using a 512-by-512 array called cave. The cave array stores the height
profile of stalactites. A zero value in the array means no material has been
deposited at that particular x,y location. As the stalactites grow, the array values

www.oup-usa.org/sc/0195133420
http://hum.amu.edu.pl/~sgp/spec/links.html
http://hum.amu.edu.pl/~sgp/spec/links.html
http://sprott.physics.wisc.edu/pickover/home.htm
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grow larger. In Step A of the code, the initial cave ceiling is seeded with small
numbers to simulate a nearly smooth ceiling. In Step B, the program simulates
the deposition of little circular disc droplets. The droplets are positioned at
points where the cave values are large in order to simulate deposition at the tips
of growing stalactites. After numdrop droplets have been deposited, the cave
array is filled with numbers that indicate the spatial extent of deposits from the
ceiling. The actual conversion of the cave array to a lighted, shaded cave is left to
your favorite 3-dimensional graphics package. Dr. Googol used the IBM
Visualization Data Explorer software, which can read in the cave array of data,
triangulate it, and then perform the necessary hidden surface elimination and
shading. Dr. Googol does most of his work on AIX or Windows NT systems
with hardware graphics acceleration, although you should be able to convert the
cave data to input formats used by other renders running on other operating sys-
tems. Even if you do not have a three-dimensional Tenderer, simply assigning
colors to the cave array values produces a visually interesting picture where sta-
lactites are, for example, represented by bright-colored regions in a 2-dimension-
al figure.

In a 3-dimensional rendering, before your eyes, stalactites evolve from a near-
ly smooth cavern ceiling. Stalagmites rise up from the floor to meet their stalac-
tite partners simply by reflecting ceiling structures onto the floor. In future
simulations, you may wish to evolve more realistic stalagmites, which normally
have thicker proportions than stalactites. Dr. Googol would be happy to give
additional details of the cavern simulation to those who write him.

Using a cavern growth program, you can compresses centuries of cave evolu-
tion into minutes or seconds depending on the speed of your computer. Feel free
to explore the cavern as it evolves, but don't forget to stop the simulation after
some time, lest you be trapped forever in the labyrinthine chambers. You want
some room to breathe. Continual elongation of stalagmites and stalactites will
eventually result in junctions and the formation of columns.

The virtual cavern reminds Dr. Googol of a "self-organizing system," in
which large-scale patterns arise from simple rules operating on tiny components
of a system. When you look at the smooth initial cave ceiling in the simulation,
there's no way you can tell where the large stalactites will eventually form. But
after a few seconds of simulation, a dozen stalactites might begin to take shape.
Similar behaviors arise in traffic jams, the aggregation of slime molds or bacteria,
the formation of termite mounds, and the flocking of birds.

Even though cavern synthesis appears to run on autopilot with no conductor
needed to orchestrate the locations of the stalactites, cavern creation can still be
a tricky business. Dr. Googol's parameters are delicately poised between simplic-
ity and complexity to make beautiful patterns. For example, in step 2 of the
computational recipe, you should not scan too many ceiling points to find the
lowest one on the ceiling, or after a minute you'll end up with a single large sta-
lactite. As you perform hundreds of simulations, do you see any patterns in the
stalactite positions or sizes? Do stalactites tend to cluster or stay away from one
another? Watching the patterns evolve as a function of parameters may tell us a
little about real caves, but, more important, it alters the way we make sense of
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nature. From treelike branches sprouting in human lungs to tendrils spreading
through cooling crystals, nature's large-scale structures evolve from mindless
microscopic individual behaviors creating pattern and beauty from chaos. It
seems that both biological and geological structures grow in the chaos of the cos-
mos by forming order through wisps and eddies of time.

Of course, the idea of creating virtual reality structures for human exploration
is not new. In fact, in my books and articles (see "Further Reading"), I have dis-
cussed a variety of virtual reality journeys: computer-generated lava lamps deco-
rating living room walls in the 21st century, virtual vacations on Mars, electronic
ant farms, and so forth. These examples not only please the eye but confound the
mind with their complexity derived from simple rules.

The future of electronic spelunking is equally bright. Just as today we play 3-D
interactive computer games like Doom or Quake, in the future we should look
forward to exploring virtual caverns such as the ones Dr. Googol is beginning to
explore. Who knows what odd geological formations we will encounter? If his
simple algorithms generate lifelike and intricate formations, slightly more com-
plex computational recipes will no doubt produce formations like those found in
the Lechuguilla Cave: delicate helicite tendrils, calcite pearls, and gypsum beards.

Like a submarine pilot exploring coral formations in the Sargasso Sea, modern
computers allow one to explore the strange and colorful caverns using a mouse.
Specifically, Dr. Googol's simulations run on an IBM RISC System/6000 or IBM
IntelliStation equipped with graphics accelerators. As the prices of computers
decrease while performance increases, I'm sure we'll all be exploring together.
Maybe you'll even be able to buy a cavern generator purchased as a plug-in chip.

Not only will virtual spelunking appeal to artists, but it will also be of interest
to scientists seeking the causes of real geological structures. For example, the for-
mation of stalactites and stalagmites depends on various factors including a
source rock above the cavern, downward percolation of water supplied from rain,
tight but continuous passageways for this water (which determine a very slow
drip), and adequate air space in the void to allow either evaporation or the escape
of carbon dioxide from the water, which thus loses some of its solvent ability.
These kinds of variables could be investigated using more detailed computer sim-
ulations. It would be fascinating to explicitly model the effect of gravity and then
see how hypothetical caverns might form on other planets with different gravities.

Dr. Googol likes to speculate that virtual decorations of the future will be
grown by computer algorithms and projected or displayed on the ceilings of our
own homes. But now it is time to roam. Dr. Googol lets his gaze drift to the
pockets of rocks around him, noting the flowing harmony of the fractal forma-
tions, the crystalline outcroppings of rock coated with strips of velvet purple. A
cool peace floods him.

He wants to place his finger in the lake. It is perfectly black. The stalactites
and stalagmites and slippery cave walls are shimmering and alive.

He shines a light over the water. It is clear now and filled with nodules. It's a
shame he can't blow on the water and see countless ripples appear on its surface.
That is for the future. Someday the cold air will brush against him like a cat. He
will hear the mystical sounds that have lulled others cave explorers: the humming
of stalactites; the wild, seemingly desperate cry of the wind through the cave.
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Where is the rest of the world? It hardly matters.
In the future, students, movie special effects houses, and artists may explore

the virtual caverns, which can be rapidly generated and contain an infinite reser-
voir of magnificent topographical features. It would be interesting to apply some
of the new terrain synthesis methods, such as those based on erosion, to these
intricate landscapes and view the results. The various successes in terrain genera-
tion over the last decade provide continuing incentive for more research on the
rapid generation of natural and artistic landscapes.

See [www.oup-usa.org/sc/0195133420] for program code.

Chapter 101

Magic Squares, Tesseracts,
and Other Oddities

Mathematical inquiry lifts the human mind into closer proximity with
the divine than is attainable through any other medium.

—Hermann Weyl (1885-1955)

In Islam, the number 66 corresponds to the
numerical value of the word Allah. Figure 101.1 is
an Islamic magic square that expresses the number
66 in every direction when the letters are convert-
ed to numbers. The square's grid is formed by the
letters in the word Allah. Magic squares such as
this were quite common in the Islam, but seem not
to have reached the West until the 15th century.
From a historical perspective, Dr. Googol's favorite
Western magic square is Albrecht Diirer's, which is
drawn in the upper right-hand column of his etch-
ing Melencolia I (Figure 101.2). The variety of
small details in the etching has confounded schol-
ars for centuries. Scholars believe that the etching
shows the insufficiency of human knowledge in
attaining heavenly wisdom, or in penetrating the
secrets of nature.

101.1 An Islamic magic square
that expresses the number 66 in
every direction. The grid is
formed by the letters in the
word Allah.

www.oup-usa.org/sc/0195133420
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101.2 Melencolia t, by Albrecht Durer (1514). This is usually considered the most
complex of Durer's works; its various symbolic nuances have confounded scholars
for centuries. Why do you think he placed a magic square in the upper right?
Scholars believe that the etching shows the insufficiency of human knowledge in
attaining heavenly wisdom, or in penetrating the secrets of nature.

Durer's 4-by-4 magic square, which can be represented as

16

5

9

4

3

10

6

15

2

11

7

14

13

8

12

1

contains the first 16 numbers and has some fascinating properties. The two cen-
tral numbers in the bottom row read 1514, the year Durer made the etching.
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Also, in the vertical, the horizontal, and 2 diagonal directions, the numbers sum
to 34. In addition, 34 is the sum of the numbers of the corner squares (16 + 13 +
4 + 1 ) and of the small central square (10 + 1 1 + 6 + 7). The sum of the remain-
ing numbers is 68 = 2 x 34. Was Diirer trying to tell us something profound
about the number 34?

Mark Collins, a colleague from Madison, Wisconsin, with an interest in both
number theory and Diirer's works, has studied the Diirer square and finds some
astonishing features when converting the numbers to binary code. (In binary
representation, numbers are written in a positional number system that uses only
two digits: 0 and 1—as explained in the "Further Reading" for Chapter 21.)
Since the first 16 hexadecimal binary numbers start with the number 0 and end
with 15, he subtracts 1 from each entry in the magic square. Below is the result:

15
1111

4
0100

8
1000

3
0011

2
0010

9
1001

5
0101

14
1110

1
0001

10
1010

6
0110

13
1101

12
1100

7
0111

11
1011

0
0000

Remarkably, if the binary representation for the magic square is rotated 45
degrees clockwise about its center so that the 15 is up and the 0 down, the result-
ant pattern has a vertical mirror plane down its center:

1111
0100 0010

1000 1001 0001
0011 0101 1010 1100

1110 0110 0111
1101 1011

0000

For example, in row 2, 0100 is the mirror of 0010. (Dr. Googol very much
doubts that Diirer could have known about this symmetry.)

If we rotate the binary square counterclockwise so that the 12 is at the top and
the 3 at the bottom, then draw an imaginary vertical mirror down the center of
the pattern, we see a peculiar left-right inverse:
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1100
0001 0111

0010 1010 1011
1111 1001 0110 0000

0100 0101 1101
1000 1110

0011

For example, in the second row, 0001 and 0111 are mirror inverses of each
other.

Mark Collins has discovered the presence of mysterious intertwined hexa-
grams when the even and odd numbers are connected:

Dr. Googol would be interested in hearing from those of you who find addi-
tional meaning or patterns in Diirer's magic square. Mark Collins and Dr.
Googol are unaware of other magic squares having the symmetrical properties
when converted to binary numbers. Mark has also done numerous experiments
converting these numbers to colors and comments: "I believe this magic square
is an archetype as rich in meaning and mysticism as the I Ching. I believe it is a
mathematical and visual representation of nature's origami—as beautiful as a
photon of light." Mark suggests you should create other mitosis-like diagrams by
connecting 0 to 1 to 2 to 3. Then lift up your hand. Connect 4 to 5 to 6 to 7.
Connect 8 to 9 to 10 to 11. Connect 12 to 13 to 14 to 15.

A rather bizarre 6-by-6 magic square was invented by the mysterious A. W.
Johnson. No one knows when this square was constructed, nor is there much
information about Johnson. (Dr. Googol welcomes any information you may
have.) All of its entries are prime numbers, and each row, column, diagonal,
and broken diagonal sums to 666, the Number of the Beast. (A broken diago-
nal, is the diagonal produced by wrapping from one side of the square to the
other; for example, the outlined numbers 131, 83, 199, 113, 13, 127 form a
broken diagonal.)
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The Apocalyptic Magic Square

Another amazing magic square is the Kurchan array, named after its discoverer,
Rodolfo Marcelo Kurchan, from Buenos Aires, Argentina. He believes this to be
the smallest nontrivial magic square having n2 distinct pandigital integers and
having the smallest, pandigital magic sum. Pandigital means all ten digits are
used, and 0 is not the leading digit. Below is the awesome Kurchan array; the
pandigital sum is 4,129,607,358:

The Kurchan Array

1037956284

1026857394

1036847295

1027946385

1036947285

1027846395

1037856294

1026957384

1027856394

1036957284

1026947385

1037846295

1026847395

1037946285

1027956384

1036857294
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Even more amazing is the mirror magic square:

Mirror Magic Square

96

39

84

23

64

43

76

59

37

98

25

82

45

62

57

78

If you reverse each of the entries you obtain another magic square. In both
cases the sums for the rows, columns, and diagonals is 242:

69

93

48

32

46

34

67

95

73

89

52

28

54

26

75

87

Isn't that a real beauty?
Finally, mathematician John Robert Hendricks has constructed a 4-dimen-

sional tesseract with magic properties. Just as with traditional magic squares

101.3 Magic tesseract by John Robert Hendricks.
(Rerendered by Carl Speare.)
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whose rows, columns, and diagonals sum to the same number, this 4-dimension-
al analogue has the same kinds of properties in 4-space. Figure 101.3 represents
the projection of the 4-dimensional cube onto the 2-dimensional plane of the
paper. Each cubical "face" of the tesseract has 6 2-D faces consisting of 3-by-3
magic squares. (The cubes are warped in this projection in the same way that the
faces of a cube are warped when drawn on 2-D paper.) To understand the magic
tesseract, look at the 1 in the upper left corner. The top forward-most edge con-
tains 1, 80, and 42, which sum to 123. The vertical columns, such as 1, 54, and
68, sum to 123. Each oblique line of three numbers, such as 1, 72, and 50, sums
to 123. A fourth linear direction shown by 1, 78, and 44 sums to 123. Can you
find other magical sums? This figure was first sketched in 1949. The pattern was
eventually published in Canada in 1962, and later in the United States. Creation
of the figure dispelled the notion that such a pattern could not be made.

For more on magic squares, see the "Further Exploring" section for
Chapter 16.

Chapter 102

Faberge Eggs
Synthesis

More significant mathematical work has been done in the latter half of
this century than in all previous centuries combined.

—John Casti, Five Golden Rules, 1996

Have you ever noticed that many of our ancient designs consist of symmetrical
and repeating patterns? For example, consider the beautiful Moorish, Persian, and
other motifs in tiled floors and cloths. Among Dr. Googol's favorite ornamental
patterns are those found on century-old Russian Easter eggs that wealthy individ-
uals and members of the royal family gave to one another. Some of these eggs
were made of gold and silver and decorated with enamel, precious stones, and
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miniature paintings. The most splendid were commissioned by the czar from
Faberge, the leading firm of Russian jewelers at the turn of the 20th century.

Faberge eggs are beyond the financial resources of most humans on the plan-
et. Today, however, personal computers equipped with low-cost graphics acceler-
ators bring the beauty and mystery of "self-decorating" eggs to computer
hobbyists. The patterns are based on the mathematical concept of a "residue"—
the remainder after subtracting a multiple of a modulus from an integer. (2 and
7 are residues of 12 modulo 5.)

T H E S E C R E T A L G O R I T H M

How can the beauty of the symmetrical ornaments and designs of various
cultures be simulated with the aid of a computer? From an artistic standpoint,
sinusoidal equations provide a deep reservoir from which artists can draw. Com-
putational recipes, such as those outlined in the following, interact with such
traditional elements as form, shading, and color to produce classical and futuris-
tic images and effects. The mathematical recipes function as the artist's helper by
allowing the artist to experiment with a range of parameters and to select results
that are considered attractive or visually interesting. Indeed, structures produced
by the equations includes shapes of startling intricacy.

To compute the egg-decorating patterns, a real number c is first calculated for
a range of (i,j) pairs:

where the index k has the value 1, 2, and 3, to produce intensity values for three
color channels (red, green, blue) used by the graphics software, and 1 < i < 400,
1 <j< 400. This creates 3 2-dimensional sinusoidal arrays c with values ranging
from 0 to 1 as a function of / and j on a 400-by-400 grid controlled by phases
0 ( 0 < 0 < 1 ), \}/ ( 0 < \l/ < 1 ), and frequencies / (0.15 < / < 0.8 ). (Values for
the sin functions are in radians.) The 0, \l/, and / values are held constant for a
particular egg. This means that 6 phase values and 3 frequency values determine
a particular egg's pattern. The 3 values of Q, at each point in the array are used to
control the red, green, and blue colors at each point on the the egg surface after
additional mathematical manipulation.

In order to make the resultant pattern tile-like for the purposes of egg-decora-
tion, the resulting Q, values in the first equation are multiplied by m^ truncated
(made an integer), and divided by another integer fi^ The remainder is used to
determine the color of the egg surface at location /, j. Large remainders corre-
spond to high intensities of either red, green, or blue. A remainder of 0 corre-
sponds to zero intensity, or black. Values of m^ ranged from ̂  < m^ < ft/., + 20.
Values of fa ranged from 1 < fa < 10. This truncation and residue approach
applied to the first equation in this chapter can be expressed as
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where the brackets indicate truncation to an integer; for example, 1.6 is truncat-
ed to 1. The various ranges for multipliers, modulo values, frequencies, and
phases were empirically determined to give a diverse, attractive set of patterns,
and readers are encouraged to experiment with their own ranges to suit their
own aesthetic tastes.

To map the final color arrays for red (c j), green (c2)> and blue (c3) to the egg
surface, a spherical or ellipsoidal surface transformation is made; for example,
z =J 1 - i2 - j2 where / and j denote positions along an (x,y) plane coincident
with the plane of the paper or computer screen. Elongation in the x or y direc-
tion can be accomplished using 3-dimensional graphics scaling routines or by
altering the z function. The surface is rendered using rectangular facets, and the
surface normal at each point determined by vector (i, j, z) for the purpose of
lighting calculations by the graphics software and hardware.

Ten years ago, when I wrote about "self-decorating eggs" and first experi-
mented with black-and-white, 2-dimensional, repetitive ornaments, I would
have had trouble believing how fast and elegantly these forms can be rendered
today on personal computers. In particular, the eggs in Figure 102.1 were com-
puted using a C program calling OpenGL (3-D graphics) routines on an IBM
IntelliStation running a Windows NT operating system. To increase rendering

102.1 Algorithmic Faberge eggs, with organic infestations.
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speed, only one light source was used and only the front surface of the eggs was
computed. If computation of the sine function limits the rate at which eggs are
computed, the value for the sine function may be precomputed and stored in a
look-up table. The program chooses random values for phases, frequencies, mul-
tipliers, and mod factors within the given ranges and presents a new egg to the
viewer about once every three seconds. To avoid lower-frequency patterns, which
may be visually less interesting, Dr. Googol sometimes has the program reject
frequencies below a certain threshold value (for example, / = 0.15 ). For greater
variety, other functions may be used, such as frequency-modulated sinusoids of
the form sin(</> + s'm(4> + /)). Other variants of the first equation in this chapter
may also be used.

S O M E T H O U G H T S

Alexander III started the tradition of ornate egg design in 1885. Every year he
commissioned an egg from his court jeweler, Peter Carl Faberge, as a gift to his
wife, the Empress Maria Feodorovna. After Alexander's death, his son Nicholas II
continued the tradition, commissioning two eggs from the firm. At Easter, Faberge
himself would present one egg to the Dowager Empress Maria Feodorovna, while
his assistant would present the second to Alexandra Feodorovna, Nicholas's wife.
In all, 56 of these masterpieces were produced between 1885 and 1917; however,
only 10 of these have remained in Russia. Masters from the Faberge firm worked
on each Easter egg for nearly a year.

Today Dr. Googol likes to imagine Faberge and Alexandra Feodorovna sitting
in his office behind a personal computer and selecting eggs that have special appeal
for them. Faberge adjusts the modulus factor as Alexandra screams for more.

The self-decorating eggs remind Dr. Googol of snowflakes. No two eggs ever
seem to be alike as viewers watch an endless variety of forms parade on their
screen. Figure 102.1 shows just a few examples of the remarkable panoply of
designs made possible with the algorithm. By "turning a dial" that controls the
various parameters, an infinite variety of attractive designs is generated with rel-
ative computational simplicity—and for this reason, the eggs may be of interest
for designers of museum exhibits and other educational displays for both chil-
dren and adults.



Chapter 103

Beauty and Gaussian
Rational Numbers

An intelligent observer seeing mathematicians at work might conclude that
they are devotees of exotic sects, pursuers of esoteric keys to the universe.

—P. Davis and R. Hersh, The Mathematical Experience

The purpose of this chapter is to illustrate a very simple graphics technique for
visualizing a large class of graphically interesting manifestations of complex
rational numbers. As background, complex rational numbers are of the form p/q,
where p and q can be complex numbers of the form a + b\ where / = ̂ -\ and a
and b are integers. As an example of a complex rational number, consider
(1 + 2/)/(3 + 3*))' In other words, p = p'' = ip", and q = q '= iq", with//, p", q ,
q" all integers. Accordingly,

The complex fractions thus consist of the numbers x + iy where x and y are
real fractions.

Following the lead of L. R. Ford, we may construct a sphere that represents
the complex fraction p/q by having the sphere touch the complex plane at loca-
tion p/q and having the radius equal to \l(2qq] , where q is the conjugate of q.
(Given a complex number a + hi, the complex conjugate is a- hi.} Alas, Ford in
1938 had no means of visualizing the results of his ideas, and his only diagram
contained four hand-drawn spheres. Perhaps due in part to lack of visualization
methods, his paper is almost entirely devoted to 2-dimensional worlds where a
few circles are positioned on rational points on a line, an idea discussed in
Pickover's book Keys to Infinity. Therefore Dr. Googol could not resist the temp-
tation of bringing Ford's ideas into the modern age. In doing so, it becomes evi-
dent that the Gaussian (i.e., complex) rational spheres provide an infinite
graphical treasure chest to explore. In fact, it turns out that spheres describe the
fabric of our complex rational number system in an elegant way.

How many neighbor spheres touch an individual sphere? Two fractions are
called adjacent if their spheres are tangent. Any fraction has, in this sense, an
infinitude of adjacents. Any sphere has an infinitude of spheres that kiss it. It can
be shown that if spheres are placed at complex fractions (P/Q) and (p/q), then the
spheres are tangent (adjacent) when \Pq — pQ\ = 1. For example, consider two
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spheres in Figure 103.1 The distance AB between sphere centers is a function of
the horizontal distance AC and the vertical distance CB (the difference of the
radii). Therefore

If \Pq - pQ\ > 1, then AB > AD + EB, and the spheres do not kiss. If
\Pq-pQ\ = 1, then sphere P/Qand p/q kiss (i.e., the fractions are "adjacent"). It
is not possible for spheres to intersect.

Figure 103.2 shows a computer graphics rendition of the Gaussian rational
froth. In the original color images, color is a function of the spheres' radii. Figure
103.3 is a magnification of a side view of Figure 103.2. Figure 103.4 is the same
as Figure 103.2, with the large red spheres removed to reveal underlying struc-
ture. Figure 103.5 is a ray-traced rendition of the froth with the central sphere
made transparent to reveal underlying structure.

Consider a "physical" analog of the Gaussian rational sphere froth. Imagine
holding an "infinitely" thin needle above the collection of spheres perched on the
complex plane. (You may like to think of the complex plane as a pond surface and
of the spheres as bubbles, each with its lowest point touching the pond surface.) If
you drop the needle above a rational point in the complex plane, the needle must
pierce a single bubble and hit the complex plane exactly at the bubble's point of tan-
gency. However, if you drop the needle from above an irrational complex number,
the needle cannot pass directly to the complex plane from a bubble. In other words,
the needle must leave every bubble which it enters. However, as Dr. Googol men-
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103.2 Gaussian rational bubbles in the complex plane
(0 * (p/q) <; 1), (0 s (p/g) * I), (-7 < p, q, p", q" * 7).

103.3 Magnification of a side view of the bubbles.

tioned previously, every bubble that the needle leaves is completely surrounded by a
chain of bubbles. Therefore the needle must enter another bubble. This is true for
all the bubbles it pierces. Thus, when the needle is dropped above an irrational
point, it must pass through an infinity of bubbles.

Gaussian rational froth holds many challenges for computer graphics special-
ists. Since the froth is endless, accurate representation is difficult, particularly as
the froth is magnified during animated zoom sequences. (Dr. Googol computes
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the locations of about 15,000 spheres before terminating the computation, and
this accounts for the small regions devoid of spheres on the complex plane.)
However, with appropriate computer programs, students, artists, and mathemati-
cians can "swim" through the Gaussian rational froth like a fish through the surf.
Animations make it possible to "sit" on the falling virtual needle and view the

103.4 Same as Figure 103.2, with the large, central
sphere removed to reveal underlying structure.

103.5 Ray-traced rendition of the froth. Paul A.
Thiessen (University of Illinois) used the software
POV-Ray to produce this rendering for Dr. Googol.
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mechanism of infinite piercing. What strange oceanic worlds will students and
artists find as they explore different regions of the Gaussian rational froth? Note
that if fractions represented by spheres are not "reduced," spheres may lie inside
spheres—and this can be visualized using transparency. To speed computations,
Dr. Googol suggests that every fraction in which the numerator and denominator
have common factors be canceled as far as possible (e.g., 6/8 -> 3/4.)

Graphics specialists, educators, and mathematicians may find this chapter a
useful stepping-stone to additional geometrical representations and insight. For
example, assemblages of spheres may be used as pictorial representations of con-
tinued complex fractions of the form

where an are complex integers. A final challenge would be to extend these repre-
sentations to quaternionic rational numbers, which make up a 4-dimensional
algebra containing the complex plane, and Cayley rational numbers, which
make up an 8-dimensional nonassociative real division ring.

In order to reveal the intricacy of Gaussian froth, which is not possible in
small figures in this book, you are invited to examine an example high-resolution
image on the Web at http://sprott.physics.wisc.edu/pickover/home.htm.

Chapter 104

A Brief History of Smith Numbers

The reviewer is not convinced that Smith numbers are not a rat-hole
down which valuable mathematical effort is being poured.

—Carl Linderholm, Mathematical Reviews

A Smith number is a composite number (a nonprime number) the sum of whose
digits is the sum of all the digits of its prime factors. Since they were originally
proposed by Albert Wilanski in the January 1982 issue of Two-Year College
Mathematics Journal, Smith numbers have been the subject of over 15 published
papers. The rather startling reason for their name is mentioned below.

Want an example of a Smith number? The number 9,985 is a Smith number
because 9,985 = 5 x 1,997, and, therefore

http://sprott.physics.wisc.edu/pickover/home.htm
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Digit Sum Prime Factor Sum
9 + 9 + 8 + 5=5 + 1 + 9+9 + 7

In 1982, the largest known Smith number (4,937,775) was credited to Albert
Wilarisky's brother-in-law, H. Smith, who is not a mathematician. The brother-
in-law's telephone number is 493-7775!

Since 1982, interest in these numbers has exploded. In 1983, a paper
appeared in Mathematics Magazine that gave a larger Smith number. The
authors' discovery was that if p is a prime whose digits are all Is, then 3304^ is a
Smith number. (Are there other numbers that could serve this same purpose?)

In 1986, another odd method for generating Smith numbers was presented,
leading to Smith numbers such as

and to other behemoths, including one Smith number with 2,592,699 digits.
1987 was a banner year for Smith numbers, with three papers appearing in

the Journal of Recreational Mathematics. In these papers, we find palindromic
Smith numbers, such as 12,345,554,321, the definition of Smith Brothers (con-
secutive Smith numbers), such as 728 and 729, and all other manner of mathe-
matical bewilderment.

For the best history of Smith numbers, see Underwood Dudley's article in the
February 1994 Mathematics Monthly. Do you think mathematical studies of
Smith numbers are worthwhile or significant? Or are they just pure recreation,
useful for honing one's mathematical prowess but with no possible practical or
profound results?

Chapter 105

Alien ice Cream

The soul of man was made to walk the skies.
—Edward Young, 18th century

Number Maze 3, a visual intermission before the next
book part
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This sweet puzzle is from one of Dr. Googol's dreams. Upon waking, he quickly
crafted the following enigma.

It is night, and the stars shine brightly on the home of Dr. Googol (schemati-
cally illustrated in Figure 105.1). On the roof is an alien selling a special kind of
ice cream cone—one that will give you eternal life if you eat it. You have only $1,
which is not enough to purchase the ice cream. There are aliens with dollar bills
on every floor. Entering or exiting any door requires an alien to give you $5.
When you use a ladder, an alien hands you $2, and use of the spiral staircase gets
you $20.

104.1 Alien ice Cream. Can you reach the top with exactly $41? (Drawing by Brian
Mansfield.)
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If you use a staircase, you add $3 whenever you walk between floors. The fire
escape on the outside of the building is a zigzagging staircase traveling from level
to level, but only the ground floor, third floor, and roof have outlets onto it.

If you wish to eat the alien ice cream, you must start outside on the ground
floor and somehow make it to the roof with exactly $41. Once you have traveled
along a stairway, ladder, or the spiral staircase, you may not use them again. If
you can do this within 30 minutes, the alien will gladly give you the sugary treat.
Some say the puzzle is impossible. No one on Earth has solved the puzzle—or
has ever tasted the ice cream of eternity.

For a solution, see "Further Exploring."



Part iV

The Peruvian

Collection

Great mathematics must suggest nature:
a snow crystal, a mossy cavern,
a seagull's wing, a viper's tongue, red Peruvian earth,
the gnarled bark of an ancient oak.
And in a hundred years,
when humans have destroyed nature,
today's mathematics will serve as a portal
to all that which was beautiful.

—Dr. Francis 0. Googol

Mathematics is nothing,
not even beauty,
unless at its heart,
two numbers bloom.

—Dr. Francis 0. Googol



Chapter 106

The Huascaran Box

A Great Truth is a statement whose opposite is also a great truth.
—Niels Bohr

Late last summer, Dr. Googol was exploring the Peruvian rain forest at the base
of Mount Huascaran, the highest mountain in Peru. There he found a mysteri-
ous box. On the box were colored fingers: red, green, and yellow. A fourth finger
was clear and made of diamond. Under the fingers was the following inscription:

Inside this, box is a small, silent, (^ell-oiled, oihrationless, hattery'poutered fan.
The colored fingers are an/off buttons. One of them is connected to the fan; the
other 2 colored fingers are dummies, not connected to the fan. (dhen a finger
is up (9, it is on. (dhen it is cfoton r, it is off. The diamond -finger cannot he
mooed.

You may toggle the -fingers as you u>ish. Once you haoe toggled the -fingers in
the pattern of your choice, you may look inside the box. Qy inspecting the fan,
you knout tohich finger controls it. HOIA do you knact? fan get only one look! ft
correct answer allots you to take the diamond finger.

Can you help Dr. Googol obtain the magnificent diamond finger \1 ? Do you
think this problem is, in fact, possible to solve? If you are a teacher, it might be
fun to build a similar box and have students do experiments.

Dr. Googol traveled further into the jungle and came to another Huascaran Box!
It had four potentially active switches: red, green, blue, and gold. Next to the
box was a small pile of red dust, resembling spicy Peruvian paprika. In the top
of the box, above the fan, was a tiny hole into which Dr. Googol could pour the
paprika. Again, the colored fingers were on/off buttons, one of which was con-
nected to the fan. The other 3 colored fingers were dummies, not connected to
the fan. When a finger was up, it was on. When it was down, it was off. In this
case, the golden finger could also be toggled up and down and could possibly
influence the fan circuit.

As with the previous puzzle, Dr. Googol could toggle the fingers as he
wished. Once he toggled the fingers in the pattern of his choice, Dr. Googol
could look inside the box. By inspecting the box, he knew which finger con-
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trolled it. He could only look once. This time, a correct answer would allow
him to take the valuable golden finger.

Can you help Dr. Googol obtain the gorgeous golden finger

$ For solutions to both problems, see "Further Exploring."

Chapter 107

The Intergalactic Zoo

A mathematician is a blind man in a dark room looking for
a black cat which isn't there.

—Charles Darwin

The lower slopes of the western Andes merge with the heavily forested tropical
lowlands of the Amazon Basin to form the Montana, which occupies more than
three-fifths of Peru's area. While exploring the rolling hills and level plains, Dr.
Googol had a vision. Perhaps the vision resulted from his fatigued mind or from
the strange plants the locals had given him to eat on his journey. Or perhaps the
vision was real. We will never know.

Dr. Googol watched in horror as an alien abducted Earth animals for an
intergalactic zoo. Getting them safely to the zoo was a problem because the alien
didn't know which animals might attack others on the way. The alien decided to
keep the animals in a darkened ship hovering above the zoo until it was time to
put them in their cages. The darkness should have encouraged the animals to
sleep rather than f i g h t . . . or so the alien hoped.

Inside the ship there were 5 pairs of monkeys, 4 pairs of Peruvian jaguars, and
2 pairs of tapirs. (A pair consists of a male and female.) When the alien reached
a huge ark in outer space, he opened a chute that let animals drop from the ship,
1 at a time, into individual cages. Later he wanted to match the species, and pairs
within a species.

It was night, so the alien couldn't tell the animals apart visually.

How many animals must the alien drop to ensure that he has 2 animals of the
same species?
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How many animals must he drop to ensure that he has a male and female of
the same species?

Hurry, the alien needs answers. The Peruvian jaguars are roaring as the mon-
keys scream in terror. Daylight is just minutes away.

 For a solution, see "Further Exploring."

Chapter 108

The Lobsterman from Lima

I am reminded of a French poet who, when asked why
he took walks accompanied by a lobster with a blue ribbon around

its neck, replied, "Because it does not bark, and because
it knows the secret of the sea."

