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Preface

With the present pattern of schools and the current vogue
for mixed ability teaching there is a very real danger that
the children with an aptitude for mathematics will rarely
have their appetite for the subject whetted. It is my own
opinion and that of many of my colleagues that our own
interest in mathematics grew from the stimulation we
received from teachers and books at an early age - long
before decisions about examinations were taken. This inter-
est was generated not only by the formal mathematics
lessons but often by ideas which come from unusual puzzles
or games, or patterns which a teacher introduced or were
seen in some publication.

An interest in mathematical puzzles is widespread; it
generates creative thinking and motivates individuals in a
way that a standard text book exercise can rarely achieve.
Unfortunately many teachers do not have the background
to provide these activities so their children fail to have the
appropriate stimulus at a critical period in their education.
Such considerations eventually persuaded me to run a weekly
maths club on Saturday mornings for interested 9-12 year
olds. I stressed the word 'interested' rather than 'gifted'
and the enthusiasm with which this club was received by the
children far exceeded my expectations. With thirty or more
eager children turning up each week I have been highly moti-
vated to find suitable activities to stimulate them.

This book contains some of the ideas I have used in the
five years of this club and the many years I ran a similar
club at Exeter School for an older age group. I have written
them up with middle school children particularly in mind
but experience has shown many of the activities could
be used with mathematically able children of other ages.
If the activity has not been met before then it is usually
found of interest regardless of the age of the participant.

Brian Bolt
School of Education
University of Exeter
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Introduction

The activities in this book have been chosen to stimulate
and encourage the reader to develop his appreciation of
number, spatial concepts and mathematical thinking. This
has been achieved with a mixture of investigations, puzzles
and games. Where appropriate an activity has a solution or
commentary at the end of the book but it is hoped that
the reader will only turn to this section after attempting
the activity for himself.

The book is not meant to be read in any specific order
as each activity is independent of the others, unless stated.
It is essentially a source book of ideas which, on the whole,
would not normally be met with in the school curriculum.

A calculator is required for some of the investigations
where, with one exception, it is used as a tool to take the
drudgery from the arithmetic and allow the reader to dis-
cover some number properties which would otherwise be
inaccessible.

The games usually involve two people and some other
activities gain by having more than one person involved
because of the different insights they can bring to bear
on a particular problem.

Materials

Practical work is envisaged and should be encouraged in
many of the spatial activities. Looking at a drawing can
never replace handling a model or moving a linkage. Nothing
elaborate is required however, just the usual card, scissors,
compass, ruler, glue, drawing board and a pinboard.

xu



ACTIVITIES





1 Three in a line
Get some squared paper and some counters.

The object of this activity is to put as many counters onto
a squared board as you can so that

(i) no more than one counter is put on a square,
(ii) no three counters are in a straight line.
Diagrams (a), (b) and (c) each show a 3 x 3 board where

two counters have already been placed on the board. Show
how to add four more counters to each board so that no three
counters are in line.

(a) (b) (c)

On a 4 x 4 board it is possible to place eight counters
using the same rule that no three lie on a line. One person
started by putting four counters in the centre as shown in
(d). A second put four counters in the corners as in (e)
while a third started as in (f).

How many counters can you add to these boards before
getting three in a line?

(d) (e) (f)

Try to do better by starting yourself.
When you have found a way of putting eight counters on a

4 x 4 board, try putting ten counters on a 5 x 5 board.

RD



2 Pawns on a chessboard
This is the classical problem of placing sixteen
pawns on a chessboard so that no three of the
pawns are in line.

It is essentially the same situation as in the
previous activity, but with an 8 x 8 board it
is not so easy to spot when three pawns are
in line.

The diagram shows several lines of pawns
which are not at all obvious at first sight
namely ABC, ECD and FCG.

When you think you have correctly placed
sixteen pawns on an 8 x 8 board so that no
three are in a line, get someone else to check
your solution before looking at the solution
at the back of this book.

©•

•0.

0
// ://

3 Avoid three
This game can be played with pawns or
draughts on a chessboard, counters on squared
paper, or pegs on a pegboard.

Players take turns to add a piece to the
board. A player loses the game when he plays
a piece to make a line of three.

Note the game could never exceed
seventeen moves because the largest number
of pieces which can be placed on an 8 x 8
board without having three in line is sixteen.
The skill in the game is to select patterns of
play which force your opponent into having
to complete a line.

In the diagram there are only twelve pieces
on the board but they are so placed that the
next person to play will have to make a line
of three and thus lose. Check each empty
square in turn to convince yourself that this
is so. A straight-edge may help.

•

•

•

•

•

•

•

•

• :

•

# :
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4 Curves of pursuit

You must have seen, at some time, a dog chase a car or a
cyclist. Have you ever considered the path it takes? The dog
does not think ahead and run to where the car will be, but
usually runs towards the position of the car at that instant.

The drawing above shows the path of a dog which starts
running towards a car which it first notices at B. The car is
travelling at a constant speed along the line BC and it is
assumed that the dog can run at half the speed of the car.

The path can be easily constructed in the following way.
Draw a line BXC to represent the path of the car. Then

take a point A x (anywhere will do) to represent the dog's
starting position.

Draw a line from A x toBx, This is the direction in which
the dog starts to run. Because a dog cannot easily change
direction between strides it will run in this direction for a
short distance to A2. This is represented in the drawing by
\ cm.

But while the dog is running from A x toA2 the car has
travelled from Bx to B2, a distance of 1 cm in the drawing.

At A 2 the dog changes direction towards the car at B2 and
takes a stride in this direction while the car travels to B3. The
process is repeated until the dog's path is found.

Try first to make a drawing more or less like the one
shown here. Then experiment with what happens if, for
example, the car travels on a circle, or the relative speeds
of the dog and car change. The possibilities are endless!



5 The misguided missiles (a)

This interesting drawing is another example of finding curves
of pursuit. In this case imagine three guided missiles P, Q and
R based at three points each 100 km apart at the vertices of
an equilateral triangle. The three missiles are all launched at
the same time. P homes onto Q, Q homes onto /?, and R
homes onto P. At regular intervals the missiles change direc-
tion to home onto the new position of their targets. The
sequence of diagrams (a) to (d) shows how to construct the
path of each missile as it chases its neighbour.

Start by drawing an equilateral triangle whose sides are all
10 cm. Mark the points Px, Qx, R x , 1 cm from the points P,
Q,R, and draw the triangle Px QxR x. Now mark the points
^2 , Q2>^2> 1 cm from Pi9Ql9Rl9 and drawP 2Q 2#2.
Continue this process, always marking off along the sides of
the last triangle formed, until the missiles explode in the
centre!

What would the paths look like if you started with four
missiles at the corners of a square?

(c)



6 Pattern
Mathematics is all about the
analysis and use of pattern.
These may be number patterns
or geometric patterns. The
attractive design here has been
formed by fitting together
four of the drawings from the
previous activity concerned
with the pursuit curves of
guided missiles. Many other
attractive designs can
result from the same starting
point. All that is required is
some patience and careful
drawings.

7 Two halves make a whole
Show how to cut the shaded shape A into two pieces which
can be rearranged to make any of the shapes B,C,D,E,F,
and G.

B



8 Make your own dice
Each of the three shapes shown can be folded up to make a
dice. In each case three of the numbers are missing. Show
how to number the squares correctly so that the number on
the opposite faces of the cube add up to 7.

3

6 2
5

6

3

4

6

2
(a) (b) (c)

9 Matchstick triangles

Arrange nine matches to
form four small equilateral
triangles as shown. Now
find a way of arranging only
six of the matches to form
four triangles of the same
shape and size.

10 The farmer's sheep-pens
This drawing shows how a
farmer used thirteen hurdles
to make six identical sheep
pens. Unfortunately one of
the hurdles was damaged.

Use twelve matchsticks to
represent the undamaged
hurdles and show how the
farmer can still make six
identical pens.

1 1 It



11 Map folding

A map is twice as long as it is wide. It can be folded up into
a square, one-eighth the size of the original map, in many ways.
Number the squares as shown on a piece of paper and see
how many ways you can fold it. You can record each way by
noting down the order in which the numbers come next to
each other in the folded map.

The real test of your skill is to fold the map so that the
numbers come in the order 1, 2, 3, 4, 5, 6, 7, 8.

Now make your own puzzle by finding an unusual way to
fold a map and then numbering the squares.

12 A tricky river crossing
This is a very old puzzle. It tells of a showman travelling the
countryside on tour with a wolf, a goat, and a cabbage. He
comes to a river bank and the only means of getting across is
a small boat which can hold him with only one of the wolf,
the goat or the cabbage.

Unfortunately he dare not leave the wolf alone with the
goat or the goat alone with the cabbage for the wolf would eat
the goat and the goat would eat the cabbage. After some
thought the showman realised that he could use the boat to
transport himself and all his belongings safely across the river.
How did he do it?



13 Stretching a circle

z
D

X z
X z

B

Draw a circle with radius 5 cm in the centre of a piece of
paper and mark in a diameter A OB as shown.

Next draw in the diameter COD at right-angles to AB and
extend it across the page.

Now draw a set of lines across the page parallel to CD and
about 1 cm apart.

The circle can now be stretched to double its length in the
direction of the parallel lines by marking off points such as P'
and Qr whose distance from AB is twice that of P and Q from
AB.

The new shape formed by drawing a smooth curve through
the points P\ Q\ etc. is called an ellipse.

The perimeter of this ellipse is \\ times the circumference
of the original circle. Test this fact using a piece of string.

How large is the area inside the ellipse compared to that
of the circle?

Draw yourself an ellipse which is formed by stretching a
circle by three times in the direction of the parallel lines.
What can you say about (i) its perimeter, (ii) its area?

Investigate the shape you would get by shrinking the circle
by half in the direction of the parallel lines.



14 The ellipse
You may have wondered
when you last saw an ellipse.
The fact is that whenever you
look at a circle from an angle
you see an ellipse. This know-
ledge is well appreciated by
experienced artists although
you will all have seen drawings
by younger children where a
circular object is drawn as
a circle no matter from which
direction it is seen.

The arches of many older stone bridges were designed to
be elliptic. w

The path taken by a satellite around the earth or by the
earth around the sun is also an ellipse.

When you cut through a circular tree trunk at an angle the
cross-section is also an ellipse.

Try cutting through a piece of cylindrical dowel or a card-
board tube or a roll of modelling clay at an angle.

Investigate the bridges in your locality and make a sketch
of those with elliptic arches.

Brunei designed a railway bridge across the River Tamar
at Saltash where the deck of the bridge is suspended from
two massive elliptic cylinders - this is well worth a visit if
you are ever in the vicinity.



15 Paper-folding an ellipse
On a piece of plain paper draw a large circle, say 16 cm
in diameter. Cut the circle out carefully and on it mark a
point A as shown, say 2 cm from the edge. The actual
lengths are not critical but these suggested lengths give a
good result. In practice you could draw around any con-
venient circular object such as a tin or saucer and choose
any point inside the circle. Now fold the circle along any
line such as PQ which makes the circle just touch the point
A. Draw in the fold line after unfolding the circle. Keep
repeating this process of folding and marking in the fold
lines. Before long you will see an ellipse appearing surrounded
by all the fold lines.

The lines are said to be tangents to the ellipse and form
an envelope for it - see the diagram below.

Fold

Fold line drawn in

Investigate the result of
taking A nearer the centre of
the circle. What happens if
A coincides with the centre?

Notice the way in which
A and the centre of the circle
C are symmetrically placed
for the ellipse. They are
called the foci of the ellipse.

When a satellite orbits the
earth it does so in an elliptical
path with the earth at a focus,
that is a point such as A or C,
and not with the earth at the
centre of the ellipse.

10



16 An ellipse using string and
drawing pins

Fasten a piece of paper to a drawing board and then put two
drawing pins 4̂ and B into the board, say 10 cm apart. Now
take a piece of string or strong thread and tie one end to A.
Next tie the other end to B so that the length of string bet-
ween A and B is about 14 cm.

Using a pencil pull the string taut and, keeping it taut,
move the pencil to draw in an ellipse.

Investigate the effect of using different lengths of string.
The points A and B are the foci of all the ellipses you can

draw in this way.
For any one of your ellipses, what can you say about the

length AP + BP no matter where P is on the perimeter of the
ellipse?

If Q is a point inside an ellipse what can you say about
AQ + BQ1

17 The sliding ladder
What is the path traced out by P as the ladder AB slides
down the wall? Turn the page to find out.

E-I

11



You could of course take a ladder and experiment with it,
but a better approach is to take a strip of card (or geostrip)
and mark points on it to represent the ends of the ladder and
the point P. Now draw two lines OX and OY on paper to
represent the ground and the wall. It now only remains to
move the 'card ladder' so that A and B stay on the lines OX
and OY and you trace out the path followed by P with a
pencil.

You should recognise the path which results.
The approach to this problem can be extended in the

following way and leads to some interesting results.

X' X

Take a strip of card (or geostrip) and mark two points A
and B as shown. Let P be a point outside AB. Draw two lines
X'OX and Y'OY and find the path of P as the card moves so
that A always remains on X'OX and B always remains on
Y'OY. Unlike the ladder, A can move onto OX' and B onto
OY' so that a symmetrical path results.

Experiment with different positions for A, B and P and
also with different angles between the lines X'OX and Y'OY.

But why keep to lines? How about replacing Y'OY by a
circle?

12



18 The growing network
This is a game for two players sometimes known as 'Sprouts'.
All that is required is a piece of paper and a pencil. Mark
three points anywhere on the paper, as in (a).

•B

A^

(a)

• C

(b)

•B

A^

New node

(c)

These points will become nodes of a network as the game
progresses. The first player joins any two points by an arc
and then makes a new point (node) in the middle of this arc,
as in (b). Alternatively the player may draw an arc which
starts and ends at the same point, but again he must add a
new node in the middle of the arc, as in (c).

The next player then adds a new arc to the network and
a new node in the middle of his arc. He may join his arc to
any node(s) as long as the node(s) he uses do not end up
with more than three branches.

As soon as a node has three branches it is 'out of bounds'
and can be circled to indicate this.

The drawings in (d) show just some of the possible moves
for the second player if the first player joined A to B.

B B

• C

o
(d)

13



The object of the game is to prevent your opponent from
being able to make a move. The last player to draw in a
legitimate arc wins. One further rule: arcs may not cross
over other arcs.

It pays to remember this rule, for nodes may get cut
off and become unusable even though they do not have
three branches.

Diagram (e) shows the network produced by one game.
Although at this stage there are two nodes, X and F, which
do not have three branches, they cannot be joined.
Play this game with your friends and then try the following.

(i) Try to explain why the game must end after a limited
number of moves. (How many?)

(ii) Try starting with four or five points,
(iii) Investigate the effect of having 4-nodes (i.e. nodes

which have four branches) instead of 3-nodes.

19 Cubism
Some corners are cut out of four wooden cubes.

Afterwards only two of the solids formed are the same
shape.

Which two are they?

(e)

B

20 Matchstick squares
Remove three matches from
the fifteen in the arrange-
ment shown so that only three
squares are left.

Now try removing two
matches from the arrangement
shown to leave three squares.
(This time the squares need
not all be the same size.)

14



21 The square, cross and
circle
Three holes are cut in a sheet of metal as shown.

How could one block of wood be cut which could pass
through each hole and fit them each exactly?

22 The baffled engine driver
The diagram shows a circular
railway siding at the end of
a main line.

C is a cattle truck, S is a
sheep truck, E is an engine,
and FB is a footbridge over
the line.

O SHUNTING PUZZLE

The problem is to shunt the trucks so that the cattle
truck and sheep truck change places and the engine is back
on the main line.

The height of the footbridge is such that the engine can
pass underneath but the trucks are both too high to do so.

Can you help the engine driver?

23 The ingenious milkman
A milkman has only a 5 pint jug and a 3 pint jug to measure
out milk for his customers from a milk churn.

How can he measure 1 pint without wasting any milk?
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24 The army's predicament
An army on the march through the jungle came to a river
which was wide, deep and infested with crocodiles. On the
far bank they could see two native boys with a canoe. The
canoe can hold one man with his rifle and kit or two boys.
How does the army cross the river?

25 Curves of constant breadth

The idea of using a roller with a circular cross-section to help
in the movement of heavy objects is very old. It is believed
that the Ancient Egyptians used such rollers to aid them in
building the pyramids.

How far would the block above move forward when the
rollers move forward 1 metre? No, the answer is not '1 metre'.

Roll a book on three pencils to discover the right answer
if you cannot see it by looking at the diagram.
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When a block rolls on circular rollers it moves smoothly
parallel to the ground. You might think that a circle is the
only possible cross-section which could be used. However,
there are many shapes which have the property that when
they are turned their breadth is always the same. Two such
shapes are shown here.

6 cm

(a)

Draw them onto card and cut them out.

To draw the shape in (a) take a compass and set it at 6 cm.
Draw an arc with centre at A to represent the boundary BC.
Now put the compass point at B and draw arc AC. Finally
put the compass point at C and draw AB.

After cutting out the shape draw two parallel lines on
paper 6 cm apart. Arrange your shape to touch both lines
and roll it along one line (holding a ruler along one line will
help). You should find that the shape will always be touching
both lines no matter what angle it is turned through.

To draw the second shape in (b) start by drawing an
equilateral triangle ABC whose sides are 4 cm long and then
extend the sides outwards by at least 1 cm in each direction.
Set your compass with a radius of 5 cm and draw arc ST
from centre A, arc QR from centre B, arc UP from centre
C. Now set the compass with a radius of 1 cm and draw arc
PQ from centre A, arc TU from centre B, and arc RS from
centre C. This shape should also be tested between two
parallel lines 6 cm apart.

Now draw a square whose side is 6 cm and see that your
shapes will fit inside them in such a way that they will
always touch all four sides at the same time. This fact has
been used in designing a special drill for cutting out square
holes, as in (c).

(b)
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The fifty pence piece (see (d)) is also a curve of constant
breadth (see if you can draw one on a larger scale), and the
rotor of the revolutionary rotary engine designed by Wankel
(see (e)) has the same property.

Although these shapes make very acceptable rollers they
would be very unacceptable as wheels. Why? Could any
other shape than a circle be used for a wheel?

(d) (e)

26 The Mobius band
First take a strip of paper ABCD about 30 cm long and
2 cm wide and join it in the form of a band as shown in
(a). Make the join (sellotape is quick) without twisting
the paper so that A meets D and B meets C

A D

B C

A//

V (

A
. — - • —

D

IT

_. '-
r '—

c jlk

(a)

This band has two easily recognisable surfaces - colour
the inside surface.

How many edges has the band?
What would happen to the band if you made a cut right

along its length as shown in (b)?

(b)

The answers to the questions so far have all been straight-
forward, but what follows will certainly surprise you if you
have not met it before.
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(c)

Start with another strip of paper ABCD. Now twist one
end of the strip through 180° before joining it into a band
with A meeting C and B meeting D, as shown in (d).

(d)

This new style band is known as a Mobius band and has
many fascinating properties.

Try colouring the 'inside' of the band and you will find
it only has one side. This fact is used by engineers in belts
connecting pulleys. By making the belt a Mobius band the
engineer ensures it will wear evenly.

How many edges has the band?
Now for another surprise! Cut along the length of the

band along its middle until you come to the starting point.
What do you find? Describe the result carefully, recording

the number of pieces and the number of twists.
Now make another Mobius band and cut along it, always

keeping a third of the distance from the edge (see (e)).
After cutting twice around the band you should come back
to the starting point.

(e)

What is the result this time? Did you predict it? Again
record your result carefully.

Experiment with bands having more twists and record
your results.

See if you can come to any general conclusions.
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27 Inside or outside

Looking at drawings (a) and (b) you may well be surprised
to learn that the drawing in (a) is called a simple closed
curve. This is because it does not cross over itself and if you
imagined it as a loop of string it could be rearranged as a
circle. The other property which defines this kind of curve is
that it has a simple inside and outside just like the circle in
(b). Which of the points A, B and C are inside and which
outside the curve in (a)?

(c)

The simple closed curve in (c) represents an unusual
prison boundary. A prisoner at P finds the boundary very
confusing and does not realise he only has to cross the fence
once to get out. Show that no matter in which direction he
tries to escape he will need to cross the boundary fence an
odd number of times before there is no fence in front of
him. Can you explain this?
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This is all very well as long as the prison boundary is on
a surface like the earth, but suppose we lived on a surface
like a life belt (see (d)). In this case it is possible to have
circular boundaries which would not imprison anyone. Can
you find such a boundary?

28 Rolling along

A square packing case ABCD is moved across the warehouse
floor by first turning it about A until DC is uppermost, then
about B etc. as shown in the diagram.

Make a careful drawing of the path followed by the point
B as the packing case is rolled across the floor.

It may help you to cut a square piece of card to represent
the packing case and roll it along the edge of a ruler.

What is the path traced out by (i) the middle point of AB,
(ii) the centre of the square?

Investigate the paths followed by points on other shapes as
they roll along a level floor.
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29 Which way is the wheel
moving?
If you are asked to describe the motion of the wheels shown
here you will probably say they are turning around clock-
wise, but such a description does not say much about the
direction in which different points move. In (a) the wheel is
turning about a fixed axle whilst in (b) it is rolling along the
ground. In (c) the wheel is designed like that of a train and
rolls on a rail.

Indicate on each wheel the directions that the points A9

B, C, D and O are moving at the instant shown.
Make a model out of card to help if you need it.

Rail

(a) (b) (c)

30 Gear trains
Many mechanisms use a train of gear wheels to transmit
motion from one rotating shaft to another. The diagrams
below give some examples. The number on each gear wheel
gives the number of teeth. In each case decide in which
direction and through what angle B turns when A makes
one complete turn clockwise. B turns anticlockwise

through half a turn.

(b)
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Have you spotted the rules which govern gear trains?
Investigate the gear trains in such mechanisms as: a hand

drill, an egg whisk, a clock, a winch, a food mixer, a toy.
Sometimes the output shaft is geared to turn faster than the

input shaft, sometimes the reverse.
Suppose that you had available gear wheels with 60 teeth,

36 teeth, 12 teeth and 24 teeth. Design gear trains
(i) where the output shaft turns 6 times as fast as the input

shaft,
(ii) where the output shaft turns only T$ times as fast as the

input shaft,
(iii) which would correctly link the movements of the

minute hand and the hour hand of a clock.
How could you modify your gear trains to reverse the

direction of motion of the output shafts?
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31 Hex
Hex is a board game which was invented in 1942 by Piet

Hein, a Danish mathematician. A typical board, shown here,
is diamond (rhombus) shaped and is made up of interlocking
hexagons. This one has six hexagons on each edge, to start
you off, but experts play the game on a board which has
eleven hexagons along each edge.

One player has a supply of black counters, the other a
supply of white counters. (Any small identifiable objects
will do, e.g. buttons, coloured pegs, drawing pins, Smarties.)
The players take it in turn to put one of their counters
on any unoccupied hexagon. The object of play is to com-
plete a continuous chain of counters from one edge of the
board to the opposite edge. 'Black' plays from A to A while
'white' plays from B to B. Each player, as well as trying to
complete his own chain, naturally tries to block his oppon-
ent's attempts.

Drawings (a) and (b) show the results of two games.
Note that the corner hexagons can either be excluded, or

counted as being on the edge for both players.
There is more to this game than first appears. Challenge

your friends. Have fun, and make yourself a larger board!

(a)

(b)
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32 The knight's dance
Two white knights and two
black knights are placed at
the corners of a 3 x 3 square
on a chessboard as shown.

How can you make the
white knights change places
with the black knights in the
fewest number of moves?

ft

1
33 The railway sidings
A railway line BC has two very short sidings BA and CA.
In each siding is a single truck, labelled Tx and T2 in the
diagram. On the main line BC is an engine. You have to
decide how to use the engine to shunt the trucks so that
they change places and the engine can return to the main
line. Before trying, however, note that the portion of the
rails at A common to the two sidings is only long enough
for a single truck such as T{ or T2, but is too short for
the engine, so that if the engine travels in along CA it can-
not come out along AB. Trucks can be linked to each other
or to either end of the engine, but bouncing off the buffers

is not allowed!

^;^^
RILING R/tf lM ]^

(ENGINE
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34 The multi-coloured cube
Imagine you have eight wooden one-centimetre cubes. Show
how they could be painted so that they could be fitted
together to make either a red two-centimetre cube or a blue
two-centimetre cube.

Now consider the similar problem with 27 one-centimetre
cubes. Can you colour the cubes in such a way that they
could be assembled into a red three-centimetre, a blue three-
centimetre cube or a yellow three-centimetre cube?

35 The jealous husbands
After a flood three married
couples found themselves
surrounded by water, and
had to escape from their
holiday hotel in a boat that
would only hold three persons
at a time. Each husband was
so jealous that he would not
allow his wife to be in the
boat or on either bank with
any other man (or men) unless
he was himself present.

Find a way of getting the
couples across the water to
safety which requires the
smallest number of boat
crossings. Swimming or
helicopters are not allowed!

Now solve the problem if
there are five married couples.

36 The extension lead
A room is 30 ft long, 12 ft wide and 12 ft high. There is a
13 amp power point at A in the middle of an end wall 1 ft
from the floor. An extension lead is required to connect A
with a point B in the middle of the opposite wall but 1 ft
from the ceiling.

For safety the lead must be fastened to the surfaces of
the room and not stretch across the middle. Find the shortest
length of cable needed to do the job. No, the answer is not
42 ft.

30 ft 12 ft

12 ft
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37 The economical gardener
A gardener liked to make the most of the plants he had and
one day he found, when laying out a rose bed, that he had
managed to plant seven rose bushes in such a way that they
formed six lines with three rose bushes in each line. How
did he do it?

Pleased with himself the gardener looked for other inter-
esting arrangements until he found a way of planting ten
rose bushes so that he had five lines with four rose bushes
in each line.

Find his arrangements.
Investigate other 'economic' arrangements.

38 Perimeter and area
Make as many shapes as you
can on a pinboard which have
a perimeter of 12 units.

Record each new shape on
spotty paper.

The two examples shown
both have an area of 5 square
units. Find the area of each of
your shapes.

There is a triangle with a
perimeter of 12 units which
can be made.

What other non-rectangular
shapes are possible?

39 Tessellations
The shaded quadrilateral is
shown repeated to form a
tiling pattern.

Make up tiling patterns
using the other shapes given.

Find new shapes which will
form tiling patterns.
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40 Tessellations and art
The artist M. C. Escher has made a fascinating study of ways
in which tessellations become transformed into objects and
living things such as birds and fish. By starting with a simple
tessellation of rectangles or quadrilaterals, try systematically
modifying it into a repeating pattern of some recognisable
form.

41 Shapes with the same area

Explain why the shaded shapes have an area of 2 units when
the unit of area is that of one square on a pinboard.

Find on a 3 x 3 pinboard as many different shapes as you
can whose area is 2 units. Record your shapes on spotty paper.

How would your answer be different on a 5 x 5 pinboard?
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42 Area on a pinboard
The two shapes shown on the 5 x 5 pinboard (a) each contain
1 pin inside them.

Make and record other shapes which have only 1 pin inside
them.

Find the area 04) of each shape and a formula relating A to
the number of pins (b) on the boundary of the shape.

The shape shown on pinboard (b) has 12 pins on its
boundary and 1 pin inside itself.

