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PREFACE

Mathematics is too serious and,
therefore, no opportunity should be
missed to make it amusing.

Blaise Pascal

Mathematical puzzles and games have been in evidence ever since man
first began posing mathematical problems. The history of mathematics is
replete with examples of puzzles, games, and entertaining problems that have
fostered the development of new disciplines and sparked further research.
Important connections exist between problemns originally meant to amuse
and mathematical concepts critical to graph theory, geometry, optimization
theory, combinatorics, and nuinber theory, to name only a few.

As a motivating force, then, the inclination to seek diversion and enter-
tainment has resulted in the unintended revelation of mathematical truths
while also tempering mathematical logic. In fact, Bertrand Russell (1872-
1970) once noted: “A logical theory may be tested by its capacity for dealing
with puzzles, and it is a wholesome plan, in thinking about logic, to stock
the mind with as many puzzles as possible, since these serve much the same
purpose as is served by experiments in physical science.”

Perhaps the popularity of mathematical puzzles and games endures be-
cause they fulfill the need for diversion, the desire to achieve mastery over
challenging subject matter or simply to test our intellectual capacities. Of
equal importance, mathematical amusements also offer an ample playing
field to both the amateur and the professional mathematician. That math-
ematicians from antiquity to the present have always taken interest and
delighted in puzzles and diversions might lend credence to the notion that
creative stimulus and aesthetic considerations are closely interwoven. Ed-
vard Kasner and James Newman in their essay Pastimes of past and present
times (in The World of Mathematics, Vol. 4 (ed. James Newman), Dover,
Mineola 2000) declare: “ ... No branch of intellectual activity is a more
appropriate subject for discussion than puz:les and paradozes ... . Puzzles

Xiit



Xiv PREFACE

in one sense, better than any other single branch of mathematics, reflect its
always youthful, unspoiled, and inquiring spirit ... . Puzzles are made of the
things thal the mathematician, no less than the child, plays with, and dreams
and wonders about, for they are made of the things and circumstances of the
world he lives in.”

In attempting to bring the reader closer to the distinguished mathemati-
cians, I have selected 127 problems from their works. Another 50 related
problems have been added to this collection. The majority of these mathe-
matical diversions find their basis in number theory, graph theory and prob-
ability. Others find their basis in combinatorial and chess problems, and
still others in geometrical and arithmetical puzzles. Noteworthy mathemati-
cians ranging from Archimedes, Cardano, Kepler, Pascal, Huygens, New-
ton, Euler, Gauss, Hamilton, Cayley, Sylvester, to von Neumann, Banach,
Erdds and others, have all communicated brilliant ideas, methodological ap-
proaches leavened with humor, and absolute genius in mathematical thought
by using recreational mathematics as a framework.

This book also explores the brain-teasing and puzzling contributions of
contemporary scientists and mathematicians such as John E. Littlewood,
John von Nenmann, Stephen Banach, Paul Erdos, (H. S. M.) Donald Cox-
eter, the Nobel-Prize winning physicist Paul Dirac, the famous mathematical
physicist Roger Penrose, the eminent mathematician and puzzle composer
John Horton Conway and the great computer scientist and mathematician
Donald Knuth.

I have purposely selected problems that do not require advanced mathe-
matics in order to inake thein accessible to a variety of readers. The tools
are simple: nothing but pencil and paper. What's required is patience and
persistence, the same qualities that make for good careful mathematical re-
search. Restricting problems to only those requiring the use of elementary
mathematics consequently forces the omission of other equally celebrated
problems requiring higher inathematical knowledge or familiarity with other
matheinatical disciplines not usually covered at the high school level. Even
so, I have made several exceptions in the application of certain nonstandard
yet elementary techniques in order to solve some problems. To help readers,
[ have provided outlines in the book’s four appendices because I believe that
the time and effort needed to master any additional material are negligible
when compared to the reader’s enjoyment in solving those problems.

At some point when writing a book of this kind, most authors must limit
their choices. The dilemma I most frequently confronted as I selected prob-
lems was this: What determines whether a task is recreational or not? As
already mentioned, in centuries past almost all mathematical problems (ex-
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cluding, of course, real-life problems of measurement and counting) existed
chiefly for intellectual pleasure and stimulation. Ultimately, however, decid-
ing the recrcational merits of a given problemn involves imposing arbitrary
distinctions and artificial boundaries. Over time, a significant nunber of
recreational mathematics problems have become integral to the development
of entirely new hranches in the field. Furthermore, scientific journals often
take as their subject of study problemns having the same features as those
that characterize recreational mathematics problems. If the reader takes
pleasure in squaring off with the problems included here, then the author
may regard his selections as satisfactory.

Although several tasks may appear trivial to today’s amateur mathemati-
cian, we must recall that several centuries ago, most of these problems were
not easy to solve. While including such problems provides historical insight
into mathematical studies, we must also remain alert to their historical con-
text.

As this book is intended principally to amuse and entertain (and only
incidentally to introduce the general reader to other intriguing mathemat-
ical topics), without violating mathematical exactitude, it does not always
strictly observe the customary rigorous treatment of mathematical details,
definitions, and proofs. About 65 intriguing problems, marked by * are
given as exercises to the readers.

I note that, in some instances, difficulties arose with respect to reproduc-
ing exact quotes from various sources. However, I trust that these minor
inconveniences will not detract from the hook’s overall worth.

Last, a few comments regarding the arrangement of materials. The table
of contents lists the tasks by their title, followed by the author’s name in
parentheses. Mathematicians whose tasks are included appear in the book's
index in boldface. Brief biographies of these contributors appear in chrono-
logical order on pages 299-310. The page location indicating a particular
biography is given in the text behind the name of the contributor and his
puzzle (for example, — p. 299). Furthermore, when introducing the tasks
themselves, I have included sometimes amusing anecdotal material since I
wanted to underscore the informal and recreational character of the book.
Given that the majority of terms, mathematical or otherwise, are familiar
to readers, there is no subject index.

Acknowledgments. In the course of writing this book, I received great
support from my family, friends and editors.

An especially warm thank you goes to my wife and collecague Ljiljana
Petkovié¢, and my elder son Ivan, for their comments during the preparation
of the manuscript, and their never-failing support and love.
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Chapter 1 RECREATIONAL
MATHEMATICS

Recreational problems have survived,
not because they were fostered by the
textbook writers, but because of their
inherent appeal to our love of mystery.

Vera Sanford

Before taking up the noteworthy mathematical thinkers and their memo-
rable problems, a brief overview of the history of mathematical recreations
may benefit the reader. For more historical details see, e.g., the books [6].
[118], [133, Vol. 4], [153, Ch. VI], [167, Vol. II]. According to V. Sanford
[153, Ch. VI], recreational mathematics comprises two principal divisions:
those that depend on object manipulation and those that depend on com-
putation.

A ooosaoocs A

I 4192
J, I0E

&3’0%816

FIGURE 1.1. The oldest magic square—Ilo-shu

Perhaps the oldest known example of the first group is the magic square
shown in the figure above. Known as lo-shu to Chinese mathematicians
around 2200 B.C., the magic square was supposedly constructed during the
reign of the Emperor Yii (see, e.g., [61, Ch. II], or [167, Vol. I, p. 28]).
Chinese myth [27] holds that Emperor Yii saw a tortoise of divine creation

1



2 1. RECREATIONAL MATHEMATICS

swimming in the Yellow River with the lo-shu, or magic square figure, adorn-
ing its shell. The figure on the left shows the lo-shu configuration where the
numerals from 1 to 9 are composed of knots in strings with black knots for
even and white knots for odd numbers.

The Rhind (or Ahmes) papyrus,! dating to around 1650 B.C., suggests
that the early Egyptians based their mathematics problems in puzzle form.
As these problems had no application to daily life, perhaps their main pur-
pose was to provide intellectual pleasure. One of the earliest instances,
named “As I was going to St. Ives’, has the form of a nursery rhyme (see
|153]):

“Seven houses; in each are 7 cats; each cat kills 7 mice; each mouse would have
caten 7 cars of spelt; each ear of spelt will produce 7 hekat. What is the total of
all of them?”>

The ancient Greeks also delighted in the creation of problems strictly for
amusement. One name familiar to us is that of Archimedes, whose the cattle
problem appears on pages 41 to 43. It is one of the most famous problems
in number theory, whose complete solution was not found until 1965 by a
digital computer.

The classical Roman poet Virgil (70 B.C.—-19 B.C.) described in the Aeneid
the legend of the Phoenician princess Dido. After escaping tyranny in her
home country, she arrived on the coast of North Africa and asked the local
ruler for a small piece of land, only as much land as could be encompassed
by a bull’s hide. The clever Dido then cut the bull’s hide into the thinnest
possible strips, enclosed a large tract of land and built the city of Carthage
that would becoine her new home. Today the problem of enclosing the max-
imum area within a fixed boundary is recognized as a classical isoperimetyic
problem. It is regarded as the first problem in a new mathematical disci-
pline, established 17 centuries later, as calculus of variations. Jacol Steiner’s
elegant solution of Dido’s problem is included in this book.

Another of the problems from antiquity is concerned with a group of
men arranged in a circle so that if every kth man is removed going around
the circle, the remainder shall be certain specified (favorable) individuals.
This problem, appearing for the first time in Ambrose of Milan’s book ca.
370, is known as the Josephus problem, and it found its way not just into
later European manuscripts, but also into Arabian and Japanese hooks.
Depending on the time and location where the particular version of the
Josephus problem was raised, the survivors and victims were sailors and

INamed after Alexander Henry Rhind (1833--1863), a Scottish antiquarian, layer and
Egyptologist who acquired the papyrus in 1858 in Luxor (Egypt).
2T. Eric Peet’s translation of The Rhind Mathematical Papyrus, 1923.



1. RECREATIONAL MATHEMATICS 3

smugglers, Christians and Turks, sluggards and scholars, good guys and
bad guys, and so on. This puzzle attracted attention of many outstanding
scientists, including Euler, Tait, Wilf, Graham, and Knuth.

As Europe emerged from the Dark Ages, interest in the arts and sciences
reawakened. In eighth-century England, the mathematician and theologian
Alcuin of York wrote a book in which he included a problem that involved a
man wishing to ferry a wolf, a goat and a cabbage across a river. The solu-
tion shown on pages 240-242 demonstrates how one can solve the problem
accurately by using graph theory. River-crossing problems under specific
conditions and constraints were very popular in medieval Europe. Alcuin,
Tartaglia, Trenchant and Leurechon studied puzzles of this type. A variant
involves how three couples should cross the river in a boat that cannot carry
more than two people at a time. The problem is complicated by the jealousy
of the husbands; each hushand is too jealous to leave his wife in the company
of either of the other men.

Four centuries later, mathematical puzzles appear in the third section of
Leonardo Fibonacci's Liber Abaci, published in 1202. This medieval scholar’s
most famous problem, the rabbit problem, gave rise to the unending sequence
that bears his naine: the Fibonacci sequence, or Fibonacci numbers as they
are also known, 1, 1, 2, 3, 5, 8, 13, 21, 34, ... (see pages 12-13).

Yet another medieval mathematician, ibn Khallikan (1211-1282), formu-
lated a brain teaser requiring the calculation of the total number of wheat
grains placed on a standard 8 x 8 chessboard. The placement of the grains
must respect the following distribution: 1 grain is placed on the first square,
2 grains on the second, 4 on the third, 8 on the fourth, and so on, doubling
the number for each successive square. The resulting number of grains is
264 _ 1, or 18,446,744,073,709,551,615. Ibn Khallikan presented this prob-
lem in the form of the tale of the Indian king Shirham who wanted to reward
the Grand Vizier Sissa ben Dahir for having invented chess. Sissa asked for
the number of grains on the chesshoard if each successive position is the next
number in a geometric progression. However, the king could not fulfill Sissa's
wish; indeed, the number of grains is so large that it is far greater than the
world’s annual production of wheat grains. Speaking in broad terins, ibn
Khallikan's was one of the earliest chess problems.

Ibn Kallikan's problem of the number of grains is a standard illustra-
tion of geometric progressions, copied later by Fibonacci, Pacioli, Clavius
and Tartaglia. Arithmetic progressions were also used in these entertaining
problems. One of the most challenging problems appeared in Buteo’s book
Logistica (Lyons, 1559, 1560):*

3The translation from Latin is given in [153], p. 64.
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“A mouse is at the top of a poplar tree 60 braccia® high, and a cat is on the
ground at its foot. The mouse descends 1/2 of a braccia a day and at night it
turns back 1/6 of a braccia. The cat climbs one braccia a day and goes back 1/4
of a braccia each night. The tree grows 1/4 of a braccia hetween the cat and the
mouse each day and it shrinks 1/8 of a braccia every night. In how many days will
the cat reach the mouse and how much has the tree grown in the meantime, and
how far does the cat climb?”

At about the same time Buteo showed enviable knowledge of the general
laws of permutations and combinations; moreover, he constructed a combi-
nation lock with movable cylinders displayed in Figure 1.2.°

FIGURE 1.2. Buteo’s combination lock (1559)

In 1512 Guarini devised a chessboard problem in which the goal is to effect
the exchange of two black and two white knights, with each pair placed at
. the corners of a 3 x 3 chessboard (see figure left),
in the minimum number of moves. The solution
of this problem by using graph theory is shown on
pages 274-276. People’s interest in chess problems
and the challenge they provide has lasted from the
Middle Ages, through the Renaissance and to the
present day.

While the Italian mathematicians Niccolo Tartaglia (1500-1557) and Gi-
rolamo Cardano (1501-1576) labored jointly to discover the explicit formula
for the solution of cubic algebraic equations, they also found time for recre-
ational problems and games in their mathematical endeavors. Tartaglia’s
General Trattalo (1556) described several interesting tasks; four of which,

4 Braccia is an old Italian unit of length.
SComputer artwork, sketched according to the illustration from Buteo’s Logistica (Ly-
ons, 1559, 1560).



1. RECREATIONAL MATHEMATICS 5

the weighing problem, the division of 17 horses, the wine and water problem,
and the ferryboat problem, are described on pages 20, 24, 25 and 173.

Girolamo Cardano was one the most famous scientists of his time and
an inventor in many fields. Can you believe that the joint connecting the
gear box to the rear axle of a rear wheel drive car is known to the present
day by a version of his name—the cardan shaft? In an earlier book, De
Subtilitate (1550), Cardano presented a game, often called the Chinese ring
puzde (Figure 1.3), that made use of a bar with several rings on it that
remains popular even now. The puzzle's solution is closely related to Gray's
error-correcting binary codes introduced in the 1930s by the engineer Frank
Gray. The Chinese ring puzzle also bears similarities to the Tower of Hanoi,
invented in 1883 by Edouard Lucas (1842-1891), which is also discussed later
in the book.

FIGURE 1.3. Chinese ring puzzle

Many scholars consider Probléms Plaisans et Délectables, by Claude Gas-
par Bachet (1581-1638), to be the first book on mathematical puzzles and
tricks, Most of the famous puzzles and curious problems invented before the
seventeenth century may be found in Bachet’s delightful book. In addition
to Bachet’s original “delectable” problems, the book contains puzzles by Al-
cuin of York, Pacioli, Tartaglia and Cardano, and other puzzles of Asian
origin. Bachet’s book, first published in 1612 and followed by the second
edition published in 1624, probably served as the inspiration for subsequent
works devoted to mathematical recreation.

Other important writers on the subject include the Jesuit scholar Jean
Leurechon (1591-1670), who published under the name of Hendrik van Et-
ten, and Jacques Ozanam {1640-1717). Etten’s work, Mathematical Recre-
ations, or a Collection of Sundry Ezcellent Problems Out of Ancient and
Modern Philosophers Both Useful and Recreative, first published in French
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in 1624 with an English translation appearing in 1633, is a compilation of
mathematical problems interspersed with mechanical puzzies and experi-
ments in hydrostatics and optics that most likely borrowed heavily from
Bachet’s work.

Leonhard Euler (1707-1783), one of the world’s greatest mathematicians
whose deep and exacting investigations led to the foundation and develop-
ment of new mathematical disciplines, often studied mathematical puzzles
and games. Euler's results from the seven bridges of Kénigsbery problem
(pages 230-232) presage the beginnings of graph theory. The thirty-siz offi-
cers problem and orthogonal Latin squares (or Eulerian squares), discussed
by Euler and later mathematicians, have led to important work in combina-
torics. Euler’s conjecture on the construction of mutually orthogonal squares
found resolution nearly two hundred years after Euler himself initialiy posed
the problem. These problems, and his examination of the chessboard knight's
re-entrant tour problem, are described on pages 188 and 258. A knight'’s re-
entrant path consists of moving a knight so that it moves successively to each
square once and only once and finishes its tour on the starting square. This
famous problem has a long history and dates back to the sixth century in
India. P. M. Roget's half-board solution (1840}, shown in Figure 1.4, offers
a remarkably attractive design.

FIGURE 1.4. Knight’s re-entrant path—Roget’s solution

In 1850 Franz Nauck posed another classic chess problem, the eight queens
problem, that calls for the number of ways to place eight queens on a chess-
board so that no two queens attack each other. Gauss gave a solution of this
problem, albeit incomplete in the Arst attempts. Further details about the
eight queens problem appear on pages 269-273. In that same year, Thomas P.
Kirkman (1806 1895) put forth the schoolgirls problem presented on pages
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189 to 192. Several outstanding mathematicians, Steiner, Cayley and Sylve-
ster among them, dealt with this combinatorial problem and other related
problems. Although some of these problems remain unsolved even now,
the subject continues to generate important papers on combinatorial design
theory.

In 1857 the eminent Irish mathematician William Hamilton (1788-1856)
invented the icosian game in which one must locate a path along the edges of
a regular dodecahedron that passes through each vertex of the dodecahedron
once and only once (see pages 234 -237). As in Euler’s Konigsberg bridges
problem, the Hamiltonian game is related to graph theory. In modern ter-
minology, this task requires a2 Hamiltonian cycle in a certain graph and it
is one of the most important open problems not only in graph theory but
in the whole mathematics. The Hamiltonian cycle problem is closely con-
nected to the famous traveling salesman problem that asks for an optimal
route between some places on a map with given distanoces.

FiGure 1.5. The Tower of Hanoi

The French mathematician Frangois Edouard Lucas, best known for his
results in number theory, also made notable contributions to recreational
mathematics, among them, as already mentioned, the Tower of Hanoi (Fig-
ure 1.5), which is covered on pages 196-199, and many other amusing puz-
zles. Lucas' four-volume book Récréations Mathémaliques (1882-94), to-
gether with Rouse Ball's, Mathematical Recreations and Probiems, published
in 1892, have become classic works on recreational mathematics.
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No discussion of recreational mathematics would be complete without
including Samuel Loyd (1841-1911) and Henry Ernest Dudeney (1857-1931),
two of the most renowned creators of mathematical diversions. Loyd and
Dudeney launched an impressive number of games and puzzles that remain
as popular now as when they first appeared. Loyd’s ingenious toy-puzzle
the “15 Puzzle” (known also as the “Boss Puzzle”, or “Jeu de Taquin”) is
popular even today. The “15 Puzzle" (figure below) consists of a square
divided into 16 small squares and holds 15 square blocks numbered from 1

i to 15. The task is to start from a given initial
arrangement and set these numbered blocks
N ] into the required positions (say, from 1 to 15),
ﬂn using the vacant square for moving blocks. For
. R many years after its appearance in 1878, peo-

n: 11 ple all over the world were obsessed by this

| s el 5 toy-puzzle. It was played in taverns, factories,
-.3 _' in homes, in the streets, in the royal palaces,
i even in the Reichstag (see page 2430 in [133,
Vol. 4].

Martin Gardner (b. 1914 Tulsa, OK), most certainly deserves mention
as perhaps thie greatest twenticth-century popularizer of mathematics and
mathematical recreations. During the twenty-five years in which he wrote
his Mathematical Games column for the Scientific American, he published
quantities of amusing problems either posed or solved by notable mathe-
maticians,
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What would life be without arithmetic,
but a scene of horrors?
Sydney Smith

In the arithmetic of love,

one plus one equals everything,
and two minus one equals nothing.
Mignon McLaughlin

In elementary school we first encounter “the three R's,” a basic skills
oriented education program: reading, writing and arithmetic. We start
to count to ten, to add to hundred, then gradually increase our operation
ability using addition, subtraction, multiplication, division, and finally root
extraction, congruence calculation, factorization, and power computation.
This is arithmetic (or arithmetics), the oldest branch of mathematics, which
records elementary properties of the above operations on numbers.

Arithmetics is all around us and is used by almost everyone. It is essential
to almost every profession for tasks ranging from simple everyday counting
to business calculations and scientific research. A mnemonic for the spelling
of *arithmetic™, that I found on an Internet site, reads: *a rat in the house
may eat the ice cream.”

Puzzles and entertaining problems whose solutions depend entirely on
basic arithmetic operations have been in evidence from ancient times to
the present. The early puzzle problems were difficult at that time due to
the lack of good symbolism and they lost their mystery when the algebraic
relations had heen developed. Modern arithmetic puzzles are often hased
on tricks or relations hidden under misleading statements. Some of them
are entertaining because they are unsolvable upon given information. Here
is an example: “If three eagles catch three hares in three days, how many
eagles will catch 100 hares in 100 days?” The question is well known and
seems innocent at first glance. Actually, the correct answer cannot he given
without more information.

Most of the arithmetic puzzle problems presented in this chapter belong
to medieval mathematicians such as Diophantus, Alcuin of York, Mahavira,

9
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Fibonacci, Bachet, Tartaglia, Recorde and Viéte. The reasons for such se-
lection are twofold: first, the problems of classic arithmetics and higher
arithmetics (that is, number theory, the name used by some authors) are
separated into two chapters—on number theory and arithmetics, respec-
tively. Second, after the development of the power algebraic methods and
algorithms, mathematicians of modern era have dealt with new theories and
disciplines rather than with problems of elementary arithmetics. Of course,
there were exceptions and one of them, ascribed to the great Newton, is
included in this chapter.

%

* 0k

Diophantus of Alexandria (ca. 200-ca. 284) (- p. 299)

Diophantus’ age

Diophantus’ contribution to mathematics is better known than the facts
of his life (see, e.g., Katz [113, pp. 173-183]). Some details can be concluded
from the collection of puzzles in the Greek Anthology compiled by Metrodorus
around 500 A.D., which contains the following puzzle |37|:

Problem 2.1. Diophantus’ boyhood lasted 1 of his life; he married after
.}.— more; his beard grew after % more, and his son was born 5 years later;
the son lived to half his father’s age, and the father died 4 years after the

sSon.

This task served to determine how long Diophantus lived and to identify
other important dates in his life. If 2 denotes the number of years Dioplhiantus
lived, according to the above information we form the equation
> x+w+5+m+4'"$
6 7 12 " 2 77
wherefrom z = 84. Therefore, Diophantus married at the age of 33 and had
a son who dicd at the age of 42, four years before Diophantus himself died
at the age of 84.

Today every pupil in elementary school (well, almost everyone) can easily
solve this problem. However, problems of this sort were formulated in an-
tiquity only by words and the lack of a good symbolism made them difficult
to represent and solve. Speaking about the ages of great mathematicians,
recall that a similar question was posed much later. Once asked about his
age, the eminent British mathematician Augustus de Morgan answered: “J
was 2 years old in the year 2*.” Knowing that de Morgan was born in 1806,
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we form the quadratic equation x° = 1806 + x and find the positive solution
x = 43—de Morgan’s age.

Mahavira (ca. 800—ca. 870) (— p. 300)

Mahavira was a ninth-century Indian mathematician who wrote on el-
ementary mathematics, combinatorics and integer solutions of first degree
indeterminate equations. In this book we give three problems (see below
and Chapters 3 and 6) that can be found in Wells’ book [186].

Number of arrows

Problem 2.2.* Arrows, in the form of thin cylinders with circular cross-
section, can be packed in heragonal bundles. If there exist eighteen circum-
ferential arrows, determine the total number of the arrows to be found (in
the bundle) within the quiver.

Leonardo Pisano (Fibonacci) (1170-1250) (= p. 300)

Leonardo Pisano, better known today by his nickname Fibonacci, some-
times went by the name “Bigollo”, which may possibly have meant “good-
for-nothing” or “traveler”. As a matter of fact, he traveled widely with his
father who held a diplomatic post in North Africa. Throughout his many
journeys, Fibonacci encountered numerous mathematical problem-solving
techniques, in particular, the new Hindu-Arabic numerals, already known
in China, India, and the Islamic world. He figured out that the use of the
symbols 0 to 9 was much more convenient than the Roman numerals.

After his return to Pisa, Fibonacci wrote a num-
ber of important texts as well as his masterpiecce,
published in 1202, Liber Abaci (Book of Calcula-
tion). Liber Abaci, which gathered a wealth of prac-
tical material and an assortment of problems, was
the most influential mathematical work in Europe
for at least three centuries, especially in bringing a
positional numbering system and the new form of
number notation (Hindu-Arabic numerals instead
of Roman numerals, still in common use in Europe
Fibonacci at that time).

1170-1250

1Wells took these problems from Mahavira's book The Ganita Sara—Sangraha by Ma-
havira, translated by M. Rangacarya and published by Government Press (Madras, India)
in 1912
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How many rabbits?

A problem in the third section of Fibonacci’s famous book Liber Abaci
(1202), led to the introduction of the Fibonacci numbers and the Fibonacci
sequence for which he is best remembered today.

Problem 2.3. A man bought a pair of rabbits. How many pairs of vabbits
can be produced from the original pair in a year if it is assumed that every
month each pair begets a new pair that can reproduce after two months?

The solution to Fibonacci’s problem is given in Figure 2.1, where the
total number of pairs of rabbits is presented by the number of black points,
counting from the top to the considered month. The numbers of rabbit pairs
make a sequence 1, 1, 2, 3, 5, 8, 13, ... . It is easy to conclude that any
member of this sequence is equal to the sum of the previous two members.
Therefore, the next members are 21, 34, 55, 89, 144, 233, ... and hence, the
total number of rabbit pairs in a year is 233.

number of
pairs of rabbits

FiGURE 2.1. A graphical solution of Fibonacci’s rabbit problem

In the middle of the nineteenth century, the French mathematician Edou-
ard Lucas (1843 -1891) named the resulting sequence “Fibonacci's sequence”.?
It is interesting to note that the Fibonacci numbers 1, 2, 3, 5, 8, 13.... had
been mentioned explicitly in discussions of Indian scholars, such as Gopala

2Some witty guys have proposed “rabbit sequence”.
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and Hemachandra, before the appearance of Fibonacci's book, Liber Abaci

(see [115]).
As mentioned, Fibonacci’s sequence satisfies the recurrence relation

Fn‘ —Fn_] +Fn_2 fOl' 1123.

The explicit formula for the nth term F, (assuming F} = F, = 1) is given
by

() - (55

"‘_\/—[ 2

(see (D.6), Appendix D).}

When using a calculator or a computer, it is easy to compute the nth
member F,. Since the influence of the second term ((1 — \/5)/2)"/\/5 is
negligible because |(1 — v/5)/2| < 1, it is sufficient to calculate the first term

((1 + v5)/2)"/+/5 and round off the result to the nearest integer to obtain
the exact (integer) value of F,,. To be more exact,

= L/'[(l ) 2]J=

where |z] denotes the greatest integer less than or equal to z. For example,
for n = 20 one obtains

FEE)"

Let us note that the Fibonacci sequence possesses a number of interesting
and remarkable properties (see, e.g., [31, Ch. 2], [43], [88], [182], [185]). The
Fibonacci Quarterly, a mathematical journal launched in 1963, is devoted to
studying mathematics related to the Fibonacci sequence. It turns out that
this sequence is extremely versatile and appears in many different areas of
mathematics, such as optimization theory and the analysis of algorithins; it
also appears in physics, chemistry, biology, architecture, and even in poetry
and music. The first eight Fibonacci numbers in a scrambled order 13, 3, 2,
21, 1, 1, 8, 5 appear in the very popular novel The Da Vinci Code by Dan
Brown.

1
5= 6,765.5000295. so that Fy, = 6,765.

3Daniel Bernoulli (1700--1782) published this formula in 1728. It seems that Abracham
de Moivre (1667-1754) also knew this formula, which is often attributed to the French
mathematician Jacques Binet (1786-1856).
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Fibonacci's sequence gave rise to a multitude of amusing problems to claim
the attention of many mathematicians. Below we present two well-known
geometric paradoxes. Perhaps a little bird will tell you a solution.

Problem 2.4.* Let us consider an ordinary 8 x 8 chessboard cut into
four pieces -two trapezoidals and two triangles -as shown in Figure 2.2(a).
If these four pieces are put together in the shape of a rectangle as shown
in Figure 2.2(b), one obtains a 5 x 13 rectangle containing 65 small squares
(one square more). Therefore, 64 = 657! Similarly, if we cut a 13 x 13
chessboard into four pieces and reassemble the pieces, we obtain a rectangle
8 x 21 containing 168 small squares (one square less, see Figure 2.3). In this
case we obtain 169 = 168?! Can you explain these paradores?

™

a) b)

FIGURE 2.2. Chessboard paradox: 64=65!7

/

NS

s

a) b)
FIGURE 2.3. Chessboard paradox: 169=168!7

The first paradox “64=65" can he found in a great variety of hooks (see,
e.g., [88], [138]). It seems that the earliest reference appeared in the work
Rational Recreations (1774), written by William Hooper. This paradox was
later discussed in Zeitschrift fir Mathematik und Physik (Leipzig, 1868).
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The Italian artist Mario Merz (b. 1925) has been obsessed for many years
by the Fibonacci numbers. In 1994 he decorated the chimney of the Energy
Power Plant in Turku (Finland), as an environment art project, designing
the Fibonacci numbers by neon tubes (Figure 2.4).

FIGURE 2.4. Fibonacci’s numbers on the chimney in Turku (Finland)

Another example shows that Fibonacci’s numbers can be applied to com-
pose plane figures.

Problem 2.5.% Make a rectangle without any gaps by using small squares
whose sides are the Fibonacct numbers 1, 1, 2, 3, 5, 8, 13 and 21.

Square numbers problem

In his book, Liber Quadratorum (Book of Squares) (1225), Master John of
Palermo, a member of Emperor Frederick II's entourage, posed the following
problem to Fibonacci.

Problem 2.6. Find a square number such that, when five is added or
subtracted, the result is again a square number.
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Master John's problem can be interpreted as finding integer solutions of
the system of equations 22 + 5 = »?, 2% — 5 = 2. Fibonacci succeeded
in solving a more general problemn in which lie introduced what he called

congruous numbers, that is numbers n of the formn
ab(a + b)(a —b) when a+ bis even

and
4ab(a + b)(a — b) when a + b is odd.

He showed that congruous numbers are always divisible by 24. He also
showed that integer solutions of

r+n=y" and z* —n= 22

can be found only if n is congruous. Since Master John's problem is obtained
for n = 5 and since 5 is not congruous, it follows that this problem is not
solvable in integers. However, a solution to the problem exists that uses
rational numbers. From the facts that 720 = 12 - 5 is a congruous number
(with @ = 5 and b = 4), and that 41% 4+ 720 = 49? and 41% — 720 = 312, it
follows by dividing both equations by 127 that

4 9 3
T YT T

-~
"~

. . - . - 0 35 b
which is a solution in rational numbers to 22 + 5 = y?, 22 — 5 = z2.

Money in a pile

Problem 2.7.* Three mnen A, B, and C each place money in a common
pile, their shares being §, 1, and } of the total amount, respectively. Neat,
each man takes some money from the pile until no money remains. Now
A returns 3 of what he took, B 3, and C §. When the returned money is
divided equally among the men, it turns out that each has what he possessed
at the beginning, before removing money from the pile. How much money

was in the original pile?

Yang Hui (co. 1238-ca. 1298) (= p. 300)

Chinese mathematician Yang Hui was a minor official who lived in the
thirteenth century. Yang Hui is best remembered as being the first to rep-
resent Pascal’s triangle, basing his achievement on the work of another Chi-
nese mathematician Jia Xian. He wrote two books, dated 1261 and 1275,
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which present works with decimal fractions, calculations of square and cube
roots and the earliest extant documents in mathematics education in ancient
China.

Magic configuration

Hui’s second book Yang Hut suanfa (Yang Hui's Methods of Computation,
1275) contains the following magic configuration (see [186]).

FIGURE 2.5. Magic configuration

Problem 2.8.* Arrange the numbers 1 to 33 in the small circles shown
in Figure 2.5 s0 that every civcle including its center and every diameter has
the same sum.

Claude Gaspar Bachet (1581-1638) (— p. 302)

As mentioned in the Preface, Claude Gaspar Bachet. the French math-
ematician, philosopher, poet, and a member of the Académie des Sciences,
wrote the first books on mathematical puzzles and tricks ever published. His
book Problémes Plaisants et Délectables (1612) contains many mathematical
puzzles, arithmetical tricks and recreational tasks.

Triangle with integer sides

A Heronian iriangle is a triangle having side lengths and area expressed
by rational numbers. Multiplying the three side lengths and area of such
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a triangle by their least common multiple, a new Heronian triangle with
integer side lengths and area is obtained. Claude Baclhet considered the
following problem.

Problem 2.9. Find a triangle with integer sides whose area is 24.

Solution. The area of a triangle with sides a, b, and ¢ can be calculated
using the Heron formula

A= \/3(s—a)(s—Db)(s —c),

where s = :]z-(a + b + ¢) is the semiperimeter. Substituting s in the above
formula, after squaring we obtain

A? = ll_b(a +b+e)b+c—ea)etc—b)a-tb—c),
or, after some elementary manipulation,
16A% = 2a%b* + 2b%c* + 2¢%a® — a* — b* — ¢,
The last relation can be rearranged in the form
(4A)° 1+ (b° + ¢ — @®)® = (2be)°. (2.1)

The relation (2.1) is of the form x? 4+ y? = 22, which enables us to connect
the above problem with Pythagorean triangles, that is, right triangles whose
sides are integers. The corresponding triples of numbers (z,y, z) are called
Pythagorean triples. Some familiar Pythagorean triples are (3, 4, 5) and (5,
12, 13).

From number theory, we know that the number of Pythagorean triples
is infinite. Namely, if (2,y, 2) is any Pythagorean triple, then the triples
(kax, ky, kz) are also Pythagorean triples for any natural number k. If m and
n (m > n) are natural numbers, then Pythagorean triples can be generated
by the two-parameter formula

r=m?—n? y=2mn, z=m?+n’ (2.2)
Let us return to the relation (2.1) and, having in mind (2.2), we write
dA = k(m?* —n?), b +c® —a® = £k - 2mn, 2bc= k(m?® 4 n?).

In particular, we have

4A = 96 = k(m* —n?) = k- (m —n) - (m + n).
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The integer 96 can be factored into three factors in the following ways

96=1-1-96=1-2-48=1-3-32=1-4-24
=1:-6:-16=1-8-12=2:2-24=2-3.16
=2-4.-12=3-4-8=4-4-6,

where the first digit stands for k. The underlined combinations should he
excluded since the factors m — n and m + n are either both even or both
odd. In this way we obtain the following triples (k,m,n) (n > n) which are
pussible candidates to give integer sides a, b, ¢:

(1,25,23), (1,14,10), (1,11,5), (1,10,2),
(2,13,11), (2,8,4), (3,6,2), (4,5,1).

By splitting k(m? + n?)/2 = b- ¢ into two factors (when it is possible), we
find the pairs (b, c) and calculate the third side a by the formula

a= b2+ c?+ 2kmn

selecting only integer values of a. After the checking procedure we find that
only triples (2,8,4) and (4,5,1) give integer sides; the required Heronian tri-
angles with the area equal to 24 are (6,8.10) and (4,13, 15).

Carmichael [35] gave the parametric version of the complete integer solu-
tions to Heronian triangles in the form

a = n(m? + k?),
b=m(n? I k?),
¢ = (n + n)(mn — k?),

A = kmn(m + n)(mn — k?),

where integers m, n and k satisfy the conditions ged(m,n, k) = 1, mn >
k? > n’n/(2m + n) and m > n > 1.* The above formulae generate at least
one member (a,b, c) of a required class of Heronian triangles with A = t2 4",
where ¢ is an integer multiple and A~ is the originally given area. Then the
required side lengths are (a/t,b/t, c/t). For example, the parametric forinulae
directly produce the integer triangle (6,8, 10) with the given area A* = 24,
hut omit the other solution (4, 13, 15). However, this solution is contained in

4gcd(p,q)—greatest common divisor of two numbers p and q.
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the triple (24, 78,90) with A = 864 = 36 - 24 = 6% - A", giving t = 6. Hence,
the original triangle with the area 24 is (24/6, 78/6,90/6) = (4, 13, 15).

D. Wells mentions in [186] a trick method that combines the right triangles
(5,12,13) and (9,12,15) to find triangle (4,13, 15). Next, let us fit together
and then overlap these two triangles along their cominon side 12; see Figure
2.6. The obtuse triangle with sides 4, 13 and 15 (in bold face) yields the
required area 54 — 30 = 24.

13
12 15

N

5 9

FIGURE 2.6. Obtuse triangle with integer sides

Leonardo Pisano (Fibonacci) (1170-1250) (— p. 300)
Niccolo Tartaglia (1500-1557) (= p. 301)
Claude Gaspar Bachet (1581-1638) (— p. 302)

Weights problem

Bachet’s highly-regarded book, Probléms Plaisants et Délectables, collects
a multitude of problems many of which Bachet himself wrote, including this
classic problem of weights.

Problem 2.10. Determine the least number of weights necessary to weigh
any integer number of pounds from 1 lb. to 40 lbs. inclusive.”

Bachet gave two solutions describing two separate cases: (i) the weights
may be placed in only one of the scale-pans; (ii) the weights may be placed in
either of the scale-pans. In addition to Bachet, Fibonacci (Leonardo Pisano)

51b is the abbreviation of pound = 0.453 kg.
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and Niccolo Tartaglia are often cited in literature as having solved variant
(i) with the following series of weights: 1, 2, 4, 8, 16, and 32 Ibs. In case
(ii) Bachet found that the series of weights of 1, 3, 9, and 27 lbs. satisfied
the solution. Assuming that there are no constraints in the problem posed,
these solutions give the least possible number of weights required.

Let us explain now what reasoning leads to the above solutions. Let @
be any integer number of pounds < 40 and let ¢,¢,,... ,¢, be the required
weights. Consider first the variant (i). The weights ¢,,%,.... ,t, have to be
chosen so that the equality

Q= art) +ata +---+a,t, (23)

holds for every @ = 1,2,...,40, assuming that every coefficient a, (& €
{1,2,...,n}) is L if the weight ¢; is placed on the scale-pan and 0 if not.

We observe that (2.3) is equivalent to the representation of numbers in
the binary system. Indeed, if we take

tl =20= 1, t2=21 :—2, t3=22=4, e t"=2n—]’
we will obtain
Q=0,2"""++a3-2°+0a,-2' +a;-2° (ax € {0,1}, k= 1,...,n). (2.4)

The largest nummber that can be expressed using (2.4) is @ = (1--:111)s (the
number written in the binary system with n units), which is equal to

(1---111) =27 272 e 22 2 2 =2 — 1.

Taking n = 6, we obtain (111111); = 26 — 1 = 63 > 40, so that the choice of
6 weights satisfies the condition of the task. Tlerefore, it is necessary (and
sufficient) to take the weights of 1, 2, 4, 8, 16, and 32 Ibs. Other solutions
with unequal weights do not exist.

We see that the use of the binary system goes back to the middle ages
and prohably centuries hefore Fibonacci's day. However, the first person
to study binary numbers was Gottfried Leibniz, the great German mathe-
matician, philosopher, politician, theologist, physicist, lawyer and linguist.
His treatment of binary was mainly philosophical. Peter Bentley wrote in
The Book of Numbers [16]: “He [Leinbiz| believed that the universe could be
represented more elegantly through binary and its conflicting, yes-no, on-off
nature such as male-female, light-dark, right-wrong.” Does this mean that
Leibniz, a philosopher, may have been close to the concept of computing
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machines in his thinking, bearing in mind that the work of digital comput-
ers is based on the binary numbering system? Quite possibly that man of
all professions and trades may have been the first computer scientist and in-
formation theorist. In 1671 Leibniz invented a calculating machine capable
of performing basic arithmetic operations.

Let us return to the solution of Bachet's problem in case (ii). Bachet

used the same idea as above (case (i)) and represented @ € {1,...,40} in
the form
Q = bltl + b2t'_’ + -+ bm.tnu (25)
where coefficients b;, b4,... ,b,, have the following values:
br = —1 if the weight ¢, is placed in the same scale-pan as the weighed
object;

by = 0 if the weight ¢, is not placed in either of the scale-pans;

by = 1 if the weight ¢, is placed in the scale-pan not loaded with the
weighed object.

If the value —1 would be regarded as a “digit” of a number system, the
representation (2.5) would suggest the use of the ternary system with the
base 3. In that case, taking the weights ¢; = 3°, ¢, = 3! =3, t;3 = 3% =9,
and so on, we first perform the conversion of the integer value Q) from the
decimal system into the “number system” with the base 3, that is,

Q=bp -3" " 44 b33+ by -3 +b-3° = (by, - - b3baby)s.  (2.6)

Here b, € {—1,0,1} and the greatest integer number of the form (2.6) is
@ = (1---111)3 (the number written in the ternary system with m units),
which is equal to

3m _1

(1"'111)3=3""_1+...+32+31+3O= -

Taking m = 4 we obtain (1111)3 = (3% — 1)/2 = 40. Thus, the set of 1, 3, 9,
and 27-pound weights satisfies the condition of the problem.

The procedure described in case (ii) will be illustrated in the example of
Q@ = 23 Ibs. Then

Q=23=1-274+(-1)-3+(-1)-1.

In this way decimal number 23 is transformed to form (2.6). According
to the right-hand expression, we conclude that the 1-pound and 3-pound
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weights must be placed in the scale-pan together with the object weighed,
while the 27-pound weight is in the other scale-pan.

In the Quarterly Journal of Mathematics (1886, Volume 21) the English
mathematician P. A. MacMahon determined all conceivable sets of integer
weights to weigh all loads from 1 to n. To solve this problem, he applied the
method of generating functions discovered by Euler. In this way, MacMahon
generalized Bachet’s weight problem. Moreover, he completed the solution
of the presented problem since Bachet’s approach does not give all solutions.
MacMahon found eight solutions:

{140}3 {1:313}7 {14)94}, {1, 3, 94}5 {ll3a27})
{1,3,.27},{14,9,27},{1,3.9, 27}.

The notation w; denotes that k weights are needed, each of which weighs w
Ibs. For example, the solution {14,94} denotes that 4 weights of 1 Ib. and
4 weights of 9 lbs. are necessary. The last of the listed solutions belongs to
Bachet; his solution requires the least number of weights and it is also the
only one in which all weights are unequal. Rouse Ball and Coxeter [150] and
Kraitchik [118] discussed some of the details of Bachet’s weight problem.

Niccolo Tartaglia (1500-1557) (- p. 301)

When Tartaglia was a boy of about thirteen, the French invaded his na-
tive city of Brescia and brutally massacred local inhabitants. Tartaglia was
the victim of such severe injuries that he almost died. Somehow he survived
but his injuries left him with a permanent speech defect that led to the
nickname “Tartaglia”, which means the stammerer. His poverty prevented
him from receiving a proper education. However, despite a painfully difficult
childhood, Tartaglia later became one of the most influential Italian math-
ematicians of the sixteenth century, known best today for his formula, the
Cardano-Tartaglia formmula for solving cubic equations. The question of pri-
ority of this formula caused a bitter quarrel between Tartaglia and Cardano.
In fact, Scipione del Ferro and Tartaglia independently discovered the cubic
formula, but Cardano published it in his book, Ars Magne (Great Skill).
Although he fully credited del Ferro and Tartaglia for their discoveries, this
formula was remembered most often under Cardano’s name.

Included in his, Quesiti et Inventioni Diverse (1546) and General Trattato
(155G), are several problems that were considered as challenging and serious
in Tartaglia’s time but which today have acquired a recreational character.
Below we reproduce two of them, while two others, weights problem and
married couples cross the river, are presented on pages 20 and 173.
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Division of 17 horses

Problem 2.11. A dying man leaves seventeen horses to be divided among
his three sons in the proportions = : & : % Can the brothers carry out their

23
father’s will?

To simplify calculating with fractions, Tartaglia contrived an artificial
method whereby a horse is borrowed. He then divided and obtained 18 :
2=9, 18:3 =06, 18:9 = 2, which meant that the sons received 9, 6 and 2
horses, for a total of 17 horses. After this division, the borrowed horse was
returned to its owner and the problem was solved.

In general case, this contrivance can be implemented when n horses must
be divided among three brothers in proportions ofi : -,]; : % It can be shown
that there exist seven possible values of n,a, b, c:

(7.2,4,8), (11,2,4,6), (11,2,3,12), (17,2,3,9),
(19,2,4.,5), (23,2,3,8), (41,2,3,7).

Actually, these natural numbers are the only integer solutions of the Dio-

phantine equation®
1 1 1 n

b ¢ n+1

The above problem is closely connected with another interesting one about
dividing 17 horses among brothers that can be found in literature devoted
to popular and recreational mathematics. In this story, the brothers do
not divide horses according to the proportions of £ : 1 : 1, but in such a
way that the oldest brother receives 1/2 of all horses, the next 1/3, and
the youngest brother 1/9. Since such a division is impossible, the brothers
remember to borrow one horse from their neighbor. After dividing 18 into
the corresponding parts, they receive 9, 6 and 2 horses, which give a total
of 17. Then they return the borrowed horse to the neighbor, quite satisfied

with their “clever” solution of the division problem.

However, did the brothers’ clever maneuver result in an acceptable solu-
tion according to the terms of the will? Actually, no, the division was not
done in a proper way; moreover, it is not possible. Indeed, since -;— + % + % =
}—; < 1, any division gives a remainder. Owing to the fact of the borrowed
horse, each of the brothers receives more since 9 > %. 6 > %, 2> 19—7

8 A Diophantine equation is an undeterminate equation in which only integer solutions
are required. The word diophantine refers to Diophantus of Alexandria (third century)
who made a study of such equations.
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Wine and water

Problem 2.12.* A dishonest servant takes out 3 pints of wine from a
barrel and replaces them with the same amount of water. He repeats his theft
twice, removing in total 9 pints and replacing them with water. As a result
of this swindle, the diluted wine remaining in the barrel lost half of its former
strength. How much wine did the barrel originally hold?

Robert Recorde (ca. 1510-1558) (— p. 301)

Robert Recorde, one of the most influential English textbook writers of
the sixteenth century, was a physician, mathematician and astronomer. In
his book The Whetstone of Witte (1557) he introduced the modern symbol
= for equality.” Although he served as a physician to Edward VI and Queen
Mary and later became Coinptroller of Mines and Monies in Ireland, Recorde
was arrested under mysterious circuinstances and died in prison in 1558. The
following task is fromm Recorde’s book The Whetstone of Witte.

Coins in hands

Problem 2.13.* A man has in both hands 8 coins. The number of coins
in his left hand is added to its square and its cube, and the same procedure
applies to the number of coins in his right hand. Both sums obtained in this
way make 194. How many coins are in each hand?

Francgois Viéte (1540-1603) (= p. 302)

The great Frenchman Frangois Viete was not a mathematician by vo-
cation. As did Fermat, Cayley, and Sylvester, Viete studied and practiced
law; became a member of the Breton parliament; a master of requests in
Paris, and even later a member of the king's Council. Although he engaged
in mathematics only in his leisure time, he made important contributions
to geometry, arithmetic, algebra and trigonometry. In addition, Viete was
an extraordinary code-cracker. During the war occasioned by Spain's at-
tempt to place a pretender on the French throne, he very quickly succeeded
in breaking the Spanish army’s most complicated ciphers. Viete’s decipher-
ing skills greatly influenced the final outcome of the war, and also provoked
accusations from the Spanish that he was in collusion with the devil.

“Kalz [113, p. 356] quotes Recorde'’s explanation: “To avoid the tedious repetition
of these words—is equal lo—1I will sel as I do oflen in work use, a pair of parallels, or
gemow ftwinf lines of one length, thus =, because no 2 things can be more equal.”
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Sides of two cubes

Problem 2.14.*% The difference between the sides of two cubes is 6 and
the difference of their volumes is 504. Find the sides of the cubes.

When we solve quadratic equations in high school, we encounter the well-
known Vidte's rule: If a and b are the roots of the gquadratic equation x* +
oz + 3 = 0, then

(x —a)(z—b) =2 = (a+b)x +ab, thatis, o= —(a+b), §=ab
We would like to see your reaction to the following “generalization.”

Problem 2.15.* Caleulate (z — a)(z — b)--- (2 — 2).

Isaac Newton (1624-1727) (= p. 304)

Isaac Newton, the English mathematician and physicist of Jewish origin,
is considered one of the greatest mathematicians and scientists of all his-
torical time. Only two men can be compared to him by their achievements:
Archimedes of ancient Greece and the German mathematician Carl Friedrich
Gauss. Their combined scientific genius introduced revolutionary advances
in mathematics and other branches of science, spurring rapid developments
in numerous directions.

There is a vast literature about Newton's life and
his monumental work in mathematics and physics,
so that many well-known details are omitted. It is
less known that he was ohsessively oceupied with
alchemy and theology; it is hard to believe that
he actually spent more time performing his exper-
iments in laboratories than he ever did in mathe-
matics. When he was buried in Westminster Abbey,
a high concentration of Mercury was found in his
body, most likely as the consequence of his alchemy

Isaac Newton experiments (See [16, P- 125').
1624-1727

Newton was not a pleasant and modest man, his arrogance and difficult
behaviour were well known. Nevertheless, he is credited with the following
famous quotation having a modest flavor: “If I have seen further than others,
it is because I’ve stood on the shoulders of giants,”®

2] aleo like the following quip sttributed to Harold Abelson, a professor of MIT: “If J
have not seen as for as olhers, it is because giants were standing on my shoulders.”
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FIGURE 2.7. Newton's birth house at Woolsthorpe, England

Newton’s book Arithmetica Universalis® contains, among its very influen-
tial contributions, several elementary problems. In this chapter we present
a problem about animals, while some other problems are given in Chapter
11. Speaking about animals, it seems appropriate to give here a story about
Newton and his cats. Newton is often credited with the invention of the
“catflap”. The anecdote that accompanies his invention demonstrates the
great mathematician’s absentmindedness. Newton had two cats: a small
and a larger one. To enable his cats to come and go as they pleased without
disturbing his work, he constructed two doors for them: a small one for the
small cat and a larger one for the big cat. Had he considered the matter
more thoroughly, he would surely have realized that one pet door of the
proper dimensions would have sufficed for both cats.

Animals on a field

Although Newton laid the foundations of modern mathematics by solving
difficult and challenging problems, a number of these problems could also be
considered as recreational mathematics tasks. The following task is a typical
one that appears in Newton's hook Universal Arithmetick.

SWritten in Latin in 1707 and translated under the title Universel Arithmetick in 1720
(edited by John Machin).



28 2. ARITHMETICS

Problem 2.16. In 4 weeks, 12 oxen consume 3% acres of pasture land;
in 9 weeks, 21 oxen consume 10 acres of pasture land. Accounting for the
uniform growth rate of grass, how many ozxen will it require to consume 24
acres in a period of 18 weeks?

George Pdlya presented a general solution in his book Mathematical Dis-
covery [142, Vol. I, p. 162].

Let us introduce the following quantities:

a - the quantity of grass per acre when the pasture is put into use;

B - the quantity of grass eaten by one ox in one week;

v — the quantity of grass that grows in one acre in one week;

@), a2, @ — the number of oxen;

m,, mo, ms — the number of acres;

t), ta, t - the numbers of weeks in the three cases considered, respectively.

According to the conditions given in the task we can form a system of
three equations,

m.,(a + tl’)‘) = a3,
ma(a + t2y) = agt2 B, (2.7)
m(a -+ tv) = atB,

where a, a/3, /8 appear as unknowns. Solving the above system one

obtains
m ["llazt'z(t —t)) —maa t(t — tg)]

a =
7nl1n2t(t2 - t])

Substituting the numerical data from Newton’s original problem, we find
a = 36. Therefore, 36 oxen will consume 24 acres in 18 weeks.

The above task has many variants. The three tasks that follow here
appear frequently in literature, the first of which is given in Heinrich Dérrie’s
book |54].

Problem 2.17.* Whati relation exists between the nine magnitudes x to
Mf
x cows graze y fields bave in z days,
2! cows graze y' fields bare in ' days,

2" cows graze y" fields bare in =" days ¢



ANIMALS ON A FIELD/GATHERING AN ARMY 29
Another variation of Newton’s problem reads:

Problem 2.18.* Every day a flock of sheep graze grass in a field. If the
field supports a flock of 10 sheep each day, then the flock will consume all
of the grass in 20 days; if a flock contains three times as many sheep, then
this larger flock will consume all of the grass in 4 days. Assuming a uniform
daily rate of grass growth, in how many days will a flock of 25 sheep, grazing
daily, consume all of the grass in the field?

The following task includes a combination of familiar farm animals.

Problem 2.19.* A cow, a goat, and a goose graze grass in a field. The
cow eats the same quantity of grass as the goat and the goose together. The
cow and the goat eat all of the grass in the field in 45 days, the cow and the
goose in 60 days, and the goat and the goose in 90 days. In how many days
will the cow, the goat, and the goose together eat all of the grass in the field,
again assuming that the grass grows at the same daily rate?

Alcuin of York (735-804) (- p. 299)

The English scholar, mathematician, and churchman Alcuin of York spent
his life at the court of the Emperor Charleinagne. He wrote a collection
of fifty-three amusing problems, riddles and trick questions. Propositiones
ad Acuendos Juvenes (Problems for Quickening the Mind),'’ the earliest
known European collection of mathematical and logical puzzles written two
centuries after Alcuin’s death at the monastery of Augsburg, includes his
tasks. Many puzzles and tasks have survived to the present day.

Gathering an army

Problem 2.20. In making preparations for war, the king of a powerful
country orders his servant to assemble an army from thirty shires in such a
way that the servant will enlist the same number of men from each shire as
he has collected until that point. The servant travels to the first shire alone;
to the second in the company of one soldier... . How many soldiers will be
collected in all?

Let us first assume that the servant is not included in the count at each
stage. In such a case, he would arrive at the first shire having gathered no

100zanam's Récréations Mathématiques, 1803, English edition, Vol. 1, p. 171, in-
cluded these problems.
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men, and thus would gather none there, and so on; the total collected would
be zero! Therefore, the servant must include himself as the first soldier,
and the numbers on leaving each shire are 2, 4, 8,... . The total nuinber of
soldiers (together with the servant) on leaving the thirtieth shire is obtained
by summing the geometrical progression,

2% 1

5 = 230 — 1,073,741,824.

1(servant) -1 4+ 2422 ... +:2¥ =1 4
Let us note that the number of soldiers, not including the servant, is the
same as the number of moves necessary to transfer 30 rings in Lucas’ Tower
of Hanoi puzzle (see page 195).

Answers to Problems

2.2. To find the number of arrows in a hundle, it is sufficient to sum, as
far as necessary, the series 1 - 1-64-2-6+3-6----+k-6+--- (see Figure
2.8). If 18 arrows are visible in the package, the adding stops when member
18 of the series appears. Therefore, there are 1 16 4 12+ 18 = 37 arrows in
all.

FIGURE 2.8. Number of arrows

2.4. Before we explain these paradoxes, we give one of the most beautiful
relations on the Fibonacei numbers, known as Cassini's identity

Foi1Fuoi — F2 = (=1)" (n>0). (2.8)

Jean-Dominique Cassini, the French astronomer and mathematician, stated
this identity in 1680."! We leave the proof to the reader although we note
that comnplete induction is a convenient device.

1 According to [88, p. 292], Johannes Kepler knew this formula already in 1608.
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Let us note that the numbers 5, 8, 13, 21, which appear as dimensions
in the above dissections, are Fibonacci's numbers Fs = 5, Fg = 8, F7 =
13, Fy = 21. In the first example we have 13 x § — 8 X 8 = 1 (one square
more), while the second example yields 21 x8—13x 13 = —1 (one square less),
In general, by taking Fibonacci’s numbers F,,_y, F,, and F, ), we can dissect
any F,, x F, square into four pieces by using a similar construction thet, after
reassembling, form a rectangle F,, .| x F,_;. According to Cassini’s identity
(2.8), one square will be created (when n is even) or lost (when n is odd).

We shall explain this phenomenon on the example of the 8 x 8 chessboard.
The paradox arises from the fact that the edges of the four pieces that lie
along the diagonal of the formed rectangle 5 x 13, do not coincide exactly in
direction. This diagonal is not a straight seginent line but a small lozenge
(diamond-shaped figure), whose acute angle is

3

2
arctan 53— arctan =

- 1 qL°
=arctan ;z & 15 .
Only a very precise drawing enables us to distinguish such a small angle.
Using analytic geometry or trigonometry, we can easily prove that the area

of the “hidden” lozenge is equal to that of a small square of the chesshoard.

2.5. The solution is given in Figure 2.9.

Ficure 2.9. Fibonacei's rectangle

It is casy to observe that the constructions of larger and larger “Fibonacci
rectangles” can be continued in an obvious way. The following challenging
question is quite natural: Can we obtain perfect squares by this process (ex-
cepting the trivial case of the unit square)? J. H. E. Cohn [38] proved in 1964
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that there exists the unique square with the requested property composed
from the squares with sides 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89 and 144.

2.7. Let 8 denote the original sum and x the sum returned (equally) to
each man. Before the three men received this sum, they possessed s/2 —
x, 8/3 —x, 8/6 — x. Since these are the sums possessed after putting back
1/2, 1/3, 1/6 of what they had first taken, the amounts first taken were
distributed as follows:

A: 2(s/2—2). B: 2(3/3—1‘), C:

ur o

(s/6 — ).

The sum of these amounts gives the original smn s, that is,
3 6
2(s/2 —2) + 5(8/3 —z)+ 3(8/6 —z)=s,

which reduces to the indeterminate equation 78 = 47z. Fibonacci took 8 = 47
and z = 7. Thus the sums taken from the original pile are 33, 13, and 1.

It is easy to show that the sum in the original pile, which provides that all
transfers of money (taking, returning and sharing) are expressed in integers.
has the form s = 47 - 6d = 282d, where d = 1,2,... is a natural number.
Hence, the minimal sum with this property is s = 282.

2.8. The solution is given in Figure 2.10 (see Needham [131]).

FIGURE 2.10. Magic configuration—a solution
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2.12. Let the barrel originally contain x pints of wine. After one removal
and replacement, the amount of wine and its strength are a; = 2 — 3 and
8) = ay/x = (2 — 3)/2. On the second removal the amount of wine removed
will be 38, = 3(2 — 3)/2 and the amount of wine in the barrel is a; =
x — 3 — 3(x — 3)/x; its strength is

s2 = az/x = (x — 3 = 3(z — 3)/z) /a.
After the third removal, the wine removed will be

3(z-3-3(z- 3)/z)
e s

382 =

while the amount of wine and its strength in the barrel are, respectively,

_ 3(r —3-3(z - 3)/2) _ (z=3)°

ajz

.
*

Since the strength of wine remaining in the barrel is 83 = 1/2, from the last
expression we come to the equation

2(x—3)° =2% or (1-3/z)*=1/2.
Hence

3.21/3

STV S

~ 14.54 pints.

2.13. Let z and y be the numbers of coins in hand. Then
r+y+zl+ ¥+ 2% +y° = 194,

or
(@+y)+@+y)° —22y+ (@ +y)° - 3ay(x +y) = 194.

If we put z | y = 8 and xy = ¢, the last equation becomes
8 + 8 + 8% — 2t — 24t = 194,

wherefrom
t=zy=15.
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with the solutions 3 and 5 meaning that if x = 3, then y = 5, and conversely.
Therefore, the required numbers of coins are 3 and 5.

2.14. Let 2 and y be the sides of the given cubes. Then
z—y=6 2z°—y =504

Since

2' —y' = (2 —y)(=* 12y 1 y) = (2 - Y)l(z - 9)* 1 3zy| = 504,

putting x — y = 6 and 2y = ¢t we obtain
6(36 - 3t) = 504,
wherefrom ¢ = 16. Solving the system
r—-y==6, 2y =16
we find z = 8, y = 2.

2.15. The solution of this tricky problem is very simnple (if you have a
flash of inspiration). The twenty-fourth factor in the product

P=(z—-a)(x=b) - (x-2)
is (x — 2) (= 0) so that P = 0.

2.17. As in Dérrie’s book, let the initial ainount of grass contained by
cach field be M, the daily growth of cach field m, and each cow’s daily
grass consulnption of . We can then form the following system of linear
homogeneous equations:

yM + yzm — zzxQ = 0,
Yy M+ y'2Z'm-22'Q =0, (2.9)
y”ﬂﬂ[ -|- y”zI'm — zl':l,'”Q — 0.

We recall one of the basic properties of the theory of linear systems of equa-
tions: The determinant of a system of n linear homogeneous equations pos-
sessing n unknowns that do not all vanish (M, m, and Q in our case) musi
be equal to zero. Therefore, for the system (2.9) we have

y oy —zT
y Yy =2 =0

7" nn !
ot ;

y' oy e
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After multiplying both sides with —1 we obtain the desired relation

J Yz 2T
y s Jr|=0.
y" "z Mz

2.18. This task can he easily resolved starting from system (2.7) of the
three equations and assuining that @ = 25 is known, £ is the desired unknown,
and weeks are replaced by days. However, we give another, somewhat shorter
solution.