—an anonymous fan of Gerard de Nerval

Peruvian ocean waters are abundant with haddock, anchovy, pilchard, sole,
mackerel, smelt, flounder, lobster, shrimp, and other marine species. One day
while visiting several coastal towns, Dr. Googol came upon a huge man selling
lobsters by the side of a dirt road. The sight of the lobsters made Dr. Googol's
mouth water.

"Do you speak English?" Dr. Googol said.
"Of course. I'm originally from Lima. Would you like a lobster?"
"How much do they cost?
The lobsterman raised his eyebrow. "If you answer my mathematical question

correctly, you get a free lobster. If you answer incorrectly, you pay me $100. You
must answer within 15 seconds. How does that sound?"

"Good deal. But I must warn you, I have a Ph.D. in mathematics."
The lobsterman held up a huge lobster and stared into Dr. Googol's eyes.

Then he handed Dr. Googol a card with a question. The card smelled offish and
of low tide and of crawling things. The lettering on the card was in Old English
calligraphy. Perhaps the man was trying to impress Dr. Googol with the impor-
tance or difficulty of the question.
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,3)f i\\i& Inirster fartgljs 10 pnimhs plus Ijalf
its aftm ftretglji., Ijafa mucij hues tt ftietglj?

Can you help Dr. Googol answer this odd question? If you think the question
is difficult, you're not alone. If you think this is too easy, you may be incredibly
brilliant and arrogant, but Dr. Googol bets that none of your friends can answer
this within 15 seconds. Try it on your friends. You'll see. So far, none of Dr.
Googol's friends could solve it without a pencil and paper. If you're a teacher,
have your students work on this problem and see what answers they arrive at.
Allow them to use a pencil and paper.

 For a solution, see "Further Exploring."

Chapter 109

The incan Tablets

I looked at the ancient ruins. These bricks. This light. I was
exponentially far from New York City. Mathematical distances are never

measured with rulers.
—Dr. Francis 0. Googol

Dr. Googol was exploring the ruins of Machu Picchu, near Cuzco—the remains
of an ancient city of the Inca Empire. Twelve hundred years previously, the Incas
had mastered architecture, astronomy, and road building—but Dr. Googol came
here not to study history but rather to commune with nature and remember his
ancestors, some of whom could be traced to the ancient Incas.

As Dr. Googol looked inside the ruin's deep interior, surrounded by the dry
bricks and old mortar, he came upon a tablet with some odd-looking symbols:
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Written in English, next to the symbols, were the following instructions.

Yaa see 5 vertical pairs of'symbols.
You are to find a pair of symbols to complete the set

from among the S possible solutions shoutn here:

If you choose correctly and complete the set, the following wonderful events
will take place: your I.Q. will be increased by 20 points; you will be able to speak
to the Inca dead and learn their ancient wisdom; you will be able to stop time,
at will; and you will be able to spend a day with the person of your choice, for
example, the Dalai Lama, Madonna, Bill Clinton, or Robert Redford.

Dr. Googol studied the tattered tablets. Why were the instructions in English?
It must be some kind of hoax. Nevertheless, there must be a solution, and Dr.
Googol must find it. The rewards, although unlikely, are too great to ignore.

 For a solution, see "Further Exploring."



Chapter 110

Chinchilla Overdrive

The sense of completeness that is projected by the work of art is
to be found nowhere else in our lives. We cannot remember our birth,

and we shall not know our death; in between is a ramshackle circus
of our days and doings. But in a poem, a picture, or a sonata, the curve

is complete. This is the triumph of form. It is a deception, but one
that we desire and require.

—John Bainville, "Beauty, Charm and Strangeness:
Science as Metaphor," Science 281, 1998.

In the sierra of Peru are all kinds of wildlife: the alpaca, llama, vicuna, chinchilla,
and huanaco. Birds of the region include the partridge, giant condor, robin,
phoebe, flycatcher, finch, duck, and goose. Here is a puzzle Dr. Googol devel-
oped while watching all the wonderful wildlife and listening to the cries of the
condors at they circled overhead like floating ashes.

Dr. Googol has a number of llamas in his private Peruvian zoo. The number
of llamas plus 10 chinchillas is 2 less than 5 times the number of llamas. If you
wish, denote the number of llamas by L and the number of chinchillas by C.
How many llamas does Dr. Googol have?

For a solution, see "Further Exploring."



Chapter 111

Peruvian Laser Battle

Mathematics is a war between the finite and infinite.
—Dr. Francis Googol

"Have you ever heard of Peruvian Laser Battle?" Monica asked Dr. Googol as
their canoe floated down the Amazon River, ten miles north of Iquitos, Peru.

Dr. Googol shook his head. "Please tell me more."
"Peruvians love science fiction, and Laser Battle is the hottest new game in

Iquitos. Imagine yourself leading a battle on the Peruvian plains. Your attackers
are a horde of alien robots."

"Alien robots?" Dr. Googol said, raising his eyebrow.
"Use your imagination. The robots are quickly closing in on your soldiers."
Monica pointed to a piece of paper showing a hexagonal grid with 4 open cir-

cles representing 4 soldiers (Figure
111.1). Robots were represented by
filled circles. Far to the north was
Colombia. To the east was Brazil. To
the south was Chile. To the west was
Ecuador.

"Dr. Googol, your object is to
destroy all alien robots using your 4
courageous Peruvian soldiers. With
only 2 shots each from their rifles,
your soldiers must destroy all the
alien robots. To make matters tricky,
the robots are booby-trapped and
will explode with thermonuclear
blasts if hit more than once. So your
soldiers had better hit each robot
just once. Rifle shots continue in a

111.1 Peruvian Laser Battle. The black
circles are robots. The open circles are
soldiers.
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straight line along any of the 6 hexagonal directions (shown by arrows at the top
of the diagram) until they exit the battlefield, disabling all robots they encounter
on the way."

Monica looked at Dr. Googol and grabbed his hand. "Each soldier gets 2
shots. Remember, to avoid the thermonuclear blasts, your soldiers are instruct-
ed not to hit any robot more than once. Can you determine the directions in
which your soldiers should fire?"

 For a solution, see "Further Exploring."

Chapter 112

The Emerald Gambit

Einstein remarked more than once how strange it is that reality, as we
know it, keeps proving itself amenable to the rules of man-made science.
But our thought extends only as far as our capacity to express it. So too

it is possible that what we consider reality is only that stratum of the
world that we have the faculties to comprehend. For instance, I am con-

vinced that quantum theory flouts commonsense logic only because
commonsense logic has not yet been sufficiently expanded.

—John Bainville, "Beauty, Charm and Strangeness:
Science as Metaphor," Science 281, 1998

Dr. Googol and Monica traveled to the heart of Arequipa, Peru, to seek ancient
power. Inside a mighty Inca fortress was Augusto Leguia y Salcedo: mystic,
soothsayer, and witch doctor. Dr. Googol looked into the wizard's flaming
magenta eyes and was transfixed by his mesmerizing glance.

"Oh Great One," Dr. Googol asked, "can you grant me the power of invisi-
bility?"

"Ah," Augusto Leguia y Salcedo replied, "in order to possess such a power,
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you must first pass a test." He produced a board
divided into 25 squares (Figure 112.1). "Place
these 13 rubies and this single emerald on the
board so that there will be an even number of
stones in each row and column and along the 2
diagonals."

Dr. Googol reached toward the board, think-
ing that this should be devil's food cake.

"Wait!" Augusto Leguia y Salcedo cried, his
eyes taking on a strangely disturbing intensity.
They seemed to be looking into Dr. Googol, as
if he were already transparent. "There can be no
more than 1 ruby per square. The emerald must
be placed on a square with a ruby. Not one of
the rows, columns, or diagonals can be empty of stones." He turned over an
hourglass filled with black sand. "You have 1 hour to solve the problem, or else
you and your pretty friend will forever remain"—he grinned, and the blood ves-
sels in his head throbbed—"mere visibles."

 For a solution, see "Further Exploring."

112.1 The Emerald Gambit
board.

Chapter 113

Wise Viracocha

This is the project that all artists are embarked upon: to subject
mundane reality to such intense, passionate, and unblinking scrutiny
that it becomes transformed into something rich and strange while

yet remaining solidly, stolidly itself.
—John Bainville, "Beauty, Charm and Strangeness:

Science as Metaphor," Science 281, 1998

Viracocha—the ancient Inca deity and creator of all living things—has a golden
coin to share with his 4 favorite gods: Apu Illapu, Inti, Hathor, and Anubis.
On the coin are 8 drawings of anchovies spaced as shown in Figure 113.1.
(Anchovies are an Inca favorite!) To be fair, Virachocha will break the coin into
4 equal parts and give 1 to each of his godly friends.
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"Wait!" cries Inti, the Inca sun god, "I want
my piece to contain the same number of
anchovies as everyone else's."

"So do I," says Apu Illapu, the rain giver, as
he raises his staff.

"No problem," Viracocha replies as he rais-
es his hammer and chisel to divide the coin.
"Each piece will contain 2 anchovies."

How does Viracocha cut the coins so that
each piece has the same area of gold and also
the same perimeter (edge) length, as well as
containing 2 anchovies? Viracochas chisel cuts
only straight edges, so all your cuts must be
straight.

Viracocha has made a wonderful anchovy
pizza for 3 fellow gods (Figure 113.2).

"Looks delicious!" cries Inti, the Inca sun
god.}

"I'm starved," says Apu Illapu, the rain giver,
as he throws his staff on the ground.

"Me too," says Mama-Kilya, the moon
mother, who starts toward the pizza with knife
raised.

"Wait!" Viracocha says. "First you must
pass my test. Only those who are worthy may
eat my pizza. I want you to think of a way to
divide the pizza into sections using 3 circular
cuts so that 1 anchovy will be in each cut. Let
me give you an example."

Viracocha draws a picture with 6 anchovies
(Figure 113.3) . "Look here. I have used 3 cir-
cles to divide the pie in such a way that 1
anchovy is in each section. Now, who can do
this for the delicious pizza pie that has 10
anchovies?"

 For solutions, see "Further Exploring."
(Don't look up the answers until you have con-
sidered both problems; otherwise your eye will
see both solutions at once and spoil the fun.)

113.1 Viracocha's coin.

113.2 Viracocha's pizza.

113.3 Viracocha's example.
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Zoologic

Mathematics is used like a microscope to understand the real world. But the
microscope is flimsy, incomplete, and filled with contradictions. Does this
mean that the universe, too, is filled with contradictions and paradoxes?

—Dr. Francis Googol

The Inca Empire in South America flourished before the European conquest of
the New World, and it reached its greatest extent during the reign (1493-1525)
of Huayna Capac. At this time, llamas were the primary beasts of burden; alpacas
were domesticated and raised chiefly for their fine wool. Other domesticated
animals included dogs, guinea pigs, and ducks.

Dr. Googol likes to imagine Capac's ancient zoo, filled with all manner of
indigenous animals and overseen by a quirky zookeeper named Mr. Gila.

One warm summer day, Capac's zoo has finally moved all its animals into
their new homes. Figure 114.1 shows an aerial view of the zoo. Each of the zoo's
animal enclosures is marked with a circle. The paths between the enclosures,
shown as lines, are overgrown with weeds. Zookeeper Gila not only has to feed
all the animals, he has to mow the paths as well. (Back then mowers were a series
of rotating, machete-like blades.) Each path is 100 feet long. Mr. Gila starts his
walk at point A, the zoo's entrance, and finishes at point B. How far must he
travel, and what route should he take, so that his walk is the shortest possible?
(He may have to travel along some paths more than once.)

114.1 The layout of Mr. Gilo's zoo.
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114.2 Exhibit of 10 skinks.

In one section of the zoo there is an exhibit of 10 skinks (Figure 114.2). They
live in an aquarium made of 21 panes of "glass" made from the dried sap of cin-
chona trees and sarsaparilla and vanilla plants. As you can see, the aquarium is
divided into 10 compartments of equal size. Unfortunately, the feisty skinks
have cracked 2 panes in attempts to escape. Mr. Gila needs to enclose the 10
skinks with the remaining 19 panes of glass. The compartments should be of
equal size, all the glass panes must be used, and there must be no overlapping
panes of loose ends. Can he do it?

For solutions, see "Further Exploring."

Chapter 115

Andromeda incident

The mathematical spirit is a primordial human property that reveals
itself whenever human beings live or material vestiges of former life exist.

—Willi Manner

The volcano El Misti stand 5,822 meters (19,101 feet) above sea level in south-
ern Peru. The extinct volcano is part of the Cordillera Occidental, the principal
arm of the Andes Mountains. Because of its height and clear skies, El Misti is an
excellent place for observing the stars.

"Look, Monica." Dr. Googol pointed. "The Andromeda galaxy."
"Wonderful! I know all about it. It's 2 million light-years from Earth. It's

the nearest spiral galaxy and the most distant object that we can see with the
naked eye."
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Dr. Googol huddled closer to Monica. Perhaps there was romance in the air.
"May I give you a new puzzle?"

Monica hesitated. "Sure, but make it the last one for tonight. I'm getting a bit
tired."

® ® ®

Our story begins with an amazing discovery. Happily, there turns out to be intel-
ligent life in the Andromeda galaxy. Unhappily, however, the Andromedans,

apparently driven mad by our errant
television broadcasts, have decided to
attack us. Nine of their best flying
saucers are heading our way. They
travel in formation, continuously
emitting death rays horizontally, verti-
cally, and diagonally. Therefore, they
must be careful to stay in the arrange-
ment shown in Figure 115.1 so that
they don't destroy one another. In this
particular arrangement, no saucer is
horizontally, vertically, or diagonally
in line with another.

Tired of maintaining the strict for-
mation for such a long journey, 3 of

115.1 Arrangement of flying saucers. the saucers wish to move to an adjoin-
ing cell in space. The death rays will be

turned off for the move. Afterward they will be turned back on, so again no
saucer can be in line with another. Which 3 of these saucers move, and to which
3 cells (at present unoccupied) do they pass?

For a solution, see "Further Exploring.'



Chapter 116

Yin or Yang

The trick that art performs is to transform the ordinary into the extraor-
dinary and back again in the twinkling of a metaphor.

—John Bainville, "Beauty, Charm and Strangeness:
Science as Metaphor," Science 281, 1998

Viracocha, the great Inca god, is preparing a birthday cake for a friend's twin
sons. Viracocha knows that one prefers chocolate, while the other prefers vanil-
la. Viracocha, in his wisdom, bakes a
cake in the shape of the ancient yin-
yang symbol of two opposing cosmic
forces. He knows this should satisfy
the children because the symbol is,
geometrically speaking, a circle divid-
ed into 2 equal parts, and one part of
the cake is chocolate, the other vanil-
la. Viracocha cuts the cake into 2
pieces along the curvy line dividing
the 2 flavors (Figure 116.1).

When the children come and look
at the cake, they cry, "Oh Great One,
there are 4 children to serve, not just
2. Two of us like chocolate, and 2 of
us like vanilla." 116.1 The chocolate/vanilla cake.

Viracocha sighs. "Okay, there is a
way to cut the cake into 4 pieces of the same size and shape using just 1 more
cut. You'll even each have the same amount of icing. If you can figure out how
to make such a cake, the 4 of you will be satisfied."

Can you help the children divide the yin and the yang into four pieces of
identical shape and size with a single cut?

For a solution, see "Further Exploring."
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A Knotty Challenge
at Tacna

When an electron vibrates, the universe shakes.
—British physicist Sir James Jeans

Dr. Googol and Monica were exploring Tacna, the southernmost town in Peru,
when a band of paramilitary thugs suddenly ambushed Dr. Googol's jeep. From
the surrounding cocoa trees hung thick ropes with loops at the bottom, as if the
ruthless men were preparing for a hanging.

"Oh no!" Monica said. "What do we do now?"
One of the men approached Dr. Googol and pointed to a loop of rope on the

ground (Figure 117.1). Then
he blindfolded Dr. Googol
and Monica and turned to
Dr. Googol. "Do you think it
is likely that the rope on the
ground is knotted?"

Monica clenched her fists.
"How do we get ourselves
into such absurd situations?"

Dr. Googol reached out to
hold her hand. "Monica, don't
worry. Even though I glanced
at the ground too quickly to
notice which segments of rope
go over each other, I can fig-
ure out the exact probability
of the rope being knotted.
Then I can give the man an
accurate answer.

117.1 A loop of rope. Tiny white areas indicate
the intersection points. Do you think this rope
is knotted?
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Dear Reader, if you were a gambler, would you bet on the rope's being knotted?

For a solution, see "Further Exploring."

Chapter 116

An Incident at
Chavin de Hudntar

We wander as children through a cave; yet though the way be lost, we
journey from the darkness to the light.

—The Gospel According to Thomas (XV: 1)

Before the Spanish invasion, the peoples of Peru were isolated from one anoth-
er by the country's rugged topography. However, a unifying culture spread across
the Andes 3 times. Beginning in 1000 B.C., the Chavin culture permeated the
region, emanating from the northern ceremonial site of Chavin de Huantar. Dr.
Googol was exploring this site when a small boy ran up to him and handed him
a clay tablet with strange symbols.

Dr. Googol looked at the tablet. "These are definitely not symbols of the
Chavin culture."

"How do you know that?" the boy said. "In any case, it does not matter. I am
told that if you can decode this message, you will hold the kegs to ifye imt-
frers^" The boy said the last 4 words in a mysterious tone of voice.

"Very good," Dr. Googol replied. "I love a great challenge. I will have my
assistant Monica decode this once I return to the village. If she can translate this
tortuous message, we might both share tfye umfrerse's secrets."
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An Odd Symmetry

Mathematics is a train weaving its way through the infinite landscape of
reality. As humans progress, the train moves ever forward. More cars are

added, and rarely is a car discarded. Yet, if mathematics is the train, I can-
not help but wonder: who made the tracks upon which the train rides?

—Dr. Francis Googol

Peru's transportation system faces the challenge of the Andes Mountains and of
the intricate Amazon River system. The only integrated networks are the roads
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r a hint, see "Further Exploring."
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and the airlines; the country's two railroad systems have not been interconnected.
Dr. Googol was riding the major Peruvian railroad, the Central Railway,

which rises from the coast at Callao near Lima to cross the continental divide at
15,700 feet. He was about to take a nap when one of the train conductors
approached him.

"My name is Jorgo Chavez," the conductor said. "I understand you are a
mathematician."

"I do a little in my spare time," Dr. Googol said nonchalantly.
"Good, I have a problem for you. Come with me." He led Dr. Googol to the

next car, in which there were 9 barrels. Each barrel contained several hundred
plastic models of a single digit. The first barrel contained plastic models of the
digit 1. The second contained models of 2, and so forth. The ninth barrel had
plastic models of 9.

On the wall were several rows of mailboxes with mathematical operations
between them:

The conductor pointed to the mailboxes. "In each of your attempts to solve
the problem, you are only allowed to reach into 1 barrel and place the same
number in each mailbox in a row to make the mathematics correct."

"Fascinating," Dr. Googol said.
"I will give you a hint," said Jorgo Chavez. "There are infinitely many solu-

tions for the first row, ^D = <^D. Try it. For example, you can reach into the 1
barrel and place a 1 in the left mailbox and a 1 in the right mailbox. Of course,
1 = 1. In fact, you can do this for any digit."

Dr. Googol nodded.
"Now look at row 2, ^D + <^D = <^D x <^D. Amazingly, the number of solu-

tions drops from infinity to only 1 solution! Can you figure out which single
digit will make this correct?"

"Interesting," Dr. Googol said.
"Now for the hard problem. We wish to continue the exact same logic for the

remaining rows. What digits can you place in the other rows to make the addi-
tion at left equal to the multiplication at right? Remember, you must use the
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same digit in each mailbox. So, for example, you could insert a 4 into the row 3
mailboxes to create 4 + 4 + 4 = 4 x 4 x 4 , but unfortunately this does not yield
a correct formula. In fact, don't even limit yourself to the barrels of numbers in
the train. I'll let you use any positive integers. Can you find digits that will make
this work for an arbitrary number of symmetrically placed mailboxes?"

For additional discussion, see "Further Exploring."

Chapter 120

The Monolith at
Madre de Dios

I just hope that I can laugh through all phases of life, do a little
mathematics, live to a very ripe old age, and leave the body behind like

slipping off a tight shoe.
—Clay Fried (e-mail to Dr. Googol)

While exploring Madre de Dios, a city in eastern Peru, Dr. Googol came upon
a large rectangular monolith. On the outside of the huge stone block was an
array of different symbols. Could it be a code of some sort? One symbol was
missing from the array. Perhaps some ancient astronauts left the monument
behind ages ago. Perhaps they wish to assess our intelligence by seeing if we can
fill in the symbol and complete the array.

What symbol should be used to replace the missing space in the matrix of sym-
bols? (Hint: Numerical values need to be assigned to the symbols to solve this.)

What is the logic you used to solve this puzzle? Is there another logic that you
might use to solve it differently?
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 a solution, see "Further Exploring."

Chapter 121

Amazon Dissection

As one goes through it, one sees that the gate one went through was the
self that went through it.

—R. D. Laing

The Amazon, with the largest volume of flow of any river in the world, has head-
waters in the Peruvian Andes. Dr. Googol was sailing along one of its main
branches, the Ucayali River, which originates in southern Peru, when an old man
came out from the jungle.

"Can I help you?" Dr. Googol said to the man.
"Yes. We have heard of your great mental prowess. We have a potential reli-

gious conflict that you can resolve. The Jews, Catholics, Moslems, and a mixture
of Oriental religious groups live together on my vast jungle. Now the land must
be subdivided, and we want to keep the religious mixture the same in the 2 new
lands. More precisely, I want to create 2 areas, both of exactly the same size and
shape, that contain equal numbers of each religious household. (We want both
new lands to have the same religious composition for voting and other reasons.)"

He handed Dr. Googol a card with a symbol representing each religious
household:
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The old man continued. "You can use a pencil to define the areas, but all the
lines you draw must be straight. You can think of this as cutting a rectangular
cake into 2 identically shaped pieces."

Can you help Dr. Googol solve this problem?

$ For a solution, see "Further Exploring."

Chapter 122

3 Weird Problems
with 3

Pure mathematics is religion.
—Friedrich von Hardenberg, 1801

The number 3 plays an important role in Peru. Peru is the third largest nation
in South America. Peru can be divided into 2 geographic regions from west to
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east: the Costa (coast), the Sierra (highlands), and the Montana, or selva (the
vast, forested eastern foothills and plains). Agriculture employs about one-third
of the workforce. But all of these facts are not the primary reasons that Dr.
Googol is fascinated by the number 3.

Here are some of the major reasons Dr. Googol loves three. Three is the only
natural number that is the sum of all preceding numbers. It is the only number
that is the sum of all the factorials of the preceding numbers: 3 = 1! + 2! In reli-
gion, 3 reigns supreme. For example, in ancient Babylonia there were 3 main
gods: the Sun, Moon, and Venus. In Egypt there were three main gods: Horus,
Osiris, and Isis. In Rome there were 3 main gods: Jupiter, Mars, and Quirinus.
For Christians, 3 symbolizes the Holy Trinity: Father, Son, and Holy Spirit. In
classical literature, there were 3 Fates, 3 Graces, and 3 Furies. In languages, there
are 3 genders (masculine, feminine, neuter) and 3 degrees of comparison (posi-
tive, comparative, superlative.)

German Chancellor Otto von Bismark signed 3 peace treaties, served under
3 emperors, waged 3 wars, owned 3 estates, and had 3 children. He also organ-
ized the union of 3 countries. His family crest bore the motto: In trinitate forti-
tude (In trinity, strength). There is a German saying: Alle gute Dinge sind Drei
(All good things come in 3s).

With this diversion, Dr. Googol would like the most erudite among you to
consider 3 fiendishly difficult problems dealing with the number 3 in some odd
way or another. If you find any number nerd able to solve all of these, Dr.
Googol invites them to join his Three Lovers Club.

G R O W T H

Start with 3 digits: 1, 2, and 3. Each succeeding row repeats the previous 3 rows,
in order, as you can see from the following diagram.

1

2
3
123
23123
312323123
12323123312323123
2312331232312312323123312323123

What is the sum of digits in row 100?
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3 - A T O M S

Get rid of all the 2s in the previous sequence. Here Dr. Googol has replaced each
of them with a fb:

3
l F b 3
Fb31 R]3
31 Fb 3 fb 31 RJ 3
11% 3 Fb 31 pb 331 fb 3 fb 31 RJ 3
|%3MlR]3Ri3lRj3 lR]3R33R333lFi3R]3lR33

Notice that in the last row of this diagram, there are 3 different atomic
species: 31, 331, and 3. How many different species are there in row 30?

C L E A V A G E

When the sequence first hits a 3, it now undergoes an enzymatic cleavage, and
the digits on the right of the 3 are swapped with the digits on the left. (If the
digit appears in the rightmost place, as in 123, nothing is swapped because noth-
ing appears to the right of the 3.) For example:

1
2
3
123
23123 now becomes 12323
312312323 now becomes 123123233

Now go back to the previous "atom question" and try to find an answer.

$ For solutions, see "Further Exploring."

1
2
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Zen Archery

The Buddha, the Godhead, resides quite as comfortably in the circuits of
a digital computer or the gears of a cycle transmission as he does at the
top of a mountain or in the petals of a flower; to think otherwise is to

demean the Buddha—which is to demean oneself.
—Robert Pirsig, Zen and the Art of Motorcycle Maintenance

Dr. Googol was climbing Mount Huascaran, the highest mountain in Peru,
seeking enlightenment from a Zen master who had been living in a mountain
cave for years. After several hours, Dr. Googol found him sitting on a stone
throne.

Dr. Googol bowed. "Sir, I seek enlightenment."
He nodded, handed Dr. Googol a bow and arrow, and pointed to an unusu-

al target hanging on the wall (Figure 123.1). "With 5 shots, hit 5 different num-
bers on the target that total 200."

Dr. Googol stepped back. "You've got to be kidding."
The monk stared. "You have 1 minute."
What are Dr. Googol's 5 shots? How long did it take you to solve the prob-

lem?

The archery master also gave Dr. Googol another problem (Figure 123.2).
"There are 3 concentric circles of numbers on this target. Start at the outside row
and hit a number. Go to the middle ring and hit a number. Go to the inner ring
and hit a number. The sum for your numbers must be 100. Moreover, as you go
from outer to inner ring, your selected numbers must keep increasing."

What are the numbers Dr. Googol must give to the Zen master?
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Ufrfl£

123.1 Zen archery. Hit 5 numbers for a 123.2 Zen archery. Hit 3 numbers to total
total of 200. (Drawing by Brian Mansfield.) 100, given the rules described in the text.

(Drawing by Brian Mansfield.)

$ For solutions, see "Further Exploring."
9 See [www.oup-usa.org/sc/0195133420] for a computer program to solve

this class of problem.

Chapter 124

Treadmills and Gears

A rock pile ceases to be a rock pile the moment a single man contem-
plates it, bearing within him the image of a cathedral.

—Antoine-Marie-Roger de Saint-Exupery, Flight to Arras

Dr. Googol is quite an inventor. During his last visit to coastal Peru, he invent-
ed the exercise device shown in Figure 124.1. He even received U.S. Patent

www.oup-usa.org/sc/0195133420
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5767852 for this ingenious machine.
But does it really work? As Dr. Googol
runs, will the treadmill turn, or is it
locked, thereby causing Dr. Googol to
run off the end and plunge into the
ocean? What effect does the figure-8
belt have on the operation of the device?
Would the operation be different if this
figure-8 were replaced with a Mobius
strip (a loop of conveyor belt with a half
twist)? If the device does not work, how
would you fix it? Would the device
function any differently if all belts were
twisted?

Dr. Googol also invented a device
consisting of gears and a thin loop of
rubber (Figure 124.2). If he turns the
crank at bottom, will the device move,
or will it lock up? To solve this enigma,
note that the gear train might lock if
1) two gears are trying to spin the same
gear at different rates or 2) two gears are
trying to spin the same gear in opposite
directions. Let's assume that the rubber
loop in the gear train (on the far left) is
sufficiently slack so that it will take care
of any differences in the speed of the
gear train. Therefore, the only way the
gear train would be locked is if condi-
tion 2 holds. The $20,000,000 question
is: "Is the gear train locked?"

$• For solutions, see "Further Ex-
ploring."

124.1 Will the belts on Dr. Googol's patent-
ed exercise treadmill turn freely or not?
(Drawing by Brian Mansfield.)

124.2 Turn the crank at bottom. Will this
gears in this contraption turn, or will they
be locked? (Drawing by Brian Mansfield.)
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Anchovy Marriage Test

Sometimes it's a form of love just to talk to somebody that you have
nothing in common with and still be fascinated by their presence.

—David Byrne

Late last autumn, Dr. Googol was dining with his friend Monica in a small cafe
in the town of La Oroya, Peru. They shared a large anchovy pizza while gazing
at one another and at the beautiful Peruvian tapestries hanging from the ceiling.

"Monica, did you know that in the 1950s and 1960s Peru's fishing industry
flourished madly because of the huge anchovy harvests? These fish were con-
verted into fish meal and oil for export as animal feed."

"They do taste good. Salty."
Dr. Googol looked into Monicas dark eyes. "Monica, I've been meaning to

ask you something." He brought out a large diamond ring.
"Monica, I will marry you if you can answer the following questions."
"Oh, Dr. Googol, I thought you'd never ask!"
Dr. Googol handed Monica 3 slightly soiled pieces of paper:

Using standard mathematical symbols,
can you make five 9s equal to 1,000?

and

Can you add one small stroke to
make this equation correct?

6 + 6 + 20 = 666

and

insert 4 parentheses and 3 different mathematical
symbols to make the following expression true:

66666665 = 1 1 1

Monica looked at the papers reeking of anchovies, then back at Dr. Googol.
"Francis, why must you always test me?"
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"I want to make sure we are fully compatible."
"These are the last math questions I'm going to answer for a long time. You

certainly have enough questions for that silly book you're working on."
"Monica, do you mean that you are actually able to answer the 3 questions?

I've never come upon a person who could handle all of them."

$ For a solution, and to see Monica's response, see "Further Exploring."





Further Exploring

Chapter 2

Why Don't We Use
Roman Numerals Anymore?
To solve the boy's puzzle, simply turn the card upside down.

Dr. Googol conducted a study of almost 500 people regarding the column connec-
tion problem, and he asked people to time themselves as they attempted to arrive at a
solution. About 20% of the people said this problem was impossible to solve. Those that
could solve it usually did so in under 2 minutes, and there was little correlation between
a person's ability to solve the puzzle and age (ages ranged from 20 to 60). The problem
is in fact solvable, and the solution is left as an exercise for you. If you cannot solve the
problem, don't think about it for a day; then return to the problem. Many people find
it easier to solve this on their second attempt a day later. A computer could probably
solve this class of problem faster than a human; however, humans have one advantage in
that they have the ability to discard bad attempts rather quickly. Write a computer pro-
gram to randomly place circles so as to create new and unusual "wiring" problems, or
you can create new puzzles like this with pencil and paper.

Psychologists have long been interested in the relationship between visualization and
the mechanisms of human reasoning. Is it significant that people find the puzzle easier
to solve after returning to it a day later? Is there any correlation in a person's ability to
solve the puzzle with gender, profession, IQ, musical ability, or artistic ability?

This type of problem raises questions that pertain to the mathematical field of graph
theory—the study of ways in which points can be connected. Graphs often play impor-
tant roles in circuit design. One unusual problem in this field involves the following ques-
tion. How does one arrange sticks in a way such that 4 sticks meet end to end, without
crossing each other, at every point in a geometrical figure on a flat surface? In Figure F2.1,



F2.1 The amazing Harborth configuration from the "4 sticks"
problem. (Pattern discovered by Heiko Harborth; diagram
adapted from Peterson, I. (1990) Islands of Truth. Freeman:
New York.)

4 sticks meet at each vertex.
This is the smallest arrange-
ment known, but no one
knows whether it's the small-
est possible way to make a
figure with 4 sticks meeting
at each point!

Why do clock faces with
Roman numerals almost
always show the number four
as llll instead of IV? There
are several possible reasons,
depending on whom you
consult. (1) IIII provides
aesthetic balance since it
is visually paired with the
VIII on the other side. (2}
IV is a modern invention
that the Romans did not use.
(3) Romans did not wish to

offend the god Jupiter (spelled IVPITER) by daring to place the first 2 letters of his name
on the clock face. This latter explanation is unlikely because the idea of placing I before
V to represent 4 (which makes numbers shorter to write while making them more con-
fusing for arithmetic) was hardly ever used by the Romans themselves and became pop-
ular in Europe only after the invention of printing. (Also note that some clocks do use
IV—London's Big Ben is the most famous example.)

Do you think that civilization's use of Roman numerals comes midway in its devel-
opment? Going back in time, we find that cave-wall numbers were some of the initial
steps toward primitive computing machines. One of the first true calculating machines
to help expand the human mind was the abacus, a manually operated storage device that
aids a human calculator; it consists of beads and rods and originated in the Orient more
than 5,000 years ago. Archeologists have since found geared calculators, dated back to
80 B.C., in the sea off northwestern Crete. Since then, other primitive calculating
machines have evolved, with a variety of esoteric-sounding names, including Napier's
bones (consisting of sticks of bones or ivory), Pascal's arithmetic machine (utilizing a
mechanical gear system), Leibniz's Stepped Reckoner, and Babbage's analytical engine
(which used punched cards).