Find shapes with 12 boundary pins and 0, 1 , 2 , 3 , 4 , 5 , 6 , 7 ,
8 , . . . points inside itself. Is there any limit to the number of
interior pins when the boundary contains 12 pins?

Find a formula relating the area 04) of shapes with 12
boundary pins to the number of interior pins (/).

There is a relation, known as Pict's theorem, which gives
the area (A) of any polygon which can be formed on a pin-
board in terms of the number of its boundary pins (b) and
the number of pins on its inside (/).

Use the results you have obtained so far to try to discover
Pict's theorem. Test your guess on a new polygon.

43 Routes on a pinboard
Diagram (a) shows a 5 x 5 pinboard with a band from A to B
which Visits' each pin once. (No diagonal routes are allowed.)
See what other routes you can find of the same kind. Are any
routes symmetric?

What can you say about the length of such routes? Gener-
alise for an / ix / i board.

Now consider the possible routes from A to B on a 3 x 3
board where diagonal routes are allowed and all pins have to
be visited once only (as in (b), for example).

Find (i) the shortest and (ii) the longest such route if the
route is not allowed to cross itself.

What is the longest route when the route can cross itself?
Now try this with a 5 x 5 board.

4 • • • •
B

(b)
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44 Zigzag
Use a 7 x 7 o r 9 x 9 square
array of dots.

Start at the centre dot, S,
The first player draws an

arrow either across or up and
down to the nearest dot.

The second player follows
with an arrow to form a
continuous path.

The players move alter-
nately. The object is to form
a path from S to the home
base (A for the first player, B
for the second player) without
visiting any point more than
once. The first player to home
base wins.

. (7yJ
s

B

45 How many triangles can
you make?
How many triangles can be made
on a 3 x 3 pinboard?

46 How many triangles can
you see?
The figure contains many triangles, some of which overlap
each other.

Make a copy of the diagram and find a systematic way of
accounting for all the triangles.
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47 The unfriendly power-boats
Two radio-controlled power-boats are moored 200 metres
apart at A and B near the centre of a large lake. The boats
are both controlled by the same radio transmitter in such a
way that they move at the same speed. However, the boat
which leaves B has a faulty steering mechanism and moves on
a bearing which is always 90° more than the bearing of the
boat which leaves A. How can the controller steer the boats
to meet each other?

48 Traversibility
Drawing (a) is a map of a road network. A road engineer
starting at A wants to travel along each road once only and
return to A. How can he do it?

Network (b) cannot be traced out with a pencil unless you
go over some lines twice or take your pencil off the paper
and start at another point.

Find the smallest number of times you need to take your
pencil off the paper to draw it.

(b)

(a)
D
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49 The knight-guards
Show how to place twelve
knights on a chessboard so
that every square is either
occupied or attacked.

50 Reversing the trains
The diagram shows the plan
of the rail network in a large
town. Each small circle is a
station and each number refers
to a train. The station at the
bottom has no train.

By moving one train at a time to the station left empty,
show how to move the trains so that their order is reversed.
That is, 1 is in the position of 7, 2 in the position of 6 and
so on.

The first move must be made by either 1, 2, 7 or 6.
The reversal of the trains' order can be made in as few as

fifteen moves.
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51 The parallelogram linkage
For this activity and the following ones you require some
strips of stiff card, brass paper fasteners, drawing pins and a
drawing board. (Geostrips or Meccano strips if available would
be ideal.)

Fasten two equal strips DA and CB to a longer strip AB
using brass paper fasteners, and then use drawing pins to pin
the ends D and C to a drawing board so that ABCD is a
parallelogram. Make sure that the strips can rotate freely
about .4 ,5 , Cand/X

Move the linkage and describe the motion of the rod AB.
What is the path traced out by Al
Put a pencil in a hole in the strip between A and B and

trace its path. How does it compare with the path of Al
When AD turns through an angle of 30° what angle does

BC turn through?
These questions may seem easy but their answers give the

main properties of a parallelogram and underly the reason that
it occurs as the basis of hundreds of different mechanism where
it is important to keep one part moving parallel to another. The
following illustrations give a selection of these mechanisms.
Look at them and see if you can decide why the parallel
motion is necessary in each case.
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Why, for example, do some buses and diesel trains have a
parallelogram linkage connecting their windscreen wiper
instead of the simpler mechanism seen on most cars? Make
models and compare the way in which the windscreen is
swept.
Try designing a pop-up card.
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52 Rocking horses

Children's rocking horses have been designed to supposedly
simulate the motion of a horse in principally two ways. One
way is to have curved runners while the other way is to use a
trapezium linkage.

Make up the trapezium linkage shown right as in the
previous activity using card strips, drawing pins and paper
fasteners on a drawing board. Now move AB to and fro and
observe its motion. As AB moves to the right from the position
shown A moves upwards while B moves downwards, thus
giving AB a rocking motion. The Tom Cobley' rocking horses
seen in children's playgrounds are based on this mechanism.
The points D and C correspond to the tops of two posts fixed
in the ground and two bars are connected to these points and
to points A and B which are in the body of the horse to form
a trapezium ABCD.

You can make an attractive working model of a Tom Cobley
out of card and fasten D and C to a piece of card using paper
fasteners. Make the body of the horse large enough to hide the
strips AD and BC and the result should intrigue your friends.

How does the motion of a Tom Cobley compare with that
of a real horse or with that of a rocking horse on runners?

Without access to the cinefilm of a horse it is difficult to
compare the motion of a real horse to a toy one but it is
certainly possible, by making models, to compare the effect
of a trapezium linkage with that of a horse on runners.

Start with the model of a trapezium linkage and see if you
can design a horse on runners to give the same motion.

Rocking chairs have traditionally been designed using curved
runners but for anyone with a practical bent there should be
now no problem in designing one based on a trapezium linkage
which should be smoother in operation and less damaging to
the floor covering!

D

\
\

A

i,
B

C

)
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53 Turning circles
Cars are designed to be
manoeuvered in congested
spaces. To do this they must
be able to turn in a relatively
small circle, but this would
create considerable tyre wear
unless the steering mechanism
had been carefully thought
out. In the diagram on the
right the car is turning about
the point O. For a wheel to
roll smoothly over the ground
without being dragged side-
ways then it must roll in a
direction which is at right-
angles to the line drawn from
O to its centre. This can only
be achieved if the front wheels
A and B do not remain parallel
to one another as the driver
turns the car. The angle 6
between the wheels A and B
will depend on the radius of
the turning circle and increase
as the radius becomes smaller.

Interestingly the mechanism
to bring this about is the same
trapezium linkage used in the
rocking horse design. Make up
a model from card and pin to
a drawing board as shown here.
Move CD to the left and
observe that as the wheels A
and B turn to the right they
cease to be parallel.

The lengths of AB and DC
depend on the wheel base of
the car. Investigate. The
actual mechanism is not so
easy to observe on a car but
take a look at a farm
tractor next time you see one.

Centre of turning

circle

Drawing
board
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54 Straight-line motion -
well almost!
At the end of the eighteenth century and throughout much
of the nineteenth century the industrial revolution saw a
proliferation of mechanisms. Many of these were associated
with the development of the steam engine. One significant
design problem for the engineers was to produce a mechanism
to give straight-line motion which involved as small a friction
as possible. Their many solutions might not have satisfied a
pure mathematician because they did not give exact straight
lines, but they worked which was what mattered in practice.

Drawing
pin

(a)

James Watt came up with
one of the first practical sol-
utions in 1784. He used two
long equal bars AB and CD
and a much shorter bar join-
ing them (see (a)). A and D
are fixed pivots and as the
linkage is moved up and
down P, the middle point
of BC, follows a path which
appears to be a straight line.
However, as you move BC
as far as it will go and trace
out the complete path of
P you will see it is far from a
straight line!

A good example of this
linkage, which is known as
Watt's parallel motion, can be
seen at the York Railway
Museum on a large steam
engine which was originally
used for hauling loaded trucks
up an incline.

Drawing
pin
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In 1850 Tchebycheff produced a somewhat similar linkage
to approximate to straight-line motion. In this case the rods
AB and CD are of equal length and cross over each other (see
(b)). The distances BC and AD are such that

AB:BC:AD = 5 : 2 : 4

Make the linkage using card strips and trace out the path
followed by P, the middle point of BC, using a pencil.

To find the complete path you will need to ensure that the
strips overlap as shown to allow the linkage to move freely
from its crossed configuration to its uncrossed configuration.

Investigate the different paths which are formed by taking
longer strips for BC.

B

Drawing
pins

(b)

55 About turn
One of the simplest transformations which can be made to a
shape is to turn it through an angle of 180° about a point.
This can be brought about by a variety of linkages. Drawings
(a), (b) and (c) illustrate three such linkages all based on
rhombuses. To make them you need two sizes of strips, one
size to be twice the length of the other.

In each case fix point A to a drawing board. Draw an object
shape such as S, then guide P around the boundary of S.

You will find that point Q will trace out a path 5", which is
the image of S after a 180° rotation about A.

Try to design other linkages which will produce the same
result.

(a) (b) (c)
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The complicated looking
linkage in (d) is the result of
joining two half-turn linkages
together. A and B are fixed
pivots. As P traces out the
shape S, Q will trace out S'
its half-turn image about A,
and R will then trace out S"
the half-turn image of S'
about B.

The result is a translation
of S to S" of twice the trans-
lation from A toB.

(d)

56 Knight lines
This is a game based on the knight's move in chess and on
noughts and crosses. You can play the game with pencils on
squared paper or use coloured counters on a squared board
or pegs on a pegboard.

The game is played on a 5 x 5 board as shown.
The first player marks a nought (labelled O r in the example

shown in (a))5 and the second player then marks a cross (X2)
which is a knight's move from the last square played in by the
first player. The first player now marks a nought (O3) in a
square which is a knight's move from X2. Play continues with
the players alternately, adding a nought or a cross a knight's
move from the previous play until no further move is
possible. Diagram (a) shows the state of play after six moves
of a game. 1

The object of the game is to obtain lines of circles and \
crosses and accumulate as many points as possible given
that

three circles in a line score 1 point,
four circles in a line score 2 points,
five circles in a line score 3 points.

Similarly for crosses. Diagram (b) shows an example.
In addition the player who plays last earns a bonus point.

o,

(a)

\
\

\

X

X

X

X

X
X

X

\\\
(b) Crosses score 2
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Diagrams (c)-( / ) show some typical games. The squares
have been numbered so that you can follow the play.

x-
o,
Xt

Xio

x»
03

o5

On

0<i x,0
o,

o7
X ,
On
x>

Oi

0,3

xt

X ^

X ,

X,i

(c) A 2-2 draw
Circles: two lines of 3 2 points
Crosses: X l o the last move 1 point

one line of 3 1 point

(d) A 3-4 win for crosses
Circles: one line of 4 2 points

one line of 3 1 point
Crosses: X14 the last move 1 point

one line of 4 2 points
one line of 3 1 point

x,

o,

x2
0-,

On

X *
01 x6

o5
Xio

(e) A 2-0 win for circles
Circles: O n the last move 1 point

one line of 3 1 point

0,1

03

A|0

X,2

0, X ,

0,5

X ,

0s

(/) A 4-2 win for circles
Circles: O13 the last move 1 point

one line of 4 2 points
one line of 3 1 point

Crosses: one line of 4 2 points

This game was originally devised with a group of children
at a mathematics club who had been challenged to develop a
game from noughts and crosses. They enjoyed playing the
game. Try playing it yourself and then see if you can invent
one.
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57 Quadruplets
Show how the shape on the
right can be divided into
four pieces which are identical
to each other.

58 Complete the square
Carefully draw the five shapes
shown here on squared paper.
Cut them out and then show
how they can be put together
to form a square. Do not
despair - it is possible!

/

1
I

\

/

\ /

I

/

\

/

\

rr
b

\

A

59 Roll a penny
A penny A is rolled around a
second penny B without
slipping until it returns to its
starting point.

How many revolutions
does penny A make?
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60 The hunter
A hunter followed his prey 3 miles south, 3 miles east and
then eventually shot it after stalking it for another 3 miles
which took him back to the point where he started.

What was his prey?

61 Four points in a plane
Mark four points on a flat
surface so that there are only
two different distances
between them.

One arrangement is shown.
There are five other possible
arrangements. Find them!

AS = BC = CA
AD = BD= CD

62 The letter dice
A word game uses dice with a letter on each face. Three views
of one of the dice are shown above. Which letter is on the face
opposite H?
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63 Make yourself a
hexaflexagon
A hexaflexagon is an intriguing arrangement of equilateral
triangles folded in such a way that at any time six of them
form a hexagon. The flexagon can be 'flexed' into a new
arrangement by pinching together two adjacent triangles and
opening out the triangles from the centre to reveal a new face.
When you have made a flexagon mark the corners of the
triangles at the centre of the visible hexagon with a symbol
such as a heart or diamond, or spell out a six letter word. Then
flex the hexaflexagon and mark the centre of the new face
with another set of symbols. You will be surprised just how
many different centres you can find! With a lot of patience
you could stick parts of a picture like a jigsaw to the centre
cut from a Christmas card for example.

Now for the method of construction.

\ / \ / \ / \ / \ / \ / \ / \ / \

V
(a)

On a strip of thin card draw eighteen equilateral triangles
as in (a). You will find 5 cm a good size for the side of a
triangle.

Score along each of the dotted sides of the triangles. On
one side number the triangles 1 ,2 ,3 ,1 ,2 , 3 , . . . , and mark
the end triangles along the edge as in (b).

(b)
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Turn the strip over and number the other side with a 4 ,4 ,
5 , 5 , 6 , 6 , . . . pattern exactly like diagram (c).

4 / \ 5 / \ 6 AN
 4 / \ 5 / \ 6 A 4 / \ 5 / \ 6 /

J 4 x^ / 5 \ / 6 N\ / 4 \ / 5 N\ / 6 \ / 4 \ / 5 \ / £
V JC V V x » „ .. V S^ ±1 \i

(c)

Next fold the strip by placing triangle 4 onto triangle 4, 5
onto 5, 6 onto 6 etc., as in (d). This rolls the strip up (see (e)).

fold over

(d)

fold over

AX/A AX/ 3
(e)

Now fold the strip again so that triangles of the same
number are all on top, as shown in (f).

fold over

fold over

(f)

Stick the two marked edges together using sellotape.
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64 Perigal's dissection
Pythagoras' well-known theorem for a right-angled triangle
ABC states that the area of the square on the hypotenuse AC
is equal to the sum of the areas of the squares on the other
two sides AB and BC.

A nice demonstration of this result was shown by Perigal
and can be reconstructed as follows.

First draw a right-angled triangle ABC and then carefully
draw a square on each side as shown above.

Find the centre of square ABDE by drawing in its diagonals
(shown dotted). Now divide the square into four equal pieces
by drawing lines XY and UV through the centre and parallel to
the sides of the square on AC.

Cut the square ABDE into the four pieces marked and fit
them into the corners of the square on AC. They leave a
square in the middle exactly the same size as the square on
BC.
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65 Make a tetrahedron to
baffle your friends
Imagine a tetrahedron (i.e. a triangular-based pyramid) sliced
into equal parts as shown in (a). The points A, B, C and D are
the middle points of the edges in each case.

The tetrahedron shown is regular which means that all its
faces are equilateral triangles and the cut face ABCD will be a
square.

You may have come across the half-tetrahedron shapes as a
puzzle in a Christmas cracker or elsewhere, for the interesting
thing is that when someone is given the two halves and invited
to put them together to make a tetrahedron they frequently
find it impossible to do.

To make the half-tetrahedron shapes you will need some
card.

A possible net for the shape is shown in (b).
Start by constructing an equilateral triangle ABC whose

side is 18 cm. By marking off points at 6 cm intervals most
of the net is easily constructed - only the square remains to
be added at the top.

Before cutting out mark the tabs (shown shaded) and score
all the fold lines with a compass point. (To make an identical
net for the other half use a compass point and prick through
the corners of the net you have drawn onto a second piece of
card.) Cut out and fold up the net to form the required shape.
A quick-drying glue such as UHU is an advantage although
you may prefer sellotape.

(b)

(a)

B
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66 The cone which rolls uphill
B

When a double cone is placed on two rails AB and AC as
shown it will appear to roll uphill.

The fact is that although the rails slope upwards they
become further apart so the parts of the cones in contact
with the rails are nearer to their points with the effect that
the centre of the double cone becomes lower as the cone
rolls 'up' the rails.

Ideally this works best with a heavy wood or metal cone
(do you know someone with a lathe?) but it will work if
you make the cones from card.

Cut out two quarter-circles from card - the larger the
better - and make them into a double cone. The rails can
then be made from card or a couple of rulers suitably
fixed. If it does not work at first make the rails less steep
and/or increase the size of the angle between them.
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67 Ruler and compass
constructions
To bisect a line AB (see (a)) take a compass with centre at
A and radius greater than half AB and draw an arc. Next,
with the same radius but with centre at B draw an arc to cut
the first arc at X and Y. Join XY. The point M where XY
cuts AB is the middle of AB.

M
B

To bisect an angle PQR (see (b)) take a compass and draw an
arc with centre Q to cut PQ in S and RQ in T. Next with
centre at T and a radius larger than half TS, draw an arc. With
the same radius but with centre at S now draw an arc to cut
the last arc drawn at Z. Join QZ. The line QZ bisects the
angle PQR.

Q

(b)

To draw a line from a point A which is perpendicular to a
line I (see (c)) take a compass and draw an arc with centre
at A to cut the line / in two points X and Y. With centre at
X and radius larger than half XY, draw an arc. Use the same
radius and centre Y to draw an arc to cut the last arc drawn
at W. Join A W. The line A W is then the line from A perpen-
dicular to /.

Line/ \

W

(c)
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To construct an equilateral triangle (see (d)) take a point A
as centre and with any convenient radius draw an arc, a.
Take a point B on the arc as centre and with the same radius
draw an arc |3 from A until it meets arc a at C. As a check now
take C as centre and with the same radius you should be able
to draw an arc 7 from A to B. Triangle ABC is then equi-
lateral whose side length is equal to the radius of the compass.

Now try to construct the following:
(i) a square, (iii) a regular octagon,

(ii) a regular hexagon, (iv) angles of 45°, 30°, 75°, 52f\

68 Circumscribed, inscribed
and escribed circles
Here you can see how to construct a very special set of circles
associated with triangles.

The circumscribed circle

Draw a triangle ABC, preferably one whose
angles are all acute, and carefully construct
the bisectors of each side. They should all
meet at the same point O. If they do not
start again, make sure your pencil is sharp
and that all your lines go through the
intersections precisely. Now put your
compass point at O and you will be able to
draw the unique circle which goes through
A, B and C known as the circumscribed A
circle for triangle ABC.

Where is O if the triangle has (i) a right-
angle, (ii) an obtuse angle?

The inscribed circle

Draw a triangle PQR and construct its three angle bisectors.
These should meet in a point / , the in-centre for triangle
PQR. Put your compass point at / and adjust the radius of
the compass so that you can draw a circle which just touches
each of the sides of triangle PQR. This is its inscribed circle.

B

Both these centres described so far could equally well be
found by folding the paper to find the bisecting lines - try
this yourself.
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The escribed circles

At first this diagram may look very complicated, but it can
be thought of as an extension of the previous one for draw-
ing the inscribed circle. Start in the same way but with
triangle PQR near the centre of your paper and of a size to
leave plenty of space around it for the additional circles.
Extend the sides of triangle PQR outward in both directions
as in the diagram. The point Ex is found by extending the
bisector of the interior angle at P, and by constructing QEX

and RE i, the bisectors of the exterior angles at Q and R.
When you have found Ex use it as the centre for a new
circle which touches the sides of PQR as shown. This is one
of the three escribed circles for the triangle. Now construct
the other two.

You will need to be very accurate at all stages if you are
to end up with a satisfactory drawing but it is well worth
the care required.
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69 Submarines, cruisers and
helicopters
This is a three-dimensional game for two players based on
the familiar 'Battleships and Cruisers' game.

Each player has
(i) three 4 x 4 boards corresponding to his territory

underwater, on the water surface, and in the air;
(ii) an armed force consisting of three submarines, two

cruisers and six helicopters.

The ships and helicopters are represented by pieces of
card or counters of such a size that when placed on the
boards

a submarine occupies 2 squares,
a cruiser occupies 3 squares,
a helicopter occupies 1 square.

A submarine may be underwater or on the surface, but the
cruisers are always on the surface and the helicopters in the
air space. The diagrams above show one arrangement of a
player's pieces at the beginning of a game.

The object of the game is for a player to destroy his
opponent's forces.

The winner is the first player to destroy all his opponent's
forces or, if the game is stopped short of this, the player who
has destroyed the more. In this case a helicopter counts as
1, a submarine as 2 and a cruiser as 3.

Players take it in turn to play (toss a coin to decide who
starts), and when they play they have the options of

(i) carrying out two strikes;
(ii) moving a piece and carrying out one strike;

(iii) moving two pieces.

A strike consists of naming a particular square (e.g. surface
B3) and a hit results if an opponent's piece occupies that
square. When a helicopter is hit the piece is taken off the
board and given to the opponent. A cruiser and a submarine
are not surrendered (and do not count in an unfinished
game) until they have been hit in two places, but any hit
has to be acknowledged (e.g. 'cruiser hit in the stern').

Note also the general point, that two pieces can never
occupy the same square.

Make yourself some boards (draw three boards on a
rectangular piece of card) and pieces, and challenge your
friends (foes!) to a game.

A B

3/ /

c D

\

a i r

B C D

surface

A B c D

4

underwater
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The movement of a piece at any one time is restricted
as follows:

A helicopter may move to any one of its adjacent squares
in the air space as long as it is not already occupied (see
diagram (a)).

* r
(a)

A submarine may move in three ways:
(i) turn through an angle of 45° about one end (see dia-

grams^) and (c));
(ii) change its level from water to surface or vice versa;

(iii) move one square along its length.

A cruiser may move in two ways:
(i) turn through an angle of 45° about one end (see dia-

grams (d) and (e)) as long as no other piece is in its
way;

(ii) move one square along its length.

(e)

When you have mastered this game see if you can improve
on it modifying the rules. Better, design your own three-
dimensional game based on Star Wars, say!

53



70 The queen's defence
What is the smallest number of queens which can be put on
an n x n chessboard so as to occupy or command all the
squares on a board?

#

#

Here is a solution for the 4 x 4 board with two queens and
a solution for the 5 x 5 boards with three queens.

Find other solutions for the 4 x 4 and 5 x 5 boards and
then find a solution for the 6 x 6 board with three queens.

How many queens are needed when n = 7 and n = 8?

In 1862 Jaenisch proposed a variation on this problem
in which not only were all squares to be occupied or com-
manded, but no queen was to be on a square which was
under attack by another.

A related problem would be to find the smallest number
of queens which would occupy or command every square
subject to the restriction that every queen was protected by
another.

Clearly similar problems could be set for the other chess
pieces.

71 Seeing is believing
Cut out the shapes drawn on the 8 x 8 square and rearrange
to form the 1 3 x 5 rectangle.

1I
)
I/

This. means 64 == 6f Where is 1the catch?
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72 Inspecting the roads
The plan shows the road net-
work connecting nine villages.
The numbers refer to the
mileages along the roads.

A council workman living
at village A wants to inspect
all the roads in a car. What
is the shortest route he can
take if he has to return to A!

13 13

13

73 Dominoes on a chessboard
A domino is the same shape
and size as two squares on a
chessboard.

It is easy to see how to
place 32 such dominoes on
a chessboard so as to cover
it.

Can you decide however
if it is possible to cover the
board shown here, with the
squares at two opposite
corners missing, with 31 such
dominoes?

74 Identical twins
Divide shapes X and Y into two equal pieces.

Make a similar puzzle yourself.



75 The four - colour theorem
How many colours are needed to colour a map so that any
regions which have part of their boundary in common must
be of a different colour? (Two regions with a point in com-
mon may be the same colour.)

The map shown here appears to require five colours as it
has been shaded but it can be coloured in using only four
colours. How?

For as long as map making has been practised the map
makers have believed that the different regions on a map
could always be coloured using only four colours. Mathe-
maticians have been trying to prove this result since Mdbius
mentioned it in a lecture in 1840. However, it defied proof
until in 1978 two American mathematicians used a power-
ful computer to analyse the situation. But many people
still have a sneaking feeling that someone will turn up with a
map which cannot be coloured with as few as four colours
. . . can you find one?

76 The pentominoes

Five squares can be fitted
together edge-to-edge in
twelve different ways. These
shapes are known as the
pentominoes and are shown
here fitted together like a
jigsaw to form a 10 x 6
rectangle.

(a)

Cut yourself a set of pentominoes from thick card and see
if you can find other ways of fitting them together to form
1 0 x 6 , 1 2 x 5 , 1 5 x 4 and 20 x 3 rectangles. There are thous-
ands of solutions altogether but you can be congratulated if
you find one of each shape.
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One of the pentomino
shapes can form a regular
repeating pattern to cover
the page without any gaps
(that is it forms a tessellation
- see (b)). Draw patterns
to show which of the other
pentominoes will tessellate.

(b)

B
(c)

The same pentomino is shown folded in (c) to form an
open-top cubical box. Find which of the other pentominoes
will form a net for the box and shade the square correspond-
ing to its base.

77 The hexominoes
Which of the shapes in (a) could be folded to make a cube?

(a)

Shapes made from six squares like these are called hexo-
minoes. There are 35 different hexominoes. Try to find
them all - it may help if you use squared paper and do this
with a partner. Record your results carefully so that you
can quickly see if two are the same.

57



Eleven of the hexominoes can be folded to form a cube.
When you have found a new hexomino see if you can decide
whether or not it will form a cube before you fold it. Check
by cutting out the shape and folding. How often were you
wrong?

The two new hexominoes A and B shown in diagram (b)
have had alternate squares shaded as in a chessboard pattern.
Shape A will have three black squares while shape B will
have either four black squares or two black squares. Because
of this shape A is said to be odd and shape B is said to be
even.

Shade all your hexominoes and decide which are odd and
which even. How many even ones are there?

E

0

0

E

0

0

0

B

(b)

(c)

Diagram (c) shows one way of dissecting a 7 x 6 rectangle
into seven hexominoes. In this example two of the hexo-
minoes are even and five are odd.

Find other ways of dissecting a 7 x 6 rectangle into hexo-
minoes and in each case note the numbers of odd and even
ones.

Explain why it is impossible to dissect this rectangle into
seven even hexominoes.

Is it possible to form a rectangle using all the 35 different
hexominoes?
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78 Building up cubes
For this activity you ideally need some interlocking cubes
such as Multilink or Centicube. It would be worth the effort
to obtain some for they are colourful, easy to handle, fit
together easily, but most of all they will stimulate you into
thinking creatively in three dimensions.

Make two shapes like the
one in (a) using four cubes.
You will be able to fit them
together to make a 2 x 2 x 2
cube as in (b).

(a)

There are two other shapes which can be made with four
unit cubes which are also half a cube. Find them.

How many other ways could a 2 x 2 x 2 cube be con-
structed from two shapes where the shapes themselves are
formed from unit cubes?

The wide interest in shapes formed by fitting unit cubes
together has probably grown from the Soma Cube puzzle
invented by the Danish mathematician Piet Hein. It consists
of the seven shapes shown in (c). The object is to fit them
together to form a 3 x 3 x 3 cube.