Let A denote all of the grass in the field, expressed in some unit, and let
B represent the quantity of daily grass growth, also expressed in the same
units. Then we can state two equations:

A + 20 (days) - B (units of grass) = 20 (days) -10 (sheep),
A + 4 (days) -B (units of grass) = 4 (days) -30 (sheep).

From the system
A420B=200, A+4B =120,

we find A = 100, B = 5.

Let = be the required number of days necessary for 25 sheep to eat all of
the grass in the field. As above, we form the equation

A + z (days) - B (units of grass) = z (days) -25 (sheep),

that is,
100 + S5z = 25z,

wherefrom we find 2 = 5. Thus, 25 sheep will eat all of the grass in 5 days.

2.19. Since the cow eats as much grass as the goat and the goose together,
and the cow and the goat can eat all of the grass in 45 days, then two goats
and one goose will eat the same quantity of grass in that same time, assuming
a constant rate of growth for the grass. This period is twice as short as the
time necessary for the goat and the goose to eat all the grass (90 days).
Hence we conclude that the goat can eat all of the grass in the field in 90
days if during that time the goose eats only the grass growth.
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According to the previous consideration, after a little thought we realize
that, for one day, the cow eats 1/60 and the goat eats 1/90 of the initial
supply of grass. Therefore, the cow and the goat together cat in one day

of the grass supply. Hence, the cow and the goat can eat all of the grass in
36 days while the goose eats only the grass growth in the same number of
days. Answer: the cow, goat, and goose can eat all of the grass (that grows
uniformly every day) in 36 days.
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Mathematics is the queen of the sciences and
number theory is the queen of mathematics.
Carl Friedrich Gauss

Why are numbers beautiful? It's like asking why
is Beethoven’s Ninth Symphony beautiful.

If numbers aren’t beautiful, nothing is.

Paul Erdos

Number theory is a vast and very attractive field of mathematics that
studies the properties of whole numbers. Numbers have fascinated people
from the dawn of civilization. Euclid (ca. 300 B.C.) showed that there are
infinitely many prime numbers, the amicable (friendly) pair (220,284) was
known to the early Pythagoreans. Today, primes and prime factorization,
Diophantine equations and many functions (for example, Riemann zeta func-
tion) make up an especially important area in number theory.

Number theory is full of many profound, subtle and beautiful theorems. A
number of results has a simple and comprehensible formulation, yet puzzling
nature. For example, Goldbach’s conjecture (stated in 1742) that “Every
even integer greater than 2 can be written as the sum of two primes” has
a very simple formulation, but it has not been resolved yet. On the other
hand, the proofs of problems are often very difficult and lie in exceeding
obscurity. For these reasons, it can be claimed that number theory possesses
magical charm and inexhaustible wealth.

Number theory, more than any branch of mathematics, has set traps for
mathematicians and caused even some eminent mathematicians to make a
number of faulty assumptions. Recall that Fermat’s Last Theorem from
1637 ( “If an integer n is greater than 2, then the equation a” + b" = ¢" has
no solutions in nonzero integers a, b, and c.”) was solved after 357 years
and many wrong “proofs”.

From the beginning of the computer era, programmers have been testing
their skills, the quality of the programs and the power of digital computers
solving problems of number theory and discovering various curiosities in this
field. Generating prime numbers is the ultimate test in the construction of

37
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digital computers because extensive calculations quickly point out different
problems in their design.

No other branch of mathematics is as popular ammong mathematicians—
amateurs as number theory. The main reason is that it does not require
any lengthy preliminary training. Number theory is also the favorite science
of leading mathematicians. A German mathematician Leopold Kronecker
(1823-1891) said: “Number theorists are like lotus-eaters—having tasted this
food they can never give it up.” Lotus-eaters are a mythical people, men-
tioned in Homer’s epic The Odyssey. Constantly eating lotusfruit, these
people became oblivious to the outer world, and lived in contented indo-
lence, with the only desire never to leave the Lotus-land. Kronecker is the
same fellow who once said that, “God made integers and all else is the work
of man.”

This chapter attempts to present a few of the recreational gems in the the-
ory of numbers. You will find mostly the problems of Diophantine’s type,
starting from the cattle problem. This is the most famous and oldest an-
cient problem of number theory, ascribed to Archimedes. While Archimedes
thought about cattle, Dirac chose a monkey and sailors, Ramanujan houses,
Bhaskara soldiers on the battlefield, Sylvester and Frobenius stamps and
coins and Euler horses and bulls. An essay on aimmicable numbers and suit-
able generating formulae of ibn Qorra and Euler are also included.

b 3

* %

Archimedes (280 B.c.—220 B.c.) (— p. 299)

As mentioned in the preface, mnany centuries ago the main purpose of
most mathematical tasks, excepting some counting and measuring problems,
was to provide intellectual pleasure and diversion. Archimedes, one of the
greatest mathematicians who ever lived, was mainly occupied with real-life
problems and geometry, although some of these problems sound today rather
as recreational ones. The extant works of Archimedes can be found in Heath
[100], Dijksterhuis [52] and Stein [169].

Some of ancient stories are, in fact, legends about Archimedes’ con-
trivances made to aid the defense of his native city Syracuse against the siege
directed by the Roman general Marcellus. According to legend, Archimedes
constructed movable poles for dropping heavy weights and boiling liquids
on enemy ships that approached to the city walls too closely, catapults with
adjustable ranges and other defense weapons.!

1 Another legend tells that Archimedes also constructed a large “burning glass mirror”
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FIGURE 3.1. Catapult— Archimedes’ defense weapon

We regard many of these problems from antiquity and the Middle Ages
more as recreational mathematics. For this reason, we include them in this
book, starting with some of Archimedes’ most famous problems.

Archimedes FIGURE 3.2. Archimedes’ screw, still used
280 B.c-212 B.C in various parts of the world

in the shape of a paraboloid to set fire to enemy ships. Perhaps the previous legends are
true, but the last story seems to be false. With a little help of physics and mathematics we
find that the length of the latus rectum (the straight line through the focus perpendicular
to the axis) is equal to the parameter p in the equation of parabola y° = pz. Since the
focus of the parabola y?2 = pr is at (p/4,0), assuming that an enemy ship is 50 meters
from the city walls and sitnated just st the focus of Archimedes’ burning mirror (p/4 = 50
meters), we find that the mirror’s diameter (that is, the length of the latus rectum) would
measure p = 200 meters, evidently an inpossible length.
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The ancient Greeks were deeply interested in numbers that resemble geo-
metric forms, called figurative numbers. The Pythagoreans observed that
the sum of successive odd natural numbers forms a square (Figure 3.3(a)),
thus S, = 14+ 3+ --- 4+ 2n — 1 = n?. Triangular numbers are the numbers
1, 3, 6, 10,..., and can be obtained as the sum of the first n natural num-
bers (see Figure 3.3(b)). Therefore, the nth triangular number has the form
Tn=14+2+---4n=n(n+1)/2.

°
—e
—eo—o

*—o—0

. AR

a) b)

FIGURE 3.3. Square and triangular numbers

There are infinitely many numbers that are simultaneously square and
triangular; see Problem 3.2. Surprisingly, these numbers are very closely
related to the solution of Ramanujan’s Problem 3.11, given in this chapter.

The sums P, of consecutive triangular numbers are the tetrahedral num-
bers

Pp=1, P,=4, P3=10, P,=20, ... .P, = tn(n+ 1)(n + 2)

and these are three-dimensional analogies to the plane-figurative numbers
(actually, the numbers of equal spheres that can be piled in pyramids, hence
the denotation P). Are there numbers that are simultaneously square and
tetrahedral except 1, that is, S,, = P,, for some natural numbers n and m
greater than 17 This is the so-called cannonball problem and the answer
is yes, but there is only one number: 4,900. This unique solution of the
Diophantine equation

n? = %m(m + 1)(m + 2)

was found by G. N. Watson in 1918.2 The proof of this is difficult and we
omit it.

2 The problem of the square pyramid, Messenger of Mathematics 48 (1918), 1-22.
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The first problem presented in this chapter most likely comes from Archi-
medes and involves square and triangular numbers.

Cattle problem

In 1773 Gotthold Ephraim Lessing discovered a Greek epigrain made up
of twenty-two distichs ascribed to Archimedes, in the Wolfenhiittel library.
These verses state a problem, now commonly referred to as the cattle prob-
lem. This problem is the Dbest known ancient Diopbantine equation and
reads:

Problem 3.1. The sun god had a herd of cattle consisting of W, X, Y, Z
(respectively) of white, black, spotted, and brown bulls and w, z, y, = cows
of the same shades. These numbers satisfy the following nine equations:

11
W= (- -)X--z.
S +3)X+2,

X = (i+5)Y+Z

Y - (%+%)W+Z,
T
x = (i+%)(Y+J)
y=(%+%)(z+:),
z = (% 1 —)(W 1 w),

W + X = a square number,
Y + Z = a triangular number.

Determine the total number of cattle

T=W+X+Y+Z+wt+tz+y+-=.

After somewhat tedious but elementary manipulations®, the above system
reduces to Pell’s equation (see Appendix A)

u? —4,729,1940% = 1.

3See, e.g., B. Krumbiegel, A. Amthor, Das Problema Bovinum des Archimedes,
Historisch-literarische Abteilung der Zeitschrift fir Mathematik und Physik 25 (1880),

pp. 121-136, 153-171, E. Callandreau, Célébres Problémes Mathématiques. Editions
Albin Michel, Paris 1949.
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Solving this equation by the continued fraction method?, one obtains

w = 109,931,986,732,829,734,979,866,232,821,433,543,901,088,049,
v = 50,549.485,234 315,033,074,477,819,735,540,408,986,340,

leading to the solutions of the original problem, the smallest value of which
contains 206,545 digits. A. Amthor (1880) was the first to determine the
total number of digits of the smallest solution, although he did not find
the solution. In 1889, undaunted by what lay hefore them, a civil engineer
named A. H. Bell and two friends formed the Hillsboro Mathematical Club
(Illinois) and started the computation. They spent four years at the job,
computing 32 of the left-hand and 12 of the right-hand digits of the 206,531-
digit number that directly leads to the required (least) solution consisting of
206,545 digits.

The final solution by H. C. Williams, R. A. German and C. R. Zarnke
[187] was published in 1963. The authors perforined calculations on the
digital computers IBM 7040 and IBM 1620 using a special procedure for
memorizing very large integers and converting them from the binary system
to the decimal system. The total computing time required was 7 hours and
49 minutes and the obtained result consisting of 206,545 decimal digits was
printed on 42 computer A4 sheets. In its abbreviated form, the solution
reads

77602714...237983357...55081800,

each of the six dots representing 34,420 omitted digits. Using a CRAY-
1 supercomputer, which greatly simplified tlie computations, H. L. Nelson
[132] confirmed the result in 1980. Readers interested in the exact number
of cattle may find all 206,545 digits in the paper [132].

Let us note that Lessing and also Nesselmann, Rouse Ball and others, dis-
puted the authorship of Archimedes. Soiwne of them have commented that the
solution is senseless, giving remarkably huge numbers. According to Donald
Knuth (Science 194 (1976)), the total number of protons and neutrons in
the known universe is about 10'?®, an “astronomically large” number, but
actually it has only 126 digits; compare it with the above solution consist-
ing of 206,545 digits. Beiler estimnated in [14] that a sphere with a radius
equal to the distance from the Earth to the Milky Way could contain only
a small numher of animals even if they were the smallest microbes. On the
other hand, the outstanding Danish researcher of Archimedes’ work, Johan
L. Heiberg, as well as some other mathematicians, were convinced that the
above problem should be attributed to Archimedes.

1For this method see, e.g., Davenport’s book [45]. See, also, Appendix A.
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Further details about the cattle problem can be found in the recent work
[123] of Lenstra. He presents all solutions to the cattle problem given below:

w = 300,426,607,914,281,713,365 - V609 + 84,129,507,677,858,393,258 - /7,766 ,

km _ (w4.ﬁ58-m _ w—4.658-m )2 (7n _ 123 .. )
368,238,304 P
mth solution  bulls cows all cattle

white 10,366,482 - k,, 7,206,360 - k,, 17,572,842 -k
black 7460514 - k,, 4,803,246 - k., 12,353,760 - k,,
spotted 7,358,060 - k,,  3,515.820 - k,., 10,873,880 k

brown 4,149,387 - kn, 5,439,213 -k, 9,588,600 - k,,,

all colors 29,334,443 - k,, 21,054,639 - k,, 50,389,082 - k,,

Archimnedes would be amazed at this result, but these days the cattle problem
is an easy-as-pie task even on a standard personal computer lasting only a
fraction of a second to solve the corresponding Pell’s equation (see Appendix
A).

Finally, let us mention an interesting discussion which took place in the
pages of the journal Historia Mathematica about the solvability of the cattle
problem. A controversy arises from an unclear translation of the Greek text.
Namely, P. Schreiber [154] asserted that the known “solutions” contradict
one of the conditions (which reads: “In each sort of cattle there are many
more bulls than cows”) given in the wording of the problem. According to
Schreiber, this condition fails for the brown cattle. W. C. Waterhouse [180]
disputed this approach since he regards some parts of the Greek text only as a
stylized poetic forin which is mathematically irrelevant, while mathematical
conditions are written in straightforward mathematical terms. At any rate,
the task posed at the beginning of this essay is mathematically quite clear
and precise® and has a solution.

Problem 3.2.*% Devise a formula that generates all numbers that are
simultaneously square and triangular.

Hint: Consider the corresponding Pell’s equation and formulae given in
Appendix A.

SMany mathematicians. even today, consider that the presented formulation of the
cattle problem was created at some later period, many centuries after Archimedes; in
their estimation, mathematicians from that time would have had great difficulties with
this problem.
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Diophantus of Alexandria (ca. 200—ca. 284) (— p. 299)

Diophantus’ hook Arithmetica was written in the third century in 13
hooks (six survived in Greek, another four in medieval Arabic translation).
It is a collection of 130 arithmetic problems with numerical solutions of
(determinate and indeterminate) algebraic equations. The following two
problems are selected from this book.

Dividing the square

Problem 3.3. Divide a given square number into two squares.

Solution. This is an indeterminate problem whose solution Diophantus
expressed in the form of a quadratic polynomial which mmust be a square.
Let b be a given rational number and let z? + y?> = b2, where z and y
are rational solutions of the last equation. To ensure a rational solution,
Diophantus introcuced the substitution ¥y = ex — b, where a is an arbitrary
rational number.® Then

b2 — 2% = a®2? — 2abx + b°,
which reduces to 2abx = (a* + 1)22. Hence

2ab
a?+1

The last formula generates as many solutions as desired. Taking b — 4 as
in Diophantus’ book, for a = 2 it follows that 2 = 16/5, y = 12/5, which
satisfies the given equation:

162 12y2 400
(8 + (&)~ e

5 5 25
Beside the fame of being the most proininent work on algebra in Greek
mathematics, Diophantus' Arithmetica is also fainous hecause of the note
made in a copy of it by the renowned French inathematician Fermat in which
he states the impossibility of dividing a cube into a sum of two cubes or, in
general, any nth power (n > 2) into a sum of two nth powers. In the margin

of the 1621 edition of this book, Fermat wrote: “I have a truly mervelous
proof of this proposition which this margin is too narrow to contain.” This

SDiophantus did not employ this exact notation since negative numbers and zero were
not known in his time.
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note was discovered after Fermat's death. It is believed today that Fermat
did not actually have the correct proof of this conjecture. Peter Bentley,
the author of The Book of Numbers [16] said: “Today Fermat is remembered
most for what he did not write down.”

Wine problem

Problem 3.4.* A man bought several liters of two kinds of wines. IHe
was paying 8 drachmas (Greek money) a liter of fine wine and 5 drachmas a
liter of ordinary wine. The total sum of money he paid is equal to the square
of a natural number and, added to 60, it gives the square of the total quantity
of the wine expressed in liters. The task is lo find the quantities (in liters)
of each kind of wine.

Tabit ibn Qorra (826-901) (— p. 300)

The Arabian scientist Tabit ihn Qorra (or Qurra, following V. Katz [113,
p. 249]7), famous for his remarkable translations of Euclid ( Elements), Apol-
lonius, Archimedes, Ptolomy and Theodosius, wrote on elementary algebra,
conics and astronomy, but also on fanciful topics such as magic squares and
amicable (or friendly) numbers.

Amicable numbers

The discovery of amicable or friendly numbers is ascribed to Greek math-
ematicians. It is said that two numbers are amicable if and only if the sum
of the proper divisors (the divisors excluding the number itself) of each of
thein is equal to the other. Pythagoras is attributed to finding one such pair
220 and 284. Indeed, the proper divisors of 220 are 1, 2, 4, 5, 10, 11, 20,
22, 44, 55, 110, and their sum is 284, while the suin of the proper divisors 1,
2,4, 71, 142 of 284 is just 220. This was the only known pair for some 2000
years. So, this extraordinary property of the two numbers was the cause of
a superstition that a pair of talismans bearing these numbers would ensure
a perfect friendship between the wearers.

Pythagoras set the amicable pair (220,284) (the only one known in his
time) in the context of a discussion of friendship saying that a friend is “one
who is the other I such as are 220 and 284." According to Beiler [14], there
was once an experiment performed by El Madschrity, an Arab of the eleventh

? Also Korrah, see Beiler [14].
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century, who tested the erotic effect of the amicable pair (220,284) by giving
one person 220 special cakes to eat, and himself eating 284 at the same time.
Unfortunately, El Madschrity did not report the outcome of this experiment.

FI1GURE 3.4. Amicable numbers 220 and 284

No advance in the field was made until the ninth century when Té&bit ibn
Qorra undertook the study of the following question:

Problem 3.5. Siate o one-paramneter formula which generates amicable
numbers.

As a result of ibn Qorra’s investigation, the following theorem was proved
(stated here in modern notation, see {32, p. 104] or [113, p. 266]):

Ibn Qorra’s theorem, Forn > 1, letq, = 3-2" -1, 1, = 9:22"~1 1, [f
Gn—1,Gn 0nd r, are three prime numbers, then A = 2"q,_q, and B = 2"r,
are amicable.

QQorra’s rule for generating amicable pairs was rediscovered by Fermat
(1636) and Descartes (1638). The simplest case n = 2 gives primes g, = 5,
gs = 11, 73 = 71, and the resultant pair of amicable numbers is (220,284),
which was already known to the Greeks. Despite the existence of such a fruit-
ful formula, no new pair of amicable numbers was discovered until another
Islamic mathemstician Kamal al-Din al-Farisi (died ca. 1320) announced
(17,288, 18,418) as a second pair. Three c¢enturies later the great French
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mathematician Pierre de Fermat rediscovered the same pair. This pair can
be obtained from ibn Qorra’s formula for n = 4. The pext pair of amica-
ble numbers generated by ibn Qorra’s formula is (9,363,584, 9,437,056),
which is obtained for n = 7.

Let us note that, after a systematic study of amicable numbers, Leonhard
Euler gave (1747) a list of 30 pairs and later he extended it to 64 pairs (two
of which were shown later to be unfriendly). Euler stated the following rule
for generating amicable pairs (Dickson [51]):

If three natural numbers
p=2"(2"""+1) -1,
g=2"(2"""+1)—1,
=2t 1)t -1

are all prime for some positive integer m satisfying 1 <m < n—1, then the
numbers 2" pq and 2"'r are an amicable pair.

Euler’s rule is a generalization of ibn Qorra’s formula (the case m =
n — 1). The first few pairs (m,n) which satisfy Euler’s rule are (m,n) =
(1,2), (3,4), (6,7),... , generating the amicable pairs (220, 284), (17,296,
18,416), (9,363,584, 9,437,056), the same ones found by ibn Qorra’s for-
mula. Another, more powerful, generating formula was discovered in 1972
by W. Borho [22].

Curiously enough, the above lists and other lists made up to 1866 do
not include the relatively small pair of amicable numbers, 1,184 and 1,210.
This pair was discovered in 1866 by a sixteen-year-old Italian hoy, Niccolo
Paganini, not to be confused with the composer and violinist of the same
name! This example, as well as many other examples, show that ibn Qorra’s,
Euler’s and Borho’s formula do not generate all pairs of amicable numbers.

In recent years, the number of known amicable numbers has grown explo-
sively thanks to powerful computer machines. For example, there are 1,427

amicable pairs less than 10'® and 5,001 less than 3.06 x 10'!. Pomerance
[140] proved that

[amicable numbers < n] < nexp(—|[In n]"/ 3)

for large enough n. In 2005 an improved bound is given by M. Kobayashi,
P. Pollack and C. Pomerance [116]. In 2005 P. Jobling found the largest
known amicable pair (at that time) each member of which has 24 073 decimal
digits.

Problem 3.6.* Find the fourth amicable pair produced by Euler’s rule.
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Bhaskara (1114-1185) (= p. 300)

Bhaskara (or Bhaskaracharya— "Bhaskara the Teacher” —as he is known
in India) was the greatest Indian mathematician and astronomer of the
twelfth century. He also worked in the astronomical observatory at Ujjain
as his great predecessor Brahmagupta had done. Bhaskara wrote mainly on
arithmetic, algebra, mensuration and astronomy. He tried to clear up basic
arithmetic operations involving zero, the difficult task solved partially by
Brahmagupta a half century previously. Actually, Brahmagupta could not
understand what to do with division by zero: see [16]. Bhaskara claimed
that, say, 7 : 0 is infinity®, an incorrect answer. The division of any number
by zero produces an undefined result. Poor Bhaskara, one could comnment,
but recall that some modern textbooks also assert that the result is infinity.

Bhaskara’s work Lilavati (a woman's name meaning “lovely” or “beau-
tiful”) is considered one of the most influential contributions of his time.
Indeed, much of our knowledge of Hindu arithmetic comes from this book.

There is a romantic myth connected with Bhaskara’s hook Lilavati. Ac-
cording to a story which appears in the work of Fyzi (1587), a counselor
of the Persian emperor Akbar, the astrologers predicted that Bhaskara's
daughter Lilavati would never marry. Bhaskara, however, being an expert
astronomer and astrologer, divined a lucky moment for his daughter's mar-
riage to fall at a certain hour on a certain propitious day. On that day he
devised a water clock by floating a cup in a vessel of water. At the bottom
of the cup he pierced a small hole in such a way that water would trickle in
and sink the cup at the end of the hour. Shortly before the hour’s end, as
curious Lilavati watched the rising water level sink the cup, a pearl from her
headdress accidentally dropped into the water clock and, stopping up the
hole in the cup, slowed the influx of water. Thus the hour expired without
the cup sinking. The lucky moment passed unnoticed and Lilavati was thus
fated never to marry. To console his unhappy daughter, Bhaskara promised
to write a book, saying:® “I will write a book named in your honor that shall
last until the end of time, for she who has a good name obtains a second life
and this in turn shall lead to eternal existence.”

How many soldiers?

Problem 3.7. An army consists of 61 phalanzes each containing a square
number of soldiers, not counting the commander. During the battle this army

8Today we denote infinity by the symbol oco; some people call it “lazy eight.” This
symbol was introduced by the English mathematician John Wallis in 1655.
D. E. Smith [167], Vol. I, p. 277.
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can rearvange itself into a solid square, including its commander. Find the
minimum number of soldiers in the army.

In mathematical terms, the equation 61y? + 1 = 2% must be solved in the
smallest terms. This equation, written in a more familiar form

2 —61y° = 1 (3.1)

is known as Pell’s equation (see Appendix A). Bhaskara gave the particular
solutions of equations of the form 22 — py? = 1 for p = 8, 11, 32, 61, and
67. For solving the equation (3.1) Bhaskara used a general method (see [113,
pp. 223-225]) and found the solution

r = 1,776,319,049. y = 22,615,390.

The above task has been included in Beiler’s book [14, Ch. XXII] in the
form of a short story about the Battle of Hastings in 1066. In this battle the
Norman army led by William the Conqueror, Duke of Normandy, defeated
King Harold’s Anglo-Saxon army. After this victory the Normans occupied
England and William became the first Norman king. We present this story
in an adapted form below.

Problem 3.8. King Harold’s men arrayed themselves in their customary
formation of sizly-one squares, each square contatning the same nuinber of
soldiers. Any Norman soldier who dared to penetrate their fortifications
put his life at great risk; one blow from a Sazxon baitle-aze would shatter a
Norman lance and slice through a coat of mail... . When Harold and his
men joined forces with the other Saxons, they entered the battle as one single
great square... .

Can you find the number of men in the Saxon horde? And don’t for one
moment think that the Battle of Hastings led to Pell’'s equation.

As mentioned above, Bhaskara found that the solution of z? — 61y? = 1
in its smallest terms is

1,766,319,049° — 61 - 226,153,980°% = 1.
Including Harold, the Anglo-Saxon army must have consisted of
2? = (1,766,319,049)% = 3,119,882,982.860,264,401

soldiers. Using rough calculations and allowing for six soldiers per square
meter, the solution would require a globe with a radius equal to the distance
from the Earth to the Moon in order to accommodate the army on its surface.
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Leonhard Euler (1707-1783) (— p. 305)

In terms of the sheer volume of published papers, the Swiss mathematician
Leonhard Euler ranks as the most prolific mathematician of all times. Euler’s
bibliography, including posthumous items, contains 886 entries which could
fill some 80 large-format volumes. Fuler worked with amazing ease under
all sorts of conditions, even in the presence of all thirteen of his children (al-
though only five survived to adulthood). He made remarkable contributions
in almost all branches of mathematics and also in astronomy, mechanics,
optics and many practical problems such as magnetism, cartography, fire
engines and ship building.

In 1766, an illness at the age of 59 left Leonhard
Euler nearly blind. Yet thanks to his remarkable
mental calculation skills and photographic mem-
ory (for exaunple, Euler could repeat the Aeneid of
Virgil from beginning to end without hesitation),
he continued his work on mathematics, optics, and
lunar motion for the last 17 years of his life, thus
producing almost half of his total works. Asked at-
ter an unsuccessful eye operation how he would con-
tinue working, he answered: “A{ least now, nothing
Leonhard Euler will distract my attention.”

1707-1783

Not only did Leonhard Euler work in virtually all areas of mathematics,
he was also greatly interested in recreational mathematics problems. His
research on this topic led to the development of new methods us well as the
development of new branches of mathematics.

Horses and bulis—a Diophantine equation

If a,b and ¢ are integers and ab # 0, then a linear equation of the form
ax + by = c,

where unknowns z and y are also integers, is called a linear Diophantine
equation in two variables. Euler developed an efficient method for solving
these types of equations, which consist of multiple applications of a very
simple procedure.!’ We illustrate the method in the solution of the following
problem that Euler himself posed.

10 According to F. Cajori [32, p. 93], the famous Hindu estronomer Aryabhata (born
476 A.D.) knew this method, known by the name pulverizer.
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Problem 3.9. A merchant purchases a number of horses and bulls for
the sum of 1,770 talers. He pays 31 talers for each bull, and 21 talers for
each horse. How many bulls and how many horses does the merchant buy?

The linear Diophantine equation that corresponds to our problem reads
31z + 21y = 1,770,

where 2 and y stand for the number of bulls and horses, respectively. To solve
this equation, we apply Euler’s method by first starting with the unknown
whose coeflicient is smaller in magnitude, in this case y. Using the equalities

31=1:-214+10 and 1,770 = 84-21 + 6,

we obtain
=31z + 1,770 —10x + 6

21 21

Since x and y are integers, then (—10z + 6)/21 should also be an integer.
Denote this integer with ¢ and represent the expression for ¢ as a new Dio-
phantine equation

y:

21t = —10z + 6,

which has coefficients of smaller magnitude relative to the original equation.
In fact, the essence of Euler’'s method is a permanent decrease of coefficients
in Diophantine equations arising from the original equation. Repeating the
described recursive procedure, we solve the previous equation in z (due to
the smaller coefficient) and find that

—21t + 6 —t+6
r = —= -2t = =2t + u,
? 10 AT, o
where we put
_ —t+6
10

Hence we again obtain the Diophantine equation
t=—10u + 6.
Taking u as a parameter, we have an array of solutions,

t=—10u 4+ 6,
T ==2t4+u=21u—12,
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The last two equalities, where u is a nonnegative integer, give all solutions
(x,y) of Euler’s equation

31z + 21y = 1,770.

First, for © = (), one obtains x = —12, y = 102, which is pointless because
we need only positive solutions. Since y < 0 for u > 3, we consider only
those solutions obtained for x = 1,2, 3, and find

u=1 zz=9, y=71;
u=2 z=230. y=40;

u=3, =5l y=09.

Thus, the solution of Euler’s equation is not unique, and all three pairs
(9,71), (30,40), (51,9) satisfy this equation.

Paul Dirac (1902-1984) (- p. 309)

The sailors, the coconuts, and the monkey

In 1926 the Saturday Evening Post printed a short story about some
sailors and coconuts on a desert island that held a great deal of attraction
for its readers. Martin Gardner presented a full discussion of a story similar
to it in the form of a problein in [71].

Problem 3.10. A shipwreck maroons five sailors and a monkey on a
desert island. To survive, they spend each day collecting coconuts; at night
of course, they sleep. During the night, one sailor wakes up and, doubtful
of receiving his fair share, he divides the coconuts into five equal piles; he
notices that one coconut remains. He gives this coconut to the monkey, hides
his share and goes back to sleep. A little later, the second sailor wakes up,
and, having the same doubts, divides the remaining coconuts into five equal
piles, notices that there is one left over, which he gives to the monkey. The
second sailor hides his share and returns to sleep. This happens for each
sailor in turn. In the morning, the sailors awake and share the remaining
coconuts into five equal piles and see that there is one left over, which they
give to the monkey. Of course, all of the sailors notice that the pile of
coconuts is smaller than the previous day, bul they each feel guilty and say
nothing. The question is: What is the smallest number of coconuts that the
sailors could have collected?
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Supposing that the sailors collected n coconuts, we must then solve the
following system of equations

n=35m +1,
4ny = Ong + 1,
4ny = 5ni + 1,
dng = dny + 1,

41’14 = 9ns + 1,

(3.2)

Ans = dng + 1.

The unit added to each equation represents the single remaining coconut
that the sailors give to the monkey each time after dividing the pile. (Lucky
monkey!) All the unknowns in this system are certainly positive integers.

Ficurg 3.5. Sailors, coconuts and a monkey

We can continue solving the problem using a number of approaches. The
three methods that we describe each have interesting and instructive aspects.
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Solution (I). By the process of elimination, we reduce the above system
of equations to the single Diophantine equation

1,024n = 15,625n + 11,529.
To solve this equation we use Euler’s method described on page 51. First we

find that

15,625n4 + 11,529 265ng + 265
- =1 —  — 15ng T
1.024 ong + 11 + 1.024 15ns + 11 + o,

n

where we put z = (265n + 165)/1,024. Hence we obtain a new Diophantine
equation

265ng 1 265 = 1,024x. (3.3)
After dividing (3.3) by 265 we find
229z y 229
;=3z—1+ =3r—1 ith 2 = =—.
neg = 3z I 265 3x + y, wi z =~ 265

Since the numbers 229 and 265 have no common factors, we must take
y = 229k, & = 265k (k € N),

and for k = 1 we obtain x = 265. Substituting this value into equation (3.3)
we find ng = 1,023 so that the required number of coconuts is given by

n=15n; +11 4+ 2z =15-1,023 + 11 + 265 = 15,621.

Solution (II). David Sharpe [160] used congruences to solve the above
systeni. We recall that, if a, b, ¢ are integers with ¢ > 0 and a — b is divisible
by ¢, then we can express this fact in the language of congruences as a =
b (mod ¢). In other words, we say that @ modulo ¢ is equal to b. For example,
25 modulo 7 is equal to 4 (written as 25 = 4(mod 7)) since 25 — 4 is divisible
by 7, or 4 is the remainder that results when 25 is divided by 7.

From the last equation of system (3.2) we see that 4ns — 1 is divisible by
5. Then

dng +ng —ng — 1 = 5ng — (ng + 1)

is also divisible by 5; hence it follows that the second addend ns + 1 must be
divisible by 5. Using congruence notation we write ns = —1 (mod 3). After
multiplying by 3 one obtains 5ns = —5 (mod 25). Since 4n4 = 5715 + 1, from
the last relation we find that

4ng = —4 (mod 25).
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The numbers 4 and 25 are relative primes (that is, having no common fac-
tors) so that 4 can be cancelled to yield

ng = —1(mod 25).

Using the same argumentation we are able to write the following congruence
relations:

5ng4 = —5(mod 125),
4ny = —4 (mod 125),
nz = —1 (mod 125),

Snz = -5 (mod 625),

dny = —4 (1nod 625),
n, = —1 (mod 625),
Sny = —5(mod 3,125),
An; = —4(mod 3,125),
ny; = —1(mod 3,125),
5n) = -5 (mod 15,625),

n = —4 (mod 15,625).

From the last relation we see that the nuinber n - 4 is divisible by 15,625.
Since we search for the smallest number with this property, we take n =
15,621. Therefore, the smallest number of coconuts that the sailors could
have collected is 15,621.

Solution (III). Certain references!! attribute this fascinating solution

to the celebrated English physicist Paul Dirac (1902-1984), with Erwin
Schrédinger, winner of the 1933 Nobel Prize. Other sources (for example,
[62, p. 134]) suggest the key idea’s creator was Enrico Fermi (1901 -1954),
another Nobel Prize-winning physicist and the “father™ of the atom bomb.

First, one should determine the smallest possible number A having these
properties: (i) M is divisible by 5; (ii) the difference A — M /5 is also divisible
by 5; (iii) the described process can be repeated six times consecutively. One
can easily find that A = 5% = 15,625. We will obtain a set of solutions,
including the smallest one, by adding this number, as well as any ultiple
p-5° (p € N), to any number satisfying the problem’s conditions.

1ncluding the article Paw! Dirac and three fishermen, published in the journal Kvant,
No. 8 (1982), issued by the Academy of Science of the (former) USSR.
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Dirac based his idea on manipulating the quantity of coconuts using nega-
tive numbers (1), and determined that —4 coconuts yielded a proper solution.
Although it seems rather surprising, this number satisfies, at least in theory,
all conditions of the problem. This is one of those “it doesn’t-make-sense-
but-it-works” ideas. Checking the solution is simple, and we leave further
discussion to the reader. The number of coconuts is given by

n=—4+p-15,625.

Taking p = 1 we obtain the smallest number of coconuts n = 15,621.

Problem 3.10 can be generalized; see Gardner [72, Ch. 9]. If & is the
number of sailors and m is the number of coconuts which are left over to
the monkey (after each division), then the number n of coconuts originally
collected on a pile is given by

n= ks —m(s-1), (3.4)

where & is an arbitrary integer. In particular (Problem 3.10), for s = 5 and
m = 1 from (3.4) we obtain the smallest positive solution (taking & = 1)
n = 15,621.

Beiler’s book [14] contains a version of the coconuts problem in which the
pile of coconuts remaining after five consecutive nights of reallocations, gets
divided into five exactly equal piles, and the monkey goes without his share
of coconuts. The least number of coconuts equals 3,121.

Srinivasa Ramanujan (1887-1920) (— p. 308)

The life and work of the Indian self-taught genius Srinivasa Ramanujan
certainly provides the history of mathematics with one of its most romantic
- and most spectacular stories. Although Ramanujan

r (g ‘ had no university education, his exceptional capac-
- ity in mathematics was known to Indian mathemati-
cians. The famous British number theorist G. 1. Har-
dy (1877-1947) observed his uncanny intuitive rea-
soning and incredible facility to state very deep and
complicated number relations and brought Ramanu-
jan to England. Despite Ramanujan’s delicate health,

they jointly authored several remarkable papers be-
fore Ramanujan's death at the young age of 33.

&

Srinivasa Ramanujan
1887-1920
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In his book Ramanujan (1940) Hardy described an interesting story.
When Hardy went to the hospital to visit Ramanujan who was lying ill,
he told him that he had arrived in taxi-cab No. 1,729, and remarked that
the nuinber seemed to him a rather dull one, quite an unfavorable omen.
“No”, Ramanujan answered immediately, “if is e very interesting number;
it is the smallest number ezpressible as the sum of two cubes in two different
ways, 1,729 = 13 4 123 = 93 4 103.”

Let us allow a short digression. The above splitting of the number 1,729
into the sum of two cubes resembles very much a problem by Henry Dudeney
posed in his famous book, Canterbury Puzzles (1907). He asked for the
number 9 to be expressed as the sum of two cubes of rational numbers in
two different ways. One solution is pretty obvious: 9 = 13 4 23, The other
is extremely difficult:

415,280,564,497 and 676,702,467,503
348.671,682,660 348,671,682,660

(found by Dudeney). Truly mind-boggling results! Bearing in mind that
Dudeney did not have any modern calculating devices, his solution arouses
admiration. “Thus did Dudeney.”

It is a high time to give the next intriguing problem.
Unknown address

Problem 3.11. The houses with numbers | through N are situaled in a
row only on one side of a street. Find the address (house) numbered by n
such that the house numbers on one side of the address n (that is, from 1 to
n — 1) add up exactly to the saume sum as all numbers (fromn + 1 to N) on
the other side of the address.

According to the story presented by Robert Kanigel in his book The
Man Who Knew Infinity [109], Ramanujan answered the “unknown address”
problem in his head communicating the solution in the form of a continued
fraction to his friend. Paul Weidlinger in |184] gives the solution to the
problem and assumes that it coincides with Ramanujan's.

From the conditions of the problem, one obtains
1424 -+ (n—-1)=m1 1)+ - N.
By adding the sum 1 + 2+ .- + n to both sides we find that

2(1+2+---+n-1)4+n=14+2+4+---+ N,
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which gives
. n(n—1) bne N(N +1)
2 - 2

2 (3.5)

or
np = ——.
2

The subscript index % is introduced to emphasize that relation (3.5) has
integer solutions only for some specific numbers n; and Ny. Obviously, (3.6)
is a Diophantine equation that defines the square of triangular numbers (for
triangular numbers see page 40).

(3.6)

Solving the quadratic equation (3.6) in Ni, we find positive solutions for
Nk .
-1+ /1 8n2
N, = 5 kg (3.7)

The expression 1 + 8n2 must be a perfect square, that is,

14 8n) =p2 or pi—8ni=1,

which is a Pell equation (see Appendix A).

It is easy to sce that the least solutions of the last Pell equation x? —8y® =
1 arez = 3 and ¥ = 1. From the discussion presented in Appendix A and the
form of difference equation (A.6) given there, we conclude that the difference
equation corresponding to the Pell equation above has the form

ne —6ng_y) + 2 =0 (k2>2). (3.8)

Since ny = Ng = 0 and n; = N; = 1 for obvious reasons, using these initial
values we can find ny from (3.8), and hence N, given by (3.7).
From the difference equation (3.8) we have
ny 1

Cr = =06-— .
Nk—1 Ck=-1

Hence, by a successive continuation, we come to the continued fraction

6 — . (3.9)

This means that ¢y = a; = --- = a3 = -+ =6 and by = b, = -+ =
-1

by = --- = —1 and (3.9) can be written in the form [6;‘7,7,---]. At
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the same time, the difference equation (A.3) from Appendix A becomes
Y — 6yk—1 + yx—2 = 0, which coincides with (3.8). In particular, Euler’s
formulae (A.2) become

P, =6P._, — Pr_,
Qr = 6Qx—1 — Qi-2,

and, therefore, satisfy the previous difference equation. Since @y also satis-
fies the initial conditions Q_; = 0, Qv = 1, the values of @ coincide with
ng required in (3.6) and (3.8), and both of them give the solution to the
problem.

Therefore, expression (3.9) is the continued fraction which Ramanujan
most likely had in mind. Depending on the number of terms taken in the
continued fraction (3.9), particular solutions can be obtained from (3.8) tak-
ing ng = 0 and n; = 1. Numerical values are given in the following table.

kK [o]L1[2] 3] 4 5 6
ne |0|1]|6]35]204]1,189 | 6,930
N.|0[1][8[49 288 [ 1,681 [9,800

For examnple, for n; = 6 we have N; = 8 and the following arrangement of
houses with the sum equal to 15:

12

4 5 [6] 7 8
15

The value of n; can be found by solving the difference equation (3.8).
Bearing in mind the initial conditions ng = 0, n; = 1, formula (A.5) (Ap-
pendix A) yields the required solution (with p = 3, ¢ = 1) and thus reads

R

ng =

1 [ k k
—[@3+2v2) - 3-2vD*| (k=0,1,...).
i ( )" = | ( )
Since |3—2v/2| &~ 0.172 is less than 1, then (3—2v/2)* becomes exponentially
small when k increases, and its effect is almost negligible. For this reason
ng can be calculated as (see page 13)

= | (3+2v2)F/av2 + 1/2],
where | a | presents the greatest integer less than or equal to a number a.'?

For example,

ny = | (3+2v2)*/4v2| = [204.000153] = 204.

12The floor function | 2 | was introduced by Kenneth E. Iverson early in the 1960s.
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Ferdinand Georg Frobenius (1849-1917) (- p. 307)
James Joseph Sylvester (1814-1897) (- p. 307)

We end this section with an interesting task known in the literature as
the Frobenius' coin problem or Sylvester’s stamp problem, or sometimes
the money-changing problem. Its first version has a puzzle character, but its
later generalizations led to numerous challenging problems in number theory
that have appeared as the subject of many papers even today.

Georg Frobenius, a professor at the University of Berlin, was one of the
leading mathematicians of his day. He continuously endeavored to preserve
very high standards in sciences and education at the university. To carry
out his plans, he was occasionally unpleasant, choleric and quarrelsome.
He paid attention only to pure mathematics and had an aversion to applied
mathematical disciplines.!® Despite his primary orientation to serious math-
ematics, Frobenius’ work finds a place in this book thanks to his research on
the coin problem belonging to number theory which bears his name.

James Joseph Sylvester, one of DBritain’s greatest mathematicians of
the nineteenth-century, was 8 genius in mathematical investigation, but his
absentmindedness often complicated matters for him. Sylvester not only en-
countered great difficulties in memorizing other math-
ematicians' results, but he also had troubles remem-
bering his own. Once he even denied the truth of
a theorem that he himself had formulated. Due to
his perpetual absentmindedness, his lectures did not
enjoy great popularity, concentrating, as they did,
mainly on his own work and its results. Consequently,
unsolved problems or unclear details from Sylvester’s
unpublished manuscripts inevitably caused delays
sometimes lasting for weeks or even permanently di-
verting him from his original subject.

James J. Sylvester
1814-1897

Sylvester entertained a great deal of interest in many branches of mathe-
matics, yet despite devoting immense activity to solving serious mathemat-
ical problems,!* he managed to find a little time to spare for mathematical

131t sounds paradoxica), but the representation theory of finite groups, developed by
Frobenius—the man who loved only pure mathematics—later found important application
in quantum mechanics.

)\ foreover, Sylvester was also interested in poetry and musi¢ as an amateur performer,
Sometimes, the famous French composer Charles Gounod gave him singing lessons.
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amusements. In this book we present several of his problems, the first of
which is given below.

Stamp combinations

Sylvester submitted the following simple but interesting contribution to
the Educational Times (1884). A similar problem was considered by Georg
Frobenius.

Problem 3.12. A man possesses a large quantity of stamps of only
two denominations: 5-cent stamps and 17-cent stanps. What is the largest
(finite) amount of cents which the man cannot make up with a combination
of these stamps?

Clearly, we assume that very large amounts of money (theoretically, in-
finitely large amounts) are not taken into account since they could not be
paid out for lack of a sufficient supply of stamps.

Let z be the amount that should be paid off by a combination of stamps
which are 5 and 17 pounds worth. Then

2 = %a + 17b, (3.10)

and this is a linear Diophantine equation. The amount 2 is a natural number
and a and b are nonnegative integers. We need to determine the greatest
number 2y which cannot be represented in the form (3.10).

Instead of the described particular problem we will consider a more gen-
cral case, namely, we will prove the following assertion:

If p and q are relative prime natural numbers,'> then pg — p — q is the
greatest integey which cannot be represented in the form pa + qb, a,b € Nj.

To solve this problem, we will prove: 1° the number pg — p — ¢ cannot be
represented in the mentioned form; 2° every number n > pg — p — q can be
represented in the form pa + gb.

1° Let us assume, contrary to our proposition, that there exist numbers
a,b € Ny, such that pg — p— g = pa + ¢b. Since p and ¢ are relatively prime,
it follows that p divides b+ 1 and q divides a + 1. Thus, it must he b+ 1 # p,

13Two natural numbers p and ¢ are relatively prime if they have no common positive
divisors except 1, that is, if the greatest common divisor (gcd) of p and ¢ is 1, briefly

ged(p,q) = 1.
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otherwise a < 0. Similarly, it must be a + 1 # q. Therefore, p < b+ 1 and
g<a+1,thatis,b>p—1and e >q—1, so that

pg—p—qg=pa+gb>p(g—1)+q(p—1)=2pg—p—q.

Hence, pg > 2pq. which is impossible. The contradiction proves the state-
ment 1°.

2° Let n > pg — p — q and let (ap,by) be an arbitrary integer solution of
the Diophantine equation pa + gb = n + p + ¢. Since p and g are relatively
prime, i.e. ged(p,q) = 1, this solution exists according to the theorem of
the existence of solutions of linear Diophantine equations (ged(p, ¢) divides
the right side of equation). The general solution of the above Diophantine
equation is given by

a=ay+qt, b=0by—pt, tcZ.

Let us choose t so that 0 < a < q. Then ¢t < =20 and
q
-a app + bog — n— -p-
b>bo—pqq°: uP+(;‘I Pq _ (qup 9.

We have proved that the number n can be represented in the described
manner. Indeed, from the Diophantine equation we have n = p(a — 1) +
g(b—1) = pa’ + gqb’ (&', b’ € Ny).

In the special case (Sylvester’s problem), taking p = 5 and ¢ = 17, we
find that the greatest number (amount) which cannot be ohtained by a
linear combination of the numbers 5 and 17 is equal to 29 = pg—p — q =
5.17 =5 =17 = 63, and this is the solution of Sylvester’s problem.

The above puzzle just begs to be generalized. Let ay,aq,... .0, (n > 2)
be given mutually relatively primne natural numbers such that 0 < @) < a3 <
-+- < ay. Let us assume that the values a; represent the denomination of n
different coins and introduce the function

g(alsa'ls- .. -,an) =T+ T2+ 0+ 0, T,

where z; are unknown nonnegative integers. Then the following question is
very intriguing.

Problem 3.13. Find the largest value F,, of the function g(a;,aq,... ,a,)
for which the equation (sometimes called Frobenius equation)

i +a1x9+ -+ apa, =F,

has no solution in terms of nonnegative integers x;.
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The solution F,, if it exists, is called the Frobenius number. Problem
3.13 can be appropriately interpreted in terms of coins of denominations
Gi,...,0,; the Frobenius number is simply the largest amount of money
which cannot be collected using these coins.

As shown above, Sylvester found
Fo=g(ar,a2) =(ay — 1) (az —1)—1=a1a2 —ay —ay

and, in particular, for a; = 5 and a; = 17, one ohtains 5 = 63. This theory
cries out for a practical example as follows: A gambler in « local casino
in Nevada won 375 dollars. The croupier can take the money by putting
chips worth 12 and 35 dollars into an automatic money-machine. Can he
pay off the gambler? Sylvester’s results leads to the answer. The largest
amount of money which the croupier cannot pay off is F, = ¢(12,35) =
(12 — 1)(35 — 1) — 1 = 373 dollars. Therefore, the required payment of $375
is feasible: 9 chips of $35 and 5 chips of $12 are needed.

Is it possible to find the Frohenius number F, for n > 3? There are
many papers that consider this question; see, e.g., [4], [89], [91], [151], [158].
Explicit formulae for n > 3 have not yet been stated. However, Seimer and
Beyer [159] came to a solution expressed by a continued fraction algorithm for
n = 3. Their result was simplified by Rédseth [151| and later by Greenberg
[89]. Davison [46] derived the relatively sharp lower bound

F3 2 v3a 0203 — ay — ay — a3, (3.11)

A refined upper bound is given by Beck and Zacks [12].

However, no general formula is known for n > 4; there are only (rela~
tively) fast algorithms that can solve higher order cases. Nevertheless, these
algorithms become more complicated and slower as n increases, so that even
the most powerful computers cannot find the result within a reasonable time
for large n.

You are prohably hungry after intriguing stories about Frobenius’ coins
and Sylvester’s stamps and this makes a good excuse to visit a McDonald’s
restaurant and buy some boxes of McDonald’s Chicken McNuggets.'® We
will find there that the boxes contain 6, 9 or 20 nuggets. If you take many
friends with you, you will want a lot of nuggets. There is no problem at all
with the fulfilling this requirement, as according to Schur's theorem any suf-
ficiently large number can be expressed as a linear combination of relatively

18Chicken McNuggets are a fast food product available in the restaurant chain
McDonald’s.
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prime numbers, and 6, 9 and 20 are relatively prime. Now we come to the
problem of Frobenius' type.

Problem 3.14.* Determine the largest (finite) number of nuggets which
cannot be delivered using the bozes of 6, 9 and 20 nuggets.

Answers to Problems

3.2. We have to solve the Diophantine equation S, = 7}, that is,

1
n? — m(m2+ )

2 - m — 2n? = 0 whose positive
-1+ 1+ 8n?
5 :

The number m will be a natural number if 14822 is a perfect square, say,
1+ 8n? = 72, or »?> — 8n? = 1, which is, surprisingly, the same Pell equation
that appears in the solution of Ramanujan’s Problem 3.11. This equation
can be solved using the facts given in Appendix A, but we use the solution
of Problem 3.11 that reads thus:

Hence we obtain the quadratic equation m
solution is

m =

ny = 4—\1/5[(3 rovay - 3-2vD)| (k=12...) (3.12)

(see page 59). The superscript index k indicates that there are infinitely many
solutions of the considered Pell equation. It remains to find n3. Squaring
(3.12), we find the required formula for the kth square triangular number:

, (7+12v2)" + (17 -12v2)" -2
ng = 3 (k=1,2,...).

Hence we obtain the infinite series: 1, 36, 1,225, 41,616, 1,413,721,... .

3.4. Let = and y denote the quantities of wine expressed in liters. Then
we can form the following system of equations:
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which reduces to the Diophantine equation
z* — 53 — 60 = 3y.

We have to determine integer solutions z and y of the last equation.

Since ¥ < 2 we have
22 —52—60 < 32, thatis, 22—8z—60<0,

wherefrom we find that © must satisfy z < 12.717... . The lower bound follows
from the inequality

22 -52—60>3-1, thatis, 2°—-5z-63>0,

which gives = > 10.821... . The only integers in the interval [10.821,12.717]
are 2 = 11 and » = 12. For these values of z, we find

y=8 2=4 and y=2, =09
Therefore, there are two pairs of solutions to the wine problemn.

3.6. The fourth amicable pair generated by Euler’s rule is obtained for
m =1 and n = 8. We first calculate p = 257, ¢ = 33,023 and r = 8,520, 191
and then find the amicable pair (2,172,649,216, 2,181,168,896).

3.14. To shorten our solution procedure, we use Davison’s lower bound
(3.11) and find

F3>v3-6-9-20—6—9—20~21.92 > 21.

Therefore, we will search for candidates only among numbers greater than
21.

A graphical approach is convenient for finding F3. Let 2 be any positive
multiple of 20 and let y (> 21) be any positive multiple of 3 (excepting 3
itself). Obviously, ¥ can be represented as a linear combination of 6 and 9
for y =2 6. Now we form the grid of points in the Ty coordinate plane with the
coordinates (z,y). Each straight line x + y = &k represents a total number of
k nuggets; see Figure 3.6. A full line passes through at least one grid point,
say (z*,y"), indicating that & = x* + y* is the number of nuggets that can
be delivered. On the other hand, a dashed line does not go through any grid
point so that the corresponding number & of nuggets cannot be delivered.
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From Figure 3.6 we observe that the “highest” dashed line is 2 + y = 43, so
that the number 43 is a candidate for Fj.

N

y
48
45

-~

NN

FIGURE 3.6. Graphical solution of the Chicken McNuggets problem

F -

20 40 X

It remains to check some numbers greater than 43. Let A, = {44, 45, 46,47,
48,49} be the first group of six consecutive numbers. The following linear
combinations of 6, 9 and 20 are possible (not necessarily uniquely):

44 = 6+ 9+ 9+ 20,
45=9+9+9+9+9,
46 = 6 + 20 + 20,
47=9+9+9 +20,
48=6+6+9+9+9,
49 = 9 + 20 + 20.

Evidently, the elements of the next group A2 = {50, 51,52, 53, 54,55} can be
obtained by adding 6 to the corresponding numbers from A,, the group A,
can be formed in the same way from A., and so on. Therefore, the number
43 is the largest number (=Frobenius number) of nuggets that can indeed
not be delivered.
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Nature is an infinite sphere
whose center is everywhere and
whose circumference is nowhere.
Blaise Pascal

Equations are just the boring part of mathematics.
I attempt to see things in terms of geometry.
Stephen Hawking

Elementary geometry that we learn in the primary and high school is
essentially Euclidean geometry axiomatized in Euclid’s masterpiece the Ele-
ments written ca. 300 B.C. It is interesting to note that Euclid did not use the
word “geometry” in his treatise to keep his distance from problems related to
land measure. Namely, the term geometry (yewperpia in Ancient Greek) is
combined of the Greek words geo= “earth” and metria= “measure.” Another
curiosity is that Euclid’s Elements was the first printed mathematical book
ever, published in Venice in 1482.

Geometry, one of the oldest sciences, studies probleins concerned with
size, shape, and relative position of lines, circles, triangles and polygons
(plane geometry) as well as spheres and polyhedrons (solid geometry) and
with properties of space. Among the oldest recreational problems are those
which belong to plane and solid geometry. In this chapter we present a
diverse set of geometrical puzzles and paradoxes posed and/or solved by
mathematicians from Archimedes’ time to the present day.

Most of the presented problems require merely the knowledge of elemen-
tary geometry and arithmetic. We did not include puzzles involving advance
mathematics or contemporary geometry that studies more abstract spaces
than the familiar Euclidean space. Geometrical fallacies are also excluded
since their origin is unknown, although some historians of mathematics be-
lieve that Euclid prepared a collection of fallacies.

This chapter starts with the famous Archimedes’ figure known as “shoe-
maker's knife” or arbelos. One of the related problems is Pappus’ task on
arbelos. In order to present its solution in an elegant and concise form, a geo-
metric transformation called inversion is used. For the reader’s convenience,

67
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some basic properties of the geometric inversion are given in Appendix B.
Heron’s problem on minimal distance demonstrates the law of reflection, es-
tablished sixteen centuries later by Fermat and Snell. Heron's principle can
be applied for solving Steiner's problem on the minimal sum of distances in
a triangle, given later in this chapter. This problem was solved earlier by
Fermat, Torricelli and Cavalieri.

You will also find several challenging problems of medieval mathemati-
cians Brahmagupta, Mahavira, T&bit ibn Qorra, Abu'l-Wafa (dissection of
squares and triangles), Alhazen (circular billiard problem), Regiomontanus
{(distance of optimal viewpoint) and Kepler. Famous Dido's extremal prob-
lem or the classical isoperimetric problem, described by Rome’s poet Virgil,
is regarded as a forerunner of the much later established calculus of varia-
tions. We present Steiner's elegant solution of this problem. The geometric
puzzle, popularly called “kissing circles”, that attracted the attention of
Descartes, Kowa, Soddy and Coxeter, is shown together with Coxeter’s so-
lution. Finally, we give Pélya’s problem on the bisection of the area of a
given planar region.

%

* %

Archimedes (280 5.c.—220 B.C.) (— p. 299)
Arbelos problem

The following interesting elementary preblem may be found in Archimedes
Book of Leminas (see, e.g., [61, p. 167]).

3

Problem 4.1. The “shoemaker’s knife” or arbelos is the region bounded
by the three semicircles that touch each other. The task is to find the avea
which lies inside the largest semicirele and outside the two smallest (Figure
4.1, shaded portion).

FIGURE 4.1. Arbelos problem



ARBELOS PROBLEM 690

In the above-mentioned hook, Archimedes demonstrated in Proposition 4
that if CD is perpendicular to AB, then the area of the circle with diameter
CD is equal to the area of the arbelos.

This assertion is easy to prove. The triangle AB D is right-angled since the
angle at D is 90° (as a peripheral angle which corresponds to the diameter
AB). Then

(|AC| + |CB|)? = |AD|* + |DB|? = |AC)? + |DC|* + |CB|® + |DC|?,
wherefrom |DC|? = |AC| - |CB|, which is the well-known result related to

the geometrical mean. Here | - | denotes the length of a segment.

Let P(#®) and P(()) be the areas of the arbelos and the circle with the
diameter CD. According to the above relation we obtain

P ) = © 2 _ T 2 _ T 2
("W = ZIAB[* - ZIACI? - ZiCB]
w
= Z(4ci +IcB)? - 14cP - CBI?)
T w
= 2lacl-|csl = ZicDf = PO).

Many amazing and beautiful geometric properties of the arbelos (&pfnio¢
in Greek) and its variants have fascinated matlhiematicians over the centuries.
There is a vast literature concerning this subject; see, e.g., [78], [173], as
well as the papers by Bankoff (8], [9], Boas [21] and Dodge et al. (53], and
references cited there. In this chapter we give some arbelos-like problems.

The next problem introduces circles called Archimedean circles or Archi-
medean lwins.

Problem 4.2.% Let us inscribe the circles Ky and Ky in the shaded re-
gions ACD and CDB, respectively, where CD is perpendicular to AB; see
Figure 4.2. Prove that the circles Ky and K, have the same radii.

FIGURE 4.2. Archimedean twins
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There are another amazing properties of Archimedean twins. We select
the following one:

Problem 4.3.*% Let K be the smallest circumeirele of Avchimedean twins
K, and K>, as shown in Figure 4.3. Prove that the area of K 15 equal lo the

area of the arbelos (or, eccording to Problem 4.1, the diameter of K is equal
to |CD)).

FIGURE 4.3. A variant of arbelos problem

We leave to the reader the pleasant work of finding the proof.

The well-known book Synagoge (Collection), written by Pappus of Alexan-
dria who lived during the reign of Diocletian (284-305), contains another task
on arbelos.

Problem 4.4. Let the circles ky, ko, ks, ...  k,,... be inscribed succes-
swely as in Figure 4.4 so that they are all tangent to the semicircles over
AB and AC, and successively (o cach other. Find the perpendicular distance
from the center of the nth circle k,, to the dase line AC.

FIGURE 4.4. Pappus’ arbelos-like problem



PAPPUS’ ARBELOS-LIKE PROBLEM 71

Pappus offered a proof that is too long to be presented here. Leon Bankoff,
a mathematician who wrote many marvelous articles about the arbelos and
its variants, gave a discussion of how Pappus proved this results in his paper,
How did Pappus do it? [10]. The arbelos problem was considered in short by
R. A. Johnson.! Thanks to a new geometric transformation called inversion,
introduced by J. Steiner in 18242 and L. J. Magnus in 1831, we are able
to demonstrate a very short and concise proof. The review of the basic
properties of the geoinetric inversion, necessary for our proof, is given in
Appendix B. For more details see, e.g., Chapter 6 of II. S. M. Coxeter's
book Introduction to Geometry [43].

To solve the arhelos problem above, we use the properties (1)-(6) of the
inversion given in Appendix B. Since the circles p and ¢ pass through the
same point A (see Figure 4.5), this point will be chosen for the center of
inversion. We take the radius p of the circle of inversion k in such a way
that the nth circle &, stays fixed. To do this, it is sufficient to choose
the circle of inversion k to be orthogonal to the circle k,, (according to the

property (2)).

k Y4 q
k
oY 0,
k) P
O,
k) .
X P
v k
ko |
A C’ B’ | B C

FIGURE 4.5. Solution of arbelos problem by inversion

For clarity, the idea of the proof will be demonstrated through a special
example where n — 3 (IFigure 4.5). The presented proof is, in essence, the
same for arbitrary n.

I Modern Geometry, New York, Houghton Mifflin, 1929, p. 117.

2Steiner never published his idea on inversion, and its transformation was discovered
independently by other contributors, among them the physicist William Thomson (Lord
Kelvin) and the geometer Luigi Cremona (who gave a more general transformation).
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Since the circles passing through the center of inversion invert into straight
lines (property (4)), circles p and ¢ will be transformed into straight lines
that pass through the intersecting points of these circles with the circle of
inversion k. Besides, both circles p and ¢ touch the circle k3 and they are
orthogonal to the straight line AB. With regard to the property (6) it follows
that these circles invert into the straight lines that touch simultaneously the
fixed circle k3. In addition, these lines are orthogonal to the straight line
AB (that inverts into itself becausc of the property (1)). Hence we conclude
that the circles p and q are transformed into the straight lines p’ and ¢’ as
in Figure 4.5. We note that the points B and C are transformed into the
points B’ and C".

