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Introduction 

In selecting material for this collection I have done 
my best to find puzzles that are unusual and entertain­
ing, that call for only the most elementary knowledge 
of mathematics, but at the same time provide stimulat­
ing glimpses into higher levels of mathematical think­
ing. 

The puzzles (many of which appeared in my col­
umn "On the Light Side" that ran in Science World) 
have been grouped into sections, each dealing with a 
different area of mathematics. Brief comments at the 
beginning of each section suggest something of the na­
ture and importance of the kind of mathematics one 
must use in tackling the puzzles of that section. In the 
answers, I have tried to go into as much detail as space 
permits in explaining how each problem is solved, and 
pointing out some of the inviting paths that wind away 
from the problems into lusher areas of the mathematical 
jungle. 

Perhaps in playing with these puzzles you will dis­
cover that mathematics is more delightful than you ex­
pected. Perhaps this will make you want to study the 
subject in earnest, or less hesitant about taking up the 
study of a science for which a knowledge of advanced 
mathematics will eventually be required. 

Surely no one today can doubt the enormous prac-
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tical value of mathematics. Without its use as a tool, 
the discoveries and achievements of modem science 
would have been impossible. But many people do not 
realize that mathematicians actually enjoy mathemat­
ics. Take my word for it, there is as much satisfaction in 
knocking over an interesting problem with a well-aimed 
thought as there is in knocking over ten wooden pins 
with a well-aimed bowling ball. 

In one of L. Frank Baum's funniest fantasies, The 
Emerald City of Oz, Dorothy (together with the Wiz­
ard and her uncle and aunt) visit the city of Fuddle­
cumjig in the Quadling section of Oz. Its remarkable 
inhabitants, the Fuddles, are made of pieces of painted 
wood cleverly fitted together like three-dimensional jig­
saw puzzles. As soon as an outsider approaches they 
scatter in a heap of disconnected pieces on the Hoor so 
that the visitor will have the pleasure of putting them 
together again. As Dorothy's party leaves the city, 
Aunt Em remarks: 

"Those are certainly strange people, but I really 
can't see what use they are, at all." 

"Why, they amused us for several hours," replies 
the Wizard. "That is being of use to us, I'm sure." 

"I think they're more fun than playing solitaire or 
mumbletypeg," Uncle Henry adds. "For my part, I'm 
glad we visited the Fuddles." 

I hope that you will resist mightily the temptation 
to look at the answer before you try seriously to work 
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a problem. And I hope that when you finish with these 
puzzles you will be glad, like Uncle Henry, to have 
been befuddled by them. 

M arlin Gardner 
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Arithmetic Puzzles 

THE NUMBERS THAT are used in counting (1, 2, 3, 
4 . . . ) are called integers. Arithmetic is the study of 
integers with respect to what are known as the four 
fundamental operations of arithmetic: addition, sub­
traction, multiplication, and division. (Lewis Carroll's 
Mock Turtle, you may remember, called them Ambi­
tion, Distraction, Uglification, and Derision.) Arith­
metic also includes the operations of raising a number 
to a higher power (multiplying it by itself a certain 
number of times), and of extracting a root (finding a 
number which, when multiplied by itself a certain num­
ber of times, will equal a given number). 

It goes without saying that you will never be able 
to learn algebra or any higher branch of mathematics 
without knOWing your arithmetic well. But even if you 
never learn algebra, you will find that arithmetic is 
essential to almost every profession you can think of. 
A waitress has to add the items on a check, a farmer 
has to calculate the yield of his crops. Even a shoe­
shine boy must be able to make change correctly, and 
making change is pure arithmetic. It is as important in 
daily life as knOWing how to tie your shoelaces. 

The puzzles in this section and the two that follow 
call for nothing more than the ability to do simple arith­
metic; and to think clearly about what you are doing. 

2 



THE COLORED SOCKS 

TEN RED SOCKS and ten blue socks are all mixed up in 
a dresser drawer. The twenty socks are exactly alike 
except for their color. The room is in pitch darkness 
and you want two matching socks. What .is the smallest 
number of socks you must take out of the drawer in 
order to be certain that you have a pair that match? 