(0
Make these shapes with your interlocking cubes and then

try to form the larger cube with them. There is more than
one solution. If you want to make a permanent set it is not
too difficult if you start by buying a length of wood with
a 2 cm x 2 cm cross-section, cutting it into suitable lengths,
and gluing together. The set is available commercially if you
prefer - either way the set will give you hours of amusement.

Why not be original however, and use the interlocking
unit cubes to design an interesting set of shapes to make up
a 3 x 3 x 3 cube and challenge your friends with it.

See how many different shapes you can make using five
unit cubes which are essentially different from the twelve
pentominoes.

(b)
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79 Half a cube

The three drawings in (a) show different ways to divide a
cube into two identical halves. Try to find other ways of
doing this and then make models of them using card.

In Activity 78 you will have found ways of using unit
cubes to build up a larger cube. A modification of this
method could help you to find interesting ways of dividing
a cube into two. Three more ways are shown in (b).

(b)
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80 Make yourself a
polyhedron construction kit
Draw an equilateral triangle and a square, each with a side of
4 cm, accurately on a piece of card. Next draw in the tabs
\ cm wide as shown in (a), taking care with the indentations
at each end. Cut these shapes out carefully as you will need
them as templates to mark out further identical shapes.

To start with cut out eight triangle shapes and six square
shapes. Score the edges AB, BC, CA, PQ, etc. so that the
tabs fold easily.

You now need some elastic bands. Place the edge of one
shape next to the edge of another shape and pinch the tabs
together, having first folded them up. Now fasten them
together by stretching an elastic band around them (see (b)).

Using this technique you can now fit further shapes edge
to edge until you have a solid shape. With the triangles and
squares already cut out you can make up a tetrahedron, a
cube, an octahedron, a triangular prism and many other
shapes. Some of these are shown in (c) without the tabs
drawn in, but the invisible edges drawn with a dotted line.

Most of the shapes drawn here are straightforward except
possibly the square anti-prism. This shape can be pictured
as one square above another square turned at 45° to it and
linked by a ring of eight triangles - a triangle joins the edge
of one square to the vertex of the other.

Cube Octahedron
Tetrahedron

Triangular
prism

Triangular prism
joined to

tetrahedron
Square

anti-prism

cm tabs

(a)

p

I
s

4 cm

Q

I
R

(c)

Square-based
pyramid
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Icosahedron Dodecahedron

To create larger and more elaborate polyhedra you will
need to make more triangles and squares and other shapes.

To make the beautifully symmetric icosahedron which
has five triangles meeting at every vertex, you will need
twenty triangle shapes, while the dodecahedron requires
twelve new regular pentagon shapes (see (d)).

Some more polyhedra to make are shown in (e). These
require only squares and triangles but should you wish
to incorporate pentagons and hexagons you will need to
ensure that they have the same length edge, that is 4 cm.
The best way to construct any regular polygon is to divide
a circle into the same number of sectors as the polygon is
to have sides. First though the radius of the circle must be
right or the polygon will end up with the wrong length of
edge. The details for the hexagon and pentagon are shown
in (f). Why is the radius 4 cm for the hexagon and not for
the pentagon?

Cuboctahedron

Snub cube

Rhombicuboctahedron

(e)

62



The advantage of this construction kit is that you can
easily dismantle a polyhedron and use the shapes to make
another. Should you wish to make a model more permanent
however, you could staple the tabs together. Cutting out
the shapes can be tedious but creating new polyhedra is fun!

When you have cut out twelve pentagonal shapes to make
the dodecahedron then you can try to make the rhombico-
sidodecahedron shown in (g). It is very impressive when
complete and looks particularly fine if it is in three colours,
one colour for each shape.

To make it you require twelve pentagons, twenty triangles
and thirty squares. When you look at your finished model
you will see that the pentagons are in the same relative posi-
tions as in a dodecahedron and the triangles are in the same
relative positions as in an icosahedron. You can also see that
at every vertex there is a pentagon next to a square which
is next to a triangle and finally a second square.

If you want to find more about polyhedra there are many
attractive books on the subject but one of the best is still
Mathematical Models by Cundy and Rollett, which was
first published in 1951 by Oxford University Press.

(g) Rhombicosidodecahedron

81 The dodecahedron and
stellated dodecahedron
The dodecahedron is one of the five regular solids known as
the Platonic solids. The other four are the tetrahedron, the
cube, the octahedron and the icosahedron.

In each of these the faces are identical regular polygons
and each vertex looks the same as any other. The dode-
cahedron has twelve faces which are each regular pentagons
- an enterprising manufacturer has produced a plastic version
with a calendar month on each face.

It is a good model to make for not only is it a satisfying
shape in its own right, but it can also be used as a base to
make the very attractive stellated version. The construction
which follows is for half the net of a dodecahedron. When
this one has been drawn either on paper or card further
copies can easily be produced by placing your drawing over
a piece of card and using a compass point pricking through
at all the vertices (corners) of the net.

Dodecahedron
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(i) Draw a large circle.
(ii) Draw five lines from the centre, O, to the circum-

ference of the circle at 72° to each other, OA, OB, OC,
OD, OE.

(iii) Join ABf BCf CD, DE and EA to form a regular pentagon.
(iv) Draw in all the diagonals of ABCDE. These diagonals

form a smaller pentagon PQRST in the centre. This
pentagon will form a face of the dodecahedron so
make its edges stand out using a biro.

(v) Now draw in the diagonals of PQRST (shown dotted)
and extend them to form the edges of the outer ring
of pentagons. Outline the edges of the ring of penta-
gons clearly.

(vi) Prick through onto card to form as many nets as
required. A A
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(vii) Draw in the additional nets and then add tabs to every
other edge as shown,

(viii) Cut out the nets and score along all lines which have
to be folded such as PQ and where a tab joins a face,

(ix) Use a quick drying glue such as UHU to stick your
nets together.

Do not be in too much of a hurry to finish. The first
stages need to be quite accurate or you will end up with a
net which doesn't fit together.

When you have successfully made the dodecahedron you
can stellate it to make an excellent Christmas decoration. It
is necessary to add points in the shape of five-sided pyramids
to each face of the dodecahedron.
The sides of these pyra-
mids are isosceles triangles
identical to APQ in the net
for the dodecahedron.

The net for a 'point' is easily
constructed by first drawing
a semi-circle with radius equal
to the diagonal of the penta-
gons which form the dodeca-
hedron. Divide the semi-circle
into five equal sectors by
drawing radii at 36° intervals
as shown.

Length equal to
diagonal of

pentagon

Add the tabs and score the fold lines. You will need
twelve identical nets so try folding your first one to see
if it fits together with your dodecahedron before copying
it.

When your model is complete you should see that the
faces of adjacent points all lie in planes to form pentagrams
(five-pointed stars).
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82 An isometry game
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The piece

This game involves a knowledge of reflections, rotations,
translations and their combinations. This set of transforma-
tions is known as the isometries, hence the name of the
game.

Before you can play you will need to make:
(i) a board marked as above and a movable piece the same

shape and size as the triangles on the board;
(ii) a pack of cards - see below.

The cards

Each card describes a transformation which the player who
holds it can make to the movable triangle on the board. The
cards are of two kinds:

(i) cards which give the exact details of a transformation
such as

REFLECTION Mirror line: y = x

(ii) joker cards which give a player some freedom of choice
in deciding the details of the transformation.
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A suggested layout of the cards is shown here.

REFLECTION

Mirror line:

ROTATION

Centre:
onain

j

Angle:

ROTATION

Centre:

Angle:

There are 42 cards in the pack and they are made up as
follows:

ROTATIONS

REFLECTIONS

JOKERS

Centre

Origin

The right-
angle of
the triangle

Translation
Rotation:
Reflection:

Angle of
rotation

+ 90°
"90°
180°
+ 90°
"90°
180°

Mirror line

y=x
y = -x

centre angle
equation of
mirror line

Number of
cards

C
O

 
C

O
 

C
O

2
2
2

C
O

 
C

O
 

C
O

 
C

O

7
4

4
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Rules of play

The game can be played by two, three or four players,
(i) Deal five cards to each player, having first shuffled

them, and place the remaining pack face-down on the
table.

(ii) Decide, by throwing a dice or some other means, who
plays first. The players then take turns to play.

(iii) When it is a player's turn he must attempt to move the
triangular piece from where it was left by the previous
player to another triangle on the board. The moves he
is allowed correspond to the cards he holds in his hand
at that time. The move can correspond to one card or
a combination of cards. In the case of a combination
the intermediate positions of the piece need not corre-
spond to a marked triangle. The cards must be placed
on a 'throw-away' pile face-up beside the unused pile
in the order in which they are played.

(iv) When a player has made his move, he takes a card or
cards from the top of the unused pack to top up the
number of cards held in his hand to five.

(v) A player scores the number of points corresponding
to the number marked on the triangle where he lands.

(vi) The object of the game is to score the most points, so
clearly a running total will need to be kept for each
player.

(vii) If a player cannot make a move or if he prefers not to
move he may throw away one card and pick up a new one.

(viii) When using a joker card a player must announce the
details (e.g. the equation of a mirror line) before
moving the piece.

(ix) If a player believes that another player's move does
not correspond to the card or cards used he may
challenge it. If proved right, the triangle is returned
to its former position and the player at fault misses
his turn.

(x) The game ends when the pile of unused cards is empty
and no-one can move. Alternatively play can be con-
tinued at this stage by shuffling the throw-away pile
and turning it face down to be drawn from.

The game as it stands is fairly basic, and you can elabor-
ate on it in a variety of ways, but even so you should enjoy
challenging your friends and using combinations of trans-
formations to move the triangle piece to obtain as high a
score as possible.
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83 Sawing up a cube
A 3 cm wooden cube is to be
sawn into 27 one-centimetre
cubes. Is it possible to achieve
this with fewer than six saw
cuts?

84 The improbable hole
Improbable though it may
seem, it is possible to cut a
hole through a solid cube so
that a cube, larger than the
original, can be passed in one
end and out the other.

How do you cut the hole?

85 Equilateral triangle to
square

Construct an equilateral triangle ABC then divide it into the
four pieces shown where

BP, CQ=BQ,
and PM and SN are at right angles to RQ. 8 cm is a good
length to use for AC

Cut the pieces out of card (or for a more permanent puzzle
use plywood or hardboard) and then rearrange them to form
a 'square'.

B

Q

A R S C
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86 Squaring the urn
The cross-section of an urn is shown here shaded. It is com-
posed of parts of four circles of the same size as indicated.

Show how, with two straight cuts, this shape can be
divided into three pieces which can be rearranged to make
a square.

87 The baffled housewife
Mrs Smith often walked to the bus-stop on the main road to
catch a bus into the shopping centre. She didn't ever bother
with timetables because it was a busy route and she could
catch either a P bus or a Q bus. She knew that there were
six buses an hour of each kind so she never had long to wait.
What did surprise her, however, was that she hardly ever
seemed to travel on a Q bus. She decided to keep a regular
check on the kind of bus she caught and found that she only
travelled on a Q bus on one ride in ten.

She was baffled! Can you help her?

88 Invert the triangle
A triangle of pennies is made as in (a). What is the smallest
number of pennies which have to be moved to turn the
triangle pattern upside down as in (b)?

(a) (b)
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89 Knight's tours
One of the classical problems in recreational mathematics
is to investigate paths on a chessboard which a knight can
follow in such a way that it visits every square on the board
once and only once. Many famous mathematicians such as
De Moivre, Euler and Vandermonde have written about this
problem over the last 200 years but there is always some-
thing new to be found.

One solution due to De Moivre for the 8 x 8 board is indi-
cated in (a) where the squares are numbered to indicate the
knight's progress. In (b) is shown an alternative way of repre-
senting the same path. They both have their merits and you
can decide which is the more appropriate for your investi-
gations. (You will need a plentiful supply of squared paper
however if you are to make any progress whichever method
you use.) The second method using lines to connect the
squares has not been completed but it already shows the
strategy of De Moivre's solution which was essentially to
move round the board in one direction always keeping as
close to the outer boundary as possible. Copy diagram (b)
onto squared paper and complete De Moivre's solution
before trying one of your own.
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(a)

In a problem like this it is often helpful to start with a
smaller board to get a feel for the way in which a knight
can move to the other squares around it on a board.

(b)
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On a 3 x 3 board it is soon clear that a knight's tour
of the whole board is impossible. Either the knight starts
on an outside square when it can easily visit all the outer
squares but not the middle square, or it starts in the middle
when no move is possible.

Start

Finish

Start
•

Finish

(c)

Is it possible to find a knight's tour on a 4 x 4 board?
Diagram (d) shows a false trail which ran out of moves after
the fourth. If you cannot achieve all sixteen squares, what is
the largest number which you can visit without retracing
your steps?

Investigate paths on 5 x 5, 6 x 6 and 7 x 7 boards.

Diagram (e) shows a knight's tour on an 8 x 4 rectangular
board.

Is it possible to find a knight's tour on a smaller rectangular
board?
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(d)
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(e)

It is interesting to investigate other shapes which can be
toured by a knight. The shape in diagram (f) can be, although
the author had convinced himself it was not possible when
he first investigated it! (f)
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However, to return to the classical problem on a square
board, the mathematicians who investigated it tried to find
solutions with special properties. One type of solution was
to find a knight's tour which ended a knight's move from
the starting square. A solution of this type due to Euler is
shown below. Such a solution is said to form a re-entrant
path. The solution shown in (g) has a further intriguing
property in that one half of the board is completed before
the other half is entered.
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(g) Euler's re-entrant half-board solution (h) Euler's magic square solution

Try to find a re-entrant path on a 6 x 6 board.
There is a neat proof to show that a re-entrant path on

any board having an odd number of squares is impossible.
See if you can find the reason.

Re-entrant paths are possible on a variety of shapes. Try
this one (i).

Another clever solution due to Euler which defeated
many other seekers was that of a knight's tour whose squares
when numbered in the usual fashion formed an 8 x 8 magic
square (i.e. the sums of the numbers in any row or column,
but not diagonal, add up to the same total, in this case 260).
This square is given in (h). Check its 'magic' property and
investigate the symmetry of its path.

An interesting game of strategy for two players based on
a knight's tour can be played as follows. Start on any square
of a 5 x 5 board and produce a knight's path by players
taking in turn to make a knight's move from the last position
reached. The move must not land on a square previously
used and the winner is the last player able to move.

(i)
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90 Distance has a new
meaning
If you are a chess player you will be aware that the ease with
which a knight can reach a particular square is not very
closely related to its physical distance away. The knight's
peculiar leap-frog step which takes it from a square of one
colour to a square of another colour makes a nonsense of
our commonsense ideas about distance.

Suppose a knight is on a black square and a pawn is on
a white square next to it, then it will take a minimum of
three moves on the knight's part to capture the pawn. So,
in this sense, the adjacent white square is a distance of
three moves from the black square. This is shown in diagram
(a). In (b) is shown the reason why an adjacent black square
would only be considered to be a distance of two moves
away.

Diagram (c) shows all the squares that a knight can reach
from a white square in two moves. As they are all the same
distance from the knight they correspond to a knight's circle!
Why are they all white squares?

/

k y

2
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2

2

2
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2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

(c)

What distance are all the other unmarked white squares
from the knight?

Take a piece of 8 x 8 square paper representing a chess-
board and imagine a knight at one corner in a white square.
Now mark all the squares on the board to show their knight's
distance from the corner. How far is the opposite corner?

(a)

mifii•7•11

(b)
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91 Avoid that snooker
B

When a ball P is struck by a cue towards the side cushion of
a snooker table it bounces off as if the cushion is a mirror. A
typical path of a ball which is first hit towards the side
cushion AB is shown in diagram (a). Always supposing there
is no ball in its path the ball will then be 'reflected' off the
end cushion BC followed by the side cushion CD etc. as
shown until it comes to rest.

In the game of snooker the problem is often to strike the
cue ball P to make contact with a particular coloured ball
which has been purposely snookered (hidden) behind other
balls by one's opponent. If any other ball is hit then points
are lost so the skill of the game is to learn how to use the side
walls of the table to bounce the cue ball onto the target ball.

(b)

Diagram (b) represents a situation where Q, the target ball,
is snookered by three other balls. In this case the cue ball can
be bounced off the end cushion BC. To decide where the cue
ball must strike BC, mark in Q' the mirror image of Q in BC,
and hit the cue ball towards Q'. The cue ball will then auto-
matically 'reflect' off BC towards Q.
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This method can be neatly extended to get out of trickier
situations (at least in theory!) where the ball is bounced off
two or more cushions. Diagram (c) shows how the cue ball
qan be struck to bounce off AB, then off BC before hitting
the target ball T.

Because the cue ball is to bounce off BC towards T, it
must travel towards BC in the direction of T\ where T' is
the mirror image of T in BC. To do this it must travel
towards AB in the direction of T", where T" is the mirror
image of T' in AB.

Find where to hit the cue ball P to make contact with
the target ball T in the following situations.

o o

o o

o o

(d) (e) (f)
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92 Euler's relation
Euler discovered a simple relation connecting the numbers
of vertices, edges and faces of polyhedra which has come to
be seen as an important theorem in the new branch of mathe-
matics known as graph theory. Complete the table.

Polyhedron Vertices Edges
(E)

Faces
(F)

V-E

Cube

Tetrahedron

Pyramid

Triangular
prism

Octahedron

Hexagonal
prism
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You should now be in a position to state Euler's relation
for yourself.

Check your guess by seeing if the relation is satisfied on
other polyhedra.

Euler only saw his relation as a property of polyhedra, but
later mathematicians realised that the relation is really about
networks on a surface of a sphere or in a plane.

(b)

Consider the network in (a). It has three nodes A, B, C;
four arcs p, q, r, s; and it divides the surface into three
regions 1, 2, 3. These numbers satisfy the relation

N-A+R=2

where TV is the number of nodes, A the number of arcs, and
R the number of regions. Do you see any similarity with
your relation for polyhedra?

Now test the relation above for other networks.
Did you try any networks which were not connected

such as the one in (b)?
You will find that the relation above will need to be

modified depending on the number of separate parts to
the network. See if you can find a formula which will be
true no matter how many parts there are in the network.

The relation between Euler's relation and the network
relation can be seen in the following way:

R
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Imagine a cube made of an elastic material which can be
stretched as shown and then flattened into a network in a
plane. Each vertex of the original cube is now a node in the
network. Each edge of the original cube is now an arc in the
network.

Each face of the cube is now a region in the plane except
for plane ABCD, but this can be replaced by the region
outside the network.

This kind of transformation can be carried out on all the
polyhedra considered with similar results but, be warned,
polyhedra with holes need more thought.

Euler's relation can be generalised even more by looking at
the ways in which three-dimensional space can be divided
into different regions.

Consider the tetrahedron which is the simplest polyhedron.
It divides space into two regions and

where R is the number of regions. Now look at the cube
fastened to a pyramid. This compound divides space into
three regions. There are: nine vertices, sixteen edges and ten
faces.

Here again

V-E+F-R=O

which suggests another relation springing from Euler's
original one. Try it out on other ways of dividing up space.

79



93 Curves from intersecting
circles
Many interesting curves and patterns can be found by draw-
ing sets of intersecting circles. Two of these are shown here
to give you a start.

In the first example two sets of circles are drawn from two
centres A and B. Here the original drawing was made with the
distance AB = 12 cm and the circles increasing in radius by
1 cm at a time. A set of circles all drawn with the same centre
and looking like the ripples formed when a pebble is dropped
into a pool are called concentric. When two concentric sets of
circles are drawn as below with the circles equally spaced
then their intersections lie on sets of ellipses. Four of the
ellipses have been drawn in. The ringed numbers give a clue
to why the ellipses are formed. For the ellipse labelled 20
you will find that for every point P on it AP + BP= 20.

This is easily checked. Take, for example, the point which
is on the eighth circle from A and you will find that it is on
the twelfth circle from B.
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\ \ \

Try marking in the ellipses corresponding to 18 and 26. If
you have access to a photocopier then it is a good idea to
draw two sets of intersecting concentric circles and make
several copies of them before marking in the ellipses. Above
can be seen the way in which shading in the alternate regions
in a chessboard fashion can also highlight the ellipses and
make an attractive pattern into the bargain.

Can you see another family of curves in this diagram?
The second example is shown on the

right. The curve which appears as the
boundary of all the circles is known as a
cardioid.

To produce this diagram start with a
base circle and mark a point A on it. All
the other circles are formed by taking
different points on the circumference of
the circle and adjusting the radius so that
the circles go through A.

Draw as many circles as you want to get
the boundary clearly.

What will happen if you start with the
point A not on the circumference of the
base circle?

"
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94 Make yourself a ruled
surface

Take two discs of plywood, hardboard or thick card about 8
cm in diameter and drill 24 small holes equally spread around
the circumference. Metal lids could also be used from old
paint tins for example, although you could buy the plywood
bases used in cane work from a craft shop. Now screw the
discs through their centres to the ends of a piece of dowel
about 15 cm long. Thread shirring elastic through the discs so
that the elastic is parallel to the dowel as shown in the left-
hand diagram above. The effect is that of a circular cylinder.

Now hold the bottom disc and turn the top disc. The
effect will be to pull the shirring elastic at an angle and the
lines they form will appear to all lie on a curved surface
known as a hyperboloid.

This surface is called a ruled surface because of the way
the straight lines lie in it. Contrast this with the surface of a
sphere for example on which straight lines are impossible.

You will probably recognise the surface as that of the giant
cooling towers seen at some electricity power stations. It is
also the shape which a soap film takes up when it forms
between two wire rings.
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95 Squares
This is another version of
noughts and crosses which can
be played on squared paper.
Mark off a board which is a
6 x 6 square or larger.

Players mark noughts and
crosses alternately and the
winner is the first player to
make four of his marks at
the vertices of a square. In
the game shown the player
marking noughts has won.

How many ways of making a square on a 6 x 6 board are
there?

Another version of the game is to play until the board has
been filled with marks and then assess which player has the
larger number of squares.

Yet another alternative is to play to avoid making squares.
The loser is then the first player to form a square.

<

A

V

X

>

X

X

0 X

96 The hungry bookworm
A bookworm started eating its way through a five-volume set
of encyclopaedias starting at the front cover of volume I and
ate its way through to the outside of the back cover of volume
V. If each volume was 3 cm thick how far had the bookworm
travelled? (You may assume the volumes are stacked in
numerical order.)
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97 Place the motorway
junction
Building roads can be very expensive so civil engineers try to
make them as short as possible. The line of a new motorway
as it passes by the small towns of Green Glades and Pleasant
Pastures is to be as straight as a ruler. It is proposed to make
one junction on the motorway for the local inhabitants and
join it to the towns by straight roads as shown. Where should
the junction be positioned to minimise the total length of the
road G to / to PI

Line of proposed
motorway

2 miles

Green Glades

Pleasant Pastures

98 How fast can you cycle?
In a time trial a cyclist wanted to average 40 km per hour
between two towns A and C which are 10 kilometres apart.
A village B is sited exactly halfway between A and C and is
reached after a long climb up from A. When the cyclist had
climbed up to B he calculated that his average speed so far
was only 20 km per hour. How fast must he ride on the
descent from B to C if he is to attain the overall average
speed of 40 km per hour?

B
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99 The bob-sleigh run
It is proposed to design a new
bob-sleigh run at a well-known
ski resort. The run is to start
at the summit of a hill, S, near
the ski lift and end 500 m
lower in the village V. No
expense is to be spared to
build the run to make the
descent as fast as possible.
What line should the path take
from S to V to achieve this?

500 m

lOOOm

100 Know your vowels!
This table contains each of the
five vowels - A, E, I, O, U - five
times, Show how to cut the
5 x 5 square into five different
pieces each of which contains
all the vowels once only.

When you have solved this
one try making a similar one
for yourself.

101 Space filling
A unit cube can be fitted together with seven other identical
cubes to make a larger cube with an edge of 2 units. How
many unit cubes are needed to make a cube with an edge of
3 units?

Given a supply of identical regular tetrahedra (i.e. tri-
angular pyramids whose faces are all equilateral triangles) can
you fit them together to make a larger tetrahedron, and if so
how many would you need?

E

U

O

I

A

A

E

I

U

O

I

u

A

E

U

O

E

O

A

E

I

O

A

I

U
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102 Diagonals of a rectangle

/ = 6

6 - 4

/ = 7

You will need some squared paper for this activity.
Mark out different size rectangles on the squared paper

where the length (/) and the breadth (b) is a whole number of
squares. Now draw in a diagonal of each rectangle and note
the number of squares which it crosses, d. Make a table as here:

There is a nice relationship connecting /, b and d. See if
you can find it.

You may need several examples before you spot the
connection but it is not difficult.

/

6

7

b

3

4

d

6

10

103 Straight lines divide a
plane
The diagram shows how three straight lines drawn in a plane
can divide it into at most seven regions.

Complete the following table showing the maximum
number of regions which can be formed in each case.

No. of lines (n)

No. of regions (r)

0 1 2 3

7

4 5 6 7

By continuing the sequence without drawing lines can you
tell how many regions can be formed with (i) 10 lines, (ii)
100 lines?

If you think this was easy try yourself out on finding the
maximum number of regions which three-dimensional space
can be divided into by intersecting planes!
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104 Number sequences -
differencing
The last activity and some later ones will involve forming a
sequence of numbers and then trying to detect the under-
lying pattern so that it can be continued indefinitely. One
technique which can help in many situations is to look at
the difference between the numbers of the sequence and
their next door neighbour. In the following sequence it is not
at all obvious what the next term would be until you form
the differences:

Sequence 3 8 15 24 35
Differences 5 7 9 11

It is clear now that, with the evidence available, the next
difference is likely to be 13 and then the sixth term in the
sequence would be 48.

What is the tenth term in this sequence?

Find the next term in each of the following sequences by
using this difference method:

(i)
(ii)
(iii)
(iv)

3
3
2
4

5
8
3
6

9
18
8

10

15
33
17
18

23
53
30
34

In each of the above the sequence of numbers formed
from finding the differences was easy to continue so that the
original sequence could soon be determined. The original
sequence however may have led to a sequence of differences
which was not obvious and then the differences of the
differences can be found as in the following example.

Sequence 3 7 12 19 29 43
First differences 4 5 7 10 14
Second differences 1 2 3 4

What are the next two terms in the original sequence?

You should have noticed that the new sequence of numbers
formed by differencing is one less at each stage so that you
will require more terms of the original sequence to determine
the pattern the more complicated it becomes.
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Find the next term in each of the following sequences,
taking differences as often as you require to determine the
pattern:

(v)
(vi)
(vii)
(viii)

0
0
0
0

2
1
1
2

5
4
3
7

11
12
10
17

22
28
28
36

40
55
65
72

131
141

Make up some sequences yourself by starting with an easy
one and using it as a sequence of differences. For example, if
you take

1 2 3 4 5

as the starting sequence and choose 8 as the first term of the
sequence for which this will be the differences then you will
generate

1
11 14 18 23

This sequence could then be taken as the differences for a
sequence starting with 3, say:

3 11 20 31 45 63 86

In this way you can make them as complex as you like. Work
with a friend and interchange your sequences for the other
to unravel.

105 Number patterns from
dotty patterns

For this activity you will need either some dotty paper, a
pinboard or a pegboard.

Diagram (a) shows the first three squares of a sequence
starting from the one in the middle and growing outwards
from the central dot.

From this sequence two number sequences can be
constructed by counting
(i) the number of dots on the perimeter of each square,
(ii) the number of dots inside each square.

What is the tenth number in each sequence?
How about the hundredth number?