Continuing with more history: The Atanasoff-Berry computer, made in 1939, and
the 1,500-vacuum-tube Colossus were the first programmable electronic machines. The
Colossus first ran in 1943 in order to break a German coding machine named Enigma.
The first computer able to store programs was the Manchester University Mark I, which
ran its first program in 1948. Later, the transistor and the integrated circuit enabled
microminiaturization and led to the modem computer.
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In the mid-1990s, one of the world's most powerful and fastest computers was the
special-purpose GRAPE-4 machine from the University of Tokyo. It achieved a peak
speed for a computer performing a scientific calculation of 1.08 Tflops. (Tflops stands
for "trillion floating-point operations per second.") With this computer, scientists per-
formed simulations of the interactions among astronomical objects such as stars and
galaxies. This type of simulation, referred to as an TV-body problem because the behav-
ior of each of the Ntest objects is affected by all the other objects, is particularly com-
putation-intensive. GRAPE-4 reached its record speeds using 1,692 processor chips,
each performing at 640 Mflops. Like a web spun by a mathematically inclined spider,
each processor had intricate connections with the others. The Tokyo researchers hoped
to achieve petaflops (1015 or 1 million billion floating-point operations per second) by
the turn of the century with a suite of 20,000 processors each operating at 50 Gflops.

NASA, the Defense Advanced Research Projects Agency, and the National Security
Agency are funding the exploration to support mission-critical areas ranging from
simulating Earth's climate system to breaking the communications of enemy nations.
Their "hybrid technology multithreaded" (HTMT) architecture for the next genera-
tion petaflop computer is a mix of emerging technologies including helium-cooled
superconducting processors, memory chips with onboard processing capabilities, an opti-
cal communication network, and holographic storage. (For more information, see: Cohen,
J. (1998) Mix of technologies spurs future supercomputer. Insights (NASA). July, 6: 2-10.)

GRAPE-4 was certainly much more expensive than the abacus or Napier's bones, but
also much faster!

Chapter 3

in a Casino
The answer is 1.2 centimeters. The ruler does not help you, but the employee was wise
in offering Dr. Googol this distraction. If you disregard the ruler before your minute is
up, you may brilliantly realize that the measurement is reduced by I/13th, because 4
cards are removed from 52, and then you can quickly do the necessary mathematics and
subtract 0.1 from 1.3. Try this on some friends—few will be able to solve it quickly.

To make the problem more difficult for your friends, start by telling them that the
deck without Kings is 1.2 cm thick. Next ask your friends, "If the gladiator produces
four Kings and adds them to the deck, how thick is the deck?"

Still not sufficiently difficult? How thick will the deck be if the Queens abscond with
all other cards that show a prime number on their face? (An integer greater than 1 is a
prime number if its only positive divisors [factors] are 1 and itself.)

How many consecutive digits of pi (3.1415 . . . ) can you display with a deck of
cards? (See Chapter 96 for fractal sequences based on cards.)
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Chapter 4

The Ultimate Bible Code

This problem was discussed by Martin Gardner in the August 1998 Scientific American.
Gardner's wonderful "Mathematical Games" column began in the December 1956 issue
and ran for more than 25 years, providing a whole library of Scientific American puzzle
books.

In this Bible code puzzle, Gardner points out that each chain of words ends on God.
This answer may seem miraculous, but it actually is the result of the "Kruskal count," a
mathematical principle first noted by mathematician Martin Kruskal in the 1970s.
When the total number of words in a text is significantly greater than the number of let-
ters in the longest word, Gardner notes, it is likely that any 2 arbitrarily started word
chains will intersect at a keyword. After that intersection point, the chains become iden-
tical. As the text lengthens, the likelihood of intersection increases.

Dr. Googol welcomes any other "miraculous" examples of texts with these kinds of
properties. Can you discover similar examples using various literary or religious works?
In a personal communication to Dr. Googol, Martin Gardner notes that if the Krukal
count is applied to the verse of Exodus, the count ends on man. (This problem was first
considered by John Paulos.)

Chapter 5

How Much Blood?

Here are some additional sickening challenges for you to consider. So far, none of Dr.
Googol's colleagues have provided reasonable answers. Can you?

© Compute the volume of body fluid for an average fish. What size container would
be needed to contain all the blood of all the fishes in the world?

© Today, is there more monkey blood in the world or more human blood? Ten thou-
sand years ago, was there more monkey blood in the world or more human blood?

© Today, is there more insect blood in the world or more human blood? What size
container is required to store all the insect blood in the world?

© If all human intestines were tied end to end, would they be able to stretch a dis-
tance equivalent to the distance from the Earth to the Moon? ("Oh, Dr. Googol,
you are a gross human being for asking this.")
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Chapter 6

Where Are the Ants?
Why not first try simulating this on a computer? You can build your own computerized
ant farm through which ants can travel by defining a map of tunnels and chambers.
Next have your simulated ants crawl through the tunnels using a "random walk" proce-
dure. For example, start with 10 ants described by their (x,y) positions in the ant farm.
Have the computer draw each ant as a little black circle, or as a triplet of circles to rep-
resent the head, thorax, and abdomen. For each increment in time, move the ants a ran-
dom short distance. If an ant bumps into a wall, reflect it back into the tunnel or cham-
ber. You can make the simulation easier to program on a computer by representing the
chambers and tunnels as squares connected by straight, thin tubes. Those of you with-
out computers can accomplish this simulation by using dots on graph paper and by
throwing dice to control the ant's movements.

In which chamber do the most ants reside? To solve this problem theoretically, we
assume that the ants walk randomly. In this sense, they behave like randomly diffusing
molecules in a gas. Therefore, the number of ants in each chamber is proportional to the
area of the chamber. The nature of the interconnecting tunnels should not matter if you
give the diffusing ants sufficient time to come to an equilibrium state. In other words,
in Figure 6.1 most ants will reside in chamber C, the chamber with the largest area.
(Actually, just about as many ants will reside in the upper region outside the connected
chambers, because this region has an area nearly the same as C.)

Are you able to simulate this using a computer? What happens if the ants are differ-
ent sizes and move at different speeds, or if an ant's behavior in a chamber is affected by
the density of ants in the chamber, or if they leave odor tracks behind them for other
ants to follow, or if an ant can't change directions when in a tube? There are dozens of
interesting experiments to try. They're not only good fun but will teach you some fun-
damental lessons about the diffusion of particles under different conditions.

Dr. Googol has been told that the following terms are trademarked by Uncle Milton
Industries: Ant Farm, Ant Farmers, Ant Farm Village, Ant Way, and Ant Port. You can
purchase already assembled, low-cost ant farms from Uncle Milton Industries, Culver
City, CA 90232. The term Ant City is a trademarked name of another ant-enclosure
manufacturer: Ant City, Natural Science Industries, Far Rockaway, NY 11691.

Chapter 7

Spidery Math
Figure F 7.1 is a diagram showing the 6 gaps left by the hallucinating spider. The answer
to the question regarding the smallest and largest spider numbers for an arbitrary (n,m)
web is still a mystery to mathematicians. However, James Doyle from South Orange,
New Jersey, believes that for the (4,3) web, the largest spider number is 322. He arrived
at this number by placing 1 gap on each of the 3 circles and placing the fourth gap on
any 1 of the circles in the section to the immediate left or to the immediate right of the
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other gap on that circle. The smallest spider number for a (4,3) web appears to be 240.
You can arrive at this solution by placing 1 gap on each of the 4 straight lines between
the center point and the first circle. The largest spider number for the (2,2) web is prob-
ably 54. (Place 3 gaps on one circle and 1 gap on the other circle.) The smallest spider
number for the (2,2) web appears to be 32. (Place 2 gaps on each of the 2 straight lines,
and 1 gap on each of the 4 sides of the center point.)

11

F7.1 Solution for spider math—showing 6 gaps left
by the hallucinating spider.

Chapter 8

Lost in Hyperspace
Despite the pitifully little information given, we can calculate the answer: 1,800 light-
years. Here's how. When the starships first meet, half of the entire path has been trav-
eled, and this is equal to 800 light-years (what the Enterprise traveled) plus X (what the
Excelsior traveled). After this meeting, they continue traveling until they meet again.
During this second part of the journey, an entire path has been traveled, and this entire
path is equal to 1600 + 2X. Notice that during the second part of the journey, each ship
covers twice the distance it covered during the first part of the journey. This means
2X= 200, and the entire circuit is 1,600 + 200 = 1,800 light-years.

The shape of the track, including a 3-D track, should not matter provided that the
clockwise and counterclockwise paths between the Enterprise and the Excelsior are the
same length.
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Chapter 9

Along Came a Spider
M For the first problem, note that Mr. Ten cannot have 10 legs, so he must have either

8 or 9 legs. Because the spider with 9 legs replies to Mr. Ten's remark, Mr. Ten can-
not have 9 legs. Therefore Mr. Ten has 8 legs. Now consider Mr. Nine. He cannot
have 9 legs, because this would match his name. Mr. Nine has 10 legs.

W For the second problem, 1 insect is sufficient. Unwrap 1 insect from the web
labeled "flies and mosquitoes." Say that it's a fly. Because each web is labeled incor-
rectly, the web cannot be the "flies and mosquitoes" web, and therefore it must be
the fly web. The web labeled "mosquito" must contain mixed insects, and the web
labeled "flies" must actually be the mosquitoes web.

M Here is an unsolved problem on which you can work for hours. There are 4 webs
labeled "flies and mosquitoes," "mosquitoes and ants," "ants and wasps," and "just
wasps." All the labels are incorrect. How many insects do you have to unwrap to
correctly label the webs, and how do you do it? Dr. Googol believes the answer is
3. Can you confirm his suspicion?

Chapter 10

Numbers beyond imagination
Before showing you the results of the Big Number Contest, Dr. Googol would like to
digress and give a background on large numbers. The term googol is used to designate a
very large number: 10 raised to the power of 100, or 1 followed by 100 zeros.

10000000000 0000000000 0000000000 0000000000 0000000000
0000000000 0000000000 0000000000 0000000000 0000000000

American mathematician Edward Kasner popularized this number in the 1930s.
Most scientists agree that if we could count all the atoms in all the stars we can see, we
would come up with less than a googol of them. Interestingly, the name googol was
invented for this number by Kasner's 9-year-old nephew. The same youngster also
invented the term googolplex for an even higher number: 1 followed by a googol Os. Our
limited brain architecture makes it difficult to comprehend numbers such as these. We
have not needed to evolve this capability to ensure our survival. However, just as chil-
dren slowly become able to name and appreciate larger and larger numbers as they grow,
civilization has gradually increased its ability to name and deal with large numbers.

Which number is larger: the number of possible chess games (which Dr. Googol
denotes by A), or the number of trials needed for a monkey to type Shakespeare's Hamlet
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by random selection of keys (expressed as 1 chance in B trials)? How do these values
compare with the number of electrons, protons, and neutrons in the universe, C, or with
Skewes's number D (which is one of the largest numbers that has occurred in a mathe-
matical proof)? The values of these numbers are listed in the following.

Chess number: A = lO10™'5

Hamlet number. B = 35 37'000 which is about equal to 10 40>000

Universe number: C - 10 79

io34 jo 1000
Skewes's number: D - JO10 (revised in 1955 to have the value D = 1010 )

Mathemetician G. H. Hardy called Skewes's number "the largest number which has
ever served any definite mathematical purpose in mathematics." Hardy determined that
if one played chess with all the particles in the universe (which he estimated to be 1087),
where a move meant simply interchanging any 2 particles, then the number of possible
games was roughly Skewes's original number:

1010100000000000000000000000000000000

A recent mathematical thesis did even better than large numbers! In his book Math-
ematical Mysteries, Calvin Clawson reports that the number of kinks in the core of an
"embedded tower" is roughly

Now that's a big number! The point is that today large numbers such as these are
often contemplated, but this is a relatively recent development in human history. For
example, in biblical times, the largest number expressed as a single word was 10,000.
This occurs in the ancient Hebrew version of the Old Testament as the word r'vavah.
The word for million was an Italian invention of the 13th century, and the English word
billion was coined in the 17th century (largely as a curiosity).

In evaluating and formulating expressions, it is important to recall some of the
simple rules of exponentiation. For example, (am)n = amn. Test this using some small
numbers. Also, parentheses are often needed to resolve ambiguities. For example, 32 =£
(32)3. As discussed, a number raised to a negative power is simply 1 over the number
raised to the positive value of the power. For example, 2~3 is 1/23. The expression a^c

is usually taken to mean a^c\ To determine the number of digits A^in a value X, recall
that N= log10Jf+ 1.

The numbers discussed in this chapter are often much larger than a googol, yet they
are constructed with the barest of mathematical notation. In the first part of Dr.
Googol's Big Number Contest, he asked participants to construct an expression for a
very large number using only the digits 1, 2, 3, and 4 and the symbols (,), the decimal
point, and the minus sign. Each digit could be used only once. In a second contest, the
contributors could use, in addition to these symbols, any standard mathematical sym-
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bol (such as the factorial symbol, !) to produce a large number. Each symbol could be
used only once in the mathematical expression. For both contest parts, the final answer
had to have a finite value. Of the approximately 50 contributors, the 8 top entries
are listed.

For Part 1 of the contest, exponentiation is allowed since it does not require a sym-
bol when traditionally expressed. The following are the results for Part 1.

F I R S T - P L A C E W I N N E R : WALT H E D M A N A N D T I M G R E E R , N E W Y O R K

O.s-CO.a-t0-1'4)) _ 3.33(510000) or 3.35 x io6989

This number roughly corresponds to 3 to the wth power where n has approximately
6990 digits. The number of cubic inches in the whole volume of space comprising the
observable universe is almost negligible compared to this quantity.

S E C O N D PLACE: D I A N A D L O U G H Y , N E W YORK

(.l)-(438) = 1 x 10* where x = 432 ~ 1 x IO19

This second-place answer has 1 x IO19 digits. (Note: Later in the course of her exper-
imentation Diana discovered that 342 is 1 decimal place larger than 432 so that her
answer can be changed to .l~^ 2) = 1 x IO19 where x = 342, which is roughly equal to
IO20.)

T H I R D P L A C E : R O D D A V I S , N E W Y O R K

23*1 (has 1.0979 x IO19 digits)

F O U R T H P L A C E : R O D D A V I S , N E W Y O R K

34ai = 3(4") = 3*398046511104 (has 2<1 x 1018 digks)

This number roughly corresponds to 3 to the nth power where n has approximately
6990 digits. The number of cubic inches in the whole volume of space comprising the
observable universe is almost negligible compared to this quantity.

F I F T H P L A C E : D I A N A D L O U G H Y , N E W Y O R K

(l)(-432) = 1 x 10432 (has 433 digits)

S I X T H P L A C E : M A N Y P E O P L E F O R T H I S Z O I - D I G I T E N T R Y

3421 = 7.37986 x IO200

Submitters: Gary Hackney, Erik Tkal, Mike Shreeve, and Christine Wolak, among others.

S E V E N T H P L A C E : M I K E O T T , T O R O N T O

2(*(3 + 1)) = 9^56 = L1 x 1077 (has 78 digits)



290 © Wonders of Numbers

Note: Technically this answer should be disallowed since the plus sign was not
allowed in the contest rules.

E I G H T H P L A C E : w. G U N N , N O R T H C A R O L I N A

3143 (has 63 digits)

Can you beat the first-prize winner in this contest?
To create the prize-winning answers for the second part of the contest, contributors

often placed factorial signs, denoted by the ! symbol, at the end of the expressions list-
ed above. (Recall that, for example, 4! = 4 x 3 x 2 x 1 . ) For those of you who would
like to evaluate the huge results obtained with factorial symbols, the following formulas
may be helpful: n\ ~ ^2nn nne~n and ln(w!) ~ [wln(w)] -n. The second-prize winner
for this part, Dave Challener from New York, also used a gamma function symbol in the
front of the first solution in Part 1. For positive integers, Y(n + 1) = n\ Note that, in gen-
eral, T(x) = JJV-V<&,x > 0 or alternatively, =j- = xe*xH%=\{(l + Xm)e-xm] where y

T^ I 'is Eulers constant.
Mike Shreeve from Atlanta was the first-place winner. His answer made use of a sec-

ond-order Ackermann's function (as described in Aho's book in "Further Reading"),
which can be expressed by An - 2A(»-n with A(Q) = \. The sequence progresses as fol-
lows: 1, 2, 4, 16, 64000, 264'000, . . . . Mike Shreeve believes that this function grows
faster than any other named function. As big as the gamma answer is, it is smaller than
^4(4 + 3 + 2+1). Mike concluded his note to Dr. Googol with the words "I don't even
want to think about A (3^4 '^!) ."

Note that James Hunter's and Joseph Madachy's fascinating book Mathematical
Diversions lists the expression for Contest 1's first prize as an example of a very large
number. They note that this number is 3 to the nth power where n has approximately
6,990 digits. The number of cubic inches in the whole volume of space comprising the
observable universe is almost negligible compared to this quantity.

Let's end this section with some other curiosities and large numbers. One of the
largest individual numbers that occurs naturally in a theorem is

8080 17424 79451 28758 86459 90496 17107 57005 75436 80000 00000

This is the order of the so-called Monster simple group. An example of a finite
group is a collection of integers from 1 to 12 under the operation of "clock arithmetic,"
so that, for instance, 9 + 6 = 3. The concept sounds simple, but it gives rise to a math-
ematical jungle. For decades, mathematicians have tried to classify all the finite groups.
One of the strangest groups discovered is the "Monster group," which has over 1053

elements and a little-understood structure. For a background on this number, see:
Gorenstein, D., Lyons, R., and Solomon, R. (1994) Mathematical surveys and mono-
graphs: the classification of the finite simple groups. The American Mathematical
Society: New York. To better understand how symmetries of geometric objects form the
elements of finite groups, and how a particular string theory, when applied to a folded



Further Exploring © 291

doughnut in 26 dimensions, has more than 1053 symmetries and produces the Monster
group, see: Wayt, W. (1998) Monstrous moonshine is true. Scientific American, Novem-
ber, 279(5): 40-41.

Although Skewes's number, mentioned earlier in this section, is often thought to be
the largest number ever used in a mathematical proof, there is actually a more recent
record-holder. Graham's number is an upper bound from a problem in a part of com-
binatorics called Ramsey theory. Graham's number cannot be expressed using the con-
ventional notation of powers, and powers of powers. Let Dr. Googol try to explain it
using the symbol #. 3#3 means 3 cubed, and in general a#b = ah. 3##3 means 3#(3#3).
3###3 = 3##(3##3). 3####3 = 3###(3###3). Consider the number 3### . . . ###3 in
which there are 3####3 "#" signs. Next construct the number 3### . . . ###3 where the
number of # signs is the previous 3### . . . ###3 number. Now continue the process,
making the number of # signs in 3### . . . ###3 equal to the number at the previous
step, until you are 63 steps from 3####3. This is Graham's number, which occurred in
a proof by Ronald L. Graham, as described by David Wells.

The Moser is Dr. Googol's favorite huge number. One way of making incredibly
large finite numbers is through repetition. The Moser (presumably named after mathe-
matician Leo Moser) can be computed as follows: Define n\ to be n". This means 21 =
22 = 4, and 31 = 33 = 27, etc. If we add more line segments, we find: 2111 = 22" = 411 =
441 = 2561 = 256256. Now, define n< (n followed by a wedge) to be n followed by n line
segments. So 3< = 3111 = 2711 = 27271 = (27A27)A(27A27). (Here the A represents expo-
nentiation.) What a large number! But hold on. We can continue! n followed by a tri-
angle is the same as n followed by n wedges; n followed by a square is the same as n fol-
lowed by n triangles; and, in general, n followed by a k + 1 sided polygon is the same
as n followed by n k-sided polygons. Let's just see what 2(A) is:

2(A) = 2« = 2II< = 4I< = 256< = 256111 . . . 256 lines . . . H i l l

This is an unimaginably large number, which we'll call Clinton in honor of our
recent president. Notice that 2(D) = 2(A) (A) = Clinton(A) = Clinton<« . . . Clinton
wedges. . . <« = something enormous (which we may call Schwarzenneger in honor of
the enormously muscular movie actor). The Moser is defined as 2(Clinton-gon), a num-
ber so large that the gods will weep over it. Mathematician Matt Hudelson says that it
is "easy to see that the last digit in the base 10 expansion of the Moser is 6." How does
he know? What's its second-to-last digit?

This chapter also discussed large numbers such as the Hamlet number and the chess
number. Here are a few other large numbers—all less than a googol. The ice age number
(1030) is the number of snow crystals necessary to bring on the ice age. The Coney
Island number (1020) is the number of grains of sand on the Coney Island beach. The
talking number (1016) is the number of words spoken by humans since the dawn of
time. It includes all baby talk, love songs, and congressional debates. This number is
roughly the same as the number of words printed since the Gutenberg Bible appeared.
The amount of money in circulation in Germany at the peak of inflation was
496,585,346,000,000,000,000 marks, a number very similar to the number of grains of
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sand on the Coney Island beach. The number of atoms in oxygen in the average thim-
ble is a good deal larger: 1,000,000,000,000,000,000,000,000,000. The number of
electrons that passes through a filament of an ordinary light bulb in a minute equals the
number of drops of water that flow over Niagra Falls in a century. The number of elec-
trons in a single leaf is much larger than the number of pores of all the leaves of all the
trees in the world. The number of atoms in this book is less than a googol. The chance
that this book will jump from the table into your hand is not 0—in fact, using the laws
of statistical mechanics, it will almost certainly happen sometime in less than a googol-
plex years.

Chapter 11

Cupid's Arrow
Figure F11.1 shows one solution that will win you a heart. Dr. Googol is aware of 5
other solutions. Can you find any of them?

Fll.l A solution for Cupid's arrow. There are others.

Chapter 12

Poseidon Arrays
Here are the only other known solutions. In each of these 3 arrays, all 9 digits are used
exactly once.
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Notice that for each of these solutions, the sum of the numbers in each row is a con-
stant. The sum for row 1 is 12, the sum for row 2 is 15, and the sum for row 3 is 18.
And the sums all differ by the same constant, 3. Dr. Googol wonders if this property
may be generalized to larger arrays or to arrays using numbers in different bases. (Dr.
Googol has only considered the numbers in base 10.)

Here's a related problem. Start with the number in the last row (e.g., 657 or any other
solution you may find) and continue to form another 3-by-3 matrix using the same rules
with the new starting number. In other words, the number in the second row must be
twice the first. The third row must be 3 times the first. However, for this problem you
may truncate any digits in the beginning. For example, 1,384 would become 384. Keep
going. How many arrays can you create before it is impossible to continue? Again, each
digit must be used only once in each matrix.

Chapter 13

Scales of Justice
By assigning Ant = 4, Cockroach = 3, Grasshopper = 7, and Wasp = 1 we find 1 possi-
ble solution of "3 Wasps." This assignment makes the sums on each side of the scale
equal. How many other solutions are there? If there were 1 cockroach on the left, could
there ever be anything other than wasps on the right? If there were multiple cockroach-
es on the left, is it possible to balance the scale with ants or grasshoppers by using fewer
of the heavier insects?

Now for an odd aside. Did you know that outside of Europe and North America,
most people on Earth practice entomophagy? They eat insects. In parts of Africa, more
than 60% of dietary protein comes from insects. Grubs and caterpillars have a lot of
unsaturated fats. Dr. Googol once attended a banquet hosted by the New York
Entomological Society where he discovered some interesting appetizers: chocolate crick-
et torte, mealworm ganoush, sauteed Thai water bugs, and waxworm fritters with plum
sauce. In Colombia, roasted ants are eaten like popcorn. Honeypot ants, with their
transparent abdomens distended with peach nectar, are delightful sweets.
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Chapter 14

Mystery Squares
There appear to be several solutions to Dr. Googol's puzzle. For example:

8

9

12 7

5 10

11

6

sum = 22

Another solution is: top (1,7,12,2), left (1,6,11,4), right (2,8,9,3), bottom
(4,5,10,3). Another is: top (1,11, 8, 2), right (2, 12, 5, 3), left (1, 7, 10, 4), bottom (4,
6, 9, 3). Note that in the solution

11

12

10

we find the sets (1, 2, 3, 4), (5,6,7,8), and (9, 10, 11, 12) sorted in clockwise order. Can
you extend the puzzle to ones in which more numbers are used along the edges of
the square?

Chapter 16

Jerusalem Overdrive
If you couldn't solve the first problem, work in teams until you solve it. For the second
problem, here is a way to arrange the religions so that there are only 2 of the same reli-
gions in each row and column:
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Try these problems on a few friends. Dr. Googol has found that many people have
difficulty visualizing the solution.

Amazing Latin squares: The Jerusalem Overdrive problem can be thought of as a
special problem in the remarkably rich mathematical area concerned with Latin squares.
Latin squares were first systematically developed by Swiss mathematical Leonhard Euler
in 1779. (Euler's mental powers were so great that his capacity for concentrating on
math problems did not decline even when he became totally blind.) He defined a Latin
square as a square matrix with n2 entries of n different elements, none of them occur-
ring twice or more within any row or column of the matrix. The integer n is called the
order of the Latin square. Recently the subject of Latin squares have attracted the seri-
ous attention of mathematicians because they are relevant to the study of combinatorics
and error-correcting codes. Here's an example of the occurrence of a Latin square when
considering the equation z = (2x + y + l ) modulo 3:

0

1

2

0

1

0

2

1

2

1

0

2

0

2

1

X

y
To understand this table, consider the case of x = 2 and y = 2 which yields 2x + y +

1=7.7 mod 3 is 1 because 7/3 has a remainder of 1. This 1 entry is in the last row and
column of this Latin square.

Here's an interesting example of an order-10 Latin square containing 2 subsquares of
order 4 (consisting of elements 1, 2, 3, and 4) and also one of order 5 (with elements 3,
4, 5, 6, 7), the intersection of which is a subsquare of order 2 (with elements 3, 4):
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Can you create Latin squares with even greater numbers of internal subsquares than
this? What is the world record for the number of subsquares in an n-by-n Latin square?

A traversal of a Latin square of order n is a set of n cells, 1 in each row, 1 in each col-
umn, and such that no 2 of the cells contain the same symbol. Fascinatingly, even when
a Latin square has no traversals, it is very often the case that partial traversals of (n - 1)
elements occur in it. Do all Latin squares have a partial traversal of n - 1 elements if the
squares do not contain a true traversal? Here is an example of a Latin square with an n
- 1 traversal. (Dr. Googol has marked the traversal path with thick boxes):
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Now consider an amazing Latin cube. You can think of it as a stack of file cards. Each
card contains n rows and n columns. Each number occurs exactly once in each row, once
in each column, and once in each row and column in the third dimension:

0
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1

2

0

2

0

1

1

2

0

2

0

1

0

1

2

2

0

1

0

1
2

1

2

0

Can you design a 4-dimensional Latin hypercube? Note that computers are much
faster than humans in finding errors in Latin squares, cubes, and hypercubes. So, if you
are not sure if the Latin square you've written down is correct, check each row and col-
umn with a computer program (see [www.oup-usa.org/sc/0195133420]). Have your
computer create 4-by-4 Latin squares by randomly selecting values for the squares and
then checking if the result is a Latin square using the algorithm in the program code.
How long does it take your computer to find a Latin square? Several minutes? Hours?
Dr. Googol's IBM IntelliStation computer took just seconds to find 3-by-3 Latin
squares. For large squares, this random method is not very efficient.

S For a C code fragment used to scan for Latin squares, see [www.oup-usa.org/sc/
0195133420].

Chapter 17

The Pipes of Papua
Why would some obscure tribes in a remote New Guinea rain forest be sounding this
sequence upon their wooden flutes? Dr. Googol might have doubts as to the accuracy of
Omar's story, but the rhythm pattern is certainly strange to hear. You may wish to beat
the sequence out on your desk, or have your computer play the eerie rhythm. If you pre-
fer, you can beat the sequence out on a tabletop with a finger to represent a low tone
and a pencil to represent a high tone, or you can use short- and long-duration beats. Do
you hear a pattern? It is strangely compelling, yet it never quite repeats itself in the way
that most rhythms do. If the sequence is not random, what is its structure?

Not only do binary numbers provide musical possibilities, they also can yield artistic
patterns. Graphic patterns produced by binary numbers are so interesting that Dr.
Googol devotes Chapter 73 entirely to this subject. Interesting information on fractal
number sequences can also be found in M. Schroeder's Fractals, Chaos, Power Laws.

For other examples of aperidoic bar codes in mathematics, see Chapter 77 on I±J-
numbers.

For recent information on the Morse-Thue sequence in many apparently unrelated
occurrences, see Jean-Paul Allouche and Jeffrey Shallit, "The ubiquitous Prouhet-Thue-
Morse sequence," in Sequences and their Applications: Proceedings of SETA 1998 (New

www.oup-usa.org/sc/0195133420
www.oup-usa.org/sc/0195133420
www.oup-usa.org/sc/0195133420
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York: Springer, 1999), 1-16. In this paper, the authors provide a survey of the sequence's
amazing incidence in chess problems, quasicrystal theory, vibrational modes in alloys,
mathematical physics, combinatorics on words, differential geometry, number theory,
and the iteration of continuous functions. They also describe how the sequence may pre-
date the work of Thue and Morse, including a description in an 1851 paper by E.
Prouhet. The authors conclude with the words, "Searching for the many occurrences of
the Prouhet-Thue-Morse sequence in the literature can be used as a pretext to take a
delightful stroll through many fascinating areas of mathematics."

Chapter 18

The Fractal Society
Dr. Googol has received numerous mail from readers who experimented with the Fractal
Fantasies game. For example, Martin Stone from Temple University suggests a distrib-
uted version of the game played over the Internet. He writes, "Imagine a multiuser
recursive game server dedicated to the fostering of a greater intuitive understanding of
recursive structures and permutations." David Kaplan from New York University points
out that the game rules for Fractal Fantasies are similar to those of a medieval game
called Nine Man Morris played on a different playing board. Paul Miller notes that the
Fractal Fantasies game was discussed at the Boston chapter of Mensa. He asks, "Can
pieces of a Googol move out and back (thus forming and reforming the Googol)?" He
suggests that the Googol pieces be allowed to move only if there is no other legal move.
Alternatively, if a player moves a piece out of a Googol, he should not be allowed to
move it back into the same place on the next turn. Michael Currin from the University
of Natal (South Africa) suggests that the game be adapted to allow more than 2 players.
Finally, Brian Osman, a 15-year-old from Massachusetts, writes:

1 greatly enjoyed your description of the Fractal Fantasies in the March 1993 issue of
BYTE magazine. However, I point out that some of what you said is almost impossi-
ble! I've calculated the number of rectangles and "spots" for every size board, using the
formula: (2N+1) -1, where Nis the degree of the board. From this, one can find the
number of spots by simply multiplying by 6. Once you have this number, divide by
2 and subtract 2 to find the number of stones for each player. You have stated that
grand masters have been known to use boards of degree 20. I've checked my calcula-
tions repeatedly, and this would require each player start with 6,291,451 stones!
Assuming each opening move (only those to place your pieces) took 2 seconds, the
players wouldn't be able to move until 291.2708797 days after they started the game.
Am I missing something, or are your numbers as ludicrous as they seem to me? Please
don't take offense at this. I still found your article very enjoyable.
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Chapter 19

The Triangle Cycle

Figure F19.1 is a cycle 4 solution known as the Ashbacher solution after its discoverer,
Charles Ashbacher (personal communication). No one to Dr. Googol's knowledge has
yet discovered a higher cycle. But considering that this solution uses only multiples of
7, perhaps there is a higher cycle using multiples of both 7 and 13.

Here are some additional challenges:
Select a random number between

1 and 9. Place it in the lower left cor-
ner of the starting triangle. Can you
make a cycle 2 triangle cycle? Are
there solutions for any starting num-
ber you choose?

What is the largest cycle solution
that can be found?

The Fibonacci cycle game can be
played with 2 people. One player
writes a Fibonacci number at a vertex
(e.g., 1, 3, 5, 8, 13 . . . ; Fibonacci
numbers are defined in Chapter 71).
The second player writes a Fibonacci
number at another vertex. The goal is to continue placing numbers so that the multi-
digit numbers created by concatenating the digits of connected vertices are also
Fibonacci numbers. The game continues until a person cannot place a number that
would form a Fibonacci number. (It helps to have a list of Fibonacci numbers at your
fingertips as you play!)

F19.1 A solution to the Triangle Cycle.

Chapter 20

IQ-Block
When Dr. Googol presented this puzzle to Joseph Madachy, editor of Journal of
Recreational Mathematics, Madachy remarked:

I say you cannot create a square after removing a single piece and using all the remain-
ing pieces. The area of the complete block is 64. The areas of the 10 pieces are 8, 5,
7, 7, 8, 6, 5, 4, 6, 8. Removal of one of these pieces is simply insufficient to produce
the next smallest square (7 x 7 = 49 area). I haven't tried it, but it might be possible
if 2 pieces are removed.

Charles Ashbacher, book editor of the Journal of Recreational Mathematics, wrote
a computer program that found over 1,000 solutions rather quickly! He believes the
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F20.1 Joseph Lemire's novel solution with a
square cutout. The removed piece is shown
in shaded form in the middle of the
"square" formed by the other pieces. There
are probably other solutions with square
holes. Can you find any?

number of solutions is in the tens of thousands. Subsequent research by Joseph E.
Lemire suggests that it is possible to remove a single piece and create an amazing square
outline (actually, a square cutout) as illustrated in Figure F20.1. The removed piece is
shown shaded in the middle of the square formed by the other pieces. Charles also wrote
to Dr. Googol that he found 2 ways to create a square after 2 pieces are removed. His
constructions were found via a computer, and it seems likely there are others.