SOLUTION 

Many people, trying to solve this puzzle, say to 
themselves, «Suppose the first sock that I remove is red. 
I need another red one to match it, but the next sock 
might be blue, and the next one, and the next one, and 
so on until all ten blue socks are taken from the drawer. 
The next sock has to be red, so the answer must be 
twelve socks." 

But something is overlooked in this reasoning. The 
socks do not have to be a red pair. It is only necessary 
that they match. If the first two fail to match, then the 
third is sure to match one of the other two, so the cor­
rect answer is three socks. 
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WEIGHTY PROBLEM 

IF A BASKETBALL weighs 10% ounces plus hall its own 
weight, how much does it weigh? 

SOLUTION 

Before answering this puzzle, it is necessary to 
know exactly what the words mean. One might, for ex­
ample, approach it this way: «The basketball weighs 
1012 ounces. Hall its weight would then be 51A ounces. 
We add these values together to get an answer of 15% 

" ounces. 
But the problem is to find the weight of the basket­

ball, and if this turns out to be 15% ounces, then it 

cannot also be 10% ounces as first assumed. There 
clearly is a contradiction here, so we must have mis­
interpreted the language of the question. 
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There is only one interpretation that makes sense. 
The basketball's weight is equal to the sum of two 
values: 1O~ ounces and an unknown value that is half 
the basketball's weight. This can be pictured on a bal­
ance scale as shown in the illustration on the opposite 
page. 

If half a basketball is taken from each side of the 
scale, the pans will still balance. A lO~-ounce weight 
will be on one side and half a basketball on the other, 
so half a basketball must weigh 10Y2 Ol.mces and 
the whole basketball must weigh twice this, or 21 
ounces. 

Actually, without knOWing it, we have solved the 
problem by simple algebra! Instead of pictures, let us 
represent half a basketball by the letter x. And instead 
of showing two sides of a scale in balance, let us use 
the algebraic sign of equality. We can now write the 
Simple equation: 

lOY2 + x=x+ x 

If the same amount is taken from each side of this 
equation it will still "balance." So we remove x from 
each side and are left with: 

lOY2 =x 

You remember that x represented half a basketball. 
If half a basketball weighs 10Y2 ounces, then the entire 
basketball must weigh 21 ounces. 
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THE SILVER BAR 

A SILVER PROSPECTOR was unable to pay his March rent 
in advance. He owned a bar of pure silver, 31 inches 
long, so he made the following arrangement with his 
landlady. He wOllld cut the bar, he said, into smaller 
pieces. On the first day of March he would give the 
lady an inch of the bar, and on each succeeding day he 
would add another inch to her amount of silver. She 
would keep this silver as security. At the end of the 
month, when the prospector expected to be able to pay 
his rent in full, she would return the pieces to him. 

March has 31 days, so one way to cut the bar 
would be to cut it into 31 sections, each an inch long. 
But since it required considerable labor to cut the 
bar, the prospector wished to carry out his agreement 
with the fewest possible number of pieces. For ex­
ample, he might give the lady an inch on the first day, 
another inch the second day, then on the third day he 
could take back the two pieces and give her a solid 3-
inch section. 

Assuming that portions of the bar are traded back 
and forth in this fashion, see if you can determine the 
smallest number of pieces into which the prospector 
needs to cut his silver bar. 
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SOLUTION 

The prospector can keep his agreement by cutting 
his 3I-inch silver bar into as few as five sections with 
lengths of 1, 2, 4, 8, and 16 inches. On the first day he 
gives the landlady the I-inch piece, the next day he 
takes it back and gives her the 2-mch piece, the third 
day he gives her the I-inch piece again, the fourth day 
he takes back both pieces and gives her the 4-inch 
piece. By giving and trading in this manner, he can 
add an inch to her amount each day for the full month 
of 31 days. 

The solution to this problem can be expressed very 
neatly in the binary system of arithmetic. This is a 
method of expressing integers by using only the digits 
1 and O. In recent years it has become an important 
system because most giant electronic computers operate 
on a binary basis. Here is how the number 27, for ex­
ample, would be written if we are using the binary sys­
tem: 

11011 

How do we know that this is 27? The way to trans­
late it into our decimal system is as follows. Above the 
digit on the extreme right of the binary number, we 
write "1." Above the next digit, moving left, we write 
"2"; above the third digit from the left, we write "4"; 
above the next digit, "8"; and above the last digit on the 
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left, "16." (See the illustration.) These values fonn the 
series 1, 2, 4, 8, 16, 32 . . . , in which each number 
is twice the preceding one. 