(a)



Another sequence known as the triangle numbers is
formed by making a sequence of right-angled triangles as
shown in diagram (b), and counting the number of dots
inside each triangle:

1 3 6 10 . . .

How many dots would there be inside the tenth
triangle?

(b)

Diagram (c) shows how a square of dots can be divided
up into a sequence of odd numbers so giving the pattern:

1+3
1 + 3 + 5
1+3+5+7
1+3 + 5 + 7+ 9
1+3 + 5 + 7+ 9+ 11

= 22

= 32

= 62

What is the sum of the first ten odd numbers?
Find the sum of the odd numbers

1 3 5 7 . . . 39

What is the sum of the odd numbers between
60 and 100?

•

•

•

•

•

•

•

•

• • •

11 •

(c)

106 Squares on a pinboard
How many different sizes of squares can you make on pin-
boards sized 2 x 2, 3 x 3, 4 x 4 , . . . , 8 x 8? Record your
results.

Write down the areas of the squares which can be made on
an 8 x 8 pinboard in increasing order of size.
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107 From polygons to frieze
patterns

3-gon 4-gon 5-gon

(i) What are the special names we give the above polygons?
Can you give the names of any polygons with more
sides?

(ii) How many diagonals can be drawn from one vertex
(corner) of a polygon with 20 sides?

(iii) How many diagonals are there for a polygon with
(a) 4 sides, (b) 5 sides, (c) 6 sides,. . . n sides?

(iv) What is the largest number of diagonals you can draw
in (a) a 5-gon, (b) a 6-gon, (c) a 7-gon without the
diagonals crossing?

Triangulation, the process of dividing a polygon into a
number of triangles, is the basis of an important surveying
technique but here we are more interested in the different
ways a polygon can be triangulated and how to record the
results.

The polygon ABCDEF in diagram (a) has been triangulated
by drawing in the three diagonals A C, AD and DF. Find two
other distinctly different ways in which three diagonals could
have been drawn to triangulate the same polygon.

The 7-gon in diagram (b) has been triangulated by four
diagonals. How many other distinct ways can you find?

A neat way of recording the different triangulations is to
number each vertex by the number of triangles which meet
there. The triangulation of the polygon shown here could
then be recorded as

1 4 1 3 1 3 2

Although which vertex you start at and whether you go
clockwise or anti-clockwise would give a different number,
the same digits would occur in the same sequence.

1 + 4 + 1 + 3 + 1 + 3 + 2= 15

Would a different triangulation of a 7-gon lead to the same
digit sum?

Explain your result.

6-gon

B

(a)
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Take polygons with different numbers of sides and record
the distinct ways of triangulating them as suggested above, or
otherwise. Are you able to predict, without drawing, how
many distinct ways a 10-sided polygon can be triangulated?

Frieze patterns

The sequences of numbers formed by triangulating polygons
can be used to make some fascinating number patterns.

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 4 1 3 1 3 2 1 4 1 3 1 3 2

3 3 2 2 2 5 1 3 3 2 2 2 5

2 5 1 3 3 2 2 2 5 1 3 3

3 2 1 4 1 3 1 3 2 1 4

1 1 1 1 1 1 1 1 1 1

The first line is just a sequence of 1 s.
The second line is a sequence formed by the numbers

generated when triangulating a polygon.
The third line is formed in the following way:

r row 1
p q row 2

s row 3

Form the product pq of two next door neighbours in row
2. Subtract 1 to get (pq — 1). Obtain the number s to go in
the third row between p and q by dividing pq — 1 by r, the
number in row 1 above it:

__pq- 1

The numbers in all the other lines are obtained using the
same rule on the two previous rows. For example:

row 2 1 4 1 3 1 3
\ / \ / \ / \ / \ / \

row 3 3 3 2 2 2 5
\ / \ / \ / \ / \ /

row 4 2 5 1 3 3

( 3 x 3 ) -. 1 ( 3 x 2 ) - 1 ( 2 x 2 ) - 1 ( 2 x 2 1 - 1 ( 2 x 5 ) - 1
4 1 3 1 3
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Try making some of these number patterns for yourself.
The greater the number of sides you have in the polygon
which you triangulate to obtain the sequence of numbers for
the second line, the broader will be your frieze. Here is
another example:

1 1 1 1 1 1 1 1 1 1 1 1 1 1
\ /

1 2 3 2 2 1 4 3 1 2 3 2 2
\ /

1 5 5 3 1 3 11 2 1 5 5 3
\ /

2 8 7 1 2 8 7 1 2 8 7
\ /

3 1 1 2 1 5 5 3 1 3 1 1
\ /

4 3 1 2 3 2 2 1 4
\ /

1 1 1 1 1 1 1 1

\ /

Note the diagonal patterns as well as the horizontal ones.
Frieze patterns are a new relatively unexplored field. See
what you can find out for yourself.

108 Games on a pegboard for
one to play
A piece of pegboard (hardboard with holes in) and some
coloured pegs is all you need to spend hours happily playing
the following solitaire games. Alternatively you could use
counters or pawns on a chessboard.

Leapfrog

The first game requires a line of seven holes, three pegs of
one colour (say black) and three pegs of a second colour (say
red). Place them as shown with an empty hole between them.
A move consists of (i) moving a peg into the next position if
the hole is empty, or (ii) jumping over one piece to an empty
hole beyond like a capturing move in draughts.

The two kinds of move are illustrated on the next page and
follow in turn from the starting position.
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The object of the game is to find the smallest number of
moves to interchange the black pegs and the red pegs.

Vary the game by having different numbers of pegs at
each end and see if you can find a formula for the number of
moves required for x black pegs and y red pegs to change
ends.

All change!

The second game is very similar to the first game but played
on a square board. A 5 x 5 board is shown here with the
starting position. There are twelve black pegs, twelve red pegs
and an empty hole in the middle.

Moves are as in 'Leapfrog' but now the pegs can be moved
from left to right or up and down. No diagonal moves are
allowed.

Show how to interchange the two sets of pegs in 48 moves.

Solitaire

The third game has a very long
history and is played across
the world. It is available in a
commercial form from cheap
plastic versions to expensive
ones in wood with coloured
marbles for the pieces. How-
ever pegboard and coloured
pegs make a suitable alternative.

In this game the board has 33 holes arranged in a cross as
shown here. There are 32 pegs all of the same colour and
they are initially arranged as shown leaving the central hole
empty.

This time the only allowable move is to jump over an
adjacent peg to an empty hole beyond. The peg which has
been jumped over is removed from the board. Only across
and up and down moves are allowed and the object is to
remove all but one of the pegs.

There are many solutions but the best are considered to be
those which end with the last peg in the centre.

Have a go!
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There are several traditional problems on a solitaire board
where the player has to try to end with a peg in the centre.
Here are three of them.

o o o
o % o

o o o ® o o o
o o o % o o o

o o o
o o o
Latin cross

109 Two of a kind

o o o

o o o
o o o

Pyramid

Shapes P and Q can each be divided into two identical pieces.
They have been designed on the same principle so that when
you have found the solution to one shape the other's solution
should soon follow.

O

o o o
o o o

o

o o o
o o o

Lamp

110 Colouring a cube
What is the smallest number of colours needed to paint a
cube so that no two adjacent faces are the same?

How many distinctly different cubes can be obtained if
four colours are used?

(A face can only be one colour and adjacent faces must be
different colours.)
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I l l Cutting up a circle
This sequence of diagrams shows what happens when a
number of points are taken on the circumference of a circle
and all the chords joining the points are drawn in. If you
took a pair of scissors and cut along all the lines in each case
the circle will be cut into 2, 4, 8, 16 pieces.

How many pieces will the circle end up as if you do the
same with six points on the circumference?

Do not jump to conclusions!

112 Square relations
The number 24 has the property that it is one short of a
square number, and its double is also one short of a square
number.

24 + 1 = 25 = 52

(24 x 2) + 1 = 49 = 72

What is the next number with the same property?

113 The numerate gardener
A gardener had a number of equal square paving slabs which
he arranged to form two larger square patios of about the
same size as each other. Being a dab-hand with figures he
realised that with the same number of paving slabs he could
have produced two square patios but this time with one
much larger than the other. How many paving slabs did the
gardener have?
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114 Magic triangles
The numbers 1, 2, 3, 4, 5, 6 have been arranged in a triangle
so that the sum of the numbers along each side is always the
same, 10. Show that the same numbers can be put on the
triangle in a different way so that the totals along each side
are still constant but equal to another number. There are
three possibilities apart from the one shown. Numbers
arranged to form a triangle like this are called magic.

Now try arranging the following sets of numbers to form
magic triangles:

(i) 1 2 3 5 6 7
(ii) 1 2 3 4 6 7

There are two different arrangements in each case.

115 Number patterns
There are many fascinating number patterns to investigate.
Here are a few to start you thinking.

1 Choose a digit. Suppose you choose 5. Multiply 5 by 9 to
obtain 45. Now work out

12 345 679 x 45

Are you surprised at the answer?
Try another digit such as 3, multiply 3 by 9 to obtain

27 and then work out

12 345 679 x 27

Can you explain the answer?

2 This is similar to the above. Choose a digit, for example 2,
multiply 2 by 7 to obtain 14, then work out

15 873 x 14

Investigate other digits and explain the results.

3 Complete the following and explain the pattern.

143 x 2 x 7 =
143 x 3 x 7 =
143 x 4x 7 =
143 x 5x 7 =
143 x 6x 7 =
143 x 7 x 7 =
143 x 8x 7 =
143 x 9 x 7 =
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4 Can you explain the patterns which emerge from the
following calculations?

(i) (0 x 9) + 1 = (ii) 6 x 7
( 1 x 9 ) + 2= 6 6 x 6 7

(12x9) + 3 - 666x667 =
( 1 2 3 x 9 ) + 4 = 6666x6667 =

(1234 x 9) + 5 = 66666 x 66667 =

116 Surprising subtractions
Choose any four digits such as 3, 6, 2, 8 and rearrange them
to form the largest and smallest numbers possible, namely
8632 and 2368.

Subtract the smaller number from the larger number and
repeat the process using the four digits in the answer as the
new starting point:

8632 _6642 7641
2368 2466 1467

6264 4176 6174

In this example the digits 1,4,6,7 occur in the answer at
the second stage and no new numbers are generated from then
on.

Investigate what happens with different sets of four digits
as a starting point and continue subtracting until no new
numbers occur. What do you notice?

What is the longest chain of subtractions you can find
before nothing new occurs?

117 How large a number can
you get?
Start with any six digits such as

5 3 9 7 2 4

and from them make two three-digit numbers, for example
324 and 579, where each digit has been used once only.

Now (i) add your numbers : 324 + 579= 903
(ii) multiply your numbers: 324 x 579 = 187 596

The object is to find as large a sum and as large a product
as you can.
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Can you decide on a strategy which would always give you
the largest answers first time? If you can you can challenge
your friend to see who can first find the largest number from
a given set of six digits.

Variations on this would be to make up three two-digit
numbers and look for the largest sum and product, or start
with seven digits say and consider a three-digit and four-
digit number.

118 Unit fractions
The Babylonians had no notation for a fraction such as •§ or
•f but only for unit fractions, that is fractions with 1 on the
top, such as \ or 7 . This meant that a fraction like •§ would
have to be expressed as a sum or difference of unit fractions.

Thus

2. - 1. + ± n r x + ± + ±
3 " 3 + 3 O r 3 + 6 + 6

Can you find ways of expressing fractions as sums or
differences of different unit fractions?

The following examples may give you some clues.

J, JL - _l_
3 ~~ 4 ~ 12

A - JL + -L + - 1 -
5 ~" 5 T 6 x 30

4 ~ 4 x 5 x 6 T 20 x 24 T 30 x 120

119 Four 4s
This well-tried activity has been responsible for many person-
hours of interest and frustration. The idea is to express as
many numbers as you can from 1 to 100 using exactly four
4s and any mathematical symbols you know.

For example

15 = ^ + 4 or (4 x 4) - f

16 = (4 x 4) + 4 - 4 or (4 x y/4) + (4 x ̂ /4)

There are often a number of ways of expressing the same
number using four 4s as shown here but some numbers can be
difficult to express. Apart from the four basic rules of+, - ,
x , + and^/ illustrated here you may find the following
helpful.
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4 ! m e a n s 4 x 3 x 2 x 1 = 2 4 a n d is called ' fac tor ia l f o u r '

1 - 1 0
•4

• 4 means 0.4 recurring and is equal to -f

so — = 9
•4

You should now be able to find at least one way of expres-
sing most, if not all, of the numbers from 1 to 100.

It may be fun to do this with a partner and challenge a
pair of friends to see who can find the most in a given time.

120 Calculator words
Because of the way digits are formed on a calculator display
they often look like letters when viewed upside down. Take,
for example, the number 710.77345 which looks like this
when displayed on a calculator.

Now view the display upside down and you should recog-
nise a well-advertised petroleum product!

Because of this dual interpretation of the calculator display
you can have a lot of interest and amusement.

Try 'translating' the following:

A calculator never tells 5317.

317537 went fishing off 3007 on a 0.717 for 3705 but only
caught some 5733.

Instead of giving the numbers directly they can be replaced
by calculations as the following passage illustrates.
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(68 x 99) + 986 decided to (2486 + 3927 + 1322)

V(264 196) walking (10 609 x 5) because (21 386 + 629)

had a (723 x 48) + 303 (852 + 109) in one and a

(2463 + 1977 - 736) in the other. They hurt like

(852 + 202 + 102 + 32) and made him feel quite ( 2 x 5 x 7 x 1 1 + 1).

ShELL. OIL contains the additive ShOZZ.OIL. Remove it
and what do you get?

Make a list of the digits on your calculator which, with a
little imagination, can be interpreted as letters when viewed
upside down. You will be surprised how many there are.

Next make a word list using these letters and their number
equivalent. Do not forget that the order becomes reversed so
that, for example, the word 'heel' is not represented by 4337
but by 7334.

Now you are in a position to write your own story incor-
porating 'calculator words'. Replace the words by their
number equivalents or better, by calculations whose answer
gives the number equivalent.

121 Some calculator challenges

(i) 56 406 is the product of two consecutive numbers.
What are the two numbers?

(ii) 357 627 is the product of three consecutive odd
numbers. Find them!

(iii) 1405 is the sum of two consecutive square numbers.
What are they?

(iv) The volume of a cube is 200 cubic centimetres. Find
the length of the edge of the cube as accurately as you
can with your calculator.
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122 A calculator crossword
The clues are given below
in two forms, in word form and
number form.

When you have finished
each calculation, turn your
calculator display upside
down to find the word.

Use the word clues and cal-
culator clues to check each
other.

Word clue

Across
2. Far from the truth.
4. A large edible bird.
6. 4 across might have

produced many precious
ones.

7. At the heart of campa-
nology.

8. Bisect Isis.
9. Part of the ear.

12. Boy's name.
14. Help! not quite.

Calculation

Across
2VO00489)
4. 1852 +781
6. 809 x 7

7. 10127-2389

8.(72x 323)+ 456
9. 22 +5 2 +232 +572

12. (467x680)-23
14.3789 + 7578

Down
1. Cavities.
2. A heron often stand on

one.
3. A close friend of 12 across. 3. 11 545 + 7265 + 12763
5. Traders do this. 5. 852 + 222 + 52

7. The Good Book. 7. 198 x 191
10. Busy workers. 10. (57 + 16)2 + 32

11. Exists. 11.2856-5-56
13 and behold! 13.(28x18)^720

Down
1. [(188x463)+ 23-5]+50 000
2. 72 x 13

1-

When you have completed this crossword, try constructing
your own.
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123 A mining bonanza

In the outback of Australia a mining company made test
drillings into a rich mineral reserve. The evidence of the
survey was mapped out on a square grid and the value, in
millions of pounds, of the deposits indicated by numbers
as shown above.

Because of the lie of the land and the open-cast mining
method employed the company must begin at the square
marked 'Start' and move from square to square either up
or down, or across. Diagonal moves are not possible, and
the same square cannot be mined twice.

Find the most profitable route for the miners for the
first thirteen squares they mine.

One route for example could follow the squares
24 70 6 77 30 66 22 73 19 98 1 90 14
This would give a profit of £590 million.
You can do better!

32

66

30

77

32

68

34

80

22

84

6

99

21

87

19

73

41

70

44

72

19
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52

73

24

81

56

92

1

72

16
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27
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5
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57
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75

42

99

14

83

45

67

42

75

27
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92

11

98

17
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124 Hundreds, tens and units
Take any three-digit number such as 235. Write down the
number formed by putting its digits in reverse order, 532.

Subtract the smaller number from the larger.

_ 5 3 2
" 2 3 5

297

Now write down the number formed by reversing the order
of the digits in the answer and add to the answer.

297
+ 792

1089

When you have tried this on a few more numbers you
should be able to predict the answer and baffle your friends.

125 Magic circles
Put the numbers 1, 2, 3, 4, 5,
6 into the squares so that the
numbers on each circle add up
to the same amount. When
this happens the circles are
said to be magic.

Can you find an easy rule
for giving six other numbers
which could be put in the
squares to make the circles
magic?

You should now be ready
to tackle this magic circle
puzzle for its solution is
based on the same principle.
Put one of the numbers
1 , 2 , 3 , . . . , 10, 11, 12 at
each intersection of the four
circles in the diagram so that
the circles are magic.

Is it obvious that the magic
number for each circle is 39?
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126 Number wheels
The three numbers of each spoke and each edge of the wheel
all add up to the same number. What is the number?

Find all the missing numbers.
Now arrange the numbers 1 to 19 in a similar wheel so that

the total along each of the twelve lines is 22.

127 Make a century
By putting arithmetical signs in suitable places between the
digits make the following sum correct:

1 2 3 4 5 6 7 9 = 100

There is more than one solution. See how many you can
find.

128 Division patterns
1 Use your calculator to work out

[ 2 3 4 5 6

7 7 7 7 7 7

as decimal fractions.
What do you notice about the first six digits which

occur after the decimal place?
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Without using your calculator, write down the decimal
fractions for f, 7 , ^ , to 6 decimal places.

If the calculator you were using had a longer display
what would the first twelve digits be for 7? Can you see
how to write down the recurring pattern for any division
by 7?

With any division sum it is a fact that the division
process terminates at some stage or it generates a sequence
of recurring digits, for example

— = 0.1875
16

— =0.428 571428 571428 571 . . .
7

When dividing by a number which can be expressed as
a power of 2 multiplied by a power of 5 such as 16, 20,
64, 125, 320 then the division process will always terminate.
Why? However, when dividing by any other number the
division process will always lead to a sequence of recurring
digits. With division by 7 you will have found a pattern of
six digits recurring, and in general on division by a number
n the recurring pattern will be of length n—1 or less. Can
you explain this?

2 A calculator was used to investigate the patterns of digits
when dividing by 17 but its capacity was not large enough
to exhibit the full cycle of repeating digits. The following
calculations gave

— = 0.058 823 5
17

— = 0.117 647 1
17

— = 0.1764705
17

— = 0.235 294 1
17

— = 0.294 117 6
17

Knowing that in this case the repeating pattern has sixteen
digits write down what the sequence of recurring digits
will be and give •& as a decimal fraction to twenty decimal
places. Try to predict rf> rf> etc. before checking with your
calculator.
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3 Try finding the repeating pattern of digits when dividing
by 19 using as few calculator divisions as possible.

4 Now try finding patterns for division by other numbers,
11 and 13 for example are particularly interesting.

129 Prime numbers
Prime numbers are those whole numbers which are only
divisible by 1 or themselves such as

5 29 41 83

The only even number which is prime is 2, for by defini-
tion all other even numbers such as 6, 10, 28, always have 2
as a factor in addition to 1 and themselves. It thus follows
that apart from 2 all prime numbers must be odd.

Which numbers are prime and how they are distributed
have fascinated mathematicians through the ages for they
do not conform to any simple pattern. Theorems about
them date back to Euclid in the third century BC when he
produced an elegant proof that there are an infinity of
primes.

Sometimes the primes follow one another very closely
such as

2 3 5 7 11 13

but at other times they can be much more infrequent. There
are only two primes between 23 and 37; what are they?

With numbers less than 100 you never have to go far from
one prime to the next but the gaps between primes soon
begin to widen after 100.

Find the next prime number after 113.
Even so with numbers less than 1000 it is rare to find ten

consecutive numbers which do not contain a prime.
How many primes are there between 190 and 200?
In spite of this mathematicians have proved that there are

sequences of consecutive whole numbers as long as you like
to name (e.g. 5000) which do not contain a single prime
number.

Many theorems about prime numbers have been suggested
and generally accepted although many of them still await
general proof.
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1 One of these known as the Goldbach conjecture was
suggested by Goldbach to Euler in 1742 with the request
for a proof. He suggested that

Every even number, other than 2, can be represented
as the sum of two primes.

Euler could not prove this nor has anyone to this day,
even though no exception to the theorem can be found.

Represent 28, 50, 100, 246 as the sum of two prime
numbers. Is the representation unique?

2 Apart from 2, all the prime numbers are odd so that the
difference between any two primes (other than 2) is an
even number. That may be obvious but what is interesting
is the belief that

Every even number is the difference of two consecutive
primes.

Show that this is true for the even numbers

2 4 6 8 10 12 14

If you find the smallest primes in each case you will not
need to exceed 250.

3 In 1848 de Polignac conjectured that

Every odd number is the sum of a prime and a power
of 2.

For example: 25 = 17 + 23

Choose some odd numbers at random to test
Polignac's conjecture. Is the representation unique?

4 Primes often seem to occur as pairs of consecutive odd
numbers such as 5 and 7, 17 and 19, 29 and 31. It is
believed that there is an infinity of such pairs but no-one
has yet come near to proving it.

There are only three such pairs between 150 and 200.
Find them!

5 Investigate the following conjectures.
(i) There is at least one prime between consecutive

square numbers,
(ii) Every prime except 2 and 3 is of the form 6n ± 1

where n is a natural number,
(iii) Any odd prime which is of the form An + 1 is equal

to the sum of two perfect squares.
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130 Generating prime numbers
One of the problems in trying to prove results about the
prime numbers is that the only way of deciding whether or
not a number is prime is to find its factors. Through the ages
people have searched in vain for formulae or routines which
will generate primes and some of their better attempts are
given here.
1 Consider the following sequence of primes and their

differences

11 13 17 23 31
2 4 6 8

Continue this sequence as long as it generates primes.
Because of the pattern of differences it shows that this

sequence can be generated by the quadratic formula

n2 +n+ 11

2 Find the value of

n2 +rc + 41

for different values of n and check whether or not the
number generated is prime or composite (has factors other
than 1 and itself).

This is a remarkable formula for it generates a prime
number for all but seven of the numbers from 1 to 80.
What is the first value of n for which n2 + n + 41 is not
prime?

3 An even better formula is

n2 -19n+ 1601

for it gives a prime number for all whole number values of
n up to 80.

4 What is the smallest value of n for which

In2 + 29

does not give a prime?

5 In 1640 the mathematician Fermat thought he had dis-
covered a formula for generating prime numbers, namely

Find the numbers generated by this formula when n - 0,
1, 2, 3, 4. These numbers are prime.

It took more than 100 years before the mathematician
Euler showed that the number

225 +1

has the factors 641 and 6 700417.
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131 Some named numbers
Palindromic numbers

These are numbers such as 25452 which read the same
forwards as backwards.

Not counting single-digit numbers, which is the smallest
palindromic prime and which the smallest palindromic square
number?

How many other palindromic square numbers are there
less than 1000?

There are five palindromic primes between 100 and 200*,
which are they? Why are there no palindromic primes between
400 and 700? Show that all the palindromic numbers between
1000 and 2000 have a factor in common.

Excessive, perfect and defective numbers

Consider the number 8. Its factors, apart from 8 itself, are
1, 2, 4, and their sum is 7, which is less than 8. Because of
this the Greek mathematicians classified 8 as an excessive
number.

A number like 18, on the other hand, whose factors 1,2,
3, 6, 9 total 21 they called a defective number.

Some numbers have the very special distinction of being
equal to the sum of their factors. Such a number is 6 for its
factors are 1, 2, 3. These numbers the Greeks called perfect.
(i) Classify the numbers less than 30 into these three

categories,
(ii) Perfect numbers are few and far between. Euclid proved

however that any number of the form

2n-l (jn _ 1 }

is perfect when 2n - 1 is prime.
Find values of n to make 2n — 1 prime and hence find
some more perfect numbers.

Amicable pairs

Some pairs of numbers have the fascinating connection that
the factor sum of each is equal to the other. This mutual
support between two numbers has captured the imagination
of some mathematicians who have named them amicable pairs.

The smallest such pair is 220 and 284.

220 : 1 + 2 + 4 + 5 + 10 + 11 + 20 + 22 + 44 + 55 + 110 = 284

284: 1 + 2 + 4 + 71 + 142 = 220
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Euler made a study of such pairs and in 1750 published a
list of 60 of them. Surprisingly he missed the second smallest
pair, 1184 and 1210, and these were not discovered until
1866 when a 16 year old boy Paganini found them.

Find the divisors of this pair and check their close inter-
connection.

Further pairs to investigate are 2620 6232 17 296
2924 6368 18 416

132 Further number patterns
1 32 - 2 2 = 9 - 4 = 5 = 3 + 2

42 - 3 2 = 1 6 - 9 = 7 = 4 + 3
52 - 4 2 =25 - 16 = 9 = 5 + 4

Explain the pattern and show that it is always true.

2 3 2 = 9 2 x 4 = 8
42 = 16 3 x 5 = 15
52 = 25 4 x 6 = 24

Extend the pattern. Is it true for large numbers?

3 Investigate the successive powers of a whole number
such as 3 3 2 3 3 3 4 3 s . . .

In particular note the pattern formed by the last digit.

4 Complete the following and continue for two more lines:

1 =
3+ 5 =

7+ 9+ 11 =
13+15 + 17+ 19 =

Can you make a general statement to describe the pattern?

5 Complete the following patterns and make an observation
on what you find:

1= 13 =
1 + 2 = I3 + 2 3 =

1 + 2 + 3= l3 + 2 3 + 3 3 =
1 + 2 + 3 + 4= l 3 + 2 3 + 3 3 + 4 3 =

133 Pythagorean triads
Pythagoras' theorem relating the lengths of the sides of a right-
angled triangle is well known (see also Activity 64). Also
widely known is the fact that a triangle whose sides are in
the ratio 3 : 4 : 5 is right-angled as 32 + 42 = 52 .
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The Pythagorean triads are sets of whole numbers like
3, 4 and 5 which satisfy the relation a2 + b2 = c2 and can
thus be used as the lengths of sides for a right-angled triangle.

Use your calculator to produce a table of the squares of
the numbers from 1 to 50 and see how many triads you can
find.

Can you find two different right-angled triangles with
whole-number sides whose areas are equal?

A similar problem in three dimensions is to find possible
lengths for the edges of a cuboid (i.e. a rectangular box) so
that the edges and the diagonal are all whole numbers.

a2 + b2 + c2 = d2

One solution is

I2 + 2 2 + 22 =32

Can you find some more?

134 Guess the rule
One person A acts as a computer which is programmed to
compute a new number from any number given to him. The
others in turn give A a number x which he processes, using
the rule on which he has decided, and records both it and the
number y he has computed from it for all to see. The object
is to guess the rule being used by A but before being allowed
a guess a person must give a number x and declare correctly
the number }> which A would compute from it.