Furthermore, the circles ko, k) and kg touch the circles p and ¢ so that,
according to the property (6), they invert into the circles &%, k] and k{
touching the lines p’ and ¢'. In this way we find the image k7 of the circle
ko, that must touch &} and has the lines p’ and ¢’ as tangents. Similarly,
the circle k] touches &} and &, touches k]. Their joint tangents p’ and ¢’
are parallel so that ry = 7, = v = |, where r,, and #/, denote the radii of
the circle k,, and its inverse circle k. (In general, r, =7,_, = ... =71} =

ry = r}). Therefore, the distance of the center O3 of the circle k3 from the
straight line AC is

dy = 14 + 21y + 2r] + 1 = 673.

Following the same technique, for arbitrary nth circle k,, we can apply
the inversion that leaves this circle fixed and inverts the circles kg, k1, k2, . . .
k, -1 into circles of the same radius, arranged vertically under the nth circle
k,.. Heuce, the desired distance is

dy =T+ 20, + -+ 200 + 1y = 2nr,.

It is interesting to note that a similar problem of tangent circles appeared
in a manuscript by Iwasaki Toshihisa (ce. 1775); see [167, Vol. II, p. 537].

Arbelos-like problems have attracted the attention of mathematicians
from the time of carly Greeks to the present; see Boas' paper [21]. George
Pélya discussed the following variant in [142, pp. 42-44].

Problem 4.5.* Two disjoint smaller circles lie inside a third, larger cir-
cle. Each of the three circles is tangent to the other two and their centers
are along the same straight line. A chord of the larger circle is drawn to
tangent both of the smaller circles. If the length of this chord is t, find the
aree inside the larger circle but outside the two smaller ones.
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At the end of this story of arbelos, we give a simple but challenging
problem which resembles the arbelos, posed and solved by Li C. Tien in The
Mathematical Intelligencer [175].

Problem 4.8.™ The centers of two small semicircles K4 and K, of equal
size lie on the diemeter of a lorger semicircle K. Two other circles K, and
K, with diameters d, and dy touch each other, are both tangent to the big
semicircle K and to one of the smaller circles Ky and K, (see Figure 4.6).
Prove that dy + d; = const.

FIGURE 4.6. d; 4 dy = constant

Heron of Alexandria (co. 65 A.0.—ca. 125 A.D.) (= p. 299)

Minimal distance

Using a simple geometrical argument, the outstanding mathematician
Heron of Alexandria demonstrated the law of reflection (known earlier to
Euclid and Aristotle) in the work Catopirice (Reflection). This book was
written most likely in the first contury A.D. (no sample of this book was
kept). Heron showed that the quality of the angles of incidence and reflec-
tion is a consequence of the Aristotelian principle that “nature does nothing
in vain,”? i.e., that the path of the light ray from its source via the mirror
to the eye must be the shortest possible. Heron considered the following
problem which can be found today in almost any geometry textbook.

Problem 4.7, A and B are two given poinls on the same side of a
straight line k. Find the point C on k such thal the sum of the distances
from A to C and from C to B is minimal.

31, Thomas, Selections Illusirating the Hisiory of Greek Mathematics, Harvard Uni-
versity Press, Cambridge 1041, p. 497.
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A geometrical solution of Heron's problem is as follows (see Figure 4.7).

FI1GURE 4.7. Heron’s problem

Let A’ be the point symmetric to A with respect to the straight line k,
and let ¢C be an arbitrary point on the line k. Join B to A’ and denote with
Cy the intersecting point of the straight line BA’ and the straight line %.
Since the triangle AC AA’ is isosceles, we have

|BC| + |CA| = |BC| + |CA|.

Then
|BC|+ |CA| = |BC|+ |CA’| > |BA’| = |BCo| + |Co A,

where the equality holds if C coincides with .

The above relation expresses the solution of Heron’s problem. The re-
quired point that provides the minimmal sum of distances is the intersection
of the given straight line & and the straight line drawn through the given
point B and the point A’ symmetrical to the second point A with respect to
the straight line k.

In his book On mirrors Heron investigated the laws of reflection of light
and applied his conclusions to problems related to the properties of mirrors.
Consider a physical situation that illustrates Heron's problem. Let A be a
light source, B a light receiver (for instance, the observer’s eye), and the Jine
k an intersection of a plane containing the points A and B and perpendicular
plane of a mirror that serves as a reflecting surface. A light ray from A re-
flects and travels to the receiver B, but also seems to originate from the
point A’, symmetric to the point A with respect to the line k (the mirror
image).

Heron confirmed in fact that a light ray reflects from a mirror in such a
way that its path between a light source and a light receiver is the shortest
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distance possible. The required point Cy in Heron's problem has the property
that angle 8, is equal to angle 82. Moreover, angle « is equal to angle 3, or,
as is usually said, the angle of incidence is equal to the engle of reflection.
This property is, in fact, Fermat’s principle of minimal time or the law of
refraction of light (established earlier experimentally by Dutch physicist and
mathematician Willebrord Snell (1580-1626)). Historians of science consider
that Heron’s problem and its solution constituted the first application of
the extreme principle in describing natural phenomena (sce, for instance,
Hildebrandt’s book [102]).

Note that some modern textbooks cast Heron's problem as a practical
problem. For example, the straight line & is turned into a rectilinear section
of a railroad track, points A and B become towns, point C is called a railroad
platform and the question is: Where should one build the platform so that
the combined length of the rectilinear roads linking the towns is minimal?

In connection with Heron’s problem, we present another geodesic problem
posed by Henry E. Dudeney in his book Modern Puzzles (1926).

Problem 4.8. A fly sits on the outside surface of a cylindrical drinking
glass. It must crawl to a drop of honey situated inside the glass. Find the
shortest path possible (disregarding the thickness of the glass).

Denote the position of the fly and the drop of honey with points A and B.
If these points lie on the same generatrix, the solution is obvious. Assumne
that this is not the case. We can “unroll” the surface of the glass to get a
rectangle (see Figure 4.8(a)).

a) b)

FIGURE 4.8. A fly and a drop of honey

The problem now reduces to the determination of the shortest path ACB,
where C is the point on the edge of the glass. Actually, this is Heron's
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problem and the solution uses a point B’ symmetric to B with respect to
the edge of the glass. The angle of incidence o is equal to the angle of
reflection 8 (= £'). The fly will crawl over the surface of the glass along two
arcs of a cylindrical spiral (Figure 4.8(b)), crossing the edge of the glass at
point C.

Heron’s reflection principle can be successfully applied to find the shortest
tour in the following scenario.

Problem 4.9.*% A young adventurer, fed up with the big city rush and TV
soap operas, in his search for a peaceful and quite place went tv spend his
vacation in Africa. After a shovt timme wandering around, he found a beautiful
place just in the spol where two rivers met each other forming a peminsula
in the shape of an acule angle and built a little cotiage there. Every day the
adveniturer leaves his humble cottage C, goes to the river bank A to waitch a
waterpolo game between local tribes, then goes to the other bank B to pick
up some lotus flowers and spend a short time petling his favorite hippo, and
then he returns lo his cottage C (see Figure 4.9).

Which tour should the adventurer take so that the total traversed distance
CABC would be the shovtest possible, assuming that each of his routes is
rectilineay?

FIGURE 4.9. Adventurer on the peninsula
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Brahmagupta (ca. 598—ca. 670) (= p. 299)

The most influential Indian mathematician and astronomer of the seventh
century was Brahmagupta, who lived and worked in the town Ujjain (or
Ujjayini), the great astronomical center of Hindu science. Among many
important results from astronomy, arithmetic and algebra, let us note his
formula for the area P of a cyclic quadrilateral having sides a, b, ¢, d and
semiperimeter s,

P = /(s —a)(s = b)(s = c)(s — d),

which is a remarkable extension of Heron'’s well-known formula for the area
of a triangle.

The first recorded research of zere in history is attributed to Brahmagupta.
(628 A.p.) who defined zero as the result of subtracting a number from
itself (see Bentley [16]). Another of his great contributions was the study of
indeterminate equations of the form z? — Ay®? = 1, known as Pell's equations
(see Appendix A). His definition of a mathematician is worth citing: “A
mathematician is a person who can solve the equation z° — 92y = 1 within
a year.” See Beiler [14, Ch. XXII|. Brahmagupta is credited with being
the first person to solve a linear Diophantine equation in a general form
ax + by = ¢, where a, b, ¢ are integers.

Now let us take a close look at recreational mathematics of Brahmagupta.
The following two fanciful problems of Brahmagupta can be found in Smith’s
hook History of Mathematics [167, Vol. 1, p. 159].

The same distance of traversed paths

Problem 4.10. On a cliff of height h, lived two uscetics. One day one
of them descended the cliff and walked to the village inn which was distance
d from the base of the cliff. The other, being a wizard, first flew up height x
and then flew in a straight line to the village inn. If they both traversed the
same distance, what is x?

Solution. Let h = |AB|, where h is the height of a cliff (Figure 4.10,
right). From this figure, one can easily derive the equation

h+td=x2+V(h+2)2+d? or h+d—z=+/(h+x)?+d>.

2hx. wherefrom
hd

2h +d’

x€r =
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FIGURE 4.10. Two ascetics’ paths

Broken bamboo

Problem 4.11.*% A bamboo 18 cubits high was broken by the wind. Its
top touched the ground 6 cubits from the rool. Determine the lengths of the
bamboo segments.’

Mahavira (ca. 800—ca. 870) (- p. 300)

Height of a suspended string

This old problem can be found in many books, even recent ones discussing
recreational mathematics and teaching.

Problem 4.12. Two vertical pillars are of a known height, say a and b.
Two strings are tied, each of them from the top of one pillar Lo the bottom
of the other, as shown in Figure 4.11. From the point where the two sirings
meet, another siring is suspended vertically till it touches the ground. The

4There is an older Chinese version of this problem, given about 176 B.C. by Ch’ang
Ts’ang in his K'tu-ch’ang Suan-shu (Arithmetic in Nine Sections); see, also, Y. Mikami,
The Development of Mathematics in China and Japan (1913), p. 23.
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distance between the pillars is not knoun. It is required to determine the
height of this suspended string.

p q

FIGURE 4.11. The height of suspended string

Solution. Let p and ¢ he the lengths of distances obtained after dividing
the horizontal distance between pillars by the suspended string. Let x be
the unknown height of suspended string. From Figure 4.11 we have

p_ptq g_ptyg

x b T a
Hence ! ) / ) ) y
+~q/p +P/q
e =7 4.1
€T b x a (4.1)
or 5
b8 e_ P
T P T q

After multiplying these two relations, we obtain
b
(E-1)(E-9) -1
x x

ab a4+ b

T2 x

which reduces to
= 0.

Hence we find the sought height

ab
a+b’

As can be seen from the solution, the height = does not depend on the
distance between the pillars. With this value of = it is easy to find from
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(4.1) that ¢/p = b/a, which means that the horizontal distance between the
pillars is divided by the point at which the suspended string touches the
ground in the ratio of their heights.

Tabit ibn Qorra (826-901) (- p. 300)

The diameter of the material sphere

The Arabian mathematicians were interested in constructions on a spheri-
cal surface. The following problem is sometimes ascribed to Tabit ibn Qorra,
the same fellow who gave a formula for generating amicable numbers (see
Chapter 2).

Problem 4.13. Using Euclidean tools (straightedge and compass) find
the diameter of a given material sphere.

FIGURE 4.12. Finding the diameter of a material sphere

Solution. Using the compass fixed at an arbitrary point U on the sphere,
draw a circle I" on the sphere. Mark any three points A, B, C on the
circumference of I' and construct a triangle on a plane (using a separate
sheet) congruent to the triangle AABC. Obviously, this construction can
be easily performed translating the distances AB, BC, CA measured by
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the compass. Then construct the circle describing the triangle AABC. This
circle has the same radius, say r, as the circle I' drawn on the sphere.

Now we construct a right triangle AUV T which has the radius r as an alti-
tude and the diameter d = |UT| as hypotenuse (see Figure 4.12). The length
q of the leg UV of this right triangle can be measured by the compass—it is
the same opening used in drawing the circle I' at the first step.

Knowing ¢ and 7, from the right triangle AUVT we find by proportion

r JE-—§F

q d

therefore the diameter of the material sphere is

Mohammad Abu’l-Wafa al-Buzjani (940-998)
(— p. 300)

Abu'l-Wafa, probably the most prominent Islamnic mathematician of the
tenth century, together with Omar Khayyam (1048-1131) and Nasir al-
Din (1202-1274), all of them being born in the Persian mountain region
Khorasan, made the famous “Khorasan trio.” Apart from significant contri-
hutions on a number of mathematical topics, Abu’l-Wafa is also remembered
today as a creator of many amusing dissection puzzles.

Dissection of three squares

Wafa's well-known dissection of squares reads:

Problem 4.14. Dissect three identical squares into nine parts and com-
pose a larger square from these parts.

Abu’l-Wafa's solution is given in Figure 4.13. Two squares are cut along
their diagonals and then the four resulting triangles are arranged around
one uncut square. The dashed lines show how to perform four additional
cuttings and insert them to make a large square (see the marked maps of
congruent parts).
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FIGURE 4.13. Solution to Abu’l-Wafa dissection problem

However, the greatest English creator of mathematical puzzles and games
Henry E. Dudeney solved Abu’l-Wafa’s problem using only six cuts. His
amazing solution is shown in Figure 4.14. Point B is the intersection of the
straight line through C and GG and the arc with the center at A and the radius
|AD|. The points E and F are determined so that |BC| = |DE| = |FG|.
The desired square can be composed from the parts 1, 2, 3, 4, 5 and 6; parts
1 and 4 (joined) slide right down along H E, below parts 5 and 6, and parts
2 and 3 (joined) fill the gap.

B
RS
H . F G
3 5
1 6
4
D E A C

FIGURE 4.14. Dudency’s solution to Abu’l-Wafa disscction problem

As mentioned in [186], Wafa's idea can be also applied if among three
squares two larger squares are identical while the third one is smaller in size.
As in the solution presented in Figure 4.13, the larger squares are Dbisected
and their pieces are placed symmetrically around the smaller square. The
four small pieces, lying outside the square drawn by the dotted lines, fit the
spaces inside its boundary exactly.
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Dissection of four triangles

Problem 4.15.* How can three identical triangles and one smaller trian-
gle. similar to them in shape, be dissected into seven pieces which fit together
to make one (larger) triangle?

Ibn al-Haytham (Alhazen) (965-1039) (— p. 300)

Although born in the southern Iraqi city of Basra, the Islamic physicist
and mathematician Ibn al-Haytham, better known in Europe as Alhazen,
spent the greater part of his life in Egypt. He traveled to Cairo at the
invitation of the caliph al-Hakim to demonstrate his ideas on a flood-control
project for the Nile. In the version presented by H. Eves [61, p. 194], Alhazen
received the invitation owing to his boast that he could construct a machine
that would successfully regulate the annual flooding of the Nile. Although
Alhazen arrived in Cairo, he soon experienced misgivings concerning the
success of his plan in practice. Fearing al-Hakim’s anger, he feigned inadness
knowing that the insane received special treatment and protection. Alhazen
simulated insanity so perfectly that he managed to keep any trouble at bay
until Hakim’s death in 1021. Alhazen did not, however, spend his time in
Egypt in vain; while there he wrote his great scientific work, Optics, and
attained fame.

Alhazen’s fame as a mathematician also derives from his investigation of
problems named for himn concerning the points obtained in certain reflecting
processes associated with a variety of reflecting surfaces (“Alhazen’s prob-
lems”). Eminent mathematicians who studied these problems after Alhazen,
included Huygens, Barrow, de L'Hospital, Riccati, and Quételet. Solutions
to these problems can be found in the works of E. Callandreau [33, pp.
305-308], H. Dorrie [54, pp. 197-200) and J. S. Madachy [127, pp. 231-241].
Here we present one of Alhazen’s problems, as posed and solved by him.

Billiard problem

Problem 4.16. How does one strike a ball lying on o circular billiard
table in such a way that afier striking the cushion twice, the ball returns to
its original position?

Solution. Let us represent the billiard table as a circle in the plane with
the radius r and the center C (Figure 4.15(h)). We denote the initial position
of the ball by P, and assume that the distance |CP| = ¢ is known. Let the
ball first strike the edge of the circle at point A, make a ricochet, cross the
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extension of PC (diameter of the circle) at a right angle to the line PC at
S, then strike the circle at B and return to P. Knowing that the angle of
incidence and the angle of reflection must he equal, we have

APAC = LCAS = LPBC = LCBS.

FIGURE 4.15. Billiard problem

Let us recall the angle bisector theorem as we continue solving the prob-
lem. If s is the bisector of the angle LACB = «a (see Figure 4.15(a)), then
applying the sine theorein we ohtain

8 x and ¢
= 11 = .
sin3  sin(a/2) siny  sin(a/2)

Hence .
z  sin~y

¢ sing

From the triangle AABC (Figure 4.15(a)) we have

y 2 1 8i1
.y = ——, that is, y_ _17.
siny sing s  sinf
Therefore, it follows that
y
LA—— 4.2
- = (4.2)

Let us return to Figure 4.15(b). Setting

ICS| ==, |SA|=y, |AP|=
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and applying the angle bisector theorem, we obtain just (4.2). In regard to
the Pythagorean theorem,

P =z +y* and 22 =" 4 (x + )% (4.3)
Eliminating y and = from (4.2) and (4.3) we obtain the quadratic equation
2

2cr? + r’z =cr

for the unknown 2. In the sequel we will show how to construct z (= |CS|)
knowing the values of » and c.

FIGURE 4.16. Geometric solution of the quadratic equation

We rewrite the last quadratic equation in the form

2 = —axr +b°, where a= r_‘ b= —. (4.4)

2¢ \/§

From Figure 4.16(a) we see how to find b; it is the side of a square with the
diagonal 1. With the sides 2¢ and r we construct the right triangle ADBC
and draw a line through the vertex C perpendicular to CB to find the
intersecting point A with the line through DB. Then the line segment AD
gives a; indeed, we have r = va - 2¢ (Figure 4.16(Db)).

Now we will apply Descartes’ method to construct the solution of the
quadratic equation 2° = —azx + b° (see, e.g., Katz |113, pp. 437-438]). First,
we construct a right triangle AN LM with |LM| = b and |[LN| = %u (Figure
4.16(c)). Then we construct a circle centered at N with radius |[NL|. Let P



86 4, GEOMETRY

be the intersection of this circle with the hypotenuse [N L|, then |M P| is the
required velue z. Indeed,

1
|MP| = |MN|—|PN|=+ILMZ+ LN[? - |LN| = ,/zaﬂ s 52'-

which is exactly the value z found from (4.4).

Johann Miiller (Regiomontanus) (1436-1476)
(— p. 301)

Distance of the optimal viewpoint

Often when we view an object such as a painting or 2 statue in a gallery,
or & monument (as in Figure 4.17), we notice, whether consciously or uncon-
sciously, that the object appears at its best when viewed fromn a particular
distance. Johann Miiller, the fifteenth-century German mathematician and
astronomer known as Regiomountanus, found this phenoenon 1o be of great
significance. In 1471, he presented the problem to Christian Roder, a profes-
sor from the city of Erfurt. Many historians of mathematics regard Miiller’s
work in the field of optimization as being the first such work done since
antiquity.

FiGURE 4.17. The best view of the Statue of Liberty
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We present Regiomontanus' maximum problem in an abstract geometric
form with these restrictions: the formulation of the problem is restricted to
an imaginary picture plane, and our object, in this case a rod, is understood
as a vertical line segment.

Problem 4.17. A rod of length d is suspended vertically at height h from
an observer’s eye level. Find the horizontal distance from the rod hanging
vertically to the observer’s eye in such a way to see the rod the best.

Solution. We present a solution constructed entirely in the picture plane.
The solution is similar to that published in Zeitschrift fir Mathematik und
Physik by Ad. Lorsch.

We assume that the optimal viewing distance for the object corresponds
to the maximum viewing angle £ BC A from the observer’s eye (presented
by the point C') towards the rod AB (with |AB| = d); see Figure 4.18. The
straight line p, perpendicular to the vertical line (of hanging) OAB, denotes
the viewing level.

LN

A -
h ;
s P
0 w* /('
A’
FIGURE 1.18. Distance of the best view FIGURE 4.19.

Let us draw a family of circles, all of them passing through the points
A and B. We observe the rod AB from a point in the plane that results
in a viewing angle which is the same for all points that lie on a fixed circle
belonging to this family (since the peripheral angles corresponding to a fixed
chord of a given circle are the saine). Evidently, the value of these angles will
be larger if the radius of the circle is smaller. However, we are interested
only in those points that lie on the straight line p (at the observer's eye
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level). Therefore, the solution is that point which lies both on the straight
line p and on a circle through A and B with the radius as small as possible.
This point is the point C* of the tangency of the circle through A and B
and the straight line p. Therefore, the point of tangency C* is the desired
point, and x = |OC"*| is the distance affording the most desirable view.

How does one find the distance £ = |OC*|? Denoting b = |OA| and
recalling that |AB| = d, we find

z = |0C*| = |DS| = V|AS|]? - [DA]? = V|SC*|* - |[DA]?

2 2
Ao 2@ - vawan
Therefore, the optimal viewing distance is the geometric mean of the dis-
tances of the upper and lower ends of the rod from the viewing level. The
critical point C* can be found by the geometrical construction shown on
Figure 4.19, where |A’O| = |OA| = h and A’C*B is the semicircle with the
diameter |A’'B| = 2h + d.

More details about “extreme viewpoint problein” may be found in [7],
|54], |121], [134], [141] and [190|. Lester G. Lange considered in [121] a more
general problem in which the picture is tilted out from the wall. David Wells
[186] considered the following variant of the “best-view problem” of practical
interest.

Figure 4.20 shows part of a rugby union football field with the goal line
passing through the goal posts marked by little black circles. According to
the rules of the game, an attempt at a conversion must be taken on a line
extending backwards from the point of touchdown, perpendicular to the goal
line. Find the point T on this line from which the conversion should be taken
so that the angle subtended by the goal posts is the largest. This problem
applies only when the attempt is not scored between the posts.

goal line

FIGURE 4.20. Rugby football problem
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Obviously, the solution to the rugby conversion problem bears a great
similarity to the solution of Regiomontanus’ “best-view problem”. Since the
peripheral angles corresponding to a fixed chord of a given circle are the
same, the same angle will be subtended by the goal posts at any point on
this circle; the choice of any point outside it will subtend a smaller angle
and any point inside it, a larger angle. Choosing the circle to touch the line
exactly at point T implies that all other points of the line are outside the
circle. Therefore, the conversion should be taken from the touching point T,
as shown in Figure 4.20.

The Saturn problem is an interesting space-variant of Regiomontanus’
problem.

Problem 4.18. A¢ what lalilude does Saturn’s ring system appeay
widest ?

We recall that latitnde is the distance on the sphere surface toward or
away from the equator expressed as an arc of meridian. Hermann Martus
was probably the first to pose this problem, and it can be found in Heinrich
Dérie’s book, 100 Great Problems of Elementary Mathematics (54, pp. 370-
371]. We give here the outline of the solution to the Saturn problem; for
more details, see Dérrie’s book [54].

FiGURE 4.21. The widest view of Saturn’s ring
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To solve this problem we assume that Saturn is a sphere with the radius
of 56,900 km, and that Saturn’s ring system lies in its equatorial plane, with
an inner radius of 88,500 kin and an outer radius of 138,800 km.

Figures 4.21 and 4.22 aid us in visualizing this situation. The arc m
represents a meridian, M is the midpoint of Saturn, |AB| the width of the
ring, |M A| = a being the outer radius, and |AM B| = b the inner radius of the
ring. Now, let [MC| = r be the equatorial radius of Saturn on M 4 and let
O be the point situated at the latitude ¢ = LCAM O at which the ring width
appears largest, so that £ AOB = ¥ is maximal.

Using Figure 4.22 we will find the solution. First we draw the circle Q2
that passes through points 4 and B and which is tangent to the meridian
m. Then the point of tangency O is the point from which the ring appears
to be greatest.

Z

"y

FIGURE 4.22. The widest view of Saturn’s ring

The latitude v of O and the maximum v, we will calculate from the right
triangles AMZF and AAZF, where Z is the center of the circle Q and F
the middle of AB. Denoting the radius of Q by p, we obtain therefrom

cos = WMEl _ _a+b
IMZ]  2(r+p)

siny = |AF| =2 _b.
|AZ]  2p

It can be shown that the value of p is given by

ab — r?

27

p:
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(see [54, p. 371]), so that we finally obtain

o8 (a + b)r
COsp = ——
YT e
X (a — b)r
sin ’d) = m.

Hence, for the specific values of a, b, and r, it follows
¢ &~ 33° 33’ 54", 1 ~ 18° 26’ 40”.

According to Smart [165], Saturn is considerably deformed from the ideal
sphere on which the above derivation is based, having an equatorial radius
of 59,650 km and a polar radius of 53,850 km. The solution in this real case
was given by John Trainin (Granada, Spain) in The Mathematical Gazette.
Assuming that the cross-section of Saturn through its poles is an ellipse with
semi-major and -minor axes p and q, respectively, the relevant geocentric
latitude is found from the cubic equation

(p® — ¢*)cos® t — (2p° — ¢° + ab) cost + p(a + b) = 0,

where tan ¢ = (g/p) tant. This yields 29° 39’ 10” as an approximate value for
@. Note how this solution reverts to that mentioned earlier when p=q =r.

Jacob Steiner (1796-1867) (— p. 306)

Pierre de Fermat (1601-1665) (— p. 303)

Fvangelista Torricelli (1608-1647) (- p. 303)

Bonaventura Cavalieri (1598-1647) (— p. 302)

Evangelista Torricelli and Bonaventura Cavalicri were very influential
seventeenth-century Italian scientists. Toricelli won fame for his discover-
ies in physics, while Cavalieri was successful in optics and astronomy. Both

collaborated with Galileo: both were forerunners of infinitesimal methods,
and finally, they both studied the challenging problem that follows.

The minimal sum of distances in a triangle

The formulation of this well-known problem is very simple:

Problem 4.19. In the plane of a triangle, find the point whose sum of
distances from the vertices of the triangle is minimal.
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The point with this property is now known as the isogonic center of the tri-
angle. This problem frequently appears in many mathematics books, recre-
ational and course-related, that include challenging optimization tasks such
as:

Three villages A, B, and C agree to build a joint project, for example, a
department store, a warehouse, an oil pipeline, or a casino. Find the loca-
tion D of this joint venture such that the inhabitants of these three villages
traverse a minimal route. In other words, determine the minimal combined
lengths of the rectilinear roads linking the common point D to A, B, and C.

Obviously, problems of this type are not restricted to mathematical recre-
ation only, but more importantly, they provide accurate models of real-life
situations, and their optimal solutions have a direct economic impact.

The problem posed at the beginning of this section has a long history.
According to some historians of mathematics, the great French mathemati-
cian Pierre de Fermat was interested in it, and, moreover, he challenged
the eminent Italian physicist and mathematician Evangelista Torricelli with
this very problem. Torricelli's student Vincenzo Viviani (1622-1703) pub-
lished his solution in probably the first work on this subject, On mazrimal
and minimal values (1659). For these reasons, the point where the required
minimum is attained is often called the Torricelli point or, sometimes, the
Fermat point. Bonaventura Cavalieri, another great Italian mathematician,
also studied this problem.

In the nineteenth century Jacob Steiner, the famnous German-Swiss geo-
metrician, considered the above problem and a series of similar problems
in detail. For this reason they are frequently called Steiner’s problems. In
the sequel, we will present the well-known geometric solution of Steiner’s
problem of the minimal sum of distances for triangles whose angles do not
exceed 120°. Otherwise, knowing that obtuse angles exceed 120°, the isogonic
center just coincides with the vertex of the obtuse angle.

Assume that the angle £C is > 60° (Figure 4.23). Let T be a point inside
AABC (a candidate for the isogonic center), and connect T with vertices
A, B, and C. Rotate AABC about C through 60° into the position A’B’C.
Let T be the image of T under the performed rotation. By construction,
CT'| = |TT'|, and |AT| =
|A’T’|. Then the sum of lengths |AT| + |BT| + |CT] is equal to the sum
|A'T'| 4+ |CT| + |BT| = |A'T'| + |T'T| + | BT|- The last sum is the length of
the polygonal line A’T'T'B and it is not shorter than the straight line A’B.
Hence we conclude that the length |A’T'T B| will reach its minimum if the
points A’, T/, T, B are colinear. Therefore, the isogonic center, denoted by
T", lies on the straight line A’ B. Furthermore, using the symmetry and the
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equality of crossing angles related to T, it is easy to show that all sides of
the triangle ABC are seen at the angle of 120°. This property gives us an
idea about the location of T (see Figure 4.24).

FIGURE 4.23. Minimal sum of distances FIGURE 4.24. Location of Torricelli’s
in a triangle point

First, we draw straight lines under the angle of 30° related to two sides of
AABC, say BC and C A, and find the points O; and O,. Then we draw two
arcs with the radii |0, B| and |O;C| taking O, and O, as the centers; the
intersection of these arcs gives the desired isogonic center T*. The discussion
of this construction is left to the reader.

Problem 4.20.* Find the isogonic center (Torricelli point) using the
Heron reflection principle.

Hint: See Problem 4.7.

Johannes Kepler (1571-1630) (— p. 302)

The great German astronomer and mathematician Johan IKepler is best
known for his discovery of the three mathematical laws of planetary motion.
What is most surprising, but also very impressive, is that he was not aware
that the cause of the motion of the planets is gravity, a fact explained a few
decades later by Newton in his monumental work Philosophiae Naturalis
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Principia Mathematica (1687). In the next chapter we will see that Kepler
dealt with some problems which could be considered today as recreational
mathematics. So it is not strange that this inquisitive and imaginative man
was the author of probably the first ever science fiction story, called Somnium
(The Dream).

Kepler’s personal life, however, was plagued
by misfortune. Kepler's favorite child died of
smallpox at the age of seven; his mother was
tried and sentenced for practicing witchcraft;
and his first wife Barbara went mad and died.
Kepler himself was accused of heterodoxy since
he was a profound Lutheran. He and his chil-
dren found themselves forced to leave Prague
because the Emperor Matthias did not tolerate
Protestantism. Kepler lived a great deal of his
life in poverty and while on a trip apparently to
recover his perrnanently unpaid salary, he died.

Johannes Kepler
15711639

Volumes of cylinders and spheres

In his book New solid geometry of wine barrels, Johannes Kepler described
the methods for simple measurement of the volumes of barrels of different
shape; see [161]. Kepler advanced new ideas for the solution of maximum
and minimum problems to clarify the basis of his methods, which in turn
have touched upon the essence of differential and integral calculus. Theorem
V is one of the results contained in Kepler’s book: “Of all cylinders with the
same dicgonal, the largest and most capacious i8 that in which the ratio of
the base diameter to the height is +/2.” In other words, this theorem gives
the solution of the following problem:

Problem 4.21. Inseribe a cylinder of marimal volume in o given sphere.

This problem can be solved using elementary mathematics. Let R be the
radius of the sphere and let = be half the height A of the cylinder. Then the
restriction 0 < x < R is obvious (see Figure 4.25). The base radius of the
cylinder is v R? — 2 and its volume is

Vo(z) = n72h = 2x(R? — 2%)x = 27 f(x). (4.5)

The aim is to find 2 that provides maximal volume V, of the cylinder.
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FIGURE 4.25. Largest cylinder in a sphere

The problem can he easily solved by using differential calculus. Here we
use the suitable elementary manipulations to avoid differential calculus. For
our purposes, it is sufficient to consider the function

f(z) = (R* —z%)x
appearing in (4.5). First we factor f(z) in the following way:
. 2R 2R?
¥)=Rz-2*=R%r -3 - + =
f) 3V3 3V3
V37 N VB3V

We note that the function f reaches its maximum when the first terin van-
ishes, that is, when = R/+/3. For this value of z the height and the base
radius of the cylinder are

h=2r=2R/V3 and r=+\R?-22=R\2/3.

Hence we see that the ratio of the base diameter of the extreme cylinder to
the height is +/2, a fact established by Kepler.

Jacob Steiner (1796-1863) (— p. 306)

Although he did not learn to read or to write until the age of 14, Jacob
Steiner later became a professor at the University of Berlin and one of the
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greatest geometers ever. Poncelet-Steiner’s theorem, one of his remarkable
results, asserts that all Euclidean constructions can be carried out with a
straightedge alone in the presence of one circle and its center drawn on the
plane of the construction.” Mathematical recreation problems often make
use of constructions of this sort and variations on them.®

Dido’s problem

Virgil, one of ancient Rome’s greatest poets, describes in the Aeneid the
aventure of the legendary Phoenician princess Dido (also known as Elissa)
and lier role in the founding of the city of Carthage.

As Dido fled from persecution by her brother, she followed the Mediter-
ranean coastline. Once she had put enough distance between them to assure
her sufety, she endeavored to find a suitable plot of land on which to settle.
However, Yarb, the local ruler, was not willing to sell her the land. Never-
theless Dido, being a capable negotiator, managed to persuade Yarb to fulfill
a “modest”™ wish: to sell her as much land as could be “encircled with a
bull’s hide.” Clever Dido then cut a bull’s hide into narrow strips, tied them
together, and in that way enclosed a large tract of land. She built a fortress
on land next to what is today named the Bay of Tunis, and near it, she built
the city of Carthage.

This prompts one to ask: How much land can a bull’s hide enclose? Using
the terms of modern mathematics, let us consider the problem as follows:

Problem 4.22. Among all closed plane curves of a given length, find the
one that encloses the largest area.

This question is known as Dido’s problem, or the classical isoperimetric
problem.” Today we understand that the desired curve is a circle, and many
bistorians are of the opinion that this was the first discussion in literature
of an extremal problem.® The literature devoted to Dido's problem is vast;
some historical references can be found in the book Kreis und Kugel {(Circle
and Sphere) (Leipzig 1916) of the German geometer W. Blaschke.® One of
the most ingenious proofs is due to the great German-Swiss geometer Jacob

5In 1904 the [talian Francesco Severi showed that an arc (of arbitrary size) and its
center are sufficient to make possible all Euclidean constructions with a straightedge alone
[61, p. 98].

8See, for instance, Abu’l-Wafa’s problems in this book.

7 Isoperimetric figures are figures having the same perimeter.

8S. Hildebrandt, Variationsrechung heute, Rheinisch-Westfilische Academie der Wis-
senschaften, 1986.

IReprinted by Auflage, DeGruyter, Berlin 1956.
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Steiner. Steiner, however, failed to prove the actual existence of a maximum;
he assumed the existence of a curve that would solve the isoperimetric prob-
lem. Weierstrass later gave a rigorous proof.'® We present Steiner’s proof
below as it appears in V. M. Tikhomirov's book [176]. Steiner’s solution of
the isoperimetric problem follows from the three auxiliary assertions (Lem-
mas (I), (IT) and (III)).

o o .

a' ~ B S

A ’ Z

a) b) c)

FIGURE 4.26. Steiner's solution of Dido’s problem

(I) The extremal curve is convex.!!

Proof. Suppose that the desired curve is not convex. In that case, it
contains two points A and B such that both arcs AaB and AZB joining
A and B lie on the same side of the straight line through A and B (sce
Figure 4.26(a)). By replacing one of these arcs, say AaB, with its image
Aa’ B under reflection in AB, one obtains a new curve Aa’B3 A of the same
length that encloses a larger area than Aa B3 A.

(IT) If points A and B halve the perimeter of the extremal curve into equal
lengths, then the chord AB halves the area of this curve into equal parts.

Proof. Assume that the chord AB divides the area into uncqual parts
S1,S,, area S; < area Ss, both with the same length. But then we take the
image S5 of the larger part S2 under reflection in the diameter AB instead of
the smaller part S}, and add it up to §; (which has the same length as S,).
In this way we would obtain a figure with the same length but the larger
area (Figure 4.26(b)).

(III) Suppose that points A and B halve the extremal curve. If C is any
point on the curve, then the angle ACB is a right angle.

10\, Blaschke, Kreis und Kugel, Leipzig 1916, pp. 1-42.
1A convex region U is one with the property that if any pair of points (P, Q) lics
inside U/, then the line segment PQ connecting P and @ lies inside U.
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Proof. Assume there is a point C such that ACB is not a right angle.
The area Sppe bounded by the arc ACB and the diameter AB splits into
three parts: the triangle ABC and the segments adjacent to the sides AC
and C'B with the areas S ¢ and Sp¢ (see Figure 4.26(c)).

Now, rotate segment Sc g around point C until point B arrives at position
B’ in such a way that ACB’ is a right angle, as shown in Figure 4.26(c).
Since

4 ¥ Al 1 b Y .
Sagc = Sac + Sce + Sasapc = Sac + Sep + §|AC||BC| sin C

Y 1 v A
< Sac + Scs + §|AC||BC = Sac + Sce + Saapc,

we conclude that the area Sapc will reach its maximum when the angle
AC B becomes a right angle (sinC = 1). The figure obtained by reflecting
the curve ACB' in the chord AB’ has the same perimeter but a larger area
than the original figure, which proves the assertion.

We see that the extremal figure consists of all points C' from which a chord
that halves the length of the extremal curve is seen at a right angle. This
illustrates a well-known property of a circle: the peripheral angle over the
diameter of a circle is always 90°, which means that the curve in question is
a circle.

Division of space by planes

The following problem and many others, some included in this section,
fall somewhere between serious mathematics and recreational mathematics.
This is not unusual; we have already emphasized that the study of many
mathematical tasks and games led to the development of new mathematical
branches or to the discovery of important mathematical results. On the
other hand, the solutions of some recreational problems require very powerful
mathematical tools. The famous geometer Jacob Steiner considered several
such problems of dual character. The following problem was first solved in
1826 by Steiner.!?

Problem 4.23. What is the maximum number of parts into which a
space can be divided by n planes?

Perhaps this problem has a more combinatorial flavor, but we included it
in the chapter on geometry since Steiner was a great geometer.'® Is this a
sufficiently good reason?

12 Journal fiir die reine und angewandle Mathematik 1 (1826), 349-364.
13 Although he also gave a great contribution to combinatorial designs; recall a Steiner
triple systein.
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In solving this problem we will use the well-known formulae

n(n + 1)

— 5

_n(n+1)(2n+1)

= 5 i

To find the desired maximum number, let us first solve the same type of

planimetric problem that we present here: What is the mazimum number of
parts into which a plane can be divided by n straight lines?

142+:--4+n=

12422+ 402

Obviously, to obtain the maximum number of parts, we must exclude (i)
parallel lines and situations in which (ii) three or more lines pass through
one point. In what follows, we will assume that these two conditions are
satisfied.

FIGURE 4.27. Dividing the plane by straight lines

Let P, denote the number of parts in the plane, generated by n lines.
Taking into account that those particular cases (i) and (ii) are excluded,
one additional line will be cut by the previous n lines into n points, say
T,.T,,...,T,. The line segments (n — 1 in total) T\ T, T,T;,... , T, T,
and the two semistraight lines with the ends at T} and 7,, belong to the
various parts of the plane and their number is obviously 7 + 1. Each of these
traversed parts is divided into two parts so that the (n+1)th line increases
the number of parts by n + 1 (see Figure 4.27 where n = 3). According to
this simple consideration we have

Pojy=P,+n+1.
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Telescoping summation!? yields

n—1

E:@%H-Jn)=1+2+~-+m

k = (_)

that is,
P,-FP=14+24---4+n.

Since Pp=1land 1 +2+:--+7n = n(n+ 1)/2, we finally find

nn+1) n4n+2
2 - 2 )

Let us return to the space problem originally posed. To attain the max-
imum number of partial spaces we require that (i) the lines of intersection
of no more than two planes are parallel and (ii) no more than three planes
intersect at one point.

Let S, denote the required maximum number of partial spaces obtained
by n planes. A new additional plane is cut by the first n planes into n lines
in such a way that conditions (i) and (ii) are satisfied. Therefore, the new
(n+1)th plane is divided by the n lines into P, planar sections. Each of
these sections cuts the traversed partial space into two smaller spaces, which
means that the additional (n + 1)th plane increases the number of the partial
spaces by P,.. This consideration leads to the relation

Sus1 = Su + P.. (4.7)

According to (4.7) we obtain

n—1

> (S+1=S) =8u=Si =Pt Pyt oot Pac.
A=1

Since S, = So + Py = 14+ 1 = 2, it follows that

Sa=2+P + Pyt et Py, (4.8)

145ums of the form zm <k<n (a(k +1)- a(k)) are often called telescoping by analogy
with a telescope whose thickness is determined by the radii of the outermost and innermost
tubes of the telescope. By the way, Y-notation was introduced by Joseph Fourier in 1820.
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By (4.6) and the formulae for the sums of natural numbers and squares of
natural numbers, given above, we find that

n—1 rn—1 n-—1
ZPL m—Z(I.z+A+2)—n—l+ le2+Zk]

Irn(n-1)(2n-1) (n—-1)n] n*15n—-6
Tt 6 T 6

Using this result, from (4.8) we find that the required maximum number of
parts, obtained by dividing a space by n planes, is given by

nd -5+ 6

Sn =
6

It is interesting to note that the numbers P,, and S,, can be expressed by
the entries of the Pascal triangle. S,, is equal to the sum of the first three
entries of the nth row (figure below left, Ps = 16) and S,, is the sum of the
first four entries of the nth row (figure below right, S; = 26).

1 1
1 1 1 1
1 2 1 1 2 1
13 3 1 1 3 3 1
1 4 6 4 1 1 4 6 4 1
1 5 10/10 5 1 1 5 10 10] 5 1
1 6 1520 15 6 1 1 6 15 20 15 6 1
The sum P, The sum S,,

The first step in solving Problem 4.23 was the determination of the max-
imum number of parts into which a plane is divided by n straight lines. We
have seen that some of these parts are infinite, while others are bounded.
The following natural question arises (see [88]):

Problem 4.24.*% A plane is divided into (infinite and bounded) parts by
n lines. Determine the maximum possible number of bounded parts (regions).

Road system in a square

The following problem, which can be found in many books, is ascribed
again to Jacob Steiner.
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Problem 4.25. Four villages (hamlets, airport terminals, warehouses,
or whatever), each being a vertex of a square, should be connected by a road
network so that the total length of the road system is minimal.

Solution. Let V), V,;, V3, and V; be the vertices of the square of side
length equal to 2 units. AB and C'D are perpendicular bisectors; see Figure
4.28. A road system is composed of the solid lines V), EV>, EF, FVj,
and F'V,, with the unknown angle 6 which should be determined so that
this road system has minimal length. Using the triangle inequality it is easy
to prove that the symmetric network X shown in Figure 4.28 has smaller
total length than any nonsymmetric network X. Other configurations will
be discussed later.

Referring to Figure 4.28, the length of the desired road network is § =
2(2z + z). Since

, s=1—y=1—tan®, 0¢€|[0,r/4],

y=tanf, ==

we have

S(6) = 2(1 —tanf + co%) =24 2f(8),

where we introduce

f(8) = — tan@.

cos @

Vs

FIGURE 4.28. Minimum road system
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Since f(f) = (2 —sinf)/cos® > 0 for 8 € [0, 7/4], to find the minimum
of S(0) it is sufficient to determine the minimum of the function f(€) on
the interval [0, 7/4]. This problem can be easily solved by differential calcu-
lus, but we wish to avoid it and demonstrate an elementary method, more
familiar to the wider circle of readers.

First, we prove the inequality
2
= —_—— > Ve . .
f(6) pr tand > V3, 0¢€[0,7/4] (4.9)

Assume that (4.9) holds true. Since cos@ > 0, the inequality (4.9) can be
written in the form
sinf + V3cosf < 2. (4.10)

Using the well-known formulae

. 1 — cos20 1-—t 14 cos 20 14t
smO = — — COS0 = — —
2 2 2 2

where we set £ = cos 26 € [0, 1], from (4.10) we get

1—¢ 1+¢
\/— 3/ —L < 2.
> +V3 o <

Hence, after squaring and rearrangement, we obtain

t+V3/1-12<2 or V3Y/1-2<2-1.
Squaring once again yields
1 —4t+ 48 = (1-2t)° > 0.
Therefore, the inequality (4.10) is proved. From the last expression we see

that the minimum of f(#) is obtained for ¢ = cos 20 = 1/2, that is, 20 = 60°.
Hence, the sought value of the angle 6 is 30°.

The length of the minimal road network is
$(30°) = 2 + 2£(30°) = 2 + 2V3 = 5.4641.

For comparison, let us note that the length of the two diagonals of the square
(case § = 45°) is 2v/8 = 5.6568.
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René Descartes (1596-1650) (— p. 302)
Frederick Soddy (1877-1956) (— p. 308)
Seki Kowa (1642-1708) (— p. 303)

Harold Scott MacDonald Cozxeter (1907-2003)
(— p- 309)

Scientists frequently conduct simultaneous yet independent research on
the same problems. It is less seldom for researchers from disparate time
periods to pay their attention to the same problem. René Descartes, the
French philosopher, soldier and mathematician, Seki Kowa, the Japanese
mathematician, mechanist and samurai (1), Frederick Soddy, the British
physicist and Nobel Prize-winning chemist, and the famous long-lived ge-
ometer Harold (always known as Donald) Coxeter, a professor at the Uni-
versity of Toronto, all studied the problem of “kissing” (or touching) circles
at one time in their lives.

Kissing circles

Not more than four circles can be placed in a plane so that each circle
touches every other circle, with every pair touching at a different point.
There are two possible situations: either three circles surround a smaller
one (Figure 4.29(a)) or one larger circle contains three smaller circles inside
it (Figure 4.29(b)). Thus appears the following challenging question.

Problem 4.26. Find a relation that involves the radii of four adjoining
circles which allows easy calculation of the radii of the fourth touching circle,
knowing the radii of the remaining thiee circles.

Frederick Soddy derived a simple formula for the radii and expressed it
in an unusunal way in the stanzas of his poem, The Kiss Precise, published
in Nature (Vol. 137, June 20, 1936, p. 1021). Let a, b, c, and d be the
reciprocals of the radii of four “kissing™ circles taken with the plus sign if a
circle is touched on the outside (all circles on Figure 4.29(a)), and the minus
sign if a circle is touched on the inside (the circle 4 on Figure 4.29(h)). Then
Soddy's formula reads

2@+ b+ +d?) = (a+b+c+d).
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, ‘0(»0

FIGURE 4.29. Kissing circles

The reciprocal of a circle’s radius is customarily referred to as its curva-
ture. Soddy’s poem mentions this quantity as the bend as the middle verse
states clearly:

Four circles to the kissing come.

The smaller are the benter.

The bend is just the inverse of

The distance from the center.

Though their intrigue left Euclid dumb
There’s now no need for rule of thumb.
Since zero hend’s a dead straight line
And concave bends have minus sign,
The sum of the squares of all four bends
Is half the square of their sum.

However, after the above formula's publication, it was discovered that
Descartes already knew of this formula. For this reason, the above formula
is sometimes referred to as the Descartes-Soddy formula.

We will now discuss in short the derivation of the Descartes-Soddy for-
mula; for more details see Coxeter's book [43, pp. 13-15].

Let K,, K; and K. be three mutually tangent circles with centers
A, B, C. Let us form the triangle AABC with sides a, b, ¢ and the cor-
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semiperimeter of the triangle AABC, then it is easy to conclude that the
lengths s —a, s—b, $—c are the radii of the circles K,,, K}, K., respectively.

FIGURE 4.30. Coxeter’s solution for the kissing circles

From Figure 4.30 we see that two circles can be drawn to touch all three
circles K,, Ky, K.: a small inner circle K, and a larger outer circle K’. Let
these two circles have centers S,S’ and radii »,7’. Then

|SAl=r+s—a, |SBl=r+s=b, [SC|=r1+s-c.

Let wa, ¥, @. denote the angles at center S of the smallest circle K in
the three triangles ASBC, ASCA, ASAB. Applying the cosine theorem
to triangle ASBC(/, we obtain

|BC|? = |SB|]* + |SC|* - 2|SB| -

SC|cos,,

wherefrom, after a brief rearrangement,

2¥a lHcosp, (r +a)r
= = = . 4.11
3 2 (r+s—0b)(r+s—c) (4.11)
Hence,
sin? % — 1 —cos?Z _ (s — b)(s — c) (4.11")

2 (r+s-b(r+s—c)
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Analogously, for the angles ¢, and . we obtain
P ~ b ~
cos? P _ (r+ by . (4.12)
2 (r+s—a)(r+s—c)
sin? 2% — (s=a)(s—c) : (4.12)
2 (r+s—-a)(r+s—c)
and
2 {pC (1‘ + c)r «
Pe _ , 4.13
©s 9 (r+s—a)(r+s—2=n) (4.13)
2% (s—a)(s—b) '
sin” =~ = T T (4.13")

Combining the sine theorem and the cosine theorem for any triangle with
the angles a, S, v, we can derive the following identity:

sin® a — sin? 8 — sin® 4 + 2sin 8sinycos @ = 0. (4.14)
This relation holds for any three angles whose sum is 180°. Since the angles
%%a %%e %(pc satisfy this condition, from (4.14) we have

sin’ % — sin® % — sin’ % + 2 sin % sin % cos % = 0. (4.15)

For the sake of brevity, let

fa=( 1 s=b)(r4s—rc),
fo=(r+s—a)(r+s—c),
fe=(r+s—a)(r+s-—0b).
Using (4.11), (4.117), (4.12), (1.12"), (41.13) and (4.13'), from identity (1.15)
we obtain
(s=b(s=¢c) (s=0c(s—a) (s—a)(s-D)
fa fb fc
(s—c)(s—a) (s—a)(s—b) r(r + a) _
+2¢ 7 2 oo

Hence

r+s—a r+s—-b r+s-—c

s—a s—0b s—c

rr+s—b+s—c)
*2¢ G-0e-a
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After dividing by r and using abbreviations

1 1 1
s—a'

g =

we come to the relation

0y — 02 — 03 — 04 +2\/(72(73 + 0304 + 0302 = 0.

After squaring, we get

2
(0‘1 — 09 — 03 — 0‘4)2 = (2(71 - ((71 + o9t o3 F 0‘4))

= 4(0,04 + 0304 + 040,).
Hence, after elementary manipulations, we finally obtain
20} t0F 1 03+ 03) = (011 02 1 031 a4)". (4.16)
The reciprocals o,, 0y, 03, o4 of the radii are called their curvaetures.

Solving the quadratic equation (4.16) for o4 (the curvature of either K or
K'), we obtain two roots

o) + oy + 03 £2\/oy03 + 030, + 0,0, .

The upper sign yields the larger curvature, that is, the smaller circle. There-
fore, the radii of circles K and K’ are

—1
T = [01+0’2+03+2\/020’3+0301+(710'2:| ,

-1
r = [01 4 o9 4 03 — 2\/0’203 |- o300 1 0'1(72] .

In 1670, three decades after the death of Descartes, on the other side of
the world, Sawaguchi Kazuyuki, a Japanese mathematician, wrote a work
entitled, Kokon Sampd-ki (Old and New Method in Mathematics). Kazuyuki
formulated a problem that incorporated four kissing circles (see [167, Vol. I,
p. 439], [168]).

Problem 4.27. Three circles are inscribed within a circle, each tangent to
the other two and to the original civele (Figure 4.31). They cover all but 120
square units of the circumscribing circle. The diamelers of the two smaller
circles are equal and each is 5 units less than the diameter of the next larger
one. Find the diameters of the three inscribed circles.
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FIGURE 4.31. Kazuyuki’s kissing circles problem

According to Smith and Mikami [168], Seki Kowa, the most distinguished
mathematician of seventeenth-century Japan, solved this problem. Seki
Kowa used only words to express his method of solution, and arrived at
an equation of the sixth degree [168, pp. 96-97]. Did Seki Kowa have
knowledge of Descartes—Soddy's formula? Through analysis of Kazuyuki’s
solution of the problem, we might perhaps answer this question in part.

Let & (= 7 = 13) be the radius of the two smallest circles and y (= 1)
the radius of the largest circle. Then the radius of the remaining circle is
73 = T + 2.5. Using the condition concerning the covered area, we can form

the equation

120

222 + (z + 2.5)% = (4.17)

But now the crucial question arises: How to eliminate one of the two vari-
ables in (4.17)? Seki Kowa had to have an auxiliary relation necessary for the
elimination. According to the reconstruction of Seki’s solution given by his
pupil Takabe |168, pp. 96-100], and considering the analysis of the promi-
nent historians of mathematics Smith and Mikami, the required relation was
most probably the Descartes—Soddy formula. The fact that a wooden table
engraved with the formula was found in Tokyo's prefecture in 1796 (see [68|)
appears to substantiate this.

In his poem The Kiss Precise, Frederick Soddy expanded the kissing cir-
cles formula to five mutually kissing spleres,

3+ +t+d®+e¥)=(a+b+c+d+e), (4.18)
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where @, b, ¢, d, and e are reciprocals of the radii of five spheres taken
with the corresponding signs. Is the reader nervous about n-spheres (n >
3)? “Mission impossible?” What is most astonishing is that there exists
a beautiful formula for this general case. Thorold Gosset of Cambridge
University made further generalization on n-spaces which he published in
Nature (Vol. 139, January 1937). Gosset has shown that in the case of
n-dimensional spheres at most n - 2 spheres “touch™ cach other and satisfy
the following genecralized formula:

2
n ! | ! + | ! = ! | ! { + !
7'% r3 ';')n+-z IR Ttz |

The last formula is like a shining star in the sky of geometry. Let us
stop here: formulae are given, and a diligent reader is welcome to solve the
following simple problem.

Problem 4.28.* Four touching unit spheres are arranged in the form of
“rounded” tetrahedron leaving a space for a fifth sphere. Find the radius of
that sphere.

George Pdélya (1887-1985) (— p. 308)

George Pdlya was a versatile mathematician whose output of mathemati-
cal publications was not only voluminous, but also wide ranging. As well as
working in many mathematical disciplines, he also taught; his popular works
such as How to Solve It, Mathematical Discovery (two volumes), and Math-
ematics and Plausible Reasoning (two volumes) contain a wealth of useful,
pleasing, and amusing examples. We have selected one from his Mathematics
and Plausible Reasoning (141, Vol. 2].

The shortest bisecting arc of area

Problem 4.29. Lel us define a bisecting arc as a simple curve which
bisects the area of a given region. The shortest bisecting arc of a circle is its
diameter and the shortest bisecting arc of a square is its altitude through the
center. What is the shortest bisecting arc of an equilateral triangle?

Many mathematicians, amateurs and professionals alike respond with the
standard answer of a chord parallel to the base since it is shorter than the
angle bisector (altitude). This answer, however, is incorrect.
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To answer correctly, let us recall the solution of a classic isoperimetric
problem, isoperimetric figures being figures that have the same perimeter.

Among all closed plane curves of a given length, a circle encloses the
largest area.

Actually, this is Jacob Steiner’s solution of Dido’s problem, found on
pages 96-98 of this book.

Let us return to Pélya’s problem. Let w be an eventual bisecting arc for a
given equilateral triangle A. By five reflections of a given equilateral triangle
A, performed in such a way that the next (copied) bisecting arc starts at
the end of the former bisecting arc, we create a regular hexagon as shown in
Figure 4.32.

L)

FIGURE 4.32. Shortest bisecting arc of area FIGURE 4.33. Arc on one side

The new curve 2 = wUw; U- - -Uws, where w,, ... ,ws are the copies of w,
is closed and it is a candidate for the bisecting closed curve of the hexagon.
The bisecting arc w must have such a shape so that the curve Q encloses
half of the hexagon's area. Thus, to find w, we are looking for a shape of §2
such as that having the shortest perimeter.

According to the solution of the isoperimetric problem given above, a
circle has the shortest perimeter among all shapes with the given area.
Therefore, the closed curve 2 is a circle, denoted by a dashed line, and,
consequently, the shortest bisecting arc of the equilateral triangle A is a 60°
arc of a circle. From the relation 727 /6 = a®+/3/8, where a is the side of the
equilateral triangle A, we find that the radius of this circle is
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r=a % = (0.643 a.
dr

Finally, we show that the length of a circular arc, which bisects the area
of the triangle and has its ends on one side of the triangle (Figure 4.33),
is always longer than the bisecting arc presented above in Figure 4.32. Of
course, from the aforementioned reasons, a curve of a different shape than
a circular arc is always longer. Taking ¢ = 1, we present on Figure 4.34
the dependence of the length L(a) of a circular arc on the central angle
a € (0,7). The straight line L = 0.6833 is the length of the shortest bisecting
arc given in Figure 4.32, shown for the purpose of comparison. End of proof,
end of mystery.

- L)

o4

)
1 13

1 2 3

FIGURE 4.34. The length of a circular arc against the central angle

Answers to Problems

4.2. The proof is elementary and uses only the Pythagorean theorem. Let
O, O; and O, he the centers of the semicircles with the diameters AB, AC
and C B, respectively, and let

|AB| Ac] CB|

—_— =T, =T,

2 2 2

Let OF be the radius line of the greatest semicircle passing through the
centers O and G, and draw the lines O0,G; and OG;. Finally, draw two
perpendiculars from () to the lines CD and AB to the point H, as shown
in Figure 4.35. Denote the radii of the circles centered at G; and G, with
p1 and p>. Then we have

=719, r=7r;+7r2.

|01G1| =r+p, [OGil=r—pi=ri+1r2—p,
|O1H|=‘I'1—p1, |0H|=7‘—27'2—p1=T1—7'2_Pl-
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A 0O, O H C O, B

FicurE 4.35. The Arhimedean circles—solution

From the right triangles 0, G; H and OG, H we obtain by the Pythagorean
theorem

|]7[G1|2 = (r, + P1)2 - (7 = Pl)z,
[HG1|* = (ry + 12— p1)? — (m — 2 — p1)°.

After equalizing the right-hand sides and short arrangement, we get
dripy = 4Ty — p1)7e,

hence
"7

™1 +T2‘

=

Applying a similar method to the circle centered at G (simply exchanging
the subscript indices 1 and 2), we obtain the same result,

(R
1+ 2

Therefore, the twin circles of Archimedes have the same radius equal to half
the harmonic mean of the radii ) and 3.

4.3. We will use the notation from the solution of Problem 5.2 and
Figure 4.35. The Archimedean twins shown in Figure 4.35 have the samne
radii p= py = pa = #1792/ (r1 + r2); see (4.19). By the Pythagorean theorem
we find that

|IMC| = /[|G20:|? = (r2 = p)? = /(12 + p)? = (12 = p)? = 2\/T2p.
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Similarly, we obtain |[NC| = 2,/71p. Hence, |[NM|? = ([NC| — |MC|)? =
dp(y/T1 — /T2)%.
The quadrilateral G1 NG2 M is a parallelogram so that, using (4.19),

GGl = 2V/(INMIJ2) + 22 = 2y/ pl/r1 — \/72)? + 0
= 2\/rire = 2775 + 97 = 2(/FiTs — ) (VFIT2 > p)-

Since the smallest circle tangents the twin circles, its diameter d is then given
by

d=2p+|G1Gs| = 2p + 2(/1172 — p) = 2y/r1i72 = V|AC| - |CB| = |CD].

4.5. It is easy to notice that this problem is equivalent to Problem 4.1.
Indecd, halving the given cireles, shown in Figure 4.36, Ly the diameter
perpendicular to the tangent (of the length £), we obtain Figure 4.1 with
|CD| = t/2. Hence, the area of PSlya's figure is
nt?

st

§=2-7CDP = 5(-)2 _ e

2 8

FIGURE 4.36. The arbelos problem of George Pélya

Pélya’s problem itself is more intriguing if it is considered independently
of the arbelos problem because, at first sight, it seems that the given data
are insufficient to find the required area.

4.6. The presented proof follows the argumentation given in Tien’s paper
[175]. Let 7 be the radius of two small semicircles K3 and K,, and R the
radius of a larger semicircle K. The radii v = d1/2 and o = do/2 of
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the circles K; and K-> are changeable unlike the fixed entries 7 and R. A
“backwards” method of drawing will be used to solve the problem.

a)

FiGURE 4.37.

Let us construct a quadrilateral composed of three equal triangles with
sidesa = v+ 71, b = 71 + 72, and ¢ = r 473, &s in Figure 4.37(a). Obviously,
this quadrilateral is a trapezoid. Next draw circles of radii 7, 7y, 7o, and
again r, centered at the vertices of these triangles, except for the common
central vertex C (Figure 4.37(b)). It is easy to see that the radii and sides
are chosen in such a way that these four circles touch each other (except for
Ky and K). Since

c+r=7T+120+7, a+T2=r+11+72

and
2R=2T+2b=21‘+d1+d2,

it follows that ¢+ r; = @ 4+ 1o = R. This means that the circles K, and K>
touch the big circle K centered in the central vertex C. Thus, we return to
our starting point, Figure 4.6.