16 8 4 2 1 

11011 
The next step is to add together all the values that 

are above l's in the binary number. In this case, the 
values are 1, 2, 8, 16 (4 is not included because it is 
above a 0). They add up to 27, so the binary number 
11011 is the same as 27 in our number system. 

Any number from 1 to 31 can be expressed in this 
way with a binary number of no more than five digits. 
In exactly the same way, any number of inches of silver 
from 1 to 31 can be formed with five pieces of silver if 
the lengths of the five pieces are 1, 2, 4, 8, and 16 
inches. 

The table here lists the binary numbers for each 
day in March. You will note that on March 27 the num­
ber is 11011. This tells us that the landlady's 27 inches 
of silver will consist of the I-inch, 2-inch, 8-inch, and 
16-inch sections. Pick a day at random and see how 
quickly you can learn from the chart exactly which 
pieces of silver will add to an amount that corresponds 
with the number of the day. 
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16 BINARY NUMBERS 

~ 
8 

FROM 1 TO 31 

0 4 

[] 2 1 
MARCH [] Cl .. 

1 1 
2 1 0 
3 1 1 
4 1 0 0 
5 1 0 1 
6 1 1 0 
7 1 1 1 
8 1 0 0 0 
9 1 0 0 1 
10 1 0 1 0 
11 1 0 1 1 
12 1 1 0 0 
13 1 1 0 1 
14 1 1 1 0 
15 1 1 1 1 
16 1 0 0 0 0 
17 1 0 0 0 1 
18 1 0 0 1 0 
19 1 0 0 1 1 
20 1 0 1 0 0 
21 1 0 1 0 1 
22 1 0 1 1 0 
23 1 0 1 1 1 
24 1 1 0 0 0 
25 1 1 0 0 1 
26 1 1 0 1 0 
27 1 1 0 1 1 
28 1 1 1 0 0 
29 1 1 1 0 1 
30 1 1 1 1 0 
31 1 1 1 1 1 
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THE THREE CATS 

IF THREE CATS catch three rats in three minutes, how 
many cats will catch 100 rats in 100 minutes? 

SOLUTION 

The usual answer to this old riddle is as follows. 
If it takes three cats three minutes to catch three rats, 
it must take them one minute to catch one rat. And if 
it takes them a minute for each rat, then the same three 
cats would catch 100 rats in 100 minutes. 

Unfortunately, it is not quite that simple; such an 
answer presupposes something that is certainly not 
stated in the problem. It assumes that all three cats con­
centrate their attention on the same rat until they catch 
him in one minute, then turn their combined attention 
toward another rat. But suppose that instead of doing 
this, each cat chases a different rat and takes three min­
utes to catch it. In this case, three cats would still catch 
three rats in three minutes. It would take them siX 
minutes to catch six rats, nine minutes to catch nine rats, 
and 99 minutes to catch 99 rats. 

A curious difficulty now faces us. How long will it 
take those same three cats to catch the 100th rat? If it 
still takes them the full three minutes to run him down, 
then it will take three cats 102 minutes to catch 100 rats. 
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To catch 100 rats in 100 minutes-assuming this is how 
the cats go about their rat catching-we will certainly 
need more than three cats and less than four cats. 

Of course it is possible that when the three cats 
gang up on a single rat they can comer him in less than 
three minutes, but there is nothing in the statement of 
the riddle that tells us exactly how to measure the time 
for this operation. The only correct answer to the prob­
lem, therefore, is this: The question is ambiguous and 
cannot be answered without more information about 
how those cats catch rats. 
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MRS. PU FFEM 'S CIGARETTES 

MRS. PUFFEM, a heavy smoker for many years, finally 
decided to stop smoking altogether. "I'll finish the 
twenty-seven cigarettes I have left," she said to herself, 
"and never smoke another one." 