Here are some suggestions for rules to get you started.
Double the number.
Add 3 to the number.
Square the number.
Multiply by the next number.
Multiply by the previous number.
Take the next odd number.
Take the next prime number.
Double and add 1.
Take the next number if the given number is even but the
previous number if the given number is odd.
Give the sum of its prime factors.
Square and take away 1.
Give the sum of the digits forming the number.
Take the number from 100.

x y

Rule?
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Another version of the game is to have two input numbers
x and y, and A then has some rule to combine them.

Yet another version is for A to have a set of numbers in
mind, say the multiples of 3, and the other players suggest
numbers which A replies by saying in or out depending on
whether they are in his set or not. The object is now to decide
on what set of numbers A has in mind. In playing this version
it is helpful to decide beforehand to limit the numbers to say
0 to 100 and for the sets thought of by A to have several
members so that a reasonable proportion of the numbers
suggested by the players will be in A's set.

135 Intriguing multiplications
Playing with his calculator one day Johnny multiplied
together the numbers 159 and 48 and obtained 7632. On
reflection he realised that the equation

159x48 = 7632

contained each of the digits 1, 2, . . . , 9 once only. He could
hardly believe his luck and felt the result must be unique.
But he was wrong! There are several other pairs of numbers
whose product gives a sum which uses all the digits only
once. Can you find any of them?

Another intriguing product is

16 583 7 4 2 x 9 = 149 253 678

where all the digits occur once on each side of the equality
sign. Can you find any other products with this property?

136 Equate the diagonals

The edges of a box are of length
a, b and c units where a, b, c
are whole numbers. Using
Pythagoras' theorem it is easy
to show that if d is the length
of the diagonal then

d2 = a2 +b2 +c2

Show that a box with dimensions 4, 5 and 6 units has the
same length diagonal as a box with dimensions 2, 3 and 8
units.

Find other pairs of boxes whose edges are a whole number
of units and whose diagonals are equal. There are at least
three more solutions where all the edges are less than 10 units.
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137 Magic stars
Put numbers in the empty circles of stars (a) and (b) so that
the numbers along each line of both stars have the same total.

(a) (b)

Stars (c) and (d) are also magic (i.e. the numbers along each
line have the same total) and each have the same magic
number. Further, the missing numbers in each case are 1,3,
4, 5, and 7. What more help do you want!

(c) (d)

138 Safety first
(a) is an addition sum in disguise. Each letter stands for a
different digit. S, for example, represents 3. What do the
other letters represent?

(b) is another classic problem of the same kind.

c
R

DA

RO
OA

NG

(a)

S
D

E

S
S

R

S
M

MO

E
0

N

(b)

N
R

E

DLit

Y
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139 The gambler's secret
strategy
A gambler made three dice.
The red dice had the numbers 2, 4, 9 twice on its faces.
The blue dice had the numbers 3 ,5 ,7 twice on its faces.
The yellow dice had the numbers 1,6,8 twice on its faces.

The total on the faces of each dice was the same but the
gambler was confident that if he let his opponent choose a
dice first and roll it he could select a dice which would give
him a better chance of obtaining a higher score. Explain!

140 The transportation
problem
Three bus companies Aristotle, Bacchus and Copernicus
provide the buses to transport the children home from the
four schools, Piltdown, Queen's, Ruritania and Scholars.

To transport all the children the number of buses required
at the schools are

P: 8 Q: 5 R:l 5 :5

and the bus companies have suitable buses at their depots
as follows:

A: 9 B:6 C: 10

The first table shows one of the many possible ways in
which the bus companies could allocate their buses to the
schools.

The next table shows the distance in miles from the bus
depots to the schools, for example it shows that from C to Q
is 6 miles.

Naturally the education authority wishes to keep its costs
as low as possible so it wants to find the best way of allocating <
the buses from the depots to the schools so as to reduce the
total mileage covered.

The above allocation gives a total bus mileage of

(3x 3) + (lx 2) + (5x 5) + (2x 3) + (4x 4) + (5x 5) + (4x6) + (1x8)

= 9 + 2 + 2 5 + 6 + 1 6 + 2 5 + 2 4 + 8

= 115 miles

By making better use of the shorter routes the total mileage
can be much reduced. In fact it can be made as low as 67
miles. How?

A

B

C

P

3

5

Q

1

4

R

5

2

S

4

1

9

6

10

B

5 7

Buses required

P Q

_Q

JQ

3

2

CJ
I

2

1

6

CJ
I

3

4

1

4

8
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141 'Mind reading' number
cards
Imagine you had a set of weights consisting of one each of

lkg 2 kg 4 kg 8 kg 16 kg

With these it would be possible to weigh any whole
number of kilograms from 1 kg to 31 kg.

Copy and complete the following table up to 31 to show
which weights are used.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

16

y

y

8

y

y
y
y
y

y
y
y

4

/

y
y

y

y

y

y
y

2

y

y

y
y

y

y

y
y

1

y

y

y

y

y

y

y

y

y

Now cut out five squares of card say 10 cm x 10 cm and
with a felt pen on the first card put clearly all the numbers
which correspond to a mass which needed the 1 kg weight.
The result is shown here in the diagram.

1

<?

17

25

3

//

27

5

/3

If

2<?

7

15

23

3/
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On the second card put all the numbers which correspond
to a mass which needed the 2 kg weight (i.e. 2, 3, 6, 7, 10,
11, etc.); on the third card put all the numbers which corres-
pond to a mass which needed the 4 kg weight in its weighing,
and so on.

You should now have five cards each with sixteen numbers
on them. To check that you have them right, turn to the back
of this book.

The game is to ask a friend to think of a number from 1 to
31 and then show him each of your cards in turn. If his
number is on a card he is to respond 'Yes', if not, 'No'. By
the time he has finished saying 'Yes' or 'No' to the last card
you should be able to tell him the number he had thought
of! 'How?' you may well ask.

Suppose your friend thinks of 21, then this will be on three
cards, the 1 kg card, the 4 kg card and the 16 kg card. All
you do is add together 1 + 4 + 1 6 , the cards to which your
friend responded 'Yes' to, and you will have 21. To help it
is useful to put a 1, 2, 4, 8 or 16 on the back of the appro-
priate card so that you can see it, but small enough so that
your friend will probably not notice it. You can then shuffle
the cards in any order and not look at the side you show your
friend at all which will baffle him even more.

Try to practise the use of your cards with someone else in
the family so you develop a slick technique before trying it
on your friends.

You can start again and make a table up to 63 using one
additional weight of 32 kg. Then you will need six cards
with 32 numbers on each.

142 3 x 3 magic squares
A magic square is a square of numbers in which every row,
column and diagonal add up to the same total such as the
example in (a) where every line totals 24, its magic number.

Complete magic squares (b) and (c) by first finding their
magic numbers from the completed line of numbers.

6

7 5 3

4

7

10

5

11

7

6

3

8

13

10

9

5

(a)

(b) (c)
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Now try (d) and (e), where more numbers are given to you
but the reasoning is not so straightforward.

14

8

3

15

13

11

9

1

15

7

5

(d) (e)

The formation of magic squares is an ancient pastime and
records of them go back in China to before Christ. The basic
3x3 square for example is attributed to the Chinese Emperor
Yu who reigned around 2200 BC. Their fascination has not
diminished with time as recent books on the subject testify.

All 3x3 magic squares have essentially one pattern which is
that of the square formed from the numbers 1, 2, 3, . . . , 9
(see(f)).

Other magic squares could be formed from this by, for
example, increasing all the numbers by a given number, say 6.
Alternatively the numbers 1 to 9 could be replaced by the
first nine odd numbers 1, 3, 5, . . . , 17.

There is another interesting way for generating a set of nine
numbers which will form a 3x 3 magic square which is not so
obvious.

Take any number to start (e.g. 3), then decide on two
different numbers (e.g. 2 and 5) which will be added to the
original number as shown below.

+ 5 +5

3 8 13

+ 2,

+ 2
10 15

12 17

Now take these numbers in the order

3 8 13 5 10 15 7 12 17

and in this order replace the numbers 1 to 9 in the basic
square. The result is magic square (g) with magic number 30.

Now produce some magic squares of your own.
Would this method work with decimal numbers or some

negative numbers?
Can you prove it to be generally true?

8

3

4

1

5

9

6

7

2

(f)

12

13

5

3

10

17

15

7

8

(9)
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143 4 x 4 and higher order
magic squares
The first evidence of magic squares being investigated in
Europe was in the early part of the fifteenth century. Agrippa
constructed magic squares of all orders from 3 to 9 which he
associated with the earth's planets then known. People
through the ages have always held a mysticism for numbers
(we still say 'third time lucky' and often believe 13 to be
unlucky, for example) and magic squares have their own
particular aura. The artist Dlirer did a woodcut which he
called Melancholy in which the date of its execution 1514
appears as part of a 4x 4 magic square in the picture.

16

5

9

4

3

10

6

15

2

11

7

14

13

8

12

1

In this magic square the rows, columns and main diagonals
all total 34. There are also many other sets of four symmetric-
ally placed numbers in the square which total 34 such as

16 13 4 1 and 3 8 14 9

What other sets can you find?
With the numbers 1, 2 . . . , 16 it is possible to make 880

fundamentally different 4x 4 magic squares. These were first
all published in 1693 by Frenicle. Not all these possess all the
symmetries of Durer's square above. Some, classified as
simple, possess only the basic requirement to be magic while
others, classified as Nasik, are considered the most perfect
and contain even more symmetry than DUrer's square. Here
are examples of each.
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7

14

12

1

6

9

15

4

11

8

2

13

10

3

5

16

1

15

10

8

14

4

5

11

7

9

16

2

12

6

3

13

Simple Nasik

Find as many sets of four symmetrically placed numbers
in each which total 34. Make yourself some square counters,
number them 1 to 16 and see how many different 4x4 magic
squares you can find.

There are no particularly neat ways of constructing magic
squares of even order but with squares of odd order the
following method due to Bachet de Meziriac is worth know-
ing. It is illustrated here for a 5x 5 magic square but is equally
applicable to any odd order.

3

20

7

24

11

16

8

25

12

4

9

21

13

5

17

22

14

1

18

10

15

IP1

19

6

23 11

10

15

14 20

13 19 25

12 18 24

17 23

16 22

First border the 5x5 square as shown to produce a diamond
shape. Now number the diagonals from far left to top right as
shown. Next imagine sliding the numbers outside the original
square into the spaces on the opposite side of the square with-
out changing their arrangement. The result is a magic square.

One magic square which deserves a special mention is
Euler's 8 x 8 solution which is also a knight's tour (see Activity
89). It was obviously not known to H. E. Dudeney the
famous Victorian puzzler who, writing about the possibility
of such a magic square existing, says 'Can a perfect solution
be found? I am convinced that it cannot, but it is only a
pious opinion.'

21

119



144 Multigrades

In magic square (a) it is true of necessity that

8+ 1 + 6 = 4 + 9 + 2

but what you probably had not realised is the additional
property that

82 + \2 +62 = 42 + 9 2 + 2
2

Similarly

8 + 3 + 4 = 6 + 7 + 2

and

82 + 32 + 42 = 62 + 72 + 22

Does this work for other 3x3 magic squares? Check that
in (b) and (c) once again the sums of the squares of the
numbers in the outside rows (or columns) are equal. Is it
always true?

Sets of numbers such as these where not only their sums
but the sums of some other powers are equal are called multi-
grades. The ones so far considered are called second-order
multigrades but the following is an example of a third-order
multigrade as it is true for three powers:

1 + 5 + 8 + 1 2 = 2 + 3 + 1 0 + 1 1

I2 + 52 + 82 + 122 = 22 + 32 + 102 + 112

l 3 + 5 3 + 8 3 + 123 = 23 + 3 3 + 103 + I I 3

With such a fascinating relation between the sets of numbers
you may think they would be difficult to find but this is not
so.

Suppose we increase each of the numbers in the last
example by 2 then clearly

3 + 7 + 1 0 + 1 4 = 4 + 5 + 1 2 + 1 3

but surprisingly

32 + 72 + 102 + 142 = 42 + 52 + 122 + 132

and

3 3 + 73 + 103 + 143 = 43 + 53 + 123 + 133

Investigate the effect of adding some other numbers.
But how do we construct a multigrade from scratch?
Start with a simple equality such as

1 + 5 = 2 + 4

(c)

8

3

4

1

5

9

6

7

2

(a)

9

8

4

2

7

12

10

6

5

(b)

12

13

5

CJ
l

10

17

15

7

8

Add 5 to each term: 6 + 1 0 = 7 + 9
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Swop sides and combine to give a second order multigrade:

1 + 5 +7 + 9 = 2 + 4 + 6 + 10

and

l 2 + 5 2 + 7 2 + 9 2 = 22 + 4 2 + 62 + 102

The number 5 which was added to each term was the smallest
which would ensure that all the numbers in the multigrade
were different.

To form a third-order multigrade use the same process as
before but on the second-order multigrade.

Add 10 to each of the numbers above to obtain

11 + 15 + 17+ 19 = 12+ 14+ 16 + 20

then swop and add to get

1" + 5" + 7" + 9" + 12" + 14" + 16" + 20"

= 2" + 4" + 6" + 10" + 11" + 15" + 17" + 19"

when n = 1, 2 or 3. Use your calculator to check that this is
correct.

Suppose that from the starting point of

1 +5 = 2 + 4

4 had been added instead of 5 as above, then this would result
in the second-order multigrade based on the sets

(1 ,5 ,6 ,8 ) and (2 ,4 ,5 ,9 )

which reduces to

(1 ,6 ,8) and (2 ,4 ,9)

as 5 is in common.
This is in fact the multigrade associated with the 3x3 magic

square at the beginning.
Now add 5 to the numbers in these sets and with the usual

process this gives the third-order multigrade

( 1 , 6 , 8 , 7 , 9 , 1 4 ) and (2 ,4 ,9 ,6 ,11 ,13 )

but as 6 and 9 are common it follows that

1 + 8 + 7 + 14 = 2 + 4 + 11 + 13

12 + 8 2 + 7 2 + 142 = 22 + 4 2 + I I 2 + 132

l 3 + 8 3 + 7 3 + 143 = 2 3 + 4 3 + I I 3 + 133

Try inventing your own multigrades. By repeating the pro-
cess shown here you can easily generate fourth- and fifth-
order multigrades or even higher orders.
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145 Pascal's triangle
This triangular array of numbers known as Pascal's triangle,
after the French mathematician and philosopher Blaise Pascal,
is probably familiar to you but how much do you know about
it?

Can you give the next two lines?
Find the sum of the numbers in each row and make a guess

as to the sum of the numbers in the twelfth row. This pattern
occurs in many situations several of which will now be described
so that you can investigate them for yourself.

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

Tossing a coin

Suppose a penny is tossed four times. The sixteen different
ways in which the sequence of heads (H) and tails (T) could
occur are recorded below showing first the sequence with all
heads, then the sequence with three heads and so on up to no
heads.

Four heads Three heads Two heads One head No head

HHHH HHHT
HHTH
HTHH
THHH

HHTT
HTHT
TTHH
HTTH
THHT
THTH

HTTT
THTT
TTTH
TTHT

TTTT

1

The numbers of arrangements correspond to the fifth row of
Pascal's triangle. Try investigating arrangements with a coin
tossed twice, three times, and five times.

Powers of 11

11° = 1
111 = 1 1
112 = 1 2 1
113 = 1 3 3 1

At which stage does the pattern cease to look like Pascal's
triangle and why?
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Hexagonal maze

Sixteen rats enter a hexagonal
maze as shown and at each
fork half go one way and half
go the other.

How many leave the maze
at p, q, r, s and tl Try with 32
entering a maze which extends
one more stage.

16

4 4

2 4

v 8

4 2

A practical demonstration of this can be seen with a
Quincunx. This is a sloping board with nails sticking out of it
at points corresponding to the vertices of the hexagonal net-
work. Balls are rolled down the slope toward the single nail
at the top and on average half the balls rolled are deflected by
it to the right, half to the left. The size of the balls in relation
to the distances between the nails is such that the rolling balls
hit succeeding pins symmetrically.

Shortest routes on the streets of New York

The streets of New York form a rectangular grid as shown.
From the start to A the 1
shortest route is straight along Start
and there are no other routes
of the same length.

From the start to B 1 *
however there are six different
routes involving 2 units across
and 2 down. The number of
shortest routes to some of
the street intersections is show
shown. Find the missing ones.
Can you spot the Pascal's
triangle pattern? 1 4

1 < •

2

3

3

6

B

A
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Cuisenaire rods

iH
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Some of you may be familiar with Cuisenaire rods. These are
colour-coded blocks of wood of lengths 1, 2, 3, 4, 5 etc. used
to help teach children basic number concepts. The diagram
here shows all the eight possible ways of arranging the rods
to make a length corresponding to the number 4.

There is 1 way with 1 rod.
There are 3 ways with 2 rods.
There are 3 ways with 3 rods.
There is 1 way with 4 rods.

Consider the different ways to use the rods to represent 5.

The binomial

(1
(1
(1
(1
(1

pattern

+ af = 1
+ a)1 = 1 -
+ a)2 = 1 •

+ a)3 = 1 -
+ af = 1 •

)- a
t- la -
f 3a -
^ 4a -

l- a2

l- 3a2

i- 6a2

When expanding algebraic
expressions like (1 + a)n,
where n is a positive whole
number, the coefficients
always correspond to the
number in a row of Pascal's
triangle.

Sets of numbers in Pascal's
triangle

A variety of sets of numbers
can be detected in Pascal's
triangle by looking along
the diagonals.

4a3 +

1 re- counting numbers

- Triangle numbers

- Tetrahedral numbers

10 10

15 20 15
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Also the sum of the numbers along a diagonal is always
equal to the next number in the adjacent diagonal at every
stage. For example

1 + 2 + 3 + 4 + 5 = 15
1 + 3 + 6 + 1 0 =20
1 + 4 + 1 0 =15

Modifications of Pascal's triangle can be investigated to see
if anything of interest materialises such as the following.

Odd numbers

Sauare numbers

Pyramid numbers >

1

1

w 1
^^ 1

^ 1

\
p

6

->-

\

\

1

\

4

\

14

\

3
o

\

9

\

2

5

\

16

\

o

7

\

2

9

\
1 7 20 30 25 11 2

146 Generating Fibonacci
sequences
Sticking stamps

Suppose you had a large supply of lp and 2p postage stamps.
How many different ways could you stick the stamps across
the top of a postcard (side by side and the right way up) to
total lp, 2p, 3p, 4p, 5p, etc.?

For example to total 4p five arrangements are possible.

i
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Climbing stairs

Somewhat similar is the question of how many ways a person
can run up a given number of stairs if he can take one or two
steps at a time.

Spiralling squares

A rather different example is
to make a note of the largest
side of the rectangle formed
at each stage in the construc-
tion opposite.

Start with a square with
1 cm side and add an equal
square to form a 2 x 1
rectangle. Add a 2 x 2 square
to its largest side to form a
3 x 2 rectangle, then a 3 x 3
square to the new rectangle's
largest side to form a 5 x 3
rectangle and so on.

Pascal's triangle

Total the numbers along the lines
shown in Pascal's triangle.

4

1

\ Start \
W////A

2

3

1

2

3 3 1

/ /
4 6 4 1

• /
5 10 10 5 1
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The Fibonacci sequence

In the examples above you should have found the numbers of
the following sequence:

1 1 2 3 5 8 13 . . .

where the next number is formed by adding together the
previous two. For example 13 = 5 + 8 and the next number
will be 8 +13 = 21. This sequence is the one commonly known
as the Fibonacci sequence.

What is the sequence formed from the differences between
successive numbers in this case?

There is a nice relation connecting each group of three
successive numbers other than the fact that the third is the
sum of the previous two. Can you find it?

The number sequence occurs in nature in many surprising
ways. If you look at the scales on a fir cone you will see that
they appear to spiral around the cone. Now count the number
of such spirals and you will always find it is equal to one of
the numbers in the Fibonacci sequence. Similarly the seeds in
a sunflower head also lie on spirals and the number of spirals
will again be a Fibonacci number.

The rectangle construction in 'spiralling squares' gives a
very practical way of drawing a spiral by drawing a quadrant
of a circle in each new square which is added.

On squared paper make a copy of the rectangle construc-
tion, continue it as far as your paper will allow and then draw
in the spiral.

147 Fibonacci sequences and
the golden section ratio

Sequence: 1
Ratios:

1 2 3 5
1. 1 i.
1 2 3

13 21
13.

8 13

Use your calculator to express the ratios in decimal form. What
do you notice?

Now take any two numbers as a starting point and generate
a Fibonacci sequence from them by using the rule of always
adding the last two numbers. Again form the ratios.

For example starting with 2 and 9:

Fibonacci sequence: 2 9 11 20 31 51 82 133
9.
2

11.
9

10.
1 1

3 1
20

5±
31

82.
51

i l l
82
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No matter what numbers you start with you should have
found that your ratios appear to be always getting closer and
closer to a number which starts 1.618 03 . . .

This number was studied by the Greeks in a geometrical
context. They wanted to divide a line segment AB at a point
P so that the ratio AP : PB equalled AB : AP.

This ratio is called the golden section ratio and its precise
value is given by j(l +\/5). Can you show this?

Interestingly too it is the ratio of a diagonal to the side of
a regular pentagon and this fact makes it possible to construct
a regular pentagon using only a pencil, ruler and compass. Can
you do it?

Psychologists have done experiments which suggest that
people find the most pleasing rectangular shape is that with
its sides in the golden section ratio. Artists too have been
fascinated by this ratio as have architects and used it in the
design of their pictures or buildings. Interestingly if you start
with a rectangle whose lengths are in the golden section ratio
then cutting a square off it leaves a smaller rectangle whose
sides are also in the golden section ratio.

By inventing rules similar to the Fibonacci rule other
interesting sequences can be generated. For example start
with two numbers and always form the next number from the
sum of the previous number and twice the one before that:

1 1 3 5 11 21 43

What happens to successive ratios now?

85

148 A weighing problem
A greengrocer had a pair of scales and four weights. The
weights were such that with them he could correctly weigh
any whole number of kilograms from 1 to 40.

How heavy was each weight and how could he manage to
weigh all the different weights?

149 Similar rectangles
A sheet of rectangular paper is such that when it is folded in
half it forms a rectangle of exactly the same shape as the
original. What can be said about the lengths of its sides?
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150 A magic cube
27 unit cubes are numbered
from 1 to 27. There are several
ways in which they can be
made into a 3 x 3 x 3 cube so
that any row of unit cubes
parallel to an edge of the main
cube correspond to numbers
which total 42. The long
diagonals of the cube also
total 42 but not the diagonals
of the faces. The diagram
shows the arrangement for the
top layer for one solution. Can
you find the arrangements for
the other two layers?

151 A question of balance
In a box there are 27 new red snooker balls all looking
exactly alike. However it is known that one of them is faulty
and weighs more than the others. Given that you have a
balance but no weights show how, by comparing sets of balls
against each other, you can find the faulty ball in only three
balances.

152 Further calculator
challenges
(i) What is the remainder on dividing 89 328 by 729?

(ii) Find a way of using the ̂  function to help in evaluating

(iii) What is the smallest number x which gives the answer 0
to the calculation 1 \x on your calculator?
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153 The only magic hexagon
Fill in the hexagons with the
numbers 1, 2, 3 , . . . , 19 so
that the total of the numbers
on every vertical path and on
every diagonal path is always
the same.

154 Nim

The game of Nim is for two people and appears to be sim-
plicity itself. You need a supply of counters (matchsticks or
drawing pins would do) and the game starts with the counters
arranged arbitrarily in a number of heaps. In the example
shown here there are three heaps with 7, 9 and 6 counters.

Each player in turn can remove as many counters as he likes
from one of the heaps (he can if he wishes remove all the
counters in a heap, but he must take at least one). The winner
is the player who removes the last counter.

There is much more to this game than might first appear.
See if you can develop some winning strategy.

O

7
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Activity 1

The same solution works for each case.

No counters can be added to (d) or (e) but three can be
added to (f) as shown here.

•

•

o

•

o

•

o
(f)

The solutions to the 4 x 4 board illustrate a degree of
symmetry often found in the 'best' solution. Note also that
it occurs in (d) and (e) which might be described as the 'worst'
solutions. This phenomenon is common to many mathematical
problems of this kind.

Solutions to 4 x 4 board
Solution to 5 x 5 board
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Activity 2
The solution shown here for
the classical chessboard prob-
lem again shows a line of
symmetry.

This problem and the
previous activity are all based
on the fact that it is possible
to place 2n counters on an
n x n board so that no three
counters are in line.

•

#

•

* \

•

•

#

*

•

•

•

•

*

•

•

Activity 3

This game is closely related to the previous two activities but
is complementary to it. Here, a player's strategy is to look for
positions of the pieces which limit his opponent's play and
force him into making a move with three in a line.

Activities 4, 5 and 6

Approximating to a curved path as a sequence of small steps
is of fundamental importance in mathematics and is at the
heart of calculus and numerical methods. The result not only
makes an attractive drawing but can also be produced using
coloured thread or wool (i) stitched through a piece of card or
(ii) stretched between panel pins (i.e. small nails) hammered
into a piece of plywood. In these activities a new line cannot
be drawn until the previous one has been completed. They
should not be confused with the more familiar ones where an
equal number of points is marked off on two lines (or curves)
to start with and then the points joined by lines as shown in
the two examples here.
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Activity 7

This is an easy puzzle of its kind. The two pieces are each
equivalent to a square and half a square as shown. It is
surprising how many shapes can be made from them. To
achieve all the shapes shown one of the pieces will need to be
turned over. Which of the shapes can be made without doing
this?

Activity 8

If you could do this correctly without a model you have a
good spatial sense.

1 5

3

4

6 2

5 4

6 2

3 1

1

4

5

3 6

2

(a) (b) (c)

Activity 9

The secret here is to think three-dimensionally and form a
tetrahedron.
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Activity 10
Triangular sheep pens may be unorthodox
but it solves the problem.

Activity 11

Number the map on both sides then fold as shown below.

! 5

7

6

Then partly open out and pinching together 5 and 4 fold
them so that 5 comes next to 6. 4 will then be next to 3 and
it is an easy matter to pinch 1 and 2 together and fold them
so that 1 is on top of 2 and 2 on top of 3.

Activity 12

The showman must first take the goat across. He then takes
the wolf across and brings the goat back. He next takes the
cabbage across and finally returns to collect the goat.

Activities 13, 14, 15, 16 and 17

These show a variety of ways of producing an ellipse. Activity
13 shows how an ellipse is, in effect, a circle stretched in one
direction. Activity 14 shows the ellipse as a circle viewed
from an angle - we rarely see a circle but we have learned to
interpret the ellipses we see as representing circular objects.
Activity 15 is a nice way of producing an ellipse by folding
paper along lines which touch it. This activity along with
Activity 16 automatically locates the two focal points of the
ellipse. Activity 17 gives an example of the ellipse as the path
of a point on a moving object and there are many situations
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where this happens. There are many other interesting construc-
tions for drawing ellipses and the reader is recommended to
look for books on engineering drawing. Historically the ellipse
is very interesting for John Kepler (1571-1630) deduced
correctly, from his astronomical observations, that every
planet moves in an ellipse with the sun at one focus. Today
we are familiar with the idea of artificial satellites 'circling'
the earth but how many people realise that they travel an
elliptic orbit with the earth at a focus.