Chapter 21

Riffraff
The trumpeter is playing what mathematicians call a Morse-Thue sequence, which was
discussed in Chapter 17. Whenever a smiley face occurs, it is replaced in the next phrase
by a smiley face followed by a sad face; sad faces are replaced by a sad face followed by
a happy face. Notice that every other phrase is symmetrical—a palindrome.

For the trombone player, each & is replaced with a closed file followed by an open
file (CD&), and each closed file C] is replaced with an open file £7.

The violinist is simply marking every prime number (numbers divisible only by
themselves and 1) with a short note. So the second, third, fifth, seventh (and so on) are
short:

01101010001010001010001000001010000010001010.. .
t i l l I I I I I I I I I I
23 5 7 1113 1719 23 2931 37 4143

The saxophonist is just multiplying the digits of each number to get the next.
If you thought all of these were too difficult to solve, don't even think about attempt-

ing the next few brain bogglers. Instead, give them to your worst enemy. The following
are some incredibly difficult number sequences to ponder—so difficult that rarely any-
one but Dr. Googol could solve them. Solutions follow. Can you supply the missing
number in the following sequence?
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10, 11, 12, 13, 20, ?, 1000

If not, don't be disappointed. Exactly 99.3% of Dr. Googol's colleagues could not
solve this, even after considering the sequence for days. Perhaps looking at another
sequence generated by the same rules might help:

10, 11, 12, 13, 14, 20, 22, ?, 1010

Not yet? Perhaps an even longer sequence, generated using the same rules, will final-
ly clue you in:

10, 11, 12, 13, 14, 15, 16, 17, 18, 21, 23, 25, 32, 101, ?, 10001

Ready for the solutions? For the first 2 sequences, the missing numbers are 22 and
101, respectively. To create the first sequence, Dr. Googol represented the number 8 in
different bases, from base 8 to base 2. Can you now solve the third sequence?

Note: For those of you not familiar with numbers represented in bases other than 10
(which is the standard way of representing numbers), consider how to represent any
number in base 2. Numbers in base 2 are called binary numbers. To represent a bina-
ry number, only the digits 0 and 1 are used. Each digit of a binary number represents
a power of 2. The rightmost digit is the Is digit, the next digit to the left is the 2s
digit, and so on. In other words, the presence of a 1 in a digit position indicates that
a corresponding power of 2 is used to determine the value of the binary number. A 0
in the number indicates that a corresponding power of 2 is absent from the binary
number. An example should help. The binary number 1111 represents (1 x 23) +
(1 x 22) + (1 x 21) + (1 x 2°) = 15. The binary number 1000 represents 1 x 23 = 8.
Here are the first 8 numbers represented in binary notation: 0000, 0001, 0010, 0011,
0100, 0101,0110, 0111,. . . I t turns out that any number can be written in the form
cnb" + cn_ib"~l + . . . <72^2 + c\bl + ^o^0' where b is a base of computation and
c is some positive integer less than the base.

What is the value of the missing digit in this sequence:

6 2 5 5 4 5 6 3 ?

No one has ever gotten this. Do you give up? The solution relates to the number of
segments on a standard calculator display that are required to represent the digits, start-
ing with 0.

0 1 2 3 4 5 6 7 8 9
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Dr. Googol knows that you are finding some of these sequences to be absurd. But that
does not stop him from presenting you with more. The following are fascinating num-
ber-sequence problems sent to Dr. Googol by readers. They are all nearly impossible for
mere mortals to solve. Can you supply the missing numbers denoted by a ? symbol?

© Diep number sequence: 2, 71, 828, ?, . . .

© Silverman number sequence: 3, 4, 5, 7, 11, 13, 17, 23, 29, 43, 47, 83, 131, 137,
359, 431, 433, 449, 509, 569, 571, 2,971, 4,723, 5,387, ? . . .

© Lego sequence: 1, 3, 7, 19, 53, 149, 419. . . . What could this sequence possibly
designate?

Here are some solutions. Dr. Googol's sequence: Convert between decimal and binary
representations. For example, 11 (decimal) is 1011 (binary). 1011 (decimal) is
1111110011 (binary). And so on. The solution to the Diep sequence is 1,828. The /th
term of the sequence is the next i digits of e (e = 2.7182818284 . . . ). The Silverman
sequence lists the indices of the prime Fibonacci numbers. For example, the third, fourth,
and fifth Fibonacci numbers (F3, F4, F5) are primes. (See Chapter 73 on the "1,597
problem" for background on prime Fibonacci numbers.)

The Lego sequence: Each element a(ri) is the number of stable towers that can be built
from n Lego blocks.

Chapter 22

Klingon Paths
In order to live longest and prosper, the Klingon starts at the 13 on the bottom row. The
sequence of moves is 13, 1, 10, 12, 23, 16, 7, 5, 6, 0, 11, 2, 8, 18, 15, 24, 17, 20, 4, 3.
Numerous questions abound. Are there other equally long paths? Are there areas in the
Klingon world that give rise to longer-lived Klingons? Do certain starting squares have
a higher probability of yielding older Klingons? For example, do interior squares gener-
ally yield older Klingons than squares on the edge, because the interior squares have
more neighbors? Can you extend the puzzle to 3 dimensions and higher? Can you
explore larger worlds such as a 20-by-20 array of squares? How would the puzzle change
if played on worlds the size of our Earth? Also, what is the shortest path you can find?

Before leaving this topic, Dr. Googol would like to tell you about simple computer
programs you can write to explore the mysteries of Klingon paths. For example, the
BASIC and C programs at [www.oup-usa.org/sc/0195133420] both start by filling a
grid with random numbers between 0 and 24 or between 1 and 25. (Dr. Googol used
these programs to generate the Klingon-paths board in Chapter 23, but you can easily
design worlds by hand.) Next, the programs attempt to find the longest possible path
for each starting square in the 8-by-8 grid. To do this, the Klingon scans the immediate
neighborhood of a cell (up, down, right, and left). If the Klingon finds a square with a
number he never before encountered, he enters that square. The Klingon starts again,
scanning in 4 directions for a potential move from his new location. The process con-
tinues until the Klingon can no longer find a "safe" square, at which point his coura-
geous life comes to an end.

www.oup-usa.org/sc/0195133420
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These programs are capable of finding some long-lived Klingons, but are there older
Klingons lurking in Klingon City? After all, the computer programs did not search for
every possible path a Klingon could take. For example, once a Klingon found an avail-
able square, he would commit himself to moving in that direction without examining
every possible path that it could take. (This is a little like real life, isn't it?)

To see if humans could beat the computer results, Dr. Googol held a grand Internet
tournament, asking various interested colleagues on the computer networks to find the
oldest Klingon in several Klingon cities. He also asked if it were possible to design a
Klingon city in which each starting square would yield the same maximum length.
Many respondents used pencil and paper to investigate the worlds. To learn more about
the Internet Klingon Game competition, and fascinating analyses of similar games, see
my book Keys to Infinity.

Chapter 23

Ouroboros Autophagy

Figure F23.1 shows a solution. For the outer serpent with the numbers 1, 2, 2, 3, 3, 3,
4, 4, 4, we find:

Circle 1: 1 2 2 3 3 3 4 4 4 4

Circle 2: 4 2 2 3 3 3 1 1 1 1

Circle 3: 0 3 3 2 2 2 0 0 0 0

Circle 4: 3 5 5 0 0 0 3 3 3 3

Circle 5: 0 5 5 5 5 5 0 0 0 0

Circle 6: No solutions (dead end)

Can you find any other solu-
tions or interesting Ouroboros
numbers?

Snake's Body

F23.1 Ouroboros solution.
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Chapter 24

interview with a Number
Here are the 5 other 4-digit true vampires:

21 x 60 = 1,260 15 x 93 = 1,395 30 x 51 = 1,530
21 x 87 = 1,827 80 x 86 = 6,880

In fact, there are many larger vampire numbers. There are, for example, 155 6-digit
vampire numbers. Recently, Dr. Googol challenged computer scientists and mathemati-
cians around the world to submit the largest vampire they could find. One such jewel is

1,234,554,321 x 9,162,361,086 = 11,311,432,469,283,552,606

John Childs discovered a 40-digit vampire number using a Pascal program on a 486
personal computer. His amazing vampire number is

98,765,432,198,765,432,198 x 98,765,432,198,830,604,534 =
9,754,610,597,415,368,368,844,499,268,390,128,385,732

As the numbers get larger and larger, how often do you expect to find vampires? Do
they become more secretive (sparser) or more outgoing (frequent) as you search for vam-
pires up to a googol? The "Further Reading" section lists the latest technical papers on
vampire numbers.

Chapter 25

The Dream-Worms of Atlantis
Figure F25.1 shows all possible configurations for a 5-segment worm.

L at end (The Zombies):

U at end (The Peasants):

at end (The Lords):

F25.1 The complete set of worm contortion patterns.
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F26.1 Can you solve these wheels? After seeing Dr. Googol's wheels, a few colleagues
sent him their own. These were submitted to him by Davode Crippa, Stephen Kay,
and Geoff Bailey.

Chapter 26

Satanic Cycles
Note that if Dr. Googol did not constrain the number of times you could use the oper-
ation symbols, it would be possible to formulate various cycles with 1 in them (but not
Os) simply using a repeated exponential such as I1' = 1. The first wheel falls into this
category I53 . Similarly, any cycle with 1 and only 1 0 in it can likewise be solved by
using all exponentials: O1' = 0. The third wheel in Figure 26.2 falls into this category.
Let's exclude these trivial kinds of solutions from our consideration.

Dr. Googol's solution for the leftmost hell wheel in Figure 26.2 is 22 x 2/4 = 11. The
other 2 wheels are left as exercises for you. When Dr. Googol presented them to other
researchers, he was stunned by just how many solutions his wheels had. Here are some
other possible solutions to the first wheel: 21 = - 4 + 2 + 2 = 2, lx2 + 2 + 2x
4/1 = 12, or 2 x 2 = 4 = 1 + 1 + 2, or 1 + 1 x 2/2 + 2 = 4, or (((I1)2) x 2) x 2 = 4, or
2 + 2 - 4 + 1 + 1 = 2 , or 4 - 1 = 1 + 2 x 2/2, or 1 x 12 x 2 = 24, or 224112 = 224112.
A few respondents challenged Dr. Googol with wheels of their own devising (Figure
F26.1). Can you solve these?

Bicycle wheels from Purgatory: Since there are often many solutions for a single
wheel, a much tougher problem is to devise wheels for which there are no solutions! Can
you do it? Of course, as Bill Mayne of Florida State University has pointed out to Dr.
Googol, for any string of digits around the wheel a . . . z there are always solutions
involving multiple revolutions of the wheel: z...z = a...z, a...za...z=a...za
. . . z, etc. (For example, 12,345 = 12,345 is a case of a trivial wheel-revolution solu-
tion.) At a minimum we must either limit the number of cycles to less than 2 or rule
out such solutions as a special case.

Dr. Googol leaves this section with a bit of trivia. More than 90 million Americans
ride bicycles. The longest tandem bicycle ever made is approximately 67 feet long (for
35 riders) and was built by Pedalstompers Westmalle of Belgium.
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Chapter 27

Persistence
Here are the smallest numbers with various persistences:

1 10
2 95
3 39
4 77
5 679
6 6788
7 68889
8 2677889
9 26888999
10 3778888999
11 277777788888899

Notice the strange abundance of 8s and 9s. Incredible. Why so many 8s and 9s in a
row? Dr. Googol can see you wondering what number has a persistence of 12. No one
knows! We do know that there is no number less than 1050 that has a persistence greater
than 11. Neil Sloane conjectures that there is a number TV such that no number has a
persistence greater than N.

It is conjectured that the largest number lacking the digit 1 with persistence 11 is
77,777,733,332,222,222,222,222,222,222.

Chapter 28

Hallucinogenic Highways
To solve the highway puzzle, start at the word START. Take the road with the sign that
says 22. Take the road marked with the 17 sign (do not go past the 7 sign). Take the
road with the 36 sign. Take the road with the 1 sign. Take the road with the 8 sign (do
not go past the 27 sign). 22 + 17 + 36 + 1 + 8 = 84. One key to this puzzle is to add a
number only when you go past the sign, but not if you simply travel on a particular
road.

Are there other solutions?
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Chapter 30

What If We Receive Messages
from the Stars?
God's formula: Humans have thought about sending messages to the stars for decades,
although there has always been some debate as to what the messages should contain. For
example, in the 1970s, Soviet researchers suggested we send the message

103 + II3 + 122 = 133 + 143

The Soviets called the equation "mind-catching." They pointed out that the sums on
each side of the equal sign total 365—the number of days in an Earth year. These imag-
inative Soviets went further to say that extraterrestrials had actually adjusted the Earth's
rotation to bring about this striking equality! Surely it should catch aliens' attention and
demonstrate our mathematical prowess.

Dr. Googol finds the Soviet formula arbitrary and not a good candidate to send.
Rather, he would somehow try to send the most profound and enigmatic formula
known to humans:

1 + eiT = 0

This formula of Leonhard Euler (1707-1783) unites the 5 most important symbols
of mathematics: 1, 0, Jt, e, and i (the square root of-1).

Another beautiful and wondrous expression involves a limit that connects not only ft
and e, but also radicals, factorials, and infinite limits. Surely this little-known beauty
makes the gods weep for joy:

Chapter 34

A Ranking of the 5 Saddest
Mathematical Scandals
Here are the answers:

1. Ada Lovelace, daughter of Lord Byron (the poet), and first computer programmer.
She analyzed and expanded upon Charles Babbage's plans for difference and
analytical engines. She explained how the machines could tackle problems in
astronomy and mathematics. While married to William King, she fell in love with
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mathematician John Crosse and became obsessed with gambling. During the last
year of her life, Ada's cervical cancer progressed slowly, and her mother took charge
of her care. When Ada confessed her affair with Crosse, her mother promptly dis-
carded all of Ada's morphine and opium—the only things holding the horrific pain
at bay—so that Ada's soul would be redeemed. Ada's last days were spent in agony
as her mother watched but did nothing.

2. Alan Turing, computer theorist. His code-breaking work helped shorten World
War II. For this contribution he was awarded the Order of the British Empire.
When he called the police to investigate a burglary at his home, a homophobic
police officer suspected that Turing was homosexual. (The Criminal Law
Amendment Act of 1885 made a male homosexual act illegal.) Turing was forced
to make a decision. He could either go to jail for a year or take experimental drug
therapy. His death 2 years after the therapy, in 1954, at the age of 42, was a shock
to his friends and family. Turing was found in bed. The autopsy indicated cyanide
poisoning. Perhaps he had committed suicide, but to this day we are not certain.

3. Kurt GodeL, eminent mathematician and one of the most brilliant logicians of this
century. The implications of his incompleteness theorem are vast, not only apply-
ing to mathematics but also touching on areas such as computer science, econom-
ics, and nature. At Princeton, one of his closest friends was Albert Einstein. When
his wife Adele was not with him to coax him to eat—because she was in a hospital
recovering from surgery—Godel stopped eating. He was paranoid and felt that peo-
ple were trying to poison him. On December 19, 1977, he was hospitalized but
refused food. He died on January 14, 1978. During his life, he had also suffered
from nervous breakdowns and hypochondria.

4. Georg Cantor, the creative mathematician largely responsible for a host of extraor-
dinary mathematical ideas such as the theory of infinite sets, transfmite numbers,
and even fractals.

5. Alhazen (965-1039), a contributor to the field of mathematical optics. Al-Hakim,
the ruler of Egypt, became angry with Alhazen when Alhazen made gross errors in
his ability to predict and control the Nile's flooding. To save himself from execu-
tion, Alhazen pretended to be insane and was placed under house arrest. When he
was not feigning insanity, Alhazen made important discoveries in optics, describing
various aspects of light reflection, magnification, and the workings of the eye.

For more examples of scandal in mathematics, see Theoni Pappas's Mathematical
Scandals.
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Chapter 35

The 10 Most Important Unsolved
Mathematical Problems
When Dr. Googol asked many mathematicians what is the most difficult area of math to
understand, and also what is the most important unsolved mathematical problem, they
always responded with two words: "Langlands philosophy" or "Artin conjecture." As this
book goes to press, a proof of the Langlands conjecture for function fields may be at
hand. A field denotes any algebraic structures consisting of objects (or elements) that can
be added, subtracted, multiplied, and divided according to the rules that govern real
numbers. For a general description see: Mackenzie, D., (2000) Fermat's Last Theorem's
first cousin. Science. 287(5454): 792-793. Andrew Wile's 1994 proof of Fermat's last
Theorem, one of the greatest mathematical achievements of the twentieth century, can
also be viewed as the completion of a small part of the Langlands program. The key idea
is that the Langlands program brings together theories that seem to be very different from
one another. Thanks to Laurent Lafforgue, a number theorist at the Universite de Paris-
Sud, another piece of Langlands program seems to have finally fallen into place. A 300-
page handwritten version of Lafforgue's proof of "Langlands conjecture for function
fields" has been circulating among mathematicians since the summer of 1999.

Dr. Googol asked several mathematicians to explain Langlands philosophy to a gen-
eral audience. Alas, dear reader, you will not get your wish. Here is a sampling of replies.

Allan Adler from Western Kentucky University:

As nearly as I can tell, no one knows what the Langlands conjecture says, not even
Langlands. If that is not the case, I would be glad to read a (hopefully, concise) defin-
itive statement of the most recent version of the conjecture.

My previous assertion about the Langlands conjecture is somewhat tongue-in-
cheek, masking a more complicated state of affairs, like Bertrand Russell's assertion
that mathematics is the subject in which we never know what we are talking about,
nor whether what we are saying is true. The main point I am making is that I believe
the conjecture has undergone a certain amount of modification over the years as more
has been learned about the problem. My impression is that although they know a lot
more now about the relevant mathematics and about what to expect from it, I'm not
sure there is at this moment a clean statement available which one can call the
Langlands conjecture.

BillDubuqueofMIT:

Alas, to appreciate the ideas in the Langlands program requires at least a Ph.D.-level
mathematics education. It would be virtually impossible to attempt to convey these
ideas to an audience less educated. See Oxford's website [www.oup-usa.org/sc/
0195133420] for a long list of references to works of expository character which touch
on topics related to the Langlands program. I'd suggest starting with Shafarevich,
Gelbart (1984), and Murty—some of which should be accessible to bright math
undergrads.

www.oup-usa.org/sc/0195133420
www.oup-usa.org/sc/0195133420
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Jared Weinstein, age 16:

There are these things called elliptic curves, see? They look like this, in their most gen-
eral form: y2 - x3 + bx + c. (If you're going to complain about characteristic 2 or
3, don't.) You could plot this, on the complex plane cross itself, and it would look like
a donut. A big old 4-D donut. In any case, the Taniyama-Shimura conjecture says that
all elliptic curves have this magic property called being "modular." Don't ask what this
means. Unless you care to hear such things as "the mellin transform of the hasse-weil
1-function produces a spitzenform." As far as I know no person has a real under-
standing of why any elliptic curve should be modular, but nonetheless in 1995
Andrew Wiles proved a weak form of the Taniyama-Shimura conjecture which applied
only to "semistable" curves (which, for our purposes, aren't too wild). Luckily this was
enough to prove Fermat's Last Theorem. But elliptic curves are nice things. They have
a "group law." Add x^s in there, and you've got troubles. Nonetheless a generalization
of TS has been developed. I believe this is the stuff that falls under the category of "the
Langlands program." Well, that is the flavor of an explanation.

For information on the Langlands program, you might examine Modular Forms and
Elliptic Curves published by Springer-Verlag on the Fermat conference. But be fore-
warned. This material is difficult. I don't intend on understanding all of it for anoth-
er 5 or 10 years. The problem (or, perhaps, the blessing) with conjectures as simple as
Fermat's is that they tend to give rise to incomprehensibly complicated fields of math-
ematical study.

Bob S. says:

It is not possible to explain Langlands conjectures to a general audience without some
basic knowledge of algebraic number theory and field theory. Here is a rough descrip-
tion: The Hilbert Class Field of a polynomial f(x) with root alpha is the maximal
unramified Abelian extension of Q(a). The Langlands conjectures are an attempt to
extend this concept to non-Abelian extensions of Q(a). It makes conjectures relating
certain L functions and Dirichlet series, which are analytic objects, with the purely
algebraic objects associated with the extension field. The proof by Wiles of the
Taniyama-Shimura conjecture covers a small part of the Langlands conjectures.

Berndt S. comments:

What I was referring to with the term "Langlands philosophy" is Langlands article
innocently titled "Problems in the Theory of Automorphic Forms" in which he out-
lined his vision to bring group representation methods into the arithmetic theory of
automorphic forms. After some 30-40 pages of heavy definitions and constructions,
he poses some questions such as, "Is it possible to define the local /.-functions L(s,r,p)
such that a certain functional equation is satisfied?" Langlands always suggests a pos-
sible or likely outcome. The entire paper is highly speculative but based on deep
insight that he must have gained during his research on the functional equations of
the Eisenstein series. The last two phrases in his paper read: "Thus Question 7 togeth-
er with some information on the range of the correspondence of Question 3 may
eventually lead to elementary, but extremely complicated, reciprocity laws. At the
present it is impossible even to speculate." This was published in 1970, so Langlands
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came to his view some time in the late '60s. It was highly influential. The 70s then
brought a lot of clarification, and Langlands himself (together with Jacquet) carried
out his program for the group G = GL(2). The correspondence (or association) in this
case defines a mapping from degree-2 Galois representations to GL(2) automorphic
representations. When you start with an irreducible representation of the Galois
group then you get a cuspidal representation of GL(2). You have a kind of mapping
from Galois representations to automorphic representations such that irreducible rep-
resentations are associated to cuspidal representations (to irreducible ones you get cus-
pidal ones).

One word to put this into perspective: Langlands conjectures vastly generalize some
other conjectures made by different people in special areas (and the specialization
process itself is not easy to carry out). The first such conjecture came from Yutaka
Taniyama, who killed himself in 1958. This was refined and made very explicit by
Goro Shimura. Independently, Andre Weil (1906-1998) has made some conjectures
in this context; in particular he brought forward the astounding idea that any ration-
al elliptic curve might be modular. Until the early 1970s this was assumed to be the
exception. These latter conjectures are now called Taniyama-Shimura-Weil conjecture.
Andrew Wiles (born in 1953) proved (a major) portion in 1994.

Chapter 41

The 10 Mathematical Formulas That
Changed the Face of the World
Philosopher of science Dennis Gordon suggests that D = (n/2)2 + (w/3)3, the discrimi-
nant for a cubic equation, should be on the top 10 list. (The value of the discriminant
determines whether the solutions to a polynomial such as x3 + mx = n are real or com-
plex.) When D < 0, and thus /I) is a complex number, we have a case in which all 3
roots are real. In the 16th century, these kinds of solutions to cubic equations gave neg-
ative numbers and complex numbers their legitimacy and were a major contribution to
mathematical progress.

Dennis also believes that (d/dx) ex = ex and log(^>) = log a + log b should be includ-
ed. The invention of logs certainly made major changes in the world by removing
drudgery from multiplication, and certainly made mathematics less prone to error.

Chapter 48

Cube Maze
One solution is 21, 20, 11, 14, 5, 4, 7, 8, 17, 26, 27, 18, 15, 6, 3. Are there other solu-
tions? If you can find any, be sure to let Dr. Googol know.
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Chapter 49

Hailstone Numbers
Bill Richard from Commodore uses the hailstone sequence to produce interesting

music. The values of the hailstone numbers are used as audio frequencies and scaled so
that the tones remain in the audible spectrum for humans. For example, he maps the
number 1 to 40 Hz, because 1 Hz is simply too low to be musically useful. He notes
that the hailstone numbers produce "a relatively pleasing sequence" of musical notes.
Notice that the hailstone plots reveal a pattern of diagonal lines of varying density that
pass through the origin, a pattern of horizontal lines (visually reminiscent of preferred
energy state diagrams in quantum mechanics), and a diffuse "background." The exis-
tence of the pronounced diagonal lines in Figure 49.2 indicates "likely" transformations
to which the 3ra + 1 sequence naturally gives rise. For the hailstones, we are often mul-
tiplying by 3 and then dividing by 2. Therefore, the linear transformation y - (3/2)x is
quite common (we can eliminate the +1 in n+\ for large x). In order to test this idea,
try plotting lines corresponding to y = (3nl2m)x for values of n and m between 0 and
5. Several of the lines that you will see are the same as the diagonal lines in the hailstone
plots. In fact, higher-order lines for a greater range of m and n are needed to account for
all the diagonal patterns. Note that in Figure 49.2 the diagonal lines are of varying den-
sity—dark lines indicate more probable transforms. All of the darker lines are account-
ed for by low-order transforms (multiplication by 3/2 and 1/2 are among the most prob-
able operations).

Chapter 5O

The Spring of Khosrow Carpet
The algorithm for the carpets comes from Anne M. Burns's article titled "Persian
Recursion," which appeared in a 1997 Mathematics Magazine. The algorithm starts by
assigning a "color" to the outermost cells arbitrarily to produce a border square (or rec-
tangle). The algorithm then:

1. Uses the 4 corner cells and a convenient function of 4 variables to determine a new
color.

2. Assigns this new color to all interior cells in the middle row and middle column.

3. Applies the same procedure to each of the 4 new "border squares."

4. Repeats for smaller and smaller subdivisions

As is often the case with recursion, if the process is carried out for larger matrices, we
observe that the patterns repeat on different size scales. See [www.oup-usa.org/sc/
0195133420] for BASIC code.

Open the floodgates of Persian recursion research! What new patterns can you create
by making modifications to the basic algorithm? Teachers, hold contests with students
to see who can produce the prettiest pattern.

www.oup-usa.org/sc/0195133420
www.oup-usa.org/sc/0195133420
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Chapter 51

The Omega Prism

If you were to draw on a face of the 230-by-231-by-323 prism, you would soon realize
that a diagonal enters a new tile at the beginning and each time it crosses a horizontal
or vertical line. However, in situations where the diagonal enters exactly at the corner of
a tile, the diagonal crosses 2 lines but enters only 1 tile. These corner points are at cor-
ners of rectangles proportional to the whole face. In other words, the diagonals of such
rectangles are on the main diagonal.

The number of tiles a diagonal crosses is therefore the length A of one side of a face
plus the length B of the other minus the greatest common divisor (GCD) of the
sides' lengths: A + B - GCD (A, B). The greatest common divisor of 2 integers is the
largest number that divides both integers. For example, a 231-by-93 face would have
231 + 93 - 3 = 321 crossed tiles since 3 is the greatest common divisor of 231 and 93.

In the 230-by-231-by-232 prism given, we have 3 different possible combinations of
rectangular sides A and B:

A B GCD Number of Squares Cut by Diagonal

230 231 1 460

230 232 2 460

231 232 1 462

Students may wish to compute the number of tiles cut for different values of A and
# using the code at [www.oup-usa.org/sc/0195133420]. Using this approach, one can
create a figure such as Figure F51.1 which shows the number of tiles cut as a function
of side length B, while side length A is held at a constant value, in this case A = 230.

¥51.1 Number of tiles cut as a function of side length B with side length A - 230.

www.oup-usa.org/sc/0195133420
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Notice that the cutting function is quite erratic, displaying dips at various locations
along the trend line. The first major dip, for example, is at B = 230, because the GCD
is 230. The distribution of dips seems to have a fractal character as magnification reveals
additional similar structures. Figure F51.2 is computed for A = 240, which has many
factors. (Such numbers are called smooth numbers, and a number is said to be ̂ -smooth
if all the prime divisors of n are less than or equal to W, where W is a positive integer.)
Since 240 is smoother than 230, Figure F51.2 has more spikes than Figure F51.1. Figure
F51.3 is computed for A = 241, which is prime and has a higher probability of yielding
a large number of cut tiles.

F51.2 Number of tiles cut as a function of side length B with side length A = 240.

F51.3. Number of tiles cut as a function of side length B with side length A = 241.
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Values of GCD = 1 corre-
spond to prism sides that
yield the most cut squares
when traversed by a diagonal.
Figure F51.4 shows a plot of
those values of A and B that
yield GCD = 1, and therefore
this plot visually indicates
which side lengths should be
used to create the most cut
squares. To produce this fig-
ure, GCD is computed for
1 < A < 200 and 1 < B < 200.
The density of black dots is
fairly uniform, and the com-
plexity of the plot belies the
apparent simplicity of the
Omega Prism puzzle.

Number theorists call 2
numbers A and B that have no
common factors relatively
prime, or coprime. Such num-
bers have GCD values equal
to 1. What is the probability
that 2 numbers selected at
random are coprime? Students
may perform a quick simula-
tion in order to show that the
probability converges to about
0.608, as indicated in Figure
F51.5. To produce this plot,
Dr. Googol cataloged the
occurrences of coprimes as A
and B are iterated in 2 "for"
programming loops in a C
program. For large numbers,
the probability tends toward
6/Ji2. Interestingly, the proba-
bility that a randomly selected
integer is "square free" (not
divisible by a square) also
tends to 6/Ji2.

Challenges await students and teachers who attempt to understand additional mys-
teries related to the Omega Prism. For example, try to represent the distribution of

F51.4 A solution space. Black dots indicate those values
of A and B that should be used to create the most cut
squares on a prism face.

F51.5 Simulation showing the probability that two num-
bers selected at random are coprime. The probability
converges to about 0.608 for large numbers.
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pairwise coprimality of 3 or more integers. Also, given //different colors used to color
a face, what are the total different number of patterns? Is it NA*B? How unlikely is it
that, using random colors, one side of a face will be connected to an opposite face with
a continuous path of identical colors? (A path travels up, down, right, and left.) Finally,
denote the sum of the length of the 3 sides of the prism as a. What combination of the
3 sides minimizes the maximum number of tiles crossed on the cube faces? How does
this change with tf?

This chapter provides another example of interesting graphical behavior in simple
systems. For a technical discussion on "smooth" and "powersmooth" numbers, and on
the distribution of smooth numbers, see H. Cohen's A Course in Computational Algebraic
Number Theory. Topics such as these have practical application in the creation of codes
that are difficult to break. Aside from factorization insight, over the last few years, math-
ematicians have begun to enjoy and present bizarre mathematical patterns in new
ways—ways sometimes dictated as much by a sense of aesthetics as by the needs of logic.
Moreover, computer graphics allows nonmathematicians to experience some of the
pleasure that mathematicians take in their work and to better appreciate the very com-
plicated and interesting graphical behavior of puzzle solution spaces.

9 See [www.oup-usa.org/sc/0195133420] for a BASIC code listing.

Chapter 52

The incredible Hunt for Double
Smoothly Undulating integers
This chapter defined undulating numbers, such as 19,283,746, and smoothly undu-
lating numbers, such as 101,010,101, where the alternating digits are consistently
greater or less than the digits adjacent to them. Stimulated by the material in this chap-
ter, Charles Ashbacher has since identified several numbers that smoothly undulate
in more than 1 base. For example, 12110 = 1718 = 2327. Also 54610 = 4l4l5 = 202024

= 2020203.
When Dr. Googol first posed the problem of double smoothly undulating integers,

it caused a near riot and subsequent flood of papers to the Journal of Recreational
Mathematics. For example, Douglas E. Jackson of Portales, New Mexico, believes that if
we randomly select a positive integer having between 3 and k digits inclusively in base
b, the probability that it will be smoothly undulating is [(b - l)2(k- 2}}l(bk - b2}. As
k goes to infinity, this quantity approaches 0. Hence, 0 is the probability that an arbi-
trarily positive integer is smoothly undulating. For a derivation, see: Jackson, D. (1992)
Problem 1861. Journal of Recreational Mathematics. 24(1): 77.

But this probability argument does not prove there are no double smoothly undulat-
ing integers. However, D. F. Robinson from the University of Canterbury in New
Zealand believes he has proven there are no double smoothly undulating integers. For
a reference to his analysis, see "Further Reading." Other researchers have looked at

www.oup-usa.org/sc/0195133420
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double smoothly undulating integers in other bases. For example, Ken Shirriff dis-
covered 494,949, which smoothly undulates in bases 10 and 15. For some unknown
reason, the longest double smoothly undulating numbers all seem to involve base 10 and
some other base. This remains a mystical problem for future generations (see "Further
Reading").

For further research, let us define smoothly gyrating numbers as those integers whose
digits go up and down consecutively like a sine wave. The number of digits controlling
the rise and fall determines the "kind" of number, for example:

© smoothly gyrating number of the first kind: 12121212 . . .

© smoothly gyrating number of the second kind: 1232123212321 . . .

© smoothly gyrating number of the third kind: 1234321234321 . . .

A double smoothly gyrating number of the wth kind is simply means a number that
gyrates in two different bases, e.g., base 10 and base 3.

Can you find a double smoothly gyrating number of the third kind?
Are there any Fibonacci numbers that smoothly gyrate?
Can you find a smoothly gyrating number that when multiplied by another smooth-

ly gyrating number produces yet another smoothly gyrating number?

Chapter 53

Alien Snow: A Tour of
Checkerboard Worlds
Readers might enjoy holding "defect contents" on their computers. Here is how the idea
works. The term defect is borrowed from crystallography. It refers to an irregularity that
may occur in a pure solution of some compound. Such an irregularity can form the
nucleus of a crystallization process. The patterns described thus far all arose from sim-
ple defects, a single 1 in the center of the screen. What happens if you place more than
one 1 on the screen at the same time?