It was Mrs. Puffem's practice to smoke exactly two­
thirds of each cigarette. It did not take her long to dis­
cover that with the aid of some cellophane tape she 
could stick three butts together to make a new ciga­
rette. With 27 cigarettes on hand, how many cigarettes 
can she smoke before she gives up the weed forever? 

SOLUTION 

After smoking the 27 cigarettes, Mrs. Puffem 
patched together the butts to make 9 more. These 9 
cigarettes left enough butts for 3 more smokes; then 
with the 3 final butts she made one final Cigarette. To­
tal: 40 cigarettes. Mrs. Puffem never smoked again; she 
failed to recover from the strength of her final puff. 
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Money Puzzles 

«IF YOU'LL GIVE me your water pistol," says little Tommy 
to his playmate, <TIl let you have my dump truck." This 
kind of trading is called «bartering." In primitive so­
cieties it is the only way in which things can be 
«bought" and «sold." 

Think about it a moment and you will see what a 
poor system this is. A man who wants to sell his cow 
and buy a horse will be unable to do so until he hap­
pens to meet another man who wants to sell his horse 
and buy a cow. It may be years before he finds such a 
man. And suppose a man wants to trade his cow for a 
sheep that belongs to one friend and a pig that beiongs 
to another. He can't slice his cow in half and trade each 
half separately! So you see, in any complicated society 
where many things are bought and sold, it is necessary 
to have something called money; something that can be 
split up into any amount one wishes, and which has a 
value that everyone can agree on. 

Almost anything can and has been used in the past 
for money, but today money consists either of coins 
made of metal or printed paper money. Few uses of 
arithmetic are more Important than ieaming how to 
handle money problems. The next five puzzles will test 
your ability along these lines, and perhaps teach you a 
few things you did not fully understand before. 
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SECOND-HAND SCOOTER 

BILL SOLD HIS motor scooter to Tom for $100. After 
driving it around for a few days Tom discovered it was 
in such a broken-down condition that he sold it back 
to Bill for $80. 

The next day Bill sold it to Herman for $90. 
What is Bill's total profit? 

SOLUTION 

This little puzzle never fails to start arguments. 
Most people take one of the following three positions: 

(1) We don't know what the scooter originally 
cost, so after the first sale we have no way of knowing 
whether Bill made a profit or not. However, since he 
bought it back for $80 and sold it again for $90, he 
clearly made a $10 profit. 

(2) Bill sold his scooter for $100 and bought it 
back for $80. He now has the same scooter plus $20 that 
he didn't have before, so his profit is $20. We learn 
nothing from the next sale because we don't know the 
scooter's real worth, so Bill's total profit is $20. 

(3) After Bill buys back the scooter, his profit is 
$20 as just explained. He now sells it for $10 more than 
he just paid for it, making an additional profit of $10. 
Total profit, therefore, is $30. 
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Which is correct? The answer is that one is just as 
good as another! In a series of transactions involving 
the same object, the "total profit" is the difference be­
tween what one first paid for it and the amount one has 
at the finish. For example, if Bill had paid $100 for the 
scooter, then he ends up with $110 and we can say that 
his total profit is $10. But because we don't know the 
scooter's original cost, we have no way of saying what 
his final profit is. 

Each answer is correct if we are willing to accept 
some meaning, other than the usual one, of the phrase 
"total profit." Many problems in life are like this. They 
are called "verbal problems" or "semantic problems" 
because they have different answers depending on ex­
actly how one understands the words that are important 
in the problem. They have no "correct" answers until 
everyone agrees on the same meaning for the terms. 
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LOW FINANCE 

"I SEEM TO have overdrawn my account," said Mr. 
Green to the bank president, «though I can't for the life 
of me understand how it could have happened. You see, 
I originally had $100 in the bank. Then I made six 
withdrawals. These withdrawals add up to $100, but 
according to my records, there was only $99 in the bank 
to draw from. Let me show you the figures." 

Mr. Green handed the bank president a sheet of 
paper on which he had written: 

Withdrawals Amount left on deposit 
$ 50 $50 

25 25 
10 
8 
5 
2 

$100 

15 
7 
2 
o 

$99 

«As you see," said Mr. Green, "I seem to owe the 
bank a dollar." 

The bank president looked over the figures and 
smiled. "I appreciate your honesty, Mr. Green. But you 
owe us nothing." 