In activity 13, if the longest radius of an ellipse is a and
the shortest radius is b it can be shown that its area is nab.
Thus in an ellipse where a = 2b, its area is 2irb2 which is
twice the area of the circle from which it was obtained.
Similarly, if a circle is stretched three times in one direction
its area is trebled.

The perimeter of the ellipse cannot be found nearly as
easily and there is no exact formula for it. When the ellipse
is not too elongated IT (a + b) gives a reasonable approxi-
mation to its perimeter. But, in general, a much better
approximation is that given by Ramanujan in 1914, namely
7T {3 (a + b) - V [ (a + 3b) (3a + &)]}.

Activity 18
This game must end in a limited number of moves because it
starts with nine available arms (three points each with three
arms) and each move uses up two arms and introduces a new
point with one available arm. The effect of a move is thus to
reduce the total number of available arms by one. There can
thus be at most eight moves. There may be a fewer number
of moves if one arm becomes isolated by the rest of the net-
work.

These networks correspond to the different ways in which
chemical atoms with a valency of 3 can join to make complex
molecules.

Activity 19
A and D are the same.

Activity 20

(a)
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Activity 21

Square Circle

Activity 22

This puzzle can seem quite impossible until you find the
solution. It has much in common with Activity 33. The key
is to shunt C onto the main line by itself as shown below.

ESC

Activity 23

First fill the 3 pt jug. Next pour the 3 pints from this jug
into the 5 pt jug. Again fill the 3 pt jug and then pour from
it into the partially filled 5 pt jug until it is full. This leaves
exactly 1 pint in the 3 pt jug.

It would thus be possible to measure any whole number of
pints by measuring single pints in this way. Clearly there are
more efficient ways for measuring most quantities. 5 pints and
3 pints can be measured directly and as 6 = 3 + 3 while 8 =
5 + 3,6 pints and 8 pints are easily measured. But what about
7 pints and 4 pints?

Activity 24

This puzzle has much in common with Activity 12 and
Activity 35 and has been in circulation in some form since
the early part of this century. The solution here depends on
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the fact that the canoe can hold two boys but it only needs
one boy to take the canoe across the river. One boy paddles
the canoe to the soldiers on the left bank. A soldier then
paddles himself and his kit to the right bank where he stays.
The second boy now paddles the boat to the left bank,
collects the first boy and returns to the right bank. This
process is repeated until each soldier has crossed the river.

Activity 25

The block moves forward 2 metres.
Although many shapes could be used as cross-sections of

rollers only a circle would do for a wheel - unless you want
a bumpy ride that is! To get the smoothest possible ride, the
wheels' axle needs to be attached to the centres of the wheels.
Of course, only circular wheels have a constant distance from
axle to edge.

See also Machines, Mechanisms and Mathematics by A. B.
Bolt and J. E. Hiscocks, and Riddles in Mathematics by E. P.
Northrop.

Activity 26

The results here are always very surprising to the person
meeting them for the first time. With a systematic approach
it should be possible to find a pattern relating the number of
twists in a band and the subsequent result of cutting down
the middle. At one level this activity is enormous fun but it
also has a serious side in posing questions about the nature of
different surfaces. See for example Mathematics and the
Imagination by E. Kasner and J. Newman, or Experiments in
Topology by S. Barr.

Activity 27

A and B are inside and C is outside.
Every time the boundary is crossed you travel from inside

to outside or vice versa.
Any circle around the ring would do or one like an equator

for example. Experiments in Topology by S. Barr gives further
ideas for anyone wanting to pursue this branch of mathematics.
Also, Mathematics and the Imagination by E. Kasner and J.
Newman has a readable section on this problem in the chapter
headed 'Rubber-sheet Geometry'.
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Activity 28
The paths will all be made up of arcs of circles as the packing
case is always turning about one of the edges.

Path followed
by B B

Path followed
by middle of

AB B

/ \

Path followed
by centre of

square

Activity 29

In each case the direction in which A, B, C and D move can
be found by drawing a line (dotted here) from the point
about which the wheel is turning, and then the arrow giving
the direction of motion is at right-angles to this.

^ l l__x _2 , >

Rail
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In (a) the wheel turns about its centre O.
In (b) the wheel turns about C, the point where it touches the

ground.
In (c) the wheel turns about the point where it touches the

rail.

A moves from left to right in each case but the directions
in which B and D move vary considerably. Diagram (c) shows
why it can always be said that part of an express train is
travelling backwards - the faster the train is travelling forward,
the faster will point C move backwards.

Activity 30

(a) anticlockwise, 4 turns
(b) clockwise, 1 turn
(c) anticlockwise, 1 turn
(d) clockwise, \ turn

Rule I With an even number of rotating shafts the direction
of the last shaft is always opposite to the direction in which
the first shaft turns.
Rule II When there is only one gear wheel on a shaft, as in
(a), (b), (c) and (d), the angle through which B turns depends
only on the number of teeth on A and on B:

1 ± jxt, u u n / number of teeth on A \ ,
angle turned through by B = I turns

V number of teeth on B )
In (e), (f) and (g) the gear train needs to be broken down

into parts to which the above rules apply.
(e) The second shaft makes 3 turns for each turn made by A.

B makes 4 turns for each turn made by the, second shaft.
Thus B makes 12 turns (3 x 4) for each turn made by A.
B also turns in the same direction as A as there are an odd
number of shafts.

(f) The second shaft makes \ turn for each turn made by A.
The third shaft makes \ turn for each full turn of the
second shaft. B makes \ turn for each turn of the third
shaft. Thus B makes | x | x { = j turn for each full turn
made by A. As there are an even number of shafts, B turns
in the opposite direction to A.

(g) The second shaft makes 3 turns for each turn made by A.
B makes \\ turns for each turn made by the second shaft.
Thus B makes A\ turns (3 x 1̂ -) for each turn made by A.
As there are an odd number of shafts, B turns in the same
direction as A.
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Sometimes gears are used to increase a turning speed as in a
hand drill or egg whisk and in other mechanisms the gears slow
down a turning speed such as in a clock, record turntable or
food mixer.

B

(i) (ii)

B

(iii)

The direction of motion of the output shaft can be reversed
in each case by introducing one more shaft into the train with
a single wheel on it. The number of teeth on this additional
wheel will not change the overall gear rate.

For more ideas on gear trains see Machines, Mechanisms and
Mathematics by A. B. Bolt and J. E. Hiscocks.

Activity 32

Sixteen moves are required. They are best thought of as four
groups of moves in which the four knights move from corner
squares to middle squares, and vice versa in a kind of square
dance in which they rotate as a foursome about the centre
square. This puzzle has been known for a long time. The first
record of it in Europe dates back to 1512.

W 1

! >

Bi

V

V

- W 2

B 2

> p2"!
'.•'••••*c\\v.

/ "El
B 1

B 2

V

V w2 }

/ ^

El

B 2

w2

B i

W,
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Activity 33

This is another shunting puzzle which became popular in the
early part of this century. Like most of its kind it is tantalising
because it is easy to state but until it has been solved the
puzzler may well think it is unsolvable. It often helps to use
some coloured bricks (e.g. multilink cubes) to represent the
trucks and the engine.

Activity 34

Paint each one centimetre cube in such a way that the three
faces meeting at one corner are all red and the three faces
meeting at the opposite corner are all blue. The eight cubes
can then be fitted together to make either a red two-centi-
metre cube or a blue two-centimetre cube.

The three-centimetre cube is a much harder problem and
it might require a visual aid - try colouring sugar lumps. The
colouring is possible. The 27 one-centimetre cubes have
27 x 6 square faces while the three three-centimetre cubes
have 3 x 6 faces each made of nine squares. Thus there are
just the right number of squares to go round if they can be
correctly coloured.

In a red three-centimetre cube the smaller cubes appear in
four distinct ways.

(a) 8 corner cubes where

three adjacent faces are red

(c) 6 mid-face cubes where

one face only is red

(b) 12 mid-edge cubes where

two adjacent faces are red
(d) the centre cube whose

faces are not red
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There must be the same numbers of blue cubes and yellow
cubes for a solution to exist and considerations like this lead
to the following solution:

6 cubes coloured R2B2Y2

3 cubes coloured R3B2Y x

3 cubes coloured R3BiY2

3 cubes coloured R2B3YX

3 cubes coloured RXB3Y2

3 cubes coloured R2BXY3

3 cubes coloured RtB2Y3

1 cube each
coloured R3B3 B3Y3

The letter indicates the colour
and the suffix the number of
faces of that colour. Where
there are two or three faces
of the same colour they are
always next to each other.

Y3R3

The notation has been invented for the problem and is very
helpful in describing the different cubes. This is a typical
device used by mathematicians who will use letters and
symbols to suit the problem in hand rather than many words.

Activity 35

As with the previous puzzle it is helpful to develop some
kind of notation to describe the situation. Here the couples
are denoted by Aa,Bb, Cc etc., where the capital letter stands
for the husband and the small letter for his wife.

With three couples the boat will need to be rowed across
the water five times. One solution is given below:

abc ABC Aa

Aa

Bb

Cc

A

B

C

a

b

c

Aa

B

C

b

c

a A

Bb

Cc

Aa

Bb

Cc

Aa

Bb

Cc

First the three wives abc row across and then wife a rows
the boat back. Next the three husbands ABC row to safety
leaving wife a at the hotel and finally husband A returns to
rescue his courageous wife!

You may find this puzzle easier to solve by using labelled
pieces of paper to represent the people.
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The following solution with five couples satisfies all the
conditions but it takes thirteen crossings and you may find a
better one. If you do the author would like to hear from you.

abc
a

AB
Aa

ADE

Aa

Bb

Cc

Dd

Ee

Aa

B

C

Dd

Ee

b

c

A

B

C

Dd

Ee

a

b

c

Aa

Dd

Ee

Bb

Cc

a

d

e

A

Bb

Cc

D

E

d

e

Aa

Bb

Cc

D

E e

Aa

Bb

Cc

Dd

E

Aa

Bb

Cc

Dd

Ee

First the three wives abc row across and wife a returns with
the boat. Then A and his wife row across, his wife gets out and
A returns the boat. (NB A does not get out of the boat or he
would be on the bank with b and c when their husbands were
not present.) Now ABC row across and Aa row back leaving
couples Bb and Cc in safety. The three husbands ADE now
row across leaving their three wives ade temporarily at the
hotel. A returns to pick up his wife then D and E follow suit.

Activity 36

This is a new version of another traditional puzzle. If you
imagine the room rather like a shoe box and you open it up
to form its net then the shortest distance from
A to B is a route across the floor, a side wall
and the ceiling whose length is 40 ft.

30 ft

12 ft

>fOU

it up

Ceiling

/

4---
B

12 ft

24 ft

A

n

/ Floor

32 ft

12 ft
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Activity 37

Activity 38

You will probably find that, to start with, this activity is
tackled in a rather hit or miss fashion but then patterns of
thought begin to emerge and the approach becomes
systematic.

One particularly helpful approach is to take a 3 x 3 square
or a 4 x 2 rectangle as a starting point and then imagine ways
in which the boundary could be turned in as illustrated in (a).

f- -

(a)

There is only one solution based on a 5 x 1 rectangle and a
limited number based on the 4 x 2 rectangle. Most of the
shapes come from the 3 x 3 square. This activity shows clearly
that shapes having the same perimeter do not necessarily have
the same area.

The fact that a triangle with sides of 3, 4 and 5 units is
right-angled, extends the number of shapes with a perimeter
of 12 in an interesting way. Some of the possible shapes are
shown in (b).
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(b)

The total number of possible shapes with a perimeter of 12
which can be found depends on the kind of shape which is
allowed. If lines can cross over then many additional shapes
can be found whilst if the lines can double back on them-
selves the total becomes very large. With a group working on
this activity it has always been interesting to see just what
shapes are seen as acceptable and leads to a discussion for the
need of a precise definition of 'a shape with a perimeter of
12 units which can be made on a pinboard'. Which of the
shapes in (c) do you find acceptable?

(0

• • <

n • <

o • < > •

Activities 39 and 40
Repeating patterns are very common with man-made objects.
The way bricks are laid in a wall, roofs tiled, paving slabs laid,
carpets and wallpapers manufactured - all correspond to
tessellations because of the way a basic unit is repeated again
and again.

It is interesting to realise
that any shape of quadrilateral
can be used as the basic unit
for a tessellation. Cut out a
quadrilateral from a piece of
card to use as a template
which you can draw around.
Start with one quadrilateral
(shaded) and draw in the
others by rotating the
quadrilateral through 180°
about the middle point of
each side in turn.
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Over the years many interesting tessellations have been
published in magazines such as Mathematics Teaching and
Mathematical Pie. However for anyone with an interest in the
links with art the book The Graphic Work ofM.C. Escher is a
must. A scientific link is found in The Third Dimension in
Chemistry by A. F. Wells.

Activity 41

Measuring the area of a shape is closely related to covering
the shape with a tessellation of a basic shape corresponding
to the unit of area. The basic shape is usually taken as a
square. In this activity the idea is to keep the area constant
(2 square units) and see what a large variety of different
shapes can be found even with the restriction of having the
vertices confined to the points of a 3 x 3 pinboard. The key
to finding new shapes is to see right-angled triangles as having
half the area of a rectangle, as for example in (a), (b) and (c).
These triangles can then be fitted together in a large variety
of ways to generate shapes with an area of 2 square units.

The area of a shape may be seen in two ways and both
should be explored:

(i) as the sum of smaller shapes,
(ii) as what is left when pieces are cut off a larger

shape.

For example, the shaded shape shown in (d) could be seen (i)
as the sum of a unit square and two triangles each of which is
half a unit square or (ii) as a larger square of 4 units minus a
unit square and two triangles each of half a unit square.

This activity is much more fundamental and significant
than the usual text-book exercises of finding areas of
rectangles using length multiplied by breadth.

With a 5 x 5 pinboard many more shapes can be found
because triangles such as the following are now possible.

area 1 unit

(a)

(c)

area -^ unit

area -^ unit

(see it as two squares

minus triangles

with areas of

1 unit and ^ unit)

area 1-^ units area 1 unit area -̂  unit area 2 units

area 1 77 units area 1 unit area -2 unit
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Activity 42

Before doing this activity you need to be confident that you
can correctly deduce the areas of the shapes you make.

For all the shapes with only 1 interior pin it is true that

A = \b

that is, the area is exactly half the number of pins on the
boundary of the shape.

For all the shapes with 12 boundary pins it is true that

A = i + 5

that is, the area is equal to the number of interior pins plus 5.
These results are special cases of the more general result

known as the Pict's theorem that

A = - 1.

Activity 43

All routes must be of length 24 as there are 25 pins to be
visited so there are 24 steps between them. In general the
length is n2 — 1. Routes with rotational symmetry are
possible - try making up routes by starting from each end and
meeting in the middle.

A*-

B * B

On a 3 x 3 board when diagonal routes are allowed then
there are many possibilities. Because there are 9 pins then 8
steps will always be required to get from A to B. To find the
shortest route all these steps will need to be across or up and
down but to find the longest route it is necessary to use as
many diagonal steps as possible.

The shortest route is 8 units long where a unit is the
distance from one pin across the board to the nearest pin.
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On a 3 x 3 board only two kinds of diagonal steps are
possible as shown here. A step like PQ is of length ^/5 which
is approximately 2-236 units, while a step like QR is of
length y/2 which is approximately 1-414 units.

These results can be deduced from Pythagoras' theorem
for right-angled triangles or by scale drawing. In the latter
approach the same accuracy cannot be expected. When the
route cannot cross itself then the longest route is shown in
(a) and its length is approximately 12-13, but when the
route can cross itself more steps like PQ can be used and the
longest route is shown in (b) with approximate length 15-42.
Notice the symmetry in both solutions.

(a)

AB = 1 + V2 + y/5 +

•=* 1 2 - 1 3

+ V2 + y/S + y/2 + 1

(b) A

AB = x/5 + V5 + V5 + 1 + 1 + \/5 + \/5 + V5

=* 15-42

One solution which might look better than the above
because it does not contain any short steps is shown in (c),
but its length is equivalent to 4 V 5 + 4 \Jl — 14-6

(c) A

Activity 45

There are two stages to solving this puzzle. The first is to
determine the different kinds of triangle which can be made
and then how many of each kind.
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These diagrams show the eight kinds of triangle which can
be formed on a 3 x 3 pinboard.

(h)

It should not be too difficult to see now that there are
16 of type (a) as four to each square of pins and four squares
16 of type (b) as two to each pair of pins on the edge of the board
8 of type (c) one to each side, four pointing to the centre

16 of type (d) two to each corner, two to each mid-point of side
4 of type (e) as one to each corner of board
4 of type (f) as one to each side of board
4 of type (g) as one to each corner of board
8 of type (h) as two to each edge of board

A total of 76 different triangles can be made.

Activity 46

It will probably help to label all the points where lines
intersect with letters and then label the triangles using the
letters. Although this puzzle may appear to have much in
common with the previous one it requires a different
approach. First record, for example, all the triangles which
have AB as a side, then AC etc.

ABE ABG
ACD ACE
ADE AEI
BCE BCF
BEF BEG
CDI CEG
DEI DFH
GHI

ABH ABI
ACG ACI
AGH AGI
BCG BCI
BGI BHI
CEI CFG
EFG EGI

D E

By keeping the letters in alphabetic order it is easy to spot
whether you have counted a triangle twice.
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Activity 47
This is an interesting puzzle and might at first seem
impossible.

No matter what path the boats follow they will not come
together until the controller steers the boat to the point C
shown in the above diagram. At this point the distance A C
is equal to the distance BC and the bearing of C from B is
90° more than the bearing of C from A. When the boat from
A reaches C by whatever path the boat from B will be there
also.

Activity 48

There are many other possible solutions such as

A - * B ^ C ^ D ^ A ^C-+E-*B^D-*E->A

A network is traversible if it can be drawn without taking
the pencil off the paper or having to go over any line twice.
The first network here is thus said to be traversible but the
second one can only be drawn in four parts so the pencil has
to be taken off the paper three times.

A study of traversible networks was first made by the
mathematician Euler in the early part of the eighteenth
century when he studied the now famous problem of the
Konigsberg bridges. Konigsberg was a German town built on
two islands and the banks of the River Pregel. The islands and
river banks were connected by seven bridges as shown and
the citizens of the town had, for many years, tried to find a
way of starting from one point in the town, crossing every
bridge once and then returning to their starting point. They
could not find a way and when Euler became aware of the
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problem he was able to prove conclusively that the problem
was incapable of solution. He first replaced the above map by
a network which retained the significant features of the map
where each region of the town was reduced to a point and
the bridges by arcs. The problem now reduces to showing
that this network cannot be drawn without taking your
pencil from the paper.

Euler realised that the key to the problem lay in the fact
that the number of arcs meeting dXA,By C and D was odd - 3
at 5 , C a n d A and 5 at ,4.

He showed that a point of a network with an odd number
of arcs meeting at it (an odd node) could only be a starting
point or a finishing point to trace the network, so the
Konigsberg problem which has 4 odd nodes cannot be solved.

To see why an odd node cannot be an intermediate point
in a traversible network consider the 3-node P shown here
with branches labelled 1, 2 and 3. In tracing a network in
which P occurs let the first time the pencil comes to P be
along 1. It can then leave via 2 say and at some stage it must
return along 3, but then there is no route left to leave P
which has not already been traced. Similar arguments can be
used for any odd node and it follows that an odd node can
only be used as a starting point or a finishing point. From
this it can be shown that a network is only traversible if (i) all
its nodes are even (i.e. have an even number of arcs meeting
at them) or (ii) all its nodes are even except two which are
odd and then they must be the starting point and the finishing
point. The town of Konigsberg could thus solve its problem
by blowing up bridge AB for example or adding a second
bridge from A to B. A good reference on this and related
problems is Mathematical Recreations and Essays by W. W.
Rouse Ball.

Activity 49

One solution of the knight's
problem is shown here. Check
yourself to see how each
square is attacked.

There are analogous
problems with the other chess
pieces. For example, it can be
achieved with five queens or
nine kings or eight bishops.
Have a go!
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Activity 50
To handle this puzzle efficiently it is again necessary to
develop some means of recording the moves made. It is also
helpful to mark out the railway network on a larger scale and
use some numbered counters to represent the trains. The
following solution takes fifteen moves which are indicated by
the arrows.

Starting position 3 Position after
three moves • "

2

1

5

4

7

Position after
six moves

Position after
nine moves

5

6

7

Position after
twelve moves

Position after
fifteen moves

5

6

7

4 3

2

• 1

Activities 51 to 55 - general comments

These activities are all concerned with developing a better
understanding of how moving shapes interact with each other.
Much of the geometry traditionally taught in schools has
grown out of land surveying and little has been done to make
people aware of the geometry of motion. The ideas here have
grown out of the author's concern to make geometry more
relevant to our everyday experiences and have been explored
further in the book Machines, Mechanisms and Mathematics.
To get the most from these activities it is essential to
construct models using materials such as geostrips and
Meccano, but thick card strips are quite satisfactory.
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Activity 51
'AB moves to and fro' is the usual description. The path
traced by A is part of a circle whose centre is at D and with
radius DA. Every other point of AB traces out a similar part
of a circle with centre on DC.

BC always turns through the same angle as AD, in this
case 30°.

The windscreen wiper probably sweeps out a better shape
but the most likely reason is that the blade pushes the water
to one side more efficiently than the usual car wiper which
spends half its time pushing water up the windscreen where it
can run down again. ^ ^

Activities 52 and 53

It is interesting to note that the modern Tom Cobley rocking
horse uses essentially the same linkage as some Victorian
rocking horses. This same linkage is also to be found at the
centre of a seesaw in some modern children's playgrounds
but it is not clear what advantage this has over a simple pivot.

The models of the Tom Cobley or the car's steering
mechanism are instructive to make and worth the time and
effort taken-buy yourself a box of paper fasteners!

Activity 54

Watt's parallel motion linkage traces out a path rather like a
tall, thin figure of eight while Tchebycheff's linkage traces out
a path rather like a squashed semicircle. These are best seen by
making models for yourself.

Activity 55
This is not unlike the pantograph which is available in many
toy shops as an instrument for enlarging a figure. The com-
bination of two simple linkages to make one which produces
a translation is fascinating to observe in operation.

Activity 57

Not only are the four pieces identical to each other, but they
are the same shape as the original.

B

HI
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Activity 58
This puzzle is now available commercially in a variety of
packs made of plastic pieces but you could easily make
your own from coloured card.

Activity 59

A makes two revolutions. The queen's head will be upside
down when penny A has rolled to the top of penny B, the
correct way up when A is to the right of B, upside down
when A is below B and the correct way when A is back at
the start.

Activity 60

A polar bear!
One solution starts at the north pole see (a), but there are

infinitely many possibilities near the south pole. For example,
the hunter could start anywhere 3 miles north of the line of
latitude which is 3 miles in circumference, see (b), . . . or
3 miles north of the line of latitude which is 1̂ - miles in
circumference . . . or etc.

Activity 61

It is surprising that there are six arrangements in all, and you
may well have given up before turning to the solutions shown
here.

(a) N Pole

(b)

SPole



Activity 62

There must be a letter S opposite H. The arrangement of
letters is shown in the net for the cube where it can be seen
that there are in fact two letters S.

Activity 63

This is always successful, but take care to number the triangles
exactly as shown and follow the folding instructions carefully.
Do not use thick card or you will find it difficult to fold. To
make a larger hexaflexagon it may be easier to cut out
separate triangles and hinge them together using sellotape.

For more ideas on hexaflexagons read Mathematical
Puzzles and Diversions by Martin Gardner.

Activity 64

This is a nice demonstration of Pythagoras' theorem. It
neatly shows the equivalence of the areas of the two smaller
squares to that of the square on the hypotenuse (the side of
the triangle opposite to the right-angle).

Show also how pieces 1,2,3 and 4 can be fitted together
to form a parallelogram.

Activity 65

This is not as easy as it looks to someone who has never met
it before. The author has known people who have even made
the half-tetrahedron shapes correctly but still been unable to
put them together to make the whole tetrahedron. Faced
with the two half pieces there is a great temptation to keep
the long edges parallel.

Activities 67 and 68

These have been included after experience shows that ruler
and compass constructions are rarely taught in school now
although they are found stimulating and satisfying by many
students of all ages.

The first activity gives some of the basic ruler and compass
constructions and the second shows their use in constructing
some of the circles associated with a triangle.

A related activity is to construct angle bisectors etc.
using only the two sides of a ruler to obtain a pair of parallel
lines a fixed distance apart. With this approach many of the
traditional constructions can be achieved without a com-
pass. See, for example, the appendix of School Mathematics
Project, Book T, published by Cambridge University Press.
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Activity 69
Designing games can be very rewarding.

Activity 70

The only two other fundamentally different solutions for the
4 x 4 board are shown here.

•

4 x 4 solutions

For a 5 x 5 board there are many solutions each requiring
three queens. There are two more shown below. How many
distinct solutions did you find?

The 6 x 6 board can be solved with three queens too but
in essentially only one way, while the 7 x 7 board requires
four queens for its solution.
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6 x 6 solution

7 x 7 solution

With an 8 x 8 board the solution requires five queens and the
solution given here also satisfies Jaenisch's further condition
that no queen shall be under attack by another.

•

•

•

*

* i

•

•

•

8x 8

Not under attack

8 x 8

All supported

A good reference for further details on associated puzzles
is Mathematical Recreations and Essays by W. W. Rouse
Ball.
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Activity 71
This is an old chestnut! The
catch is that what looks like a
diagonal of the 1 3 x 5 rectangle
is in fact a very thin paral-
lelogram whose area is 1
square unit.

Area 1 sq unit

Activity 72

A, C, E, G, H and / are odd nodes and because of this one
of the roads to each of them will have to be driven over
twice. (See the comments on Activity 48.) To minimise the
total distance to be covered the roads to be driven over
twice can be arranged to be AG, HC and IE. One possible
route is as follows:

with a total distance of

(6 x 13) + (9 x 12) + (6 x 5) = 216 miles

Activity 73

It is impossible!
Imagine the domino painted half black and half white to

match the chessboard squares. When two opposite squares
of the board are removed the board loses two squares of the
same colour. In the diagram given it is left with 30 black
and 32 white squares so there is no way in which the domi-
noes can be placed to cover the board as each addition adds
one black and one white square.

Activity 74

This is easy when you know how!

X
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Activity 75
Experience shows that students enjoy the challenge of trying
to find a map which cannot be coloured in fewer than five
colours and often think they have succeeded until someone
else shows how to re-colour it with four colours. The diagram
here shows how the given map can be coloured using only
four colours.

Interestingly on the surface of a torus (like a beach ring)
it is possible to draw a map which cannot be coloured in less
than seven colours. See, for example, What is Mathematics? by
R. Courant and H. Robbins or Riddles in Mathematics by E.
P. Northrop.

Activity 76

If you enjoy jigsaws this should keep you happy! The solu-
tions given here were found by an 11 year old boy who, over
a period of a few weeks, filled an exercise book full with
different solutions. You can also find ways of forming other
shapes such as a 5 x 5 square, for example, using a subset of
pentominoes. You will often find the pentominoes and the
hexominoes of the next activity produced commercially in
plastic or wood but using coloured card is perfectly satisfactory.

An excellent reference for this activity and the next one
is Polyominoes by Solomon W. Golomb.

All the pentominoes will tesselate.