Therefore, if v+ + r; + v2 = R, then the described configuration with
touching circles is possible. To complete the proof, we need to prove the
opposite claim. Assume that for the configuration displayed in Figure 4.6,
we have 7 + 71 + 2 # R, Let us change r, for example, so that a new
velue ¢ satisfies » + ¢ + 75 = R. According to the previous analysis, this
would mean that there is a new configuration formed by touching circles of
radii 7, 7] (3 71), 72 and r inside a circle of radius R. Now we have two
configurations where all circles are the same oxcept for one (K;). Yot such
a situation is impossible since the “hole” determines uniquely the size that
fits into it. In this way we obtain that v + 7, + r» = R holds, wherefrom
dy + dz = 2R — 2r = const. This completes the proof.
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4.9. Let the half-straight lines p,4 and pp denote the river banks and
let the point C mark the position of the cottage. Let C4 and Cpg be the
points symmetric to C with respect to the half-straight lines p4 and pp.
respectively (Figure 4.38). Join C4 to Cp and denote with 4, and B, the
intersecting points of the straight line C4Cpg and the half-straight lines p 4
and pp. The intersecting points Ay and By determine the places on the river
banks that provide the shortest tour C Ay ByC of the adventurer. Indeed, if
A’ and B’ are arbitrary points on p4 and pp, then

(CAY L LAB| 1 |BC| = |Cad] + |AB| | |B'Cy|
> |CaAg| + |AeBo| + |BoCg| = |CaCsl-

In other words, the shortest way between the points C4 and Cpg goes in a
straight line.

pA
l
|
|
|
|
|y
C l
l
|
l
Py
y X
Ca 6
FIGURE 4.38. The shortest tour FI1GUurE 4.39. Broken bamboo

4.11. Let x and y be the lengths of segments of the broken bamboo.
From the system of equations

T+y=18, y*—a®=136
(see Figure 4.39), we find 2 = 8, y = 10, or opposite.

4.15. Wafa’s idea, exposed in solving Problem 4.14, can be also usefully
applied in this case. First, we arrange three larger triangles around the small
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triangle as shown in Figure 4.40. Joining vertices by the dotted lines, we
construct a larger triangle. The three pieces outside this triangle fit the
spaces inside its boundary exactly (see [186, p. 192]).

FIGURE 4.40. Dissection of four triangles

4.20. Let A, B and C be the vertices of a given triangle AABC, we have
to find a point X in the plane determined by the points A, B, C so that
the sum of lengths | X A| + | X B| + [ X C is minimal.

A
B A
¥|¥ B
Yy
B a
B a
[ J
C
FIGURE 4.41. FIGURE 4.42.

Assume for a while that the distance |CX| is fixed and equal to (say) r.
Then we can apply the Heron principle of minimum considered in Problem
4.7 in a specific way. Namely, with the distance |C X| fixed, let us find the
minimum of the sum |AX| + |BX]|, but with the point X traversing along
a circle (with radius 7 and centered in C) instead of the line (Figure 4.41).
Onec can presume that in this task we have an image in the “round mirror".
Let A be the source of a light ray, which reflects from the round mirror in
its way towards the receiver B. Since the angle of incidence is equal to the
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angle of reflection, the straight line passing through A and X must be the
bisector of the angle L AX B to provide minimal distance.

For symmetry, the straight lines through B and X, and through A and X,
should be also the bisectors of the angles LCX A and £LBXC., respectively.
Three straight lines, connecting the point X to the points A, B and C, form
six angles with the common vertex X. It is obvious from the Figure 4.42 that
all these angles are mutually equal (according to the equality of opposite
angles), hence it follows that each of them is equal to 60°. Consequently,
LdAXB = ABXC = £CXA = 120°, which means that all sides of the
triangle ABC are seen at the angle of 120°, the same result obtained as
before. The location of the Torricelli point X is given in the discussion of
Problem 4.7.

4.24. Let P; be the required maximum possible number of bounded
parts. From the solution of Problem 4.23 we conclude that the mth line
(m = 3) intersects the previous lines in m — 1 distinct points increasing the
number of parts by m, two new infinite parts and m — 2 bounded parts.
Therefore, we have

P;:]" P;=P§4-(4—2), Pg:P; "'"(5_2)3 aPr::'P;:-l ~'"(7)"—2)'

The telescoping summation gives

n—1

S (Prwi-Pr)=Pi-P =2+ +(n-2)

m=3
Since P; — 1, it follows that

(n—=1)(n—2) .

PP=1424--+(n—2)= -

4.28. Let = be the curvature of the fifth sphere. From formula (4.18) for
five kissing spheres we have

317+ 12412412422 = Q1+ 141+1+2)

hence the quadratic equation 22 — 42 — 2 = 0 follows. The solutions of this
equation give the values of curvatures £, = 2+v6 > 0 and 2, = 2—+/6 < 0.
Since we are concerned with the smaller sphere, we choose x; (all five spheres
are touched outside, all the corresponding signs of curvatures are plus) and
find the required radius v, = 1/2; = —1 + v/6/2 = 0.2247. The other value
re = |1/xo| = | — 1 — /6/2| =~ 2.2247 is the radius of the larger sphere which
encloses and touches four given spheres.



Chapter 5 TILING AND PACKING

Sphere packing is one of the most fascinating and
challenging subjects in mathematics.
Chuanming Zong

In this chapter we consider the filling of a plane and a (3-dimensional)
space. If the plane figures fill a plane with no overlaps and no gaps, then
we most often use the terins tessellation or tiling of the plane for it. It is
needless to say that, from the ancient times to the present, the tessellation
has been an everyday job in creating mosaics and a variety of decorations
for building walls, windows, floors and yards. After all, the word fessella
comes from Latin to denote a small cubical piece of clay, stone or glass used
to make mosaics. It is worth noting that the patterns of tessellations can be
found in nature. For example, hexagonal columns of lava, resulting from an
ancient volcanic eruption, can be seen at the Giant's Causeway in Ireland.
Another example is the so-called Tessellated pavement in Tasmania, an un-
usual sedimentary rock formation, with the rock fracturing into rectangular
blocks.

In the first part we present regular tessellations (consisting of congruent
regular polygons) studied by Johannes Kepler and semiregular tessellations
which permit more kinds of regular polygons (one of eight patterns found
by Kepler). Both of these tessellations are periodic giving a region that
tiles the plane by translation. It is well known that the Dutch artist M.
C. Escher made many fainous pieces of art with periodic tessellations with
shapes resembling living things.

You will also find nonperiodic tessellation of the eminent British mathe-
matical physicist Roger Penrose. Penrose’s tilings, which use two different
polygons, are the most famous examples of tessellations creating nonperi-
odic patterns. We have also included the very recent Conway and Radin’s
pinwheel tiling.

The filling of the 3-dimensional space is the subject of the second part
of this chapter. Clearly, a tessellation of a space (often referred to as hon-
eycombs) is a special case of filling the space since the latter permits the
appearance of gaps. However, in this book we focus on those puzzle prob-

119
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lems that have been posed and/or solved by great mathematicians. So, we
omit the tessellation of the 3-dimensional space and turn our attention to
another fascinating recreational subject: packing spheres.

We can find mathiematical patterns all around us. Consider, for example,
the familiar arrangement of fruits at the market, and look closely at the piles
of fruits. How are they arranged? Is the arrangement of spherically-shaped
fruits, oranges perhaps, the most efficient in terms of optimal density? In
other words, does the packing result in the maximum number of oranges
that can fit into the available space?

The problem familiar to greengrocers and market vendors of stacking
oranges and the distinctly mathematical pattern seen in such arrangements,
is known as sphere packing. What is the most efficient way to pack identical
spheres? Johannes Kepler was the first who tried to give the answer to this
question (in 1611), known as Kepler’s conjecture.

When David Hilbert announced his famous list of 23 problems in Paris
at the International Congress of Matheimnaticians of 1900, he noted that the
first criterion for a good problem was that it could he explained “t¢ the
first person one meets in the street.” According to its very simple formu-
lation, the sphere-packing problein certainly satisfies Hilbert’s criterion for
a good problemm. However, “the problem is so simple that there is some
hope that some day we may be able to solve it”, as the Swiss mathematician
Peter Henrici once said for some classes of simply-formulated problems. In-
deed, despite extensive investigations dating back at least as far as Kepler's
seventeenth-century work, the basic question of the most eflicient packing
remained unanswered until 2005 when Thomas Hales solved Kepler's sphere-
packing problem.

David Gregory and Isaac Newton discussed another type of sphere-
packing problem in 1694, known as the Gregory—Newton problemm which
concerns the number of touching spheres. Problems such as these and others
related to them, have attracted the attention not only of outstanding mathe-
maticians such as Dirichlet, Gauss, Hermite, Lagrange, and Minkowski, but
also that of several contemporary mathematicians.

Conway and Sloane [41], Fejes Té6th [63], Rogers [148], Zong [194], and
Szpiro [172] have all written books that deal with various aspects of sphere
packing. These books, and a number of citations within them, suggest that
sphere packing has developed into an important discipline. In his book [194],
C. Zong says: “As work on the classical sphere packing problems has pro-
gressed many ezciting results have been obtained, ingenious methods have
been created, related challenging problems have been proposed and investi-
gated, and surprising connections with other subjects have been found.”
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In this chapter we will present brief essays of the two hest known prob-
lems related to sphere packing: the kissing spheres of David Gregory and
Newton and the densest sphere packing of Kepler. The story about the lat-
ter problem includes a short discussion on the very recent Ilales’ solution of
Kepler's conjecture. Knuth's pentamino-puzzle, Penrose nonperiodical tiling
and Conway's cube puzzles are also considered.

*

® 3k

Johannes Kepler (1571-1630) (— p. 302)

Mosaics

In addition to sphere-packing problems and space-filling problems with
regular polyhedra, Kepler was also interested in mosaics—the filling of a
plane with regular, although not necessarily like, polygons. Here we present
some interesting tasks concerning this subject, listed in [63, p. 273], [74, Ch.
17] and [137, Ch. 3J.

(I) Let us consider the filling of the plane with congruent regular polygons
and let n be the number of sides of each polygon. Then the interior angle
at each vertex of such a polygon is (n — 2)180°/n.

(II) If the vertex of one polygon cannot lie along the side another, then

the number V(n) of polygons at each vertex is given by (using (I))
360n |
Vin) = 180(n — 2) 2+ n—2"

Hence it follows that n must be 3, 4 or 6; in other words, at each vertex we can
join V(3) = 6 equilateral triangles, V(4) = 4 squares and V(6) = 3 regular
hexagons. The creation of mnosaics by these patterns is called a t{essellation.
A tessellation is regular if it is made up from regular polygons of the same
kind. As shown above, there are only three such tessellations: mosaics
of equilateral triangles, squares and hexagons; see Figure 5.1. Semiregular
tessellations permit combinations of two or more kinds of regular polygons,
not necessarily different.

Problem 5.1. Assume that we have a mosaic composed of reqular poly-
gons of three different kinds at each vertex. Find all patterns of regular
polygons that tile the plane.

If the three kinds of polygons have n,;, ns, nj sides, then the following is

valid:
i 1 1

1
= 5.1
[£3] > ng 2 (J )
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.0)

FIGURE 5.1. Eight patterns of regular polygons that tile the plane
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(it follows from o+ s+ as = 360°, where ax = (nx—2)180° /1 (K = 1,2, 3)
(from (I)). Let us find integral solutions of the equation (5.1). From (5.1)

we find .
¢ n)ng
ng=2+4+——, wheret=——, 5.2
3 + t—2 whet ny + no ( )

Obviously, ¢ must be 3, 4, or 6. From the equation

nny
n) + no

we find

2

f

n1=t+

— t € {3,4,6}.

The quantity n, takes those values from the interval [t + 1,#> + #] which
provide that the ratio t*/(n, —t) is a positive integer. Considering the three
cases t = 3, t = 4 and ¢t = 6, we find n, and n; and, finally, from (5.2)
we determine n3. All integral solutions of the equation (5.1), given by the
triples (ny,n;, n3), are

(3,7.42), (3,8,24), (3,9.18), (3,10, 15), (4,5,20), (4,6,12).

These six triples of integral solutions are only candidates for composing
a. mosaic. In other words, relation (5.1) gives only necessary conditions.
It was shown that (4,6, 12) is the only triple of different congruent regular
polygons that can form a mosaic under the given conditions;! thus, we can
compose a mosaic combining congruent squares, congruent regular hexagons,
and congruent regular dodecagons. This pattern is displayed in Figure 5.1,
in the last row (left).

An interesting fact is that there are precisely eight semi-regular tessel-
lations, composed of different combinations of triangles, squares, hexagons,
octagons and dodecagons (see Figure 5.1). A pattern (3,6) in the upper
right-hand corner was first described by Johannes Kepler and it is the only
one (among the eight) with the property that it is changed by mirror reflec-
tion. The fourth pattern (3,4) on the right side of the second row, served
as the inspiration for a Salvador Dali painting that he titled simply Fifty
Abstract Pictures Which as Seen from Two Yards Change into Three Lenins
Masquerading as Chinese eand as Seen from Siz Yards Appear as the Head
of a Royal Bengal Tiger.?

1The pattern (3,4,6) has two squares at each vertex.
2See M. Gardner (74, p. 207].
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FIGURE 5.2.

The pattern (3,4)
Salvador Dali’s painting
Fifty Abstract Pictures
Which as Seen from Two
Yards Change inio Three
Lenins Masquerading as
Chinese and as Seen from
Siz Yards Appear as the
Head of a Royal Bengal
Tiger.

J. Kepler and his successors were the pioneering researchers into mosaics
and tessellations. 1t is worth noting that tessellations are not only the subject
of recreational mathematics, they are also a useful tool in making models in
crystallography, coding theory, cellular structure of plants, etc.

The classification of tessellations of the plane using tiles® can be per-
formed in various ways, depending on the type of tiling; thus we have reg-
ular, semiregular, or irregular tiling, periodic or aperiodic tiling, symmetric
or asymmetric tiling, and so on. Many details can be found in the book,
Tilings and Patteyns |90| by B. Griinbaum and G. C. Shephard.

In the early twentieth century, the Russian crystallographer E. S. Fe-
dorov enumerated exactly 17 essentially different types of periodic symme-
try patterns. The symmetric patterns in the Alhambra, a Moorish palace in
Granada (Spain), are one of the finest examples of the mathematical art of
thirteenth-century Islamic artists, and probably the best known architectural
use of symmetric patterns.

Speaking about tessellation, it is impossible to overlook the Dutch artist
Maurite C. Escher (1898-1972). He was impressed by the patterns in the
Alhambra and George Pélya's academic paper on plane symmetry groups.
Although Escher's understanding of mathematics was mainly visual and

3Tiling is a more restrictive category of repeating patterns because it is usually re-
lated o patterns of polygons. However, most authors do not make a difference between
tessellation and tiling.



ESCHER'S TESSELLATION 125

intuitive—he had no formal training in mathematics—he fast caught on to
the concept of the 17 plane symmetry groups and c¢reated splendid periodic
tilings with woodcuts and colored drawings using this concept. Escher cre-
ated many pictures using periodic tessellation in which living things such
as birds, reptiles and fish are used as tiles instead of polygons. Figure 5.3
named Symmetric drawing E67 (1946) is one of his typical images of this
kind. Adjacent horsemen in two colors constitute the basic image; the tiling
of the plane is performed by translation and repetition of this image.

Figune 6.3. Symmetry drewing E67 (1946);
a periodic tessellation by M. C. Escher

In addition to his creations using tessellations, M, C. Escher created many
ingenious illusions, impossible building structures and geometric distortion
in 3-space, which often had a flavor of “mystery and absurdity”. Escher’s
ithographs, woodcuts und graphic arts, involving mathematical relation-
ghips ainong figures and gpace, demonstrated his effort to incorporate math-
ematics into art, and vice versa. M. C. Escher was highly appreciated by
eminent scientists, crystallographers and mathematicians (including the fa-
mous Canadian geometer H. S. M. Coxeter, the man who loved symmetry).
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Roger Penrose (1931- ) (— p. 310)
John Horton Conway (1937- ) (- p. 310)

Nonperiodic tiling

Sir Roger Penrose, the outstanding British mathematical physicist and
cosmologist, is probably best known for his books on popular science and the
1974 discovery of nonperiodical tilings of the plane. Being also a recreational
mathemadtician, he searched for sets of tiles that tile only nonperiodically. For
a long time experts were convinced that such a set does not exist. However, in
1964 Robert Berger constructed such a set using more than 20,000 Wang-like
dominoes, named after Hao Wang who introduced in 1961 sets of unit squares
with colored edges (see Gardner |82| for details). Later Berger reduced the
number to 104, and Donald Knuth found an even smaller set of 92. Dramatic
improvement was made by Raphael M. Robinson who constructed six tiles
that enable a nonperiodic tiling.

Roger Penrose
1931~

Finally, Roger Penrose came to the tiling scene, In 1974 he found a
set of only two tiles that force nonperiodicity. John Horton Conway, an-
other famous British mathematician and also a top expert in tiling problems,
named these tiles “kite” and “dart”. They are derived by cutting a rhombus
with angles of 72 and 108 degrees and the sides equal to the golden ration
¢ = (1+V5)/2 ~ 1.618, as shown in Figure 5.4. What is really surprising is
that such tile patterns were later observed in the arrangement of atoms in
quasi-crystals.
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T H
H H
H
T T
Kite T Dart

FIGURE 5.4. Construction of Penrose’s tiles, kite and dart

Now we have tools, kites and darts. Wouldn’t it be nice if we could joint
these tiles in such a way as to avoid periodicity, and also bumps and dents?
Penrose proposed a simple way. Let us mark the corners H (head) and T
(tail) as is shown in Figure 5.4 right. Then, to provide nonperiodic tiling,
it is sufficient to fit tiles so that only corners of the same letter may touch.
Penrose’s proof that the tiling is nonperiodic is based on the fact that the
ratio of the numbers of pieces of the two shapes is golden ratio ¢ = 1.618...,
that is, an irrational number. The complete proof is bevond the scope of
this book.

The described tiling with kites and darts produces remarkable Penrose
patterns which make in turn Penrose universes. These universes contain
amazing patterns and shapes, and possess surprising features that take your
breath away. Most of them were discovered and studied by Roger Penrose
and John Horton Conway. It is interesting to note that Penrose, follow-
ing Escher’s transformation of polygonal tiles into animal shapes, generated
nonperiodical tiling patterns by changing his kites and darts into chickens!
Many details can be found in Chapter 7 of Gardner’s book The Colossal
Book of Mathematics [82].

Using translations and rotations of Penrose’s kites and darts, it is possi-
ble to create numerous extraordinary patterns. Playing with these tiles is
very pleasurable and you can generate remarkable pictures that will really
astonish your friends. Here is one easy but interesting task.

Problem 5.2.*% Armed with kites and darts, try to construct the truncated
rhombus shown in Figure 5.5 together with its dimensions, where ¢ = 1.618...
is the golden ratio.
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1+2¢
1
1+2¢ 1420
72° 1
1+2¢

FIGURE 5.5. Penrose’s tiling of the truncated rhombus

John Horton Conway has been mentioned above in connection with Pen-
rose’s nonperiodic tiling. Together with Charles Radin, Conway experi-
mented with another kind of nonperiodic tiling, the so-called pinwheel tiling.
Pinwhee! tiling uses only one tile, a right-angled triangle with sides 1, 2, /3,
but it allows infinitely many orientations of this unusual tile; see [143]. The
tiles can match edge-to-edge, but also vertex-to-edge., An example of the
pinwheel tiling is shown in Figure 5.6.

FIGURE 3.6. The pinwheel tiling
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Donald Knuth (1938- ) (— p. 310)

Perhaps the most innovative computer scien-
tist ever, Donald Knuth (Stanford University),
the author of the three-volume masterpiece The
Art of Computer Programming and the creator of
TeEX, the revolutionary typesetting program, has
solved and analyzed a multitude of mathematical
problems by using computer techniques. Knuth
has given significant contribution to recreational
mathematies collaborating, among many authors,
with Martin Gardner in his famous column Math-
ematical Games in the journal Scientific Ameri-
can and the famous mathematicians John Horton

Donald Kouth Conway and Ronald Graham.
1938-

Aside from the extremely complex problems that he has considered, he
has also tackled various challenging tasks and puzzles, three of which we
present in this book (thia chapter, and Chapters 7 and 10).

Maximum area by pentaminoces

A polyomino is any figure consisting of a set of edge-conneceted unit
squares. For instance, & domino is the rectangle formed by two unit squares.
Five-square figures, called pentaminoes, are useful in constructing various
games. Many different types of polyominoes can be found in Golombh's ex-
cellent book, Polyominoes [87]. There are exactly 12 pentamino figures, each
of which, to a certain extent, resembles a letter of the alphabet, as Figure
5.7 illustrates.

U \Y} T L Y
nln 0 [T n ]
a A H
- ] ] ]
X P W F Z 11
| | —
| | | |
| N L n

FIGURE 5.7. Twelve pentaminoes denoted by the letters of the alphabet
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We have selected the following puzzle among the many where pentaminoes
figure as the main object.

Problem 5.3. Using the full set of 12 pentominoes, form a fence of any
shape around the largest possible field of any shape.

Figure 5.8 shows a pentamino fence that encloses a shape with a maximum
area of 128 unit composite squares. Donald E. Knuth proposed the solution
and proved that the number of 128 squares cannot be exceeded |75, p. 109].

1 [
| I

|

128 -
H j—j
|—|_|— LT I

FIGURE 5.8. Pentamino fence of the maximum area

Ten years after Knuth published his solution in the Scientific American,
Pablo E. Coll from Argentina posed the same problem once again in the
Journal of Recreational Mathematics, No. 1 (1983). Among many submitted
solutions, two of them attracted particular attention. Using the corner-to-
corner configuration, S. Vejmola from Prague found the solution displayed
in Figure 5.9 with a hole whose area is an even 161 units.

=

{ 161

FIGURE 5.9. A hole with area of 161 FIGURE 3.10. A hole with area of 161.5
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T. M. Campbell of Feilding, New Zealand, constructed a second solution
shown in Figure 5.10 configuring an area of 161.5. Campbell did not place
the pentaminoes in the expected perpendicular or horizontal position since
the task had never explicitly stipulated placement conditions; he preferred
employing a “disheveled” style. Quite probably, such a style would lead to
an increase in the area of the hole. The competition ended after a heated
debate that “oblique” solutions such as Campbell’s should not be regarded
seriously. Although never actually expressed, in solving similar polyomino
problems one has always understood that the pentaminoes should be placed
perpendicularly or horizontally; the corners of the pieces must coincide with
the lattice point of the plane. Subsequent to the extensive debate referred
to above, Knuth's record shown in Figure 5.8 remains unbeaten.

Here is a similar puzzle with all 12 pentaminoes, posed by Pablo Coll from
Argentina in Journal of Recreational Mathematics (Problem 1347). One
assumes that the side of each pentamino has the length 1.

Problem 5.4.* Join two different “empty” pentaminoes to form u hole
of the area 10 units, and consiruct around the hole a rectangle using all 12
pentaminoes under the following conditions:

1) Each of the 12 pentaminoes must border the hole.
2) The perimeter of a rectangle should be at most 34.

Can you construct such a rectangle?

Hint: The problem is diflicult and we give a hint as a help to the reader:
the hole inside a rectangle looks like this: Lk

Problem 5.5.* Using all 12 pentaminoes (shown in Figure 5.7) solve the
following two tiling problems:

a) Cover the 8 x 8 chessboard with all 12 pentaminoes so that one square
tetramino (2 x 2) could be placed at the center of the board (the squares
d4, d5 e4, e5).

b) Cover an incomplete 8 x 8 chessboard except the four corner squares
(al, a8, h1, h8) with all 12 pentaminoes.

Now we present several problems concerning the tiling of plane polygons
by other plane polygons. The next example is probably familiar to the
reader.

Problem 5.6.* Two diagonally opposite squares of a standard chessboard
8 X 8 have been cut out. Can you cover the given truncated board, consisting
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of 62 squares, with dominoes whose size is such that each of them covers
ezactly two small squares? See Figure 5.11.

O

FIGURE 5.11. Covering by 2 X 1 dominoes

Problem 5.7* (Fuchs and Tabachnikov [67]). Is it possible to tile
a 10 x 10 square composed of 100 unit squares with L-shaped tiles (=1 con-
sisting of 4 wnit squares. Notice that the L-tiles may have eight different
orientations.

The reader may remember Heronian triangles from Chapter 2 (Problem
2.9), they have rational sides. It is quite natural to focus our attention to
a more interesting subject, squares with rational sides, often called rational
squares. Squaring the square is the problem of tiling one integral square
using only other integral squares. The problem becomes more challenging
and more difficult if all constituent squares are required to be of different
sizes. Then we speak about the perfect squared square. The number of
the contained small squares is called the order of a perfect squared square.
This intriguing problem, which belongs to combinatorial geometry, has been
extensively studied for more than sixty decades. Mathematicians and com-
puter scientists have searched for the answer to the following question of
great interest.

Problem 5.8. Find the perfect squared square of lowest order.

1Squares with integral sides are more interesting and challenging than rational squares;
consequently, most of problems directly hanclle integral squares.
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The first perfect squared square, with the order 55, was constructed by
Roland Sprague in 1939. This record was beaten several times during the
later forty years period. At the beginning of the 1960s, the Dutch computer
scientist Adrianus J. W. Duijvestijn (1927-1998) started to investigate the
problem. His doctoral thesis, Electronic computation of squared rectangles
(1962) was an introduction to his search for simple perfect squared squares.
Although he had straightforward ideas, the limit of the power and memory
of computers at that time kept him from any further research.

. 27
50
8
19
15 177 | 1
2 |8
917 24
18
29 25 6
4
/
/
42
23 37

FFIGURE 5.12. Perfect squared square of the lowest order

When the computer storage and processing power had grown significantly,
Duijvestijn returned to the problem and finally, using a computer program,
he found the lowest order perfect squared square on March 22, 1978; see [57].
This square, composed of 21 smaller squares, is carved into the black granite
surface of a monument erected at the University of Gottingen, Germany.
Duijvestijn’s perfect square of minimal order is shown in Figure 5.12.

It is worth mentioning that a related problem of tiling the plane with
squares of different sizes, unsolved for many years, was recently solved.
F. V. Henle and J. M. Henle proved that the plane can be tiled with a
set of integral squares such that each natural number is used exactly once
as the size of a square tile; see [101].
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H. Reichert and H. T6pkin proved in 1940 that a rectangle cannot be
dissected into fewer than nine different integral squares. Here is a problem
that requires squaring a rectangle.

Problem 5.9.*% Cuan you dissect the rectangle 32 x 33 into nine squares
of different sizes?

Hint: The largest constituent square is 18 x 18.

David Gregory (1659-1708) (= p. 304)
Isaac Newton (1643-1727) (— p. 304)

David Gregory was the nephew of the more famous mathematician James
Gregory (1638-1675). He became a professor of mathematics at the age of
24 at the University of Edinburgh where he lectured on Newtonian theories.
David Gregory supported Newton strongly in the Newton-Leibniz priority
dispute over the discovery of integral and differential calculus. Newton re-
ciprocated by assisting Gregory in his efforts to build a successful career.

Kissing spheres

The problem of the thirteen spheres, or the problem of “kissing spheres”,
a reference to billiard terminology, arose as a result of a famous conversation
hetween David Gregory and Isaac Newton at Oxford in 1694.

Problem 5.10. How many unit spheres can simultaneously touch e given
sphere of the same size?

Newton thought that the maximum was 12 spheres, while Gregory be-
lieved the answer was 13. However, neither of them had proof for their
statements. In honor of their discussion, the problem is sometimes referred
to as the Gregory—Newton problem (see, e.g., Aigner and Ziegler [3, Ch. 12|,
Leech [122], Shiittle and Waerden [155], Zong [194, pp. 10-13]).

Let x(n) denote the maximal number of n-dimensional spheres that touch
a given sphere in the n-dimensional space, in which all of the spheres are
identical in size. The number x(n) is sometimes called the Newton number
or kissing number. Then, obviously, one has k(1) = 2 and k(2) = 6, as shown
in Figures 5.14(a) and 5.14(b).

In 3-dimensional space an arrangement of 12 spheres is possible; for exam-
ple, one can place the touching spheres at the vertices of a regular icosahe-
dron, as one may see in Figure 5.14(c). David Gregory and many after
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him considered that this configuration, as well as some other configura-
tions, leaves “a lot of space” for the thirteenth sphere. Thus, x(3) = 12,
or k(3) = 13: which is the true answer?

FIGURE 5.13. The Oxford discussion of David Gregory
and Isaac Newton on “kissing spheres”

For more than 250 years, this fascinating problem remained unsolved
although several “solutions” were advanced in literature covering physics
problems.® Finally, in 1953, Kurt Schiittle and Bartel L. van der Waerden
|155| settled the probletn definitely.

No move than 12 unil spheres can be placed simulianeously in such a way
thet all of them touch a given spheve of the same size.

5See, e.9., C. Bender, Bestimmung der grissien Anzahl gleicher Kugeln, weiche sich
auf eine Kugel von demselben Rodius, wie die dbrigen. auflegen lassen, Archiv Math.
Physik {(Grunert) 56 (1874), 302-306, R. Hoppe, Bemerkung der Redaction, Archiv Math,
Physik (Grunert) 56 (1874), 307-312, and 8. Giinther, Ein stereometrusches Problems,
Archiv Math. Physik (Grunert) 57 (1875), 209-215. More detsils can be found in [41,
Ch. 13].
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In other words, x(3) = 12. This means that even without a proof, Newton
supplied the correct answer.

a) k(1) = 2 b) k(2) =6 c) x(3) = 12

FiGURE 5.14. “Kissing spheres” in 7i-dimensional space

Three years after Schiittle and van der Waerden’s 1953 solution, John
Leech [122] provided a simple solution that a relatively wide circle of readers
could understand. The knowledge of spherical geometry and graph theory
suffices in order to comprehend Leech’s solution. Chapter 12 of Aigner and
Ziegler's book [3, Ch. 12| also contains this solution. However, this solution
is beyond the scope of this book and we omit it.

Is it possible to find k(n) for a general dimension n > 37 It is quite
surprising that the problem of kissing spheres was solved in very high di-
mension 24 giving «(24) = 196,560 (Andrew Odlyzko and Neil Sloane, and
independently Viadimir Levenstein, all in 1979). John Horton Conway, an
outstanding Cambridge mathematician now at Princeton, has remarked [82]:
“There i3 a lot of room up there.” However, for a long time the problem has
heen open even in dimension 4.

Philippe Delsarte (Philips Research Labs) found in 1972 that 24 < k(4) <
25 (see {41, §1.2], [47], [139]), which leads to the problem of the 24 spheres.
Finally, the Russian mathematician Oleg Musin, who lives in Los Angeles,
found that x(4) = 24 (see [139]). In this moment, the exact values for lattice
packing are known for n = 1 to 8 and n = 24; see Table 5.1 (according to
Internet site www.research.att.com/~njas/lattices/kiss. html).

n 123 |45 6] 7 | 8 24
x(m) |2 | 6 |12 | 24 | 40 | 72 | 126 | 240 | 196,560

TapLE 5.1. Kissing numbers in dimension n
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Johannes Kepler (1571-1639) (- p. 302)
Carl Friedrich Gauss (1777-1855) (— p. 305)

The densest sphere packing

The mentioned Kepler problem of the densest sphere packing, is consid-
erably more difficult than the kissing spheres problem. Indeed, it was not
solved until very recently (2005) by Thomas Hales, by making extensive use
of computer calculations.

The quantity that measures the efficiency of any packing is surely the
“density,” the total area or volume of the objects being packed divided by
the total area or volume of the container. In this calculation the method
of limits should be applied assuming that the container boundary tends to
infinity. Let d(n) denote the density of sphere packing in general dimension
n, and let d,,.-(n) be the density of the most efficient packing. The classic
sphere-packing problem thus reads:

Problem 5.11. Find the densest packing of equal spheres in the three-
dimensional space.

Johannes Kepler started with the sphere packing problem in 1611. He was
inspired not by piles of fruit but by an equally real phenomenon—the shape
of a snowflake. He wrote a little booklet, Strena Seu de Nive Sexangula®(The
Six-Cornered Snowflake), that influenced the direction of crystallography for
the next two centuries. Kepler’s interest to study arrangements of spheres
has also reinforced a result of his correspondence with the English math-
ematician and astronomer Thomas Harriot in 1606. At that time Harriot
studied cannonball packing and developed an early version of atomic theory.

Kepler sought the answer in geometry and based his study on the fact
that nature imposes a regular geometric structure on the growth of such
seemingly diverse objects as snowflakes, honeycombs, and pomegranates.
Stated simply, he observed that nature always adopts the most efficient
means to achieve its end. Kepler believed that face-centered cubic packing,
shown in igure 5.16(b), is the tightest possible (with the density of 7/ \/E)
Today we know Kepler’s statement as

Kepler’s conjecture. 0,,.:(3) =

=k
o0

8Kepler’s essay on why snow fakes are hexagonal, was issued by Gottfried, Tampach,
Frankfurt 1611. This essay was written in the form of a letter as a New Year’s gift for his
friend Johannes von Wackenfels.
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Hexagonal packing

a) b)
FIGURE 5.15. The two [amiliar ways of circle packing

Before discussing Kepler’s conjecture, let us consider first the case of disk
packing in a plane. Two familiar ways to arrange identical disks in order
to fill a plane are shown in Figure 5.15. Figure 5.15(a) presents “rectan-
gular packing” with the density 6(2) = =/4 = 0.785 and Figure 5.15(b)
presents “hexagonal packing” with the density §(2) = #/v12 =~ 0.907. The
terminology refers to the figures formed by common tangents to the circles.
Therefore, hexagonal packing yields a greater density, which is evident from
the picture that indicates that this kind of packing leaves less space between
adjacent disks.

But it is less obvious that hexagonal packing is {he most efficient among
all possible ways of packings, regular or irregular. In 1831 Gauss showed
that hexagonal packing is the densest among lattice packings. Within a
plane, a lattice is a collection of points arranged at the vertices of a regular,
two-dimensional grid. The grid may be square, rectangular, or in the form
of identical parallelograms.

A lattice packing of disks is one in which the centers of the disks form
a lattice. Rectangular and hexagonal packings are clearly lattice packings.
Gauss left open the question of the most efficient of all possible disk packings.
The Norwegian mathematician Alex Thue (1863-1922) is often credited with
the proof that hexagonal packing is the most efficient of all disk packings,
regular or otherwise, that is, 8,,0-(2) = 7/v/12 = 0.907. Thue presented the
first proof to the members of the Scandinavian Society of Natural Science,
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published in 1892 (in Norwegian). Eighteen years later, he gave quite a
different proof in the 1910 paper (in German), reprinted in [130]. However,
George Szpiro explains in his book Kepler's Conjecture [172] that Thue
did not present complete rigorous proofs, only outlines of possible proofs.
The Hungarian mathematician Ldszlé Fejes Téth was the first who gave a
rigorous proof in 1940: the hexagonal packing is the most efficient, reaching

61110::(2) = ﬂ/\/1_2-

Following Gauss, the first strategies in searching for the densest packing
of spheres in three-dimensional cases were concentrated on lattice packing,
where the centers of the spheres form & three-dimensional lattice, & regular,
three-dimensional grid. The first major advance came in 1848 when the
French botanist and physicist Auguste Bravaiz proved that there are exactly
fourteen distinct kinds of three-dimensional lattices. We recommend Devlin's
book [49, p. 156] to readers interested in these 14 regular lattices in 3-space.

One obvious way to arrange spheres in a regular, lattice fashion is to
build up the arrangement layer by layer. It seems reasonable to arrange
each layer so that the centers of the spheres are one of the planar lattice for-
mations considered above, the rectangular and the hexagonal. The resulting
packings are shown in Figure 5.16, where the first two arrangements possess
rectangular layers.

a) Cubic lattice b) Face-centered-cubic lattice  ¢) Hexagonal lattice
Ficure 5.16. Three different ways of sphere packing by stacking regular layers

Kepler computed the density associated with each of the three lattice
packings shown in Figure 5.16. The densities found by Kepler were §(3) =
/6 = 0.5236 for the cubic lattice (Figure 5.16(a)), 6(3) = /27 = 0.6046
for the hexagonal lattice (Figure 5.16(c)), and 6(3) = #/v18 ~ 0.7404 for the
face-centered cubic lattice (Figure 5.16(b)). Thus, the face-centered cubic
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lattice (the orange-pile arrangement that one often notices in the market) is
the most eflicient packing of the three. But, is this way of packing the most
efficient of all lattice packings? More generally, is it the most efficient of all
packings, regular or otherwise? Kepler’s answer was “yes”.

Gauss answered the first of these two questions not long after he had
solved an analogous problem in two dimensions. The second problem, how-
ever, remains unsolved to this day.

The stacking of solid spheres in pyramids, known as face-centered cubic
packing (Figure 5.16(b)), is familiar to chemists. This kind of packing is also
known as cannonball packing, because it is commonly used for that purpose
at war memorials. An example of a cannonball pyramid dating from the
sixteenth century is situated in front of the City Muscuin of Munich.

Nonetheless, this kind of packing does not impress greengrocers. “Such
a way of packing oranges is quite common for us”, they say, “but we have
troubles with the arrangement of artichokes.”” Until 1993, the best known
bound on density, found by D. J. Muder [129], was 0.773055, and hence we
can conclude that the market pile of oranges is very close to the best. We
will see later that, after Hales’ proof, this arrangement of oranges is really
the most efficient.

The difficulty of the problem under consideration stems from the fact that
there is an unwieldy number of possible configurations and that uniforin esti-
mates are rarely found. The question of whether there is an irregular packing
that might be denser than the packing based on a lattice is a very impor-
tant one. In 1900 the very difficult Kepler problem was included in David
Hilbert’s list of twenty-three important unsolved problems of mathematics
(the International Congress of Mathematicians at Paris).

From time to time, some researcher or another announces his solution, but
until recently, it has turned out in all cases that some gaps were present in
the “proof”. The very respectable Encyclopedia Britannice announced in its
1992 yearbook [93): “Without doubt the mathematical event of 1991 was the
likely solution of Kepler’s sphere-packing problem by Wu-Yi Hsiang.” Wu-
Yi Hsiang (the University of California, Berkeley), announced his solution
through four preprints, i.e., a revision of a revision of a revision, in 1990/91,
yet each contained some flaws (for more details see [93]). His final proof
was disputed by some experts on sphere packing, claiming that he gave
insufficient support for some of his assertions. One of Hsiang’s harshest cri-
tics was Thomas Hales, then at the University of Michigan, who was working
at the time on his own proof.

7 According to Thomas Hales [94].
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Thomas C. Hales, a professor of mathematics at the University of Michi-
gan, Ann Arbor, and currently Andrew Mellon Professor of mathematics at
the University of Pittsburgh, has made the most recent attempt. In his arti-
cle, Cannonballs and Honeycombs, published in [94], Hales asserts that with
the help of Samuel P. Ferguson, he has completed the proof of the following
statement.

Theorem 5.1 (T. C. Hales). No packing of balls of the same radius
in three dimensions has o density greater than that of face-centered cubic
packing, that 13, dymex(3) = T/V18.

Thomas Hales exposed a detailed plan of the proof and later gave a broad
outline of it. He stated that the proof is rather long and every aspect of it
is based on even longer computer calculations applying methods {rom the
theory of global optimization, linear programming, and interval arithmetic.
To find the maximum density, Hales had to minimize a function with 150
variables. The computer files require more than 3 gigabytes of space for
storage and consist of 40,000 lines. The proof relies on lengthy computer
calculations checking many individual cases.

Although the proof was a computer-aided proof, the editors of the journal
Annals of Mathematics accepted the report of a jury of twelve referees who
investigated the proof for four years, and published this proof in an abridged
form (126 pages); see [95]. The referces did not raise doubts about the overall
correctness of the proof, although they could not check the correctness of
all of the computer codes. The unabridged Hales’ paper (265 pages) was
published in Discrete and Computational Geometry [96].

It is perhaps that greengrocers would not be impressed by Hales' proof,
but experts are generally optimistic and accepted it with a great deal of
euphoria. However, there is a small group of sceptics who both point to the
possibility of software and hardware errors and also consider that absolute
certainty is required in a proof, as achieved by a structured sequence of argu-
ments and logic, known among mathematicians as a “formal proof”. They
say: “If historical precedent counts for anything, and having in mind the scep-
ticism provoked by the number of proofs that contained deficiencies, gaps or
inconsistencies, discovered only after their publication, then one might wait
for years uniil Kepler’s conjecture is accepted as a theorem.”

In response to the difficulties in verifying computer codes in his proof and
computer-aided proofs in general, Thomas Hales launched the “Flyspeck
project” (the name derived from the acronym FPK, for the Formal Proof of
the Kepler conjecture), a fundamental system for doing mathematical proofs
on a computer; see [97].
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John Horton Conway (1937- ) (= p. 310)

John Horton Conway, the outstanding British
professor of mathematics at Cambridge and later
at Princeton, and a member of the Royal So-
ciety of London, is widely known among math-
ematicians and amateur mathematicians for his
remarkable contributions to combinatorial game
theory and many branches of recreational mathe-
matics. His hook Winning Ways for Your Mathe-
matical Plays, written with E. R. Berlekamp and
R. K. Guy (published in 2 volumes in 1982 and
4 volumes in the second edition in 2001), has at-
tracted the attention of a wide audience for many
John Horton Conway years,

1937~

J. H. Conway became instantly famous when he launched in 1970 the
Game of Life, a kind of artificial simulation of life. Martin Gardner, who
first published Conway's invention in his Mathematical Games column in
Scientific American (October 1970), said: “The game opened up a whole
new field of mathematical research, the field of cellulay eutomata... . Be-
cause of Life’s analogies with the vise, foll and alterations of a society of
living organismas, it belongs to a growing class of what are called ‘stmulation
games’ (games that resemble real life processes).” Researching certain games,
Conway came to a new system of numbers, named surreal numbers by Don-
ald Knuth. John Conway proposed many mathematical puzzles, including
cube-packing puzzles, the subject of our final exposition in this chapter.

Cube-packing puzzles

One of the first cube-packing puzzles appeared in 1970 in a book by
the Dutch architects Jan Slothouber and William Graatsma. This puzzle,
sometimes called Slothouber-Graatsma—-Conway cube puzzle, is presented
in this chapter as Problem 5.13. However, the versatile genius John Horton
Conway had wanted to design more difficult cube-packing puzzles and, as
may be expected, he was very successful as usual, today there are many
variants of Convey’s cubes. One of them is given in Figure 5.17.

Problem 5.12.% It is required to assemble thirteen 1 x 2 x 4 blocks, three
1 x1x3 blocks, one 1 x 2 x 2 block, and one 2 x 2 x 2 block into a 5 x5 x5
cube (Figure 5.17).
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FIGURE 5.17. Conway's cube-packing puzzle

This puzzle is very difficult because there is an immense number of ar-
rangements of blocks, especially if you try to solve it by trial and error. You
immediately ask yourself which blocks must be placed in the first moves.
Well, “the beginning is always the most difficult,” the old stories tell us, and
it is more than true in this particular problem. However, there is & nice and
attractive theory proposed by Gardner [76] and Honsberger [106] based on
the coloring of the unit cubes. To save space and relax the reader, we omit
it; nevertheless, the basic principle may be found as a part of the solution
of Problem 5.13.

If you are still desperate to know the solution key, here it is! It is the
structure created by the smallest blocks; see Figure 5.18.

Ficure 5.18. The starting position of Conway’s cube puzzle

The smallest blocks 1 x 1 x 3 must occupy all 15 layers 5 x 5 in all
three perspectives, as shown in Figure 5.18. Upon using this base it is not
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particularly difficult to find at least one of many ways of packing the larger
blocks 1 x2x4, 1 x2x%x2and 2x2x2around the already positioned smallest
bricks 1 x1 x 3. Impatient and nervous readers can find the complete solution
at the end of this chapter (5.12.).

We end this chapter with the already mentioned Slothouber-Graatsma-
Conway cube puzzle.

Problem 5.13.*% Assemble siz 1 x 2 X 2 blocks and three 1 x 1 x 1 blocks
into 2 3 x 3 x 3 cube.

Before answering some questions posed in this chapter, let us mention two
variants of Conways’ § x 5 x 5 cube that may be of interest to the reader.
The blocks to be used in the first variant are fourteen 1 x 2 x 4 blocks, three
1 x 1 x 3 blocks and one 1 x 2 x 2 block. In another version it is required
to assemble thirty 1 x 2 x 2 blocks and five 1 x 1 x1 blocks into a 5 x5 x5
cube.

Answers to Problems

5.2. One solution is shown in Figure 5.19.

_

1+

Ficure 5.19. Kites and darts tile the truncated rhombus

5.4. Figure 5.20 shows the absolute minimum solution: the perimoter
of 34 units cannot be decreased. The displayed solution was first given by
P. J. Torbijn in 1984. The problem can be efficiently solved by a computer
program.
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FIGURE 5.20. Pentamino-rectangle with minimal perimeter

5.5. One solution of the first problem is shown in Figure 5.21. T. R.
Dawson, a famous English composer of chess (and other) problems, proved
that this covering problem has a solution for the arbitrary position of the
square tetramino. In 1958 Dana Scott, a mathematician from Princeton
University, used a computer program to find 65 different solutions (excluding
those solutions obtainable by rotations and reflections) with the square in
the center of the board. However, the first solution for covering a chessboard
with all 12 pentaminoes (not requiring the tetramino in the center) comes
from H. Dudeney [55]. In his solution the square tetramino is located on the
edge of the board.

One solution of the second problem is displayed in Figure 5.22.

FIGURE 5.21. Board without FiGURE 5.22. Board without
central square corner squares
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5.6. Let us recall that the chessboard is black and white colored; see
Figure 5.23. Since the cut opposite squares are both black, there are 32
white squares and 30 black squares. One domino, placed either horizontally
or vertically, always covers one white and one black square. Therefore, no
tiling exists. Notice that the coloring principle can be usefully applied to
resolve a variety of packing problems; see Klarner [114].

A similar approach based on the coloring argument deals with the num-
bers 0 and 1; the number O is written in each white square and 1 in each
black square. The total sum of these numbers is 30. On the other hand,
the domino-sum for each domino is 1, making the total domino-sum equal
to 31 x 1 = 31, not 30. This proves that the tiling is impossible.

_

FIGURE 5.23. Tiling the truncated chessboard

5.7. Recall that the L-tile is one of the tetraminoes, the well-known
pieces from the famous computer game “Tetris” proposed by the Russians
A. Pajitnov and V. Gerasimov. The posed tiling problem can be solved
effectively using the number-coloring argument presented in the solution of
Problem 5.6.

First we write 1s and 5s in the small cells of the large square, as shown in
Figure 5.24. Notice that each L-tetramino covers either three 1s and one 5
or three 5s and one 1. Therefore, the sum on a tile is either 8 or 16, in other
words, a multiple of 8. Now we calculate the total sum S of the numbers on
the large square: S = 5 x 10 + 5 x 50 = 300. Since 300 is not divisible by 8,
we conclude that the tiling is impossible.
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FIGURE 5.24. Tiling by L-tetraminoes

5.9. The required solution is shown in Figure 5.25.

14
18

10

15

FIGURE 5.25. Rectangle composed of 9 squares

5.12. We will represent the solution in the zy: coordinate system, but
taking strips instead points, as shown in Figure 5.18. For example, the
unit cube in the origin corner is represented by (1, 1,2), while the smallest
blocks 1 x 1 x 3, placed in the starting position (see Figure 5.18) have the
“coordinates™ (1,1,345), (2,234,2), and (345,5,1). The number of digits
from the set {1,2,3,4,5} gives the dimension of a block (that is, the number
of unit cubes) in the corresponding direction. For example, (345, 5,1) tell us
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FIGURE 5.26. Conway’s 5 X 5 X 5 cube puzzle—solution
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that the dimension of the placed block is 3 x 1 x ] and it occupies the strips
3, 4 and 3 along the x-axis, the strip 5 along the y-axis and the strip 1 along
the z-axis. Using this notation, we give one solution below.

1-3  (23,1234,1) (45,1234,1) (2345,1,23)
4-6  (2345,1,45) (1,1234,12) (1,1,345)
7-9  (2,234,2)  (12,23,34) (12,4,34)
10-12 (12,5,1234) (345,5.1)  (34,2,2345)
13-15 (34, 3,2345) (34,4, 2345) (34,5,2345)
16-18 (5,2345,23) (5,2345,45) (12,2345,5)

The corresponding illustrations which show the packing of the 5 x 3 % 5
cube are shown in Figure 5.26.

5.13. As in the case of Conway’s 5 x 5 x 5 cube, the solution is not
hard to find once we come to the correct initial structure. The cube
3 x 3 x 3 has 9 layers (cross sections), three from each perspective, one
of them being shown in Figure 5.27 left in checkerboard-coloring. The blocks

FIGURE 5.27. Conway-like 3 X 3 X 3 cube puzzle—solution

1 % 2 x 2 always occupy an even number of cells in each layer, leaving 1 or 3
colls for the unit blocks 1 x 1 x 1. It is immediately clear that all 3 unit blocks
must not be placed on a single layer because the remaining layers could not
be covered completely with the 1x 2 x 2 blocks. Therefore, we conclude that
each of the nine layers must have in it one and only one of the 1 x 2 x 2 block.
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Furthermore, we observe that a unit cube must be at the center or at one
of the corners (black cells). Indeed, placing a unit cube at one of the white
cells leaves 3 white cells and 5 black cells for the arrangement of the 1 x2 x 2
blocks. But this is impossible because there are equal numbers of remaining
black and white cells. The only way to fulfill the mentioned conditions is to
place 3 blocks 1 x 1 x 1 along a space diagonal. Using the notation from
the solution of Problem 5.12, one initial position of the unit cubes can be
represented as (1,1, 3), (2,2,2), (3,3, 1). Obviously, these cubes can also be
placed along other space diagonals.

One solution which starts with the mentioned initial position of the unit
cubes is given below.

1-5 (12,1,12) (12,23,1) (3,12,12) (3,3,1) (2.2,2)
6-9 (1,23,23) (23,12,3) (23,3,23) (1,1,3)

The illustration of the completed 3 x 3 x 3 cube is shown in I'igure 5.27 right.
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In physics, you don’t have to go around
making trouble for yourself—nature does it for you.

Frank Wilczek

Among the oldest puzzles are those that rely on elementary physical prin-
ciples or involve physical objects. Everyone is familiar with Zeno’s paradox
on the race of Achilles and a tortoise. Aristotle describes in his Physics
that the quickest runner can never overtake the slowest, since the pursuer
must first reach the point from where the leader started, so that the one
who started first must always hold a lead. Surprisingly, some philosophers
helieve that a correct explanation of this paradox has not been given yet.

From the beginning of science, mathematicians and physicists have had
close collaboration. Many mathematical theories have arisen in solving
physics problems. On the other hand, the development of some new the-
ories in physics was impossible without profound mathematics (for example,
Einstein’s theory of relativity and quantum mechanics). However, some-
times mathematicians and physicists do not get along. The famous physicist
Ernest Rutherford once said: “All science is either physics or stamp collect-
ing.” His contemporary, the great mathematician David Hilbert, retaliated
him: “Physics is too hard for physicists,” implying that the necessary math-
ematics was generally beyond their reach. There is a wildly spread joke on
Internet sites: “An engineer thinks that his equations are an approzimation
to reality. A physicist thinks reality is an approzximation to his equations.
A mathematician doesn’t care.” And one more: “A mathematician believes
nothing until it i3 proven, a physicist believes everything until it is proven
wrong.”

Many physics-math puzzles are concerned with motion, traced distances,
commuter problems, fluid properties, questions of balance, time machines,
physical principles and phenomena. Puzzles that belong only to physics
and contain very little or nothing of mathematics are not considered in this
book. They can be found in many books devoted exclusively to the topics of
physics. In this chapter we use physics terminology freely, assuming that
the reader possesses some basic high school knowledge of physics.

151
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The first puzzle of this chapter is the classical problem on the gold crown of
King Hiero, attributed to Archimedes. Its solution is based on Archimedes’
discovery, the first law of hydrostatics. You probably know about the legend
of Archimedes who, excited after this discovery ahout the displacement of
water in his bath, ran naked through the street crying “Eureka!” A motion
problem by Nicole Oresme is given to demonstrate an elegant solution us-
ing a geometrical method instead of summing infinite series. It was a fine
achievement in the fourteenth century. Summing an infinite series is also
mentioned in connection with the ability of John von Neumann to quickly
operate with complicated and long expressions by heart. The main attention
in this chapter is devoted to the famous problem on the lion and the man in a
circular arena, proposed by Richard Rado in 1932 and studied by numerous
mathematicians, including Littlewood and Besicovitch. In this problem you
again see some infinite series.

*

*x %

Archimedes (280 B.c.—220 B.c.) (= p. 299)

The gold crown of King Hiero

The following frequently told story of King Hiero’s! gold crown is often
connected to Archimedes (see, e.g., [100]):

To celebrate his victories, King Hiero orderved a crown of pure gold. When
the crown was finished, the information came that the goldsmith had with-
held a certain amount of gold replacing it with silver. The king, unable to
find a way of detecting the theft, referred the matter to Archimedes. While
Archimedes was considering this problem, he happened to go bathing. As he
entered the bathing pool, it occurved to himn that the eamount of water flow-
ing outside the pool was equal to the volume of his body that was immersed.
Archimedes realized that he could apply this fact to the problem at hand.
Elated, he rose from the pool and forgetting to clothe himself, he ran home
naked shouting loudly: “Eureka, eureka! (I have found it!).”

Archimedes’ discovery was, in fact, the first law of hydrostatics, given as
Proposition 7 in his first book On Floating Bodies:

A body immersed in fluid is lighter than its true weight by the weight of
the fluid displaced.

1Hiero, or Hieron, the king of Syracuse, third century B.C., Archimedes’ relative (ac-
cording to some historians).
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Let us return to the problem of the king's crown and solve the following
task.

Problem 6.1. Find the ratio of gold to silver in Hieros' crown using
Archimedes’ law of hydrostatics.

Suppose that a crown of weight w is composed of unknown weights w,
and w, of gold and silver, respectively. To determine the ratio of gold to
silver in the crown, first weigh the crown in water and let F be the loss of
weight. This amount can be determined by weighing the water displaced.
Next take a weight w of pure gold and let F; be its weight loss in water. It
follows that the weight of water displaced by a weight w) of gold is =L F}.
Similarly, if the weight of water displaced by the weight w of pure silver is
F5,, the weight of water displaced by a weight w, of silver is 22 F,. Therefore,

w

N wy
= —F, + —F,.
w w
Substituting w = w; + ws in the last relation, we find the ratio of gold to
silver,
) F — F,

Wy B F] '—F.

Nicole Oresme (1320-1382) (— p. 301)

The career of French mathematician Nicole Oresme carried him from
a college professorship to a bishopric. He was a mathematician, physi-
cist, astronomer, philosopher, musicologist, theologian, and finally Bishop of
Lisieux. Oresme was probably the most eminent and influential philosopher
of the fourteenth century. Today the widely known apology, “I indeed know
nothing except that I know that I know nothing,” is attributed to Oresme.

Considering the problem of motion, and in particular the quantitative
representation of velocity and acceleration, Oresme had in essence developed
the idea of representing the functional relationship between velocity and time
by a curve; see Clagett [36]. Giovanni di Cosali gave an earlier graph of
motion, however, it lacked sufficient clarity and impact.

The length of traveled trip

Oresme's geometric technique appeared some 250 years before the work
of Galileo Galilei (1564-1642) in this field. Oresme studied the above-
mentioned subject in an abstract sense only; this becomes evident in the
following problem of velocities that increase without bound.
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Problem 6.2. The velocity of an object is taken to be 1 unit during the
first half of the time intervel AB, 2 units in the next quarter, 3 units in the
nezt eighth, 4 in the next sizteenth, end so on, to the infinity. Calculate the
total distance traveled.

o=
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FICURE 6.1. Geometric method of summing the infinite series

Solution. The sum of the infinite series given below yields the distance
traveled:

S._l.1+£.2+£.3+...+i.n+... (61)

T2 4 8 2" ' ‘

Oresme found that this sum is equal to 2, using an elegant geometrical

method. He drew a square of base C'D equal to AB (= 1) and divided it

“to infinity into parts continually proportional according to the ratio 2 to 17

(Figure 6.1). In other words, E represents half of the square, F one quarter,
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G one eighth, and so on. The rectangle E is placed over the right half of
the square on AB, F atop the new configuration over its right quarter, G
atop the right eighth, and so on. It is evident that the total area of the new
configuration, which represents the total distance traveled, is not only equal
to the sum of the infinite series but also equal to the sum of the areas of the
two original squares.

Let us pause for a moment and leave to the reader the pleasant work of
finding Oresme’s sum.

Problem 6.3.*% Find the infinite sum (6.1) in an elementary way. No
derivatives, please!

Figure 6.1 and the summation by the “packaging” method resembles very
much a subtle problem of Leo Moser, a professor of the University of Alberta
(Canada). Consider the squares with the sides 1/2, 1/3, 1/4,... . These
numbers form the so-called harmonic series

. I . I . b

2 3 4
whose sum is infinite. The proof may be found in almost every texthook on
series or calculus. However, the total area of these squares is finite. This
was discovered in 1746 by Euler who found that?

2

(%)2 4 (%) + (%)2 P % ~ 1 ~0.644934.

Having in mind this result, Leo Moser posed the following problem:

Problem 6.4.* Cean the infinite number of squeres with sides 1/2, 1/3,
1/4, ... be fitted without overlap into a unit square?

Edouard Lucas (1842-1891) (- p. 307)

The French mathematician Edouard Lucas is best known for his results
in number theory: he stated a method of testing primality which, after
refinement by D. H. Lehmer in 1930, has remained in use up to the present
day under the name Lucas-Lehmer test. Lucas particularly studied the
sequence defined by F, = F,_, + F,_g, arising from Fibonacci’s rabbit
problem (page 12), and named it the Fibonacci sequence. Some of the

2 According to C. B. Boyer [26], Euler’s mentor Johan Bernoulli had this result four
years before Euler.
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brain teasers that we have presented in this book were taken from Lucas’
four-volume work on recreational mathematics Récréations Mathématiques
(1882-94).

Meeting of ships

Problem 6.5. Duaily at noon a ship departs from Le Havre bound for New
York and conversely, another ship leaves New York bound for Le Havre. The
crossing lasts 7 days and 7 nights. During the passage to New York, how
many Le Havre-bound ships will the New York-bound vessel meet, with today
as its date of departure?

You should be careful, this is a bit tricky. A quick answer “seven”, for-
getting about the ships already en route, is incorrect. A convincing solution
is shown graphically in the diagram.

A

3 Havreo 1 2 3 4 5 6 'vvvvv 14 15 16 17 18 19 20 days
OGBS
CRLRLLS
P00.00,090°0.0%
RREXRURNN
0:9:900:9:9, 00000
KRN
o Yorko 123 45 "“ 51617 181920 d

B

FIGURE 6.2. Diagram of ships’ crossings

At the moment of departure from Le Havre (point A in Figure 6.2), 8
ships are en route to Le Havre. In fact, one of them is just entering Le
Havre's harbor, and another ship has just left the New York harbor. The
ship starting from A will meet all of these ships. In addition, during the
course of the Le Havre ship’s seven-day crossing, 7 ships leave New York,
the last of them at the very moment that it enters the harbor. Therefore,
the total number of meetings equals 15. It is clear from the diagram that
the ship, whose trip is shown by the line segment AB, meets 13 other ships
at the sea, plus two ships at their moments of departure (Le Havre harbor)
and arrival (New York harbor), which makes 15 in total.
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John von Neumann (1903-1957) (- p. 309)

John von Neumann is certainly one of the greatest twentieth-century
mathematicians, making several remarkable achievements to the field of
mathematics. Many consider von Neumann the founder of mathematical
game theory and a contributor in the development of high-speed computing

e machines and cellular automata. He gave the great
contribution in designing the EDVAC, one of the
first electronic computers that was ever built. Like
many scientists, during and after World War II von
Neumann also worked on the key problems of pure
and applied mathematics and physics which made
possible the development of the hydrogen bomb.
Unlike many of his colleagues, who focused only
on their jobs, von Neumann lived a rather unusual
lifestyle. He and his wife Klara enjoyed an active
social life, giving memorable parties and banquets
John von Neumann in their Princeton home.

1903-1957

From an early age, John von Neumann manifested incredible powers of
memory to which many stories attest. At the age of six, he was exchanging
jokes in classical Greek with his father and dividing two eight-digit numbers
in his head. The Neumann family sometimes entertained guests with demon-
strations of Johnny’s ability to memorize pages from phone book. A guest
would select a page and column at random from the phone book. Young
Johnny, Jdnos in Hungarian, would read the column over a few times and
after that he could answer any question put to him as to whom a certain
number belonged, or recite the names, addresses, and numbers in order. He
also loved history and, since he remembered everything he once read, he
became an expert on many issues: Byzantine history, the details of the trial
of Joan of Arc, minute features of the battles of the American Civil War.

The eminent mathematician Paul Halmos, von Neumann's friend, cited in
[98] that another famous mathematician George Pélya once said:® “Johnny
was the only student I was ever afraid of. If in the course of a lecture I
stated an unsolved problem, the chances were he’d come to me as soon as the
lecture was over, with the complete solution in a few scribbles on a slip of
paper.” Halmos also mentions that von Neumann's poor driving (in)ability
was legendary. Von Neumann himself reported one of his numerous accidents

31t is rather interesting that von Neumann, Halmos and Pélya, were all born in Bu-
dapest, Hungary.
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as: “I was proceeding down the road. The trees on the right were pussing me
in orderly fashion at 60 miles per hour. Suddenly one of them stepped in my
path. Boom!”

A girl and a bird

This old problem can be found in many books of recreational mathematics
in different variants. Here we present a simple one.

Problem 6.6. A girl stands 500 feet from a wall with a bird perched
upon on her head. They both start to move towards the wall in a straight
line. The girl walks at a rate of 5 feet per second and the bird flies at 15 feet
per second. Upon reaching the wall, the bird immediately reverses direction
and returns to the girl’s head where it again reverses direction. The bird’s
to-and-from flight pattern continues until the girl reaches the wall. How far
did the bird travel?