17 

"Then there is a mistake in the figuresP" 
"No, your figures are correct." 
Can you explain where the error lies? 



SOLUTION 

There is no reason whatever why Mr. Green's 
original deposit of $100 should equal the total of the 
amounts left after each withdrawal. It is just a coin­
cidence that the total of the right-hand column comes 
as close as it does to $100. 

This is easily seen by making charts to show a dif­
ferent series of withdrawals. Here are two possibilities: 

Withdrawals Amount left on deposit 
$99 $1 

1 0 

$100 $1 

Withdrawals Amount left on deposit 
$1 $99 
1 98 
1 97 

97 0 

$100 $294 

As you see, the total on the left must always be 
$100, but the total on the right can be made very small 
or very large. Assuming that withdrawals can never in­
volve a fraction of a cent, try to determine the small­
est possible total and the largest possible total that the 
right-hand column can have. . 
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NO CHANGE 

«GIVE ME CHANGE for a dollar, please," said the cus­
tomer. 

"I'm sorry," said Miss Jones, the cashier, after 
searching through the cash register, "but I can't do it 
with the coins I have here." 

"Can you change a half dollar then?" 
Miss Jones shook her head. In fact, she said, she 

couldn't even make change for a quarter, dime, or 
nickel! 

"Do you have any coins at all?" asked the cus­
tomer. 

"Oh yes," said Miss Jones. "I have $1.15 in coins." 
Exactly what coins were in the cash register? 

SOLUTION 

H Miss Jones couldn't change a dollar, then the 
cash register could not have in it more than one half 
dollar. If she couldn't change a half dollar, then the 
register had no more than one quarter, and no more 
than four dimes. No change for a dime means no more 
than one nickel, and no change for a nickel means no 
more than four pennies. So the cash register could not 
have contained more than: 
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1 hall dollar $ .50 
1 quarter .25 
4 dimes 040 
1 nickel .05 
4 pennies .04 

$1.24 

A dollar's change can still be made with these coins 
(for example: a half dollar, quarter, two dimes, and a 
nickel), but we know that the register cannot have 
more coins than those listed above. They add to $1.24 
which is just 9 cents more. than $1.15, the amount we 
are told is in the register. 

N ow the only way to make 9 cents is with a nickel 
and four pennies, so those are the coins that must be 
eliminated. The remaining coins-a hall dollar, quarter, 
and four dimes-will not provide change for a dollar 
or any smaller coin, and they add to $1.15, so we have 
found the only answer to the puzzle. 
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AL'S ALLOWANCE 

AL WANTED HIS father to give him an allowance of $1.00 
a week, but his father refused to go higher than 50 

cents. After they had argued about it for a while, Al 
(who was pretty smart in arithmetic) said: 

"Tell you what, Dad. Suppose we do it this way. 
Today is the first of April. You give me a penny today. 
Tomorrow, give me two pennies. The day after tomor­
row, give me four pennies. Each day, give me twice as 
many pennies as you did the day before." 

"For how long?" asked Dad, looking wary. 
"Just for the month of April," said AI. "Then I 

won't ask you for any more money for the rest of my 
life." 

"Okay," Dad said quickly. "It's a deal!" 
Which of the follOwing figures do you think comes 

the closest to the amount of money that Dad will have 
to pay Al during the month of April? 

21 

$1 
$10 
$100 
$1,000 
$10,000 
$100,000 
$1,000,000 
$10,000,000 



SOLUTION 

If you keep doubling a penny, the amount starts to 
grow slowly at first, then faster and faster until soon it 
gallops along with enormous leaps. It is hard to believe, 
but if poor Dad keeps his agreement he will have to 
pay Al more than ten million dollars! 

On the first day Dad pays Al a penny. The next 
day, 2 pennies, making a total of 3. The third day he 
gives his son 4 pennies, raising the total to 7. Let's make 
a chart to show this for the first week: 

Day of month Pennies for that day Total pennies 
1 1 1 
2 2 3 
3 4 7 
4 8 15 
5 16 31 
6 32 63 
7 64 127 

If this chart is continued it will show that Dad's 
final payment, on April 30, is $5,368,709.12, or well 
over five million dollars. This, however, is only Dad's 
last payment. We still need to know how much he pays 
altogether, and to get this we must add all thirty of his 
payments. This can be done qUickly by using the fol­
lowing short cut. 