As far as such experiments go, why not randomly seed your screen with Is and see
what develops? Alternatively, you could use very regular patterns, strips, or checker-
boards.

There is an undeniable beauty to the patterns that develop from cellular automata.
The richness of forms contrasts starkly with the simplicity of the rules. It is a deeply
rewarding experience to watch succeeding generations, even in the especially simple cel-
lular automata that Dr. Googol has described here. Persian carpets give way to tile
mosaics. Peruvian striped fabrics, brick patterns from Asian mosques, and Moorish
ornaments will grace your screen.

Natural structures will appear on your screen—from snowflakes to turbulent fluid-
flow patterns. Physicist and cellular automata experimenter Stephen Wolfram has



318 © Wonders of Numbers

F53.1 Crystals grow from 3 defects.

pointed out that cellular automata are sufficiently simple to allow us to analyze their
behavior locally, yet they are sufficiently complex to amaze us globally with very com-
plicated behavior. It should not be surprising that models which show such promise in
mimicking nature should also be the source of so much beauty.

Chapter 54

Beauty, Symmetry, and
Pascal's Triangle
Many readers may be interested in recent information on practical fractals. Fractals are
increasingly finding application in practical products where computer graphics and sim-
ulations are integral to the design process. As one example, Amalgamated Research, Inc.,
located in the state of Idaho, manufactures space-filling fractal conduits. These devices
contain many root-like outlets and are designed to minimize turbulence. The company's
engineered fractal cascade (EFC) can draw or inject fluid simultaneously throughout a

mixing vessel.
Amalgamated Research's basic invention replaces random scaling and distribution of

free interfluid turbulence with the geometrically controlled scaling and distribution of
fluid flow through "engineered" fractals. This means that EFCs can be used as func-
tional alternatives to turbulence, acting as engineered eddy cascades. Engineering appli-
cations include control of flows in chromatography, adsorption, absorption, distillation,
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aeration, scrubbing, extraction and reactor processes. (For more information, see http://
www.arifractal.com/.)

Another company, Fractal Antenna Systems, Inc., based in Fort Lauderdale, Florida,
is developing a branching "Fractenna" for hand-held telephony. As the company's name
implies, Fractal Antenna Systems develops antennas using fractal geometric patterns
with designs repeated at many size scales. The company's trade secrets do not permit us
to know all the details at this time, but this highly efficient sender and receiver of elec-
trical waves is said to be no bigger than a small coin.

Fractal antennas hold great promise, because these miniature, virtually invisible
devices may be used in everything from wireless LANs to cell phones and televisions.
Most cellular and wireless devices use wand antennas protruding from cases. Fractennas
can be incorporated in the wireless or cellular device's casing, making them virtually
unbreakable. (For more information, see http://www.fractenna.com/.)

A third practical use of fractals is the fiberoptic faceplate—an array of millions of opti-
cal-fiber tubes packed into a thin cylindrical pipe. The composite tube acts as an image-
plane transfer device. This means that an image entering one surface exits the other sur-
face as an undistorted digitized image, regardless of the shape of the optical tube. You can
use these tubes like periscopes by bending them in order to see around a corner.

Several years ago, Lee Cook, a fiberoptic researcher at the Galileo Electro-Optics
Corporation in Sturbridge, Massachusetts, was interested in preparing arrays of optical
waveguides that were perfect as possible. Analysis of certain recursive tilings led Cook
and his colleagues to conclude that the edges of optically useful tilings were fractal in
nature. This led to the development of assembly techniques and fractal array structures
that allowed the Galileo researchers to prepare highly ordered fiber arrays. One patent
has already been granted on these techniques, and Incom, Inc., of Charlton, Massa-
chusetts, has recently purchased Galileo's fractal fiberoptic technology.

Fractal fiberoptics™ may have been the first engineered fractal materials with opti-
cally useful properties. A fractal fiber array, which consists of fibers of fibers (called
multi-multifibers), results in an extremely high degree of internal order and an optical-
ly useful packing in the fiberoptic. This increased order produces a markedly improved
image contrast. The perimeters of these new multi-multifibers are exactly analogous to
a fractal Gosper snowflake. (To create a Gosper snowflake, recursively transform each
edge of an equilateral hexagon into 3 segments of equal length so as to preserve the orig-
inal area of the surface.)

Traffic on the Internet has unpredictable bursts of activity over many time scales. In
other words, the activity shows spikes and lulls over a period of a few seconds that
resemble the fluctuations taking place in just milliseconds. This fractal behavior has
implications for network engineering. For example, fractals may play a role in designing
buffers for Internet routers, which store packets of information during busy periods
until the packets can be sent onward to their destination. Because researchers have
demonstrated the fractal nature of this traffic, buffers are designed to accommodate
much more variable traffic than was assumed previously. For more information, see:
Taubes, G. (1998) Fractals reemerge in the new math of the Internet. Science. Sept. 25,
281(5385): 1947-1948.

In 1999, physicists Richard Taylor, Adam Micolich, and David Jonas used fractals to
study the paintings of Jackson Pollock, revealing that the artist was exploring ideas in

http://www.arifractal.com
http://www.arifractal.com
http://www.fractenna.com/
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fractals and chaos before these topics entered the scientific mainstream. In particular, the
researchers found fractal analysis to be a useful tool for studying the abstract paintings
produced by Pollock in the 1940s and 1950s. Pollock dripped paint onto vast canvases
on the floor of his barn. Although recognized as a crucial advance in the evolution of
modern art, the precise quality and significance of the patterns created by this unortho-
dox technique remained controversial. Today we know that the paintings are fractal and
display the fingerprint of nature. For more information, see: Taylor, R., Micolich, A.,
and Jonas, D., (1999) Fractal expressionism. Physics World. Oct., 12(10): 25-28.

What does the future of fractals hold? Aside from obvious applications in education
and art, four fields come to mind for especially increased growth: geology, medicine,
astronomy, and pure math. All of these fields benefit because fractal geometry provides
a language and conceptual framework for ill-defined geometries, and the power law
inherent in fractals condenses their description. For example, fractals will be increasing-
ly used in estimating the strength of rocks under shearing forces, in the analysis of mam -
mograms, and in analyzing the randomness of transcendental numbers such as o and e.
(For more information on practical applications, see http://www.math.vt.edu/people/
hoggard/FracGeomReport/node7.html.) Dr. Bruce Elmegreen of IBM is currently using
fractals to explain the relative proportion of high- to low-mass stars in the sky. The ulti-
mate goal of his work is to explain how the Earth and solar system formed from tenu-
ous, cosmic gas.

Dr. Googol asked fractal expert Professor Michael Frame of Union College and Yale
University, "What scientific areas would benefit most by using fractals?" He replied:

Currently, the largest deficiency is in statistics. Common statistical methodologies
don't usually make use of the scale invariance characterizing fractals, and as we accu-
mulate more evidence that many real data sets exhibit the long-term dependence and
long-tailed distributions that can arise in scaling processes, the need for appropriate
statistical tests is apparent.

When proper fractal statistics are developed, I imagine the impact in all fields will
be considerable. Materials science will probably be affected to a great degree. DLA
(diffusion-limited aggregation) and turbulence remain two of the biggest puzzles.
With enough computational power to do proper statistics on DLA clusters and tur-
bulent flow patterns, we may begin to develop some real understanding of these
processes.

On a different level, the perceived complexity of our surroundings depends in part
on the language with which we describe them. Finding a better language is the main
task of science, of literature, of art, of music. To the extent that many natural process-
es exhibit scaling, fractals provide an important component of any language. As we
develop our ability to understand and analyze fractals, our language for understand-
ing the world improves and simplifies.

http://www.math.vt.edu/people/hoggard/FracGeomReport/node7.html
http://www.math.vt.edu/people/hoggard/FracGeomReport/node7.html
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Chapter 55

Audioactive Decay
According to John Conway and Richard Guy in The Book of Numbers, the number of
digits in the wth term of this sequence is roughly proportional to

(1.3035772690342693912570991121525518907307025046594 . . . )"

Now, isn't that a fine gem for stimulating party conversation?
So far, the world-record holder for this sequence is Charles Ashbacher of Cedar

Rapids, Iowa. In May 1992, he sent Dr. Googol a diskette containing nearly 894,816
digits for row 50, which he computed using a FORTRAN program. He also computed
the sequence for row 53, which contained nearly 1,982,718 digits. The number would
not fit on a diskette. Ashbacher estimates that row 53, if printed on paper, would require
about 417 pages. In August 1992, Ashbacher computed row 56. The number of digits
is in the range 4,391,696 to 4,391,703. The size of the data file containing the number
is roughly 5205 KB. The computation required 9 minutes using a VAX 4000. About 1
minute of this time was spent simply dumping the contents of the array to a file.
Ashbacher discovered that the number of digits in a likeness sequence for row 77 would
break the 1 billion mark, requiring 1.2 GB of memory.

Roger Hargrave from West Sussex, United Kingdom, was inspired by the
Gleichniszahlen-Reihe sequence to extend the idea to a variation in which a row takes
into account all occurrences of each character in a previous row. For example, the
sequence starting with 123 is 123, 111213, 411213, 14311213,. . . . He named this the
Gleichniszahleninventar sequence because Inventar is the German word for inventory.
Oddly, he believes that all his sequences finally oscillate between 23322114 and
32232114. Can you prove this?

In 1989, Dr. Akhlesh Lakhtakia and Dr. Googol became intrigued by the fact that
the likeness sequence can be generalized to the array G(p) where p * 1 is either 0 or a
positive integer. The following is an example:

P
I P
1 1 I p
3 1 I p
13 2 1 I p
1 1 1 3 1 2 2 1 I p

Simply substituting p = 1 into G(p) does not allow us to obtain a standard likeness
sequence since numbers and symbols are mixed in the construction of these arrays. Dr.
Googol conjectures that the largest number occurring in G(p) is max(/>,3). Also, if/? > 3
then p occurs only in the rightmost entry of the row.



322 © Wonders of Numbers

Chapter 56

Dr. Googol's Prime Plaid
In his book The Man Who Mistook His Wife for a Hat, physician Oliver Sacks describes
the twins John and Michael, who were able to define prime numbers up to 20 digits very
quickly. Yet these same children had difficulty with the simplest additions and substrac-
tions. Divisions and multiplications were impossible for them. They said, "But we can
see these prime numbers!"

One way of finding the prime numbers is to use the ancient Sieve of Eratosthenes. A
list is made of positive numbers; and then all the multiples of 2 are eliminated, starting
at 4; then all the multiples of 3 are eliminated, starting at 6; the process is repeated until
all possible eliminations have taken place. (A modern computerized version of the Sieve
has already become one of the traditional ways of evaluating and comparing computers,
because the process is lengthy and CPU-intensive.)

At least once a year, new prime number records are broken using computer searches.
Consider, for example, the following world records, which list the number of digits for
the largest known prime numbers:

Year Num. of Digits Computer Discoverer

1996 378,632 CrayT94 Slowinski & Gage

1996 420,921 Pentium (90 Mhz) Armenagaud, Woltman et al.

1997 895,932 Pentium (100 Mhz) Spence, Woltman et al.

1998 909,526 Pentium (200 Mhz) Clarkson, Woltman et al.

1999 2,098,960 Various Hajratwala, Woltman, Kurowski

The last 4 world records in this list were discovered by participants in GIMPS (the
Great Internet Mersenne Prime Search), which harnesses the power of thousands of
small computers to solve the seemingly intractable problem of finding HUGE prime
numbers. (See also "Further Reading" for Chapter 80.) The 1999 record required
21,000 computers and three years of searching. A DEC Alpha computer ran for two
weeks just to verify it. In particular, the 1999 record was achieved by Nayan Hajratwala
who found a 2,098,960 digit Mersenne prime: 26972593-l. (Mersenne primes are those
which are a power of two, minus one.) Nayan Hajratwala is from Plymouth, Michigan
and works for PricewaterhouseCoopers. Using the GIMPS program and 111 days of idle
time on his home computer (an Aptiva 350 MHz, Pentium II) Nayan found a 38th
Mersenne prime number. His computer could have found it in three weeks running full
time. This makes Hajratwala eligible for a $50,000 award that is offered by the
Electronic Frontier Foundation (EFF). Larger primes will earn up to $250,000! When
might we see the first billion digit bevaprime? (For more information, see: Caldwell,
Chris K., The Largest Known Prime by Year, http://www.utm.edu/research/primes/
notes/by_year.html)

If the 2,098,960 digit prime number was printed in a 12-point font, without com-
mas, it would stretch over four miles. Prime number hunters believe that household

http://www.utm.edu/research/primes/notes/by_year.html
http://www.utm.edu/research/primes/notes/by_year.html
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appliances with computerized components could be eventually harnessed to coopera-
tively solve large number problems and also to help their owners earn cash awards for
mathematical discoveries.

In 1999, scientists cracked a popular encryption tool for keeping credit card num-
bers and other information secret on the Internet. In particular, scientists had broken
the RSA-155 code, which protects credit card transactions and secure e-mail in Europe.
The method uses a 155-digit product of two large prime numbers, for example:

The Holy Grail of European Spies!

1094173864157052742180970732

2040357612003732945449205990

9138421314763499842889347847

1799725789126733249762575289

9781833797076537244027146743

531593354333897

(155-digit number)

1026395928297411057720541965

7399167590071656780803806680

3341933521790711307779

(prime factor)

X

1066034883801684548209272203

6001287867920795857598928152

2270608237193062808643

(prime factor)

In particular, RSA-155 requires one party to send a message to another by using the
recipient's public key—a 155-digit product of two large primes—to code the original
message. Decoding the message requires the two prime numbers know only to the recip-
ient. For a long time this encryption was considered unbreakable. Scientists thought
that factoring a 155-digit number was beyond the scope of practical computations.
However, a group led by Herman te Riele in Amsterdam factored the huge number
using 300 personal computers and a Cray 916 supercomputer. The United States com-
monly uses 232-digit numbers for encryption, and the U.S. government uses 309 digits
for government and military transitions. At the current rate of progress, these codes
wouldn't be broken for the next 25 years—or so we hope. For more information, see
Hellemans, A., Internet security code is cracked. Science, Sept. 3, 285(5433):
1472-1473 (1999).

=
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Chapter 57

Saippuakauppias
There are many other interesting patterns in the plot, and you will probably find many
more patterns that no one else has yet discovered. Consult the work of IBM researcher
Shaiy Pilpel for a list of numbers that are palindromic for both their decimal and bina-
ry expressions. For example, 313 is such a "double" palindrome since 313 = 100111001
in binary notation (see "Further Reading.")

Palindromic numbers have often been discussed in the past; for example, see many
of the issues of the Journal of Recreational Mathematics and the Martin Gardner refer-
ences in the "Further Reading" section. The work in this chapter is a collaboration with
Akhlesh Lakhtakia.

Here is a list of mathematician Michael Keith's favorite palindromic sentences:

© Some men interpret nine memos.

© T. Eliot, top bard, notes putrid tang emanating, is sad. I'd assign it a name: "Gnat

dirt upset on drab pot-toilet."

© Marge lets Norah see Sharon's telegram.

© Turn! I dump Martin Gardner, I rend rag, 'n' i tramp mud in rut.

© No D? No L? onon? No, no! LONDON!

© On a clover, if alive, erupts a vast, pure evil: a fire volcano.

© O, had i nine more hero-men in Idaho!

© "Sirrah! Deliver deified desserts detartrated!" stressed deified, reviled Harris.

© Are we not drawn onward, we few, drawn onward to new era?

© Tarzan raised Desi Arnaz' rat.

© Scranton's tots: not narcs.

Can you think of 5 words in which all the vowels appear in alphabetical order? Here
are 4:

© Abstemious: adj., practicing temperance in living

© Abstentious: adj., characterized by abstinence

© Facetious: adj., straining to be funny, especially at the wrong time

© Fracedinous: adj., productive of heat through putrefaction

Can you think of 3 in which 1 letter is repeated 6 times? Here are 2:

© Nonannouncement (6 »'s): n., the failure to announce

© indivisibility (6 is): n., the quality or state of being indivisible
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Can you think of 6 pangrams (sentences that use all the letters in the alphabet)? Here
are three:

0 The five boxing wizards jump quickly.

0 Pack my box with five dozen liquor jugs.

0 The quick brown fox jumps over a lazy dog.

Chapter 58

Emordnilap Numbers
Some simple observations help to predict the outcome of the reverse-and-add process.
Let dn be the nth digit in a number, and dn

r be the nth digit in the reversed number.
Let p be the path length. Then p < I if, for all digits in the number, dn < 4. Also, p is
greater than 1 whenever there exists a digit such that dn + dn

r > 10.

Chapter 61

Hyperspace Prisons
Tim Greer of Endicott, New York, has generalized the formula to hyperspace cages of
any dimension m: L(n) = ((nm}(n + l)m)/(2m). Let's spend some time examining 3-D
cages before moving on to the cages in higher dimensions.

How large a 3-D cage assembly would you need to contain a representative of each
species of insect on Earth today? (To solve this, consider that there may be as many as
30 million insect species, which is more than all other phyla and classes put together.)
Think of this as a zoo where 1 member of each insect species is placed in each 3-D
quadrilateral. It turns out that all you need is a 25-by-25-by-25 (n - 25) lattice to cre-
ate this insect zoo for 30 million species.

In order to contain the approximately 6 billion people on Earth today, you would
need a 60-by-60-by-60 cage zoo (see Figure F61.1). You would only need a 40-by-40-
by-40 (n = 40) zoo to contain the 460 million humans on Earth in the year 1500.

Let's conclude by examining the cage assemblies for fleas in higher dimensions. Dr.
Googol has already given you the formula for doing this, and it stretches the mind to
consider just how many caged fleas a hypercage could contain, with 1 flea resident in
each hypercube or hyperrectangle.

The following are the sizes of hypercages needed to house the 1,830 flea varieties Dr.
Googol mentioned earlier in different dimensions:

Dimension (m) Size of Lattice (n) Dimension (m) Size of Lattice (n)

2 9 5 3
3 5 (i 3

4          4           7            2 4 4 7 2
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F61.1 A cage containing all humanity, in order to contain the approxi-
mately 6 billion people on Earth today, you would need a 60-by-60-by-
60-cage zoo, the front face of which is shown here. You would only need
a 40-by-40-by-40 (n = 40) 200 to contain the 460 million humans on
Earth in the year 1500.

F61.2 Shown here is the number of fleas containable by a lattice cage assembly of
"size" n in 2-D, 3-D, and 4-D.
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This means that a small n - 2, 7-dimensional lattice ( 2 x 2 x 2 x 2 x 2 x 2 x 2 ) can
hold the 1,830 varieties of fleas! An n = 9 hyperlattice in the 50th dimension can hold
each electron, proton, and neutron in the universe (each particle in its own cage). Figure
F61.2 shows the number of fleas containable by a lattice cage assembly of "size" n in
2-D, 3-D, and 4-D. For example, the lower rightmost point indicates that a little more
than 2 X 105 fleas can be contained in a 30-by-30 lattice.

Akhlesh Lakhtakia has noted that the lattice numbers L(n) can be computed from tri-
angular numbers (Tn)

m. Why should the number of cage assemblies be related to trian-
gular numbers? (The numbers 1, 3, 6, 10 , . . . are called triangular numbers because they
are the number of dots employed in making successive triangular arrays of dots. The
process is started with 1 dot, and successive rows of dots are placed beneath the first dot.
Each row has 1 more dot than the preceding one.)

Chapter 62

Triangular Numbers
Triangular numbers determined by n(n + l)/2 continue to fascinate mathematicians.
Various beautiful, almost mystical, relations have been discovered. Here are just some
of them:

©A number TV is a triangular number if and only if it is the sum of the first M inte-
gers, for some integer M. For example, 6 = 1 + 2 + 3.

© Tn+[
2 - T2 = (n + I)3, from which it follows that the sum of the first n cubes is the

square of the nth triangular number. For example, the sum of the first 4 cubes is
equal to the square of the fourth triangular number: 1 + 8 + 27 + 64 = 100 = 102.

© The addition of triangular numbers yields many startling patterns: 7^ + T2 + T^ =
T4, T5 + T6 + T7 + T8 = T9 + TIQ, Tn + Tn + 713 + T14 + T15 = T16 + r,7 + T18.

© 15 and 21 is the smallest pair of triangular numbers whose sum and difference (6
and 36) are also triangular. The next such pair is 780 and 990, followed by
1,747,515 and 2,185,095.

© Every number is expressible as the sum of at most 3 triangular numbers. German
mathematician and natural philosopher Karl Friedrich Gauss (1777-1855) kept a
diary for most of his adult life. Perhaps his most famous diary entry, dated July 10,
1796, was the single line ETPHKA = A + A + A, which signifies his discovery that
every number is expressible as the sum of 3 triangular numbers.

Here are some contests: If you square 6, you get 36, a triangular number. Are there
any other numbers (not including 1) such that when squared yield a triangular number?
It turns out that the next such triangular-square numbers are 1,225, 41,616, and
1,413,721. What is the largest such number you can find?

We can use a little trick for determining huge triangular-square numbers. 8 Tn + 1 is
always a square number. If the triangular number is itself a square, then we have the
equation 8x2 + 1 = y2. The general formula for finding triangular-square numbers is
(1/32)((17+12J2~)« + (17-12J2~)"-2).
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Here is another approach to finding all numbers that are both square and triangular.
We want all the solutions of m2 - n(n + l ) / 2 . Solving this for n using the quadratic for-
mula gives n = (-1 + \\ + Sm2)/2. Obviously this equation will give an integer value of
n if and only if the quantity inside the square root is a square, so there must be an inte-
ger ^such that q2 - 8m2 - 1. Equations of this form are called Pell's equations, and there
are infinitely many pairs of integers (q,m) that satisfy this equation. Through a bunch
of mathematical manipulation we find 4n(2j -1) = (3 + 2^1}(2i~l] + (3 - 2 j 2 ) ( 2 J ~ l )

- 2 is a square for every positive integer j.
Can any triangular number (not including 1) be a third, fourth, or fifth power?
Mathematician Charles Trigg has found that Tlin and Tm>m are 617,716 and

6,172,882,716 respectively. Notice that both the triangular numbers and their indices
are palindromic; that is they can be read backward to yield the same number. Can you
find a larger palindromic triangular number than these? Why the frequent occurrence of
the digits 617 in these examples?

Obviously, today we can compute huge triangular numbers using modern comput-
ers. What's the largest triangular number that Pythagoras could have computed? Would
he have been interested in computing large triangular numbers?

If humanity devoted its energy to computing the largest possible triangular number
within a year, how large a number would result? It turns out that this question has little
meaning because we can construct arbitrarily large triangular numbers by adding Os to
55, as in 55, 5,050, 500,500, and 50005,000. These are all triangular! Therefore, one
large triangular number is:

5000000000000000000000000000000050000000000000000000000000000000

You can continue this pattern as long as you like. Dr. Googol wonders if Pythagoras
or one of his contemporaries noticed a similar pattern.

Chapter 63

Hexagonal Cats
Both triangular and hexagonal numbers are easily found in Pascal's triangle (defined in
Chapter 54). For example, a column of Pascal's triangle displays all triangular numbers,
as underlined below:

I 1
I I 1 1
1 2 1 1 2 1
1 2 3 1 o r 1 2 3 1
1 4 6 4 1 1 4 6 4 1
1 5 10 10 5 1 1 5 10 10 5 1
1 6 15 20 15 6 1 1 6 15 20 li 6 1

Can you find where the hexagonal numbers are hiding?
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Chapter 64

The X-Files Numbers
The "end of the world" formula really did appear in the following reference: Starke, E.
(1947) Professor Umbigo's prediction. American Mathematical Monthly. January, 54:
43-44. Dr. Googol believes that all ^numbers, even ones produced for n > 1,945, are
divisible by 1,946. A detailed mathematical proof of this can be found in American
Mathematical Monthly. The proof relies on the fact that x - y is a divisor of x" -yn for
» = 0, 1,2,

Chapter 65

A Low-Calorie Treat
Note that Cake(n] = 1 + Tn where Tn is the «th triangular number.

Mike Angelo of IBM believes he has proven the conjecture that no cakemorphic
numbers exist by the following argument. Let's examine the possible last digits of the
expression Cake(ri)=(n2 + n + 2)12. This is equivalent to evaluating Cake mod 10. If n is
a multiple of 10, e.g., n = 10*, then Cake mod 10 is equivalent to: (lOOx2 + \Qx + 2)12
mod 10, which reduces to (5x + 1) mod 10. This expression has only 2 different values
for all x: 1 and 6. We conclude that all integers that are a multiple of 10 (hence end in
0) yield Cake integers that end in 1 or 6. Next we evaluate Cake mod 10 for integers
equal to 1 mod 10, 2 mod 10, ... 9 mod 10. We include one more evaluation for 1
mod 10. n= Wx+ 1 and Cake= (100(x2)+ 20* + 1 + 10x+ 1 + 2))/2 = 50x2 + 15* + 2.
Therefore Cake mod 10 = 5x + 2. The only possible values are 2 and 7. Thus any num-
ber ending in 1 (e.g. 11,21,31, . . . ) yields a cake integer ending in 2 or 7. Hence it is
impossible for an integer ending in 1 to be cakemorphic. By applying this method to
the other cases we find that any value of n yields a cake integer that terminates in a dif-
ferent integer from that which terminates n. Hence, we believe no one will ever find a
cakemorphic integer.

Dr. Googol invites you to ponder the following: Is there a doughnutmorphic integer?
Doughnut numbers are constructed in a manner similar to cake numbers, except that
the circular pancake region has a hole in it, and hence the sequence for C(n) does not
equal D(n). Dr. Googol would be interested in hearing from those of you who have
worked on this problem.

What about the existence of pretzelmorphic numbers? These numbers concern the
cutting of a pretzel-shaped object.

Previously in the chapter, Dr. Googol gave the equation Cake(n) = (n2 + n + 2)12 for
the maximum number of pieces that can be produced with n cuts of a flat, circular
region. Martin Gardner recently sent us a letter containing similar formulas for a
(3-dimensional) doughnut and sphere cut with n plane cuts. For a doughnut, the largest
number of pieces that can be produced with n cuts is («3 + 3«2 + 8w)/6. Thus a dough-
nut can be sliced into 13 pieces by 3 simultaneous plane cuts (for an illustration, see my
book Computers and the Imagination). For a sphere, the equation is (w3 + 5w)/6+l. For
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a 2-D crescent moon: (n2 + 3n)/2 + 1. For further information on cutting shapes, see:
Gardner, M. (1961) The Second Scientific American Book of Mathematical Puzzles and
Diversions. University of Chicago Press: Chicago. Also: Gardner, M. (1983) New Math-
ematical Diversions from Scientific American. University of Chicago Press: Chicago.

Chapter 66

The Hunt for Elusive Squarions
Squarion arrays: Robert E. Stong from Charlottesville, Virginia, has sent Dr. Googol
a proof that states for every integer n there is an n-by-n array of distinct integers for
which the sum of the squares of any 2 adjacent numbers is also a square.

Strong squarions: The solution to the strong squarion problem is 11,025 (105-
by-105) because 21,025 (145-by-l45). (Colleagues believe that in general we want
to satisfy the following formula in order to search for other numbers of this variety:
10*= (y - x)(y + x) and 1.5 < (ylx)2 < 2. Can you figure out how this equation came
about? Are there any other numbers that also satisfy these conditions? Must all such
numbers end in 5? Dr. Googol does not believe that there is a solution to problem 2 for
the strong squarions.

Pair squarions: The first program code for finding pair squares at [www.oup-
usa.org/sc/0195133420] is a fairly traditional way of finding pair squarions.
Interestingly, one can reduce the search space and computation time significantly. This
is accomplished by solving for n and p and noting that we only need to examine pairs
of integers whose difference is even. (Why is this so?) This means n = (a2 + b2)/2 and^>
= (- a2 + h2)/2. Note that b2 - a2 = 2p and hence must be even. Note also that b - a
must be even. (If b - a were odd, b2 - a2 would be odd.) Therefore, we can generate val-
ues for n and p from a, lvalues where b = a + 2d. A faster program to compute all val-
ues of n and p with n < 1000 is also given at [www.oup-usa.org/sc/0195133420]. This
faster version was developed by Mike Gursky.

Chapter 67

Katydid Sequences
The katydid sequence (x -^ 2x + 2, x -} 5x + 5 ) yields a repeat after 3 generations. The
katydid sequence (x ~^ 2x + 2, x -^ x + 1) yields a repeat after 4 generations.
Dr. Googol has not yet found a repeat for the (x -> 2x + 2 , x -> 6x + 6 ) problem,
nor has he found a solution for the related sequences: (x -^ 2x + 2 , x -^ 4x + 4) or
(x -$ 2x + 2, x -$ 7x + 7 ).

A colleague, Michael Clarke from England, has conducted a little study on the katy-
did problem, for the general case of

X= C,X+ C, andC ?X+ C9

www.oup-usa.org/sc/0195133420
www.oup-usa.org/sc/0195133420
www.oupusa.org/sc/0195133420
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and finds several values of C\ and C2 that produce duplicates after a number of gener-
ations.

C2:
Cl:
1
2
3
4
5
6
7

1
G2
G4
G5
G6
G7
G8
G9

2
G4
G2
G5
£
G3
&
£

3
G5
G5
G2
G7
&
£
£

4
G6
£
G7
G2
£
£
1

5
G7
G3
£
£
G2
£
1

6
G8
£
£
£
£
G2
£

7
G9
£
£
£
£
£
G2

Those entries with a x indicate that no duplicates were found when a search was
conducted to the tenth generation after starting with an initial value of 1! Only God
knows if there is ever a duplicate. Gn signifies that a duplication has in fact occurred and
that it occurs in generation n. In order for members of the same generation to match,
the 2 members must satisfy the condition that c{cf~ = c{c$~3 where g is the num-
ber of the generation and /' and j are numbers in the range 0 to g.

Can you fill in any of the & entries? Since formulating this problem, Dr. Googol has
stumbled upon some research into similar kinds of sequences by Richard Guy. Take a
look in the "Further Reading" section.

Chapter 68

Pentagonal Pie
Dr. Googol derived the following sequence for the number of ways a regular n-gon can
be divided into triangles: 1, 1, 2, 5, 14, 42, 132, 429, 1,430, 4,862, 16,796, 58,786,
208,012, 742,900, 2,674,440, 9,694,845, . . . Recall that a pentagon could be cut 5
different ways. This is the fourth number in the sequence. A square can be cut only
2 different ways.

These numbers are called Catalan numbers after Eugene Charles Catalan
(1814-1894), and they arise in a number of problems in combinatorics—the field of
mathematics concerned with problems of selection, arrangement, and operation within
a finite or discrete system. (Eugene Catalan had a lectureship in descriptive geometry at
the Ecole Polytechnique in 1838, but his career was damaged by his being very politi-
cally active with strong left-wing political views.)

The Catalan numbers can be computed using the following formula, which is not
too difficult to program on a computer:

r - \n-\ \r C 1
^» - ^i = Q l>/L«-z'-;J

The first two Catalan numbers are 1, which we can write as C(0) = 1 and C(l) = 1.
The mh Catalan number is defined by the previous formula. What is the largest Catalan
number you can compute?
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F68.1 Triavalent trees: order 1, order 2, and order 3. How many different trees can
you create with 4 nodes?

F68.2 Different paths for a 4-by-4 grid. How many different paths can you draw
for a 5-by-5 grid?
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Among other things, the Catalan numbers describe these:

1. the number of ways a polygon with n + 2 sides can be cut into n triangles

2. the number of ways in which parentheses can be placed in a sequence of numbers
to be multiplied, 2 at a time

3. the number of rooted, trivalent trees with n+l nodes (see Figure F68.1) (A trivalent
tree is a "rooted, ordered" tree in which every vertex, except the root and endpoints,
has 3 edges connecting to it. Those vertices with 3 edges connected to them are
called trivalent vertices. The order of a trivalent tree depends on the number of
trivalent vertices.)

4. the number of paths of length 2n through an n-by-n grid that do not rise above the
main diagonal (see Figure F68.2)

Another way of saying the second example is that the Catlan numbers count the
number of ways parentheses can be placed around a sequence of n + 1 letters so that
there are 2 letters inside each pair of parentheses:

ab in 1 way: (ab)

abc in 2 ways: (ab)c a(bc)

abed in 5 ways: (ab)(cd) a((bc)d) ((ab)c)d a(b(cd» (a(bc))d

and so on.
If you prefer a more visual representation, we can use Catalan numbers to count the

number of ways of grouping any objects:

in 1 way:

in 2 ways:

in 5 ways:

Chapter 69

An A?

A set that is topologically similar to the Ana fractal and to Cantor dusts starts with a
circle and consists of 2 circles within 2 circles within 2 circles. . . . Everything except for
2 smaller discs is removed. Here we use pairs of circles rather than pairs of lines, and the
subdivisions are repeated as with the Cantor set described in the chapter. We retain only
those points inside the circles. Figure F69.1 is a picture of this Cantor cheese with each
circle's radius very slightly less than half of the previous generation's radius. (The term
generation refers to the nesting level of the circles.) If we consider just the line along
the diameter, the fractal dimension for the set of points is close to 1. Smaller fractal
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dimensions are obtained by using circles
that are further shrunken and separated so
that they do not touch each other.

Returning to the Ana sequence, there
are many questions for students to consid-
er, and Dr. Googol is certain that new dis-
coveries are just over the horizon:

© How quickly do the rows of this Ana
sequence grow in size?