Many people try to solve this classic problem the hard way. They sum
the lengths of the bird’s path hetween the girl and the wall during her walk.
These paths become shorter and shorter, and such an approach leads to the
summing of an infinite series, which is complicated. But, the solution is
very simple and we could call it the “trick™ solution. It is sufficient to note
that the girl walks for 100 seconds before hitting the wall. Thus the bird
flies for 100 seconds and travels

(15 feet per second) x (100 seconds)=1,500 feet.

There is a legend that when his high school teacher gave this prohlem
to John von Neumann, he solved it quickly. When the teacher commented,
“Ah, you saw the trick,” Neumann replied, “What trick? It was an easy
series.”

We present the “easy series” for the flight time which might be the one
von Neumann used.

- — ¥~

® ® ® @
P] P) P3 P4

FIGURE 6.3. The girl and the bird
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Let P, be their initial position and IV the turnaround point at the wall as
shown in Figure 6.3. Then P, is the point where the bird is first on the girl’s
head. Let P; (i = 1,2,...) be the point corresponding to the ith contact of
bird and head and ¢; the time elapsed between contact ¢ and contact # + 1.
Let D be the distance from P; to W, vg the bird’s speed and ve the girl's
speed (vg > vg).

In time ¢; the bird goes from P, to W and back to P;. Also in time ¢,
the girl goes from P; to P, and we have

tivg + thive = 2|P1IV| = 2D. (62)

Similarly, in time £, the total distance they travelled is twice the distance
from P, to W, giving

tavp + thvg = 2(|P1"V| - |P1P2|) = 2(D -— 't)th) = tvg — L ug, (63)

where (6.2) is used to obtain the last equality in (6.3). During time 3 we

have
tavg + tyvg = 2(|P1 ‘Vl - |P1P2| - IP‘_)Pgl)

6.4
=2(D —vgt, — vc;tg) = v — thug, ( )

where (6.3) is used to obtain the last equality in (6.4). From (6.4) we can
conclude that in general we have

vg — v L
t; = ———Cp, | = Kty =--= K-,
vp + V¢

where K = (vg — vg)/(vg + vg). Since K < 1, the total time T is given by

2D 1
= ki .= 1 ¢ _
T-nll)ngcg;tx _nll)ngotlzK v + Vo l—K

2D 1 D

ve +vg 11— (vs —vg)/(vs +vg) vg

Then the total distance traveled by the bird isvgT = vg D /vg, as the “trick”
solution predicts.

One will find it useful to represent the paths of the girl and the bird
by plotting a space-time graph as we see in Figure 6.4. The slopes of the
displayed segment lines are proportional to the velocities v and vgp of the
girl and the bird, respectively. The points P,, P», Pj3,... represent the
points of contacts of the girl and the bird. Of course, we cannot finish
drawing the bird’'s path to W because the zigzags are infinite.
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FIGURE 6.4. Space-time graph for the problem of the girl and the bird

Let us consider another more complicated version of this problem in which
an infinite series, requiring much tedious time and effort, appears.

Problem 6.7.* Two cars, setting out from points A and B 140 miles
apart, move toward each other on the same road, until they collide at C.
Their speeds are 30 miles and 40 miles per hour. At the very instant they
start, a bird takes flight from point A heading straight toward the car that has
left point B. As soon as the bird reaches the other car, it turns and changes
direction. The bird flies back and forth in this way at a speed of 50 miles per
hour until the two cars meet. How long is the bird’s path?

In Chapters 7 and 9 we will encounter the “river-crossing problems”. The
following problem comes in two flavors, a river-crossing and a bird’s path
flavor.

Problem 6.8.* Four rower-mathematicians wish to cross the river by
means of a boat that can only hold two men. The rower R, needs 1| minute
to cross the river alone, and the rowers R, Rz and R4 need 2, 6 and 9
minutes, respectively. Being mathematicians, the rowers have planned an
optimal strategy for crossing the river. They start to row towards the opposite
river bank in a straight line. At the very moment they begin to row, a swan
starts to swim over the river in a siraight line with the speed of 60 feet per
minute. The swan reaches the opposite river bank at the exact moment when
the rowers complete their transfer. How wide is this river?
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John E. Littlewood (1885 1977) (- p. 308)
Abram Besicovitch (1891-1970) (~ p. 308)
Richard Rado (1906-1989) (— p. 309)

The lion and the man

The problem about a lion and a man ¢hat Richard Rado proposed in 1932
belongs Lo the area of recreational mathematics that has attracted a great
deal of attention of numerous mathemuticians, including Jobu E. Littlewood
and Abram Besicovitch. The problemn reads thus:

Problem 6.9. A man finds himself in a circular arena with a lion. Both
man and hon can move throughou! the enliry arena atf the same marimnum
speed. Without leaving the arena. can dhe man pursue a couvse of motion
ensuring fhat the lion will never catch him? The problem assumpes the un-
lanited strength of both man and tion.

Freunri 6.5, A maen sned a lion in & circalar arenn
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For the next 25 years prevailing opinion, substantiated “irrefutable®
proofs, held that the man could not escape from the lion. A quarter century
later Abram S. Besicovitch, a professor at Cambridge University, proved
that these assumptions were wrong. A Mathematician’s Miscellany (London
1957), an intriguing book by the prominent English mathematician John E.
Littlewood (1885-1977), published Besicovitch’s proof of a strategy enabling
the man to avoid contact with the lion. Evidently this problem interested
Littlewood, for he discussed it in his book. More aboutl this problem can
also be found in the paper How the lion tamer was saved by Richard Rado
(Ontario Secondary School Mathematics Bulletin, October 1972) (reprinted
later in Mathematical Spectrum [145]) and in the joint paper [144] by Peter
A. Rado and Richard Rado. Here we present a solution of this very interest-
ing and challenging problem, based on the material given in the references
above.

For the sake of simplicity, we will assume that both lion and man are
mathematical points and that their velocities do not exceed the mazimal
speed v. Let r be the radius of the circle, C its center, M, and Ly the
starting positions of the man and the lion, d;, the starting distance between
them (|MoLy| = doy) and s, the starting distance of the man from the center
ol the circle (|MyC| = sp < 7); see Figure 6.6(a). If he wishes to save himself,
the man should apply the [ollowing strategy.

In the first time interval ¢{; the man moves at speed v perpendicularly to
the direction MLy as long as he traverses the distance (r — 8¢)/2 always
choosing the direction that keeps him closer to the center. In the case when
MyLg crosses the center, both directions are equal so that the man can
choose either of them. Hence the first phase of the man’s escape will last

r—8p
2v

1 =

After that period of time, the distance of the man (who came to the point
M,) from the center of the circle is limited from above by the inequality

2
r—s
slstﬁ-i-( 5 0) .

while the distance between the man and the lion (which came to the point

L,) is given by
r—s\> r—s
dy > dg+( 2“)— 2°>0
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(see Figure 6.6(b)). Therefore, it holds that

In the second time interval the man runs at speed » perpendicularly to
the direction M L, until he covers the distance (r —3,)/3 again choosing the
direction that keeps him closer to the center C. So, the second time interval
is
r—358p

v

ty =

,,,,
. o
LT

FIGURE 6.6. The paths of a man and a lion

After time ¢; + ¢; the distance of the man (who came to point Af;) from
the center of the circle is bounded by

2
r—3p
325\/3:’;4‘( 3 )

The upper bound of the distance between the man and the lion (which came
to point L) is given by

2
T — 8p T — 8
dgz\/df4-( 3 )— 3 > 0.
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From the inequalities for s; and s, we find
2 g, 1 2 2, 1 2, 1 2
s5 < 8 + 5(1‘—30) £80+Z(T_80) +§(r—su) .

The procedure continues in the same way. In the Ath time interval £; the
man will run at speed v perpendicularly to the direction AMg_,Li—) as long
as he crosses the path of the length (r — sg)/(k 4 1). in the direction that
enables him to remain closer to the arena’s center. The corresponding time

interval for this motion is
T — %5

=T

After time ¢; +t3 + -+ - + t; the distance of the man (who came to point Af})
from the center of the circle will be

2
r — Sp
= \/si_’ ¥ (k—1~-1) ’

and from tle lion (which came to point L;)

2
r— Sp T — So

According to the boundaries for sx_;, sx—2,..., 1, we obtain

1 2

. 1 1 .
si. < 8‘3 -+ 2—2(7' - 80)2 + 3—2(1 - 80)2 + e m(’l‘ — Sp)°.

Let us now prove that the man, following the strategy outlined here, will
never be caught by the lion. The proof is hased on the following simple
assertions:

Ifa, = 1/n forn=12,3,..., then
(1) a2+ az+ a4+ = 00;

1
” 2 4 .2 2 :
et ai<l-—— (k>1).
(ii) a; + a3+ ---+a; T ( )

Let us prove these assertions. Since for every £ = 1,2,... we have

i1 + Qg2+ - +aon 2 k-ay =

1

N —



THE LION AND THE MAN 165

we conclude that the infinite series as + a3 + a4+ - - - contains infinitely many

mutually disjunctive sequences of consecutive terms such that the sum of

each sequence is at least 1/2. Evidently, this causes the divergence of the

series a; +az + a4 +--- , thatis, as + a3 +a4+---+a, — co when n = 00.
To prove assertion (ii) we note that

1 1 1 1

('771-{-1)2<m‘(m‘+1)=;_.,n_{_1 (1n=112) )
so that
ai+ai+--a < ! + ! PR 1
2o t=127273 K+ D)
1 12 11
=(1-3)+ G35+ + ()
1
=1 —
k+1

We will prove that the man's described motion is possible, that is, the
man will not need to leave the arena at any moment. According to assertion
(ii) we get for every k = 1,2, ...,

2 o2 21 1 1
3; <85+ (r —s0) 2—2+3—2+"‘+m
1
<S|2)+(7'—S[))2 (l— m

<88 + (r — 8p)°

2
< [so + (r - so)] =7,
Hence, for each & it holds that s; < r, that is, the man always remains inside
the circle.

From the inequality d; > 0, which holds for every &, we conclude that the
lion will not catch the ran if he follows the described strategy of motion.
Well, presuming that he is able to run, keep an eye on the lion and make
sophisticated calculations simultaneously all the time.

Finally, it is still necessary to prove that this kind of motion can last
an infinitely long time. Thus, we have to prove that the sum of the time
intervals t; + t> + t3--- is infinite. This sum equals

; ; ; 1 1 1
1tttz = (7‘—80)(§+§+Z+"')
=(r—so)(az +az+as+---),

and it is infinite according to assertion (i).
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From the presented proof we see that the divergence of the harmonic series
plays a key role: the described motion of the man can last an infinitely long
time. How fast does this series approach “lazy eight”, that is, c0o? The
following example is illustrative.

A mathematician organizes a lottery which will bring an infinite amount
of money to the holder of the winning lottery ticket. After some time all
lottery tickets have been sold. When the winning ticket is drawn and the
lucky winner came to take the prize, the organizer explains how the prize
will be paid: 1 dollar immediately, 1/2 a dollar the next week, 1/3 of a dollar
the week after that, and so on. The harmonic series 1+1/2+1/3+--- has an
infinitely large sum, but this sum increases so slowly that the winner would
obtain about 8.44 dollars after 50 years (2,600 weeks).

In this chapter we have combined physics (motion) and geometry. The
next bonus problem also combines motion and elementary geometry and
may be useful in some real-life situations.

Problem 6.10.* A large avalanche in the Alps traps an unhappy mole.
When the evalanche stops, it turns out that the poor mole has been buried
somewhere inside a snowball with an ellipsoidal shape (the ellipsoid is the
shape of a rugby ball, or a more or less flattened ball, if you do not know
what an ellipsoid is) with a volume of 500 cubic meters. The mole can dig
a hole through the snow advancing at one meter per minute but he only has
the strength and breath for 24 minutes. Can the mole reach the surface of
the snowball and save his life?

Answers to Problems

6.3. The sum of multiplied powers is no reason for panic. Let

n
Sa=) ka*=1-z+2-2°+ -+ n-a"

k=0
The key idea to solving this is to split the above sum and form an equation

in S,,

Sn 4 (n+ 1)z =Y (k4 Dbt = ket 4 ) gk

k=0 k=D k=0

=25, + Y _attl. (6.5)
k=0
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The other sum is a geometric progression. You have learned in high school
(we hope) that this sum is

n+42

n
S I
x = T £ 1).
> —— (= #1)
k=0

Returning to (6.5) and solving the equation

Sp+ (n+ 2"t =28, +

in S,,, we obtain
P — (n + l)xn+1 + nzn:—2

o = L

(6.6)

Assume now that |z| < 1, and let n = co. Then 2"7! = 0 and 2"%? = 0
and from (6.6) it follows that
T

» . 2 ----- [ n - @ » ] —————
1-242-2°+4 Fn-z2” + —"12120.5',,-— TS

Here liin, o S, denotes a lunit value of the sum 5, when the number of
addends n is infinitely large. In particular, taking 2 = 1/2, we find the
required Oresme’s sum

1 1 1/2
~. e e — ] A —
g Sttt =TIy

6.4. The required fitting of “harmonic squares” is possible, as shown
in Figure 6.7. The unit square is divided into strips of width 1/2% (k =
1,2,3...). Since the sum of the widths of strips is 72/6 — 1 ~ 0.644 (see
page 153) and the sum of sides of the squares in the kth strip is

1 1 1 1
< ¥ =1, (k=1,2,-"),
ok Yoyt k41 ] ok ( )

an infinite number of small harmonic squares can be packed inside the unit
square. As mentioned in [73], the composer of this problem Leo Moser and
his colleague J. W. Moon, both from the University of Alberta (Canada),
showed that these squares can be fitted into a square of side no less than
5/6 (= the total width of sides of the squares in the first strip).
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164

1132

FiIGURE 6.7. Packing of harmonic squares into the unit square

6.7. Despite a bit more complicated conditions, the solution does not
require much effort and can be found without pen and paper; it does not
take a genius to calculate that the cars will meet in exactly two hours. Since
the bird flies for two hours, its path must be 2 - 50 = 100 miles. There is no
need to sum an infinite series, which is here considerably more complicated
compared to the series appearing in the problem of “a girl and & bird.”

6.8. First, notice that a joined pair of rowers will cross the river faster
than each of them individually. To find the speed of any pair of rowers,
let us assume that an energy £ is needed for one transfer. If F} stands for
the power of the rower R necessary for one crossing which lasts ¢, minutes
(k=1,2,3,4), then

E=Ft = ity = Fyty = F4t4, (67)

where t; = 1, t; = 2, t3 = 6, t3 = 9 (expressed in minutes). From (6.7) it
follows that Fy = E/t;, The time t;; for crossing the river by any two rowers
R; and R; is equal to

E E
F:+F,  E/t:+Eft; ti+t;

t; =
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Let - R and « R denote forward-trip and backward-trip of a rower R
over the river. The optimal strategy of crossing the river is as follows:

starting bank rower(s)  crossing-time (in minutes)
— R RyR3R, B B
1. Ra R4 — RRy 11y = (tltq)/(h +54) =9/10
2. R1R2R3 — Rl thi =1
3. R, — HRoH3z 1oy = (tgtg)/(tg 4 t3) = 3/2
4. Rl Rg L RQ ty = 2
3. — —) R,l Rg tin = 2/3

From the above scheme we find that the total time of all transfers of the
rowers is
2

Y 3 U1
t=1t t t t typ ==+ 14 =+ 24 - = - minutes.
14 H i +ioa +1p 4+ 1o 10-i- +2+ +3 lsmmu

The width of the river is equal to the distance traveled by the swan, that is,

(60 feet per minute} x (91/15 minutes)=364 feet.

6.10. Let the point A mark the location of the mole captured in the
snowball. In order for its to dig out of the snowball, the mole must first
dig a tunnel 8 meters long in a straight line up to point B (see Figure 6.8).
Then it must make a right angle turn and go the next 8 meters straight
ahead to point C. Finslly, it must make another right angle turn in reference
to the plane determined by the straight lines AB and BC, continuing in that
direction 8 meters to point D.

FIGURE 6.8. The mole’s rescuing from the snowball
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It is not terribly hard to prove that at least one of the points B, C, and
D lies outside the snowball. Indeed, if all four points A, B, C, D would lie
inside the snowball. then all interior points of the cube constructed from the
perpendicular segments AB, BC, and C D would belong to the interior of the
snowball. However, the volume of such a cube is 8 x 8 x 8 = 512mn®, which
would mean that the volume of the snowball is greater than 512m?®. This
would contradict the terms of the posed task, which consequently proves
that at least one of the points B, (', and D lies outside the snowball.
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Most popular mathematics puzzles and games
are essentially problems in combinatorics.

Anders Bjorner and Richard Stanley
‘A Combinatorial Miscellany’(2004)

Combinatorics is a branch of discrete mathematics that studies arrange-
ments of objects of finite sets, satisfying specified criteria. In particular, it is
concerned with “counting” the objects in those sets (enumerative combina-
torics) and with deciding whether certain “optimal” objects exist (extremal
combinatorics). The renowned authors Fuchs and Tabachnikov have said
that combinatorial problems look like this: “Given such and such a num-
ber of such and such things, in how many ways can we do such and such a
thing?”

Some examples of combinatorial questions are the following: How many
nonempty subset does a set of 64 elements have? What is the miniinum
number of moves required to transfer a Tower of Hanoi puzzle consisting of
64 disks (see Problem 7.15 in this chapter)? The problem of the chesshoard-
grains of wheat asks for the total nuinber of grains on the ordinary 8 x 8
chessboard if one grain of wheat is placed on the first square, two on the
second, four on the third, and so on in geometric progression, the number of
grains being doubled for each successive square until the final sixty-fourth
square of the chesshoard. The answer to these questions is the same: 2% —1.
The solution of these structurally different problems uses the same method
of combinatorics.

Recent progress in combinatorics has been initiated by applications to
other disciplines, especially in computer science. Modern combinatorics
deals with problems of existence and construction of combinatorial objects
with given properties, as well as with optimization problems.

A great number of combinatorics has arisen from games and puzzles. In
how many ways can you place 8 rooks on the 8 x 8 chessboard (or, more
generally, n rooks on an n x n board) so that no rook can be attacked
by another? How many poker hands are there (choose 5 from 52)? How
many ways of placing & balls in n boxes are possible? The last task is of a

171
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higher school level, but it might be important when, for example, we consider
the distribution of & electrons among n shells in the physics of elementary
particles.

Many combinatorial problems can be understood by a large audience be-
cause extensive prerequisites are not necessary. To solve most problems in
this chapter, you will often need only patience, persistence, imagination and
intuition. Once J. L. Synge said: “The mind is at ils best when at play.”

You will find in this chapter a diverse set of famous entertaining problems
such as the ring puzzle, Eulerian squares, the Josephus problem, Cayley's
counting problem, the Tower of Hanoi puzzle, the river-crossing problems,
Kirkman's schoolgirls problem and the three-planting problem of Sylvester.
Accordingly, giants such as Euler, Cayley, Sylvester, Steiner, Knuth and
Cardano appear as the main players in this chapter.

*

* %k

Mahavira (ca. 800—ca. 870) (= p. 300)

Combination with flavors

According to Katz [113, p. 228], the first recorded statements of com-
binatorial rules (although without any proofs or justification) appeared in
India. In the ninth century, the Indian mathematician Mahavira gave (with-
out proof) an explicit algorithm for calculating the number of combinations.
His rule, translated into the modern formula, can be written as

Ccr = n('ll—l)(n—Z)---(n—k+ ]_) . (n)
F 1-2-3---k ~\&)

where C is the number of different ways of choosing & ingredients (objects)
among n ingredients (objects). The following task from Mahavira’s book
Ganita Sara Samgraha (about 850 A.D.) concerns this subject.

Problem 7.1. In how many ways cen different numbers of flavors be
used in combination together, being selected from the astringent, the bitter,
the sour, the pungent, and the saline, together with the sweet taste?

Obviously, choosing k flavors (among n) is the same as choosing n — k
flavors which are not included. This is in accordance with the well-known

binomial relation
( ) (” -
k] \n-k})

Consequently, we conclude that there are:
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(8) = 1 way of choosing none of the flavors,

(‘{) 6 choices of a single flavor,

(S) (6 -5)/2 = 15 ways of choosing a pair of flavors,
(5) = (6-5-4)/(3-2) = 20 ways of choosing three flavors,
((;’) (‘;) choices of four flavors,

(2) (g) = 6 ways of choosing five flavors,

(2) = (8) = 1 way to choose all flavors.

Summing the above answers we obtain that the total number of all dif-
ferent combinations of flavors is 64.

The posed task can be solved using another approach. Let f;fo>--- fs be
a 6-digit number where fi, = 0 (k € {1,...,6}) if the flavor k is rejected and
fi = 1 if the flavor % is accepted. We start with

000000, 000001, 000010, 000011,

and finish with
111100, 111101, 111110, 111111.

How many different 6-digit numbers exist? The answer is V) = 2% = 64
(variation with repetition of 6 elements of the second class).

Claude Gaspar Bachet (1581-1638) (— p. 302)

Married couples cross the river

The medieval mind delighted in a certain type of puzzle involving the
river-crossing in which specific conditions and/or restrictions prevailed.
Some references (e.g., [133], [150], [153], [186]) attribute the earliest problems
of this sort to the eighth-century English theologian and scholar, Alcuin of
York and the eminent Italian mathematician Niccolo Tartaglia (1550-1557).
In addition to the next problem and its variants, we present another three
problems on pages 240-243.

Problem 7.2. Three beautiful ladies and their husbands come to a river
bank while traveling. They must cross the rivey by means of a boat that cannot
carry more than two people at a time. The problem is further complicated
by the jealousy of the husbands. To avoid any scandal, they agree that no
woman should cross the river unless in the company of her husband. How can
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the party cross the river in the fewest number of crossings while respecting
the stated conditions and also assuming that the women can row?

Solution. Eleven passages are required and although there are several
ways of crossing the river, this number cannot be reduced. Let capital letters
A, B, C stand for the husbands, and lower case letters a, b, ¢ stand for
their wives, where the same letters correspond to each married couple. The
diagram below outlines one possible solution to the problem. The numbered
statements record each of the successive crossings, noting each individual’s
location, whether side X, the point of departure, in the boat, or side Y, the
destination point. The arrows — and < in the list below mean departure
and return, respectively. According to D. Wells [186], Alcuin of York put
forth the solution consisting of eleven crossings.

starting bank rower(s) arrival bank

— ADBCabc e _

1. BCbc —  Aa Aa

2. ABCbc « A a

3. ABC — be abc

4. ABCa — a be

5. Aa - BC BCbe

6. ABab « Bb Ce

7. ab — AB ABCc
8. abe ~ ¢ ABC

9. e — ab ABCab
10. Cc « C ABab
11. i — Cc ABCabc

Below, however, D. Wells gives a shorter solution [186, p. 203] that requires
only nine crossings in which the letter combinations represent the rower(s):

Aae A be a Aa A BC a Aa

— = = = /3 = /) = =

Yet we can accept this solution only under special conditions of which the
text of the task makes no mention. Namely, in the seventh crossing husbands
B and C reach the arrival bank where wives a, b and ¢ are situated. Then
B and C land on the bank while wife @ rows back in the boat. Therefore,
hushbands B and C pass wife ¢ momentarily, thus violating the condition
which forbids the meeting of persons from a “forbidden group”. If this brief
mecting is overlooked, the nine-stage solution could then he accepted. We
note that Rouse Ball and Coxeter [150, p. 118] discussed the eleven-crossing
solution.
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A great many variations of this type of river-crossing problem with n
married couples have been widely spread throughout the literature of the
time; see, e.g., [56], [107], [118], [125], [150]. For n > 3 the problem can be
solved only if there is an island in the middle of the river; its proof may be
found in [107].

Problem 7.3. Solve the “Marvied couples cross the river” problem with
Jour married couples (the husbands are again jealous), this time with an
island in the middle of the river. There is a boat that holds not more than
two people and all passengers can row.

Solution. The entire operation, described by Ignjat’ev [107], requires not
less than 17 passages. Let A, B, C, D stand for the husbands and a, b, ¢, d
stand for their wives beginning with the entire party gathered together on
the saimne side of the river. The scheme presented below clearly indicates the
combinations obtained for each stage of the crossing, i.e., the composition
of the rowing party, and the individuals standing on either side of the river.

At the beginning, all travelers are on the starting bank, whicl is denoted
by ABCDabcd (the names of all passengers). The crossing is carried out
according to the following scheme (current states on both banks and the
island clearly indicate the river-crossing and rower(s) in the boat):

starting bank island arrival bank

— ABCDabcd — —

1. ABCDecd — ab

2. ABCDbcd — a

3. ABCd b a

4. ABCDcd b a

5. CDcd b ABa

6. BCDcd b Aa

7. BCD bed Aa

8. BCDd be Aa

9. Dd be ABCa
10. Dd abc ABC
11. Dd b ABCac
12. BDd b ACac
13. d b ABCDac
14. d bc ABCDa
15. d — ABCDabe
16. cd —_ ABCDab

17. — — ABCDabed
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There are several ways to achieve the crossing in 17 passages, but the
above solution accomplishes the crossing operation in the fewest trips and
the fewest number of passages back and forth.

M. G. Tarry has complicated the problem under consideration by assum-
ing that the wives are unable to row (see [118]). He also proposed a further
complication by suggesting that one of the husbands is a bigamist traveling
with both of his wives. A similar variant is given in Steven Kranz’s excellent
book Techniques of Problem Solving [119]: “A group comnsists of two men,
each with two wives, want to cross a river in a boat that holds two people.
The jealous bigamisis agree that no woman should be located either in the
boat or on the river banks unless in the company of her husband.”

Josephus problem

A well-known medieval task consists of arranging men in a circle so that
when every kth man is removed, the remainder shall be a certain specified
man. This problem appeared for the first time in Ambrose of Milan’s book
De Bello Judaico (bk. iii, chpts. 16-18). Ainbrose (ca. 370), who wrote this
work under the name of Hegeisippus, stated the problem thus:

Problem 7.4. Vespasian, a successful military commander and later Ro-
man Emperor, and the army under his command, were charged with quelling
the Jewish revolt against Roman Domination. Vespasian and his men cap-
tured the famous Jewish historian Flavius Josephus and forty other men in a
cellar. The Romans decided to kill all the prisoners but two using a selection
method that requires the arrangement of all prisoners in a circle and then
killing every third man until only two were left. Josephus, not keen to die,
quickly calculated where he and his close friend should stand in the murder-
ous circle, thus saving his life and that of his friend. Which two places in
the circle did Josephus choose?

The answer to this question of life or death reads: Josephus placed himself
in the 16th place and a close friend in the 31st place (or opposite). See the
end of this essay.

A tenth-century European manuscript and the Te’hbula of Rabbi ben Ezra
(ca. 1140) both make mention of the “Josephus problem”. It is interesting
that this problem reached the Far East, appearing in Japanese books. Chu-
quet (1484) and later such eminent writers as Cardano (1539), Buteo (1560),
Ramus (1569) and Bachet (1624) gave great prominence to this problem; see
D. E. Smith [167, Vol. II, p. 541].

Smith [167, Vol. II], Rouse Ball and Coxeter [150, pp. 32-36], and Skiena
[164, pp. 34-35] give numerous details of this problem. Here we present
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Bachet’s variant of the Josephus problem which appears as problem xxiii in
bis classic book Problémes Plaisants et Délectables, Lyons 1624.

Problem 7.5.* Fifteen sailors and fifteen smugglers were sailing on a
ship that encountered ¢ storm. The captain could save his ship only if half
of the party abandon the ship. He arranged the thirty men in a circle, and
every ninth man, reckoning from a given point on the circle, was lowered
into a lifeboal. How did the captain aervange the men in such a way that all
fifteen of the sailors were saved?

P. G. Tait? has considered a general case when n men are arranged in a
circle and every kth man is removed beginning anywhere and going around
until only » are left.

Henry E. Dudeney ( Tit-Bits, London, October 1905), the great English
composer of mathematical diversions suggested the following modification
to the original problem.’

Problem 7.6.* Let five sailors and five burglars be arranged around a
circle thus, BS BS S BS B S B. Suppose that if beginning with the ath man,
every hth man is selected, all the burglars will be picked out for punishment;
but if beginning with the bth man, every kth man is selected, all the sailors
will be picked out for punishment. The problem is to find a, b, h, k.

Muramatsu’s text dated 1663 gives a Japanese version of the “Josephus
problem” that reads thus:*

Problem 7.7.* Many years ago there lived a prosperous farmer who had
been married twice. From his first marriage, he had fifteen children; from
his second marriage, he also had fifteen. His second wife very much wanted
her favorite son to inherit the entire property. One day she suggested to her
husband that they arrange all 30 children in a circle, and designating the first
child in the circle as number one, thereafter they would count out every tenth
child until only one remained, who would then be narmed as the heir. The
husband agreed to this vequest, and the wife then arranged all the children
in a circle. This counting process eliminated 14 of her fifteen stepchildren at
once. Feeling quite confident of a successful outcome, the wife then suggested
that they reverse the order of the counting. Once again, the husband agreed,

1In fact, we give a more human variant to avoid possible criticism, both political and
religious, since Bachet’s and Buteo’s versions involved clashing Turks and Christians.

2Collected Scientific Papers, Vol. I1, Cambridge, 1900, pp. 432-435.

3The occupations given for the people in the problem have been changed for the samne
reasons given in an earlier footnote.

1The adapted version of the text quoted in Cajori [32, p. 79].
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and the counting proceeded in the reverse order. This time, however, the
counting resulted in the unerpected exclusion of each and every one of the
second wife’s children, and the remeining stepchild consequently inherited
the property.

The analysis of possible arrangements of the initial position of the 30
children is left to the reader.

R. L. Graham, D. E. Knuth and O. Patashnik considered the following
variation of the Josephus problem in their fascinating book Concrete Math-
ematics [88].

Problem 7.8. n people numbered 1 to n are disposed around a circle.
If one starts with person 1 and eliminates every second remaining person,
determine the survivor’s number, J(n) (J stands for Josephus).

The mentioned authors have derived in [88] a simple but remarkable re-
currence relation that defines J(n) for arbitrary n.°> In what follows we give
a short adaptation of their treatment of the Josephus problem. Let us dis-
tinguish between the even and odd case of n. If there are 2n people at the
start, then after the first trip around the circle only the odd numbers are
left (Figure 7.1(a)) and 3 will be the next to eliminate. This is just like the
starting position, but without n eliminated persons and a new numeration
where each person’s number is doubled and decreased by 1. Therefore,

J(2n)=2J(n) -1, for n>1. (7.1)
2n-1 13 el S 5
2n-3 5 2n-1 7
9
a) b)
FIGURE 7.1.

Now let us assume that we have 2n + 1 people originally. Alter the first
pass around the circle, the persons numbered 2,4,6,...,2n and 1 (in this

5 The authors noted, in their characteristic style: “Josephus and the Jewish-Romar.
war have led us to some inleresting general recurrences.”
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order) are executed, leaving again persons with odd numbers, excepting
number 1 (see Figure 7.1(b)). This resembles the original situation with n
people, but in this case their numbers are doubled and increased by 1. Thus

J2n+1)=2J(n)+1, for n2>1. (7.2)

Combining (7.1) and (7.2), and taking into account the obvious case
J(1) = 1, we obtain a recurrence relation that defines J in all cases:

J(1) = 1;
J(2n) =2J(n) -1, for n2>1; (7.3)
J2n+1)=2J(n)+1, for n2>1.

To find a general explicit formula for J(n), we first form Table 7.1 of small
values using (7.3).

n|1|23[4567[89101112131415 |16
Jny|[1 131357135 7 9111315 |1
TABLE 7.1.

We have grouped the entries of .JJ(n) for n from 2™ to 2™ V1 —1 (m = 0, 1,2, 3),
indicated by the vertical lines in the table. We observe from the table that
J(n) is always 1 at the beginning of a group (for n = 2™) and it increases
by 2 within a group. Representing n in the form n = 2™ + k, where 2™ is
the largest power of 2 not exceeding n, the solution to the recurrence (7.3)
seems to be

J2" +k)=2k+1, for m>0 and 0L k< 2™, (7.4)

We note that the remainder & = n — 2™ satisfies 0 < k < 2m+1 —_ 2m if
L n< 2m»;~—l.

We will prove the formula (7.4) by induction. For m = 0 it must be £ =0
(following the above bounds). Then from (7.4) we have .J(1) = 1, which is
true. Let m > 0 and 2™ + k£ = 2n + 1, then & is odd. Assume that for some
m > 0 the following is valid:

J@2™ + k) =2k + 1.
According to this hypothesis and (7.3), we find

JR™ +k)=2J@" T +(k—1)/2) +1=22(k-1)/2+1) +1=2k +1,
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which completes the proof by induction. In a similar way we derive the proof
in the even case, when 2™ + k = 2n. Therefore, formula (7.4) is stated.

To demonstrate solution (7.4), let us calculate J(101). Since 101 = 2° 437
(that is, k = 37), we have J(101) = 2-37+ 1 = 75.

In [88, p. 11] the authors gave the following interesting solution to .J(n)
using representations in the binary system.

If the binary expansion of n is
n= (bnby_1---b1b0)2,
that is, n = b,, - 2™ +b,,_, -2™~L 4 ... 4 b, - 2+ by, then
J(1n) = (bu—1bm—2 - 010gby, )2,

Therefore, J(n) is obtained from n by a one-bit cyclic shift to the left. For
example, if n = 101 = (1100101),, then

J(101) = J((1100101)3) = (1001011),,

which gives
J(101) =64 8124 1=75.

We end this essay on the Josephus problem with the remark that the
Mathematica package Combinatorica can simulate the “Josephus process”
by the command InversePermutation[Josephus[n,m]]. The outcomne is
the ordered list of men who are comnsecutively eliminated from the circle
consisting of n men, when every mth man is eliminated. For example, n = 41
and n = 3 in the original Josephus problem (Problem 7.4). The command
InversePermutation[Josephus[41, 3]] gives the ordered list

3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39,
i, 6, 10, 14, 19, 23, 28, 32, 37, 41, 7, 13, 20, 26,
34, 40, 8, 17, 29, 38, 11, 25, 2, 22, 4, 35, 16, 31

The last two numbers (in bold) represent beneficial places for Josephus and

his friend.

Gerolamo Cardano (1501-1576) (— p. 301)

The multi-talented Italian mathematician, physician, astronomer and
gambler Gerolamo Cardano was not only a controversial figure, but also
a. man of remarkable contrasts. Furthermore, Cardano was one of the most
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extraordinary characters in the history of mathematics. At the beight of his
fame he bad a reputation as the world’s leading scientist. His turbulent life
was marked by great successes and by great misfortunes. Tragedy struck
Cardano’s family several times; first in 1560, his elder son Giambattista was
executed for murdering his wife. Cardano’s younger son Aldo was a gambler
who associated with individuals of dubious character. He gambled away all
his possessions as well as a considerable sum of his father’s money. He even
broke into his father’s house to steal cash and jewelry. Cardano was forced
to report his son to the authorities and Aldo was banished from Bologna.

Rings puzzle

Figure 7.2 shows a very familiar toy known as Chinese rings. The French
call this puzzle La Baguenodier and the English call it Tiring Irons. Accord-
ing to Steinhaus, this device was originally used by French peasants to lock
chests. Although very old, this toy is sold even today in toy shops all over
the world. Despite its name, no one has ever proven its Chinese origin until
today. S. Culin® suspects that Chinese general Hung Ming (A.D. 181-234)
made this toy puzzle to amuse his wife while he waged his wars. Gerolamo
Cardano was apparently the first to describe this puzzle in 1550 in his De
Subtilitate, bk. xv, paragraph 2, ed. Sponius, vol. iii. However, this puzzle
was mentioned in passing in chapter 7 of Hongloumenyg (The Dream of the
Red Chamber), a famous novel in 1791. It was also considered by John
Wallis in his book, Algebra, Latin edition, 1693, Opera, vol. 11, chap. ¢xi.

FiGure 7.2. Chinese rings

The Chinese rings puzzle consists of & number of rings hung upon a long
wire loop. Each ring is connected loosely by a post to a platform below the
loop. Each of the connecting posts is linked to the corresponding ring to
prevent removal of a ring from the loop. The ring can slide along the loop
to its end A and can be taken off or put on the loop in such a way that any

83, Culin, Games of the Orient: Korea, China, Japan, Charles E. Tuttle, Rutland
1965.



182 7. COMBINATORICS

other ring can be taken off or put on only when the one next to it towards
A is on, and all the rest towards A are off the loop. The order of the rings
cannot be changed. The aim is to remove all the rings in the minimal number
of moves.

The solution to the Chinese rings puzzle is similar to that of the Tower
of Hanoi puzzle (see page 196), in that they both require a reversal of the
procedure, in other words, putting the rings back on the loop. This recursion
property provides an obvious link between these two puzzles. Moreover,
in both cases the use of binary numbers leads to ingenious solutions, thus
making these puzzles nearly identical.

W. W. Rouse Ball and H. S. M. Coxeter in [150] describe a procedure
to find the total number of steps necessary to remove all of the rings. The
minimal number of moves is either 3(2"*! — 1) if n is odd, or $(2"*! —2) if
n is even. These numbers can be expressed by tlie recurrence relation

AO = 11 AQ = 27 An - An—l + 2An—2 + 1.

Interestingly enough, Cardano and Wallis did not find the optimal so-
lution of the rings puzzle. An elegant solution was given by the I‘rench
mathematician Louis A. Gros in 1872 in his treatise Théorie du Baguen-
odier (Lyons, 1872). Iis approach to the solving procedure anticipated the
so-called “Gray code”, named after Frank Gray, an engineer who worked on
an error-correcting technique during the 1930s at AT&T Bell Laboratories.

Mathematics literature abounds with details of the rings puzzle; see, for
example, the works of Afriat [1], Berlekamp, Conway and Guy [17, Vol.
2, Ch. 19], Dewdney [50], Garduer [81], Rouse Ball and Coxcter [150], D.
Singmaster [163] and Skiena [164].

Here we will give only the solution of the Ave-rings puzzle based on binary
numbers and Gray-code numbers, following the mentioned Dewdney’s article
[50]. The five-rings puzzle requires $(2° —1) = 21 moves. Each ring position
will be represented by a Gray five-digit binary sequence of 0’s and 1’s, where
1 stands for a ring on the loop and 0 stands for a ring off the loop. The last
digit of a Gray number relates to the position of the first ring (nearest to the
end of the loop), and the first digit is related to the fifth ring. For example,
we give several ring positions:

11111 (all rings on)

10111 (fourth ring off)

11010 (first and third rings off)
00011 (first and second rings on)
00000 (no rings on)
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Binary code Gray code Binary code Gray code
0 00000 o0OOOO 11 01011 01110
1 00001 0000D01 12 01100 01010
2 00010 00011 13 01101 01011
3 00011 00010 14 01110 01001
4 00100 00110 15 01111 01000
5 00101 00111 16 10000 11000
6 00110 00101 17 10001 11001
7 00111 00100 18 10010 11011
8 01000 01100 19 10011 11010
9 01001 01101 20 10100 11110
10 01010 01111 21 10101 11111

TABLE 7.2. Binary numbers and Gray-code numbers

Table 7.2 gives decimal numbers from 0 to 21 in the binary representation.
For these binary numbers the associated Gray-code numbers are generated
and displayed in the second column. Bach five-digit Gray-code number is
obtained from its corresponding binary number by the following rule: Reck-
oning binary numbers from left to right, the first Gray-code digit is always
the same as the first binary digit. Afterwards, each Gray digit is 1 if the
corresponding binary digit differs from its predecessor; otherwise it is 0. Sur-
prisingly, there is an incredible coincidence between Gray-code numbers and
the solution of the rings puzzle: in reverse order (from 21 to 0 in five-rings
case) the Gray-code numbers show only the successive ring positions in the
required solution.

Before going any further, let us allow a digression for a while to mention
the Gray-codes and coding theory in general. Coding theory is a branch
of mathematics and computer science dealing with the error-correcting pro-
cess. The main goal of coding theory is to send messages reliably when
transmitting data across noisy channels. For example, it is of great interest
to receive relatively good images sent from distant space: from Mars, Venus
or even deeper space. Do you believe that coding theory plays an important
role when your CD player encounters troubles arising from a badly scratched
compact disc? For more details, adapted for a wide circle of readers, see the
book [13| of Ehrhard Behrends.

Let us go back to the Gray-codes and the solution of the ring puzzle.
According to Table 7.2 we can form a diagram (displayed in Figure 7.3)
indicating the steps necessary to remove the first three rings from the set of
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five rings. The associated Gray-code numbers show the successive positions
of the rings, represented by small circles.

__ 0 & 0 &
°
1 1 1 1 0 (20
& o @
e o
1 1 0 1 0 (19)
& & 0 o
°
110 1 1 (18
2@ e
3K
110 0 1 (17)
__ 0 @
o0
11 0 0 0 (16)

FIGURE 7.3. Five rings and the corresponding Gray-code numbers

Nicolaus II Bernoulli (1687-1759) (— p. 304)
Leonhard Euler (1707-1783) (- p. 305)

The problem of the misaddressed letters

The following problem was first considered by Nicolaus II Bernoulli, the
nephew of the two great mathematicians Jacob and Johann Bernoulli. Euler
later solved this problem independently of Bernoulli.

Problem 7.9(a). Assume that k distinct objects are displaced in posi-
tions 1 through k. In how many different ways can they be reordered so that
no object occupies its original place?

Often found in literature® this problem is treated as a curious problem of
combinatorics. The problem of the misaddressed letters states the problem
in a slightly more concrete form.

7C. P. R. de Montmort, Essai d’analyse sur les jeur de hasard, Paris 1713; J. L.
Coolidge, An Introduction to Mathematical Probability, Oxford 1925; C. V. Dwrel, A.
Robson, Advanced Algebra, London 1937; A. C. Aitken, Determinants and Malrices,
Edinburgh 1956; L. Comtet [39]; H. Dorrie [54]; S. Fisk [64]; S. G. Kranz [119]; W. W,
Rouse Ball and H. S. M. Coxeter [150|.
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Problem 7.9(b). An individual has written k letters to each of k differ-
ent friends, and addressed the k corresponding envelopes. How many differ-
ent ways are there to place every letier into a wrong envelope?

Solution. Let ap,...,a; denote the objects and let Py,... , P, be their
corresponding positions. If the object a; lands in P; we will write a; || P;, if
a; is not in P; we write a; {f P;. Let the required number of misplacements
be designated as A (k).

We will distinguish between two different cases: (i) @) || P; and a3 || Py,

while the objects a3, ... ,a, are distributed among Ps,..., P, but so that
a,H’P, (l= 3 ,k), (ll) ai ” .P), but (Ig.H'Pl.
Case (i): The objects a3, a,,... ,a; are distributed among P3, P, ..., Py

so that a; Jf P; holds for every i € {3,4,...,k}. The number of possible ways
for these arrangements is, obviously, Af(k — 2).

Case (ii): This case is equivalent to the following situation: we wish to
distribute a3, a3,a4,... ,a; among P, P;, Py,... , P, but in such a way that
a> }t Py, a3 §f Ps, and so forth. Therefore, the number is A{(k — 1).

The number of allowable rearrangements in which a; ends up in Ps is
M(k — 2) + M(k — 1). We can repeat a similar analysis to determine the
number of allowable arrangements in which a; || Ps,a1 || Ps,-..,01 || Pr-
This number will be the same: A (k — 2) + M(k — 1). Therefore, the total
number A{(k) of all possible cases is

Mk)=(n-1) [M(k —2)+ M(k - 1)].

The last recurrence relation can be rewritten as

M(k)—k-M(k-1)= —[M(k— 1) — (k—1)- M(k-2)]. (7.3)
Let us set N; = M(i) —i- M (i —1). Then (7.5) becomes

N;=—-N,_,.
We form this relation for i = 3,4,... , k and obtain
N3 =—N;, Ny=—-N3, Ng=-Ny, ... ,Np = —Ny_,.

Simple substitution yields

Nip=—Ni_1=(=1)2Ni_g = (m1)3N_z = -+ = (= 1)F 21\,

that is,
M(k) — k- Mk -1) = (-1)*"2[M(2) - M(1)].
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Since
M(1) =0, M(2)=1, (-1)*?%=(-1),

from the last relation we find that
M) =k Mk —-1) = (-1)*.
After dividing both sides by k! one obtains

ME) ME-=1) (=1

k! (k=1)! & (7:6)

Using (7.6) and applying telescoping suinmation, we find

~(M(@r)  M(r—1)y  M(k) M)
> (= )= -

= (r— 1) k! 1!
(-1 N (-1)3 N (—1)4 P ﬂ
=T bttt

Hence, taking into account that Af(1) = 0, we obtain

ME) DG
YT R TR T TRt

leading to the final result of

1 1 1 (-1)*
2! 3l k')

M(k).—.k!(———+—+ 4

For example, the first few entries are

M(3) =2, M(4) =9, M(5) = 44, M(6) = 265, M(7) — 1854.

Leonhard Euler (1707-1783) (- p. 305)

Eulerian squares

Euler was interested in the topic of magic squares, today known as Latin
squares and Gracco-Latin squares (or the Eulerian squares). A Latin square
of order n consists of n distinct symbols, arranged in the form of a square
scheme in such a way that each symbol occurs once in every row and once in
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every column. In other words, every row and every column is a permutation
of n symbols. In his article Recherches sur une nouvelle espace de guarres
magiques, Iiuler wrote about this kind of magic squares. Today these squares
are called Latin squares after Euler’s use of ordinary Latin letters as symbols
that should be arranged.

bla|d|c Y|é|a|B bY|ad|da|cp

dlc|b|a Blales]|Y dB|cal|bé|ay

¢cl|ld]a S |Y|B |« céd|dY|aB| ba

afb|c|d a|BlY]|o aa|bB|cy|ds
a) b) c)

FIGURE 7.4. Eulerian squares

Figure 7.4(a) shows a fourth order Latin square where four Latin letters
a, b, c. and d are arranged in the described manner. Figure 7.4(b) also repre-
sents a different Latin square with the four corresponding Greek letters. A
superposition of these two squares gives a square scheme of pairs in which
each Latin letter combines once and only once with each Greek letter; see
Figure 7.4(c). A square obtained by such a combination is called an Eulerian
square or a Graeco-Latin square. The name comes after Euler’s use of Latin
letters for one square and Greek letters for the other square.

Two composite squares are said to be orthogonal squares. Let us note
that Graeco-Latin squares are now widely used in designing biology, medical,
sociology and even marketing experiments. For more details about Graeco-
Latin squares see, for instance, the books [18|, [74, Ch. 14| and [150, Ch.
10].

Let us pause for a moment to offer a nice problem given in Watkins’ book
Across the Board |181], mentioned several times in this book. This problem
concerns a 6 X6 Latin square with a flavor of crossword puzzles. The pleasure
is yours!

Problem 7.10.*% A 6 x 6 chessboard is divided into 6 regions, each of
them consisting of 6 squares. 6 letters are placed on this mini chessboard as
shown in Figure 7.5 The task is to complete a 6 X 6 Latin square by filling
the remaining squeres using the letters A, B, C, D, E, F and requiring that
each of the 6 regions contains all 6 letters.
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Ficure 7.5. A 6 x 6 Latin square-crossword puzzle

The Graeco-Latin squares of orders 3, 4, and 5 were already known in
Euler’s time, but Euler wondered about the order 6. In 1782, a year before he
died, having considered the question, Euler formulated & problem familiarly
known as Euler’'s officers problem.

Problem 7.11. Can one arrange 36 officers, each holding 6 different
renks, belonging to 6 separate regiments, to form a 6 x 6 squave so that
each row and colurmn contains exactly one officer of each rank end from each
regiment ¢

Euler demonstrated that the problem of n? officers, which is the same as
the problem of constructing a Graeco-Latin square of order n, can always
be solved if n is odd, or if n is divisible by 4. Furthermore, he stated that
Graeco-Latin squares of the order 6, 10 and 14, and in general all squares of
the order n = 4k + 2 cannot be constructed. This became famous as Fuler’s
conjecture.

In 1901, 118 years later, Gaston Tarry®, the French mathematician,
proved Euler’s ¢onjecture for the particular case n = 6. According to Tarry’s
study, the required arrangement of officers is not possible. After Tarry, sev-
eral mathematicians even published “proofs” that the conjecture was true,
but later the proofs were found to contain faws.

Being restricted to pencil-and-paper methods, the work of Tarry and his
assistants demanded tedious and exhausting efforts. Because of this, the
subsequent cases in particular had to wait until the computer era. Thus
177 years later, Euler’s conjecture was disproved in 1959, when R. C. Bose
and S. S. Shrikhande of the University of North Carolina constructed a
Graeco-Latin square of order 22 by using a modified Kirkman system [23]

8G. Tarry, Le probléme de 96 officiers, Comptes Rendu de V'Association Frangaise
pour 'Avancement de Science Naturel, Vol. 2 (1901), pp. 170-203.
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and next E.T. Parker, an employee of Remington Rand Univac, a division of
the Sperry Rand Corporation, found a square of order 10 [136]. The meth-
ods of these contributors grew increasingly more refined; it was ultimately
established that Euler’s conjecture is wrong for all values of n = 4k + 2,
where n is greater than 6; see [24] and [25]. Parker’s Graeco-Latin square of
order 10 is shown in Figure 7.6, where Latin and Greek letters are replaced
by digits from 0 to 9.

00 47 18 76 29 93 85 34 61 52
86 11 o7 28 79 39 94 43 02 63
95 80 22 67 38 71 49 56 13 04
59 96 81 33 07 48 72 60 24 15
73 69 90 82 44 17 58 01 35 26
68 74 09 91 83 55 27 12 46 30
37 08 75 19 92 84 66 23 50 41
14 25 36 40 51 62 03 77 88 99
21 32 43 54 65 06 10 89 97 78
42 53 64 05 16 20 31 98 79 87

FICURE 7.6. Parker’s Graeco-Latin square of order 10

We end this essay on Eulerian squares with the remark that J. Arkin,
P. Smith and E. G. Straus [5] extended Euler’s officers problem into a three-
dimensional cube and demonstrated the existence of a solution in three di-
mensions! Page 83 of the paper [3] lists the solution. Theirs was a major
accomplishment, especially considering that, nine years ago, prevailing opin-
ion doubted that such a construction was possible [179].

Thomas P. Kirkman (1806-1895) (— p. 306)
Jacob Steiner (1796-1863) (— p. 306)

James J. Sylvester (1814-1897) (- p. 307)
Arthur Cayley (1821-1895) (— p. 307)

Kirkman's schoolgirls problem

In 1847 Thomas Kirkman, an English vicar who was also an expert in
group theory and combinatorics and a fellow of the Royal Society, posed the
following problemn.®

9T. Kirkman, Cambridge and Dublin Mathematical Journal, Vol. 2 (1847), 191-204.
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Problem 7.12. At a girls’ school. it is the daily custom for the pupils to
take a walk arranged in five rows of three girls walking side by side. Can the
headmistress devise a schedule according to which no two girls walk beside
each other more than once for seven consecutive days?

Kirkman'’s problem and others siimilar to it belong to the area of combina-
torics called block-design theory: they were studied intensively in the nine-
teenth century, but mainly as problems of recreational mathematics. It was
later discovered that such problems are closely related to topics as diverse as
statistics, error-correcting codes, higher-dimensional geometry, Hadamard
matrices. and projective geometry.

A generalization of Kirkman's problem leads to Steiner triple systems.
after Jacoh Steiner.'” A Steiner triple system S, if it exists, is an arrange-
ment of n objects in triples, such that any pair of objects is in exactly one
triple. There are %n(n- 1) pairs and én(n—l) triples in Steiner triple system;
hence, n has to be congruent to 1 or 3 modulo 6. thatis, n = 7,9,13,15.... .
E. H. Moore proved in 1893 that this condition is also sufficient.

In a generalized Kirkman problem the number of days required for the
walks is %(n — 1). The above numbers will be integers only if n is an odd
multiple of 3. that is, of the form 3(2& + 1) = 6m + 3. Thus, the sequence of
pussible values is 3, 9, 15, 21 and so on.

The case n = 3 is trivial, one day a trio of girls simply goes for a walk.
The case of n = 9 schoolgirls in four days has a unique basic solution given
in the scheme below:

123 147 159 168
456 258 267 249
789 369 348 357

Since 1922, Kirkman'’s original problem is known to have 80 solutions for
the casc n = 15. ouly seven of which are the basic solutions. There are
many methods for solving Kirkinan's problem. Here we present a geomet-
rical solution with the aid of rotating concentric disks, described by Martin
Gardner in Scientific American (May, 1980). Note that the same method
was presented in the book [18, pp. 260-263] for n = 9.

Draw a circle and write digits 1 through 14 equally spaced around it. A
cardboard disk of the same size is fastened to the circle with a pin through
both centers. Label the center of the disk by 15. Draw on the disk a diameter
(10,15,3) and five noncongruent triangles (1,2.15), (3,7,10), (4.5,13), (6,9.11),

19]. Steiner, Journal fiir die reine und angewandte Mathematik, Vol. 45 (1853), 181-
182.
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(8,12,14}), as shown in Figure 7.7. This starting position actually gives the
first day’s arrangement.

FIGURE 7.7. Geometrical solution to Kirkman's schoolgirls problemn

To obtain the arrangements for the remnaining six days, rotate the circle
in either direction, in increments of two numbers at a time, to six different
positions. This means that a point, say number 1, should coincide with the
numbers 3, 5, 7, 9, 11 and 13 (or in the reverse order) on the fixed circle. In
each of these six positions the vertices of five triangles on the rotating circle
mark the numbers on the fixed circle, giving five new triples. Yes, it works!
Indeed, a handy rule. Below we give the complete solution for the design
shown in Figure 7.7:

Monday: (1,2,15)  (3,7,10) (4,5,13) (6.9,11) (8,12,14)
Tuesday: (3,4,15)  (5,9,12) (1,6,7) (8.11,13) (2,10,14)
Wednesday: (5,6,15)  (7,11,14) (3,8,9) (1,10,13) (2,4,12)
Thursday:  (7.8,15)  (2.9,13) (5,10,11) (1,3,12) (4,6,14)
Friday: (9,10,15) (1,4,11) (7,12,13) (3,5,14) (2.6,8)

Saturday:  (11,12,15) (3,6,13) (1,9,14) (2.5,7) (4,8,10)
Sunday:  (13,14,15) (1,5.8) (2,3,11) (4.7,9) (6,10,12)

According to James J. Sylvester, who was also interested in this problem
(see below), one of the most interesting solutions of Kirkman’s problem
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comes from B. Pierce.!! Pierce’s solution can be found in H. Dérrie’s book
[54]. MacMillan’s 1949 edition of Rouse Ball and Coxeter’s famous book,
Mathematical Recreations and Essays, gave one solution for every case when
n is less than 100.

Although the form 6m + 3 for n is necessary for the solution of the general
form of Kirkman’s problem, it is not sufficient. In the second half of the
nineteenth century many papers were written on this subject, giving only
solutions for particular values of n. A general solution for all n (of the form
6m + 3) was given in 1970 when D. K. Ray-Chaudhuri and Richard M.
Wilson of Ohio State University proved that the answer is yes. However,
the number of solutions remains unknown, and it was found only for small
values of n. The number of the Steiner triple systems S,, increases very
rapidly; for example, there are more than 2 - 10'® non-isomorphic solutions
for n = 31.

Soon after Thomas Kirkman postulated his schoolgirls problem in 1847,
Arthur Cayley wrote one of the first papers on this subject titled, On the
triadic arrangements of seven and fifteen things and published in Philos.
Mag., No. 3 (1850). His friend James J. Sylvester also considered Kirkman’s
problem and he noticed that there are (';) = 455 ways of forming a triple
of the 15 schoolgirls. Since 455 = 13- 35, and 35 (=7 days x 5 triples) is
the number of triples appearing in the solution to Kirkman's problem, the
following question arises:

Problem 7.13. Can one partition 455 different triples into 13 different
Steiner triple systems that each satisfy the conditions of Kirkman’s problem?

In a general case of n girls, the total number of different triples is

n n(n — 1)(n — 2)
()-temten

3 6

Since the Steiner triple systemm S,, contains %n(n — 1) triples, n — 2 disjoint
Sp's will exhaust all of the triples. To generalize Sylvester’s problem, we
have to arrange the set of all triples into n — 2 disjoint S,,’s, each one of
them “parted” into zn(n — 1) “days” as before.

Sylvester’s problem is very difficult and the answer was not found until
1974 when R. H. F. Denniston of Leicester University formulated a solution
aided by computer (Discrete Mathematics, No. 9 (1974)). Kirkman, inci-
dentally, mistakenly claimed to have solved Sylvester’s problem for n = 15.

1 Cyclic solutions of the schoolgirl puzzle, The Astronomical Journal, vol. VI, 1859-
1861.
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Arthur Cayley (1821-1895) (— p. 307)

By today’s standards, the career of one of the greatest nineteenth-century
mathematicians was unusual although not uncommon for his thnes. Before
Arthur Cayley became a professor of pure mathe-
matics at Cambridge in 1863, he spent 14 years as
2 highly competent lawyer working together with his
close friend and fellow lawyer, James Joseph Sylvester
(1814-1897) who was also a great mathematician.
During their working day at Lincoln’s Inn Court,
they tock every opportunity to discuss questions of
profound mathematical importance. In the time he
worked as a lawyer, Cayley published about 250
mathematical papers from & total life-time output of
over 900 papers and notes.

Arthur Cayley
1821-1895

Counting problem

A connected graph that does not contain any cycle is called a tree, see Ap-
pendix C. The trees with 2, 3 and 4 nodes (vertices) are given in Figure 7.8.
Counting the number of different trees with a fixed number of nodes while
still taking into account positions of nodes, Cayley derived!? an interesting
recursion relation in 1859. To avoid some elements of graph theory, unfa-
miliar to many readers, we will present equivalent real-life problems from
Mendelson’s paper |128]. The solution of these problems is expressed by
Cayley’s recursion relation.

VAN /R{\/K

n= n=3 n=4

FIGURE 7.8. Trees with 2, 3 and 4 nodes

127, Caylay, On the analyticol forms called trees, second part, Philos. Mag. 18 (1859),
374-378.
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Problem 7.14(a). n runners compete in a race in which eny number
of runners may tie for an arbitrary number of places. Find the number of
possible outcomes.

An interesting equivalent form of the above problem thus reads:
Problem 7.14(b). An election baliot consists of n candidates, some

equally favored. Assuming that any numbes of candidates may obtain the
same number of votes, find the number of possible outcomes.

Let J,, be the number of all possible outcomes with n runners/candidates.
It is easy to calculate the first few values of J,, :

J» = 3 : (either (A,B), (BA), or a tie (AB));
Ja = 13 (see the diagram below and Figure 7.9)

1/lA A B B C C ABC AB AC BC A B C
2| B CACAB — C B A BC AC AB
3(cBCADBA — — — — — — —

The tree-graphs with 3 nodes that correspond to all possible outcomes with
3 runners/candidates are presented in Figure 7.9.

A B C
A A B B C C *—aeo—90
B C A C A B
C B C A B A
A B A CB C A B C
C B A B C A C A B
J3=13

FIGURE 7.9. The number of all possible outcomes with 3 runners/candidates
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We give the derivation of the recursion relation for J, as presented in
[128] by S. Mendelson in the next paragraph.

Let us assume that there are » + 1 runners. If the number of runners
who do not finish first is j, then those j runners can finish in second, third,
... place in .JJ; ways. The number of choices of these j runners from n + 1

runners is ("j.'l), so that the number of possible outcomes is (";.’l) -J;. Since

j can be any number between 0 and n, the value of J,,, is

+1 1 +1
(nF )Jo+("+ )J1+---+('“ )J
0 1 n

Thus, we obtain the recursion relation
J() — 1,
n
n+1 7.7
J,,+1=Z( . )J,-. (7-7)
j=0 J

For example, from (7.7) we calculate
3
4
Ji= Y (J.)Jj = Jo+4J) +6J2+4J3 = 1 + 4+ 18 + 52 + 52 = 75.
i=0

As mentioned above, Cayley was the first to derive (7.7), although in an
entirely different context.

The table given below lists all values of J,, for 1 <n < 10.

123 4 5 6 7 8 9 10
13 13 75 541 4,683 47,203 545835 7,087,261 102,247,563

TABLE 7.3.

Using some elements of combinatorics S. Mendelson [128] derived the
following expression for J,, in the closed form:

n ok 5
I = ZZ(—U‘“-P(;);;" (n=1,2,...). (7.8)

k=1 T)=l

For the purpose of demonstration, we again compute .J; but now using for-
mula (7.8):

Ji=1+(-2+2)4B-3-2+3) +(-4+6-2"-4-3 +4%)
= 1414+ 36+ 24 = 75.
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Edouard Lucas (1842-1891) (- p. 307)

The Tower of Hanoi

The ingenious puzzle known as the Towey of Hanoi was launched in 1883
by M. Claus, an anagram in fact, of its inventor, Edouard Lucas!3,

Problem 7.15. The tower puzzle consists of three vertical pegs set into a
board, and a number of disks graded in size, eight disks in the case of Lucas’
toy, as we see in Figure 7.10. These disks are initially stacked on one of the
pegs so that the largest rests at the bottom of the stack, the nezt largest in
size atop it. and so on, ending with the smallest disk placed at the top. A
player can shift the disks from one peg to another one at a time, however,
no disk may vest upon a disk smaller than itself. The task is to transfer the
towesr of disks from the peg upon which the disks initially rest to one of the
other pegs. How does one accomplish this transfer in the minimum number
of moves?