Note that each number in the right-hand column 
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of the chart is just one less than twice the correspond­
ing number in the center column. So all one has to do 
is double Dad's last payment to get $10,737,418.24, 
then subtract 1 penny to get $10,737,418~23. This is the 
total amount Dad will have to fork over if he keeps his 
agreement. 
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PICK YOUR PAY 

Suppose you take a new job and the boss offers 
you a choice between: 

(A) $4,000 for your first year of work, and a raise 
of $800 for each year thereafter; 

(B) $2,000 for your first six months of work, and 
a raise of $200 every six months thereafter. 

Which offer would you take and why? 

SOLUTION 

Surprisingly, the second offer is much better than 
the first one. If you accept it, you will earn exactly $200 
more each year than you would on the other basis of 
payment! The following chart shows your total earn­
ings, on the basis of both offers, for each of the first six 
years. 

Years Offer A Offer B 

1 $4,000 $4,200 
2 4,800 5,000 
3 5,600 5,800 
4 6,400 6,600 
5 7,200 7,400 
6 8,000 8,200 
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Speed Puzzles 

WE LIVE IN a world in which everything is always 
changing, though in ten thousand different ways and at 
all sorts of different speeds. The sky may darken in a 
few hours, a banana darkens in a few days. The colors 
on wallpaper fade so slowly that it may be years before 
we notice the change. Some changes are extremely ir­

regular, like the way you change positions when you 
sleep. Other changes, such as the waxing and waning 
of the moon, or the vibration of an atom in a molecule, 
are more regular than clockwork. 

The branch of mathematics that is most concerned 
with change is called the calculus. It is impossible to be 
a physicist today without knowing calculus; but, be­
fore you can understand it, you must first know a great 
deal about the mathematics of simple and regular types 
of change that can be handled by ordinary arithmetic. 
The most common example of such a change is the 
change of pOSition that we call constant speed. It is ex­
pressed as a ratio between distance and time: 

d 
Distance 

Spee =--­
Time 

With this basic formula in mind, and some hard 
clear thinking, perhaps you will be able to master the 
four unusual speed problems that follow. 
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THE BICYCLES AND THE FLY 

Two BOYS ON bicycles, 20 miles apart, began racing 
directly toward each other. The instant they started, a 
fly on the handle bar of one bicycle started flying 
straight toward the other cyclist. As soon as it reached 
the other handle bar it turned and started back. The fly 
flew back and forth in this way, from handle bar to 
handle bar, until the two bicycles met. 

If each bicycle had a constant speed of 10 miles an 
hour, and the fly flew at a constant speed of 15 miles an 
hour, how far did the fly fly? 

SOLUTION 

Each bicycle travels at 10 miles an hour, so they 
will meet at the center of the 20-mile distance in ex­
actly one hour. The fly travels at 15 miles an hour, so at 
the end of the hour it will have gone 15 miles. 

Many people try to solve this the hard way. They 
calculate the length of the fly's :first path between 
handle bars, then the length of his path back, and so on 
for shorter and shorter paths. But this involves what is 
called the summing of an infinite series, and it is very 
complicated, advanced mathematics. 

It is said that the Hungarian mathematician, John 
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von Neumann, perhaps the greatest mathematician in 
the world when he died in 1957, was once asked this 
problem at a cocktail party. He thought for a moment, 
then gave the correct answer. The person who asked 
the question looked a bit crestfallen. He explained that 
most mathematicians overlook the simple way it can be 
solved and try to solve it by the lengthy process of sum­
ming an infinite series. 

Von Neumann looked surprised. "But that's how I 
solved it," he explained. 
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THE FLOATING HAT 

A FISHERMAN, wearing a large straw hat, was :fishing 
from a rowboat in a river that flowed at a speed of three 
miles an hour. His boat drifted down the river at the 
same rate. 

«I think I'll row upstream a few miles," he said to 
himself. «The fish don't seem to be biting here." 