© What is the ratio of the occurrence of as
to n's in each row as the sequence grows?
Try other starting letters.

© Draw a plot where a causes a line to be
drawn in a vertical direction (up), and
an n causes a line to be drawn in a ver-
tical direction (down). As you proceed

through the letters in a single row, move the pen 1 unit to the right for each letter
encountered, creating a steplike function. What pattern do you get? What does this tell
you about the distribution of letters in the row?

F69.1 Cantor cheese of nested circles.

Chapter 70

Humble Bits

Figure 70.1 indicates self-similarity of the gaskets for several orders of "dilational invari-
ance," and they possess what is known as nonstandard scaling symmetry, also called dila-
tion symmetry, i.e., invariance under changes of size scale. Dilation symmetry is some-
times expressed by the formula r -> ar, where r is a vector. Thus an expanded piece of
the gasket can be moved in such a way as to make it coincide with the entire gasket, and
this operation can be performed in an infinite number of ways.

The following discussion considers the case for ( 0 < i< 256 ), ( 0 </< 256 ). This
region corresponds to the upper left "block" of the 9 blocks shown in Figure 70.1. Let
us consider the number of pixels in the image of a particular shade of gray in order to
better understand the resulting patterns. For example, there are only 3 possible (i,j)
pairs that form the logical Sierpinski gasket for c = 256, since c is 100000000 in binary.
The only three ways to make 256 with OR are (256,0), (0,256), and (256,256).
However, for 255, all 8 bits must be Is, and there are an amazing 6,561 possible values
that satisfy our formula (c,•; = i OR/) for c - 255. These 6,561 values are colored black
for the logical Sierpinski gasket in Figure 70.1. To determine the number of equal-val-
ued pixels there are for a particular value of f, you can use N-3k where Nis the num-
ber of different entries in the (/',/) array that satisfy c = /' OR/, and k is the number of
7s in the binary representation of c. We can understand this equation by considering
that for each 1 in the binary representation of c, there are 3 bit-pairs (1 OR 1, 0 OR 1,
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1 OR 0) that produce a 1 under the OR operation. For each 0 in the binary represen-
tation of c, the corresponding bits of / andy must be both 0.

Notice that if we define (1,6) and (6,1) as duplicate solutions to c- = i ORy, then
we obviously have a smaller number of pairs for a particular value of c. Let b(c) be the
number of 1-bits in c. Then the number of unordered pairs whose OR'ed value is c
can be written as 3^ - "Zf^~ly. For example, if c = 17, then b(c) = 2, so there are
32 _ 31 _ 30 = 9 _ 3 _ ! = 5 soiutions. They are (0,17), (1,16), (1,17), (16,17), (17,17).
Alternatively, we can count the "duplicate" members by considering that there is only 1
pair of identical numbers, and all other combinations occur twice. Therefore there are
(3*w - l)/2 + 1 = (3*w + l)/2 unique combinations.

Could the patterns of bits in this chapter be converted to interesting music?

Chapter 71

Mr. Fibonacci's Neighborhood
Replicating Fibonacci numbers are also sometimes called Keith numbers after their
inventor, Michael Keith (see, for example, Journal of Recreational Mathematics, 1994, vol.
26, No. 3.) Dr. Googol finds these numbers fascinating for several reasos. For one thing,
they are very hard to find and seem to require exhaustive computer searches. Some tech-
niques are available to speed up the search, but there is no known technique for finding
a Keith number "quickly." They are in some ways reminiscent of the primes in their errat-
ic distribution among the integers. However, Keith numbers are much rarer than the
primes—there are only 52 Keith numbers less than 15 digits long. Here they are:

14
75
2208
7647
55604
129106
298320
7913837
251133297 (none
202366307758
1934197506555
74596893730427

In addition, at least three 15-digit Keith numbers are known. Is the number of Keith
numbers finite or infinite?

Michael Keith presents another challenge: define a cluster of Keith numbers as a set
of 2 or more Keith numbers (all having the same number of digits) in which all the
numbers are integer multiples of the smallest number in the set. There are only 3 known
clusters: (14, 28), (1104, 2208), and (31331, 62662, 93993). Is the number of Keith

19
197
2580
7909
62662
147640
355419
11436171
ith 10 digits)

28
742
3684
31331
86935
156146
694280
33445755
24769286411
239143607789
8756963649152
97295849958669

47
1104
4788
34285
93993
174680
925993
44121607
96189170155
296658839738
43520999798747

61
1537
7385
34348
120284
183186
1084051
129572008
171570159070
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clusters finite or infinite? He conjectures that the number of Keith numbers is infinite
and the number of clusters finite, but no proof for either result is known. Since we sus-
pect that there are an infinite number of Keith numbers, the problem of finding the next
such number always remains a tantalizing one.

For mathematical nerds, the repfigit (Keith) sequence can be restated as follows.
Consider any positive integer TV with n digits d\, d2 , . . . , <^n. Consider the sequence
defined by ak = d^ (k = 1, 2, . . . , n) and a/g = 2"= \a^_i (k > n}. If a^ = TV for any k, we
call N a replicating Fibonacci number or Keith number.

It is possible to speed future computations of the repfdigit formula by observ-
ing: tf£ + 1 = 2af, - a^-n- The use of this equation may lead to an increase in speed
^ = (TIshift + Tla(y)/[(« -lyr^J where Tis the time the computer takes for various
operations. (A multiplication by 2 can be done by a C language shift operation.) This
leads to a potential speed improvement of 8 ~ 2/(n - 1).

Table F71.1 shows the actual sequence generated by 251,133,297.
After Dr. Googol broke the world record and discovered all repfdigits up to 1 billion,

a flood of computational research poured forth (see "Further Reading"). However, there
remain many serious mysteries involving these strange numbers, and several students,
researchers, and clubs have spent thousands of hours searching for new world-record
holders.

In 1999, scientists discovered a new mathematical constant that relates to Fibonacci
numbers. In particular, Divakar Viswanath, a young computer scientist at the Mathe-
matical Sciences Research Institute (MSRI) in Berkeley, California, put the ancient
Fibonacci numbers back in the news by showing an odd connection between rabbits and
the number 1.13198824. . . . To arrive at this constant, the next time you are trying to
generate the Fibonacci sequence, flip a coin at each stage of the calculation. If it comes
up heads, you add^s. last number to the one before it to give the next number, just as
Fibonacci did. But if it comes up tails, you subtract. The sequence produced in this man-
ner is a "random Fibonacci sequence." Viswanath, who recently finished a Ph.D. in
computer science at Cornell University in New York, showed that the absolute value of
the Mh number in any random Fibonacci sequence is approximated by the Mh power
of the number 1.13198824. . . . In other words, if you were a gambler, you would bet
that the bigger N is, the closer the absolute value of the Mh number gets to the Mh
power of 1.13198824. . . . It's not obvious why this result occurs, and mathematicians

2, 5, 1, 1, 3, 3, 2, 9, 7, 33, 64,123, 245, 489, 975, 1947, 3892, 7775,
15543, 31053, 62042, 123961, 247677, 494865, 988755, 1975563,
3947234, 7886693, 15757843, 31484633, 62907224, 125690487,
251133297

Table F74.1. Actual Sequence for 251,133,297.
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are curious to see if there is a relationship between this number and other known con-
stants, such as the golden ratio. Applications of the sequences are discussed by Ivars
Peterson in Science News 155(24): 376-377, 1999. This discovery suggests that there is
still lots of room for mathematical exploration and experimentation, even on a problem
that began centuries ago as a simple model for rabbit population growth. It's also an
example of how a random process can lead to a deterministic result when the numbers
grow large.

Chapter 72

Apocalyptic Numbers
There are many additional problems for you to ponder:

© Does there exist an apocalyptic prime number?

© Is it just a coincidence that the keys of a piano appear to exhibit a segment of the
Fibonacci sequence 1,2,3, 5, 8, . . . ? There are 2 black notes, followed by 3 black
notes. There are 5 black keys in an octave and 8 white keys in an octave!

While on the topic of piano keys, did you ever notice that the widths of the white
keys are not all the same at the back ends (where they pass between the black keys)?
What back-end widths would piano manufacturers chose to use if they wanted to make
the widths as similar as possible? Mathematician Kevin Brown studied different pianos
and how they accommodate this problem in "linear programming." Let Wdenote the
widths of the white keys at the front, and let B denote the widths of the black keys. Then
let a, b, . . . , g (variables are assigned to their musical equivalents) denote the widths of
the white keys at the back. It seems impossible to have a = b = . . . = g. The best you can
do is try to minimize the greatest difference between any 2 of these keys. One simple
approach would be to set d = g = a = (W-B) and b = c = e =f= (W-B/2), which gives
a maximum difference of 5/2 between the widths of any two white keys (at the back
ends). Dr. Googol asks, "Can you think of a better solution?"

Incidentally, 666 plays a role in modern times. For example, on July 10, 1991,
Procter & Gamble announced that it was redesigning its moon-and-stars company logo,
eliminating the curly hairs in the man-in-the-moon's beard that to some looked like
6s. The fall 1991 issue of the Skeptical Inquirer notes that "the number 666 is linked
to Satan in the Book of Revelations, and this helped fuel the false rumors fostered by

F76.1
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fundamentalists"; a dozen lawsuits filed by Procter & Gamble to halt rumors associat-
ing the company with Satanism were settled out of court. On May 1, 1991, the British
vehicle licensing office stopped issuing license plates bearing the numbers 666. The
winter 1992 issue of the Skeptical Inquirer reports 2 reasons given for the decision: cars
with 666 plates were involved in too many accidents, and there were "complaints from
the public."

Although no one to date has found an apocalyptic prime number, various researchers
have tried to determine if one exists. Charles Ashbacher uses Bertrand's postulate, which
states for n > 1 there is always at least 1 prime between n and 2n. Taking the smallest
"apocalyptic number" (denoted by A = 1 followed by 665 Os), we can apply Bertrand's
postulate 3 times to conclude that there are prime numbers pi, p2, and p3 such that
a < pi <2A< p2 < 4A< p3 < Sa. Therefore there are at least 3 apocalyptic prime num-
bers. We can go a step further in contemplation of these elusive numbers. According
to Friend H. Kierstead Jr., the number of apocalyptic primes is very much greater than
3. The prime number theorem states that the number of primes less than n is on the
order of w/(ln n). Thus the number of primes less than 10666 is approximately
10666/ln(10666) = 10666/(2.303 X 666) = 6.521 x 10662. The number of primes less
than 10665 is about 6.531 X 10661. Therefore the number of apocalyptic primes is about
6.521 x 10662 - 6.531 x 10661 = 5.8 x 10662. Quite a few!

Chapter 73

The Wonderful Emirp, 1,597
Here are some additional problems for you to ponder.

1,597 is an "emirp," a prime number that turns into a different prime number when
its digits are reversed. Can you find any other emirps? How rare are emirps? What is the
largest emirp ever computed? Can you find any Iccanobif numbers? These are Fibonacci
numbers that turn into different Fibonacci numbers when their digits are reversed. Is it
possible that Iccanobif numbers do not exist?

Here are some variations to the equation Dr. Googol gave. How difficult is it
to find integer solutions to any of the following: x = J 1597y2 + 2, x = <] 1597y2,
x = J I597y2 + J2~7x= A/1597jy2- 1? (Hint: We believe only 2 of these 4 equations have
integer solutions.)

Stimulated by Dr. Googol's research, Paul Tourigny found this amazing solution to
the related problem: x = Jl597j/2 - 1. His solution is x = 509,760,496,584,162,107,
935,182 and y = 12755976753725984792525. He believes this to be the smallest inte-
ger solution.

Here are the first few prime Fibonacci numbers: 2, 3, 5, 13, 89, 233, 1597, 28657.
How large a prime Fibonacci number can you compute?
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Chapter 74

The Big Brain of Brahmagupta
These solutions were not quite the smallest ones! But even the smallest solution contains
unimaginably large numbers. For example, it turns out that the absolute smallest value
for x is

For more information on this type of problem you can consult Barry Mazur's paper
"Arithmetic on Curves," which appeared in the Bulletin oftheAMS (14(2): 255, 1986).

Here are some additional challenges:

© Considering that the Brahmagupta numbers (x2 - 157 = y2, x2 + 157 = z2) contain
so many digits, what would have mathematicians in earlier centuries thought about
a problem such as this?

© Historically speaking, how long ago was a solution to this problem even possible?

© Could someone have solved the Brahmagupta problem, for example, in 1940 or
1950? What problems considered unsolvable today will be solvable in 50 years?

© Can you find any 7th-century Brahmagupta numbers for the original integer prob-
lem x2 - 92y2 = 1 given in the quotation at the beginning of this chapter? Hint:
Some solutions to this should be easy to discover using a personal computer.

© One can generalize the 7th-century formula to x2 - Ny2 = 1. Are there any num-
bers //for which there is no solution to this problem? For example, Lew Mammel
Jr. of AT&T Bell Laboratories could not find a solution for N= 53 when doing a
computer search for all integers y less than 6365.

As this book went to press, Paul Tourigny, stimulated by Dr. Googol's work with the
Brahmagupta problems, found that 662492 - 53 x 91002 = 1.

Chapter 75

1,001 Scheherazades
The question "What is the Arabian Nights factorial?" is from a collection of thousands
compiled by Chris Cole, the editor of the rec.puzzles frequently asked questions list.

The answer is 450! (450 factorial). How hard is it to determine the number of Os at
the end of this number?

Rec.Puzzles is an electronic bulletin board that is part of a large worldwide network
of interconnected computers called Usenet. In his puzzle collection, Cole notes that
determining the number of Os at the end of x! is not too difficult once you realize that
each such 0 comes from a factor of 10 in the product 1 x 2 x 3 x 4 x ... x x. Each
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factor of 10, in turn, comes from a factor of 5 and a factor of 2. Since there are many
more factors of 2 than factors of 5, the number of 5s determines the number of Os at the
end of the factorial. The number of 5s in the set of numbers {1 . . . x} (and therefore the
number of Os at the end of #!) is z(x) = int(#/5) + int(x/25) +int(x/125) + int(x/625) +
. . . This series terminates when the powers of 5 in the denominator exceed x. Can you

write a computer program for this?

Chapter 76

73,939,133

Amazingly, this is the largest number known such that all its digits produce prime num-
bers as they are stripped away from the right!

73939133
7393913
739391
73939
7393
739
73
7

Dr. Googol does not know if there are larger numbers with this property. In the 17th
century, mathematicians showed that the following numbers are all prime:

31
331
3331
33331
333331
3333331
33333331

At the time, some mathematicians were tempted to assume that all numbers of this
form were prime; however, the next number in the pattern, 333,333,331, turned out
not to be prime because 333,333,331 = 17x19, 607,843. Let this be a warning to those
of you who find mathematical patterns and assume that the pattern continues forever.
(If we designate n as the number of digits in the 33 ... 31 numbers, then these num-
bers are prime for n = 2, 3, 4, 5, 6, 7, 8, 18, 40, 50, 60, 78, 101, 151, 319, and 382.)

Here's a little dissertation on prime numbers for you. As you certainly know if you
have read the previous chapters, an integer greater than 1 is a prime number if its only
positive divisors (factors) are one and itself. For example, the prime divisors of 10 are 2
and 5, and the first 6 primes are 2, 3, 5, 7, 11 and 13. The Fundamental Theorem of
Arithmetic shows that the primes are the building blocks of the positive integers: every



Further Exploring © 341

positive integer is a product of prime numbers in 1 and only 1 way, except for the order
of the factors. The ancient Greeks proved (ca. 300 B.C.) that there are infinitely many
primes and that they are irregularly spaced (there can be arbitrarily large gaps between
successive primes).

In the 19th century, it was shown that the number of primes less than or equal to n
approaches w/(ln n) as n gets very large; so a rough estimate for the mh prime is n • In n.

In 1801, mathematician Karl Friedrich Gauss eloquently stated in his Disquisitiones
Arithmeticae:

The problem of distinguishing prime numbers from composite numbers and of
resolving the latter into their prime factors is known to be one of the most important
and useful in arithmetic. It has engaged the industry and wisdom of ancient and mod-
ern geometers to such an extent that it would be superfluous to discuss the problem
at length . . . Further, the dignity of the science itself seems to require that every pos-
sible means be explored for the solution of a problem so elegant and so celebrated.

On January 27, 1998, Roland Clarkson, George Woltman, Scott Kurowski, and oth-
ers discovered a new record prime for that time: 23021377-1. This is the thirty-seventh
known Mersenne prime (there may be smaller ones, as not all previous exponents have
been checked). Clarkson, a 19-year-old college student, was one of about 4,000 indi-
viduals involved in GIMPS: The Great Internet Mersenne Prime Search, launched by
Woltman in early 1996. He found this prime using a program written by Woltman
linked to the GIMPS Internet database via Scott Kurowski's PrimeNet (Parallel
Technology for the Great Internet Mersenne Prime Search). As of April 1998, Prime-
Net's sustained throughput was at least 154 billion floating-point operations per second,
or 4.6 (Pentium Pro 200Mhz) CPU years computing time per day. For the testing of
Mersenne numbers, this is equivalent to 5.3 Cray T916 supercomputers, fully equipped
(16 CPUs each) and at peak power.

GIMPS offers free software to personal computer owners who want to search for big
prime numbers.

The primality of their number was verified by David Slowinski, who has found sev-
eral of the recent record primes. The complete decimal expansion of this 909,526-digit
number is available on the Web. For the current largest known prime number, see the
Web site http://www.utm.edu/research/primes/largest.html. (See also "Further Explor-
ing" for Chapter 56 for recent developments.)

Chapter 77

y-Numbers from Los Alamos
Here are a few l±)-numbers Dr. Googol calculated with starting numbers 1 and 9:

1 9 10 11 12 13 14 15 16 17 18 20 36 38 39 40 41 42 43 44 46 66 67 68
69 70 71 72 73 92 101 121 122 123 124 125 126 127 146 155 174 182 201
211 229 230 237 256 284 285 286 287 288 289 290 291 311 348 365
368 369 370 ...

http://www.utm.edu/research/primes/largest.html.
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Here are a few with starting numbers 1 and 3:

1 3 4 5 6 8 10 12 17 21 23 28 32 34 39 43 48 52 54 59 63 68 72 74 79
83 98 99 101 110 114 121 125 132 136 139 143 145 152 161 165 172 176
187 192 196 201 205 212 216 223 227 232 234 236 243 247 252 256 258
274 278 ...

Notice how these (±li;3 numbers have many terms separated by 2.
The following is a long l±)-number sequence computed for the starting numbers 100

and 101. (Dr. Googol computed this massive sequence using a computer program
designed for him by Michael Clarke, who lives in the United Kingdom).

100 101 201 301 302 401 403 501 504 601 603 605 701 706 801 803 805
807 901 908 1001 1003 1005 1007 1009 1101 1110 1201 1203 1205 1207
1209 1211 1301 1312 1401 1403 1405 1407 1409 1411 1413 1501 1514 1601
1603 1605 1607 1609 16111613 1615 17011716 18011803 1805 1807 1809
18111813 1815 1817 19011918 2001 2003 2005 2007 2009 2011 2013 2015
2017 2019 2101 2120 2201 2203 2205 2207 2209 2211 2213 2215 2217 2219
2221 2301 2322 2401 2403 2405 2407 2409 2411 2413 2415 2417 2419 2421
2423 2501 2524 2601 2603 2605 2607 2609 2611 2613 2615 2617 2619
2621 2623 2625 2701 2726 2801 2803 2805 2807 2809 2811 2813 2815
2817 2819 2821 2823 2825 2827 2901 2928 3001 3003 3005 3007 3009
3011 3013 3015 3017 3019 3021 3023 3025 3027 3029 3101 3130 3201
3203 3205 3207 3209 3211 3213 3215 3217 3219 3221 3223 3225 3227
3229 3231 3301 3332 3401 3403 3405 3407 3409 3411 3413 3415 3417
3419 3421 3423 3425 3427 3429 3431 3433 3501 3534 3601 3603 3605
3607 3609 3611 3613 3615 3617 3619 3621 3623 3625 . . .

L. Kerry Mitchell, an aerospace engineer at the NASA Langley Research Center in
Hampton, Virginia, suggested to Dr. Googol the concept of modified (±)-numbers, or
<8>-numbers. In these cases, addition is replaced by multiplication in the definition of
l±J-numbers. Starting with 2 numbers greater than 1, continue the sequence with those
numbers that can be written only in 1 way as the product of 2 previous elements. For
initiators of 2 and 3, here are the first 20 (gi-numbers:

2 3 6 12 18 24 48 54 96 162 192 216 384 486 768 864 1458 1536 1944 3072

24 is on the list since it can be written only as 2 x 12, but 36 is not since it can be
written as 2 x 18 or 3 x 12. Notice that (8)2,3 are ̂  even after 3- Why? Are all (^-num-
bers even?

In order to study the distribution of gaps between (±)j 2 -numbers, Ken Shirriff and Dr.
Googol computed the 100,000 gaps between the first 100,001 yt 2-numbers. Figure
F77.1 shows the distribution of gaps of size 1 to 200.
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In the infinite I±I1>2 sequence,
gap sizes can be divided into 3 cat-
egories: gaps that never appear,
gaps that appear a finite number
of times, and gaps that appear in-
finitely often. Dr. Googol has not
yet found certain gap sizes, such as
6, 11, 14, 16, 18, 21, 26, 28, and
33. Other gaps (e.g., 1, 4, 9, and
13) appear infrequently (occurring
4, 2, 3, and 1 time, respectively).
Some gaps are very common; for
example, 37% of the gaps are of
size 2, and 14% of the gaps are of
size 3. Of course, these computa-
tional observations do not tell us
about the properties of I±J1>2 after
the first 100,000 1±J1>2-numbers.
Note that these missing gaps (e.g.,
6, 11, 14, etc.) are separated by 1,
2, 3, or 5. Interestingly, these val-
ues are Fibonacci numbers. Is this
always the case? We would like to hear from any readers who find gap sizes that do not
manifest themselves in the first 100,000 y1>2 gaps.

¥77.1 The distribution of the first 100,000 gaps
between consecutive l±)1>2-numbers. The number of
times each gap occurs is plotted on a log scale from
1 to 50,000 along the y axis; gaps that never occur
are plotted at y = 0. (From a collaboration with Ken
Shirriff.)

Chapter 78

Creator Numbers SI
Dr. Googol collaborated with Ken Shirriff of the University of California for much of
the analysis of this problem. Ken wrote a computer program in C that not only search-
es for the minimal solutions for the first 1,500 integers but also searches for the number
of minimal ways to construct a number. For example, without allowing concatenation
(multidigit numbers), he finds that there are 208 different ways to write the number 20,
and 1,128 different ways to write the number 21! Even more exciting is the fact that
these 208 and 1,128 different ways to write minimal solutions change to just 2 ways and
1 way if concatenation is allowed. (After all, there is just 1 way to minimally write 21
by concatenating 2 and 1.)

The program finds solutions by using dynamic programming techniques. It starts
with the 1-digit base cases and combines these numbers to generate all numbers that
have a shortest solution of 2 digits. The 1- and 2-digit results are combined to yield all
numbers with 3-digit shortest solutions. This process continues until all the desired
numbers have been found. In order to keep the computations from growing too quick-
ly, Ken Shirriff prunes the results by discarding any results over 10,000. He also limits
results to integers by only using positive exponents. While the first limit probably has
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F78.1 Minimal integer solutions. These solutions <Q(n) are
for the first 1,500 numbers. Concatenation of integers is
not allowed.

no effect on the results, there
are a handful of shorter solu-
tions that are only obtained
by using negative exponents.

Figures F78.1 and F78.2
show plots of computed val-
ues for <^(n) vs. n. These
plots show results for both
nonconcatenation and con-
catenation contests. Interest-
ingly, minimal solutions
comprised of fewer than 12
digits can be found for all
numbers tested (on average,
about 7 digits are needed to
minimally construct n, 1 ̂  n
<; 1500).

We can also define the
concept of "hard numbers"
£lh(ri), which are the small-
est numbers requiring &l(ri)
digits. For example, 921 is
the smallest number that re-
quires a walloping 11 digits
for its expression. Running
his program on the integers
up to 1 million, Shirriff
found the hard numbers list-
ed in Table F78.1. Plots of n
vs. <Qh(n) seem to increase
exponentially. Notice that
almost all hard numbers
include the digit 1. Why?

Unusual solutions: The
contest winner, Dan Hoey, also wrote a Lisp program to confirm his hand calculations,
and as with Shirriff's C program, he did not initially check for negative exponents.
However, he later extended his program to negative exponents and discovered they
sometimes result in shorter solutions. For instance, Hoey notes that if negative expo-
nents are not checked, one might conclude that c$(640) = 8. However, look at Hoey's
amazing solution 67(640)= 7 found when using negative exponents:

Nevertheless, he believes that 20, 120, and 567 do not benefit from the use of nega-
tive exponents unless some subexpression has a denominator or numerator exceeding
1012. He found an interesting solution with negative exponents for 567:

F78.2 Minimal integer solutions with concatenation. The
solutions 67(n) were found for the first 1,500 numbers.
Concatenation of integers is allowed (that is, multidigit
numbers such as 12 and 121 are permitted).
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Without Multidigit Expressions: With multidigit expressions:
Digits

2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

Hard Number
3

2
7
13
21
41
91

269
419
921

2983
8519
18859
53611

136631
436341

Digits
2
3
4
5
6
7
8
9
10
11
12
13

Hard Number
3
5
7

29
51
151
601
1631
7159
19145
71515

378701

Table F78.1 Hard Numbers.

567 = (2a2 + 2)2 x (2 - 2-2)

Should future searches consider using irrational numbers? Hoey writes, "In the same
way that negative exponents imply fractions, fractional exponents imply irrational num-
bers, and then irrational exponents imply transcendental numbers. In fact, one could
obtain complex numbers, too, but I don't think that is any help, and you have problems
with branch cuts there." One question is whether there are any "integers" that benefit
(in the sense of requiring fewer Is and 2s) by considering and using irrational numbers,
or rational numbers formed with fractional exponents. Is there any integer that benefits
from using irrational exponents? Dr. Googol thinks this is a fertile ground for signifi-
cant future research.

In closing, Dr. Googol does not know for certain whether all of the <Q(ri) values list-
ed here are truly the minimal values. In most cases, they were arrived at through com-
putation and not through any mathematical theory. He looks forward to hearing from
readers who may be able to find even smaller values than the ones listed here. Much of
the participation and discussion for Dr. Googol's Creator Numbers Contest occurred in
the mathematics discussion group sci.math on the Usenet computer network, where this
contest took place.
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Chapter 79

Princeton Numbers
To compute very large integers in the Robbins formula, you may have to use a pro-
gramming language such as REXX. Alternatively, there are many simple software pack-
ages used to compute large integers, such as Mathematica (Wolfram Research). Other
notable examples are the large-integer programs of Harry J. Smith. Smith uses his own
software package to perform multiple precision integer arithmetic: his software package
can even compute transcendental functions to thousands of decimal places. (Contact
him at: Harry J. Smith, 19628 Via Monte Drive, Saratoga, CA 95070.) Another alter-
native is the large-integer program Matlab (Mathworks, South Natick, MA).

Challenges: Dr. Googol calls a Robbins number Rn Robbinmorphic if it terminates with
n. For example, a one-digit Robbinmorphic number is Rg = 7436. (For more on other
morphic numbers, see Chapter 63). If n were a 2-digit number, the last 2 digits of the
Robbins number would be considered when checking morphicity. And so on.

Here is one hell of a question for you number nerds: does there exist a
Robbinmorphic number for n > 7? After Dr. Googol posed this question to friends,
Harry J. Smith from Saratoga, California, and David Edelheit from Oyster Bay, New
York, discovered that Rg^ is Robbinmorphic because it ends in 32. This is the only
known large Robbinmorphic number. Is there a larger one? To compute the Robbins
numbers, Smith used R(ri) = R(n-l) x (2») x (2n + 1) x . . . (3»-2)/((«) x (n +1) x
. . . (2» -2)). This equation can be easily implemented with an algorithm that has all-
integer intermediate results. (You must use care when using the first formula given in
this chapter. Even though all Robbins numbers are integers, some of the intermediate
results in the algorithm are not integers. If intermediate results are stored as integers,
some small errors may occur.)

Is there anything special about the arrangement of digits within any of the Robbins
numbers? Certain Robbins numbers, such as the fourteenth, which starts with 999 and
ends with 000, do not seem perfectly random. Is the arrangement of digits random?

Chapter 80

Parasite Numbers
After Dr. Googol showed his single 4-parasite number to several colleagues, Keith
Ramsay of the University of British Columbia came up with an amazing formula to gen-
erate parasite numbers. It turns out that Dr. Googol's brute-force computational search-
es would have taken far too long to find larger parasite numbers. Suppose we start with
a multiplier digit d and wish to find some ^-parasite. All we have to do is evaluate the
formula dl(\bd -1), and then use the unique segment of digits before the cluster
repeats. (Every fraction, when expressed as a decimal, either "comes out even" as in
1/8 = 0.125, or it repeats as in 1/3 = 0.33333 where a single digits occurs over and over
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again, or it has group-repeats as in 1/7 = 0.142857 142857 . . . ) Let Dr. Googol ex-
plain with an example. Suppose he'd like to find a large parasite for 2. Let's divide
2 by 19 to get 2/19 = 0.105263157894736842. The "105263157894736842" portion
repeats over and over and is a 2-parasite because 2 x 105,263,157,894,736,842 =
210,526,315,789,473,684. (Incidentally, this number is larger than the number of stars
in the Milky Way galaxy.) Here's an incredible-sized 6-parasite:

6/59 = .1016949152542372881355932203389830508474576271186440677966 . . .
1016949152542372881355932203389830508474576271186440677966 x 6 =
6101694915254237288135593220338983050847457627118644067796

Do you see how the 6 migrates from the right end to the front after multiplication?
Knowing Ramsay's formula, you can amaze your friends with multidigit parasites con-
taining hundreds of digits.

Mike Dederian of Harvey Mudd College in California found something unusual
about a 5-parasite

102040816326530612244897959183655

which can be written as 1 (02) (04) (08) (16) . . . to emphasize the doubling of dig-
its. The reason for this initial pattern is not obvious to us.

After seeing Dr. Googol's parasite numbers, Joseph S. Madachy, editor of the Journal
of Recreational Mathematics, sent Dr. Googol a paper he wrote in 1968 that appeared in
the Fibonacci Quarterly (6(6): 385-389). In the paper are recipes for "instant division,"
which resembles what we might call (using Dr. Googol's terminology) reverse pseudo-
parasites. If you wish to divide 717,948 by 4, merely move the initial 7 to the right,
obtaining 179,487. Madachy also gives another example:

9,130,434,782,608,695,652,173

can be divided by 7 by transposing the initial 9 to the end, obtaining

1,304,347,826,086,956,521,739

Other challenges:

© What is special about the fraction 137174210/1111111111? Try computing this to
find out. You'll be amazed when you gaze upon its decimal representation.

© Make a list of all pseudoparasites less than 1 million.

© Do there exist "ultraparasites" that multiply by swapping both the left- and right-
most digits?
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Chapter 81

Madonna's Number Sequence
The digits of pi (n) are 3.1415926. . . . Notice what happens if you add 1 to each digit?

One of this book's reviewers felt that the sequence 425260376469080434957 was
not sufficiently interesting to be included in this book, and therefore Chapter 81 should
be deleted. If you agree, send Dr. Googol a note, and he will delete Chapter 81 from
future editions of this book.

Chapter 82

Apocalyptic Powers
Werner Knoeppchen of Glenwood Springs, Colorado, sent Dr. Googol a printout of the
number 25'000'000. Werner writes:

The number contains six 6s in a row. Therefore it is an apocalyptic power. I do not
know if it is the lowest. The printout for 25>000>00° is over 500 pages long, and the
number contains 1,505,150 digits. It required two weeks for a Mac IICI to calculate
this number running Mathematica.

Werner's double apocalyptic power contains inside it the digits "10556666660670,"
which he proudly circled in red ink.

Charles Ashbacher of Cedar Rapids, Iowa, wrote a Pascal program that searched for
double apocalyptic powers. He found such powers with exponents of / as follows: 2269,
2271, 2868, 2870, 2954, 2956, 5485, 5651, 6323, 7244, 7389, 8909, 9195, 9203,
9271, 9273, 9275, and 9514. (Why are there several "twins" that differ by 2: 2269 and
2271, 2868 and 2870, 2954 and 2956? Why should a "triplet" exist: 9271, 9273, and
9275? Just chance?)

Christopher Becker from Homer, New York, used a DEC VAX 6410 and verified
Ashbachers findings regarding double apocalyptic powers. Becker notes that the first such
number 22269 has 684 digits and has 666666 at the 602nd position. For single apocalyp-
tic powers, he finds 2157, 2192, 2218, 2220, and 2222. Curiously, 2666 is itself an apocalyp-
tic power. Between 22000 and 23000 Becker finds that more than half of the exponents are
apocalyptic powers. Becker has also searched for St. John powers, which have the digits
153 (Simon Peter caught 153 fish for Jesus). 2115 is the first St. John power.

Becker later used a DEC Alpha computer to search for triple apocalyptic numbers
with nine 6s in a row. He searched as high as 2 raised to a quarter-million using his cus-
tom C program. After using five hours of computing time, he found the following
triplet of triple apocalyptic exponents that differ by 2: 192916, 192918, and 192920.
He also found 212253, 237373, 241883, and 242577.