Denote the required minimal mumber of moves with h, (h stands for
“Hanoi™). It is evident that h; = 1 and hy; = 3. The first three moves are
displayed in Figure 7.10.

A B C A B C

Iy .

FiGuRrE 7.10. Tower of Hanoi-first moves

In order to transfer the largest disk from peg A to peg B, we must first
construct a tower composed of the remaining n — 1 disks on peg C, using

13N, Claus [=Edouard Lucas], La tour d’Hanoi, jeu de calcul, Sci. Nature 1 (1884),
127-128; also E. Lucas, Récréations Mathmatiques, Gauthier-Villars 1882-94, reprinted
by Blanchard, Paris 1960.
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in this process the peg B (see Figure 7.11). The minimal number of moves
necessary for this transfer is h,—;. After that, one move is needed for the
transfer of the largest disk to peg B and at least h,,_; moves to transfer
n — 1 disks from peg C to peg B by using peg A. Therefore, the required
number is given by the recurrence relation

h, =2h,-1+1, n>2 h =1 (79)

= N

A B C

FIGURE 7.11.
Forn, n—1,...,3, 2 the relation (7.9) gives

hn = 2h'n—] +1
hn—l = 2hn—‘2 +1

hy = 2hy + 1

ho = 2h; + 1.
Multiplying the above relations by 1, 2, 22,... ,2"~2 respectively, and sum-

ming the left and right sides of multiplied relations (do you remember tele-
scoping summation from page 100), after cancelling the same terms one
obtains

hy=1+2+2" .. 2072 p2nt=2" 1,

Therefore, 2" — 1 is the minimum number of moves required to effect the
complete transfer of n disks. In the case of Lucas' 1883 toy with n — 8
disks, this number is 2% — 1 = 255. In fact, 2" — 1 is really the minimnum
number of moves if the described algorithm is applied, but we cannot yet
claim “mission finished”. This question is discussed later.

A year after Lucas had launched his toy, Henri de Parville told an inter-
esting tale of the origin of the Tower of Hanoi in La Nature (Paris, 1884,
pp.- 285-286). Rouse Ball and Coxeter’s book, Mathematical Recreations
and Essays [150], retells this story; we present an adapted version below.
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In the Temple of Benares, beneath the dome purportedly marking the very
center of the world, there lies a brass plate with three diamond needles affived
to it. Each needle measures one cubit in height, and the size of a bee in
thickness. At the same time God created the world, he also created the Tower
of Brahma and placed sicty-four pure golden disks wpon one of the needles,
the largest disk resting upon the brass plate, with each disk progressively
smaller in size until reaching the top. In accordance with the unchanging
and unchangeable laws of Brahmae, the temple priests must transfer the disks
from one of these diamond needles to another never ceasing, day or night.
The attending priest may not move move than one disk at a time and in
placing these disks on the needle, he must respect the ovder so that no smaller
disk rests below a larger one. Once the transfer of the sixty-four disks from
the needle on which God first placed them to one of the other needles has
been completed, all will turn to dust, tower, temple, and Brehmins together,
and the earth itself will vanish in a thunderbolt.

According to the derived general formula, the number of separate transfers
of golden disks of the Tower of Brahma in Benares is

204 _ 1 — 18,446,744,073,709,551,615.

Assuming that the priests can transfer one disk per second, the end of the
world will occur in about 585 billion years! But wait for a moment. In-
cidentally, 24 — 1 is the total number of grains of wheat on the ordinary
8 x 8 chessboard if one grain is placed on the first square, two on the second,
and so on in geometric progression, as mentioned in the introduction of this
chapter. Indeed, 1 +2 422 + .- 4293 = 2084 1,

Although mnany references state 2" — 1 as the miniinum number of moves,
most do so without offering any deeper analysis. However, D. Wood in
his paper [L89] says: “What is usually proved is that the number of moves
required by the recursive algorithm for n disks is 2" — 1. This is not a proof
that no other algorithm exists which takes fewer moves.” In the continuation
of his paper, D. Wood proves that 2" — 1 is really the minimum number of
moves, independently of a moving procedure. Two important corollaries are:

1) The typical recursive solution (shown above) for the Tower of Hanoi
problem is optimal in the number of moves.

2) The Tower of Hanoi problem is an exponential time problem.

Wood’s paper [189] also contains an analysis of the solution from a com-
putational complexity point of view, a transfer-program generator written
in PASCAL, some open and some new problems concerning the Tower of
Hanoi problem and, finally, an extensive list of references on the subject.
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The Tower of Hanoi and, in turn methods for solving it, have generated
an abundant literature; for example, [17, Vol. 2], [18], [19], [28], [29], [50],
[69], [70, pp. 55-62], [88], [99], [103], [149], as well as the mentioned works
by Lucas [125], and Rouse Ball and Coxeter [150]. The use of a special type
of graph (called H,, graph for n-disk Hanoi) and of graph theory applications
to study the Tower of Hanoi and solve it form the basis of the papers [60],
[157], [192|. Curiously enough, the corresponding H,, graph, associated with
the solution of n-disk Hanoi, looks more and more like the Sierpiiiski gasket
as n becomes larger and larger; see [171].

A curious reader may wonder whether there is a solution for a tower with
four or more pegs. There are algorithms for transferring disks on four pegs
but the optimality of these procedures (that is, the minimum number of

moves) has not been proved yet. It is solely conjectured that this number is
given recursively by

fn:fn.—l +2I, f1:1’

where

[\/m—w.

2
Recall that |z] is the greatest integer less than or equal to z.

Interchanging the checkers (1)

The following problem by Lucas appearing in his 1883 hook Récréations
mathématiques'® may also be found in the book [150, pp. 124-125].

OO eee

1 2 3 4 5 6 7

FIGURE 7.12. Interchanging the checkers

Problem 7.16.* Seven squares, denoted by numbers from 1 to 7, are
joined in a row as in Figure 7.12. Thiyee white checkers are placed at one
end, and three black checkers at the other end. The middle square 4 is
vacant. The aim is to translate all white checkers to the places occupied
initially by the black checkers and vice versa, moving white checkers from
left to right, and black checkers from right to left. One move consists of
either one transposition of e checker to the adjacent unoccupied square or

14paris 1883, Vol. 11, part 5, pp. 141-143.
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the jump over u checker of opposite color on the unoccupied squere beyond it
The checkers may move in any order, regardless of their color. The minimum
number of moves is required.

Another of Lucas’ checker-interchanging problems is & little more compli-
cated and may be found in Wells’ book [186].

Interchanging the checkers (l{)

Problem 7.17.*% Figure 7.13 shows four checkers A, B, C, D occupying
the shaded squares. The task is to exchange C for D and A for B. The che-
ckers can move one or move squares in any direction (including rectangular
turning), but withoutl skipping over any other checkers.

A B

FIGURE 7.13. Interchanging the checkers

Shunting problem

Problem 7.18.* This problem regquires train A to overteke train B, em-
ploying o spur track only long enough to hold half of train B; see Figure 7.14.
How can the engineers manewver the trains o revevse their positions?

5

sidetrack {f:
=
L main track 2 R
ey — J
A B

FIGURE 7.14. Reversal of train positions
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Problem of married couples (probleme des ménages)
The next problem by Lucas appeared in his book [125] in 1891 and reads:

Problem 7.19. Determine all possible arrangements of n. married cou-
ples in such a manner that the seating resuits in the men end women placed
alternately about a round table so that none of the husbands is ever seated
next to his own wife.

For more than a century, this classic problem of combinatorial analysis
has attracted the attention of numerous authors. For more details see, e.g.,
Dérrie [54], Dutka [59], Kaplansky and Riordan [111] and Riordan [147].

Solving this challenging problem, also known as the probléme des ménages,
requires somne elements of the theory of discordant permutations. The
Frenchmen M. Laisant!® and M. C. Moreau and H. M. Taylor, an English-
man, have all arrived at solutions for the married couples problem'® using
recurrence relation (7.10), given below, without the expression of an explicit
formula. Due to lack of space, we cannot give the solution here. Instead, we
borrow the final result from H. Dérrie’s book [54] in which he presented the
complete solution.

The number B,, of possible arrangements of n married couples satisfying
the condition of the problem is B,, = 2n!A,,, where A, is calculated from
the recurrence formula

(n—1A, 1= @0 =DA, + (n+ 1A, _; + 4(=1)". (7.10)

The derivation of this relation may be found in [54]. The question of relation
(7.10)'s priority was discussed in [111]. In his book Théorie des Nombres
(1891), Lucas gives (7.10) attributing it to Laisant, and independently to
Moreau. Nonetheless, Cayley and Muir noted relation (7.10) thirteen years
earlier, a fact unknown to Lucas and others after him.

It is not difficult to find A3 = 1, Ay = 2 directly. Then the above recur-
rence relation commences, giving

A5 = 13, AG = 80, A',' = 579, As = ’1,738,
Ag = 43,387, Ajo = 439,792, etc.,

and B, is easy to calculate.

15 Sur deuz problémes de permutations, Bulletin de la Société Mathématique de France,
T. 19 (1890-91), 105.-108.

16 4 problem on arrangement, Messenger of Mathematics, Vol. 32 (May 1902-April
1903), 60-63.
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The recurrence relation (7.10) is a nice contribution, but it gives only
indirect information. The quest for a neat closed form of A4,, ended success-
fully when J. Touchard [177] gave the explicit solution of Lucas' problemn in
the form

B, = 2nl4,, A, = Z(-nkznzf - (2"’; ") (n — k)! (7.11)

k=0

However, Touchard did not offer a proof. Proofs of (7.11) were given by A.
Kaplansky [110] in 1943 and J. Riordan |146] in 1944.

With the assumption that n wives were seated in assigned positions, leav-
ing one vacant place between each pair, then the desired number is exactly
A,.In 1981, D. S. Jones and P. G. Moore [108] considered this variant of
Lucas’ problem and found the explicit solution in the form

r

= v (2n—k = 1)ing!/?
A= g(_l) klln—k — 1/2)!22n—2k—1 : (7.12)

The equivalence of formulae (7.11) and (7.12) was shown in [59].

G. E. Thomas [174] reported the genesis and short history of the probléme
des ménages, pointing to the problem’s connections to a number of diverse
areas. J. Dutka writes in [59] that P. G. Tait (1831-1901), a well-kuown
nineteenth-century physicist and a professor of natural philosophy at Edin-
burgh, investigated the theory of vortex atoms in the 1870s and stated a
knot-problem which is equivalent to Lucas’ problem with initially assigned
places for wives (or hushands). Thomas Muir (see [85]) formulated Tait’s
problem as a question concerning the number of termns in the expansion of
a particular kind of determinant and obtained the recurrence relation (7.10)
sometimes referred to as Laisant's relation. Other related probleins were
considered in [111], [126, Vol. 1], [147, Ch. 8], [178], [191].

James Joseph Sylvester (1814-1897) (- p. 307)

The tree planting problem

There are many puzzles based on the arrangement of n points in a plane,
but the oldest and most popular is known as the “tree planting problem™,
or the “orchard-planting problem.” Stated simiply, it reads as follows:

Problem 7.20. How can n points in a plane be arranged in rows, each
containing exactly k points, to produce o maximum number of rows?
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The puzzle's name comes from an earlier puzzle concerning a farmer who
wishes to plant a certain number of trees in an orchard so that the pattern
of trees will have r straight rows of exactly & trees in each row. The puzzle
becomes difficult when one stipulates a maximuin number of rows.

J. J. Sylvester devoted much of his time to this question working con-
tinually on the general problem from the late 1860s until his death in 1897
(see H. T. Croft et al. [44]). Although this puzzle has been around for many
years, the general problem of determining the largest number of rows (n, k),
given n and k, has yet to be solved. The solution was found for only some
particular cases. For example, Sylvester found the lower bound given by

r(n,3) > [% (n—-1)(n- 2)J ,

where, as a reminder, |2:] is the greatest integer less than or equal to .
However, this is an inferior limit; compare with values given in Table 7.4.

A wealth of details about the tree planting problem may be found in [30]
and [77]. S. Ruberg, in [152], records an interesting approach to this problem
using the projection procedure.

When k& is 2, the problem is trivial: every pair of n points forms a row
of two which means that the maximum number of rows is (}) = = ".2-”.
When & is 3, the problem not only becomes more intriguing but it also
relates to such mathematical topics as balanced-block designs, Kirkman-
Steiner triples, finite geometries, Weierstrass elliptic functions, cubic curves,
projective planes, error-correcting codes and many other significant aspects

of mathematics.

Assuming that all n points lie in a finite plane, the maximum solutions
for three-in-a row plants, for n = 3 to 12, are given in the table below.

n |45 7 8 9 10 11 12
12467 10 12 16 19

TABLE 7.4.

[enry Ernest Dudeney (1857-1931), the great English puzzle expert to
whom we have made mention, furnished the 11-point pattern with 16 rows
shown in Figure 7.15; see [56]. Dudeney presented this solution as a military
puzzle. “On a World War I battiefield, 16 Russian soldiers surround 11
Turkish soldiers. FEach Russian soldier fires once and each bullet passes
through exactly three Turkish heads. How many Turkish soldiers remain
alive?” According to Figure 7.15 the answer is: Nobody. The Russian
soldiers’ positions are situated in the continuation of each line segment.
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FIGURE 7.15. Eleven points in 16 rows of three

In the case £ = 4 the problem becomes more difficult. More details
can be found in [77]. Here we present an interesting example dealing with
n = 16 and & = 4, discussed by Benry E. Dudeney.!” The best-known result
(15 rows) of that time is shown in Figure 7.16.'® As reported by Martin
Gardnper in |77], this pentagonal pattern resembles the blossom of the flower
Hoya carnosa (Figure 7.16 right), a member of the mitkweed family and one
of 100 species of Hoya that are native to Eastern Asia and Australia.

FIGURE 7.18. 16 points in 15 rows of four FiGuRre 7.17. Hoya carnosa:
the flower pattern

17problem 21 in his The Canlerbury Puzzles and Other Curious Problems, London,
1907.

18T5day we only know that the maximum number of rows for k = 4 and n = 16 is at
least 15.
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After thinking about the tree planting problem for many years, Sylvester
posed in 1893 a new related problem (without a proof), today known as
Sylvester’s line problem:

Problem 7.21. Is it possible Lo arrange any fintte number of poinis so
that o siraight line through every set of two poinis shall elways pass through
a third, unless they oll lie in the same right line?

Unfortunately, Sylvester did not live to see an answer to his question.
T. Griinwald'® (1944) was the first who correctly solved the problem: the
answer is no. It turned out that the answer also follows from a result of
E. Melchior (1940) applying Iuler’s polyhedral formula.

Paul Erdds (1913-1996) (= p. 310)

The great Hungarian mathematician Paul Erdés was one of the twen-
tieth century's most prolific and eccentric mathematicians. He wrote or
co-suthored 1,475 academic papers collaborating with 4835 co-authors, more
people than any mathematician in history. Erdds was really crazy about
mathematics. He was forever occupied with various kinds of mathemati-
cal problems, including many curious and amusing tasks; one of them is
presented below.

Erdée, a confirmed bachelor, spent most of his life crisscrossing the world
in search of the beauty and the ultimate truth in mathematics. Paul Hoffman
published The Man Who Loved Only Numbers (Hyperion, New York 2000),
an inventive and captivating biography of Paul Erdés. We learn that Erdés
Liad his own particular language, for example:

boss = woman

slave = man

captured = married

liberated = divorced

recaptured = remarried

epsilon = child

to exist = to do math

to die = to stop doing math

trivial being = someone who does not do math
V noise = music

Paul Erdds my brain is open = I am ready to do math

1913-1696

19T Griinwald, Solufion to Problem 4065, Armer. Math. Montly 51 (1944), 169-171.
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We present a problem belonging to combinatorial geometry that attracted
the attention of Paul Erdos.

Different distances

Problem 4.22. Given the 7 x T checkerboard, can you put 7 counters so
that all distances between pairs are different? It is assumed thaet distances
are measured on a straight line joining the centers of cells.

The posed request is less innocent than it might appear at first glance.
This is one of those problems with a simple and clear formulation but with a
difficult solution. Erdés enjoyed solving such problems. For him, they were
like perfume: the packaging is at least as important as the contents.

The general problem of the n x n board with n counters has had a tem-
pestuous history; see Gardner [82]. It was proved, with significant help from
computers, that the 7 x 7 hoard is the largest for which there is a solution.
Paul Erdés and Richard Guy [82, p. 137] gave the solution for the checker-
board 7 x 7 (shown in Figure 7.18) and proved that no solutions are possible
for n > 7. Where there is a will, there is a way.

FIGURE 7.18. Different distances on the 7 X 7 checkerboard

Answers to Problems

7.5. The company must be arranged in a circle as shown in Figure
7.19, where the small white disks represent sailors and the small black disks
represent smugglers. The command

InversePermutation[Josephus [30,9]]
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in the programming package Mathematica gives the complete list in order of
execution {take the first fifteen numbers); see Figure 7.19:

9, 18, 27, 6, 16, 26, 7, 19, 30, 12, 24, 8, 22, 6, 23

14 15 16 17 8
Coe0®™
2
5
FIGURE 7.19. Disposition of smugglers and sailors
7.6. Asolutionise=1, h=11,b=9, k= 29.

7.10. The unique solution is shown in Figure 7.20.

FIGURE 7.20. A 6 x 6 Latin square—solution

7.18. The solution requires 15 moves that can be recorded by the starting
and the destination square (see Figure 7.12):

3-4 5-3 6-6 4-6 2-4 1-2 3-1 5-3 7-5 6-7 4-6 2-4 3-2 6-3 4-5
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7.17. The first step consists of moving checker B one square to the right.
Next, move A around the circuit in the clockwise direction to the square
directly right of checker B; see Figure 7.13. To interchange C' and D, move
them both around the shaded cells 1,2,3.4 thus: C' : 1-3-4, D : 2-1, C' : 4-2.
Last, shift checkers B — A to the left to occupy squares 3 and 4.

7.18. Referring to Figure 7.14, we will describe the maneuvering of the
trains in five stages. The arrows — and < indicate, respectively, the motion
of trains forward (left to right) and backward (right to left). The comnmon
point and track sections are denoted by the letters J (junction), L (track left
from the junction), R (track right from the junction) and S (spur track).

1) B: —» L-J-R; + R-J-S, uncouples its rear half on the spur track; the
front half of B: —» J-R;

2) A: —» L-J-R, joins the rear half of B; « R-J-L;
3) the front half of B: « R-J-S;
4) A uncouples the rear half of B and proceeds on its way to L-R;

5) the front half of B leaves the spur track, joins its rear half and proceeds.
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The most important questions of life are,
for the most part, really only problems of probability.
Pierre-Simon de Laplace

Probability is expectation founded upon partial knowledge.
George Boole

The excitement that a gambler feels

when making a bet is equal to the amount

he might win times the probability of winning it.
Blaise Pascal

The great French mathematician Pierre-Simon de Laplace wrote: “It is
remarkable that a science which began with the consideration of games of
chance should have become the most important object of human knowledge.”
He thought about the probability and you will see at the beginning of this
chapter that Pascal and Fermat were those fellows who conducted the men-
tioned treatise of the game of two gamblers who played for a stake. The
results of their fruitful discussions led to the foundation of the probability
theory, a very important branch of mathematics, which is also very useful in
many scientific disciplines and many other human activities.

Probability deals with the estimation of a chance that some event will
happen, or figuring out how often this event can occur under given condi-
tions. The probability of the occurrence of an event can be expressed as
a fraction or a decimal from 0 (impossible cvent) to 1 (certain event). It
is substantial to many human activities and experimental researches when
quantitative analysis of large sets of data is necessary. However, we will con-
sider neither such analysis nor the analysis of random phenomena; we will
not even get involved in the pitfalls of defining probability. In this chapter
you will find only elcinentary problems of great mathematicians that need
only the knowledge of the basic elements of combinatorics.

“Perhaps the greatest paradoz of all is that there are paradozes in math-
ematics,” said Edward Kasner. Probability is full of surprising results and
paradoxes, more than any other branch of mathematics. This is another

209
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paradox. Indeed, thanks to our sense of risks and many aspects of chance,
and direct life experience, we should have a good estimation of results. In
spite of that, probability is swarming with paradoxes and unexpected re-
sults. Would you take the het that at least two people among soccer players
of two teams plus the referee (23 persons in total) have the same birthday?
“No, the chance is extremely small,” you would have probably said. How-
ever, probability theory gives the unexpected resull of even 51%. If we know
that in a two-child family one child is a boy, what is the probability that
both children are boys? A most frequent but incorrect answer is 1/2, a good
analysis tells us that the probability is 1/3. Another paradox is given as
Problem 8.4 in this chapter.

Charles S. Pierce once said: “Probaebility is the only one branch of math-
ematics in which good writers frequently getl results which are entirely erro-
neous.” Leibniz is said to have thought that the probability of getting 12
with a pair of dice is the same as of getting 11. Similarly, D'Alembert, the
great eighteenth-century French mathematician, failed to notice that tossing
a coin three times gives the same results as tossing three coins at once.

The following example is instructive: When a statistician passed the air-
port security check, the security employees discovered a bomb in his bag. He
explained: “Statistics show that the probability of a bomb being on an air-
plane is 1/1000. However, the chance that there ure two bombs on one plane
is 1/1000 x 1/1000 = 1/1,000,000, which is a very small probability and I
can accept that risk. So, I bring my own bomb along to feel much safer.”

How to avoid traps and wrong conclusions? In any probability problem,
it is very important to analyze given conditions and understand them well,
and identify all different outcomes that could occur.

Except the already mentioned problem of the division of stakes between
gamblers discussed by Pascal and Fermat, this chapter contains the gam-
bler’s ruin problem which attracted wide attention of eminent mathemati-
cians, including Pascal, Fermat and Huygens. Huygens was the author of
the first printed work on probability; so we selected a problem on a gam-
bling game with dice from his collection. It was impossible to omit a very
popular probability problem with misaddressed letters, related to the work
of Euler and Nicolaus II Bernoulli (see Chapter 7). The Petersburg para-
dox is given as a good example of an unexpected result that fascinated and
confused many mathematicians including the brothers Danie] and Nicolaus
IIT Bernoulli, Cramer, D'Alembert, Poisson, Bertrand, Laplace and others.
Finally, Banach’s matchbhox problem will test how skillfully you can swin in
combinatorial waters.
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Pierre de Fermat (1601-1665) (— p. 303)
Blaise Pascal (1623-1662) (— p. 303)

Pierre de Fermat, considered one of the leading
mathematicians of his time, was a lawyer who spent
much of his time doing mathematics. Although he
published almost nothing, he communicated =all of
his work through his extensive correspondence with
many of the leading mathematicians of his day. He
stated the basic properties of optics, now known to
us as Fermat’s principle: light always follows the
shortest possible path. Fermat made major contri-
butions in several branches of mathematics, but he
is best remembered today for his work in number
theory, in particular for Fermat’s Last Theorem,
Pierre de Fermat certainly one of the best-known problems in the hi-

1601-1665 story of mathematics.!

The French genius Blaise Pascal showed a phenomenal ability in math-
ematics from an early age; at the age of twelve he made the independent
discovery of most of the theorems from Euclid’s first book; when he was four-
teen he participated in the gatherings of a group of French mathematicians
that in 1666 became the French Academy; in 1654, he wrote 2 brief essay on
conic sections. By the age of twenty-two,? he invented the first calculating
machine which he called pascaline.

After experiencing a religious ecstasy on the night of November 23, 1654,
Pascal abandoned science and mathematics for theology. From time to time,
he would return to mathematics and other sciences. He even wrote one
philosophical book in the form of letters to a ficticious provincial gentleman.
One of these letters contained the wellknown Pascal’s apology: “J would
have written a shorter letier, but I did not have the time.” Pascal turned
away from worldly concerns and died at the age of 39, after suffering greatly
due to an illness of long duration.

1 No positive integers =, vy, 2z, n ezist such that z" + y" = z" for n > 2. Fermat’s
conjecture is probably the best-known problem in the history of mathematics. After eight
years of extensive work, the English mathematician Andrew Wiles (1954~ ), proved this
conjecture and published his proof in the paper Modular elliptic curves and Fermat's
Last Theorem, Annals of Mathematics, Vol. 141, No. 3, May 1995. Wiles' proof contains
extraordinary ideas from various highly specialized branches of mathematics, among Lthem,
elliptic curvey, algebraic geometry, modular forms, and p-adic numbers,

2 According to some sources, by the age of eighteen or nineteen.
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It is perhaps worth mentioning that Descartes,
Fermat and Pascal represented a mighty French
trio of mathematicians in the first half of the sev-
# cnteenth century. However, Descartes’ arrogance
. and massive ego often spoiled the harmony of this
|| trio. After Fermat's criticism of Descartes’ work,
Descartes began to ignore Fermat and endeavored
to smear his reputation whenever possible. Pascal
suffered similarly, although he had done nothing
to deserve this treatment. Commenting on Pas-
cal’s study of atmospheric pressure and a vacuum,
Descartes noted sarcastically that Pascal “has too
much vacuum in his head.”

Blaise Paacal
1623-1662

The Problem of the points

The origins of probability theory came about as a result of a gamblers’
quarrel in 1654, when Antoine Gombaud, the chevalier de Méré a profes-
sional gambler, more or less, and a friend of Pascal, asked him to solve an
insignificant gambling problem concerning the division of stakes. Pascal and
Fermat carried out intense discussions on this problem, often called the prob-
lem of the points. Through their correspondence they both arrived at a new
theory based on ideas that laid the foundations for the theory of probability.

Gerolamo Cardano, mentioned elsewhere on page 180, and Luca Pacioli
had earlier considered the division of the stakes problem posed by de Méré
to Pascal although they both arrived at imcorrect solutions. The problem of
the puints, sometimes named as the division problem, thus reads:

Problem 8.1. Two supposedly egqually-skilled gamblers play a game for
the stakes which go to the one who first wins a fized number of points given
in advance. However, the game is interrupted due to some reason. The
guestion is how to divide the stakes knowing the scores of the gamblers ot
the time of interruption and the number of points required to win the game.

Fermat studied a particular case in which gambler A needs 2 points to
win, and gambler B needs 3 points. We present his solution in the following
paragraph.

Evidently, not more than four trials are needed to decide the game. Let.
o indicate a trial where A wing, and b a trial where B wins. There are 16
combinations of the two letters a and b taken 4 at a time, as shown in Table
8.1.
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Among 16 possible cases, 11 are favorable for A (cases 1-11 where «
appears 2 or more times), and 5 are favorable for B (cases 12-16 where b
appears 3 or more times). Therefore, the probability of winning is 11/16
for gambler A, and 5/16 for gambler B. Fermat concluded that the stakes
should be divided proportionally to the probabilities of winning, thus, in the
ratio 11:5.

1 a a a a
2 a a a b
3 a a b [
4 a b a a
J b a a a
6 a a b b
7 a b a b
8 b a a b
9 a b b a
10 b a b a
11 b b a a
12 b b b a
13 b b a b
14 b a b b
15 a b b
16 b b b b

TABLE 8.1. Fermat-Pascal’s problem of the points

However, Pascal and Fermat considered the problem of points in a more
general form (see |92]). In his work Usege du Triangle Arithmétique pour
Déterminer les Partis Qu’on Doit Faire Entre Deuxr Joueurs en Plusieurs
Parties, Pascal solved the problem of points using recursion relations and
the arithmetic triangle. He always assumed that the two players have an
equal chance of winning in a single game.

Let n be in advance a fixed number of points that must be reached in
the play, and let e(k,m) denote gambler A’s share of the total stake (or A's
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expectation), if the play is interrupted when A lacks k games and B lacks
i games to win. Then the play will be over in at most k + m — 1 further
games. Using modern notation, we may write Pascal’s procedure as

e(0,n)=1 and e(n,n)=%, n=12...,

1
e(k,m) = §[e(k —1,m)+e(k,m-1)], kkm=1,2,....

To find the explicit expression for e(k, m), Pascal used his results about the
arithmetic triangle. This recursive method hecame very popular later in the
eighteenth century; among many of its applications in solving difficult prob-
lems, de Moivre, Lagrange and Laplace used it to develop general methods
for the solution of difference equations. Pascal's solution may bhe found in
[92, p. 58]. We give the final expression for e(k,m) derived by Pascal:

1 m—1 kim-—1
e(k,m) = zk—T-l Z ( i ) (81)

i=0

Fermat’s approach to solving the problem of points was different; he used
what is called today a waiting-time argument. Although he did not give a
general result explicitly for e(k,m), his argumentation presented on some
particular cases clearly leads to the expression

e(k,m) = '"Z—l (k ;_1 —; i) (%)k“. (8.2)

i=

Note that (8.1) and (8.2) give identical results.

For example, for a particular case given previously when £ = 2 and m = 3,
the formula (8.1) (say) gives

wo-(()+()+0) %

which is the probability of gambler A to win.

Johann Bernoulli, de Montmort, and de Moivre employed the methods
developed by Pascal and Fermat to solve the problem of points for players
with different probabilities of winning a single game. More details on this
subject can be found in Hald’s book A History of Probability and Statistics
and Their Applications before 1750 [92, §14.1].
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Christiaan Huygens (1629-1695) (- p. 303)

Certainly one of the greatest seventeenth-century
scientists, the Dutchman Christiaan Huygens ac-
quired a far-reaching international reputation work-
ing in physics, mathematics and astronomy. He was
a member of the London Royal Society and fre-
quent visitors of the French Academy of Sciences
and other scientific centers in Europe: indeed as he
put it himself, “The world is my couniry, science
15 my religion. ” Huygens greatly improved the tele-
scope using lens-shaping techniques, which enabled
him to discover Saturn’s largest moon Titan and
to give the first accurate description of the rings of
Saturn.

Christiaan Huygens
1629-1695

Huygens communicated his discovery of Saturn's rings in a booklet in the
form of an anagram:*

-------

Ordering the letters in the proper way results in the following declaration:
Annulo cingitur tenui, plano, nusquam cohaerente, ad eclipticam inclinato,
(Enclosed by thin, flat rings, without support, inclined toward ecliptic.)

It should be noted that the letters of Huygens’ anagram can be arranged
in about 10° ways. Nonetheless, such anagrams were not always sufficient
to protect secrets. When Huygens discovered Saturn’s moon Titan, he com-
posed a similar anagram that the English mathematician and theologian
John Wallis deciphered.

Gambling game with dice

The first printed work on the theory of probability was Huygens’ little
tract De ratiociniis in ludo aleae (On reasoning in games of dice), prompted
by the correspondence of the Frenchmen and published in 1657. Here is one
example solved by Huygens.

3An anagram creates 2 new word or phrase that consists of the same letters as an
existing one but ordered differently. Some sixteenth- and seventeenth-century scientists
often recorded their results or discoveries in the form of anagrains to avoid their publishing
until they had checked all of the details. They also communicated with other scientists
by using such anagrams.
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Problem 8.2, Two gamblers A and B play a game throwing two ordinary
dice. A wing if he obtains the sum 6 before B obtains 7, and B wins if he
obtains the sum 7 before A obtains 6. Which of the players has a better
chance of winning if player A starts the game?

Let A and B stand for the events denoting the appearances of the
sums 6 (A wins) and 7 (B wins). As usual, the opposite events are
denoted by A and B. If two dice are thrown, then there arc 36 pos-
sibilities: (1,1),(1,2),...,(1.6),(2,1),...,(6,6). There are five favorable
odds (1,5),(2,4),(3,3),(4,2),(5,1) for the sum 6, and six favorable odds
(1,6),(2,5),(3,4), (4, 3), (5,2).(6,1) for the sum 7. Then the probabilities of
the described events are

5 : 31
P(A4) = oo, P(A)=1-P(A) = 4, |
P(B) = 366 = %, P(B)=1-P(B) = % = %.

Gambler A will win if the following global event happens:

A+ ABA - ABABA | ABABABA 4 - - X

Particular events that appear as addends in the above sum are mutually
exclusive, so that the probability of the global event is equal to the sum of
the probabilities of particular events. Furthermore, the events appearing in
the above products are mutually independent so that the probability of the
product of events is equal to the product of probabilities of particular events.
If p4 denotes the probability of A’s win, then

pa =P(A) + P(A)P(B)P(A) + P(A)P(B)P(A)P(B)P(A)
+ P(A)P(B)YP(A)P(B)P(A)P(B)P(A) + - --
5 31 5 5 (31 5)2. 5 (31 5)3. 5

"36 36 6 36 \36 6/ 36 \36 6/ 36
I’

—(l+z+22+2°+- )—i-;—30
36 36 1—2 61’
here we ut:z:—'31 5—155
WhEre we p 36 6 216

Gambler B wins if the following global event

AB + ABAB + ABABAB + ABABABAB + - --
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happens. Hence, in a way similar to the above, we calculate the probability
pp of B's win:

ps =P(A)P(B) + P(A)P(B)P(A)P(B)
+ P(A)P(B)P(A)P(B)P(A)P(B)
+ P(A)P(B)P(A)P(B)P(A)P(B)P(A)P(B) +
S OO 6 O U O
36 6 36 6 36 6 36 6 \36 6
HEN WO
36 6 \36 6
31 31 1 1 31

1(l—i-:L+:L +¥+ )= =
~36 6 :
According to the obtained probabilities p4 and pg we conclude that player
B has a slightly greater chance of winning than his rival A. By the way, it
must be py + pp = 1, which is true.

Blaise Pascal (1623-1662) (— p. 303)
Pierre de Fermat (1601-1665) (— p. 303)
Christiaan Huygens (1629-1695) (— p. 303)

Gambler's ruin problem

This is a light introduction to the Gambler’s ruin problem that attracted
the attention of Pascal, Fermat and ITuygens. The contributions of these
originators of the theory of probability have been presented in the previous
essays.

Two players A and B play a game tossing a fair coin, in other words, the
probability of winning is 1/2 for each player. They each have a finite amount
of dollars, say n4 and ng. After each tossing of the coin, the loser gives one
dollar to the winner. The game is over when one of the players holds all of
the dollars in the game (n4 + ng in total). The respective chances P4 and
Pg of gaining all the money for the players A and B are

na ng

: B -
na+ng nas+npg

As expected, the player possessing less money has the greater chance of going
bankrupt. The long run success of casinos is indeed, in part at least, due to
this simple principle since presumably casinos have much more money than
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their clients—gamblers. This game (or for some, a profit making enterprise),
in which a gambler is ruined, has heen known for more than 350 years and
it is a hot topic even today. More details and a more complicated discussion
is given in what follows.

Problem 8.3(a). A and B each take 12 turns playing with 3 dice while
observing the following rules: if 11 is thrown, A cedes one toss to B; if
14 is thrown, B cedes one toss to A. The winner is the player who first
obtains the specified number of tuwrns. Determine the probability of winning
for players A and B.

Known as the gambler’s ruin problem, this problem was posed by Pascal
to Fermat, and through Carcavi to Huygens in a letter dated 28 September
1656 that includes Pascal and Fermat's answers (sce [92, p. 76|). Huygens
gave the following answer in a note from 1676 (contained in Quwres, Vol. 14,

pp. 151-155): A’s chance compared to B’s is 244,140,625 : 282,429,536,481.

The general formulation of the gambler’s ruin problem is as follows:

Problem 8.3(b). At the beginning of the play gamblers A and B have
m and n chips, respectively. Let their probabilities of winning in each trial
bep for A, and q = 1 —p for B. After each trial the winner gets a chip from
the loser, and the play continues until one of the players is ruined. What is
the probability of A being ruined?

Struyck first gave a complete proof based on difference equations in 1716,
using Jacob Bernoulli’s recursion formula given in Ars Conjectandi. In mod-
ern notation, Struyck’s solution may be expressed as follows:

Let e(z) denote the expectation of player A when he has z chips, z =
1,2,...,m+n—1, ¢0) =0, e(m + n) = 1. Bernoulli’s recursion formula
leads to the difference equation

e(z) =pe(z+ 1) +ge(x—1), z=1,2,... ,m+n—1,
e(0) =0, e(lm+n)=1,

which may be written as
pe(z +1) = (p + g)e(z) — qe(x — 1),

wherefrom
e(z+1) —e(2) = —[e —ea:—l)]
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A successive application of the last relation gives
q I

e(z+1)—e(z) = (;) e(1).

Hence, by summing we get,

m—1

e(m) =Y [e(z +1) - e(z)] = [1 - (g/p)™]e(1)

=0

In an analogous way we find

m+n—1

e(m+n)= D [e(z+1)—e()]
r=0

[1—(g/p)™+"]e(1)
1-(a/p) '

Taking e(m + 1) = 1 in the last relation we determine

_ _1-(d/p)
W Tl

Returning with this entry in (8.3), Struyck obtained the explicit solution

1 — (q/p)m
Py =e(m) = . (8.4)
1—(¢/p)m*"
By the same argumentation one gets a similar expression for Pg:

Py — e(n) = —— (r/q)"

: 8.5
1—(p/gm* (83)
From (8.4) and (8.3) we obtain the ratio

}34 pnqm _ aantn

P : :
PB h qm+n _pnqm for m 1 n.

(8.6)
Jacob Bernoulli and Abraltam de Moivre obtained tlie same result.

De
Moivre’s solution, which is based on a completely different method, can
be found in [92, pp. 203-204].

In a special case when m = n, we set t = ¢/p and obtain from (8.6)

Pa _p” G@/pm-1_ 1 @=L+ - +t+1)
Pg g (¢/p)"—1 tm (-1 T+ +141)
1 pln

t"l qﬂl

when m — n.

T— @) (8:3)
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Therefore, the expectations ratio of A and B is as p™ : ¢"*, which may
also be shown by induction. In Huygens’ problem the gamblers started with
m = n = 12 chips and, according to the stated rules of play, the number of
chances to win a point is 15 for A and 27 for B among 42 possible outcomes;
thus, p = 15/42 = 5/14 and q = 27/42 = 9/14. Hence

Py (5/14)"* (5)12 244,140,625
P~ (9/14)12 T \9/ T 282,429 536,481’

which is in agreement with Huygens’ answer.

Nicolaus IIT Bernoulli and Pierre de Montmort also considered the Gam-
bler’s ruin problem. The problem’s history and Huygens’ solution of a special
case posed by Pascal may be found in the book [92].

Nicolaus III Bernoulli (1695-1726) (— p. 305)
Daniel Bernoulli (1700-1782) (— p. 305)
Gabriel Cramer (1704-1752) (— p. 305)

and others

The Petersburg paradox

Many eighteenth- and nineteenth-century mathematicians were fascinated
by a problein known as the Petersburg paradox. This problem, related to
mathematical expectations in tossing a coin, appeared in the Commentarii
of the Petersburg’s Academy®.

Problem 8.4. Two players A and B play a game in which they toss a
coin until it lands heads down. If this happens on the first throw, player A
pays player B one croum. Otherwise, player A tosses again. If heads appear
on the second throw, player A pays two crowns; if on the third throw, four
crowns; and so on, doubling each time. Thus, if the coin does not land heads
down until the nth throw, player B then receives 2"~! crowns. How much
should pleyer B pay player A for the privilege of playing this game?

There is a probability of 1/2 that player B will receive one crown, a
probability of 1/4 that he will receive two crowns, and so on. Hence the total

1See E. Kamke, Einfihrung in die Wahrscheinlichkeitstheorie, Leipzig, 1932, pp. 82-
89.
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number of crowns that he may reasonably expect to receive (= mathematical
expectation) is

— 1 1 1
z-1+41-24--4+(3) 27 +---= sttt
that is, it is infinite! It is almost unbelievable, but true. The result comes
like a bolt from the blue.

This unexpected result attracted the attention of many mathematicians
including the brothers Daniel and Nicolaus I1I Bernoulli and a large group of
French mathematicians. One of their contemporaries, Jean-le-Rond D’Alem-
bert (1717-1783), also an influential mathematician, wrote to Joseph Louis
Lagrange (1736-1813), another famous French mathematician: “Your mem-
o on games makes me very cager that you should give us a solution of
the Petersburg problem, which seems to me insoluble on the basis of known
principle.”

On the one hand, French mathematicians Nicolas Condorcet (1743-1794)
and Siméon Poisson (1781-1840) thought that player A entered into an en-
gagement which he could not keep and that the gaine contained a contradic-
tion. Another French mathematician Joseph Bertand (1822-1900) asserted
that the theory, and the result given above, were quite correct and that only
the conditions of the game favored player B, leading to the unexpected re-
sult. According to him, if the number of throws is limited, then the chances
are different. For cxample, for a hundred games player B’s stake is about
15 crowns and he now runs a greater risk of losing. The conditions of the
game are still to his advantage as a result of the possibility of large profits,
although the probabilities are slight. B's stake depends on the number of
games that 4 is obliged to play. If this number is n, Bertrand calculated
that B’s stake is log n/(2log 2). Bertrand's extended commentary may be
found in Kraitchik’s book [118].

Some mathematicians offered a solution based on the practical reasoning
that since a. player’s fortune is necessarily finite, the sum, accordingly, cannot
be unlimited. The Comte de Buffon (1707-1788) even carried out empirical
tests to find an average ammount. Daniel Bernoulli sought to resolve the
problem through his principle of moral expectation, in accordance with which
he replaced the amounts

1,2, 22 25 ... by 1Y2 ol/4 41/8 gl/16

Actually, he considered that the worth of a fortune depends not only on
the number of crowns it accrues, but also on the satisfaction that it can
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give. According to his approach, 100 million crowns added to an already-
acquired fortune of 100 million, is not sufficient to double the original fortune.
Employing his own principle of moral expectation, D. Bernoulli derived the
following calculation (see Kraitchik [118]): *If a given fortune x is increased
by an amount dz, the worth of the increase is dx/x. Hence if my fortune
increases from en amount a to an amount b, I have gained an edvaniage
which can be measured by

b daz b
— =log, b—log. a=1log,—."
e« T a

Some references® attribute the Petersburg paradoz to Nicolaus IT Bernoulli
(1687-1759), a nephew of Jacob and Johann Bernoulli. The French scientist
Pierre-Simon de Laplace (1749-1827) and the aforementioned French mathe-
maticians also studied this problem. In addition, I. Todhunter,® E. Kamke,’
M. Kraitchik [118], Rouse Ball and H. S. M. Coxeter [150] all discussed
details of the Petersburg paradox.

Among the various modifications of the Petersburg problem in order to
get an finite answer, Gabriel Cramer advanced one of the more satisfactory
ones in about 1730.8 Cramer assumed that player A ’s wealth was limited.

Problem 8.5.* (Cramer) Player A’s wealth was limited to 224 =
16,777,216 crowns. How much should player B pay player A for the privilege
of playing the game described in Problemn 8.47

Nicolaus II Bernoulli (1687-1759) (= p. 304)

Leonhard Euler (1707-1783) (- p. 305)
The probability problem with the misaddressed letters

Many textbooks consider the probabhility theory task that we present be-
low as closely resembling the Bernoulli-Euler problem presented previously
in Chapter 7.

3See, e.g., A. N. Bogol'bov, Mathematics, Mechanics - Biographical Dictionary (in
Russian), Kiev 1983, p. 44.

8 A History of the Mathematical Theory of Probability, London 1865.

? Einfiihrung in die Wahrscheinlichkeitstheorie, Leipzig, 1932,

8]. Todhunter, A History of the Mathematical Theory of Probability, London, 1865,
p. 221.
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Problem 8.6. A girl writes k letters to k friends, and addresses the k
corresponding envelopes. With her eyes closed, she randomly stuffs one letter
into each envelope. What is the probability that just one envelope contains
the right letter, and the other k — 1 each contain the wrong letter?

The problem’s solution corresponds exactly to the solution of the mis-
addressed letters problem studied in the previous chapter, page 184. The
number of ways of getting one letter into the right envelope and the other
k —1 letters each into the wrong envelope is k - M/ (k — 1), where the number
of allowable rearrangements A{(r) is defined in the mentioned problem on
page 184. The number of all possibilities is equal to the number of various
arrangements of k objects, which makes

kt=1-2.3---k.
Therefore, the required probability is

_k-Mk-1) 1 1 1 (—1)F!
bi = Kl Syttt oo

(8.7)

Knowing the Taylor development of the function e”,

s _ 1 z 22 3 gt
e=ltgtatatgtoo
we find (for 2 = —1)

L, Ll 1 1 111
=gty yta T ATt
Comparing the last expression with P, we conclude that for relatively large
k we have P =~ e~ ! = 0.36787944... .

The following variation of the problem with the misaddressed letters has
an unexpected solution.

Problem 8.7.* A girl writes k letters to k friends, and addresses the
k corresponding envelopes. Then she randomly stuffs the letters in the en-
velopes. What is the probability that at least one envelope contains the right
letter? Find the greatest k such that the probability is greater than 1/2.

Another variation, proposed by Karapetoff [112] in 1947, is actually a
generalization of Problem 8.6.
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Problem 8.8.*% A girl writes k letters and addresses the k corresponding
envelopes. Then she randomly puts one letter into each envelope. What is
the probability that exactly m envelopes contain the right letters, and the
other k — m each contains the wrong letter?

Stephen Banach (1892-1945) (— p. 308)

Matchbox problem

The famous Polish mathematician Stephen Banach was the founder of
modern functional analysis and a great contributor to several branches of
mathematics (the Han-Banach theorem, the Banach-Steinhaus theorem,
Banach space, Banach algebra, the Banach fixed-point theorem). Banach’s
following “definition” of a mathematician is often quoted:

“A mathematician is o person who can find analogies between theorems,
a better mathematician is one who can see analogies between proofs and the
best mathematician can notice analogies between theories. One can imagine
that the ultimate mathematician is the one who can see analoyies between
analogies.”

Stephen Banach posed and solved this problem.

Problem 8.9. A man carries two bozes of matches in his pocket. Every
time he wanls to light a malch, he selects one bozx or the other at random.
After some time the man discovers that one of the bozes is emply. What
is the probability that there will be exactly k matches at that moment in the
other boz if each boz originally contained n (> k) matches?

Solution. Let M, stand for the event that “there is exactly & matches
in one of the boxes in the moment when the man observed that the other
box is empty.” The problem is equivalent to the problem of determining
the probability that at the moment when the man attempts to remove the
(n + 1)st mmatch from the box A, exactly n — k matches are taken from the
box B. Considering the problem in this form, we see that we can increase
the number of matches in the boxes. Moreover, we will assume that each
box contains an infinite number of matches.

Now we can consider the experiment of choosing n + (n — k) = 2n — k
matches, selecting the box from which each match is taken at random. Since
the (2n — k£ + 1)st match is assumed to come from A, its selection is not
part of the experiment. There are 22"~* equally probable outcomes of this
experiment. The favorable outcomes are those in which n» matches are chosen
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from A and the remaining n — k from B. This can be done in (*"7*) ways,
and so the desired probability is

1 2n — k

n

The following question naturally arises:

Problem 8.10.* What is the most likely number of matches remaining
in the bozx at the exact moment when the other box is empty? In other words,
determine max Py, (n 2 k > 1).

Here is another related problem of the combinatorial type.

Problem 8.11.* Using the solution to Banach’s matchbox problem, find
the following sum:

2 2n—1 ,f2n—2 ;
Sn=(n)+2(n )+22(n )+"‘+2"(n).
n n n n

Answers to Problems

8.5. There is a probability of 1/2" that player B will receive 2"~ ! crowns
at the nth throw only as long as n < 23; thereafter he will receive merely

224 crowns. Since
24 1 n s 1 n
Y(3) e X (3) =2,
n=1 n=25

the player’s expectation is 13 crowns, a reasonable amount.

8.7. Let pi be the probability that at least one letter (among k) will go to
the right address. Assume that the letters and envelopes are numbered from
1 to k. Let A; be the event that the ith letter goes into the right envelope i.
Using the formula for the product of mutually independent events we obtain

1 1

1
P(AilA?.-ﬂ”'Al'r):E'k_l.”k_r_i_l'

(8.9)
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Now we will apply the formula for the sum of events (the derivation of it
is beyond the scope of this book):

N
'pk=P(ZA,-) ZP(A)—ZP(AA)F > P(A:A;A)+

i<j P GCA

"+(—1)kP(A1A'2“‘Ak)- (8.10)
Plugging (8.9) into (8.10) gives the required probability

IO N1 1 1 7
”k‘l_(z)k k—l+(3)k -1 r_a ot (A)

~1—5+3'+ (D

It does not hurt to find that ps = 0.5 and p; > 0.5 for all £ > 3 with

lim p, = 1 —e™! ~0.632121.

k—=oc

The probability that the considered event will not happen, that is, none
of the letters will be put into the right envelope, is given by

Pr=1-p; = - —l. k(= 1)" 1 Z(‘]) rk (8.11)

=0

Warning: The last expression differs from (8.7). One more remark. The
result (8.11) finds its application in solving Problem 8.8.

8.8. Assume that exactly m (among k) letters have been stuffed into the
correct envelopes. The probability that each of them is contained in the

right envelope is

1 1 1

U=y %=1 k-mxy1’

see (8.9).
According to (8.11), the probability that none of the remaining & — m
letters is put into the right envelope is

k—m

pz = Z( 1)
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Therefore, the probability that exactly m letters are put into the right en-
velopes is given by

Pz =pipz2 = (8.12)

(k — m)! "&2 (-1)
k! 2. T

i=0

Since there are (,',") ways of choosing m letters among k letters with the
probability pz, using (8.12) it follows that the required probability is

k—m ;
k 1A <1y
p= (m)p‘g_mz i

i=0

In particular, for m = 1 we obtain the solution (8.7) of Problem 8.6.

8.10. We will prove that the sequence of probability { P} given by (8.8)
is monotonically decreasing, that is, Py, < P, k > 1. Starting from the
obvious inequality

2m—k)<2n—k, (n2k=1),
after simple manipulation we obtain

22n—k-1)!  (2n-k)!
(n—k—=Dn! ~ (n-k)nt

that is,

1 2n—k -1 1 2n —k
Pk-|--l=m( n )<2—_a( n )=Pg-

and the proof is completed. Some mathematicians would emphasize the
end of the proof using w®, as a witty abbreviation of “which was what was
wanted.” Actually, this notation is never found in academic publications
and Halmos® O or Q.E.D. (quod erat demonstrandum—that which was to be
proved) are used instead.

The proof of the inequality Pr.; < P (k > 1) simply means that
max P, = Pj, that is, when the man discovers that one of the boxes is
empty, the other bhox will contain most probably one match.

8.11. The sum S,, is somewhat difficult to evaluate by standard methods.
For this reason, we will use the solution (8.8) of Banach’s problem. The
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events Mg, M1, ... , M, are disjunct and make a complete set of events (see
the solution of Problem 8.9), that is,

Mo+ M, +---+ M, is a certain event with probability of 1.

Therefore,
p(Mo+ My +---+ My) =) p(My)=> Py =1
k=0 k=0

Hence, using (8.8), we obtain

1 /2n + 1 2n —1 T 1 2n — 2 N N 1 /n —1
22n n 22n-—1 n 22n—2 n an \ n -

Multiplying the above relation with 22", we obtain

2n 2n —1 2n — 2 n
o= () 2™ 12 () (7)<
n n n n




Chapter 9 GRAPHS

Computers allow us to solve very large problems concerning
graphs, while graph theory helps advence computer science.
Narsingh Deo

The full potential and usefulness of graph theory
is only beginning to be realized.
Gary Chartrand

In the introductory Chapter 1 we mentioned that some entertaining proh-
lems and puzzles were the starting points for important mathematical ideas
and results. This chapter begins with a very representative example, Euler’s
solution of the problem of K6nigsberg’s seven bridges in 1736. It is regarded
as the beginning of graph theory, a new and fundamental topic in discrete
mathematics and computer science. It is maybe of interest to note that
the term “graph” was introduced by Sylvester in a paper published 1878 in
the prestigious scientific journal Neture, many years after Euler’s pioneering
work. Watch out though: this term should not be confused with “graphs of
functions”.

A graph is a set of points (graph vertices or nodes) and lines (greph edges)
linking the subset of these points. Graph theory is the study of graphs. Ap-
pendix C gives some basic facts and definitions of graph theory. Nowadays,
graph theory is extremely valuable not only in the field of mathematics, but
also in other scientific disciplines such as computer science, electrical engi-
neering, network analysis, chemistry, physics, biology, operations research,
social sciences, to name only some. Remember that the four-color problem,
one of the most famous mathematical problems ever, was solved using graph
coloring.

In addition to Euler’s problem of Kénigsherg’s bridges and its variants,
you will find in this chapter the study of various kinds of paths in graphs:
Eulerian paths, Eulerian cycles, Hamiltonian paths and Hamiltonian cy-
cles. We use graphs to study Hamilton’s puzzle game called Icosian. This
game consists in the determination of a path passing each dodecahedron’s
vertices once and only once, known as Hamiltonian path (or cycle, if it is
closed). We recall that the famous knight’s re-entrant route on chesshoards,

229
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described in Chapter 10, is & Hamiltonian cycle. Further, we show that a
graph can be useful to model and resolve many common situations, such
as diagram-tracing puzzles, river-crossing problems, fluid-measuring puzzles
and chess problems. Besides Buler and Hamilton, the renowned scientists
Tait, Poinsot, Poisson, Listing and Erdds appear as the authors and solvers
of the problems presented in this chapter.

E S

& &
Leonhard Euler (1707-1783) (- p. 305)
The problem of Konigsberg's bridges

The Prussian town of Konigsberg, the present-day Russian city of Kalin-
ingrad, is situated on both banks of the river Pregel (Figure 9.1). There are
two islands in the river and seven bridges connecting the islands and river
banks, as shown in Figure 9.2. The inhabitants of K&nigsberg have long
amused themselves with this intriguing question:

Problem 9.1. Can one stroll around the city crossing each bridge ezactly
once?

In spite of all eflorts, no one has ever succeeded, either in accomplishing this
feat or in proving the possibility of doing so.

ONInesBENG A

FIGURE 9.1. Old Konigsberg and its seven bridges
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Leonhard Euler solved the problem in 1736 by proving the impossibil-
ity of the Konigsherg bridges walk. His proof is usually regarded as the
beginning of a new and fruitful mathematical discipline, graph theory.

The Kdnlgsberg bridges problemn bears a resemblance to the following
problem (see Figure 9.3, for demonstration):

Draw a set of line segments to join the points located in the plane. Can
this diagram be fraversed withoutl lifting the pencil from the paper by tracing
over each point exactly once?

FIGURE 9.2 Kénigsberg’s bridges FIGURE 9.3. Drawing of the figure

Euler's solution of the Kénigsberg bridges problem and that of traversing
the graph by one move™ (that is, “without lifting the pencil”) is based on
the following assertion:

Euler’s theorem. A (simple or multiple) graph can be traversed withoul
lifting the pencil, while tracing each edge exactly once, if and only if it has
not more than two odd vertices.

Graphs that can be traversed under the required conditions are called
Fulerian graphs and the corresponding path is called FPuler’s path. Thus,
Euler’s path exists if and only if there are 0 or at most 2 odd vertices. If the
number of odd vertices is 0 (thus, all vertices are even), then Euler’s path
can be drawn starting from any vertex and ending at the same vertex. In
the case when there are 2 odd vertices Euler's path starts from one of these
odd vertices and ends at the other.

1 Solutio problematis ad Geomelriam situs pertineniis, Commentarii Academiae Scien-
tiarum Petropolitanae for 1736, Petersburg, 1741, Vol. 8, pp. 128-140.
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The graph given in Figure 9.3 has 8 odd vertices and, therefore, cannot be
traversed without lifting the pencil. Figure 9.4 shows “K&nigsberg's multi-
graph” where the islands and the banks are represented by vertices, and the
bridges by edges. This graph has four vertices of odd degree and, according
to Euler’s theorem, it is not an Eulerian graph. Consequently, one cannot
achieve the proposed tour across Konigsberg's seven bridges.

C c A a B
FIGURE 9.4. Graph of Kénigsberg’s bridges

Another more complicated problem related to the application of Euler’'s
theorem bears n resemblonce to the Koningsherg bridges puzzle. Adapted
from Euler’s paper.? it requires the crossing of fifteen bridges:

Problem 9.2.* Fiftecn bridges connect four islands A, B, C and D fo
each side of the river. as well as linking the islands themselves as shown in
Figure 9.5. Can one take a stroll in which each bridge is crossed once and

only once?
\ O

FIGURE 9.5. The crossing of the 15 bridges

2 According to R. J. Wilson, J. J. Watkins [188. p. 124].
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After Euler’s theorem, it is easy to be smart. We encourage the reader to
find the required path across the fifteen bridges using Euler’s theorem and
the graph method.

Tait’s article® Listing’s Topologie, which appeared in the January 1884
edition of the Philosophical Magazine (London), published another problem,
also connected with Euler’s path.

Problem 9.3.* Without lifting pencil from paper, can one draw the figure
shown in Figure 9.6 while tracing over the edges eractly once?

FIGURE 9.6. Tait’s net

William R. Hamilton (1805-1865) (— p. 306)

Several notions in mathematics and mechanics bear the name of William
Rowan Hamilton who, with mathematicians James J. Sylvester and Arthur
Cayley, whom we will discuss later, gained considerable prominence in the
mathematical world of nineteenth-century Britain.

Hamilton, whose education had been guided by his linguist uncle, mas-
tered foreign languages as a child. A child prodigy, Hamilton could read
Greek and Hebrew at five as well as reading and writing Latin, French and
Italian; at the age of ten he was studying Arabic and Sanskrit; at twelve
he had a working knowledge of all these languages, not to mention Syriac,
Persian, Hindustani, and Malay. A turning point came in Hamilton's life
at the age of 12 when he met the American mental prodigy Zerah Colburn.
Colburn could perform amazing mental arithmetical feats and Hamilton put

3Peter G. Tait (1831-1901), an outstanding Scottish physicist and mathematician.
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his arithmetical abilities to the test in competing with Colburn. Perhaps
losing to Colburn sparked Hamilton’s interest in mathematics.

Hamilton made very important contributions to various branches of math-
ematics, but also to optics and mechanics. However, he regarded that his
discovery of quaternions in 1843 was his greatest achievement and he devo-
ted the two last decades of his life to working
on this subject. However, it has turned out that
the theory of quaternions has not found wide ap-
plication. Exhausted by hard work and disap-
pointed in his private life, Hamilton often sought
solace in drinking. After his death, his working
room was found in a chaotic condition, full of
heaps of unfinished manuscripts and the remains
of food. In his book Men of Mathematics, E. T.
Bell [15] subtitled his chapter on Hamilton, “An
Irish tragedy.”

William R. Hamilton
1805-1865

Hamilton's game on a dodecahedron

As noted above, the history of graph theory started from a recreational
mathematics problem. A century later, in a manner similar to Euler’s
graphs, a game provided the inspiration for yet another type of graph. In
1856 William R. Hamilton proposed an interesting graph problem and three
years later turned it into a puzzle game called Icosian on a dodecahedron.?

vertices edges faces
Tetrahedron 4 6 4 A
Octahedron 6 12 8 A
Cube 8 12 6 O
Icosahedron 12 30 20 A
Dodecahedron 20 30 120

TABLE 9.1. Platonic solids

Before going any further, let us digress for a moment to recall the basic
features of Platonic solids (also called regular polyhedrons) that may be use-
ful later. A Platonic solid is a convex polyhedron whose faces are congruent

1Actually, Hamilton sold the idea of the icosian game to J. Jacques and Son, makers
of fine sets, for £25, but it turned out to be a bad bargain—for the dealer.
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convex regular polygons. There are only five convex regular polyhedrons
whose number of vertices, edges and faces is given in Table 9.1. From this
table we see that the dodecahedron is one of the five regular polyhedrons,
which has 12 faces, 20 vertices and 30 edges (Figure 9.7). All the faces of the
dodecahedron are regular pentagons, three of them joining at each vertex.

A. Beck, M. N. Bleicher and D. W. Crowe pointed in the book Ezcursion
into Mathematics [11] that the regular polyhedrons resemble to a significant
extent the skeletons of the minute marine animals called radiolaria. An
example of a dodecahedron and the skeleton of a radiolaria are shown in
Figures 9.7 and 9.8.

FIGure 9.7. Dodecahedron FIcurE 9.8. Radiolaria—dodecahedron
Back to the icosian puzzle. Here is Hamilton’s task:

Problem 9.4. Map a path passing through each of the dodecahedron’s
vertices once and only once.

Notice that an edition of Hamiltonian’s board game on a dodecahedron
nemed A Voyage Round the World, treated the vertices of the dodecahedron
as exotic locations all over the world. A traveler must visit each of these
locations once and only once.

In solving Hamilton’s task, for the sake of clarity and convenience, rather
than considering a dodecahedron we shall alter its orientation to that of
its stereographic projection, in essence, a dodecahedron’s skeleton in planar
graph form as shown in Figure 9.9.

Paths as that required in Hamiltonian games are called Hemilionian paths
after Hamilton, and graphs with this property are called Hamilton graphs.
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A cyclic Hamiltonian path which finishes at the starting point is called a
Hamiltonian cycle.® Hamiltonian cycles have several important applications
in traffic optimization problems and conmunication networks.