12 x 5 solution

15 x 4 solution

20 X 3 solution

i i i
i i i i i
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The diagram below shows which of the pentominoes will
form a net for an open box with its base shaded in each case.

See if you can find an arrangement of nine squares into
which each of the twelve pentominoes can fit.

m m w i§

H
m

m

Activity 71

Here are the 35 distinct hexominoes. Those which can be
folded to form a cube are shown shaded.

Note the systematic way in which the hexominoes are
presented here. First the only one with a line of six squares
then the three with a line of five squares. Next a line of four
squares with two squares placed variously beneath them on
both sides, etc.

There are only 11 even hexominoes and thus 24 odd
hexominoes.

The 7 x 6 rectangle has 42 squares. Imagine this painted
black and white as in a chessboard, then 21 of the squares
will be black. Now seven even hexominoes will automatically
have an even number of black squares on them altogether
so could not equal 21.

A similar argument neatly shows why all 35 hexominoes
could never be fitted together to form a rectangle. Such a
rectangle would have 35 x 6 squares and thus 35 x 3 = 105
black squares. That is an odd number of black squares. Now
the 11 even hexominoes must have an even number of black
squares and so must the 24 odd hexominoes. Hence altogether
the 35 hexominoes contain an even number of black squares.
A rectangle is thus not possible.
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Activity 78
The other two half-cubes are shown in (a).

(a)
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Other ways of dividing a 2 x 2 x 2 cube into two parts
made up of unit cubes depends on the fact that eight cubes
are involved, so the parts will be made from 7 + 1 or 6 + 2
or 5 + 3 or 4 + 4 unit cubes. The 4 + 4 situation has the
three solutions already considered while the other situations
each lead to only one solution (see (b), (c) and (d)).

(b) 7 + 1 solution (c) 6 + 2 solution (d) 5 + 3 solution

The best way to investigate new shapes is to make use of
a set of cubes - sugar lumps can be quite useful if nothing
else is available!

Shapes which can be made with five cubes are known as
the pentacubes and there are 29 altogether. Twelve of these
correspond to the pentominoes and are equivalent to placing
a cube on each square of a pentominoe. This leaves seventeen
genuinely three-dimensional shapes which are shown below.
Many of these come in pairs which are mirror images but are
such that they would not fit in the space left by their partner.
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This activity invariably proves successful particularly
when colourful multilink cubes are used to construct the
shapes. A competitive element whereby two groups of
people see who can find the largest number also adds interest.
The opportunity can be used for exploring ways of recording
shapes and the following examples show ways which have
arisen in practice for the shape drawn on the left.

1
D

For further reading try Polyominoes by S. W. Golomb, or
More Mathematical Puzzles and Diversions by M. Gardner, or
Creative Puzzles of the World by P. Van Delft and J. Botermans.

Activity 79

This is an extension of the previous activity without the
restriction of using unit cubes. However, the challenge here
is to find ways of dividing a cube into two identical pieces.
You may find modelling clay an aid to your investigation
but models of your solutions can be made attractively in
coloured card or wood.

Activity 80

You will need patience initially to cut out a good number
of identical shapes but the rewards will be worthwhile. With
the kit it is surprising how many solid shapes you discover
which you would not have thought of without it. If you can
persuade someone else to help make the triangles and squares
etc. with you so much the better. This technique has the
advantage that you need not buy expensive materials but
make use of breakfast cereal packets for example. The
author's kit was made ten years ago and is still usable.

Activity 81

The dodecahedron is a satisfying model to make. Take care
to measure the 72° angles accurately when drawing the first
pentagon in the circle, for errors at this stage will lead to an
ill-fitting net later. It is not as difficult as you may first
think and the stellated dodecahedron just requires the
patience to add twelve pyramids, one to each face.
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Activity 82

This game was designed by a group of students while learning
about the transformations of reflection, rotation and transla-
tion. If you know what they are then you should enjoy
matching your skill against your friends.

Activity 83

No matter how you try cutting up this cube there is no way
of getting away from the fact that the one-centimetre cube in
the centre has six faces all needing to be sawn, so the 27 cubes
cannot be achieved with fewer than six saw cuts.

Activity 84

To show that it is possible to make a hole in a cube large
enough to pass a larger cube through it, it is necessary to
show that a cube has a cross-section larger than its square
face. Consider the rectangle ABCD shown in the diagram.
A, B, C and D are each the same small distance from the
corner of the cube to which they are nearest. AB is clearly
longer than the edge PQ as it is at an angle to it. BC will be
longer than an edge as it is almost equal to the diagonal QR.
It would thus be possible to imagine a square hole cut through
the cube of a larger size than the face of the original cube.

Activity 85

A neat way of seeing how to rearrange the pieces to form
the 'square' is to imagine them hinged at P, Q and R and
rotating them into the 'square' as shown here.

B

The 'square' is not exact, but a rectangle
with sides in the ratio 7 : ̂ 4 8 . An exact
solution is given by H. E. Dudeney in his
book The Canterbury Puzzles (Dover).

B
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Activity 86
The key to this puzzle is in the pattern of circles from which
the urn is composed.

Activity 87

The apparent paradox is explained when Mrs Smith was
shown a timetable which showed the times of the P buses and
Q buses at her bus-stop.

P route
10.09
10.19
10.29
10.39
10.49
10.59

Q route
10.10
10.20
10.30
10.40
10.50
11.00

There is a gap of only one minute after a P bus visits the
stop until a Q bus is due, but then a gap of nine minutes
before the next P bus. Thus in any ten-minute period nine
minutes could be spent waiting for a P bus but only one
minute for a Q bus. The effect of this to a person using the
bus stop frequently would be to find that in nine times out
of ten a P bus would be the first to appear.

Activity 88

Three pennies need to be moved. Move the three corner |
pennies as shown. \
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Activity 89
A knight's tour is impossible on a 4 x 4 board but it is
possible to find a path which visits fifteen squares. The
5 x 5 , 6 x 6 and 7 x 7 tours are all possible, and a solution for
each is shown here.

6

1

10

13

9

12

7 j

4

2

5

14

11

15 j

8

3

4 x 4 no solution

11

32

21

42

9

30

19

22

43

10

31

20

49

8 j

33

12

39

36

41

18

29

44

23

34

1

j 38

7

48:

13

2

37

40

35

28

17

24

45

4

15

26

47

6

3

14

25

46

5

16

27

1

24

13

18

7

14

19

8 ;

23

12

9

2

25

6

17

20

15

4

11

22

3

10

21

16

5

5 x 5 solution

1

10

33

24

3

12

32

23

2

11

34

25

9

36

17

26

13

4

22

31

! 8

35

I 18
27

7

16

29

20

5

14

30

21

j ̂ 6

15

28

19

7 x 7 solution 6 x 6 solution

You may find, like the author and many people before
him, that finding knight's tours becomes a fascination which
you can return to on and off over a lifetime!

Small rectangles on which a knight's tour is possible are a
5 x 4 and 4 x 3 .

5 x 4 solution

1

6

19

14

20 |

15

10

5

7

2

13

18

16 !

11

4 :

9

3

8

17

12

1

1.8.1
3

|4:|

11

|6'|

7

%M
9

I10J

CJ
I

|i2|

4 x 3 solution

168



The solutions to the crosses are shown below with the
second solution a re-entrant path.

12

17

1

6

2

13

16

11

18

7

15 j

10

3

8

5

20

14

Hi
11
4

The solution of the 6 x 6 board shown above is a re-entrant
path, due to the eighteenth century mathematician Euler, as
the last square visited (36) is a knight's move from the first (1).

The reason a re-entrant path is not possible on a board
with an odd number of squares depends on the fact that a
knight's move always takes a knight to a square of a different
colour. Suppose a tour starts on a black square then after an
even number of moves it will have visited an odd number of
squares and again be on a black square. This square, being the
same colour as the starting square cannot be a knight's move
from it.

A very good reference on this topic is Mathematical Recrea-
tions and Essays, by W. W. Rouse Ball.

Activity 90

We are used to thinking of distance as something we can
measure with a ruler or tape measure but there are many
situations where this may not be appropriate. If you live in a
town with many one-way streets for example then the car
distance between two points may be very different from the
walking distance. The knight's move on a chessboard gives a
particularly intriguing idea of distance.

Because of the way a knight always moves to a square of
the opposite colour to the one it is on then it can only move
from a white square to a white square by an even number of
moves. Conversely any square which is an even number of
moves from a white square must be white. The five unmarked
white squares on the board given are each two moves from
one of the squares labelled 2 and thus four moves from the
knight.
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The diagram on the left
shows the distances of all the
squares on a chessboard from
a knight when it is placed in
one corner. From this it can
be seen that no square is ever
more than six moves from a
knight.

Start

iif
i

I
W/M

f 1

Activity 91

In reality skilled players can impart spin to a ball which can
significantly change the way in which it bounces off a side
cushion. Nevertheless the method described in this activity
gives a good idea of the appropriate direction to hit the cue
ball to get out of a snooker.

(e) (f)
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Activity 92
Euler's relation can be expressed symbolically as

V - E + F = 2

where V, E and F stand for the numbers of vertices, edges
and faces of a polyhedron.

Polyhedra with holes through them do not satisfy the
relationship and compare with disconnected networks. For
further reading see, for example, What is Mathematics? by
R. Courant and H. Robbins, or Experiments in Topology by
S. Barr.

Activity 93

If you want to practice using your compass then you should
find this a satisfying exercise. Start by drawing a line across
the middle of your page and mark off \ cm intervals to help
in getting the correct radius for the circles. The technique
for using a compass efficiently is (i) make sure the arms are
tight at the joint, (ii) arrange the pencil or ball point pen so
that its tip meets the compass point when the arms are
together, (iii) concentrate on applying pressure at the point
of the compass, (iv) do not try moving the compass by holding
the pencil.

Perhaps the most obvious family of curves other than
ellipses is that of the hyperbolae.

A good source book for other drawings of this kind is A
Book of Curves by E. H. Lockwood.
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Activity 94

Other ruled surfaces and models are described and illustrated
in books such as Mathematical Models by H. M. Cundy and
A. P. Rollett and Mathematical Snapshots by H. Steinhaus.

Activity 95

You need to be aware of
squares at an angle as well as
those the same way as the
board. See those in the dia-
gram here for example.

0

X

X

0

0

X

X

0

Activity 96

The answer is not 15 cm! The
diagram here represents the
view from the top of the books
and the dotted lines show the
bookworm's path which is
only 9 cm long!

Activity 97

To solve this puzzle imagine
the motorway as the line of a
mirror and draw in the image
of Green Glades. Now join this
image to Pleasant Pastures by
a straight line and the point
where it crosses the motorway
is the position for /.

I II III IV

^ "

V

G'

I
I
L

Q
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To see why this gives the shortest route note that

GJ + JP = G'J + JP = G'J

If Q is any other point on the motorway then

GQ + QP = G'Q + QP > G'P

as G'QP is a triangle and two sides together must always be
longer than the third side.

Activity 98

No matter how fast he goes down the hill he cannot average
40 km per hour. To do this he must cycle the 10 kilometres
from A to C in a quarter of an hour, but he has already taken
a quarter of an hour to climb up to B.

Activity 99

Contrary to what one might
think the path is not a straight
line from S to V. The path of
quickest descent is in fact part
of a cycloid and may even be
uphill for part of its length.
The cycloid is the path traced
out by a point on the rim of a
wheel as it rolls along a straight
line.

To draw a cycloid fasten to
a desk a metre rule on top of a
piece of paper. Roll a circular
object (a tin lid, saucer) along
the rule without slipping and
trace out the path of a point
on the object's edge. You can
make a very effective demon-
stration that this is the path of
quickest descent by making
two runners, one shaped like
part of an inverted cycloid and
the other a straight line, out of
plywood or a plastic curtain
runner down which you simul-
taneously roll two marbles.

See also Machines, Mechanisms and Mathematics by A. B.
Bolt and J. E. Hiscocks or Riddles in Mathematics by E. P.
Northrop.
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Activity 100
To make up your own puzzle start with a square and first see
how to divide it into pentomines. Then letter it or put some
motifs to suit.

Activity 101

The larger tetrahedron cannot be made from smaller ones.
When you remove a tetrahedron from each corner of the
large tetrahedron the shape left in the centre is an octahedron
with a square cross-section which cannot be made up of the
smaller tetrahedra.

E

U

0

I

A

A

E

I

U

0

I

u

A

E

U

0

E

0

A

E

I

0

A

I

U

Octahedron

Activity 102

If h is the highest common factor of / and b then the relation-
ship is

d = I + b - h

For example, if / = 15 and b = 10 then h - 5 so the number
of squares crossed by a diagonal will be

15 + 10 - 5 = 20

Activity 103

No. of lines (n)

No. of regions (r)

0

1

1

2

2

4

3

7

4

11

5

16

6

22

7

29

Once the table has been completed it can be seen that the
differences between the r numbers is 1, 2, 3, 4, 5, etc. from
which it is not too difficult to deduce that for (i) when n = 10
then r = 56. The value for r when n = 100 (part (ii)) can be
deduced in a similar way, but it is more easily calculated from
the formula

r = 1 + jn(n+ 1) as 5051.
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Note that \ n in + 1) is the sum of all the numbers 1,2,
3, . . . , n which explains the formula for r. To see where
\ n (n + 1) comes from consider

S = 1 + 2 + 3 + 4 + . . . + ( / ! - l) + /i
then £ = n + (n — 1) + in — 2) + . . . + 1 by reversing the order

so IS = (n + 1) + (n + 1) + (n + 1) + . . . + (n + 1) by adding

= n(n + 1)

from which S = -j rc(>z + 1)

The differencing technique which helps to extend a
sequence of numbers is explored in the next activity and may
help you when investigating the maximum number of regions
(r) into which space can be divided by p planes.

No. of planes (p)

No. of regions (r)

0

1

1

2

2

4

3

8

4

15

After four planes it is difficult to visualise what is happen-
ing but the differencing technique suggests how it might
continue.

First difference

Second difference

1 2 4 8 15 / 26 42

1 2 4 7 / 1 1 16

1 2 3 / 4 5

Activity 104

The tenth term would be 120.

(i) 2 9 15 23 ( 33

8 10

(ii) 18 33 53

10 15 20 25
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(iii) 2 3 8 17 30

1 5 9 13 17

(iv) 4 6 10 18 34

2 4 8 16 32

The next two terms in the original sequence are 62 and 87,

(v)67 (vi)96 (vii)238 (viii) 275

Activity 105

(i) 4 8 12 16 20 24 28 32 36 40
(ii) 1 5 13 25 41 61 85 113 145 181

The first sequence here forms the set of differences for the
second sequence.

The hundredth number in sequence (i) is 400.
The hundredth number in sequence (ii) is equal to

1
= 1
= 1

= 1
= 1
= 19

+
+ 4(
+ 2(

+

4 4
1 4
1 +

99 4
+ 2(100 4
+ (2>
801

< 9 9

• 8 +
• 2 +

2 +
• 98 +
•100 +
x 100)

124
3 4
3 4

97-t
100 4

- 16 H
- 4 H

- 974
h 3H
^ 100 4

H396
h 99)
- 98 +
H 2 +
H100 +

99
1)

100)

The tenth triangle number can be easily found by differ-
encing

1 3 6 10 15 21 28 36 45
2 3 4 5 6 7 8 9

The sum of the first ten odd numbers is 102 = 100.
The sum of the odd numbers 1, 3, 5 , . . . , 39 is 202 = 400

as 39 is the twentieth odd number.
The sum of the odd numbers between 60 and 100 is equal

to the sum of the odd numbers from 1 to 99 minus the sum
of the odd numbers from 1 to 59. Now 99 is the fiftieth odd
number and 59 is the thirtieth so the required sum is 502-302

= 1600.
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Activity 106
Pinboard size

2x 2
3 x 3
4 x 4
5 x 5
6 x 6
7x 7
8x 8

No. of squares

1
3
5
8

11
15
18

You may have thought that the number of different size
squares on an 8 x 8 board was 19, but this overlooks the fact
that one of the diagonal squares on an 8 x 8 board is based
on a 3, 4, 5 triangle. The square thus has a side of length 5
and repeats the boundary square on a 6 x 6 board.

Up to this point the number of squares (AO can be expres-
sed in terms of the number (n) of pins along one edge of a
board by

r = | In2 +4n

The areas of the squares which can be made on an 8 x 8
board are

1 2 4 5 8 9 10 13 16 17 18 20 25 26 29 36 37 49

Looking at the differences between them does not suggest
any obvious pattern which would enable you to continue the
number sequence.

Activity 107

(i) Triangle, quadrilateral, pentagon, hexagon.
Some others are: heptagon (7-sided), octagon (8-sided),
nonagon (9-sided), decagon (10-sided),

(ii) 17 diagonals,
(iii) (a) 2 (b)5 (c)9

With n sides it is possible to dmw^n(n - 3) diagonals.
The reasoning behind this formula is that from any
vertex it is possible to draw in - 3) diagonals. There
are n vertices so this gives n(n -3) but as each diagonal
is counted twice, as it originates from two vertices, this
number must be halved,

(iv) (a) 2 (b)3 (c)4
In general n - 3 diagonals can be drawn without any
crossing for an ft-sided polygon.
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The diagrams (a) and (b) show two distinctly different
ways in which the hexagon could be triangulated.

B B

(a) (b)

(c) (d)

Diagrams (c), (d) and (e) show three further ways of
triangulating the heptagon (7-gon).

1 +5 + 1 + 2 + 2 + 2 + 2 = 1 5
1 + 2 + 3 + 2 + 1 + 3 + 3 = 15
1 + 2 + 4 + 1 + 2 + 2 + 3 = 15

In each case the triangulation of the heptagon produces
five triangles. Each triangle occurs at three vertices so in the
numbering system used each triangle is counted three times.
Hence the same digit sum of 5 x 3 = 15 in each case.

Clearly the more sides a polygon has the greater the
number of distinct triangulations. However the author has
not yet found a way of predicting the number of distinct
triangulations for a polygon with a given number of sides.

Apart from the problem of not knowing how many
triangulations to expect one of the reasons to introduce this
activity was to generate a sequence of numbers which would
form the basis of a frieze pattern. These patterns were dis-
covered relatively recently and are still little known. The
arithmetic is very simple once you have mastered the way
in which new lines are generated, and the patterns are intri-
guing.
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Activity 108
Pegboard games are of long standing but perhaps underrated
because they look deceptively simple.

The smallest number of moves in 'Leapfrog' is fifteen.
Number the holes 1 to 7 from left to right then a solution

in fifteen moves is as follows where the number corresponds
to the empty hole at each stage:

The strategy is to maximise the number of leaps and in
this solution there are nine.

With x black pegs and y red pegs to change ends then the
solution can be achieved in xy + x + y moves where xy is the
number of leaps.

The games described here and many others are analysed
in Mathematical Recreations and Essays by W. W. Rouse
Ball while readable references on solitaire problems are
Winning Ways vol 2 by Berlekamp, Conway and Guy, and
Further Mathematical Diversions by Martin Gardner.

Activity 109

Activity 110

The smallest number of colours is three, as the three faces
meeting at a corner of the cube all have to be different, but
if opposite faces are the same colour then no adjacent faces
are the same.

With four colours A, B, C and D available then there are
four ways of choosing three at a time namely ABC, ABD,
ACD and BCD and with each choice only one way of colour-
ing the cube. All other ways must come from using all four
colours. It is not easy to sort out the possibilities without
a model cube (lumps of sugar can be very helpful here) but
to start with note that three faces cannot be coloured the
same colour without two adjacent faces being the same.
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There are thus six faces to be coloured using all four colours
which means that two colours must be used twice and two
colours once each. This leads to the six solutions indicated
by the nets shown here.

c

c

B

A

B

A

B

A

C

C

D

D

D

D

B

A

B

A

B

A

D

D

C

C

D

B

C

A

C

A

C

A

D

B

B

D

In each case the two colours which occur once must be
on opposite faces.

These six solutions with the four earlier solutions using
only three colours at a time give a total of ten distinct ways
of colouring the cube.

Activity 111

The number sequence suggests 32 as the solution. In fact the
answer is only 31. TWSL is a good example to show that you
cannot predict the next number of a sequence with any
certainty unless you have more evidence.

For those who understand combinations, the number of
pieces produced by n points is given by

nC2

Activity 112
This is a good exercise for using a calculator. One approach is
to form a table giving

n n2 n2 - 1

and a solution is found when a number in the n2 - 1 column
is repeated somewhere in the — {n2 - 1) column.

The solution to this puzzle is 840 as

840 + 1 = 841 = 292

and (840 x 2) + 1 = 1681 = 4 1 2
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Activity 113
As in the last puzzle you will need a table of square numbers.
The problem is to find whole number solutions to

a2+b2=c2+d2

The first solution is

62 + 72 = 22 + 92 = 85

Other possible solutions are

82 + H2 = 4 2 + 1 3 2 = 1 8 5

and 152 + 202 = 72 + 242 =625

Activity 114

Solve these by intelligent use of 'trial and error'.

With 1, 2, 3, 4, 5, 6, the four possibilities are

and

and

Notice how the solutions occur in pairs where the numbers
at the vertices of the triangles change places with the numbers
in the middle of the opposite sides.
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With 1, 2, 3, 5, 6, 7 the solutions are

and

which are closely related to the last two above. How?

With 1, 2, 3, 4, 6, 7, the solutions are

and

Activity 115
1 If the digit is d the answer is ddd ddd ddd. This is because

12 345 679= 111 111 111+9.
2 If the digit is d the answer is ddd ddd. In this case 15 873

= 111 111+7
3 143 x 7 = 1001 so 143 x d x 7 = 1001 x d = dOOd.
4 There are probably several logical explanations for each of

these:

(i) 1234=1111 + 111 + 11 + 1 + 0

(1111 x 9 ) + 1 = 10000
( 111 x 9) + 1 = 1 000
( 11 x 9) + 1 = 100
( I x 9 ) + 1= 10
( 0 x 9) + 1 = 1

(1234 x 9) +5 = 11 111

This example should show why the pattern occurs.
(ii) 66 x 67 = 2x 3x 11 x 67

= 22x 201
= 4422

666 x 67 = 2 x 3 x 111 x 67
= 222 x 2001
= 444222

and so on.
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Activity 116

The surprising fact is that no matter what four digits you
start with the end point is 6174. Here is a longer chain.

(i)_ 7432
2347

(ii)

(vi)

8550
558
7992

8730 (
378

(iii) 9972
2799
7173

!vii) 8532
2358

(iv)

(viii)

7731
1377
6354

7641
1467

5085

6543
3456
3087 8352 6174 6174

The author has found chains of eight subtractions needed
before 6174 occurs but he would be interested to hear from
anyone who finds a longer chain.

This activity is best investigated with a calculator, it is a
good idea to jot down the answer to your subtraction at each
stage for if a long chain occurs you will have forgotten the
starting point by the time 6174 occurs.

Try a similar process on five digits or longer numbers.

Activity 117

Put the digits in decreasing order:

9 7 5 4 3 2

Then for the largest sum it is only necessary to take the
first two digits for the hundreds, the next two digits for the
tens, and the last two digits for the units. This gives four
possible pairs:

953 943 952 942
742 752 743 753

1 695 1 695 1695 1 695

However the maximum product is found by taking the pair
of numbers from the four here which are closest together, in
this case

942 x 753 = 709 326

One way to understand this is to imagine the four pairs
above as representing the sides of a rectangle.

As the sum of each pair is the same the rectangles will all
have the same perimeter. The products of the numbers then
correspond to the areas of the rectangles and for rectangles
of equal perimeter the shape nearest to a square will have
the largest area.
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Activity 118
One approach is to just add together and subtract different
unit fractions to see what results. However, to make real
progress certain patterns need to be recognised.

I l l - • i r 1 1 1
- - 4 = -4r 1S a special case of =
3 4 12 n n + l n(n +

from which -j = ~ + -—-

and hence -| = -| + - ^
This approach could be used for all fractions of the form

•| could have been written as-j + \ or 1 - -| but the
example given illustrates an interesting pattern which may
be better seen as

I I + I + I + L + J + l • l

4 4 5 6 4 x 5 4 x 6 5 x 6 4 x 5 x 6

which comes from

similarly

5 x 6 5 x 7 6 x 7 5 x 6 x 7

or 1= 1 _2 = i-±_i- .-L
5 5 5 6 30

Activity 119

This is an activity well worth spending time on. As a school
activity it is interesting to put the results on the wall and
encourage alternative expressions over a period of say a
week. Numbers which prove difficult to express vary from
person to person but there are one or two intrinsically
difficult ones. Feel pleased if you find 95 or more correctly!

A\ -I- A.A '\/4 + 4
= V IXTTJ Ay A — 45/2

•4 .4

85 = . 4 ! . + 4 89= 4 ! " , v " +4!
•4 x y/-4
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Activity 120
ShELL.OIL

A calculator never tells LIES.
LESLIE went fishing off LOOE on a LILO for SOLE but

only caught some EELS.
BILL decided to SELL hIS walking ShOES because hE

had a LOOSE hEEL in one and a hOLE in the other. They
hurt like hELL and made him feel quite ILL.

ESSO.

Calculator I I I I ~~l I I f~ I f""/ /""/ /""/
digit / _ / / (~ I " / " / / " / / / " / " /

equivalent O l O f l Z E h S g L B

Activity 121
Because a calculator takes the drudgery out of arithmetic
challenges like the ones here become relatively easy.

(i) 237 x 238 First find V(56 406).

(ii) Intelligent use of trial and error should soon give
6 9 x 7 1 x 73 = 357 406

(iii) 262 +272 = 1405

(iv) The intention here is to try different numbers and
gradually get closer to the actual length.

5 x 5 x 5 = 125 and 6 x 6 x 6 = 216

so the required length will be somewhere between
5 and 6 but nearer to 6.

Try 5-9
Next 5-8

5-85
5-845
5-848
5-848 1
5-848 04
5-848 035

5-9 x 5-9 x 5-9 = 205-379
5-8 x 5-8 x 5-8 = 195-112
5-85 x 5-85 x 5-85 = 200-201 62
5-8453 = 199-688 72
5-8483 = 199-996 36
5-848 I3 = 200-00661
5-848 043 = 200-00045
5-848 0353 = 199-999 94

On a variety of calculators

5-848 035 53 = 200

This is not necessarily the exact answer, though within the
accuracy of the calculator it is.
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Activity 122

Activity 123

This is an interesting puzzle for a group of people to do
together to see who can find the most profitable route. The
idea for this came from an article in the Mathematical Gazette
no. 418 and in turn came from a sales promotion gimmick by
an Australian detergent manufacturer. It has proved particu-
larly motivating in a competitive situation but so far no-one
has found the best solution without using a computer. This
is probably because the best route,

28 74 45 83 57 72 52 73 41 70 44 81 56

which gives a profit of £776 million, does not visit any of
the eleven squares with profits of more than £83 million.

Using this array of numbers it is easy to pose similar but
different puzzles. For example, what is the shortest route
which would visit all the squares with a profit of at least
£80 million?
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Activity 124
The final answer is always 1089 unless the first number chosen
has its hundred's digit equal to its unit's digit such as 525 for
then the first subtraction yields zero.

Activity 125

The possible solutions all
depend on the fact that
1+6 = 2+5 = 3+4 = 7. In each
case the pair of squares at the
intersection of two circles must
contain a pair of numbers
which add up to 7. The magic
number for each circle is then
14.

1
+*—•

s
\ v /

3

—.