John Graham of Penn State Wilkes-Barre, Pennsylvania, and R.W.W. Taylor of the
National Technical Institute for the Deaf (Rochester Institute of Technology, Rochester,
New York) have both proven that there is an infinite number of apocalyptic powers.
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John Rickert from the Rose-Hulman Institute of Technology, Terre Haute, Indiana,
is currently the world's expert on apocalyptic powers. Stimulated by Dr. Googol's initial
research on apocalyptic powers, Rickert has made a number of unusual discoveries, some
of which are reported in the Journal of 'Recreational Mathematics 29(2): 102-106, 1998.
If we call numbers of the form 2k that contain the digits 666 "apocalyptic powers,"
Rickert finds an infinite family of apocalyptic powers of the form

666362864775460604089535377456991567872 mod 1039.

He also made several of other discoveries. For example, exponents of the form
k = 650 +2500«, k = 648 + 2500«, and k = 1899 + 2500« produce apocalyptic powers
for any natural number n. If an apocalyptic power, 2*, contains the sequence of five
digits 666ab with 50 ^ 10^ + b<> 74, then 2* + 2 will also be an apocalyptic power.

Exponents smaller than 1000 producing apocalyptic powers are: 157, 192, 218, 220,
222, 224, 226, 243, 245, 247, 251, 278, 285, 286, 287, 312, 355, 361, 366, 382, 384,
390, 394, 411, 434, 443, 478, 497, 499, 506, 508, 528, 529, 539, 540, 541, 564, 578,
580, 582, 583,610, 612, 614, 620, 624, 635, 646, 647, 648, 649, 650, 660, 662, 664,
666, 667, 669, 671, 684, 686, 693, 700, 702,704, 714, 718, 720, 723,747, 748, 749,
787, 800, 807, 819, 820, 822, 823, 824, 826, 828, 836, 838, 840, 841, 842, 844, 846,
848, 850, 857, 859, 861, 864, 865, 866, 867, 868, 869, 871, 873, 875, 882, 884, 894,
898, 920, 922, 924,925, 927, 928, 929, 931, 937, 970, 972, 975, 977, 979, 981, 983,
985, and 994.

Rickert also discovered that double apocalyptic powers for any natural number n can
be produced by k= 423152 + 1562500n. The smallest such number is k= 423152. How
far can we extend this madness? Is it possible to find a k so that 2k contains 666 con-
secutive 666s (1988 consecutive 6s)? This large number, called the Goliath number and
denoted by the symbol T, certainly exists. Behold the following beauty:

The Smallest Known Goliath 10 = 2k where
k = 5885687724118401941316021532344935567102950794778571209841922652323917894198804389
069219219903160927059489915154857760464448254295968180695920279796849463075708290
199342355870589647820200373241627614094063703046310060065304097808099467292682
4138566463664864191273768654105927280055118272241704786417418390805959982489620
95759937961892070538730381879556001420797627451843579947972797378756542861663218022958
600991588003663745498437382909971601743863179919994505940639205328234595859398204292
44855525411860118417926631171779654659793784400589805837899013847271565554504341084459
8895111973105433464356301358028129300956157976029072329718545212706970497009516499247
19937092125837323551211554870414993671041414677464208407554430043300186530390231964337
897297668380866060195562956400040979303872526009423267268857697252474056885075564671
2287976340147315917164265880309094302197900564419096107078550804857796403509442097275
0147518496337937568175098059273529761028309044181743419203993555446270188193944313063
262560244274732470009686149521643808315809686820076324296831916164820654476905889642
1775705966984874767378351763642049808812344048530780627953430373753224986059653183547
1337958005689684838139553270730930922461188318675469684528078307772875231936465754479
0517521705850345235243071508756524211902657597510468456869469428293376149593416389849
88958339125536413544117723716489591514333333772319174258545088294756477899579689409356
6018106387906419390774817931592398885067533782376305194857663954855366774017767968856
3991034405660758518942653894203812227005139814690072143187517752829467362462871190565
4517992798553608427660349299395167230798560965012842062504705695048907161173965139141
156202695574977731801982696297755877962420713278243643519715567710237197497435157641369
060466324637332030075098197118889778674065389803313840294700049841930198992815556582
860586724843225875272328620699655929497279582147534637808849388921819039338474870981
66096452665106632745683143664200122860959024860772469439488504
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There are probably Goliath numbers smaller than this, and there are certainly larger
Goliath numbers. In fact, larger values of i can computed from k + 4 x 52858«.

It seems likely that there is some Kso that for any k > K, 2k is an apocalyptic power.
Rickert suggests that a proof of this is beyond our current techniques. Further explo-
ration shows that there are only twenty exponents between 20,000 and 100,000 that do
not produce apocalyptic powers. These exponents are 20271, 20300, 20509, 20644,
20710, 21077, 21600, 21602, 22447, 22734, 23097, 23253, 24422, 24441, 25026,
25357, 25896, 26051, 26667, and 29784.

Rickert conjectures that all powers of 2 larger than 229784 are apocalyptic powers.
(Currently 29,784 is the largest known non-apocalyptic power.) This would mean that
there are exactly 3,715 powers of 2 that are not apocalyptic powers. Note that the fre-
quency of double apocalyptic exponents is clearly increasing in the list of exponents
smaller than 10,000 producing doubly apocalyptic powers.

Dr. Googol asks if there is some A"so that for any k > K, 2k is a Goliath number i ?
In another words, at what point in our number system do all numbers suddenly become
Goliath numbers. Is i o x r Q a Goliath number?

W Yis i o ° a Goliath number?

Chapter 83

The Leviathan Number

Michael Palmer from the United Kingdom was the first person on Earth to deter-
mine the first 6 digits of }$. Interestingly, you don't have to compute all the digits of
the Leviathan to determine just the first 6. The reasoning is as follows.

Factorial functions can be approximated by Stirling's formula. It's named after James
Stirling (1692-1770), a Scot who began his career in mathematics amid political and
religious conflicts. He was friends with Newton but devoted most of his life after 1735
to industrial management.

Stirling's ingenious formula for approximating factorial values is n\ ~ J2n x e~ "
x nn + m. At [www.oup-usa.org/sc/0195133420] Dr. Googol provides BASIC and C
code for computing Stirling approximations, actual factorial values, and the percentage
difference between the 2. Notice that this formula give a useful approximation for n\
when n is large. For example, when n - 6, Stirling's approximation gives a value of 710,
and the true value of n\ is 720. When n is 23, Stirling's approximation is 25,758,524,
968,130,088,000,000, and the true value is 25,852,017,444,594,486,000,000. Notice
that the difference between the 2 values actually increases as a function of n, but the per-
centage difference decreases with greater values. Why not make a graph showing this
percentage difference as a function of «? Because many modern software packages
today allow us to compute large factorials (though presumably not so large as a googol),

www.oup-usa.org/sc/0195133420
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people often forget Stirling's formula. However, until a few years ago, this was the only
way to approximately determine factorials for large numbers.

Let's use Stirling's formula to compute the first few digits of the Leviathan ̂  with-
out computing all the digits. Michael Palmer notes that for n = 10666, the term nn+1/2

in Stirling's formula is a power of 10 and can be ignored when trying to determine the
first 6 digits of ̂ . Next, let's look at the exponential term in Stirling's formula. Here
we have which can be rewritten as 10~10 x ^ where k = Iog10£. Next, we split 10666 x k

into its integer and fractional parts, say m and/ giving us ^~10 = 10~w x 10"-^
We can ignore the lQ~m part since it is a power of 0.1, and therefore the first 6 dig-

its of 10666! are given by the first six digits of ^2jt x 10~^ Michael used a mathemati-
cal software package called AXIOM to compute this, using a high number of digits
(777) to ensure accuracy. Therefore, 10666 x k is 434,294 . . . 9,652.27174945413317.
. . . Next, using what remains of Stirling's formula, we find J2n x 1Q-0-27174945 =
1.340727397. He therefore concludes that the left 6 digits of the Leviathan number are
134,072.

Could today's computers compute the entire Leviathan, or will this be beyond the
realm of humankind for the next millennium? The number of digits in ̂  is more than
10668, and this is much greater than the number of particles in the universe. Further-
more, even if a googol digits could be printed (or stored) per second, is would still
require so much time that the universe would come to an end before the printing or
storing was completed. Therefore such a computation will always be beyond the realm
of humanity. If you are interested in computing the number of trailing Os of ̂ , see my
book Keys to Infinity.

As we climb the integers in our quest for infinity, we find several famous large num-
bers. The baby Leviathan 99 is the largest number that can be written using only 3 dig-
its. It contains 369,693,100 digits. If typed on paper, it would require around 2,000
miles of paper strip. Since the early 1900s, scientists have tried to determine some of the
digits of this number. Fred Gruenberger recently calculated the last 2,000 digits and the
first 1,200 digits.

Even more unimaginable is S, which has a value of 99 . If typed on paper, S would
require 1Q369693094 miles of paper strip. Joseph Madachy has noted that if the ink used
in printing 3? was a 1-atom-thick layer, there would not be enough total matter in mil-
lions of our universes to print the number. Shockingly, the last 10 digits of S have been
computed. They are 1,045,865,289.

Here's a tough problem for you. Is the following statement true or false? How do you
know?

A final observation on big numbers. The largest "physically imaginable" size is that
of our entire universe, 10 with 29 Os after it (in centimeters). The smallest size, describ-
ing the subatomic world, is 10 with 24 Os (and a decimal) in front of it. On this grand
size scale, humans are right in the middle. Does this mean humans hold a central, priv-
ileged place in the cosmos? Did God place us here?
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Chapter 84

The Safford Number
Arthur C. Clarke recently wrote to Dr. Googol expressing his skepticism over the story
of Dase calculating pi to 200 places in his head. Clarke wrote, "Even though I've seen
fairly well authenticated reports of other incredible feats of mental calculation, I think
this is totally beyond credibility." Clarke, stimulated by Dr. Googol's Dase report,
recently wrote Stephen Jay Gould asking how it is possible for such extraordinary abili-
ties as human calculators to have evolved through natural selection. Clarke asks, "What
is the survival value in the jungle of the ability to multiply a couple of 50-digit numbers
together?"

Dr. Googol looks forward to hearing from readers who can confirm or deny the leg-
ends of Dase's extreme computing ability.

Chapter 85

The Aliens from independence Day
If you want to use the computer programs at [www.oup-usa.org/sc/0195133420] to
compute sexes for a large number of years, it's important to have a high-precision value
for /5, and you might want to check the value that is used in your particular computer
language. (You don't have to worry about this issue if you only want to compute the sex
of the first few thousand abductees.) For example, many people who tried to use the
Mulcrone formulation computed that a female would be the billionth person taken.
This is because BASICA gives a value of 2.2360680103 for .JT on some machines,
whereas the true value is 2.236067977. . . .

Notice that the number of males and females, and total number of humans, begin to
follow the well-known Fibonacci sequence:

Year 0 1 2 3 4 5 6 7 8 . . .
Number o f Males 1 0 1 1 2 3 5 8 1 3 . . .
Number of Females 0 1 1 2 3 5 8 13 21 ...
Total 1 1 2 3 5 8 13 21 34 ...

(As mentioned in other chapters, the Fibonacci sequence of numbers—1, 1,2, 3, 5,
8, etc.—is such that, after the first 2, every number in the sequence equals the sum of
the 2 previous numbers Fn = Fn _ i + Fn_ 2). The sum of elements F\ through Fn is
FnJfi~\. Using this relationship, it's possible to show that the number of people abduct-
ed during a particular year is simply Fyear (in this case, the first abduction is considered
to have taken place in year 1). The total number of people abducted including the cur-
rent year, is Fyear+2~^- As to questions about the sex ratio, it's possible to show that the
ratio of the number of females to males converges to Fn/Fn _.; = <£. Here </> is known as
the golden ratio and is equal to 1.61803. . . . It appears in the most surprising places in

www.oup-usa.org/sc/0195133420
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nature, art, and mathematics. The symbol </> is the Greek letter phi, the first letter in
the name Phidias, a classical Greek sculptor who used the golden ratio extensively in
his work.

In order to avoid any numerical precision problems that may arise with the Mulcrone
formulation, Ram Biyani has suggested a formulation involving only integer calcula-
tions. In particular, we can use a recursive function that computes the sex, s, of the
xth person in the yth year using a previously generated sequence of the number of
persons taken in each year (the Fibonacci sequence). The recursive relationship is
s(y,x) = s(y-2,x), l f x < F ( y - 2); s(y,x) = s(y -1, x-F(y- 2)), if x > F(y - 2),
where F(y) is the number of persons taken in the year j/, and s(y,x) is the sex of the xth
person taken in year y,

Here are some additional challenges for you to ponder:

© How many years would the alien require to remove the entire population of the
Earth (about 6 billion people)?

© Can you use this fact to determine the sex of the billionth person?

© How do the sex ratios change if, during the first year, you start with 2 people, for
example, M M, or F M?

Chapter 86

One Decillion Cheerios
Scott Bales from North Carolina notes that any possible solution must be of the form
2* X 5* = 10 *. If this is not true, 1 of the multiplicands' terms will have both 2 and 5
as factors, and the last digit of this term will be 0. The problem therefore is to find a
power of 2 and a power of 5 that do not have Os in them. Scott has written a Turbo
Pascal program (running on a 486 DX) to check 5* for all values of x less than 60,000.
Using his program, Scott found 558 to be the only power of 5 greater than 533 that also
contained no Os. However the power of 2 for x = 58 yielded a number with at least
one zero. Scott says, "Do I think such a number exists? I don't know—early evidence
doesn't look good. If it exists, I think humanity will one day find it."

Chapter 87

Undulation in Monaco
Bob Murphy used the software Maple V to search for undulating squares, and he dis-
covered some computational tricks for speeding the search. For example, he began by
examining the last 4 digits of perfect squares (i.e., he computed squares mod 10,000).
Interestingly, he found that the only possible digit endings for squares that undulate are
0404, 1616, 2121, 2929, 3636, 6161, 6464, 6969, 8484, and 9696. By examining
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squares mod 100,000, then mod 1,000,000, then mod 10,000,000, etc., he found that
no perfect square ends in 40404, 6161616, 63636, 464646464 or 969696, thereby
allowing him to speed further the search process. Searching all possible endings, he
asserts that, if there is an undulating square, it must have more than 1,000 digits.

Dr. Helmut Richter from Germany is the world's most famous undulation hunter,
and he has indicated to Dr. Googol that it is not necessary to restrict the "mod search-
es" to powers of 10, and that arbitrary primes work very well. He has searched for undu-
lating squares with a million digits or fewer, using a Control Data Cyber 2000. No
undulating squares greater than 69,696 have been found.

Randy Tobias of the SAS Institute in North Carolina notes that there are larger
undulating squares in other number bases. For example, 2922 = 85264 = 41414 base 12.
And 121 is an undulating square in any base. (121 base n is (n + I)2.) Interestingly,
we find that there are very few undulating powers of any kind in base 10. For example,
a 3-digit undulating cube is 73 = 343. However, Randy Tobias conducted a search for
other undulating powers and only found 343 as an undulant formed by raising a num-
ber to a power/?. He has checked this for 3 <p < 31 and for all undulants less than 10100.
Undulating powers are indeed rare!

Undulating prime numbers, on the other hand, are more common. For example,
Randy has discovered the following huge and wondrous undulating prime:

7 + 720 X (1004!) - 1)/J)9 =

72,727,272,727,272,727,272,727,272,727,272,727,272,727,272,727,
272,727,272,727,272,727,

272,727,272,727,272,727,272,727,272,727,272,727

(It has 99 digits.) To find this monstrosity, he also used the software program called
Maple. The program scanned numbers using two lines:

(a*10 + b)*(10**(2*(k + 1)) - 1) / 99
a + 10*(a*10 + b)*(10**(2*(k + 1)) - 1) / 99

for (0 < £ < 50 , \<a<n-l,Q<h<n-l). The Maple "isprimeQ" function was
used to check whether a number is prime. Maple makes it possible to work with very
large integers.

There are many other undulating primes with many digits. However, there does not
seem to be any undulating prime with an even number of digits. (Considering that
ababab . . . ab= ab X 10101 . . . 01, we should not expect to find any even-digit undu-
lating primes.) Dr. Googol would be interested in hearing from readers who have
searched for undulating primes with larger periods of undulation, such as found in the
prime number 5,995,995,995 (which does not finish its last cycle of undulation).

Finally, binary undulants are powers of 2 that alternate the adjacent digits 1 and 0
somewhere in their decimal expansion. For example, the "highest-quality" binary undu-
lant Dr. Googol has found is 2949. It has the undulating binary sequence 101010 in it,
which he has placed in parentheses in the following:
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2949 = 4758454107128905800953799994079681792420032645310062268
97846994981(101010)2913293995344538606387700321887355916128617
51376145467278574369826493065785952766280250550668943187159661
65965114697527579847654265035245990594167958620092162821027166
09115705865638544337453260521036049116206989312

Here 949 is called an undulation seed of order 6, since it gives rise to a 6-digit undu-
lation pattern of adjacent Is and Os. When Dr. Googol challenged mathematicians and
programmers around the world to produce a higher-order binary undulant, many took
up the challenge. The highest-quality binary undulant known to humanity before 1999
was discovered by Arlin Anderson of Alabama. He was the first to find that 21802 con-
tains an 8-digit binary undulation. After much hard work he also found that 27694891

starts with the digits 10101010173 . . . , and a week later he discovered that 21748219

gives rise to a 10-digit undulant! Since Arlin only checked the last 240 digits of each
number, he feels it is almost certain that there is a bigger binary undulation somewhere
in the first million powers of 2. Considering that 21000000 contains around 300,000
digits, the chance of finding a 10101010101 or 01010101010 is large. (Arlin uses a
custom C program for large integer computation. The program runs on an Intergraph
6040 Unix workstation and on a 486 PC. Searching 240 digits in 2 million powers of 2
required 15 hours.)

How do binary undulants vary with the base b\ For example, for the case of b - 2,
there are many binary undulants. Is it possible that as b increases, the quality of the best-
known cases decreases?

In 1999, John Rickert from the Rose-Hulman Institute of Technology, Terre Haute,
Indiana, discovered a binary undulant with 2002 digits of alternating 1010s. The expo-
nent K for the binary undulant contains 2,862 digits, starting with the digits
1705096307158733196 and ending with the digits 1125807122675. The actual num-
ber 2* has f(K X Iog102) I digits, which is approximately 5.13xl02860 digits. (The sym-
bols I ] denote the "ceiling function," which returns the smallest integer that is greater
than or equal to a given number. Example: 1354.89] = 355.)

For the enjoyment of the most manic of number nuts (Dr. Googol uses the term
affectionately), here is H for the highest quality binary undulant known to humanity.

The highest quality binary undulant 2 K, where K =

1705096307158733196272837822861210506044238242343345482709752237971480369913699366559
7535363989107263048264115782818635902982099148816844743376152565567857160855792094405
8798673593782911377366695463514891908634944549473426558570259355044103756492317634611
55406520358487526755427708880034274877913501640662746917211495357857476813982969887847
36575096993301919047398870001189892534240203177582189198933227175406031161265770695111
1309460151941128856930089906976649821003123007200890596422977169378731541856737296424
3811774260161158163459519766149242859680552989221533202038021481209504064870514955881
5240262459529100488659975205662235761333910872007208294489337974893877798110446243285
1817219555465542165715990153959957518916806863846678574872485903268173880714908196133
9194537041518210625569483706040207238935794680940459508410604447944257741597541795694
9151297828640259364877335196529064076476129145327385883198060548690157485615292789543
23110215197454586770412080605557579549437002915027017722384580574096371353343938103355
156027303704656727258722300269694240828297437973824435785380369924848102694065752499
20332773870187114331795969681227162256958258715780291621583061642005255751548634149387
4514396076146072564929132154355037339284186025297876005154905005414354250625939747345
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86827839995162864170200245255794084792471777751182836994172761219727468852021797700556
0451125932710564565456795068422390281641000068306808770641790713319698841126674070397
7082029682930703828431433441989339282805353608879249131521243516853240787996283774521
98882475901716159079664581981622790171437820709675547562854519604996674782259152658519
3917472614615248545479920224658812075429747951022585202030743452525592502528248607077
88448306129146392378164745866612239357572911270630970671733024149136464545152557725758
5296006374670422146136108441960066043215693987519699245479196384300638747584731344983
8290262241725100203080859472246722617286102175780663085854742101285587286223859908432
16241668321236760057247367596437121415254128093736730930649824428315207319831813255138
9908172755077286468409731432100510602716007206801525580651707803805627944048032669489
7399100888985576280423157189399704978591077622365121272553124382351524613827634928502
4120636491416678111283733691306835326174195473369769144365418436315419735008206652565
01302650159381837933032054494436275816611771863353959142017052414754627670165174686095
6133878510378439532363276333433872689557716083066769959863888428727554949834718621484
5720135356668774173477179903336921707993779625974864943630449266650204119203928266981
933777953128763003138024115647306175585371070760769263017470148211404251725661969285517
3920790199915654398337565181947376480041481832585738286593872295275619857567234797465
5944181332984372285066428603626218515837398485000900931145441800115187870596586535742
80536623162470291591456865893007671125807122675

Chapter 88

The Latest Gossip on
Narcissistic Numbers
In this chapter, Dr. Googol discussed numbers of the kind:

153 = I3 + 53 + 33

He began to wonder if there were any cubes that are the sum of 3 consecutive cubes.
Here is 1: 33 + 43 + 53 = 63. Are there any others?

On a similar line of thought, factorions (denoted by the symbol /^) are numbers that
are the sum of the factorial values for each of their digits. (For a positive integer n, the
product of all the positive integers less than or equal to n is called n factorial, usually
denoted as n\ For example, 3! = 3 X 2 X 1.) The number 145 is a factorion because it
can be expressed as

145 = 1! + 4! + 5!

Two tiny examples of A are

1 = 1! and 3 = 2!

The largest known A" is 40,585; discovered in 1964 by R. Dougherty using a com-
puter search, it can be written as

40,585 = 4! + 0! + 5! + 8! + 5!
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Can you end the loneliness of the factorions? Do any others exist?
Various proofs have been advanced indicating that 40,585 is the largest possible

A" and that humans will never be able to find a greater A. In fact, these 4 factorions
are the only factorions known to humanity. How can this be?

A more fruitful avenue of research may be the search for A® —factorions "of the
second kind," which are formed by the product of the factorial values for each of their
digits. Additionally, there are hypothetical A®—factorions "of the third kind" formed
by grouping digits. For example, a factorion of the third kind might have the form

where each letter represents a digit. (Any groupings of digits are allowed for factorions
of the third kind.)

Near-factorions AK are w-digit numbers that are the sum of factorial values for n-l
of their digits. (For example, a number of the form abc = a\ + c\ would be a AK.) Do
they exist? To date, Dr. Googol is unaware of the existence of A®, A®, or AK, and
he would be interested in hearing from readers who can find any.

Parenthetically, he should point out that Herve Bronninan from Princeton University
has recently found some magnificent factorions in other bases, most notably
519,326,767, which in base 13 is written as 8.3.7.9.0.12.5.11 and is equal to 8! + 3! +
7! + 9! + 0! + 12! + 5! + 11! (You can interpret this base 13 number as 8 x 137 + 3 x 136

+ 7 X 135 + 9 X 134 + 0 X 133 + 12 X 132 + 5 x 131 + 11 x 13°. Some write this num-
ber as 83790C5B13.)

This chapter also discussed the narcissistic number, 153. 153 is special for other
reasons:

© 153 = 1! + 2! + 3! + 4! + 5

© When the cubes of the digits of any 3-digit number that is a multiple of 3 are
added, and the digits of the resulting number are cubed and added, and the process
continued, the final result is 153. For instance, start with 369, and you get the
sequence 369, 972, 1080, 513, 153.

© 153 is the seventeenth triangular number.

©St. Augustine, the famous Christian theologian, thought that 153 was a mys-
tical number and that 153 saints would rise from the dead in the eschaton. How
is that? St. Augustine interpreted the Bible using numbers. For example, he was
fascinated by a New Testament event (John 21:11) where the Apostles caught 153
fish from the sea of Tiberias. Seven disciples hauled in the fish, using nets. St.
Augustine reasoned that these 7 were saints. Why 7 saints? Since there are 7 gifts
from the Holy Ghost that enable people to obey the 10 Commandments, he
thought the disciples must therefore be saints. Moreover, 10 + 7 = 17, and if we
add together the numbers 1 through 17, we get a total of 153. The hidden mean-
ing of all this is that 153 saints will rise from the dead after the world has come
to an end.
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As one searches for larger and larger narcissistic numbers, will they eventually run out,
as in the case of the lonely factorions? If they are proved to die out in one number sys-
tem, does this mean they are finite in another? (Newsflash: Martin Gardner wrote to Dr.
Googol recently and indicated that the number of narcissistic numbers has been proved
finite. They can't have more than 58 digits in our standard base 10 number system.)

Finally, Kevin S. Brown writes that he knows of only three occurrences of n\ + 1 =
m2, namely 25 = 4! + 1 = 52, 121 - 5! + 1 = II2 , and 5041 = 7! + 1 = 712. We do not
know if there are any others. Perhaps these "Brown numbers" will be as lonely as the fac-
torions. The prolific mathematician Paul Erdos long ago conjectured that there are only
3 such numbers, and he offered a cash prize for a proof of this!

For various proofs relating to factorions, see my book Keys to Infinity.

S See [www.oup-usa.org/sc/0195133420] for program code to search for factorions.

Chapter 89

The abcdefghij Problem
Using the program code at [www.oup-usa.org/sc/0195133420] we can compute values
for the variables that satisfy the equation (ab}c = def X ghij. Here are some possibilities:
(a =4, b=S, c=\d= 1, e=9,f = 2,g=Q, h = 5, i = 7 , y = 6 ) ; U = 4, b = B, c=3,
< / = 5, * = 7 , / = 6 , £ = 0 , £ = 1, / = 9,; = 2); (*= 8, £ = 4 , c = 3 , < / = 5, e=7,f=6,
g= 1, h - 0, /' = 2,j = 9). Dr. Googol does not know if there are any solutions to a relat-
ed problem: (ab}c = detX ghij.

Here's a much tougher challenge from mathematician Kevin Brown. The number
588,107,520 is expressible in the form (X2 - \)(Y2 - 1) (where J^Fare integers) in 5
distinct ways, and Kevin asks if anyone knows a 6-way-expressible number. So far, no
6-way-expressible number has been found, although such a number has not been
proved impossible. Regarding 5-way numbers, Dean Hickerson and Fred Helenius both
independently found 5 more, so as of now the complete list of 5-way expressible
numbers is 588,107,520; 67,270,694,400; 546,939,993,600; 2,128,050,512,640;
37,400,697,734,400; and 5,566,067,918,611,200. Dr. Googol does not know if there
are infinitely many such numbers, or even if there are any more beyond this list.

Dr. Googol leaves you with a final unsolved problem. For positive integers x,y, what are
the solutions to equations of the form axy + bx + cy = d where a, b, c, and <^are integers?

Chapter 90

Grenade Stacking
As discussed in Laurent Beeckman's article in the May 1994 American Mathematical
Monthly, if we allow any set of k consecutive squares (not necessarily beginning with 1),
there are solutions for k = 1,2, 11, 23, 24, 33, 47, . . . For each of these we have infi-
nitely many sequences of k consecutive squares whose sum is a square. For example, with

www.oup-usa.org/sc/0195133420
www.oup-usa.org/sc/0195133420
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k = 24 we not only have the previous sequence, !2 + 22 + 33 + 44 + . . . . + 242 = 702,
but we also have 92 + 102 + I I 2 + . . . + 322 = 1062, 202 + 212 + 222 + . . . + 432 = 1582,
etc. Can you find others? In general, it seems that the sum of the 24 squares beginning
with ml is a square for m = 1,9, 20, 25, 44, 76,. . . .

Chapter 91

The 450-Pound Problem
If you select 2 random numbers, what is the chance they will be coprime? The answer
is 6/712. This is also the probability that a randomly selected integer is "square free" (not
divisible by a square! Now that you have this "secret" knowledge, perhaps you can make
some money gambling with your friends. Have them pick numbers at random from a
pile of 200 cards with the numbers 1 through 200. None of you looks at the cards. Can
you profit from your knowledge of the odds that the number is square free? (See Chapter
51's "For Further Reading" for more information on coprime numbers.)

Chapter 92

The Hunt for Primes in Pi
Mathematicians are aware of pi-primes, 71 ,̂ for k = 1, 2, 6, and 38, which correspond

to the primes

7TO) = 3, 31, 314159, 3141592(>53589793238462(>4338327!)5028841, . . . ?

Does anyone know the next iC in this sequence? Dr. Googol believes that there are
infinitely many primes of the form lC(k) but that neither humans nor any lifeforms in
the vast universe will ever know the next prime beyond 71^(38). It is simply too large for
our computers to find.

Martin Gardner in his book Gardner's Whys and Wherefores notes that several
researchers have searched for "piback primes." Symbolized as 7T/\ these are primes in
the first n digits of o running backwards. We would expect them to be more numerous
than iC, because all pibacks end in 3 (the first digit of 7l), one of the four numbers a
prime must end with; the others are 1, 7, and 9. By contrast 71 ̂  numbers can end in
any number, which means only 40% of the numbers have a chance to be prime. Seven
71" numbers have been found: 3, 13, 51413, 951413, 2951413, and 53562951413, and
979853562951413.

If you can find any ^-primes, write to Dr. Googol.
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Chapter 94

Perfect, Amicable, and
Sublime Numbers
As Dr. Googol told Monica, the first 4 perfect numbers, 6, 28, 496, and 8,128, were
known to the late Greeks and Nicomachus, a disciple of Pythagoras. Perfect numbers are
indeed difficult to find.

The first 10 perfect numbers are

1. 2M2 = 6
2. 2aM3 = 28
3. 24M5 = 496
4. 26M7 = 8128
5. 213M13 = 33550336
6. 216M17 = 8589869056 (Discovered in 1588 by Cataldi)
7. 218M19 = 137438691328 (Discovered in 1588 by Cataldi)
8. 230M31 = 2305843008139952128 (Discovered in 1772 by Euler)
9. 260M61 (Discovered in 1883 by Pervusin)
10. 288M89 (Discovered in 1911 by Powers)

The thirtieth perfect number, 2216090M2i609i> was found using a Cray supercomput-
er in 1985 (see Table F94.1).

To understand this list of the first 10 perfect numbers, first note that perfect num-
bers can be expressed as 2^(2^+ ! -1) for special values of X. Euclid proved that this rule
was sufficient for producing a perfect number, and Euler, 2,000 years later, proved that
all even perfect numbers have this form, if 2^-1 is a prime number. (In this notation,
./Vis X+ 1.) Such numbers are called Mersenne prime numbers MNafter their inventor
Marin Mersenne (1588-1648). For example, 127 = 27 -1 is the seventh Mersene num-
ber, denoted by M7, and it is also prime and the source of the fourth perfect number,
26M7. (Mersenne prime numbers are a special subclass of Mersenne numbers generated
by 2N~l).

Note that Table F94.1 rapidly becomes obsolete as more prime numbers are discov-
ered at a rate of about 1 per year by computer searches such as GIMPS (see "Further
Exploring" for Chapters 56 and 76).

Like many of the best mathematicians centuries ago, Marin Mersenne was a theolo-
gian. In addition, Father Mersenne was a philosopher, music theorist, and mathemati-
cian. He was a friend of Descartes, with whom he studied at a Jesuit college. Mersenne
discovered several prime numbers of the form 2N-1 , but he underestimated the future
of computing power by stating that all eternity would not be sufficient to decide if a
15- or 20-digit number were prime. Unfortunately the prime number values for TV that
make 2^ -1 a prime number form no regular sequence. For example, the number is
prime when TV = 2,3,5,7,13,17,19,. . . . Notice that when TV is equal to the prime num-
ber 11, MH = 2>047 which is not prime because 2,047 = 23 x 89.

In 1814, P. Barlow in A New Mathematical and Philosophical Dictionary wrote that
the eighth perfect number was "probably the greatest perfect number that ever will be
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Number
1-4
5

6-7
8
9
10
11
12

13-17
18

19-20
21-23

24
25
26
27
28
29
30
31
32?
33?

2A/-i(2"-l)
N Discovered (year,

2,3,5,7 in or before the middle
13 in or before 1461

17,19
31
61
89
107
127

521,607,1279,2203
3217

1588
1750
1883
1911
1914
1876

,2281 1952
1957

4253,4423 1961
9689,9941,11213 1963

19937
21701
23209
44497
86243
110503
132049
216091
756839
859433

1971
1978
1979
1979
1982
1988
1983
1985
1992
1993

human)
ages

Cataldi
Euler
Pervouchine
Powers
Powers
Lucas
Robinson
Riesel
Hurwitz & Selfridge
Gillies
Tuckerman
Noll & Nickel
Noll
Slowinski & Nelson
Slowinski
Colquitt & Welsh
Slowinski
Slowinski
Slowinski & Gage
Slowinski

Table F94.1 Several Perfect Numbers.

discovered for they are merely curious without being useful, and it is not likely that any
person will attempt to find one beyond it." Barlow placed such a limit on human knowl-
edge because, before computers, the discovery of Mersenne primes depended on labori-
ous human computations. Af31 or 231 -1 = 2,147,483,647 is quite large, even though
Euler in 1772 was able to ascertain that it is a prime number.