One Hamiltonian cycle along the skeleton of dodecahedron is represented
on Figure 9.9 by the thick line segments coinciding with the letter sequence

A-B-C-D-E-F-G-H-I-J-K-L-M-N-O-P-Q-R-S-T-4A

FI1GURE 9.9. Hamiltonian cycle

Problem 9.5.* A wvariation on Hamilton’s game involves determining
Hamiltonian cycles given five initial letters. Starting with the initial letters,
say, NMFGH, the reader should complete a Hamiltonian cycle.

It is easy to find a Hamiltonian cycle on the 3-cube, as shown in Figure
9.10. Introducing the 2yz coordinate system, the presented route can be
expressed by a sequence of coordinates (z,y, 2); see Figure 9.10 right. As
noted in [11], there is a remarkable similarity between the Hamiltonian cycle
on the 3-cube and a very familiar Tower of Hanoi puzzle (considered in
Chapter 7, pages 196-199). Indeed, let x, y, 2 stand for the smallest, medium
and largest disk of the Tower of Hanoi having three disks, and let (2, y, =)

3 According to N. L. Briggs. E. K. Lloyd and R. J. Wilson, questions of priority arise
concerning the works of W. R. Hamilton and T. P. Kirkman. Briggs, Lloyd and Wilson
remarked in their book |27] that Hamilton was concerned with one special case, whereas
Kirkman concurrently studied a more general problem: spanning cycles on general convex
polyhedra. Nevertheless, the spanuning cycles of a graph are now known as Hamiltonian
cycles, not as Kirkman cycles.
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denote a disk-position. Assuming that these coordinates take the values 0
or 1, the change of one (and only one) coordinate from 0 to 1, or opposite,
means that the corresponding disk has been moved. For example, from the
two consecutive disk-positions 110 and 010 one concludes that x-disk (the
smallest one) has been moved. As we can see from Figure 9.10 right, the
solution in 7 moves of the Tower of Hanoi with three disks is given by the
same sequence as the vertices of a Hamiltonian cycle on the 3-cube. What
is really surprising is that a general assertion is valid (sce [11]):

Theorem 9.1. The simplest solution of the Tower of Hanoi with n disks,
consisting of 2" — 1 moves, coincides with a Hamiltonian cycle on the n-cube.

Hamiltonian cycle  Tower of Hanoi

for the 3-cube having 3 disks
0 0O
111

1 00
1 10

X Ssmallest disk
0 1 0

Y medium disk

0 11 Z  largest disk
110 1 1 1
1 0 1
0 0 1
X 100 X ¥y z

FI1GURE 9.10. Hamiltonian cycle on the 3-cube and the Tower of Hanoi solution

Hamilton’s original game uses a dodecahedron. The following natural
guestion arises:

Problem 9.6.* Is it possible to find Hamiltonian cycles on all the Pla-
tonic solids, presented in Table 9.17
Here is another task connected with a dodecahedron whose solution can

be found in an easy way using graph theory (see Exercises in [11, p. 18]):

Problem 9.7.*% Can you color the faces of a regular dodecahedron with
three colors in such a way that no two neighboring faces have the same color?
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As we have seen, Euler’s theorem provides a method allowing for simple
characterization of Euler's graphs. However, a similar criterion for Hamil-
ton’s graphs has not yet been stated and it thus remains one of the most
challenging unsolved problems in graph theory. Graphs that might contain
Hamiltonian paths exhibit no particular known features to distinguish them;
furthermore, they hold that even in the event that a Hamiltonian path ex-
ists, no simple algorithm could be used to determine its existence. Instead,
they maintain, proving the existence of a Hamiltonian path would involve
considering graphs on an individual case-by-case basis, and even then such a
discovery would very likely result from perceptive guesswork and calculated
experimentation (see Averbach and Chein [6, Ch. 6]).

We owe the reader an explanation of why modern very powerful computers
cannot find Hamiltonian paths (if they exist at all}) within a reasonable
amount of time. Of course, we restrict ourselves to a finite set of objects
that must be traversed for which there are finitely many paths. How large is
the number of these paths? Let us assume that twenty cities are given and
each of them must be visited exactly once. With a little help of elementary
combinatorics we find that there are

20-19-18---3-2-1 = 2,432,902,008,176,640,000

possible trips. If we assume that a very fast computer may find one billion
(10°) trips in one second, then it will need 77 years to examine all trips. Quite
unacceptable for real-life problems! The problem becomes considerably mnore
complicated if the distances between cities should be taken into account and
we want to find the shortest Hamiltonian path. In this way we come to
the famous (unsolved, of course) traveling selesman problem (sec [13] for a
popular exposition of this problem).

A number of results have been established concerning sufficient conditions
for Hamilton graphs, and here we include two of the most important sufficient
conditions formulated by G. A. Dirac (1952) and O. Ore (1960), using the
notion of the node degree deg(-) (see Appendix C).

Dirac’s theorem. Let G be a simple graph with n (n > 3) vertices. If
deg(v) > n/2 for each vertex v belonging to G, then G is a Hamilton graph.

Ore’s theorem. Let G be a simple graph with n (n > 3) vertices. If
deg(v) + deg(w) > n for each pair of nonadjacent vertices v and w belonging
to G, then G is a Haemilton graph.

Let us note that Dirac’s theorem is a special case of Ore’s theorem. The
proof of Ore’s theorem can be found, e.g., in [188]. The following problem
nicely illustrates the application of Dirac’s theorem.
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Problem 9.8. King Arthur gathered his 2n knights of the Round Table
to prepare for an important council. Each knight has at most n — 1 enemies
among the knighis. Can the knights be seated at the Round Table so that
each of them has two friends for neighbors?

We solve this problem by constructing a graph with 2n vertices, where
each vertex represents one knight. Two vertices are connected if and only
if the corresponding knights are friends. As stated by the conditions given,
each knight has at least n friends. This means that the degree of each vertex
is at least n. Since deg(G) = n = 2n/2, according to Dirac’s theorem, it
follows that graph G has a Hamiltonian cycle. This cycle gives the required
arrangement of the knights.

To illustrate the point, we present a particular case of 8 knights (that is,
n = 4). We designate the knights by the capital letters A, B, C, D, E, F,
G, H. Each knight has exactly 3 enemies given in the parentheses below.

A (B,E,F), B(AD,G), C(FG.H), D(BE,H)
E(A,D,G), F(ACH), G(B.,C,E), H(C,D,F)

FIGURE 9.11. King Arthur’'s graph FIGURE 9.12. Arrangement of knighis

According to our “lists of enemies” we can construct the corresponding
graph given in Figure 9.11. Then we find a Hamiltonian cycle, marked by
the thick line starting from A. Taking the vertices along this IHamiltonian
cycle and keeping the ordering of vertices, we obtain the arrangement of
knights shown in IFigure 9.12.

Let us note that B. Averbach and O. Chein in [6, Pog. 6| considered
a version of the problem of arranging King Arthur’s knights. The famous
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knight’s tour problem, considered by Euler, de Moivre, de Montmort, Van-
dermonde and other outstanding mathematicians, is an earlier example of a
problem which can be expressed in terms of Hamiltonian cycles. We discuss
this problem on pages 258-264.

Alcuin of York (735-804) (- p. 299)

A man, a wolf, a goat and a cabbage

As previously discussed, river-crossing problems appear as a recurrent
theme in recreational mathematics. One familiar twist on these well-known
river-crossing probleins involves a man, a wolf, a goat, and a cabbage. This
problem dates back at least to the eighth century when it appeared for the
first time in a booklet, very likely written by Alcuin of York.

Problem 9.9. A man wishes to ferry a wolf, a goat, and a cabbage across
a river in a boat that can carry only the man and one of the others at a time.
He cannot leave the goat alone with the wolf nor leave goat alone with the
cabbage on either bank. How will he safely manage to carry all of them across
the river in the fewest crossings?

Using digraphs (for the definition of digraph, see Appendix C), we can
solve this kind of problem elegantly as shown by R. Freley, K. L. Cooke
and P. Detrick in their paper [66] (see also Chapter 7 of the book [42] by
K. L. Cooke, R. E. Bellman and J. A. Lockett). M. Gardner also made
these puzzles the subject of his column Mathematical Gamesin the Scientific
American, No. 3 (1980), and many other journals and books of recreational
mathematics. We shall apply some elements of graph theory (see Appendix
C) to solve Alcuin’s classic problem.

MWGC o2 CW

2
MWC

MWG

MGC

MG >

FIGURE 9.13. Crossing the river—a graph
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Let M, W, G, and C stand for the man, the wolf, the goat and the
cabbage, respectively. According to the puzzle’s conditions the follow-
ing sets of symbols denote the permissible states on the starting bank:
MWGC, MWG, MWC, MGC, MG, CW, W, G, C, 0. The symbol
0 refers to the state once the river crossing has been accomplished.

Figure 9.13 shows the graph of all possible transits among the accepted
states. Now we can simply reduce the solution of the puzzle to the determi-
nation of the shortest path between the vertex MWCC (the initial state)

FIGURE 9.14. River-crossing scheme
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and the vertex 0 (the final state). There are two minimal solutions, each
requiring seven transits, recorded by each progressive state of transfer:

I MWGC, CW, MWC, W, MWG, G, MG, 0;
II MWGC, CW, MWC, C, MGC, G, MG, 0.

Due to the possibilities of taking a fourth and a fifth step, two paths
appear. The difference between two adjacent states indicates what is in the
boat with the man during the trip across the river. As a result, we can easily
record the above solutions by successive lists of passengers in the boat:

I MG-M-MC-MG-MW-M-MG,
I MG-M-MW-MG-MC-M-MG.

We give a graphical illustration of the second solution II in Figure 9.14
based on the problem's solution given in an interesting graphical interpreta-
tion by B. Kordemski [117].

Distinctive variants of Alcuin’s task occur in Africa: in Algeria the objects
are a jackal, a goat, and a bundle of hay; in Liberia a mnan’s company are
a cheetah, a fowl, and some rice, while in Zanzibar, a man must ferry a
leopard, a goat, and some leaves across a river (see Katz’s book A History
of Mathematics [113, p. 339]).

A stout family crosses the river

This puzzle, belonging to the river-crossing category, appeared for the
first time as Problem XIX in Alcuin’s work. We give the problem as it is
found in [186], after its translation from Latin.

Problem 9.10. A man and a woman who each weigh as much as a loaded
cart must cross a river with their two children, each of whom, in turn, weighs
the same, and whose total weight together equals that of a loaded cart. They
find a boat that can only hold a single cartload. Make the transfer, if you
can, without sinking the boat!

Solution. Alcuin correctly found that nine passages arc necessary. Let
the letters F, M, s stand for father, mother and sons, respectively. Here is
one solution recorded by the name(s) of traveler(s) where each crossing is
described by 1) the names of persons on the starting (left) bank, 2) name(s)
of rower(s) in the boat and 3) names of persons on the arrival (right) bank
after crossing. The arrows — and <« dcunote departure and return, respec-
tively. Let us note that F can be replaced by M, and vice versa, since their
weights are equal.
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starting bank rower(s) arrival bank
— FMss _— _
1. A — 88 88
2. FAMs «— s s
3. Fs - M Ms
4. Fss «— s M
o. F - 35 Mss
6. s «~ s Ms
7. 8 - F FAfls
8. 88 «— s FM
9. —_— — 38 FMss

The posed problem may be effectively solved using digraphs. All possible
states on the starting bank are given in Figure 9.15. The minimal solution
is represented by the tick lines with arrows.

Fss F
-a
sy

F1GURE 9.15. A stout family crosses the river—a digraph solution

We leave to the reader the solution of the well-known river-crossing prob-
lem that can be found in many books of recreational mathematics.

Problem 9.11.* Three explorers and three helpful natives—who are in-
cidentally also cannibals—must cross the river by means of a small rowing
boat that can hold at most two passengers at a time. Naturally, the explorers
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must not allow to be outnumbered by the cannibals on either river bank. How
can these sic people safely cross the river in the fewest number of crossings?

Can you solve this problem if only one explorer and only one cannibal can
row?

Paul Erdés (1913-1996) (= p. 310)

The famous mathematician Paul Erdds enjoyed posing and solving chal-
lenging and beautiful problems that are simple to understand, especially
those belonging to number theory, combinatorics and graph theory. One of
his problems is included in Chapter 7. Here is another dealing with graphs.

Seven towns and one-way roads

Problem 9.12. There are 7 towns in a country, each of them connected
to the other by e two-way road. Can one reconstruct all of these roads as
one-way roads so that for any two specified towns it is always possible to
reach each town in one step from some third town?

By drawing a digraph with 7 vertices, we can employ arrows whose ori-
entations indicate the particular direction of one-way roads and arrayed in
such a way so that for any specified pair of towns, there is a third town
from which you can drive directly to the other two. The solution is shown
in Figure 9.16.

FIGURE 9.16. Graphing the one-way road problem
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Louis Poinsot (1777-1859) (— p. 306)

The French mechanist and mathematician Louis Poinsot, a member of
the Académie des Sciences, is best known for his contribution in geometry,
statics and mechanics. He played a leading role in mathematical research
and education in eighteenth-century France.

Poinsot’s diagram-tracing puzzie

Problem 9.13. FEach of n points, disposed on a circumference, is con-
nected by straight lines with each of the remaining n — 1 points. Can a dia-
gram constructed in this way be traversed in one continuous stroke without
covering any part more than once?

In 1809, Poinsot showed that the diagram consisting of n interconnected
points can be traversed under the stated conditions only if n is odd, but
not if n is even. In graph theory terminology, this is equivalent to saying
that the complete graph K, is Eulerian only for an odd value of n. Poinsot
also gave a method for finding an Eulerian path when n is odd. The five
diagrams in Figure 9.17 illustrate Poinsot’s statement.

n=3 n=4 n=5

yes no yes

no yes

FIGURE 9.17. The complete graphs K3 to K5
In the following paragraph, we describe an algorithm for tracing the com-
plete graph K,, (n is odd).

Let us label the vertices by 0,1,...,n — 1 (n is odd) in the clockwise
direction, and let m = 0,1,... ,n — 4 be the counter.
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1° Set m = 0;

2° Start from an arbitrary vertex » (€ {0,1,...,n — 1}) and trace the
edges in the clockwise direction skipping m vertices in each move until the
starting vertex r is again reached; then go to 3°;

FFm:=m4 1;

4° If m < n — 3, go to step 2°, otherwise STOP—the diagram is traced.

For example, in the case of the diagram K5, Figure 9.17, the Eulerian
trial is as follows (taking r = 0):

01,12,23,34,45,56,60 02,24,46,61,13,35,50 03,36, 62,25, 51,14.40

m=0 m;l m;2

4 3
FIGURE 9.18. Eulerian path on the complete graph K7

An interesting connection exists in the case of the complete graph K, (Fig-
ure 9.18 left) between the usual set of dominoes and the described Eulerian
path; see [188, p. 129]. Let us regard each of the edges of K; as a domino;
for example, the edge 1-5 corresponds to the domino displayed on the right-
hand side of Figure 9.18.

As one may observe, the Eulerian path above corresponds to an arrange-
ment of a set of dominoes including all but doubles 0—0, 1-1, ... ,6—6, in
a continuous sequence. Once the basic sequence is found, the doubles can
be inserted in the appropriate places. In this way we show that a complete
game of dominoes is possible. Figure 9.19 displays the ring of dominoes
corresponding to the above Eulerian path.
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FiGURE 9.19. The ring of dominoes corresponds to the Eulerian trail

Gaston Tarry, the French mathematician, considered a more general case
(see [150, pp. 249-253]). He stated the connection between a complete
graph K, (n is odd) and a set of dominoes running up to double-(n — 1),
and determined the number of ways in which this set of dominoes can be
arranged. For example, for n = 7 he found that the number of possible
arrangements in a line of the usual set of 28 dominoes (from 0—0 to 6—6) is
7,959,229 931,520.

Problem 9.14.% Lel us consider the complete graph K,,.. What s the
mazimum number of regions obtained by straight lines that connect the nodes
of this graph?

Siméon Poisson (1781-1840) (— p. 306)

Milk puzzie

Fluid-measuring puzzles require one to measure a certain quantity of fluid
using no other measuring device than that of given containers having a pre-
cise and exact capacity. When the great French mathematician Poisson was
a boy, he encountered the following puzzle belonging to the fluid-measuring
category of puzzles.

Problem 9.18. A milkman has o container of milk with the capacity of
12 liters. He must deliver 6 liters of milk to a customer who possesses an
8-liter and a 5-liter container. How can he pour exzactly 6 liters of milk from
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his container into the customer’s larger container, and keep 6 liters in his
contuiner? While pouring, he may use all three containers.

The story goes that young Poisson took so much delight in this puz-
zle® that he decided to make mathematics his life’s vocation. Indeed, as
the prominent mathematician Guglielmo Libri said of him, Poisson’s only
passion was mathematics: he lived and died for it. Poisson himself once
said: “Life is good for only two things, discovering mathematics and teach-
ing mathematics.”

Table 9.2 presents the solution to the milk-decanting puzzle in terms of
the minimal number of pourings.

120 [ 12 |4 [4 |9 |9 |1 |16
8. | 0 [8 [3 [3 |0 [8
50 | 0 |0 |5 |0 |3 [3 |5 |0

o]

TABLE 9.2. Solution to Poisson's milk puzzle

We note that this puzzle can also be solved effectively by the use of graphs
as described by Q. Ore in [135]. In the following problein, one very similar
to Poisson’s milk puzzle, we shall illustrate such an approach.

Problem 9.16. Two containers, A and B, have holding capacities of 3
and 5 gallons, respectively. Drawing water from a lake or a pond, how does
one pour exactly 4 gallons of water into the larger container using only these
two containers?

Solution. We can describe cach state of water in the two containers A
and B, by denoting a and b the quantities of water contained in A and B, re-
spectively. In this manner every possible distribution of water is represented
by an ordered pair of integers (a,b). At the beginning we have a = b = 0,
which means that one starts with the state (0,0). The final state is given
by the pair (a,4), where a € {0,3} is the quantity of water in a smaller
container at the moment that the measurement is completed.

It is easy to see that there are 6 X 4 = 24 possible states that can be
represented by the vertices of a graph. It is convenient to draw this graph
in the two-dimensional coordinate system as shown in Figure 9.20. Now we
connect all integer pairs (a, b) by edges whenever it is possible to move from
one vertex to another by pouring water between the containers or by taking

8This problem appeared for the first time in Triparty en la science des nomures, a
work of Nicolas Chuquet published in 1484. Chuquet (died 1487) was a French physician
and also the best French mathematician of his time.
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water from the lake. For example, in the first step it is possible to move
from (0,0) to (0,5) or (3,0).

(3.2) (3.4)
®

(2,5)

FIGURE 9.20. Graph solution for the pouring problem

The transition from (a,b) to (e,0) means that the larger container B is
completely emptied. Continuing in this manner we arrive at the required
target state (3,4) in 6 steps. All movements are represented by the edges
indicated in Figure 9.20. We note that only those vertices and edges involved
in the solution are denoted.

Following the edges of the graph, the solution can be presented by the
table given helow.

W)
3]
(I

Asg Jo [0 [3 o0
Bog [0 |5 |2 |2 [0 |5 |4

TABLE 9.3.

Johann B. Listing (1808-1882) (- p. 307)

Listing’s diagram-tracing puzzle

In 1847, a versatile German scientist J. B. Listing who worked in math-
ematics, geodesy, terrestrial magnetism, meteorology and other disciplines,
wrote an important treatise entitled, Vorstudien zur Topologie (Introductory
Studies in Topology). This work is often considered to have introduced a
new branch of mathematics: topology. Among many fundamental topics,
this book includes a discussion of diagram-tracing puzzles. Listing remarked
that the diagram shown in Figure 9.21 can be drawn without lifting pencil
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from paper, and tracing over the edges exactly once starting at one end and
finishing at the other. Euler’s path exists since there are only two points
which correspond to vertices of odd degree. We hope that the reader will
show great patience and presence of mind when confronted by this huge
network.

Problem 9.17.* Is it possible to reproduce the diagram shown in Figure
9.21 drawing it in one continuous line while tracing over the edges once and

only once?

\ g

L -
< >

FIGURE 9.21. Listing’s diagram-tracing puzzle

/LA
ANNR SV//A\

Answers to Problems

9.2. To solve this problem let the upper-case letters represent the islands
(A,B,C,D) and the shore (E,F) by vertices of a graph. The lower-case letters
represent the bridges by edges of a graph. When we look at Figure 9.22, we
see that all vertices of the graph are even. Euler’s theorem demonstrates
that such a route exists in which one may cross all fifteen bridges starting
from any point and ending the stroll at the same starting point.

D ] E

FIGURE 9.22. Graph of 15 bridges
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We can carry out the crossing in this ordering

EaFbBcFdAeFfCgAhCiDkAmEnApBeEID E

9.3. An Euler path is given by the sequence of nodes {1,2,...,22},
marked in Figure 9.23.

8 2 7 20 19
;s 4|22 o1
—
12 12 616 18|
1
13 17
9 10 14

FIGURE 9.23. Tracing Tait’s nct

9.5. The completion of a Hamiltonian cycle is possible in exactly two
ways:

N-M-F-G-H|
L-K-J-1-8-T-A-E-D-C-B-R-Q-P-0,

N-M-F-G-H|
L-K-0O-P-C-B-R-Q-J-1-S-T-A-E-D.

9.6. Yes, it is possible. We have already seen Hamiltonian cycles on the
dodecahedron and the 3-cube, the remaining three cycles are illustrated in
Figure 9.24 (sec [69]). As in the case of the two mentioned regular polyhe-
drons, we have considered stereographic projections—skeletons of a tetrahe-
dron, an octahedron and an icosahedron.
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FIGURE 9.24. Hamiltonian cycles on tetrahedron, octahedron and icosahedron

9.7. Let us represent each of 12 faces of a dodecahedron by the nodes of
a graph shown in Figure 9.25. The numbering is obviously irrelevant due to
symmetry, but the connecting lines must be correctly drawn.

/

0

/\

12

o

10

FIGURE 9.25. Coloring the faces of a dodecahedron

It is sufficient to consider a separate subgraph as shown in Figure 9.25
right. Suppose that the central node 11 is colored in one color. Then the
surrounding (outer) nodes 6, 7, 8, 9 and 10 must be colored alternatively by
two other colors. However, this is impossible because the number of outer
nodes is odd. Therefore, the faces of a regular dodecahedron cannot be
colored with three colors so that two neighboring faces are a different color.
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9.11. The crossing requires not less than 11 passages. The reader may
come to the optimal operation by trial and error, but we give an elegant so-
lution using the digraphs. Since we have already used the graphs for solving
crossing puzzles in this chapter, only an outline of the digraph-solution will
be given. More details can be found in [66] and [80].

a) b)

FIGURE 9.26. A graphical solution of the explorer-cannibal puzzle

Let e and ¢ denote the number of explorers and cannibals, respectively.
As in the previous graph-solutions, we will consider all possible states on
the starting bank. Since e, c € {0, 1,2, 3}, there are 16 possible states repre-
sented in the matrix-like form, Figure 9.26(a). Six shaded cells denote the
forbidden states where the cannibals outnumber the explorers. The remain-
ing acceptable 10 states are marked by points that are connected by lines to
show all possible transfers. In solving this problem we ought to choose the
route among these lines which provides: 1) at most two passengers in the
rowing boat; 2) the safety of explorers on either bank; 3) the passage from
the (starting) state (e = 3,¢ = 3) to the (final) state (e = 0,c = 0); 4) the
minimum number of crossings.

One of the four solutions in 11 moves is shown in Figure 9.26(b). Referring
to Figure 9.26(Db), and using the notation — (rower(s)) and + (rower(s))
to denote the direction of crossing and passenger(s) in the boat, the solution
can be recorded as follows:

1. 5 (¢,¢) 2. « (¢) 3. = (¢c,0) 4. « (¢) 5. > (e,e) 6. « (c,e)

7. = (e,e) 8. « () 9. = (¢,e) 10. « (c) 11. = (e, ¢).

In a variant of the explorer-cannibal puzzle in which only one explorer

(let us distinguish him with a capital E') and only one cannibal (capital C)
can row, the fewest crossings consist of 13 transfers. Here is one solution:
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1. = (C,e)2. « (C)3. = (C,o)4. « (C)5. = (E,e)
6. — (¢,E)7. = (C,E)8. « (¢,E)9. = (E,e) 10. « (C)
11. = (C,0) 12. « (C) 13. = (C,0).

Is this solution unique?

9.14. The maximum number of regions R, is given by the formula

n n—1 nt —6n3 +23n% —43n + 24
(7)o

This result can be obtained using various methods. One of them follows
directly from the following problem posed by Leo Moser (see Gardner [82, p.
559]): n spots are placed along a circle’s circumstance. The circle is divided
into regions by connecting every pair of points by a straight line (see Figure
9.27 for n = 5). What is the mazimum number of regions? The answer is

given by the formula
n n—1
M, =
()4 ("7)

(M stands for Moser). This is a real-life formula since it gives the maximum
number of slices of a pizza that can be produced by n knight’s straight cuts.

FIGURE 9.27. Moser’s point problem for n = 5

From Figure 9.27 we notice that the diagram obtained by deleting the
circumstance is actually the complete graph K,. It is obvious from this

figure that
n n—1
Rn = Ajn - = .
" (4) ¥ ( 2 )
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9.17. Oue of muncrous solutions is shown in Figure 9.28. For the sake of
clarity, the “questionable crossroads™ are arked by small black circles. For
sviumetry, only a part is shown: this path continnes from point 73 toward
the endpoint E in a synmunetrical way in reference o point 41 (white cireles)
going back to the starting point S,

) & 23 47/ \i6
A 26 ¢ 42 51/ 50 \4
19 2 21 22 4 49
47
38 3% L7 = 5
59

?
d

E

FIGURE 9.28. Tracing Listing’s diagram






Chapter 10 CHESS

In many cases, mathematics as well as chess,
is an escape from reality.
Stanislaw Ulam

Chess is the gymnasium of the mind.
Blaise Pascal

The chessboard is the world,

the pieces are the phenomena of the Universe,

the rules of the game are what we call the laws of Nature.
Thomas Huxley

Puzzles concern the chessboards (of various dimensions and different
shapes) and chess pieces have always lent themselves to mathematical recre-
ations. Over the last five centuries so many problems of this kind have
arisen. Find a re-entrant path on the chesshoard that consists of moving a
knight so that it moves successively to each square once and only once and
finish its tour on the starting square. How to place 8 queens on the 8 x 8
chessboard so that no queen can be attacked by another? For many years I
have been interested in these types of chess-math problems and, in 1997, I
wrote the book titled Mathematics and Chess (Dover Publications) [138] as
a collection of such problems. Some of them are presented in this chapter.

Mathematics, the queen of the sciences, and chess, the queen of games,
share an axiomatical approach and an abstract way of reasoning in solving
problems. The logic of the rules of play, the chessboard’s geometry, and the
concepts “right” and “wrong” are reminiscent of mathematics. Some math-
ematical problems can be solved in an elegant manner using some elements
of chess. Chess problems and chess-math puzzles can ultimately improve
analytical reasoning and problem solving skills.

In its nature, as well as in the very structure of the game, chess resembles
several branches of mathematics. Solutions of nuinerous problems and puz-
zles on a chessboard are connected and based on mathematical facts from
graph theory, topology, number theory, arithmetic, combinatorial analysis,
geometry, matrix theory, and other topics. In 1913, Ernst Zermelo used

257
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these connections as a basis to develop his theory of game strategies, which
is considered as one of the forerunners of game theory.

The most important mathematical challenge of chess has been how to de-
velop algorithms that can play chess. Today, computer engineers, program-
mers and chess enthusiasts design chess-playing machines and computer pro-
grams that can defeat the world’s best chess players. Recall that, in 1997,
IBM’s computer Deep Blue beat Garry Kasparov, the world champion of
that time.

Many great mathematicians were interested in chess problems: Euler,
Gauss, Vandermonde, de Moivre, Legendre. On the other hand, several
world-class chess players have made contributions to mathematics, before
all, Emanuel Lasker. One of the hest English contemporary grandmasters
and twice world champion in chess problem solving, John Nunn, received his
Ph.D. in mathematics from Oxford University at the age of twenty-three.

The aim of this chapter is to present amusing puzzles and tasks that
contain both mathematical and chess properties. We have mainly focused on
those problems posed and/or solved by great mathematicians. The reader
will see some examples of knight's re-entrant tours (or “knight's circles™)
found by Euler, de Moivre and Vandermond. We have presented a variant
of knight’s chessboard (uncrossed) tour, solved by the outstanding computer
scientist Donald Knuth using a computer program. You will also find the
famous eight queens problem, that caught Gauss’ interest. An amusing
chessboard problem on non-attacking rooks was solved by Euler.

None of the problems and puzzles exceed a high school level of difficulty;
advanced mathematics is excluded. In addition, we presume that the reader
is familiar with chess rules.

Abraham de Moivre (1667-1754) (- p. 304)
Pierre de Montmort (1678-1733) (- p. 304)
Alexandre Vandermonde (1735-1796) (— p. 305)
Leonhard Euler (1707-1783) (— p. 305)

Knight's re-entrant route

Among all re-entrant paths on a chessboard, the knight’s tour is doubtless
the most interesting and familiar to many readers.
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Problem 10.1. Find a re-entrant route on a standard 8 x 8 chessboard
which consists of moving a knight so that it moves successively to each square
once and only once and finishes its tour on the starting square.

Closed knight's tours are often called “knight’s circles”. This remarkable
and very popular problem was formulated in the sixth century in India [181].
It was mentioned in the Arab, Mansubas!, of the ninth century A.p. There
are well-known examples of the knight’s circle in the Hamid I Mansubas (Is-
tanbul Library) and the Al-Hakim Mansubas (Ryland Library, Manchester).
This task has delighted people for centuries and continues to do so to this
day. In his beautiful book Across the Board: The Mathematics of Chess-
board Problems [181] J. J. Watkins describes his unforgettable experience at
a Broadway theater when he was watching the famous sleight-of-hand artist
Ricky Jay performing blindfolded a knights tour on stage.

The knight'’s circle also interested such great mathematicians as Euler,
Vandermonde, Legendre, de Moivre, de Montmort, and others. De Mont-
mort and de Moivre provided some of the earliest solutions at the beginning
of the eighteenth century. Their method is applied to the standard 8 x 8
chessboard divided into an inner square consisting of 16 cells surrounded by

FIGURE 10.1. Knight's tour—de Moivre's solution

an outer ring of cells two deep. If the knight starts from a cell in the outer
ring, it always moves along this ring filling it up and continuing into an
inner ring cell only when absolutely necessary. The knight’s tour, shown in

' The Mansubas, a type of book, collected and recorded the games, as well as remark-
ably interesting positions, accomplished by well-known chess players.
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Figure 10.1, was composed by de Moivre (which he sent to Brook Taylor).
Surprisingly, the first 23 moves are in the outer two rows. Although it passes
all 64 cells, the displayed route is not a re-entrant route.

Even though L. Bertrand of Geneva initiated the analysis, according to
Mémoires de Berlin for 1759, Euler made the first serious mathematical
analysis of this subject. In his letter to the mathematician Goldbach (April
26, 1757), Euler gave a solution to the knight’s re-entrant path shown in
Figure 10.2.

FIGURE 10.2. Euler’s knight’s circle  FIGURE 10.3. Euler’s half-board solution
solution

Euler's method consists of a knight's random movement over the board
as long as it is possible, taking care that this route leaves the least possible
number of untraversed cells. The next step is to interpolate these untraversed
cells into various parts of the circuit to make the re-entrant route. Details
on this method may be found in the books, Mathematical Recreations and
Essays by Rouse Ball and Coxeter [150], Across the Board by J. J. Watkins
[181] and In the Czardom of Puzzles (in Russian) [107] by E. I. Ignat'ev, the
great Russian popularizer of mathematics. Figure 10.3 shows an example of
Euler’s modified method where the first 32 moves are restricted to the lower
half of the board, then the same tour is repeated in a syminetric fashion for
the upper half of the board.

Vandermonde’s approach to solving the knight's re-entrant route uses frac-
tions of the form z/y, where = and y are the coordinates of a traversed cell.?

2 L’Historie de I’Académie des Sciences for 1771, Paris 1774, pp. 566-574.
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For example, 1/1 is the lower left corner square (al) and 8/8 is the upper
right corner square (h8). The values of x and y are limited by the dimen-
sions of the chessboard and the rules of the knight's moves. Vandermonde's
basic idea consists of covering the board with two or more independent paths
taken at random. In the next step these paths are connected. Vandermonde
has described a re-entrant route by the following fractions (coordinates):

5/5,4/3,2/4,4/5, 5/3, 7/4, 8/2, 6/1, 7/3, 8/1, 6/2, 8/3, 7/1, 5/2, 6/4, 8/5,
7/7,5/8,6/6, 5/4, 4/6,2/5,1/7, 3/8, 2/6, 1/8, 3/7, 1/6, 2/8, 4/7, 3/5, 1/4,
2/2,4/1,3/3,1/2, 3/1,2/3, 1/1, 3/2, 1/3, 2/1, 4/2, 3/4, 1/5, 2/7, 4/8, 3/6,
4/4,5/6,7/5, 8/7,6/8, 7/6, 8/8, 6/7, 8/6, 7/8,5/7, 6/5, 8/4, 7/2. 5/1, 6/3.

The usual chess notation corresponding to the above fraction notation would
be 5, d3, b4, d5, e3, and so on.

An extensive literature exists on the knight’s re-entrant tour.> In 1823,
H. C. Warnsdorff* provided one of its most elegant solutions. His method
is very efficient, not only for the standard chessboard but also for a general
n X n board as well.

Recalling Problem 9.4 we immediately conclude that the knight’s circles
are in fact Hamiltonian cycles. There are 13,267,364,410,532 closed knight's
tours, calculated in 2000 by Wegener [183]. The same number was previously
claimed by Brendan McKay in 1997.° One of the ways to find a knight’s

3For instance, P. Volpicelli, Atti della Reale Accademia dei Lincei (Rome, 1872); C.F.
de Jaenisch, Applications de I’Analyse mathématique au Jeu des Echecks, 3 vols. (Pet-
rograd, 1862-63); A. van der Linde, Geschichte und Literatur des Schachspiels, vol. 2
(Berlin, 1874); M. Kraitchik, La Mathématique des Jeur (Brussels, 1930); W. W, Rouse
Ball, Mathematical Recreations and Essays, rev. ed. (Macmillan, New York 1960); E.
Gik, Mathematics on the Chessboard (in Russian, Nauka, Moscow 1976); E. 1. lgnat’ev,
In the Czardom of Puzzles (in Russian, Nauka, Moscow 1979); D’Hooge, Les Secrets du
cavalier (Bruxelles-Paris, 1962); M. Petkovié, Mathematics and Chess, Dover Publica-
tions, Mineola (1997); 1. Wegener, Branching Programs and Binary Decision Diagrams,
SIAM, Philadelphia (2000); J. J. Watkins, Across the Board: The Mathematics of Chess-
board Problems, Princeton University Press, Princeton and Oxford (2004); N. D. Elkies,
R. P. Stanley, The mathematical knight, Mathematical Intellegencer 22 (2003), 22-34; A.
Conrad, T. Hindrichs, H. Morsy, I. Wegener, Selution of the knight’s Hamiltonian path
problem on chessboards, Discrete Applied Mathematics 50 (1994), 125-134.

4 Des Rosselsrpunges einfachste und allgemeinste Lésung, Schalkalden 1823.

3 A powerful computer, finding tours at a speed of 1 million tours per second, will have
to run for more than 153 days and nights to reach the number of tours reported by McKay
and Wegener.
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tour is the application of backiracking algorithms®, but this kind of search
is very slow so that even very powerful computers need considerable time.
Another algorithm developed by A. Conrad et al. [40] is much faster and
finds the knight's re-entrant tours on the n x n board for n > 5.

A extensive study of the possibility of the knight’s re-entrant routes on
a general m X n chesshoard can be found in [181]. A definitive solution
was given by Allen Schwenk [156] in 1991, summarized in the form of the
following theorem.

Theorem 10.1 (Schwenk). An m xn chessboard (m < n) has a knight’s
tour unless one or more of the following three conditions hold:

(i) m and n are both odd;
(i) m= 1,2, or4; or

(i) m=3 and n = 4, 6, or 8.

One more remark. If a knight’s closed tour exists, then it is obvious that
any square on the considered chessboard can be taken as the starting point.

It is a high time for the reader to get busy and try to find the solution to
the following problem.

Problem 10.2.* Prove the impossibility of knight’s tours for 4 x n boards.

The previous problem tell us that a knight's tour on a 4 X 4 board is
impossible. The question of existence of such a tour for the three-dimensional
1 x 4 x 4 board, consisting of four horizontal 4 x 4 boards which lie one over
the other, is left to the reader.

Problem 10.3.* Find o knight’s re-entrant tour on a three-dimensional
4 x4 x4 boerd.

Many composers of the knight's circles have constructed re-entrant paths
of various unusual and intriguing shapes while also incorporating certain
esthetic elements or other features. Among them, magic squares using a
knight’s tour (not necessarily closed) have attracted the most attention.
J. J. Watkins calls the quest for such magic squares the Holy Grail. The
Russian chess master and officer de Jaenisch (1813-1872) composed many
notable problems concerning the knight's circles. Here is one of them [138,
Problem 3.5], just connected with magic squares.

8 A backtracking algorithm searches for a partial candidate to the solution step by step
and eliminates this candidate when the algorithm reaches an impasse, then backing up
a number of steps to try again with another partial candidate—the knight's path in this
particular case.
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Problem 10.4. Let the successive squares that form the knight’s re-
entrant path be denoted by the numbers from 1 to 64 consecutively, 1 being
the starting square and 64 being the square from which the knight plays its
last move, connecting the squares 64 and 1. Can you find e knight’s re-
entrant path such that the associated numbers in each row and each column
add up to 2607

The first question from the reader could be: Must the sum be just 2607
The answer is very simple. The total sum of all traversed squares of the

chessbhoard is 64 65
1424---4+64= — = 2,080,

and 2,080 divided by 8 gives 260. It is rather difficult to find magic or “semi-
magic squares” (“semi-" because the sums over diagonals are not taken into
account), so we recommend Problem 10.4 only to those readers who are
well-versed in the subject. One more remark. De Jaenisch was not the first
who constructed the semi-magic squares. The first semi-magic knight’s tour,
shown in Figure 10.4, was composed in 1848 by William Beverley, a British
landscape painter and designer of theatrical effects.

There are 280 distinct arithmetical semi-magic tours (not necessarily
closed). Taking into account that each of these semi-magic tours can be
oriented by rotation and reflection in eight different ways, a total number of
semi-magic squares is 2,240 (= 280 x 8).

Only a few knight's re-entrant paths possess the required “magic” prop-
erties. One of them, constructed by de Jaenisch, is given in Figure 10.5.

1130|47(52]| 5 (28|43 |54 63122|15(40] 1 [42]|59]|18
48151 2 (29(44|53| 6 |27 1413964 |21(60|17| 2 |43
31|46 49| 4 [25| 8 |55 (42 37162123(16(41| 4 |19]|58
50| 3 [32(45(56|41|26]| 7 24113|38(61(20]|57(44| 3
33162|15(20] 9 (243958 1113625(52(29]|46| 5 | 56
16119(34(6140|57(10|23 26151|12(33| 8 |55(30|45
63]14|17136(21|12]|59 (38 35110149128 |53|32|47] 6
18135(64|13(60|37|22]|11 50|27|34| 9 (48| 7 |54 |31
FIGURE 10.4. Beverley’s tour FIGURE 10.5. De Jaenisch’s tour

The question of existence of a proper magic square (in which the sums
over the two main diagonals are also equal to 260) on the standard 8 x 8
chessboard has remained open for many years. However, in August 2003,
Guenter Stertenbrink announced that an exhaustive search of all possibilities
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using a computer program had led to the conclusion that no such knight’s
tour exists (see Watkins [181]).

Our discussion would be incomplete without addressing the natural ques-
tion of whether a magic knight’s tour exists on a board of any dimension
n X n. Where there is magic, there is hope. Indeed, it has been proved re-
cently that such magic tours do exist on boards of size 16 x 16, 20 x 20,
24 x 24, 32 x 32, 48 x 48, and 64 x 64 (see [181]).

The following problem concerns a knight’s tour which is closed, but in
another sense. Namely, we define a closed knight’s route as a closed path
consisting of knight’s moves which do not intersect and do not necessarily
traverse all squares. For example, such a closed route is shown in Figure
10.13.

Problem 10.5.* Prove that the area enclosed by a closed knight’s route
is an integral multiple of the area of a square of the n xn (n > 4) chessboard.

Hint: Exploit the well-known Pick’s theorem which reads: Let A be the
area of a non-self-intersecting polygon P whose vertices arve points of a lat-
tice. Assume that the lattice is composed of elementary parallelograms with
the area S. Let B denote the number of points of the lattice on the polygon
edges and I the number of points of the lattice inside P. Then

A= (I+;B—1)S. (10.1)

Many generalizations of the knight’s tour problem have been proposed
which involve alteration of the size and shape of the board or even modi-
fying the knight’s standard move; see Kraitchik [118]. Instead of using the
perpendicular components 2 and 1 of the knight’s move, written as the pair
(2,1), Kraitchik considers the (m, n)-move.

A Persian manuscript, a translation of which can be found in Duncan
Forbes' History of Chess (London, 1880), explains the complete rules of
fourteenth-century Persian chess. A piece called the “camel”, used in Persian
chess and named the “cook” by Solomon Golomb, is actually a modified
knight that moves three instead of two squares along a row or a file, then
one square at right angles which may be written as (3,1). Obviously, this
piece can move on the 32 black squares of the standard 8 x 8 chessboard
without leaving the black squares. Golomb posed the following task.

Problem 10.6.* [s there a camel’s tour over all 32 black squares of the
chessboard in such a way that each square is traversed once and only once?
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Leonhard Euler (1707-1783) (— p. 305)

Non-attacking rooks

Apart from the knight's re-entrant tours on the chesshoard, shown on
pages 258-264, another amusing chessboard problem caught Leonhard Eu-
ler’s interest.

Problem 10.7. Let Q, (n > 2) be the number of arrangements of n
rooks thatl can be placed on an n x n chessboard so that no rook aitacks any
other and no rook lies on the squares of the main diagonal. One assumes
that the main diagonal travels from the lower left corner square (1,1) to the
upper right corner square (n,n). The task is to find Q, for an arbitrery n.

The required positions of rooks for n = 2 and n = 3, for example, are
shown in Figure 10.6 giving @2 = 1 and Q3 = 2.

g &

n=2 Q=1 n:3:Q3:2

FFIGURE 10.6. Nomn-attacking rooks outside the main diagonal

The above-mentioned problem is, in essence, the same one as that referred
to as the Bernoulli-Euler problem of misaddressed letlers appearing on page
184. Naturally, the same formula provides solutions to both problems. As
our problem involves the placement of rooks on a chessboard, we will express
the solution of the problem of non-attacking rooks in the context of the
chessboard.

According to the task's conditions, every row and every column contain
one and only one rook. For an arbitrary square (i,j), belonging to the ith
row and jth column, we set the square (j, ) symmetrical to the square (i, )
with respect to the main diagonal.

The rook can occupy n—1 squares in the first column (all except the
square belonging to the main diagonal). Assume that the rook in the first
column is placed on the square (r,1), 7 € {2,...,n}. Depending on the
arrangement of the rooks in the remaining n — 1 columns, we can distinguish
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two groups of positions with non-attacking rooks: if the symmetrical square
(1,r) (related to the rook on the square (r,1)) is not occupied by a rook, we
will say that the considered position is of the first kind, otherwise, it is of
the second kind. For example, the position on the left in Figure 10.7 (where
n = 4 and r = 2) is of the first kind, while the position on the right is of the
second kind.

(2] g
|8 | D=
| O
= i

FIGURE 10.7. Positions of the first kind (left) and second kind (right)

e
e —

Let us now determine the number of the first kind positions. If we remove
the rth row from the board and substitute it by the first row, and then
remnove the first column, a new (n — 1) x (n — 1) chessboard is obtained.
Each arrangement of rooks on the new chessboard satisfies the conditions of
the problem. The opposite claim is also valid: for each arrangement of rooks
on the new chessboard satisfying the conditions of the problem, the unique
position of the first kind can be found. Hence, the number of the first kind
positions is exactly @, —.

To determine the number of second kind positions, let us remove the
first column and the rth row, and also the rth column and the first row
from the n x n chessboard (regarding only positions of the second kind).
If we join the remaining rows and columns without altering their order, a
new (n — 2) X (n — 2) chessboard is formed. It is easy to check that the
arrangements of rooks on such (n — 2) x (n — 2) chessboards satisfy the
conditions of the posed problem. Therefore, it follows that there are @,_»
positions of the second kind.

After consideration of the above, we conclude that there are Q,_1 4+ Qn—-»
positions of non-attacking rooks on the n X n chessboard, satisfying the
problem’s conditions and corresponding to the fixed position of the rook—
the square (r,1)—in the first column. Since r can take n — 1 values (=
2,3,...,n), one obtains

Q" = (n - 1)(Qn‘—1 + Qn—2)- (102)
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The above recurrence relation derived by Euler is a difference equation
of the second order. It can be reduced to a difference equation of the first
order in the following manner. Starting from (10.2) we find

Q" - nQ"?—l = (n - 1)(Qu—1 + Qu—‘;’) - n‘Qn—l
= _(Qn—l - (71- - I)Q‘n—Z)-

Using successively the last relation we obtain

Qn - nQn—l = _(Qn—l - (11 - 1)Qn—2)
= (_1)2(Qn—2 - (n - 2)Qn—3)

= (=1)"7*(Qs — 3Q2).

Since Q2 = 1 and @1 = 2 (see Figure 10.6), one obtains the difference
equation of the first order

Qn - nQn—l = (—l)"' (103)

To find the general formula for @,,, we apply (10.3) backwards and obtain

Qn = 'nQ*n—l + (_1)" = n((n - 1)Qﬂ—2 + (_l)n_l) + (_1)"
=n(n—1)Qu_z +n(-1)""' +(-1)"
=nn—1)((n—2)Qn_s + (-1)"?) + n(-1)"~ + (-1)"
= n(n — 1)(n — 2)Qu_s + n(n — 1)(~1)""2

+n(=1)""" -+ (-1)"

=n(n—1®n-2)-3-Q I n(n—1)--d-(=1)* ¢ ---
+n(=1)""" 4 (-1)"

that is,
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The last formula gives

Q2=1, Q3s=2, Qs1=9 @Qs=44, Q= 265, ete.

Carl Friedrich Gauss (1777-1855) (— p. 305)

Carl Friedrich Gauss indisputably merits a place among such illustrious
mathematicians a8 Archimedes and Newton. Sometimes known as “the
Prince of mathematicians,” Gauss is regarded as one of the most influen-
tial mathematicians in history. He made a remarkable contribution to many
fields of mathematics and science (see short biography on page 305).

Asg a ten-year old schoolboy, Gauss was already exhibiting his formidable
mathematical talents as the following story recounts. One day Ganss' teacher
Mr. Buttner, who had a reputation for setting difficult problems, set his
pupils to the task of finding the sum of the arithmetic progression 1 + 2 +
.+« 4 100.”7 The lazy teacher assumed that this problem would occupy the
class for the entire hour since the pupils knew nothing about arithmetical
progression and the general sum formula. Almost immediately, however, gif-
ted young Gauss placed his slate on the table.
When the astonished teacher finally looked at the
results, he saw the correct answer, 5,050, with
no further calculation. The ten-year-old boy had
mentally computed the sum by arranging the ad-
dends in 50 groups (1+100), (2-+99)....,(50,51),
cach of them with the sum 101, and multiplying
this sum by 50 in his head to obtain the required
sum 101-50 = 5,050. Impressed by his young stu-
dent, Biittner arranged for his assistant Martin
i Bartels (1769-1836), who later hecame a mathe-
Carl Friedrich Gauss matics professor in Russia, to tutor Gauss.

177T7-1855

Like I[saac Newton, Gauss was never a prolific writer. Being an ardent
perfectionist, he refused to publish his works which he did not consider com-
plete, presumably fearing criticism and controversy. His delayed publication
of results, like the delays of Newton, led to many high profile controversies
and disputes.

7Some authors claim that the teacher gave the arithinetic progression 81,207 481,495+
=oe 4 100,899 with the difference 198. It does not matter!
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Gauss’ short dairy of only 19 pages, found after his death and published
in 1901 by the renowned German mathematician Felix Klein, is regarded as
one of the most valuable mathematical documents ever. In it he included
146 of his discoveries, written in a very concise form, without any traces
of derivation or proofs. For example, he jotted down in his dairy “Heureka!
num = DA+ A+ A,” a coded form of his discovery that every positive integer
is representable as a sum of at most three triangular numbers.

Many details about the work and life of Gauss can be found in G. W,
Dunnington’s book, Carl Friedrich Gauss, Titan of Science [538]. Here is a
short list of monuments, objects and other things named in honour of Gauss:

— The CGS unit for magnetic induction was named Gauss in his honour,

— Asteroid 1001 Gaussia,

— The Gauss crater on the Moon,

— The ship Gauss, used in the Gauss expedition to the Antarctic,

— Gaussberg, an extinct volcano on the Antarctic,

— The Gauss Tower, an observation tower in Dransfeld, Germany,

- Degaussing is the process of decreasing or eliminating an unwanted
magnetic field (say, fromn TV screens or computer monitors).

The eight queens problem

One of the most famous problems connected with a chesshoard and chess
pieces is undoubtedly the eight queens problem. Although there are claims
that the problem was known earlier, in 1848 Max Bezzel put forward this
problem in the chess journal Deutsche Schachzeitung of Berlin:

Problem 10.8. How does one place eight queens on an 8 x 8 chessboard,
or, for general purposes, n queens on an n X n board, so that no queen is
attacked by another. In addition, determine the number of such positions.

Before we consider this problem, let us note that although puzzles involv-
ing non-attacking queens and similar chess-piece puzzles may be intriguing
in their right, more importantly, they have applications in industrial mathe-
matics; in maximum cliques from graph theory, and in integer programming
(see, e.g., [65]).

The eight queens problem was posed again by Franz Nauck in the more
widely read, Illustrirte Zeitung, of Leipzig in its issue of June 1, 1850. Four
weeks later Nauck presented 60 different solutions. In the September issue
he corrected himself and gave 92 solutions but he did not offer a proof that
there are not more. In 1910 G. Bennett® concluded that there are only 12

8G. Bennett, The eight gueens problem, Messenger of Mathematics, 39 (1910), 19.
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distinctly different solutions to the queens problem, that is, solutions that
could not be obtained one from another by rotations for 90°, 180° and 270°,
and mirror images; T. Gosset later proved this in 1914.°
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F1cURE 10.8. The 8-queens problem; one fundamental solution 41582736

Each position of the non-attacking queens on the 8 x 8 board can be
indicated by an array of 8 numbers k; k; - - - kg. The solution k1 k5 - - - kg means
that one queen is on the k,th square of the first column, one on the k,th
square of the second column, and so on. Therefore, twelve fundamental
solutions can be represented as follows:

41582736 41586372 42586137
42736815 42736851 42751863
42857136 42861357 46152837
46827135 47526138 48157263

Each of the twelve basic solutions can be rotated and reflected to yield 7
other patterns (except the solution 10, which gives only 3 other patterns
because of its symmetry). Therefore, counting reflections and rotations as
different, there are 92 solutions altogether. One fundamental solution given
by the first sequence 41582736 is shown in I'igure 10.8.

Gauss himself also found great interest in the eight queens problem read-
ing Illustrirte Zeitung. In September of 1850 he concluded that there were

9T. Gosset, The eight queens problem, Messenger of Mathematics, 44 (1914), 48.
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76 solutions. Only a week later, Gauss wrote to his astronomer friend H. C.
Schumacher that four of his 76 solutions are false, leaving 72 as the num-
ber of true solutions. In addition, Gauss noted that there might be more,
remembering that Franz Nauck did not prove his assertion that there are
exactly 92 solutions. One can imagine that Gauss did not find all the solu-
tions on the first attempt, presumably because at that time, he lacked the
systematic and strongly supported methods necessary for solving problems
of this kind. More details about Gauss and the eight queens problem can be
found in [34] and [65].

Considering that the method of solving the eight queens problem via trail
and error was inelegant, Gauss turned this problem into an arithmetical
problem; see [34] and |86]. We have seen that each solution can be repre-
sented as a permutation of the numbers 1 through 8. Such a representation
automatically confirms that there is exactly one queen in each row and each
column. It was necessary to check in an easy way if any two queens occupy
the same diagonal and Gauss devised such a method. We will illustrate
his method with the permutation 41582736 that represents the eight-queens
solution shown in Figure 10.8.

Let us form the following sumns:

4 1 5 8 2 7 3 6
1 2 3 4 5 6 7 8
))) 5 3 8 12 7 13 10 14
and
4 1 5 8 2 7 3 6
8 7 6 5 4 3 2 1
))) 12 8 11 13 6 10 5 7

In both cases the eight sums are distinct natural numbers, which mmeans
that no two queens lie on the same negative diagonal \ (the sums above)
and no two queens lie on the same positive diagonal / (the sums below). Ac-
cording to these outcomes, Gauss concluded that the queens with positions
represented by the permutation 41582736 are non-attacking.

In 1874 J. W. Glaisher!'” proposed expanding the eight queens problem to
the n-queens problem, that is, solving the queens’ puzzle for the general n xn
chesshoard. He attempted to solve it using determinants. It was suspected

10J, W. Glaisher, On the problem of eight queens, Philosophical Magazine, Sec. 4, 48
(1874), 457.
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that exactly n non-attacking queens could be placed on an n x n chessboard,
but it was not until 1901 that Wilhelm Ahrens [2] could provide a positive
answer. Other interesting proofs can be found in [104], [181] and[193]. In
their paper [104] Hoffinan, Loessi and Moore reduced the n-queens task
to the problem of finding a maximum internally stable set of a symmetric
graph, the vertices of which correspond to the n? square elements of an . xn
matrix.

Considering the more general problem of the n x n chesshoard, first we

verify that there is no solution if n < 4 (except the trivial case of one queen
on the 1 x 1 square). Fundamental solutions for 4 < n < 7 are as follows:

n=4: 3142,
n=>5: 14253,25314,
n=6: 246135,

n=7: 1357246,3572161, 5724613,4613572, 3162574, 2574136.

The number of fundamental solutions F'(n) and the number of all solutions
S(n), including those obtained by rotations and reflections, are listed below
forn=1,...,12. A general formula for the number of solutions S(n) when
n is arbitrary has not been found yet.

n |1|2]|3[4]5]|6|7]|8] 9 |10 11 12
Fn)y[1]|-|-|1[2]|1]6|12] 46 | 92 | 341 | 1,784
Sn) |1|-]|-[2]10]4]40[92] 342 724 | 2,680 | 14,200

TABLE 10.1. The number of solutions to the n X n queens problem

Some interesting relations between magic squares and the n-queens prob-
lem have been considered by Demirdrs, Rafraf and Tanik in [48]. The au-
thors have introduced a procedure for obtaining the arrangeinents of n non-
attacking queens starting from magic squares of order n not divisible by 2
and 3.

The following two problems are more complicated modern variants of the
eight queens problem and we leave them to the reader. In solving tliese
problems, it is advisable to use a computer program.

In his Mathematical Games column, M. Gardner [79] presented a version
of the n-queens problem with constraints. In this problemm a queen may
attack other queen directly (as in ordinary chess game) or by reflection from
either the first or the (n + 1)-st horizontal virtual line. To put the reader at
ease, we shall offer the special case n = 8.
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Problem 10.9.* Place 8 chess queens on the 8 x 8 board with a reflection
strip in such a way that no two queens attack each other either directly or
by reflection.

A superqueen (known also as “Amazon”) is a chess piece that moves like a
queen as well as a knight. This very powerful chess piece was known in some
variants of chess in the Middle Ages. Obviously, the n-superqueen problem
is an extension of the n-queen problem in which new restrictions should be
taken into account. So it is not strange that the n-superqueen problem has
no solution for n < 10.

Problem 10.10.* Place 10 superqueens on the 10 x 10 chessboard so that
no superqueen cen attack any other.

There is just one fundamental solution for the case n = 10. Can you find
this solution?

A variation of the chess that would be worth mentioning is one in which
the game is played on a cylindrical board. The pieces in so-called cylindrical
chess are arranged as on an ordinary chessboard, and they move following
the same rules. But the board is in a cylindrical form because its vertical
edges are joined (“vertical cylindrical chess”) so that the verticals a and A
are juxtaposed. Also, it is possible to join the horizontal edges of the board
(“horizontal cylindrical chess”) so that the first and the eighth horizontal
are connected.

We have already seen that the eight queens problem on the standard 8 x 8
chessboard has 92 solutions. The following problem on a cylindrical chess-
board was considered by the outstanding chess journalist and chessmaster
Edvard Gik [84].

Problem 10.11.* Solve the problem of non-attacking queens on a cylin-
drical chessboard that is formed of an 8 x 8 chessboard.

Donald Knuth (1938- ) (= p. 310)

The longest uncrossed knight's tour

On pages 258-262 we previously considered a knight’s tour over a chess-
board such that all 64 squares are traversed once and only once. The difficult
problem presented helow imposes certain restrictions on the knight’s tour:

Problem 10.12. Find the largest uncrossed knight’s tour on a chessboard.
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Apparently T. R. Dawson once posed this problem, but L. D. Yardbrough
launched the same problem again in the July 1968 Journal of Recreational
Mathematics.

FIGURE 10.9. Knuth’s solution for the longest uncrossed knight's tour

Donald E. Knuth wrote a “backtrack” computer program to find four fun-
damental solutions for the knight'’s tour. To find these tours, the computer
examined 3,137,317,289 cases. One of these solutions is shown in Figure 10.9
(see, e.g., the hook [138, p. 61]).

Guarini's knight-switching problem

We end this chapter with Guarini’s classic knight-switching problem from
1512, mentioned in Chapter 1. A number of mathematicians have consid-
ered problems of this type, in modern times most frequently in connection
with planar graphs. No matter how unexpected it sounds, a kind of “graph
approach” was known to al-Adli (ce. 840 A.D.) who considered in his work
on chess a simple circuit that corresponds to the knight-move network on a
3 x 3 board.

Problem 10.13. The task is to interchange two white knights on the
top corner squares of a 3 x 3 chessboard and two black knights on the bot-
iom corner squores. The whiie knights should mouve into the places occupied
initially by the black knights—and vice versa—in the minimum number of
moves. The knights mey be moved in any order, regardless of their color.
Naturally, no two of them can occupy the same sguare.
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Solution. This puzzle belongs to the class of problems that can he solved
in an elegant manner using the theory of planar graphs. Possibly this prob-
lem could find its place in Chapter 9 on graphs, but we regard that it is an
unimportant dilemina.

The squares of the chesshoard represent nodes of a graph, and the possi-
ble moves of the pieces between the corresponding squares (the nodes of the
graph) are interpreted as the connecting lines of the graph. The correspond-
ing graph for the board and the initial positions of the knights are shown in
Figure 10.10(a).

a) b)

FIGURE 10.10. a) Graph to Guarini’s problem b) Equivalent sitnplified graph

The initial positions of the knights are indicated and all possible moves
of the knights between the squares (the nodes of the graph) are marked by
lines. Using Dudeney’s famous “method of unraveling a graph,”!! starting
from any node, the graph 10.10(a) can be “unfolded” to the equivalent graph
10.10(b), which is much clearer and more convenient for the analysis. Obvi-
ously, the topological structure and the connectedness are preserved. To find
the solution it is necessary to write down the moves (and reproduce them
on the 3 x 3 board according to some correspondence), moving the knights
along the circumference of the graph until they exchange places. The min-
imum number of moves is 16 although the solution is not unique (because
the movement of the knights along the graph is not unique). Here is one
solution:

' This “method” was described in detail by E. Gik in the journal Neuka i Zhizn 12
(1976); see also M. Gardner, Mathematical Puzzles and Diversions (New York: Penguin,
1965).
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1-5 6-2 3-7 84 5-6 2-8 7-1 4-3
1-5 84 6-2 3-7 56 7T-1 2-8 4-3.

A similar problem also involves two white and two black chess knights
and requires their interchange in the fewest possible moves.

Problem 10.14.* Two white and two black knights are placed on a board
of an unusual form, as shown in Figure 10.11. The goal is to exchange the
white and black knights in the minimum number of moves.

FiGURE 10.11. Knight-switching problem

Answers to Problems

10.2. Suppose that the required knight’s re-entrant route exists. We
assume that this board is colored alternately white and black (in a chess
order). The upper and lower row will be called the outer lines (O), and the
two remaining rows the middle lines (Af). Since a knight, starting from any
outer square, can land only on a middle square, it follows that among 4n
moves that should make the route, 2n moves must be played from the outer
to the middle squares. Therefore, there remain exactly 2n moves that have
to be realized from the middle to the outer squares.

Since any square of the closed knight’s tour can be the starting square,
without loss of generality, we can assume that we start from a “middle”
square. The described tour gives an alternate sequence

M(start) — O — M — O —--- — M — O — M (finish), (10.4)

ending at the starting square. We emphasize that a knight can’t dare visit
two middle squares in a row anywhere along the tour because of the following.
Assume that we start with this double move M — Al (which is always possible
because these moves belong to the circuit), then we will have the sequence
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M — M — (2n — 1) x (O — M). In this case we have 2n + 1 M moves and
2n — 1 O moves, thus each different from 2n. Note further that the double
move O — O in the parenthesis in the last sequence is impossible because a
knight cannot jump from the outside line to the outside line.