/

2

6
/

/
-"-—

4

/ \\ ,
5

To find another set of six numbers which could be used
to form a set of magic circles decide on a number TV and
find three pairs of numbers (a, b), (c, d), (e,f) whose sum
isiV. For example, if iV = 15, then the three pairs of numbers
could be

(5,10) (7,8) (2,13)

A solution would then be

5 ^—

\

7

/

2

10
/

/

8

\ ,

*-
13

where 27V = 30 is the magic
number.

The solution to the four-circle puzzle depends on the fact
that 1 + 12 = 2 + 1 1 = 3 +10 = 4 + 9 = 5+ 8 = 6 + 7= 13.
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Any pair of circles intersect in only two points so put a
pair of numbers at these two points which add up to 13. In
this way it is easy to find a solution. One is given here.

1 + 2 + 5 + 12+ 11 + 8 = 39
2 + 3 + 9 + 11 + 10 + 4 = 39
1 + 3 + 6+ 12+ 10 + 7 = 39
7 + 4 + 5 + 6 + 9 + 8 = 3 9

Activity 126

The bottom spoke has all its numbers present and totals 23.
The number in the centre can now be found as 23 — 15 — 2
6 and the rest rapidly follow.

Magic number 23 Magic number 22
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Activity 127
Here are four solutions.

123-4-5-6-7 + 8-9 = 100

123 -45-67 + 89 = 100

[1 x (2+3) x4x 5] +6-7-8 + 9 = 100

(1x2x3) -(4x5)+ (6x7)+ (8x9) = 100

Activity 128

Because in the past without a calculator we usually only
carried out a division process for say 4 significant figures it
was only when dividing by numbers like 3 and 11 which give
short repeating patterns that we were aware of the possi-
bility of a recurring decimal. The fact that virtually all
division sums if continued far enough lead to a repeating
pattern probably comes as a surprise.
1 With division by 7 the pattern will always settle down to

a recurring sequence of six digits.

^ = 1^= 1-142857

7 = 1"7 = 1-285714

^ • = • 2 ^ = 2-285714

± = 0-142857 142857 . . .

To see that division by a number such as 64 or 320
always terminates is probably best seen with an example.

r .A 73 73 73 x 5 6 1140625
Consider — = — = — = = 1-140625

64 26 26 x 56 1000000
If the number is not made up of a power of 2 and a

power of 5 then it cannot be converted into a power of
10 as in the example here.

When dividing by a number such as 31, for example,
then there are 30 possible remainders namely 1 , 2 , . . . ,
30 which could all occur before one is repeated so to
study repeating sequences in the quotient it is really a
case of studying the sequence of remainders. There is a
nice tie-up here with modulo arithmetic groups for
anyone interested.
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2 For division by 17 the sequence of digits is

r-2 9 4 1 1 7 6 4 7 0 5 8 8 2 3 5-i
% «« 1

— = 0-2 941 1764705882352941

— = 0-352941 17647058823529
17

— = 0-4 1176470588235294117
17

3 For division by 19 the sequence of digits is

r-3 6842105263157894 7-x
* -* '

4 Division by 11 always leads to a sequence of two digits
which can be

09 18 27 36 45

90 81 72 63 54

5 Division by 13 leads to one of two six-digit sequences

r - 0 7 6 9 2 3 - i or r - 1 5 3 8 4 6 — i

Activity 129

29 and 31 are the only primes between 23 and 37.
127 is the next prime after 113.
There are four primes between 190 and 200 namely,

191, 193, 197 and 199.

1 28 = 5 + 2 3 = 1 1 + 1 7
50 = 13 + 37 = 3 + 4 7
100 = 3 + 97 = 2 9 + 7 1
246 = 7 + 239 = 23 + 223

The representation is clearly not unique.

2 5 - 3 = 2
11 - 7 = 4
29 - 23 = 6
97 - 89 = 8
149 - 139 = 10
211 - 199 = 12
127 - 113 = 14
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3 Here are the first ten odd numbers.

3 :

5 :

7 =
9 :

11 :

13 :

15 :

17 =
19 :

21 :

But

4 179,

= 2 H
= 3 H
= 3 H
= 5 H
= 3 H
= 5 H
= 7 H
= 13 H
= 3 H
= 5 H

h 2"
h 2 1

h 2 2

h 2 2

h 2 3

h 2 3

h 2 3

h 2 2

h 2 4

h 2 4

try 1271.

,181; 191,

= 5
= 7
= 7
= 11
= 11

= 11
= 13

193;

+ 21

+ 21

+ 22

+ 21

+ 22

+ 23

+ 23

197,

= 13

= 17
= 17

199

+ 21

+ 21

+ 22 = 19 + 21

5 (ii) Write the numbers in six columns as follows.

1

7

13

19

2

8

14

20

3

9

15

21

4

10

16

22

5

11

17

23

6

12

18

24

The second, fourth and sixth columns are all even
numbers so cannot be prime, except 2. The third column
contains multiples of 3 so they are not prime except 3.
This leaves the first column and the fifth column where the
numbers are all of the form 6n + 1 and 6n — 1.

(hi) e.g. 5 = 22 + I2

13 = 32 + 22

17 = 42 + I2

In this activity and the next it may be advantageous to
construct a table of primes. One neat way of doing this is to
use the method due to Eratosthenes, an early Greek mathe-
matician. Write down all the numbers you want to consider
in some manageable array, say 1 to 50.

11 at 13 u it n 17 a 19
ii n 23 ft ft ft il ii 29
31 M n u ta 00 37 # &
41 fit 43 fifi 0 fit 47 fit fit

20
40
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Now cross out every second number after 2. This leaves all
the odd numbers and 2. Take the first number after 2 which
is not crossed out, 3. Now cross out every third number
after 3 such as 6, 9, 12 etc. Move to the next number from
3 which has not been crossed out, 5, and cross off every
fifth number from it. Now cross off every seventh number
from 7 etc. The numbers left are the primes.

This method has been described in detail in the School
Mathematics Project Book 1 and the associated teacher's
guide but for further reading on prime numbers the follow-
ing books are recommended: What is Mathematics*] by
R. Courant and H. Robbins, and Recreations in the Theory
of Numbers by A. H. Beiler.

Activity 130
= 1 121 This first breaks down with the term 121 = 11

2 It breaks down when n = 40, 41, 44, 49, 56, 65, 76.
When n = 40, n2 + n + 41 = 402 +40 + 41

= 40(40+ 1) + 41
= 40(41) + 41
= 41 2

3 When n = 80, n2 - 79n + 1601 = 802 - (79 x 80) + 1601
= 80(80-79)+ 1601
= 1681

The two quadratics are very closely linked. Substituting
n - 4 0 for n inn2 +?z + 41 gives n2 - 19n + 1681.

4 n = 29, 2 x 292 + 29 = 29 (58 + 1) = 29 x 59

5 The first five Fermat numbers are 3, 5, 17, 257 and 65 537.

Activity 131

Palindromic numbers

The smallest palindromic prime is 11 and the smallest palin-
dromic square is 121. There are only two other palindromic
squares less than 1000:

484 = 222 and 676 = 262

The palindromic primes between 100 and 200 are

101 131 151 181 191
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Any palindromic number : between 400 and 500 would have
to end in 4 so would be an even number; between 500 and
600 would have to end in 5 so would have 5 as a factor;
between 600 and 700 would have to end in 6 so would be
even. In fact there are no palindromic primes between 383
and 727. The common factor is 11.

Excessive, perfect and defective numbers

(i) Excessive: 1 2 3 4 5 7 8 9 1 0 1 1 1 3
14 15 16 17 19 21 22 23 25
26 27 29

Defective: 12 18 20 24
Perfect: 6 28

(ii) n = 5 gives 25 - 1 = 31 so 16 x 31 = 496 is perfect.
496= 1 + 2 + 4 + 8+ 16 + 3 1 + 6 2 + 1 2 4 + 248
n = 7 gives 27 - 1 = 127 which is prime so 64 x 127 = 8128
is perfect.

Activity 132

1 x2 -y2 = (x+y)(x -y)
In this case x — y = 1 so x2 — y2 = x + y.

2 If the number being squared is n then the two other
numbers being multiplied together are n — 1 and n + 1.
Now ( / i - l ) ( / i+ l) = n2 - 1
so the product is always 1 less than n2.

3 With powers of 3 the last digit repeats the cycle 3, 9, 7, 1.
Powers of 2 give the sequence 2, 4, 8, 6.
Powers of 4 give the sequence 4, 6.
Powers of 5 and 6 just give 5 and 6.
Powers of 7 give the sequence 7, 9, 3, 1.
Powers of 8 give the sequence 8, 4, 2, 6.
Powers of 9 give the sequence 9 , 1 .
Note the close connection between the patterns of 3 and 7
and between those of 2 and 8.

4 The nth line consists of n consecutive odd numbers ending
in the \n (n + 1 )th odd number and their sum is equal to
n\

5 The sum of the cubes of the first n numbers is equal to the
square of the sum of the first n numbers. For example

I3 + 2 3 + 3 3 + 4 3 =(1 + 2 + 3 + 4)2
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Activity 133
The main triads

3
5
7
8
9

12
20

i with m

4
12
24
15
40
35
21

ambe

5
13
25
17
41
37
29 triangle area 210.

Others are also possible as multiples of these such as

6 8 10 or 15 36 39 or 16 30 34

Because of the identity

(m2 -n2)2 + (Imn)2 = (m2 + n2)2

new Pythagorean triads can be easily found by giving whole
number values to m and n and then calculating the numbers

m2 — n2 2mn m2 + n2

Some three-dimensional examples are

2 3 6 7
1 4 8 9
3 16 24 29

Activity 134

These games have proved very stimulating and lead to some
good creative mathematical thinking. They work equally
well with a teacher and a class or with a small group.

Activity 135

Also
and

138 x 42 = 5796
483x 12 = 5796
186x 39 = 7254
157x 28 = 4396

51249 8 7 6 x 3 =
32 547 891 x 6 =

153
195

198x 27 = 5346
297 x 18 = 5346

1738x 4 = 6952
1963 x 4 = 7852

749 628
287 346

A good reference on this and many fascinating number
relations is Recreations in the Theory of Numbers by
A. H. Beiler.
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Activity 136

l 2 + 5 2 + 6 2

2 2 + 4 2 + 92

32 + 7 2 + g 2

22 + 3 2 + 72

I2 + 6 2 + 8 2

42 + 52 + 92

Note that in each of these cases the numbers have the
additional property that the equations would balance if the
numbers were not squared, for example

1 + 5 + 6 = 2 + 3 + 7

Activity 137

The magic number is 40 in each case.

They may be solved by intelligent use of trial and error or
analytically using simultaneous linear equations.

A good reference on magic stars is Magic Squares and Cubes
by W. S. Andrews.
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Activity 138
Both the puzzles here are in general circulation but if you have
not met them before they offer a satisfactory challenge to
your powers of reasoning. The key is to start from the left-
hand end where the possible values of D (or M) are strictly
limited.

(a) 9 6 2 3 3
+625 13

158746

(b) 9 5 6 7
+ 1085

10652

Other similar problems to try are

T H R E E
+ T H RE E

F O U R

E L E V E N

T H I S
+ I S
V E R Y

E A S Y

Activity 139

If the opponent chooses red the gambler chooses blue.
If the opponent chooses blue the gambler chooses yellow.
If the opponent chooses yellow the gambler chooses red.

In each case the gambler has a chance of winning, on
average, five rolls of dice out of every nine rolls.

This is a fascinating situation. The numbers on the faces of
each dice total the same and no single dice is better than both
the others. To see why the blue dice is superior to the red dice
consider the possible ways in which the two dice could land:

Score on red dice

2
4
9

Possible score on blue dice

53
3
3

7
7
7

The times when blue has a larger score have been under-
lined and of the nine possible combinations, each of which
are equally likely, blue comes out above red on five occasions.
Similarly it can be shown why yellow is superior to blue and
red superior to yellow.

Activity 140
P Q R S P Q R

B

4

1

3

CJ
I

7

5

or B CJ
I

3

4

1

7

5
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Both these allocations lead to a distance of 67 miles. This
problem is one of a general type which has a specific method
of solution although here it was expected to be done by
intelligent use of trial and error.

For further reading on this type of problem read, for
example, An Introduction to Linear Programming and the
Theory of Games by S. Vajda (Methuen/Wiley) or Mathematics
in Management by A. Battersby (Pelican).

Activity 141

The other four cards are a
10

18

3

1 1

1<?

Z7

14

22

30

1

15

23

31

4

12

10

28

5

13

21

21

6

14

22

30

7

15

23

31

8

12

24

2 3

<*

13

25

21

W

14

26

30

11

15

27

31

16

10

24

28

17

21

25

21

18

22

26

30

11

23

27

31

Based on the binary representation of number, these cards
are sometimes found in Christmas crackers. What is certain is
that they create much interest even when both participants
know how the cards work.

(b) (c) (d)

Activity

6

7

2

1

5

9

142

8

3

4

9

8

4

2

7

12

10

6

5

14

5

8

3

9

15

10

13

4

11

9

4

1

8

15

12

7

5

(e)
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When using the method given for generating new magic squares
some care should be made in choosing the differences so that
all the numbers generated are different. The method works for
any numbers as the following shows.

Let a be the first number and p and q the differences. The
numbers generated and the resulting magic square are

a a+p a + 2p

a + q a+p+q a + 2p + q

a + 2q a+p + 2q a + 2p + 2q

a + p + 2q

a + 2p

a+q

a

a + p + q

a + 2p + 2q

a + 2p + q

a + 2q

a + p

The magic number is 3 {a + p + q) which shows that for a
3 x 3 magic square of whole numbers the magic number is
always a multiple of 3.

Can you find <z, p and q so that all the numbers in the
square are prime?

Activity 143

Other sets of four numbers which total 34 in Dtirer's magic

square
3

10
16
9
9

16
3
5

are
2

11
3
6
4
3

10
10

15
6

10
4

13
14
7
7

14
7
5

15
8
1

14
12

5
2
2
7

16
2
6
9

9
12
13
12
5

13
15
6

8
15
11
14
12
4
2

11

12
5
8
1
1

15
11
8

It is not surprising that such squares were thought to
possess mystical powers.

In the Nasik magic square most of the symmetries of the
DUrer square exist but in addition there are diagonal patterns
such as

15 14 2 3
10 4 7 13
14 9 3 8

10 11 7 6
11 16 6 1
15 5 2 12

The fullest reference on magic squares is probably Magic
Squares and Cubes by W. S. Andrews, but there is much of
interest in Mathematical Recreations and Essays by W. W.
Rouse Ball, and in Amusements in Mathematics by H. E.
Dudeney.
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Activity 144
The property for a 3 x 3 magic square is always true as can be
proved algebraically from the general form of the square given
in the commentary of Activity 142. Adding any constant num-
ber k to the numbers of a multigrade will generate a new
multigrade of the same order. Suppose for example

A+B + C + D = a + b+c + d

and A2 + B2 +C2 +D2 = a2 +b2+c2+d2

then (A+k) + (B+k) + (C+k) + (D+k) = A+B + C + D + 4k
= a+b+c+d+4k
= (a+k) + (b+k) + (c+k) + (d+k)

and (A+k)2 + (B+k)2 + (C+k)2 + (D+k)2

= A2 +B2 + C2 +D2 + 2k(A+B + C + D) + 4k2

= a2 +b2 +c2 + d2 + 2k(a + b + c + d) + 4k2

= (a+k)2 + (b+k)2 + (c+k)2 + (d+k)2

I am indebted to my colleague Donald Cross who introduced
me to the idea of a multigrade and has written many articles on
them.

Activity 145

The next two lines of Pascal's triangle are

1 6 15 20 15 6 1
1 7 21 35 35 21 7 1

Apart from the 1 s at the end the other numbers are formed
by adding pairs of adjacent numbers in the line above. The
sum of the numbers in each row is a power of 2; the 12th line
has a sum of 21 1 =2048.

Powers of 11

The powers of 11 only satisfy the pattern up to I I 4 . With 115

a carry is involved as the corresponding line in the triangle is
1,5,10, 10, 5,1 and this upsets the pattern.

Hexagonal maze

1 4 6 4 1
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The binomial pattern

Put a = 1 to see why the numbers in a row of Pascal's triangle
equal a power of 2.

By putting the numbers of Pascal's triangle as a right-
angled triangle pattern and working upwards it soon becomes
clear that the pattern for the coefficients of (1 + a)~ x and
(1 + a)~2 etc. also occur.

]
]

]
]

—
—

1
1
1

Activity

3
2
1
0
1
2
3
4
5

146

6
3
1
0
0
1
3
6

10

- 1 0
- 4
- 1

0
0
0
1
4

10

15
5
1
0
0
0
0
1
5

- 2 1
- 6
"1

0
0
0
0
0
1

(1
(1
(1
(1
(1
(1
(1
(1
(1

+ a)~3

+ a)~2

+ a)~l

+ a)°
+ a)1

+ «)2

+ a)3

+ a?
+ a)5

An interesting reference on the Fibonacci sequence is School
Mathematics Project Book 2 while Riddles in Mathematics by
E. P. Northrop does more on the connections with nature.
For a serious study a book such as An Introduction to the
Theory of Numbers by G. H. Hardy and E. M. Wright (Oxford
University Press) is recommended.

Activity 147

The rule governing the numbers in a Fibonacci sequence can
be expressed as the difference equation

un+2 = un+1 + un

and its solution for the sequence starting with two 1 s is

From the difference equation above

_ 1 . Un

Now as n becomes larger Un + 2/Un + i and Un + i/Un both
approach the same limit ce, so in the limit

a = 1 + -
a

giving a2 - a — 1 = 0, from which oc = j(l + y/5).
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To construct a regular pentagon the key is to construct a
length equal to \{\ + \J5). This can be done as follows.

Construct a right-angle then use your compass as a pair of
dividers to mark off AB equal to 2 units and BC equal to 1
unit. Join A to C and extend.

By Pythagoras' theorem AC = >/5 units. Use the compass
to mark offZ) 1 unit from C, then AD is 1 + y/S and it only
remains to bisects/) to get a length of^(l +y/5). These
should be straightforward!

With the new sequence given the ratio becomes closer and
closer to 2.

Another interesting way of generating the Fibonacci
sequence is to consider the effect of successive powers of the

(0 l\
on a number pair such as I ,

1

matrix on a number pair such as

B

0 1
1 1

0 1
1 1

0 1
1 1

and so on. If the ordered pairs are plotted as vectors then their
gradient approaches the golden section ratio.

Further references on the Fibonacci sequence and golden
section ratio abound. Try Mathematical Snapshots by H.
Steinhaus or Symmetry by Weyl or Pattern and Design with
Dynamic Symmetry by Edward B. Edwards.

Activity 148

The weights are 1 kg, 3 kg, 9 kg and 27 kg. By putting the
weights on either scale pan then all the weights from 1 to 40
can be achieved. For example

1 1 = 9 + 3 - 1 20 = 27 + 3 - 9 - 1

Activity 149

The lengths must be in the ratio of \Ji: 1 as

x = 1
I JC/2~

giving x2 = 2

from which x = y/2

x/2 x/2
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Activity 150
Middle layer

23

7

12

3

14

25

16

21

5

Bottom layer

18

20

4

22

9

11

2

13

27

For much more on magic cubes see Magic Squares and Cubes
by W. S. Andrews.

Activity 151

Compare 9 balls with 9 balls and leave 9 in the box. If the
scales balance then the heavy ball is in the box, if not then
the 9 balls which go down contains the heavy ball. Either
way, after one balance the faulty ball has been narrowed
down to a set of 9. Divide this set of 9 into three sets of 3
After this you will have narrowed down the faulty ball to
3 and one more balance sorts it out.

A similar but much harder problem is to find the odd ball
from 13 in three balances if all you know is that the odd
ball has a different weight to the other 12.

Activity 152

(i) Do the division, subtract the whole number part of the
quotient, and multiply the resulting decimal number
by 729.

One calculator gave

89 3 2 8 - 7 2 9 = 122.534 97

0.534 97 x 729 = 389.993 13

Because of the limitations in the capacity of a calculator
there are errors in the last few digits but the remainder
can be confidently given as the nearest whole number,
390.

Check by seeing that (729 x 122) + 390 = 89 328

Alternatively from the initial division the remainder
can be found as

89 328 - ( 7 2 9 x 122) = 390

thus avoiding the need to round off.
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(ii) As a3 = 200 can be written as

200

a

from which a. =
200^

it follows that if x is an approximation to the cube
root of 200 then>/(200/x) is a better approximation.
For example if xx = 6 is taken as the first approxi-
mation to 3^/200 then take

x2 = = 5.7735

= 5.885 66

= 5.829 31

829 31
= 5.857 42 etc.

This method converges automatically to the required
number. It may not be as quick as a skilled operator
using trial and error but it would be easy to program,

(iii) What is infinity on your calculator!

Start with a string of 9s and then keep reducing until
you get other than 0 for an answer.

Activity 153

This magic hexagon was first
discovered by an Englishman,
T. Vickers, who published it
in the December 1958 Mathe-
matical Gazette.
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Activity 154
The game of Nim is analysed in Mathematical Recreations
and Essays by W. W. Rouse Ball and there is an interesting
chapter in We Built our Own Computers by A. B. Bolt
describing a machine which could play the game.

The game is interesting because every position of the
game can be classified as 'safe' or 'unsafe'.

From a safe position a player can only create an unsafe
position no matter how many counters he moves. However
from an unsafe position it is possible to move to either a
safe or an unsafe position. Thus a player who has analysed
the game can always move from an unsafe position to a
safe position and beat his opponent.

There are many more unsafe positions than safe positions
but to proceed it is necessary to find out how to decide
which are which.

Take the example given in the description of the game.
First convert the number of counters in each heap into
binary and add up the digits in each column without resort-
ing to carry.

7
9
6

Binary form
111

1001
110

Digit sum 1222

For a safe position the digit sum for each column must
be an even number. Hence the position here is unsafe.

To move to a safe position the second heap could be
reduced to 1

then 7 111 is a safe position
1 1
6 HO

222

Why is this the only safe move from this position? Other
safe positions are, for example, (2, 4, 6) (2, 5, 7) (1, 2, 3)
(7, 10, 13).

Playing against an uninitiated player a player who can use
the strategy described here should win nine times out of ten
but he cannot win if the starting position is unsafe and his
opponent moves to a safe move from it and on every sub-
sequent move. Faced with a safe position the best strategy
is to remove just one counter (i.e. do as little as possible)
in the hope that your opponent's next move will be to an
unsafe position.
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FURTHER RESOURCES

Books
The books in this list do not require a high level of mathe-
matical training to be understood although many of the
concepts presented in them are at the heart of mathematics.

W. S. Andrews, Magic Squares and Cubes (Dover)
B. Averbach and O. Chein, Mathematics: Problem Solving

Through Recreational Mathematics (W. H. Freeman)
D. St. P. Barnard, Figure it Out (Pan)
Stephen Barr, Experiments in Topology (John Murray)
David Bergamini, Mathematics (Life Science Library)
A. H. Beiler, Recreations in the Theory of Numbers (Dover)
Pierre Berloquin, Geometric Games (Unwin Paperbacks)
A. B. Bolt, We Built Our Own Computers (Cambridge

University Press)
A. B. Bolt and J. E. Hiscocks, Machines, Mechanisms and

Mathematics (Chatto and Windus for the Schools Council
Mathematics for the Majority Project)

Edward de Bono, The Five-Day Course in Thinking (Pelican)
R. Courant and H. Robbins, What is Mathematics? (Oxford

University Press)
H. M. Cundy and A. P. Rollett, Mathematical Models

(Oxford University Press)
H. E. Dudeney, Amusements in Mathematics (Dover)
H. E. Dudeney, The Canterbury Puzzles (Dover)
H. E. Dudeney, Puzzles and Curious Problems (Fontana)
Edward B. Edwards, Pattern and Design with Dynamic

Symmetry (Dover)
The Graphic Work ofM. C Escher (Pan)
Aaron, J. Friedland, Puzzles in Mathematics and Logic

(Dover)
G. Gamow and M. Stern, Puzzle-math (Macmillan)
Martin Gardner, Mathematical Puzzles and Diversions

(Pelican)
Martin Gardner, More Mathematical Puzzles and Diversions

(Pelican)
Martin Gardner, Further Mathematical Diversions (Pelican)
Martin Gardner, Mathematical Carnival (Pelican)
Martin Gardner, Mathematics, Magic and Mystery (Pelican)
Martin Gardner, New Mathematical Diversions (Allen and

Unwin)
Solomon W. Golomb, Polyominoes (Allen and Unwin)
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L. A. Graham, Ingenious Mathematical Problems and Methods
(Dover)

Gerald Jenkins and Anne Wild, Mate Shapes, Series no i , no
2 and no 3 (Tarquin Publications)

S. I. Jones, Mathematical Wrinkles (Norwood Press - likely
to be unobtainable)

E. Kasner and J. Newman, Mathematics and the Imagination
(Bell)

E. H. Lockwood,^4 Book of Curves (Cambridge University
Press)

E. P. Northrop, Riddles in Mathematics (Pelican)
H. Phillips, My Best Puzzles in Mathematics (Dover)
W. W. Rouse Ball, Mathematical Recreations and Essays

(Macmillan)
Royal Vale Heath, Mathemagic (Dover)
Dale Seymour, Sum Puzzles (Creative Publications, Inc.)
H. Steinhaus, Mathematical Snapshots (Oxford University

Press)
H. Steinhaus, One Hundred Problems in Elementary Mathe-

matics (Pergamon)
Frank Tapson, Take Two! 32 board games for 2 players

(A. and C. Black Ltd)
Frank Tapson and Alan Parr, Pick a Pair! 30 board games for

2 players (A. and C. Black Ltd)
P. Van Delft and J. Botermans, Creative Puzzles of the

World (Cassell)
A. F. Wells, The Third Dimension in Chemistry (Oxford

University Press)

Magazines
Mathematical Pie, published termly, available from West

View, Fiveways, Warwick
Mathematics in School, published five times a year, available

from the subscriptions manager, Longman Group Ltd,
Directories and Periodicals Division, 43/45 Annandale
Street, Edinburgh EH7 4AT

Mathematics Teaching, published quarterly, available from
the Association of Teachers of Mathematics, Market
Street Chambers, Nelson, Lancashire BB9 7LN
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Games

Amoeba (Louis Marx)
Backgammon
Black Box (Waddingtons)
Blockbuster (D. Cross, School of Education, Exeter University)
Check Lines (Tri-ang)
Chess
Cluedo (Waddingtons)
Connect 4 (Milton Bradley)
Dominoes
Draughts
Four Sight (Invicta)
Go
Hexagonal Chess
Interaction (Waddingtons)
L-Game (de Bono)
Magic Cube (Pentangle)
Mancala (Spear's Games)
Master Mind (Invicta)
Monopoly (Waddingtons)
Nine Men's Morris
Noughts and Crosses in three dimensions (various commercial

forms, e.g. Fours and Space Lines)
Othello (Peter Pan Playthings)
Reversi (Spear's Games)
Skirrid (Eliot-Taylor)
Solitaire
Spirograph (Denys Fisher)
Touch Down (Invicta - formerly marketed as Pressups)
Trap (Ideal)

Some useful sources of games and puzzles are:

Games Centre, 16 Hanway Street, London Wl A 2LS
Pentangle, Over Wallop, Hants SO2O 8NT
Double Games Ltd, 10 Hampstead Gardens, London NW11
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