With the electronic computer, Barlow's limit on humanity's knowledge was rendered
invalid. Because of their special form, Mersene numbers are easier to test for primality
then other numbers, and therefore all the recent record-breaking primes have been
Mersenne numbers—and have automatically led to a new perfect number.

There is a bizarre and puzzling relationship between cubes and perfect numbers.
Every even perfect number, except 6, is the sum of the cubes for consecutive odd num-
bers. For example:

28 = I3 + 33

496 = I3 + 3;] + 53 + 73

8,128 = I3 + 33 + 53 + 73 + 93 + II3 + 133 + 153
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9 [www.oup-usa.org/sc/0195133420] contains a BASIC program listing for com-
puting perfect numbers.

Odd perfect numbers are even more fascinating then even ones for the sole reason that
no one knows if odd perfect numbers exist. They may remain forever shrouded in mys-
tery. On the other hand, mathematicians have cataloged a long list of what we do know
about odd perfect numbers; for example, computer searches as far as 10300 have not
found an odd perfect number. Mathematician Albert H. Beiler says, "If an odd perfect
number is ever found, it will have to have met more stringent qualifications than exist
in a legal contract, and some almost as confusing." Here are just a few:

An odd perfect number

© must leave a remainder of 1 when divided by 12 or a remainder of 9 when divided
by 36.

© It must have at least 6 different prime divisors.

© If it is not divisible by 3, it must have at least 9 different prime divisors.

© If it is less than 109118, it is divisible by the 6th power of some prime.

Author and mathematician David Wells comments, "Researchers, without having
produced any odd perfects, have discovered a great deal about them, if it makes sense to
say that you know a great deal about something that may not exist." Throughout both
ancient and modern history, the feverish hunt for perfect numbers became a religion.
The mystical significance of perfect numbers reached a feverish peak around the 17th
century. Peter Bungus, for example, was among a growing number of 17th-century
mathematicians who combined numbers and religion. In his alchemic book titled
Numerorum Mysteria, he listed 24 numbers said to be perfect, of which Mersenne later
stated that only 8 were correct. Mersenne went on to add 3 more perfect numbers, for
N - 67, 127, and 257, in an equation that can be used for even perfect numbers
(2N~l)(2N -1), but it took a walloping 303 years before mathematicians could check
Mersenne's statement to find errors in it. 67 and 257 should not be admitted, and per-
fect numbers corresponding to N - 89 and 107, for which the Mersenne numbers are
prime, should be added to the list.

How could Mersenne, back in the 17th century, have conjectured about the existence
of such large perfect numbers? After centuries of debate, no one has an answer. Could
he have discovered some theorem not yet rediscovered? Recall that empirical methods of
his time could hardly have been used to compute these large numbers. (The Mersenne
number for N= 257 has 78 digits.)

Zealous attempts at perfection are not limited to Peter Bungus and Mersenne. Even
in the 1900s there have been startling attempts to find the Holy Grail of huge perfect
numbers. For example, on March 27, 1936, newspapers around the world trumpeted
Dr. S. I. Krieger's discovery of a 155-digit perfect number (2256(2257 -1)). He thought
he had proved that 2257 -1 is prime. The Associated Press release, appearing in the New
York Herald Tribune, was as follows:

Unfortunately for Dr. Krieger, a few years earlier the number 2257 -1 had been found
to be composite (nonprime). Editors of Mathematical journals therefore wrote letters to
the New York Herald Tribune complaining that it had sacrificed accuracy for sensation-
alism in reporting the Krieger story.

www.oup-usa.org/sc/0195133420
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PERFECTION IS CLAIMED FOR 155-DIGIT NUMBER
Man Labors 5 Years to Prove Problem Dating from Euclid

New York Herald Tribune, March 27, 1936
Chicago, March 26 (AP).—Dr. Samuel I. Krieger laid down his pencil and

paper today and asserted he has solved a problem that had baffled mathematicians
since Euclid's day—finding a perfect number of more than nineteen digits.

A perfect number is one that is equal to the sum of its divisors, he explained.
For example, 28 is the sum of 1, 2, 4, 7, and 14, all of which may be divided into
it. Dr. Krieger's perfect number contains 155 digits. Here it is:

26, 815, 615, 859, 885, 194,199, 148, 049, 996, 411, 692, '254, 958, 731,
641,184, 786, 755, 447,192, 887, 443, 528, 060,146, 978, 161, 514, 511,
280, 138, 383, 284, 395, 055, 028, 465, 118, 831, 722, 842, 125, 059,
853, 682, 308, 859, 384, 882, 528, 256.

Its formula is 2 to the 513th power minus 2 to the 256th power. The doctor
said it took him seventeen hours to work it out and five years to prove it correct.

El Madshriti, an Arab of the 11th century, experimented with the erotic effects of ami-
cable numbers by giving a beautiful woman the smaller number 220 to eat in the form
of a cookie, and himself eating the larger 284! I am not sure whether his mathematical
approach to winning the woman's heart was successful, but this method may be of inter-
est to all modern dating services. Imagine restaurants of the future branding the numbers
into 2 pieces of filet mignon for 2 prospective marriage candidates. Perhaps amicable-
number tattoos will one day be used for mathematical displays of public affection.

Our Arab friend, El Madshriti, was not the last to make use of amicable numbers to
unite the sexes. In the 14th century, the Arab scholar Ibn Khaldun said in reference to
amicable numbers:

Persons who occupy themselves with talismans assure that these numbers have a par-
ticular influence in establishing union and friendship between two individuals. One
prepares a horoscope theme for each individual. On each, one inscribes one of the
numbers just indicated, but gives the strongest number to the person whose friendship
one wishes to gain. There results a bond so close between the two persons that they
cannot be separated.

When Ibn Khaldun used the term strongest number, he was not certain whether to
use the larger of the 2 amicable numbers or the one that had the most divisors.

Since antiquity, Arabs have been interested in different ways of finding amicable
numbers. One personal favorite is taken from the Arabian mathematician-astronomer
Thabet ben Korrah (A.D. 950). Select any power of 2, such as 2X, and form the numbers

* = 3 x 2 * - l
£ = 3x2*-1-l
f = 9 x 2 2 * ~ 1 - l
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If these are all primes, then 2xab and 2xc are amicable. When x is 2, this gives the
numbers 220 and 284. ([www.oup-usa.org/sc/0195133420] contains a BASIC program
listing for computing amicable numbers.)

The number 672 is one of many multiply perfect numbers—numbers such that the sum
of all their divisors is an exact multiple of the number. For example, 120 is a triple perfect
number because its divisors 1+2 + 3 + 4 + 5 + 6 + 8 + 10 + 12+15 + 20 + 24 + 30 + 40
+ 60 + 120 add up to 360, which is 3 x 120. Similarly, 672 is a triple perfect number.

There have been several recent attempts to explain the mysterious title of Hugo
von Hoffmannsthal's tale The Story of the 672nd Night. Hugo von Hoffmannsthal
(1874-1929), was an Austrian poet, dramatist, and essayist, best known for writing
libretti for Richard Strauss's operas. One explanation for his title is the fact that 672
is a multiply perfect number, but literary scholars are not certain that this is
Hoffmannsthal's reason for using 672. (Some scholars suspect that the 672 in The Story
of the 672nd Night \s connected with the tale 1001 Arabian Nights?)

As already mentioned, an even perfect number has the form 2N~l(2N—l). Harry
J. Smith of Saratoga, California, wrote a program using Borland C++ to compute a
perfect number if given the exponent of a Mersenne prime. For a large perfect number
(N= 859,433, see Table F94.1), his result is an output file 530,462 bytes long.

No one knows if perfect numbers eventually die out as one sifts through the land-
scape of numbers. The mathematical landscape is out there, waiting to be searched. The
Pythagoreans could find only 4 perfect numbers, and we can find over 30. Will human-
ity ever discover more than 40 perfect numbers? There is a limit on humans' mathe-
matical knowledge arising not only from our limited brains but also from our limited
computers. In a strange way, the "total" of mathematical knowledge is godlike—
unknowable and infinite. As we gain more mathematical knowledge, we grow closer to
this god, but can never truly reach him. All around us we catch glimpses of a hidden
harmony in the works of humans and nature. From the Great Pyramid of Cheops to pat-
terns in plants, we see evidence of design by precise geometrical laws. Nobly, we con-
tinue to search for the connections underlying all that is beautiful and functional.

5,775 and 5,776 are 2 consecutive abundant numbers. Is it possible to find 3 con-
secutive abundant numbers? It was not until 1975 that the smallest triplet of consecu-
tive abundant numbers was discovered (by Laurent Hodges and Michael Reid):

171.078.830 = 2 x 5 x 13 x 23 x 1973
171.078.831 = 33 x 7 x 11 x 19 x 61 x 71
171.078.832 = 24 x 21 x 344,917

Chapter 96

Cards, Frogs, and Fractal Sequences
There are many definitions of fractal, or self-similar, sequences; the one that seems to fit
some of the sequences in this chapter is given by Benoit Mandelbrot in his The Fractal
Geometry of Nature: "An unbounded set S is self-similar with respect to the ratio r, when
the set r(S) is congruent to 5." Let me give some examples. Consider a sequence of inte-

www.oup-usa.org/sc/0195133420
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gers x\, x2,
 X3> X4> #5> • • • as in the previous example, 1, 1, 2, 1, 3, ... This sequence

is self-similar with respect to the ratio 2, because x2, #4, x6, . . . is identical to x\, x2,
#3>. . . . Of course, we can generalize and say a sequence is self-similar with respect to
the ratio r (r an integer greater than 1) if there is some integer d, 1 £ d £ r, for which

** x(r + <t)> X(2 * r + J)> *(3 x r + </)> *(4 x r+4)> • • • & identical tO XL X2, X$, X4, X5,
For instance, with r = 4 we would have every fourth entry of the sequence, and starting
with Xi (and d= 1), x\, x$, x9, #13, . . . is the same as x\, x2, x$, #4, x$,. . . . Or start-
ing with x2, we find x2, x$, #10, x^, . . . is the same as x\, x2, x$, x^, x$,. . . .

In this chapter, I also consider fractal-like sequences that consist of any string that
contains copies of itself, even if the string doesn't quite conform to the above rules. For
example, consider the letter string:

a, b, a, c, b, a, d, c, b, e, a, d, c, f, b, e, a, d, g, c, f, b, e ...

If you delete the first occurrence of each letter, you'll see that the remaining string is
the same as the original.

€b-b, a, €7 b, a, 4r c, b, ey a, d, c, fc b, e, a, df g? c, f, b, e . . .

I refer to this type of sequence as fractal-like because, like most fractals, it has "parts
that resemble the whole."

To arrive at a traditional definition of signature sequence, let 6 be an irrational num-
ber; 5(0) = {c + d0 : c,d,t N} and let cn(B) + dn(Q}(Q] be the sequence obtained by
arranging elements of 5(0) in increasing order. A sequence x is said to be a signature
sequence if there exists a positive irrational number 6 such that x = {cn(6}}, and x is
called the signature of 0. The signature of an irrational number is considered a fractal
sequence according to various literature (for example, in C. Kimberling's paper in the
reference section).

Fractal signature sequences: Here are the first few terms for some miscellaneous
fractal signature sequences computed by David E. Shippee of Littleton, Colorado.

Number Signature Sequence
0.55000000 = 11/20 1 1 2 1 9 1 3 2 1 3 2 1 4 3 2 1 4 3 2 1 5 4 3 2 1 5 4 3 2 1 6 5 4 3 2
0.707106781 = /1/2 1 1 2 1 2 3 1 2 3 1 4 2 3 1 4 2 5 3 1 4 2 5 3 1 6 4 2 5 3 1 6 4 2 7 5
1.0498756 = -JlOl'- 9 1 2 1 3 2 1 4 3 2 1 5 4 3 2 1 6 5 4 3 2 1 7 6 5 4 3 2 1 8 7 6 5 4 3 2
1.10000000 = 1+1/10 1 2 1 3 2 1 4 3 2 1 5 4 3 2 1 6 5 4 3 2 1 7 6 5 4 3 2 1 8 7 6 5 4 3 2
1.41421356 = /2~ 1 2 1 3 2 1 4 3 2 5 1 4 3 6 2 5 1 4 7 3 6 2 5 8 1 4 7 3 6 9 2 5 8 1 4
1.50000000 = 1+1/2 1 2 1 3 2 4 1 3 5 2 4 1 6 3 5 2 7 4 1 6 3 8 5 2 7 4 1 9 6 3 8 5 2 10 7
1.73205081 = /3~ 1 2 1 3 2 413 5 2 4 6 1 3 5 7 2 4 6 1 8 3 5 7 2 9 4 6 1 8 3 10 572
2.23606798 = /5~ 1 2 3 1 4 2 5 3 1 6 4 2 7 5 3 1 8 6 4 2 9 7 5 31 10 864 2 11 975 3
2.71828183 = e 1 2 3 1 4 2 5 3 6 1 4 7 2 5 8 3 6 9 1 4 7 10 258 11 3 6 9 1 12 47 10
3.10000000 = n to 1 decimal 1 2 3 4 1 5 2 6 3 7 4 1 8 5 2 9 6 3 10 741 11 852 12 963 13 10 74
3.14000000 = n to 2 decimals 1 2 3 4 1 5 2 6 3 7 4 1 8 5 2 9 6 3 10 741 11 852 12 963 13 10 74
3.14100000 = it to 3 decimals 12 3 41 5 2 6 3 7 4 1 8 5 2 9 6 3 10 74111 852 12 963 13 10 74
3.14160000 = ji to 4 decimals 1 2 3 4 1 5 26 3 7 4 1 8 5 2 963 10 741 11 852 12 963 13 10 74
3.14159265 = n to 8 decimals 1 2 3 4 1 5 2 6 3 7 4 1 8 5 2 9 6 3 1 0 7 4 1 1 1 852 12 9631310 74
7.07106781 = /5~0 1 2 3 4 5 6 7 8 1 9 2 10 3 11 4 12 5 13 6 14 7 15 8 1 16 9 2 17 10 3 18
10.0498756 = /101 1 2 3 4 5 6 7 8 9 10 11 1 12 2 13 3 14 4 15 5 16 6 17 7 18 8 19 9 20 10
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As far as Dr. Googol can tell, all sequences are fractal. Irrational numbers appear to
yield unique signatures, but rational numbers do not. For example, examine the signa-
ture sequence for 1.5 (1, 2, 1, 3, 2, 4, 1, 3, 5, 2 . . . ) . This could just as easily be 1, 2,
1, 3, 2, 1, 4, 3, 2, 5 ... because 4 + 1 x 1.5 = 1 + 3 x 1.5, so the 4, 1 in the first sequence
could just as easily be the 1, 4 in the second sequence. David E. Shippee included
sequences for 3.1, 3.14, 3.141, and 3.1416 to see how the sequences might converge.
Their signatures are all identical. (He used an upper limit of 30 for /' and j, giving 900
entries in the sequence.) It seems that one must have many entries to see a distinction;
i.e., the sequences converge slowly.

Batrackions: Let us now consider how fast the frog approaches its 0.5 destination at
infinity. For example, can you find a value of n beyond which the value of a(ri)ln is
so tiny that it is forever within 0.05 from the value 1/2? (In other words, \a(n)/n-\/2\
< 0.05. The bars indicate the absolute value.)

A difficult problem? John Conway, the prolific British mathematician, offered
$10,000 to the person who could find the first value of n such that the frog's path is
always less than 0.55 for higher values of n. A month after Conway made the offer,
Colin Mallows of AT&T solved the $10,000 question: n = 1,489. Figure F96.1 shows
this value on a plot for 0 < n < 10,000 . (For a variety of minor technical reasons, a less
accurate number is published in Schroeder's book.) As Dr. Googol dictates this, no
one on the planet has found a value for the smallest n such that a(n)lnis always within
0.001 of the value 1/2, that is, (\a(n)ln-U2\ < 0.001). (No one even knows if such a
value exists.)

Looking at Figure F96.1, we can see that the frog "hits the pond" periodically. In
fact, a(n)ln "hits" 0.5 at values corresponding to powers of 2, for example, at 2k, k = 1,
2, 3, ... Does each hump reach its maximum at a value of n halfway between the 1k

and 2k+l end points?
Tal Kubo from the Mathematics Department at Harvard University is one of the

world's leading experts on this batrachion. He notes that the sequence is subtly con-
nected with a range of seemingly unrelated topics in mathematics: variants of Pascal's tri-
angle, the Gaussian distribution, combinatorial operations on finite sets, and Catalan

F96.1 Batrachion a(n)/n for 0 < n < 10,000.
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8 Last n such that \a(n)/n-l/2\ > e
1/20 1489 (found by Mallows in 1988)
1/30 758765
1/40 6083008742 (found by Mallows in 1988)
1/50 809308036481621
1/60 1684539346496977501739
1/70 55738373698123373661810220400
1/80 15088841875190938484828948428612052839
1/90 127565909103887972767169084026274554426122918035
1/100 8826608001127077619581589939550531021943059906967127007025

Table F96.1 The infinite Frog.

numbers. Tal Kubo and Ravi Vakil have developed algorithms to compute the behavior
of the batrachion as it nears infinity. Indeed, they have found that the frog tires rather
slowly! For example, the frog's jumps are not always less than 0.52 until it has jumped
809,308,036,481,621 times!

Table F96.1 lists the values for different frog jump heights. These values were found by
Tal Kubo and Ravi Vakil using a Mathematica program running on a Sun 4 computer.

Colin Mallows, the statistician who conducted the first in-depth study of this class
of curve, notes that no finite amount of computations will suffice to prove that the reg-
ularities we see in the curve persist indefinitely. He does note that the difference between
successive values is either 0 or 1. Is this true indefinitely?

For a variety of novel ways to visualize these sequences, see my book Keys to Infinity.
Interestingly, it is not clear how one hump in the batrachion is generated from the pre-
vious hump. As Mallows has pointed out, #(100), which is located in the sixth hump,
is computed as a(a(99)) + *(100 - a(99)) = a(56) + a(44) = 31+26 = 57. This shows
that a point in hump 6 is generated from two points in hump 5 that are far apart.

Various authors, such as Manfred Schroeder, have discussed how mathematical wave-
forms sound when converted to time waveforms and played as an audio signal. For
example, Weierstrass curves (which are continuous but quite jagged) are a rich mine of
paradoxes. They're produced by w(f) = 2^ = } A

k cos Bkt where AB > 1 + 3rt/2. If they
are recorded on audio tape and replayed at twice the recording speed, the human ear will
unexpectedly hear a sound with a lower pitch. Other fractal waveforms do not change
pitch at all when the tape speed is changed. It is rumored (but Dr. Googol has not con-
firmed) that the first batrachion described in this chapter produces a windy, crying
sound when converted to an audio waveform. He would be interested in hearing from
readers who have conducted such audio experiments on any of the Batrachions. For
other musical mappings of number sequences and genetic sequences to sound, see my
book Mazes for the Mind: Computers and the Unexpected.
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— 26 27 28 29 — 33 34 35 36 37 38 — 44 45 46 47
— 25 30 31 32 39 42 43 48
— 24 - 4 0 41 49 50
— 23 — 51
21 22 — 52 53 54
20 19 — 57 56 55
— 18 17 Doughnut Puzzle 58

16 Solution 59
13 14 15 60 61 —
12 — 62 63
11 10 9 — 65 64

8 — 66 —
7 — 3 2 67 68
6 5 4 1 69

70__ — i ^j

Table F98.1 Doughnut Loop Solution.

Chapter 98

Doughnut Loops

Dr. Googol believes the solution in Table F98.1 is the best solution for the doughnut
puzzle. Can you find equally long or longer solutions? The maximal path length seems
to be 70. In the schematic illustration of the path, the first position of the sequence is
marked 1, the second 2, and so on, and the last is marked 70. Assuming the upper left
corner to be (1,1) and the lower right (20,15), then this sequence starts at (6,14) and
ends at (20,15). The first few numbers on the path are 6 — 34 — 37 — 25 — 15 —
70 — 26 — 20 — 43 — 60 — 9 — 54 — Since the 54 is the twelfth number in
this sequence, its position (1,10) is marked 12 in the solution diagram.

Chapter 99

Everything You Wanted to Know about
Triangles but Were Afraid to Ask
Pythagorean triangles with integral sides have been the subject of a huge amount of
mathematical inquiry. For example, Albert Beiler, author of Recreations in the Theory of
Numbers, has been interested in Pythagorean triangles with large consecutive leg values.
These triangles are as rare as diamonds for small legs. Triangle 3-4-5 is the first of these
exotic gems. The next such one is 21-20-29. The tenth such triangle is quite large:
27304197-27304196-38613965.
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You can compute these "praying triangle" leg lengths using the BASIC program list-
ing at [www.oup-usa.org/sc/0195133420]. The recipe is as follows. Start with 1 and
multiply by a constant D = (/2 + I)2 = 5.828427125. . . . Truncate the result to an inte-
ger value and multiply again by D. Continue this process for as long as you like, creat-
ing a list of integers: 1, 5, 29. . . . To produce the leg-length values for praying triangles,
pick 1 of these integers, square it, divide by 2, and then take the square root. The 2 leg
lengths are produced by rounding up and rounding down the result.

Now let's discuss "divine triangles." In 1643, French mathematician Pierre de Fermat
wrote a letter to his colleague Mersenne asking for a Pythagorean triangle the sum of
whose legs and whose hypotenuse were squares. In other words, if the sides are labeled
X, Y, and Z, this requires

It is difficult to believe that the smallest 3 numbers satisfying these conditions are
X= 4,565,486,027,761, Y= 1,061,652,293,520, and Z = 4,687,298,610,289. Dr.
Googol has called triangles of this rare type divine triangles because only a god could
imagine another solution to this problem. Why? It turns out that the second triangle
would be so large that if its numbers were represented as feet, the triangle's legs would
project from Earth to beyond the Sun!

If the ancient Greek mathematician Pythagoras had been told that a race of beings
could compute the values for the sides of the second divine triangle, surely he would
have believed such beings were gods. Yet today we can compute such a triangle. We have
become Pythagoras's gods. We have become gods through computers and mathematics.

Dr. Googol and Mr. Clinton also discussed the interesting general problem of find-
ing Pythagorean triangles with integer values for the sides. A related but fiendishly more
difficult task involves searching for solutions to the "integer brick problem." Here one
must find the dimensions of a 3-dimensional brick such that the distance between any
2 vertices is an integer. In other words, you must find integer values for a, b, and c
(which represent the lengths of the brick's
edges) that produce integer values for the
various diagonals of each side: d, e, and f. In
addition, the 3-dimensional diagonal g span-
ning the brick must also be an integer. This
means that the following equations must have
an integer solution:

No solution has been found. However, mathematicians haven't been able to prove
that no solution exists. Many solutions have been found with only 1 noninteger side.

www.oup-usa.org/sc/0195133420
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Chapter 105

Alien ice Cream
Wasn't this a killer problem? You can make your own Alien Ice Cream game by chang-
ing the instructions but using the same illustration. To solve the problem, go up the
stairway at right connecting the ground floor with the second floor. Go through the
door. Go out the window and down the ladder. Go up to the third floor using the fire
escape stairs. Go down the ladder between the third floor and second floor. Go up the
spiral staircase. Go up the ladder to the roof.

The numbers in Figure F 105.1 should help guide you.

F105.1 Alien ice Cream. Follow the numbers.
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Chapter 106

The Huascardn Box

For the first problem, turn on the red finger for 10 seconds. Turn off the red finger and
turn on the green finger. Quickly open the box. If the fan is continually spinning, then
the green finger is the one. If the fan is spinning but slows down, then it is connected
to the red finger. Otherwise, it is the yellow finger. (Physicist Dick Hess of Rancho Palos
Verdes, California, proposed a similar problem in the 1998 Pi Mu Epsilon journal, vol.
10, no. 8, p. 660.)

For the second problem, turn on the red switch and pour some paprika into the hole
above the fan. Next, turn off the red switch and wait a while. Next, turn on the green and
blue switches. Then, as before, switch off the green and immediately open the box and
look. Dr. Googol's colleague Jim McLean points out that you now have 4 possibilities:

1. Fan is turning steadily—blue switch controls.

2. Fan is slowing down and stopping—green switch controls.

3. Fan is stopped, Peruvian paprika is strewn about—red switch controls.

4. Fan is stopped, Peruvian paprika is in a small pile—golden switch controls (no fan
has ever been on).

Chapter 107

The inter-galactic Zoo
To be certain that he has 2 animals of the same species, the alien must drop 4 animals—
1 more than the number of different species. To be certain he has a male-female pair of
the same species, he must drop 12 animals—1 more than the total number of animal
pairs. Didn't get these answers? Try writing each animal's species and gender on separate
scraps of paper. Then put all the papers in a box and withdraw them, 1 at a time, with-
out looking. Now that you see how it's done, can you think of other "animal and alien"
puzzles?

Incidentally, various authors render the quote at the beginning of this chapter in sev-
eral flavors. ("A mathematician is a blind man in a dark room looking for
a black cat which isn't there.") Instead of mathematician, some books use
philosopher. Some authors attribute it to "anonymous" rather than Darwin. Dr. Googol
wonders about its true source. Another interesting version floating around the Internet
is "A theologian is like a blind man in a dark room searching for a black cat which isn't
there—and finding it!"
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Chapter 108

The Lobsterman from Lima
No, the lobster does not weigh 15 pounds. One good way to have students work on this
problem is to visualize a balance scale. The lobster is on the left side. On the right side
are a 10-pound weight and half a lobster. The scale is perfectly balanced. Stop and draw
the scale now. Now look at the right side of your balance. Notice that the 10-pound
weight is in essence taking the place of half the lobster. That means another 10-pound
weight could take the place of the lobster-half. By looking at the drawing, you can see
that the lobster weighs 20 pounds. If you are a teacher, you could have your class try to
figure this out with algebra, but more important, try to show your class the value of visu-
alization in problem solving. There's nothing quite like drawing a diagram to illustrate
a problem before you attempt to solve it.

Now for a real killer question:

if the lobster weighs 10 pounds
plus twice its own weight,
how much does it weigh?

Can you solve this without resorting to a pencil and paper? Do you see any possible
problems with this?

Chapter 109

The incan Tablets
The second pair completes the set because this pair completes every possible pair of the
4 symbols. Perhaps there are other equally valid solutions?

Chapter 110

Chinchilla Overdrive
Hello. The relevant equation is L + 10 = 5£ - 2. The answer is 3.



Further Exploring © 373

Chapter 111

Peruvian Laser Battle
Figure Fl 11.1 shows a solution. Are there other solutions?

Flll.l Solution to Peruvian Laser Battle.

Chapter 112

The Emerald Gambit
Figure Fl 12.1 shows one solution. Can you find others?

F112.1 One solution to the Emerald
Gambit.
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Chapter 113

Wise Viracocha
Figures 113.1 and 113.2 show solutions to the puzzles. Can you find others? Try to
design other Viracocha puzzles using other coin shapes—for example, triangular, pen-
tagonal, and hexagonal.

F113.1 Solution to Viracocha's coin. F113.2 Solution to Viracocha's pizza.

Chapter 114

Zoologic
In Figure Fl 14.1, Mr. Gila walks along 47 paths, or 4,700 feet. The path he chooses hits
these enclosures in sequence: 18, 20, 19, 17,18, 20, 21, 13, 14, 10, 9, 5, 6, 10, 11, 7,
6, 2, 3, 7, 8, 12, 11, 15, 14, 22, 23, 15, 16, 12, 8, 4, 3, 2, 1, 5, 9, 13, 21, 22, 23, 24,
16, 28, 25, 26, 27, and 28. As you can see, in several instances he must travel a path
twice. Can you find a shorter route?

If Mr. Gila places the 19 panes of glass in the manner shown in Figure F114.2, he
will have 10 enclosures of equal size.

F114.1 Mr. Gilo's walk. F114.2 10 enclosures of equal size.
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Chapter 115

Andromeda incident
In Figure Fl 15.1, the 3 saucers have taken up new positions, as indicated by the arrows,
and still no 2 saucers are in a straight line. Are there any other solutions?

/

F115.1 New arrangement of flying
saucers.

Chapter 116

Yin or Yang

The puzzle is actually based on an ancient
problem. Figure F116.1 is the only solution of
which Dr. Googol is aware. To satisfy yourself that
the pieces are in fact the same size and shape, you
can draw this pattern on a piece of paper, cut out
the pieces, and superimpose them on one another.

It's also possible for the children to divide the
yin and the yang into 4 pieces with the same area
but different shapes by a single extra cut. Can you
figure out how?

F116.1 The chocolate/vanilla
cake.
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Chapter 117

A Knotty Challenge at Tacna
To solve this knotty problem, consider that there are two possible crossings at each

intersection point. This means that there are 2 x 2 x 2 = 8 possible sets of crossings. Of
all these possibilities, only 2 create a knot.
(Test this for yourself using a loop of string.)
This means that the probability of having a
knot is 1A. Don't bet on it happening!

Figure F117.1 shows another possible
rope configuration. What are the odds that
it forms a knot? Does the probability of
knot formation increase with increasing
numbers of intersection points? What does
this say about "Murphy's Law"—that ropes
and strings and electrical cords always seem
to get tangled when thrown in a jumble in
your garage?F117.1 Another rope configuration. What

are the odds that it forms a knot?

Chapter 118

An incident at Chavin de Huantar

To decode the "keys to the universe," you must substitute an English letter for each sym-
bol. Rest in peace.

Chapter 119

An Odd Symmetry
You fool! There are no identical positive integers you can put in the mailboxes that will
make this work beyond the second row, ^D+^D = <^D x <^2D. And the only solution
for this row is 2 + 2 = 2 x 2 . This problem is so much fun because the solutions drop
from infinity to 1 to 0 so quickly.

For example, consider the third line, <^D+<^D+^D = ^D x ^D x <^lD.
Mathematically speaking, we are trying to find values for a in the equation a + a + a =
ax ax a. This is equivalent to da = tf3, which is equivalent to a2 = 3, which has no inte-
ger solutions. By induction, we are trying to solve an ~l = n. One simple way to deter-
mine if this can have integer solutions for higher values of n is to make a graph of
y = a"~l and a graph of y = n (which is just a straight line) and see where the 2 lines
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intersect. As mathematician Dan Winarski points out, after n - 2, an ~l is greater than
n for all integers greater than or equal to 2. Thus, there are no more integer solutions.

Here is a related problem, developed by Dr. Googol's friend Craig Becker. Are there
many solutions to the growing pyramid below? To solve this, use any positive integers
that you like.

As David Shippee points out, each row has at least 1 solution. For a row with n terms
on each side of the equals sign, 1 solution involves the following sequence: (n- 2) "Is",
2, n. For example, here is a list of solutions for n = 2 to 5:

Dr. Googol does not know if there are lots of other solutions, or if there are solutions
in which each variable has a different value.

Chapter 120

The Monolith at Madre de Dios
One possible solution is to assign values to the symbols as follows: 4 = —, 3 = HI.,

2 = X1, and 1 = \)o. In each row, the number assigned to the rightmost symbol is equal
to the number assigned to the first symbol, plus the second, minus the third, minus the
fourth. Therefore, 1 solution for the missing symbol is ^]o.
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Chapter 121

Amazon Dissection
Below is 1 possible solution. (Cut the paper, or draw a line, so that all the symbols

that fall in the gray squares are on 1 side). Can you find other solutions?

Chapter 122

3 Weird Problems with 3

For problem 1, you can define an arithmetic series as follows: a\ = 1, 0,2 = 2> #3 = 3,
an - an_$ + an_2 + an-\ f°r n — 4. The sum of each row in the original problem is the
sum of its digits. This means that the sum of each row is the sum of the previous 3 rows'
sums. One can use this information to write a BASIC program to compute the sum for
the thirtieth row: 45,152,016.

For problem 2, it appears that no new atomic species will develop in row 30 that are
not already present in row 8. Joseph Zbiciak predicts what species we see in row 30: The
species "3" is on the end of every line. Therefore it will be in row 30. The species "31"
and the species "331" are both imbedded in a row previous to row 30. Therefore they
will be in row 30, because the "middle parts" of each row are duplicated down the list,
not modified. The species "1" only shows up every third row. It happens to occur on
rows such that (row number) mod 3 = 1 . Because 30 mod 3 = 0, the species "1" will not
occur in row 30. Hence, we have the three species "3", "31", "331" occurring in row 30.

For problem 3, an exact solution is not known. It appears that this algorithm forces
Is out in front all of the time and keeps appending 3s on the end of the row. Hence,
you'll see a proliferation of species such as "3331", "33331," "333331," etc. Zbiciak pre-
dicts that in row 30, you will have all the species from "3," "31," "331," "3331,"
"33331," etc., up to "33333333333333333333333331."
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Chapter 123

Zen Archery
Problem 1:8+19 + 31+41 + 101= 200. We believe there are roughly 27 distinct solu-
tions. What method did you use to solve this? Must the 8 be present in every solution?

Problem 2: 10 + 19 + 71 = 100.

Chapter 124

Treadmills and Gears
The treadmill does work. (I believe the treadmill would lock if the figure-8 were
replaced by a Mobius strip.) The gear train will not lock.

Chapter 125

Anchovy Marriage Test
Monica responded first by throwing her pizza at Dr. Googol. Then she gave him the
answers. 9 + 9 + 999 = 1,000, and 646 + 20 = 666 (the small stroke is applied to the
first + symbol). A less creative solution is 6 + 6 + 20 * 666. For the last problem,
(666/6) X (66-65) = 111. Are there other solutions to these problems? If you were
Monica, would you marry Dr. Googol?
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