On the other hand, the same knight's tour alternates between white and
black squares, say,

black — white — black — white — - - - — black — white — black (10.5)

(or opposite). Comparing the sequences (10.4) and (10.5) we note that all
squares of the outer lines are in one color and all squares of the middle lines
are in the other color. But this is a contradiction since the board is colored
alternately. Thus, the required path is impossible.

10.3. Onme solution is displayed in Figure 10.12. The three-dimnensional
4x4x4 hoard is represented by the four horizontal 4x4 boards, which lie one
over the other; the lowest board is indicated by I, the highest by IV. The
knight's moves are denoted by the numbers from 1 (starting square) to 64
(ending square). The knight can make a re-entrant tour because the squares
64 and 1 are connected by the knight’s moves.

FIGURE 10.12. Knight's re-entrant path on the 4 X 4 X 4 board

10.5. Let S be the area of a square of the n x n chessboard. Considering
formula (10.1) in Pick’s theorem, it is sufficient to prove that the number of
boundary points B is even. Since the knight’s tour alternates between white
(w) and black squares (), in the case of any closed tour (the starting square
coincides with the ending square) it is easy to observe that the number of
traversed squares must be even. Indeed, the sequence b (start) —w —b—w —
-++ — b — w — b(finish), associated to the closed knight’s path, always has
an even number of moves (= traversed squares); see Figure 10.13. Since the
number of squares belonging to the required closed knight’s path is equal to
the number of boundary points B, the proof is completed.
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i i

FIGURE 10.13. Area of a simply closed lattice polygon

10.6. As mentioned by M. Gardner in Scientific American 7 (1967),
S. Golomb solved the problem of a camel’s tour by using a transformation
of the chessboard suggested by his colleague Lloyd R. Welch and shown in
Figure 10.14: the chessboard is covered by a jagged-edged board consisting of
32 cells, each of them corresponding to a black square. It is easy to observe
that the camel's moves over black squares of the chessboard are playable
on the jagged board and turn into knight’s moves on the jagged board.
Therefore, a camel’s tour on the chessboard is equivalent to a knight's tour
on the jagged board. One simple solution is

1-14-2-5-10-23-17-29-26—-32-20—-8-19-22-9-21-18-
30-27-15-3-6—-11-24-12-7-4-16—-28— 31-25-13.

FIGURE 10.14. Solution of camel’s tour by transformation
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10.9. If you have not succeeded in solving the given problem, see the
following solutions found by Y. Kusaka [120]. Using & computer progrem
and backtracking algorithm he established that there are only 10 solutions
in this eight queens problem with constraints (we recall that this number is
92 for the ordinary case; see Table 10.1 for n = 8):

25741863 27581463 36418572 36814752 36824173
37286415 42736815 51468273 51863724 57142863

10.10. The author of this book provided in his book Mathematics and
Chess [138] a computer program in the computer language C that can find
all possible solutions: the fundamental one and similar ones obtained by the
rotations of the board and by the reflections in the mirror. The program
runs for arbitrary n and solves the standard n-queens problem as well as the
n-superqueens problem. We emphasize that the running time increases very
quickly if n increases.

The fundamental solution is shown in Figure 10.15, which can be denoted
as the permutation (3,6,9,1,4,7,10,2,5,8). As before, such denotation means

that one superqueen is on the third square of the first column, one on the
sixth square of the second column, and so on.

FIGURE 10.15. The fundamental solution of the superqueens problem for 1 = 10

The three remaining solutions (found by the computer) arise from the
fundamental solution, and they can be expressed as follows:

(7,3,10,6,2,9,5,1,84) (4,8,1,5,9,2.6,10,3,7) (8,5,2,10,7,4,1,9,6,3)
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10.11. There is no solution of the eight queens problem on the cylindrical
chessboard of the order 8. We follow the ingenious proof given by E. Gik
(84].

Let us consider an ordinary chessboard, imagining that its vertical edges
are joined (“vertical cylindrical chess”). Let us write in each of the squares
three digits (.7, k), where ¢,7,k € {1,...,8} present column, row, and di-
agonal (respectively) of the traversing square (Figure 10.16). Assume that
there is a replacement of 8 non-attacking queens and let (iy,71,k1),---,
(is, js, ks) be the ordered triples that represent 8 occupied squares. Then
the numbers i,,... ,ig are distinct and belong to the set {1,...,8}; there-
fore, 3 4,, = 14---+8 = 36. The same holds for the numbers from the sets
{jla R )j8] and {kl, - akB}*

Figure 10.16. Gik's solution

We see that the sum (3 + -+ i)+ (i + -+ Js) + (k1 + - + k)
of all 24 digits written in the squares occupied by the queens is equal to
(L+---+8) x 3 =108. Since the sum i, + j, + &, of the digits on each of
the squares is divided by 8 (see Figure 10.18), it follows that the sum of the
mentioned 24 digits must be divisible by 8. But 108 is not divisible by 8—a.
contradiction, and the proof is completed, we are home free.

10.14. Although the chessboard has an unusual form, the knight-
switching problem is effectively solved using graphs, as in the case of Guar-
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ini's problem 10.13. The corresponding graph for the board and the knight’s
moves is shown in Figure 10.17(a), and may be reduced to the equivalent
(but much simpler) graph 10.17(Db).

FIGURE 10.17. A graph of possible moves and a simplified graph

The symmetry of the simplified graph and the alternative paths of the
knights along the graph permit a number of different solutions, but the
minimum number of 14 moves cannot be decreased. Here is one solution:

13-7-2 11-4-9-8 1-7-13-11 3-1-7-13 8-3 2-7-1






Chapter 11 MISCELLANY

In this chapter the reader will find some interesting problems and puzzles
of Alcuin of York, Abu’l-Wafa, Fibonacci, Bachet, Huygens, Newton and
Euler. These problems have not been classified into previous chapters mainly
for two reasons: either they are similar to the presented problems or they do
not clearly belong to the subjects considered in the previous chapters. We
leave it to the readers to find the solutions.

*

* X

Problems from Alcuin of York!

Problem 11.1.* Three sons must equally divide and share thirty flasks
and their contents among themselves. How will they accomplish this given
that of the thirty flasks, ten are full, ten half-empty, and ten entirely empty?

Problem 11.2.* A rabbit pursued by a dog has a head start of 150 feet.
For every 7 feet that the rabbit jumps, the dog bounds 9 feet. In how many
leaps will the dog overtake the rabbit?

Problem 11.3.* In his will, @ dying man stipulates that his wife, who
is expecting a child, shall inherit % of the property if she gives birth to a
son, and the son shall inherit the other %. However, if his widow gives birth
to u daughter, she will receive = of the property, and the daughter, 5. In

the event that both a son and a daughter are born, how will the property be
divided?

Problems from Abu’'l-Wafa?

Problem 11.4.* Construct an equilateral triangle embedded in a given
square 30 that one of its vertices is at a corner of the square and the other
two lie on the opposite sides of the square.

1These problems of various origin are contained in Alcuin’s collection of problems for
“quickening of the mind”.
2The solutions of these five problems can be found in [186].

283
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Problem 11.5.* Dissect two reqular hexagons of different sizes into seven
pieces and then assemble one, lurger, reqular hexagon from the seven avail-
able pieces.

Problem 11.6.* Construct the perpendicular to the segment AB at the
endpoint A using only a straightedge and a fized-opening compass. without
extending the segments beyond A.

Problem 11.7.* Divide a given line segment into any given number of
equal parts using only a straightedge and fired-opening compass.

Problem 11.8.* Using only a straightedge and a compass with a fived
opening equal to the radius of a given circle, consiruct a regular pentagon
with vertices on this circle.

Amusing problems from Fibonacci

Among the many problems that Fibonacci includes in the third section
of Liber abacci, here are six presented in the form as in [61, Ch. 8|

Problem 11.9.* A lion trapped in e pit 50 feet deep iries to climb out of
it. Fach day he climbs up % of a fool, but each night slips back é of a fool.
How many days will it take the lion to reach the top of the pit?*

Problem 11.10.* Two men each possess a certain emount of money.
The first says to the second, “If you give me nine denarii, we will both have
the same amount.” The second man replies to the first, “If you give me nine
denarii, I will have ten times as much as you.” How much money does each
man have?

Problem 11.11.* A hound whose speed increases arithmetically chases
a hare whose speed also increases arithmetically; how far do they run before
the hound catches the hare?

Problem 11.12.* If partridges cost 3 coins each, pigeons 3 coins euch,
and sparrows cost 1 coin for 2, how many birds of each kind will a merchant
have if he buys 30 birds for 30 coins?

3Fibonacci, by the way, gave a false solution; see [113, p. 308]. He started from 63 as
a number divisible by both 7 and 9 and found that in 63 days the lion would chimb up 9
feet and fall down 7. Hence, the lion advances 2 feet every day and, by proportionality,
he calculated that the lion would take (50 : 2) X 63 = 1575 days to climb the 50 feet to
reach the Lop of the pit. The correct answer is 1572 days; actually, the lion will be only
'6% of a foot fromn the top at the end of 1571 days, so that he will reach the top on the
next day.
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Problem 11.13.* Four men euch have a certain sum of money. Together,
the first, second, and third have 27 denarii; the second, third, and fourth men
have 31 denarii among them; the third, fourth, and first have 34; finally, the
fourth, first and second men have 37. How much money does each man
have?

Problem 11.14.* A man bequeathed one bezant and a seventh of his
estate to his eldest son. To his next son he left two bezanis and egain, a
seventh of what was left of the estate. Next, from the new remainder, he left
three bezanis and a seventh of what remained to his third son. He continued
in this way, giving each son one bezant more than the previous son and
a seventh of what remained. As a result of this distribution, the last son
received all that was left and all the sons shared equally. How many sons
were there and how large was the man’s estate?

Problems from Bachet

Problem 11.15.* A person randomly chooses an hour, say m, and then
points to it on e watch displaying some other hour, say n. Beginning with
the randomly-chosen hour, and moving in the counierclockwise direction, if
the person counts each successive numeral on the watch as m,m + 1, etc.,
until he reaches n + 12, then the last numeral he points to will be the hour
he originally chose ut random. Prove this.

Problem 11.16.* Within a group of people, an individual secretly chooses
a number less than 60, and announces the remainders, for example, a, b, ¢,
when the chosen number is divided by 3, by 4, and by 5. Prove that the
number originally chosen equals the remainder obtained when 40a+ 456+ 36¢
is divided by 60.

Huygens' probability problems

Problem 11.17.* A and B play a game tossing two dice; A wins if 7 is
thrown; B wins if 10 is thrown, the game is a draw if any other number is
thrown. Find the chances of winning for players A and B.

Problem 11.18.* An urn holds 4 white balls and 8 black balls for a total
of 12. Three players, A, B, C, each blindfolded, draw a ball, A first, nezxt B,
and then C. The player who wins is the first one to draw a white ball. If
each black ball is replaced after a player has drawn it, find the ratio of the
three players’ chances.
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Problem 11.19.* A certain pack of cerds contains 40 cards, 10 from
each swit. A wagers B that in drawing four cards, he will draw one card
from each suit. What amounts can be fairly wagered for each player?

Problems from Newton

Problem 11.20.* One morning two couriers A and B, separated by a
distance of 59 miles, set out to meet each other. While A has completed
7 miles in 2 hours, B travels 8 miles in 3 hours; B, however, started his
journey 1 hour later than A. How far a distance must A still travel before
meeting B ?

Problem 11.21.* A certain scribe takes 8 days to copy 15 sheets. How
many scribes, capable of producing the same amount, will be needed to copy
405 sheets in 9 days?

Problem 11.22.* Among three workmen, every three weeks A finishes a
given job once; every eight weeks, B completes the job three times, and C
finishes the same job five times every twelve weeks. If the three workmen
undertake to complele the job together, how long will it take them?

Problem 11.23.** A number of unbiased (fair) dice are rolled simulta-
neously. Determine which of the following events is most likely:

1) The appearance of al least one siz when 6 dice are rolled;
2) The appearance of at least two sizes when 12 dice are rolled;

3) The appearance of at least three sizes when 18 dice are rolled.

Problems from Euler

Problem 11.24.* Twenty men and women have dinner at a tavern. Each
man’s share of the bill is 8 crowns, each woman’s share 7 crowns; the entire
bill amounts to 145 crowns. Of the twenty diners, how many are men and
how many are women?

Problem 11.25.* A horse dealer buys a horse for a certain number of
crouns, and then sells it again for 119 crowns. This amount includes his

1This problem was posed by Samuel Pepys (1633-1703) in a letter to [saac Newton;
see E. D. Schell's paper, Samuel Pepys, Isaac Newton and Probebility, The American
Statician 14 (1960), 27-30. Pepys was an English naval administrator, a member of
Parliament and a fellow of the Royal Society, and wrote a famous diary.
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profit, which was as much per cent as the horse cost him. What is the initial
purchase price of the horse?

Problem 11.26.* Three brothers buy a vineyard for 100 crowns. The
youngest says that he could purchase the vineyard on his own if the second
brother gives him half of the money he has; the second brother says that if
the eldest would give him only a third of his money, he could pay for the
vineyard by himself; lastly, the eldest asks for only a fourth of the youngest
brother’s money to purchase the vineyard himself. How much money does
each brother have?

Problem 11.27.* Three gamblers play together; in the first game, player
one loses to the two other players a sum of money equal to the sum that each
of the other two players possesses. In the next game, the second gambler
loses to each of the other two as much money as they have already. In the
third game, the first and second gamblers each gain from the third gambler
as much money as they had before. At that moment they stop their play to
discover that they all possess the equal sum of 24 crowns each. How much
money does each gambler possess when they first begin to play?






APPENDIX A

Method of continued fractions for solving Pell's equation

In this book Pell’s equation appears in several tasks studied by great
mathematicians. To clarify the presentation of solutions of these tasks, we
give in the sequel an appendix which presents a procedure for solving Pell’s
equation

2 — Ny =1,
where N is a natural number which is not a perfect square. For more details
see, e.g., Davenport’s book [45]. Since the described method uses the con-
vergents of a continued fraction of /N, let us recall first a basic fact from
the theory of continued fractions.

The expression of the form

b,
b,

ay +

a; + ba
ag | ———
a3 _{_ e

is called a continued fraction and can be written in the short form

o bg.b3,---]. (A1)

In particular, if b = b = --- = b, = -+ = 1, then the following simpler

notation is used:
[ao;ﬂq, as,ds, .. ] .

Let us consider a sequence of continued fractions which is obtained from
(A.1) taking a finite number of its terms, and set

. by by bk]
),al,a2,...ak .
The ratio ¢ is called the k-convergent and the limit

c= lim ¢,
k=oo

if it exists, is the value of the continued fraction (A.1).

289
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Taking
Po=ap, Qo=1, P_, =0, Q_,=0,

by induction one can prove the following recurrence relations for Py, and @y :

Py = ayPro1 + 0x Pr—y,

Qk = aka—l + kak_Q. (AZ)

These relations are known as Euler’s formulae. Let us note that P, and @
are two solutions of the difference equation

Yk — @kYr—1 — bryk—2 = 0. (A.3)

Let | n | denote the integer part of a number n. If go is the integer part
of VN (that is, go = | VN ]), then it can be shown (see [45]) that the
continued fraction for VN + ¢q is purely periodic and has the form

\/ﬁ"}' qo = [2q0;q1aq2.1"' ?qnaQ(Ianla(I?:"' 32(101"']'

Hence, the continued fraction for v N is of the form

\/N= [(10;(}1,‘}2: cee =q"-’2q0]’

where the overline points to the period. The period hegins immediately after
the first term go. In addition, the following is valid:

n = Q1+ Gn—1 ={q2,... .

Hence, we have

\/N = [qO;qlaq% R 1q21(I192QO:| .

The symmetric part may or may not have a central term.

The development of v/ /N into a continued fraction is easy to realize by
ilmplementing the following simple procedure:

1° k=0, Ar=VN, q. = A |;
2° k:=k+1, Ar=1/(As=1 —qr-1), qx = | Ax J;
3° If gqx = 2qp, then STOP; otherwise, go to step 2°.

For example, using the above procedure, we find that

V10 = [4;'2, 13,1, 2,8]
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with the central term 3, and
V2 ==[5;2,1,1,2,10]

without a central term.

Now we may present a method for solving Pell's equation. Let A4,/B,
be the convergent coming before the term 2¢y in the continued fraction for

VN, that is, 4
B—: = I:ql);(.{l,qza' . ;Qn]-

It is not difficult to prove that A, and B,, satisfy the relation
A2 —NB? = (-1)""L.

Hence, if n is odd, 2z = A,, and y = B,, are solutions of Pell’s equation. If
n is even, we continue searching for the convergent until the end of the next
periOd A2nr+1/32‘n+ls

A2n+l

B = [fh);fh,‘}z:--- ,(JmZ‘In,fIlafIm--- ,qn]-
2n+41

In this case we have
2 2 2n
;n+1 -NBy,,, =(-1)"=1

and we take ¥ = Ay, 1 and y = Bs, 4 for the solutions of Pell’s equation.

We recall that the numerator and denominator of the convergents A, /By,
and Aj, +1/B2,+1 can be found using Euler’s recurrence relations

Am, = qm,Am,—l + Am—Qx

m=12,...
B'" = qum—l + Bm—i’a ( ‘ )

starting with Ap = qo, Bo = 1, A—; = 0, B_; = 0 (see (A.2)). Below we
give a program written in the AMathematica for finding the least solutions of
Pell’s equation 22 — ny? = 1; n can take arbitrary values (odd and even)
from the set of natural numbers that are not perfect squares.

Pel[n] :=

Module[{k = 1, A = Sqrt[n], a, vek, ok, kk, m, i,

al, bl, a2, b2, a3, b3},

a = IntegerPart[A]; vek[k] = a; ok = True;
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While[ok, k++; A = 1/(A - a); a = IntegerPart([A];
vek[k] = a; ok = vek[k] < 2 vek[1] ];

Kk =k - 1; m = k - 2 IntegerPart[k/2];

If[m < 1, Do[vek[k + i] = vek[1 + i], i, k - 2] ];
kk = (k - 1) (2 -m); al = vek[1]; b1l = 1;

a2 = al vek[2] + 1; b2 = vek[2];

Do[a3 = vek[i]*a2 + al; b3 = vek[i]*b2 + Db1;

al = a2; bl = b2; a2 = a3; b2 = b3, {i, 3, kk} ];
{22, b2} ]

Solving Pell's equation 22 — ny® = 1 is executed by calling Pel[n] for a
specific value of n.

We note that from one solution of Pell’s equation 2 — Dy? = %1, an
infinite number of solutions may be found. If p and ¢ are the least values
satisfying the equation 22 — Dy® = 1, then

z? — Dy* = (p* = Dg*)" =1,
which leads to the factorization
(z +yVD)(z - yVD) = (p + ¢V D)"(p — ¢VD)".
Equating the factors with the same sign, we obtain

z+yVD = (p+qvVD)",
z—-yVD=(p—qVD)".

Solving for 2 and y we get the general formulae:

. (p+aVD)" + (p—gVD)"
: :

(A.4)

y = (p + 9V D)" - (p — gV D)"
2v D '

Taking n = 1,2,3,... we obtain an infinite number of solutions.

(A.5)

Basic facts from the theory of difference equations (see Appendix D) indi-
cate that formulae (A.4) and (A.5) present a general solution of a difference
equation (with different initial conditions), whose characteristic equation has
the roots

™ =P+Q\/5, T2 =p—(1\/5.
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Therefore, this equation reads (r — 1, )(r — r2) = 0, that is,
rf—2pr+p* —¢’'D =

Hence, the difference equation, associated with Pell’s equation 2% — Dy? = 1,
has the form

Yny2 — 2pyu+] + (p2 - qu)y‘H = 0. (A‘G)
Formula (A.4) is obtained for the initial values yo = 1, y1 = p, while (A.5)

APPENDIX B

Geometrical inversion

Below we give a review of the basic properties of inversion necessary for
solving the arbelos problein (page 68). For more details see, e.g., Coxeter’s
book Introduction to Geometry [43, Ch. 6].

Given a fixed circle with center I and radius p (Figure B.1(a)), we define
the inverse of any point A (distinct from I) as the point A’ on the straight
line 7A whose distance from [ satisfies the equation

|1A]-|LA'] = p7.

The circle centered at I (the center of inversion) and with radius p is called
the cirele of tnversion.

a) b)

FIGURE B.1. Inverse of circles and straight lines
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To find the inverse of a given point A outside the circle of inversion, let us
construct the semicircle on 74 as diameter. If T is the point of intersection
of this semicircle and the circle of inversion, then the desired point A4’ is the
foot of the perpendicular from T to IA (see Figure B.1(a)). Indeed, since
the right triangles AIT A and AT A'T are similar and |IT| = p, we obtain

|1A’| _ |IT|
| |1A]

whence |T4'|-|IA| = |IT|® = p.

It follows from the definition that the inverse of A4’ is A itself.
From the definition of inversion, the following properties follow:

(1) The straight line (circle) through the pair of associated points 4 and
A’ inverts into itself and represents a fized line (circle) of inversion (for
example, the straight line T4 and the circle 7 in Figure B.1(a)).

(2) Every circle orthogonal to the circle of inversion inverts into itself.

(3) All points belonging to the circle of inversion are fixed and invariable.
Accordingly, the circle of inversion inverts into itself.

(4) Any straight line not passing through the center of inversion [ inverts
into a circle through I, and vice versa; a circle through I inverts into a
straight line not passing through I. For examnple, the circle centered at O
that passes through the center of inversion I inverts into the straight line
A’ P’ as in Figure B.1(b).

(5) The inverse of any circle not passing through the center of inversion [ is
another circle that also does not pass through I.

(6) Inversion preserves angles between curves, although it reverses the sense
of the angles, and hence it preserves tangency of curves.

APPENDIX C

Some basic facts from graph theory

In graph theory a graph is defined as any set of points, some of which
are connected by line segments. The points are called vertices or nodes of
the graph (e.g., the points A, B,C, D, E in Figure C.1(a)), and the lines
are called its edges. The line segiment that joins two adjacent vertices is
incidental for these two vertices. A graph that has no self-loops, (that is,
lines joining & point to itself, for instance, A and 7 as in Figure C.1(b) and
C.1(d)) and no multiple edges of two or more lines connecting the same
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pair of points, is a stmple graph (Figure C.1(a)), otherwise it is a multigraph
(Figure C.1(b)).

B
C
4
A
E D

a) Simple graph b) Multigraph

Ks

T

c) Complete graph d) Digraph

e) Tree

FIGURE C.1. Various types of graphs

The degree of a vertex is the number of edges that are connected to this
vertex, counting self-loop and parallel lines. The degree of a vertex, say a, is
denoted by deg(a). For example, the degrees of the vertices in Figure C.1(a)
are deg(A4) = 2, deg(B) = 4, deg(C) = 2, deg(D) = 3, deg(F) = 1. A
graph is regular if all its vertices have the same degree (as the one shown in
Figure C.1(c)). A vertex of a graph having an odd decgree is called an odd
vertex. A vertex having an even degree is called an even vertex. Since the
sum of several integers is even if and only if the number of odd addends is
even, it follows that the number of odd vertices in any graph must be even.

A graph is called connected if any two of its vertices are connected by a
path (a sequence of edges, each of which starts at the endpoint of the previous
one). A closed path, a path whose starting and ending vertices coincide, is



296 LINEAR DIFFERENCE EQUATIONS

called a cycle. A graph consisting of n vertices is complete (denoted by K,,)
if each vertex is connected with all n» — 1 remaining vertices, that is, if any
two vertices are adjacent. Figure C.1(c) shows a complete graph K.

A connected graph that does not contain any cycle is called tree. The
tree contains exactly n — 1 edges. The two trees for n = 4 are displayed in
Figure C.1(e).

If an arrowhead is added to each edge of a graph, determining a direction
for each line that orders its endpoints, the graph becomes a directed graph,
or briefly digraph. Figure C.1(d) shows a digraph.

APPENDIX D

Linear difference equations with constant coefficients

A linear difference equation of order n with constant coefficients is a re-
currence relation having the form

QYnik +F QYnp—) + - Quyr = f(k)s (D-l)

where ay # 0 and ap,ay,-.. ,a, are all real constants. If f(k) = 0, then we
have the homogenous linear difference equation

QoYu+k + Q1Yntk—1+ -+ anyr = 0. (D.2)

Assume that ¥, — r* is a solution of (D.2). Then, upon substitution we
obtain
agr" 4 ar P gt =0

or
rF(aor™ + a7 4 oo Fay) = 0.

Hence it follows that +* is a solution of (D.2) if r is a solution of
aorn + al,rn—l +---4a, = 0, (D3)

which is called the characteristic equation. This equation has n roots
ri,72,...,r, which may or may not be different. Also, some conjugate
complex numbers may occur among these roots.

We restrict our attention to the case when ry,...,r, are all real and

distinct roots of the equation (D.3). Then one can prove that the general
solution of the difference equation (D.2) is

Yr = cl-rf + c21'§‘ +- 4 cnv'ﬁ, (D.4)
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where ¢, ¢2,...,¢, are real constants. These constants can be determined
if the initial conditions of the form yo = Ao, 11 = A1,... ,Yn-1 = An—) are
known. Then we put £k = 0,1,...,n — 1 in (D.4) and obtain a system of
linear equations

crtegtrten=4Ap

ciry - Cora + - -+ Ty = Ay

1 Ji—1
(317';‘ + (,2111 + -+ C,,'I:: = An—l

whose solutions are the constants ¢y,¢a,... . ¢n.

As an example, let us consider the linear homogenous difference equation
of the second order,

Yn+2 —Untt —Yn = 0, (Ds)
with the initial condition y; = 1, y2 = 1. From the above recurrence relation
it follows that any term of the sequence ys, y4, Ys, ... is equal to the sum

of the two previous terms. Substituting yx = r* in (D.5) we get

n+2 _rnfl —" = 0.

r
After dividing with ™ one obtains the characteristic equation
P =-r=1=0

of the difference equation (D.5) with real solutions
1 1
ry = 5(1 |- \/g} and ry = 5(1 - \/g)
Now the general solution of (D.53) is given by

- +2\/3)k + B( - —2\/3)k’

where A and B are constants which can be determined from the initial
conditions ¥, = 1, y2 = 1. These conditions lead to the system of two linear
equations in A and B with solutions A = 1/v5, B = —1/4/5 giving the

explicit formula
=50 - (59 9

Yy = A'rf + Bri = A(

2

for any term from the sequence {yi }. Let us recall that the difference equa-
tion (D.5) defines the well-known Fibonacci sequence 1, 1, 2, 3, 5, §, 13, ..
The kth term of this sequence can be obtained directly from the explicit for-
mula (D.6).
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Archimedes. Born ca. 287 B.C., Syracuse, Sicily, died ca. 212 B.C., Syracuse.
Considered one of the greatest mathematicians of all tiies, Archimedes received
his education in Alexandria. His remarkable achievements in pure and applied
mathemnatics, physics, and mechanics include the method of exhaustion (the early
form of integration), geometrical solution to the cubic equation, the quadrature
of the parabola, and the famous principle named after him. Legend has it that a
Roman soldier attacked Archimeces with his sword while the latter was imnersed
in solving a geometrical problem, illustrating the classic example of brute force
and ignorance triumphing over intellect and nobility of spirit.

Heron of Alexandria. Born ca. 10 A.D., Alexandria, died ca. 75 A.D. Some
historians, however, suggest that the dates ca. 65 A.D.-ca. 125 A.D. more closely
match his lifetime. Best known for the pneumatical device commonly known as
Heron’s fountain and the formula S = v/s(s — a)(s — b)(s — ¢) for the area of a
triangle, Heron invented a siinple forin of the steamn engine and wrote on pneumat-
ics, dioptrics, mechanics, gecometry and mensuration. He also derived an iterative
method T,41 = 2, + af2, for approximating the square root of a number a,
although the Babylonians already knew of this method some 2000 years hefore.

Diophantus of Alexandria. Born ca. 200-died ca. 284. One of ancient Greece’s
most celebrated mathematicians, Diophantus introduced improved algebraic nota-
tion and worked on numerical solutions of determinate and indeterminate equa-
tions. His most important work, Arithmetica, collects about 130 problems from
this field. Indeterminate algebraic problems, where one must find only the rational
solutions, have become known as diophantine problems.

Brahmagupta. Born ca. 598-died ca. 670. A prominent seventh-century
Hindu mathematician, Brahmagupta wrote his major work on astronomy, Brehma-
sphuta-sidd’hanta (Correct astronomical system of Brahma) in 628. The book
contained 21 chapters, inclhuding two chapters dealing with mathematics. Brah-
magupta succeeded in solving the indeterminate linear equation ax--by = cin inte-
gers and also solving some special cases of the so-called Pell equation y? = Axz%+1,
using methods rediscovered several centuries later.

Alcuin of York. Born 735, York, died 804, Tours, France. The headmaster at
York, one of the most important centers of learning in Europe, Alcuin later became
the abbot at Tours. He wrote elementary texts on arithmetic, geometry, and
astronomy. Known as an historian, Alcuin also collected puzzles and mathematical
recreation problems.

299
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Mahavira. Born ca. 800, Mysore, India, died ca. 870. [e wrote the only
known book, Ganita Sara Sangraha, to update the work of Brahmagupta, the
seventh-century Indian mathematician, providing significant simplifications and
explanations in greater detail of Brahmagupta's text. Mahavira examined methods
of squaring numbers, operations with fractions and discussed integer solutions of
first degree indeterminate equations. He was the first to give an explicit algorithm
[or calculating the nnmber of combinations.

Tabit ibn Qorra. Born 826, Harran, Turkey, died 901, Baghdad. The Ara-
bian mathematician, astronomer, physician and philosopher ibn Qorra moved to
Baghdad in about 870 where he became a great scholar. He translated Euclid’s
Elements into Arabian and wrote a commentary on this famous work. He solved
algebraic equations and studicd number theory and trigonometry problems.

Abu’l-Wafa. Born 940-died 998. A fainous Persian astronomer, algebraist and
trigonometer who investigated the moon’s orbit and wrote, Theory of the Moon;
he translated one of the last great classics, the Arithmetica by Diophantus, from
Greek. However, Abu’l-Wafa is best known for the first use of the tan function as
well as introducing the sec and cosec (reciprocals of cos and sin). Abu’l-Wafa de-
rived a new method of calculating sin tables. His trigonometric tables are accurate
to 8 decimal places!

Ibn al-Haytham. Born 965, Basra, Iraq, died 1039, Cairo, Egypt. Although
born in Basra, Alhazen, as lhe is known in Europe, spent most of his life in
Egypt. One of Islam’s most illustrious scientists, his opus magnus, Kiteaez (Optics)
fills seven books. After its translation into Latin, it grecatly influenced European
thought for several centuries thereafter. Alhazen solved numerous problems re-
lated to a variety of reflecting surfaces successfully using elementary and advanced
geometry of the Greeks.

Bhaskara. Born 1114-died 1185. A prominent twelfth-century Hindu mathe-
matician and astronomer, Baskara spent most of his life at the astronomical obser-
vatory in Ujjain where he wrote, Siddhantasiromani, a major work on astronomy.
Bhaskara also wrote mathematical works on arithmetic, Lilavaiz and on algebra,
Vijaganita. These books contain a number of problems dealing with determinate
and indeterminate linear and quadratic equations, arithmetic and geometric pro-
gressions, Pythagorean triads, and other problems.

Leonardo Pisano (Fibonacci). Born 1170, Pisa?, Italy, died 1250. Al-
though born in Italy, Fibonacci, known also as Leonardo de Pisano or Leonardo
of Pisa, received his education in North Africa. The Middle Ages’ greatest and
most productive mathematician, alter traveling extensively, he wrote Liber Abaci
(The Book of the Abacus), in which he treats arithmetic and elementary algebra in
1202. This book played an important role in the introduction of the Hindu-Arabic
place-valued decimal system and Arabic numerals into Europe.

Yang Hui. Born ca. 1238-died ca. 1298. Hui, who lived in south China under
the Song dynasty, wrote two books Xiangjie Jiushang Suanfa (A Detailed Analysis
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of Arithmetical Rules in Nine Sections) (1261) and Yang Hui Suenfa (Yang Hui’s
Methods of Computation) (1275). He made contributions mainly in the form of
reports on the work of an eleventh-century Chinese matheinatician, Jia Xian, who
gave a method for the calculation of square and cubic roots to higher roots using
what the West knows as Pascal’s triangle. Hui also wrote on multiplication and
division as well as mathematical education.

Nicolas Oresme. Born 13237, Normandy, France, died 1382, Lisieux. A
French cleric, scholar, and one of the greatest mathematicians of the fourteenth
century, Oresme was a professor in the Collége de Navarre of the University of Paris
(1355), dean of Rouen (1361) and bishop of Lisieux (1377). He wrote five mathe-
matical works and translated Aristotle’s De Coelo et Mundo. The first known use
of fractional exponents appears in his tract Algorismus Proportionum. Oresimne’s
Tractatus de Uniformitate, which may have influenced Descartes, anticipated co-
ordinate geometry by using two coordinates to locate points.

Johann Miiller. Born June 6, 1436, K&nigsberg, died July, 1476, Rome. Bet-
ter known as Regiomontanus, the Latin translation of his birthplace, Kénigsberg
(king’s mountain). An influential mathematician, his greatest work, Delriangulis
Omnimodis (On Triangles of Every Kind) contained important results devoted to
plane and spherical trigonometry. Regiomontanus composed an extensive table of
sines with the interval of 1’. He translated Ptolemy’s, Almagest, as well as works
of Apollonius, Heron, and Archimedes. His death was said to have occurred under
mysterious circumstances

Niccolo Fontana Tartaglia. Born 1500, Brescia, Italy, died December 13,
1557, Venice. One of Italy’s greatest mathematicians, as a boy he survived a sabre
attack from which he suffered facial wounds. The attack resulted in permanent
speech difficulties, and gave rise to the nickname “Tartaglia,” or “the stamerer.”
Today, Tartaglia is best remembered for his formula to solve cubic equations,
the Cardano—-Tartaglia formula. In addition to being the first to describe new
ballistic methods in artillery science, including the first firing tables, Tartaglia also
published editions ol Euclid and Archimedes.

Gerolamo Cardano. Born September 24, 1501, Pavia, Italy, died September
21, 1576, Rome. Immensely talented and versatile, Gerolamo Cardano worked as
a physician, mathematician, physicist, astronomer, astrologer, a professor at the
University of Bologna. His most important mathernatical work Ars Magnae (The
Great Art, 1545), one of the most influential books in mathematics of his century,
contains the formula providing the solution of the cubic equation, today known as
the Cardano-Tartaglia formula.

Robert Recorde. Born 1510, Tenby, Wales, died 1558, London. A highly
influential writer of textbooks in sixteenth-century England, Recorde studied
medicine at Oxford and Cambridge and taught private classes in mathematics at
both institutions. After leaving Cambridge, Recorde served as a physician to Ed-
ward VI and Queen Mary. He wrote at least five books (one of them, The Ground
of Artes, had more than 28 editions) on mathematics, astronomy and medicine.
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His book The Whetstone of Whilte, published in 1557, was the first major English
resource on algebra.

Frangois Viéte. Born 1540, Fontelay-le-Comte, France, died December 13,
1603, Paris. Educated as a lawyer, Viete achieved prominence in a diplomatic ca-
reer, serving as a parliamentary councilor and as the king's confidante. Viete, also
a gifted mathematician, made valuable and significant contributions in geometry,
arithmetic, algebra, and trigonometry. He introduced the first systematic algebraic
notation in his book, In Artem Analyticam Isagoge (1591), using symbols 4- (plus)
and — (minus), and letters as symbols for quantitics, both known and unknown.

Johannes Kepler. Born December 27, 1571, Weil der Stadt, Gerimany, died
November 15, 1639, Regensburg. The great German scientist Johannes Kepler is
chiefly known in the field of astronomy, although he made important contribu-
tions to mathematics and optics. Kepler made significant advances in the use of
infinitesimals in geometry and astronomy, and did important work on polyhedra
(1619). He also studied the problemn of filling spaces with regular polyhedra and
spheres. Kepler's monumental discovery that the planets move around the sun in
elliptical orbits with the sun as their focus, as well as his formulation of the three
mathematical laws of planetary motion, helped enormously to advance scientific
thought.

Claude-Gaspar Bachet, Sieur de Méziriac. Born October 9, 1581, Bourg-
cn-Bresse, France, died February 26, 1638. A mathematician, philosopher, theolo-
gian, and poet, Bachet made initial steps in number theory even before Fermat.
Bachet authored such classic books on mathematical recreations such as Probléms
Plaisants et Déleciables (1612, 1624). He also achieved renown for his Latin trans-
lation of Diophantus’ Greek text, Arithmetica (1621).

René Descartes. Born March 31, 1596, La Haye (since renamed Descartes),
France, died February 11, 1650, Stockholm, Sweden. Although an insightful phi-
losopher, Descartes’ achievements in mathematics, especially his masterpiece La
Géomélrie in which he unified algebra and geometry, have assured his place in his-
tory. By thus unifying them, he created a new mathematical discipline, analytical
geometry, one that represented a turning point and an extremely powerful point
of departure to further the advancement of mathematics and natural sciences.
Many mathematical terms testify to his influence: Cartesian product, Cartesian
coordinates, Cartesian coordinate systemn.

Bonaventura Cavalieri. Born 1598, Milan, Italy, died November 30, 1647,
Bologna. An influential seventeenth-century mathematician, Cavalieri was a dis-
ciple of Galileo and a professor of mathematics at the University of Bologna from
1629 until his death. He has largely gained rccognition for introducing Italy to
logarithms as a computational tool. Cavalieri wrote on mathematics, optics, as-
tronomy, and astrology, however, he also laid the groundwork for integral calculus.
In his Geometria indivisiblis continuorum novae (1635), Cavalieri elaborated his
principle of indivisibles, a kind of crude calculus and used it in the computation of
areas and volumes.
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Pierre de Fermat. Born August 17, 1601, Beaumont-de-Lomagne, France,
died January 12, 1665, Castres. A lawyer by training and vocation, Fermat made
great discoveries in mathematics; he was a pioneer in the development of differential
calculus, number theory, and, with Pascal, probability theory. His method for
finding the extremes of a function represents his most important contribution.
Fermat’s conjecture that no integral values of z, ¥y, 2 can be found to satisfy the
equation 2" 4+ y" = 2" if n is an integer greater than 2, is probably the best-known
problem in the entire history of mathematics.

Evangelista Torricelli. Born October 15, 1608, Faenza, Italy, died October
25, 1647, Florence, Italy. Torricelli collaborated with Galileo and became his suc-
cessor as conrt matheinatician to the Grand Duke of Tuscany. Most famous for
his discoveries in physics, €.g., the invention of the barometer, acceleration due
to gravity, the motion of fluids, and the theory of projectiles, Torricelli also took
great interest in mathematics. Early on, he made use of infinitesimal methods
(the tangent method), squared the cycloid and found the length of an arc of the
logarithmic spiral.

Blaise Pascal. Born June 19, 1623, Clermont-Ferrand, France, died August 19,
1662, Paris. As a young man Pascal produced important theorems in projective
geometry, and by the age of 22 he had invented the first calculating machine.
Pascal Jaid the foundations for the theory of probability in his correspondence
with Fermat. Through his investigations of the action of fluids subjected to air
pressure, he gained himself a reputation as a physicist. Pascal also worked on the
triangular arrangement of the coefficients of the powers of a binomial (Pascal’s
Triangle). Although he was one of the most talented mathematicians ever, at the
age of twenty-five he suddenly abandoned scientific work to devote his life to the
study of philosophy and religion.

Christiaan Huygens. Born April 14, 1629, The Hague, Netherlands, died
July 8, 1695, The Hague. Chiefly recognized as the inventor of the pendulum
clock (1656), the law of falling bodies and the wave theory of light, Huygens was
one of the world greatest physicists. He also developed an international reputation
in mechanics and astronomy for his detection of the first moon of Saturn in 1655.
In mathematics he introduced the notion of evolutes and involutes; wrote on the
logarithmic curve and probability; proved that the cycloid is a tautochronous curve
and made significant contributions in the application of mathematics to physics.
Huygens was a member of the London Royal Society.

Seki Shinsuke Kowa, or Takakazu. Born 1642, Fujioka, Japan, died Octo-
ber 24, 1708. Scki Kowa is rightly cclebrated not only as the greatest Japanese
mathematician ol the seventeenth century, but as one ol Japan's greatest math-
ematicians ever. He systematized and improved already-known methods such as
the Chincse method of solving higher order cquations and the early Chinese use
of determinants in solving simultaneous equations, thus anticipating Leibniz’s dis-
covery. Seki Kowa’s reputation as a greal teacher won him numerous pupils. Aside
from mathematics Seki Kowa demonstrated a keen ability and ingenuity in me-
chanics. Excelling in the affairs of life in general, he became a Shogun samurai
serving as master of ceremonies to Shogun Koshu.
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Isaac Newton. Born January 4, 1643, Woolsthorpe, England, died March 31,
1727, London. Some consider Newton to be the greatest scientist who ever lived.
He made revolutionary advances in mathematics, physics, mechanics, optics, and
astronomy. Published in 1687, his Philosophiae Naturalis Principia Mathematica,
in which he stated the laws of motion and the law of gravitation is probably
the most monuinental work in the whole history of science. Newton originated
differential and integral calculus, several years before Leibniz made his independent
discovery of it. From 1703 until his decath Newton was the president of the London
Royal Society.

David Gregory. Born June 3, 1659, Aberdeen, Scotland, died October 10,
1708, Maidenhead, England. A nephew of the eminent mathematician James Gre-
gory, David Gregory started his studies at the University of Aberdeen when he was
12 years old! At the age of 24, he was appointed professor at the University of Ed-
inburgh, where he lectured on mathematics, mechanics, and hydrostatics. There,
he was the first to teach modern Newtonian theories. Receiving support from
Newton, David Gregory was elected professor at Oxford in 1681 and in the same
year becamne a fellow of the Royal Society. He is best known for his experiments
with telescopes and work on series and optics.

Abraham de Moivre. Born May 26, 1667, Vitry-le-Irancois, Irance, died
November 27, 1754, London. De Moivre spent most of his life in England where he
worked mainly on trigonometry, probability, analytic geometry, and the theory of
annuities. The well-known relationship for complex numbers (cosz + ¢ sinz)” =
cos nx 41 sin na bears his name. Despite his eminence in the scientific community,
he did not succeed in obtaining a chair of mathematics since his foreign birth put
him at a disadvantage. However, e was adimitted to membership in the London
Royal Socicty and into the academies of Paris and Berlin.

Pierre-Rémond de Montmort. Born October 27, 1678, Paris, died October
7, 1719, Paris. Montmort lived most of his life on his estate, the Chiteau de
Montmort, to which he often invited eminent European mathematicians. He wrote
on the theory of probability, combinatorial problems, and infinite series. In 1708
de Montmort published an important work on probability, Essay d’'analyse sur les
jeur de hazard. He is remembered for his extensive correspondence with many
prominent mathematicians. De Montinort was a mnember of the London Royal
Society and the Paris Académic des Sciences.

Nicolaus II Bernoulli. Born 1687, Basel, Switzerland, died 1759, Basel.
The nephew of Jacob and Johann Bernoulli, Nicolaus worked on geometry and
differential equations as the appointee to Galileo’s chair at Padua from 1717 to
1722. After teaching at Padua, Nicolaus Il served as a professor of logic and later
as a professor of law at the University of Basel. He made significant contributions
in the study of orthogonal trajectories, differential equations, integral calculus, and
probability theory. Besides editing Jacob Bernoulli’s complete works, Nicolaus 11
Bernoulli was elected a member of the Berlin Academy in 1713, a fellow of the
Royal Society of London in 1714, and a member of the Academy of Bologna in
1724.
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Nicolaus III Bernoulli. Born February 6, 1695, Basel, died July 31, 1726, St.
Petersburg, One of three sons of the outstanding mmathematician Johann Bernoulli,
Nicolaus III studied law and became a professor of law at Bern. In 1725 he and his
younger brother Daniel traveled to St. Petersburg where they accepted positions
as mathematics professors. Nicolaus worked on the geometry of curves, differential
equations, mechanics and probability, but a promising career was cut short by his
death at age 31.

Daniel Bernoulli. Born Fcbruary 8, 1700, Groningen, Netherlands, died
March 17, 1782, Basel, Switzerland. Daniel’s father, the famous mathematician
Johann Bernoulli held the chair of mathematics at the University of Basel. Daniel
himself became a professor the prestigious Academny of Sciences in St. Petersburg
and later in Basel. He was also a member of the London Royal Society, and the
acadernies of Petersburg, Berlin and Paris. D. Bernoulli is regarded as the founder
of mathematical physics. He made important contributions to hydrodynamics
(Bernoulli’s principle), vibrating systeins, the kinetic theory of gases, magnetism,
etc. In mathematics, he worked on differential equations, the theory of probabil-
ity, series and other topics. Daniel Bernoulli won the Grand Prize of the Paris
Académie of Sciences 10 times for topics in astronomy and nautical sciences.

Gabriel Cramer. Born July 31, 1704, Geneva, died January 4, 1752, Bagnols-
sur-Cze, France. A professor of mathematics and physics at Geneva, Cramer
worked on geometry. algebraic curves, analysis and the history of mathematics.
Cramer is best known for his work on determinants and their use in solving linear
systems of equations (Cramer’s rule).

Leonhard Euler. Born April 15, 1707, Basel, Switzerland, died Septeinber
18, 1783, St. Petersburg. One of the most outstanding mathematicians of all tiine,
Leonhard Euler wrote close to 900 scientific papers on algebra, differential equa-
tions, power series, special functions, differential geometry, number theory, rational
mechanics, calculus of variations, music, optics, hydrodynamics, and astronomy.
He produced almost half of all his work even after becoming nearly blind. Euler
was a member of the Petersburg Academy of Science and the Berlin Academy
of Science: as a testament to his achieveinents, several algebraic expressions were
named after him.

Alexandre Théophile Vandermonde. Born February 28, 1735, Paris, died
January 1, 1796, Paris. Music was the first love of the French mathematician
Vandermonde, and he did not begin his work in mathcmatics until he was 35
years old. He contributed to the thcory of equations and the general theory of
determinants. Vandermonde also devoted timme to the mathematical solution of
the knight's tour problem, and was a member of the Acadéinie des Sciences at
Paris,

Carl Friedrich Gauss. Born April 30, 1777, Brunswick, Germany, died Febru-
ary 23, 1855, Gottingen, Germany. Gauss figures among Archimedes and Newton
as one of the greatest mathematicians of all time. He spent almost forty years
as the director of the Gottingen Observatory. Gauss worked on problems in as-
tronony, geodesy, electricity, celestial inechanics, and in almost all of the leading
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topics in the field of mathematics: number theory, complex numbers, the theory
of surfaces, congruences, least squares, hyperbolic geometry, etc. He was one of
the first to consider the question of non-Euclidean geometry.

Louis Poinsot. Born January 3, 1777, Paris, France, died December 35, 1859,
Paris. Together with Monge, the French mathematician and mechanist Louis
Poinsot was one of the leading French mathematicians in the field of geometry
during the eighteenth century. He invented geometric mechanics, which investi-
gates the system of forces acting on a rigid body. Poinsot also made important
contributions in statics, dynamics, number theory (diophantine equations), and to
the theory of polyhedra. In 1816, by the age of thirty-nine, he had been elected to
the Académie des Sciences.

Siméon Poisson. Born June 27, 1781, Pithiviers, France, died April 25, 1840,
Sceaux (near Paris). Poisson published over 300 matheimatical works covering a va-
riely of applications from electricity, elasticity, and magnetisin, to astronomy. His
most important papers treated definite integrals and his own advances in Fourier
series. Poisson also contributed to the theory of probability (the Poisson distri-
bution), differential equations, surfaces, the calculus of variations, and algebraic
equations. His name is associated with such wide-ranging scientific branches as
elasticity (Poisson’s ratio): potential theory (Poisson's equation); electricity (Pois-
son’s constant) and mathematics (Poisson’s integral).

Jakob Steiner. Born March 18, 1796, Utzenstorf, Switzerland, died April 1,
1863, Bern. Although the Swiss mathematician Steiner did not learn to read and
write until the age of fourteen, he later becamne a professor of mathematics at the
University of Berlin in 1834, a post he held until his death. Steiner, regarded as
the greatest geometer of modern times, wrote a series of prestigious papers on
projective geometry and the theory of curves and surfaces of the second degree.

William Rowan Hamilton. Born August 4, 1805, Dublin, Ireland, died
September 2, 1865. Dublin. A child prodigy who knew 13 foreign languages by
the time he was thirteen, Hamilton created a new algebra in 1843 by introducing
quaternions, an extension of complex numbers to three dimensions. He devoted 22
years to the study of quaternions, and furthermore, obtained noteworthy results in
optics, mechanics, calculus of variations, geometry, algebra, differential equations.
Several notions in mathematics and mechanics bear his name. Hamnilton was a
member of many acadernies of sciences and scientific associations.

Thomas Kirkman. Born March 31, 1806, Bollon, England, died February 4,
1895, Bowdon. Kirkman served vicar to the Parish of Southworth in Lancashire
for 52 yecars, whilc also dedicating much cffort to mathematics. Although hec did
not take up mathematics until the age of 40, he became an expert in group theory
and combinatorics, working on knots. Kirkman gained reconition for his work on
Steiner systems and a related topic, the fifteen schoolgirls problem. As a result of
his work on the enumeration of polyhedra, he was named a fellow of the Royal
Society in 1857,
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Johann Benedict Listing. Born July 25, 1808, Frankfurt atn Main, Gerinany,
died December 24, 1882, Gottingen. A German mathematician and physicist who
helped to found a new branch of mathematics: topology. He also made an inde-
pendent discovery of the propertics of the Mobius band contemporancously with
Mobius. Listing made important observations in meteorology, terrestrial mag-
netism, geodesy, and spectroscopy. He introduced such new terms as topology,
entropic phenornena, nodal points, and one micron. Listing was a member of the
Gottingen Academy and the Royal Society of Edinburgh.

James Joseph Sylvester. Born September 3, 1814, London, died on March
15, 1897, London. Together with W. R. Hamilton and Arthur Cayley, Sylvester
was one of Britains most prominent nineteenth-century mathematicians. He was
a professor at Johns Hopkins University in Baltimore, Maryland, from 1877 to
1883, and at Oxford from 1883 to 1893. Sylvester helped to further the progress
of mathematics in America by founding the American Journal of Mathematics in
1878. He performed important work on matrix theory, invariants, theoretical and
applied cinematics, mathematical physics and higher algebra. Sylvester was the
second president of the London Mathematical Society (after de Morgan).

Arthur Cayley. Born August 16, 1821, Richmond, Surrey, England, died Jan-
nary 26, 1895, Cambridge. Cayley spent 14 years as a lawyer devoting his leisure
hours to mathematics until 1863 when he was appointed professor at Cambridge.
He published over 900 papers covering nearly every aspect of modern mathematics.
Cayley developed the theory of algebraic invariance, and worked on problems of
elliptic lunctions and non-Euclidean geometry. His development of n-dimensional
geometry has been applied in physics to the study of space-time continuum, while
his work on matrices served as the foundation for quantum mechanics.

Edouard Lucas. Born April 4, 1842, Amiens, France, died October 3, 1891,
Paris. He worked at the Paris Observatory and as a professor of matheinatics
in Paris. He is best known for his results in number theory; in particular, he
studied the Fibonacci sequence and the sequence associated with it and named
for him, the Lucas sequence. Lucas also devised the methods of testing primality
that essentially remain those in use today. His four volume work on recreational
mathematics, Recréations Mathmatiques (1882-94), attained status as a classic in
its field. While attending a banquet, Lucas was struck on the cheek by a piece of
glass when a platc was dropped. As the result of this bizarrc accident, he died of
erysipelas a few days later.

Ferdinand Georg Frobenius. Born October 26, 1849, Charlottenburg, a
suburb of Berlin, Germany, died August 3, 1917, Berlin. He received his doctorate
in 1870 supervised by Weierstrass at the University of Berlin. Frobenius was
a professor at the Eidgenossische Polytechnikum (now ETH) in Zurich between
1875 and 1892 and then he was appointed professor at the University of Berlin. He
made remarkable contributions to differential equations, group theory (particularly
in the representation theory of groups), number theory and the theory of positive
and non-negative matrices (Peron-Frobenius theorem). Frobenius was the first
who gave general proof of the famous Cayley-Hamilton theoremn (1878). He was
elected to the Prussian Academy of Sciences in 1892,
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Frederick Soddy. Born September 2, 1877, Eastbourne, England, died Sep-
tember 22, 1956, Brighton. The British physicist and chemist was a professor at
the universities of Aberdeen and Oxford. In 1921, he received the Nobel Prize in
chemistry for his discovery of isotopes. The Soddy-Fajans-Russel law was named
in recognition of his research on radioactive decay. Soddy devoted his leisure time
to mathematics and poetry.

John E. Littlewood. Born June 9, 1885, Rochester, England, died September
6, 1977, Cambridge. The English mathematician J. E. Littlewood was a mathe-
matics professor at Trinity College, Cambridge, and was a member of the Royal
Society. He made distinguished contributions to function theory, nonlinear dif-
ferential equations, the theory of series, inequalities, the Riemann zeta function,
summability, number theory, Tauberian theory, etc. He also gained recognition for
his collaboration with Godfrey H. Hardy, another famous English mathematician.

George Pélya. Born December 13, 1887, Budapest, died September 7, 1985,
Palo Alto, CA. Pélya received his doctorate in mathematics from the University
of Budapest in 1912 and worked at the University of Zurich from 1914 until 1940
when he left for America. After working at Brown University for two years, he
took an appointment at Stanford until his retirement. Pélya worked in probability
(theorem of random walks), analysis, number theory, geometry, astronomy, com-
binatorics (enumeration theorem), mathematical physics, and other matters. He
jointly published a famous monograph Inequalities with Hardy and Littlewood in
1934. Polya is widely known for his contributions to mathematical teaching. The
first edition of his book How to Solve It, published in 1945, sold over one million
copies.

Srinivasa Ramanujan. Born December 22, 1887, Erode, Tamil Nadu state,
India, died April 26, 1920, Kumbakonam. The story of this Indian mathematician
who died at a very young age makes for some extremely compelling reading. A self-
taught mathematical genius, Ramanujan demonstrated an uncanny and amazing
ability for intuitive reasoning and stating fascinating number relations. The out-
standing British number theorist G. H. Hardy observed his work and brought him
to England to study at Cambridge University. Hardy and Ramanujan co-authored
seven remarkable mathematical papers. Ramanujan made important contributions
to the analytic theory of numbers, elliptic integrals, hy pergeometric series, contin-
ued fractions, and infinite series. He was elected a fellow of the Royal Society in
1918.

Abram Besicovitch. Born January 24, 1891, Berdyansk, Russia, died Novem-
ber 2, 1970, Cambridge, England. He studied and worked in St. Petersburg until
the mid-1920s when he escaped from Russia and made his way to Copenhagen.
He later worked at Trinity College, Cambridge, where he spent over 40 years of his
life. He made important contributions to periodic functions, the classical theory
of real functions, fractal geometry, measure theory, etc. Besicovitch was elected a
fellow of the Royal Society in 1934.

Stephen Banach. Born March 30, 1892, Krakéw, Poland, died August 31,
1945, Lvov, Ukraine. The Polish mathematician Stefan Banach attended school
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in Krakow, but he received his doctorate in the Ukrainian city of Lvov, where
he lectured at the Institute of Technology and at the University of Lvov. Banach
founded modern functional analysis and made major contributions to the theory of
topological vector spaces, measurce theory, integration, and orthogonal serics. Ba-
nach literally left his signature on mathematics with theorems and concepts such as
Banach space, Banach algebra, the Hahn-Banach theorem, the Banach-Steinhaus
theorem, the Banach fixed-point theorem, and the Banach-Tarski paradox. Ba-
nach's most important work is the Théorie des Opérations Linéaires (1932).

Paul Dirac. Born August 8, 1902, Bristol, England, died October 20, 1984,
Tallahassee, FL. The English physicist and mmathematician Paul Dirac played a
huge role in the creation of quantum mechanics and quantum electrodynatnics; in
the words of Silvan Schweber, he was “one of the principal architects of quantum
field theory”. Dirac was appointed Lucasian professor of mathematics at the Uni-
versity of Cambridge in 1932, a post he held for 37 ycars. He began his rescarch in
the field of quantum theory in 1925, and five years later he published The princi-
ples of quantum mechanics, for which he was awarded the Nobel Prize for physics
in 1933. He was made a fellow of the Royal Society in 1930.

John von Neumann. Born December 28, 1903, Budapest, Hungary, died
February 8, 1957, Washington, D. C. Von Neumann, regarded as one of the
twentieth-century’s most illustrious mathematicians began his scientific work in
Budapest, moved on to Berlin and Hamburg, and from 1930, continued his career
in the United States. He contributed substantially to set theory, quantum physics,
functional analysis, operator theory, logic, ineteorology, probability, amnong other
things. He laid the foundations for mathematical game theory and applied it to
economics. Von Neumann also played a part in developing high-speed computing
machines.

Richard Rado. Born April 28, 1906, Berlin, died December 23, 1989, Henley-
on-Thames, England. Rado studied at the University of Berlin where he completed
his doctoral dissertation in 1933. When the Nazis came to power in 1933, Rado,
being Jewish, could not secure a teaching position, and so left Germany with his
family for England. Rado held various appointinents as professor of mathematics
at Sheffield, Cambridge, London, and Reading. He carried out important work
in combinatorics, convergence of sequences and series. In addition, Rado studied
inequalities, geometry, and measure theory. In the field of graph theory, he worked
on infinite graphs and hypergraphs.

Harold Scott MacDonald Coxeter. Born February 9, 1907, London, Eng-
land, died March 31, 2003, Toronto, always known as Donald. from the third name
MacDonald. He received his graduate diploma and doctorate (1931) at the Univer-
sity of Cambridge. Coxecter became a professor of mathematics at the University
of Toronto (1936), a post he held until his death. He is best known for his work
in geometry. He made significant contribution in the theory of polytopes, non-
Euclidean geometry, combinatorics and group theory (Coxeter groups). Coxeter
wrote several very influential books and revised and updated Rouse Ball’s AMathe-
matical Recreations and Essays (1938). He received nine honorary doctorates and
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was a fellow of the Royal Society of London and a fellow of the Royal Society of
Canada.

Paul Erdos. Born March 26, 1913, Budapest, died September 20, 1996, War-
saw, Poland. The Hungarian mathematician Paul Erdds studied at the University
of Budapest, and received his doctorate there in 1934. He continued his career in
England, the United States, and Israel. A giant among twentieth-century mathe-
maticians, Erdos contributed significantly to number theory, combinatorial anal-
ysis, and discrete mathematics. He loved to pose and solve problems that were
beautiful, simple to understand, yet very difficult to solve. Erdés wrote prolifically
and published some 1475 papers.

Roger Penrose. Born August 8, 1931, Colchester, Essex, England. Roger
Penrose, a mathernatical physicist, cosmologist and philosopher, is one of British
most prominent scientists. He received his doctorate in mathematics from the Uni-
versity of Cambridge in 1957. In 1973 Penrose was appointed Rouse Ball Professor
of Mathematics at the University of Oxford, a post he held for 25 years. Endeav-
oring to unite relativity and quantum theory, he invented the twistor theory in
1967. Penrose is best known for his works on general relativity, quantum mechan-
ics and cosmology, but also for his very popular books on science. Penrose has
been awarded many honorary degrees from eminent universities and prizes for his
contributions to science. He was elected a fellow of the Royal Society of London
(1972) and a Foreign Associate of the United States National Academy of Sciences
(1998). In 1994 he was knighted for services to science.

John Horton Conway. Born December 26, 1937, Liverpool, England. J. H.
Conway received his doctorate in 1964 at the University of Cambridge. He was
a professor of mathematics at Cambridge until 1986, when he was appointed the
John von Neumann Chair of Mathematics at Princeton. Conway made distin-
guished contributions to he theory of finite groups (Conway groups), knot theory,
number theory (he proved Waring's conjecture that every positive integer could be
represented as the sum of 37 fifth powers), combinatorial game theory, quadratic
forms, coding theory and geometry (studying the symmetries of crystal lattices).
In March 1981 Conway was elected a fellow of the Royal Society of London. He
is widely known for his contributions and inventions to recreational mathematics,
primarily the discovery of the cellular autoimata called the Game of Life.

Donald Knuth. Born January 10, 1938, Milwaukee, WI. Knuth, a professor at
Stanford University, has achieved international renown as an incredible computer
scientist. He has written more than 150 papers dealing with software, compilers,
programming languages, construction and analysis of algorithms, mathematical
modelling, combinatorial geometry, and many other subjects. He authored the
three-volume monumental work The Art of Computer Programming (1968-1973)
and invented a revolutionary typesetting program for technical material named
TEX. In 1974 Professor Knuth won the Turing Prize, computer science’s highest
aclievement; he holds more than 30 honorary doctorates from eminent universities
throughout the world.
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