Just as he started to row, the wind blew off his hat 
and it fell into the water beside the boat. But the fisher­
man did not notice his hat was gone until he had rowed 
upstream :five miles from his hat. Then he realized what 
must have happened, so he immediately started rowing 
back downstream again until he came to his floating 
hat. 

In still water, the fisherman's rowing speed is al­
ways five miles an hour. When he rowed upstream and 
back, he rowed at this same constant speed, but of 
course this would not be his speed relative to the shore 
of the river. For instance, when he rowed upstream at 
:five miles an hour, the river would be carrying him 
downstream at three miles an hour, so he would be pass­
ing objects on the shore at only two miles an hour. And 
when he rowed downstream, his rowing speed and the 
speed of the river would combine to make his speed 
eight miles an hour with respect to the shore. 

If the :fisherman lost his hat at two o'clock in the 
afternoon, what time was it when he recovered it? 

29 



SOLUTION 

Because the speed of the river has the same effect 
on both boat and hat, it can be ignored completely in 
solving this puzzle. Instead of the water moving and the 
shore remaining fixed, imagine the water as perfectly 
stiil and the shore moving. As far as boat and hat are 
concerned, this situation is exactly the same as before. 
Since the man rows five miles away from the hat, then 
five miles back to the hat, he has rowed a total dis­
tance of ten miles with 1'espect to the wate1'. His row­
ing speed with respect to the water is five miles an 
hour, so it must have taken him two hours to go the 
ten miles. He would recover his hat, therefore, at four 
o'clock. 

The situation here is comparable to that of calculat­
ing speeds and distances on the surface of the earth. The 
earth is spinning through space, but because this motion 
has the same effect on all objects on its surface, it can 
be ignored completely in most speed and distance prob­
lems. 

~---.- . 
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ROUND TRIP 

WHEN A TRIP is made by car, the car will of course travel 
different speeds at different times. If the total distance 
is divided by the total driving time, the result is called 
the average speed for that trip. 

Mr. Smith planned to drive from Chicago to De­
troit, then back again. He wanted to average 60 miles 
an hour for the entire round trip. After arriving in De­
troit he found that his average speed for the trip was 
only 30 miles an hour. 

What must Smith's average speed be on the return 
trip in order to raise his average for the round trip to 
60 miles an hour? 

SOLUTION 

It is not necessary to know the distance between 
Chicago and Detroit in order to solve this perplexing 
little puzzle. When Smith arrived in Detroit he had gone 
a certain distance and it had taken him a certain length 
of time. If he wishes to double his average speed, it is 
necessary for him to go twice that distance in the same 
length ot'time. Clearly, in order to do this he must re­
turn to Chicago in no time at all! This is impOSSible, so 
there is no way Smith can raise his average speed to 60 
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miles an hour. No matter how fast he makes the return 
trip he is sure to fall short of a 60-mile-per-hour aver­
age. 

This will be easier to understand if we pick a cer­
tain distance for Smith to travel; say 30 miles and back. 
Since his average speed is 30 miles an hour, he will com­
plete the first half of his trip in one hour. He wants to 
make the round trip with an average speed of 60 miles 
an hour, which means that he must complete the entire 
60-mile trip in one hour. But he has already used up his 
hour. No matter how fast he returns, his total time will 
be more than one hour, therefore he will have traveled 
60 miles in more than an hour, making his average speed 
less than 60 miles an hour. 
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AIRPLANE PARADOX 

AN AIRPLANE FLIES from city A to city B, then back to 
A again. When there is no wind, its average ground 
speed (speed relative to the ground) for the entire trip 
is 100 miles per hour. Assume that a steady wind is 
blowing in a straight direction from city A toward city 
B. How will this wind affect the plane's average ground 
speed for the round trip, assuming that it flies at all 
times with the same motor speed as before? 

Mr. White argues: "It won't affect the average 
speed at all. The wind will speed up the plane on its 
Hight from A to B, but on the return trip it will slow 
down the plane by the same amount." 

«That sounds reasonable," agrees Mr. Brown, "but 
suppose the wind is 100 miles an hour. The plane will 
go from A to B at 200 miles an hour, but its return speed 
will be zero! The plane won't be able to get back at all!" 

Can you explain this seeming paradox? 

SOLUTION 

Mr. White is right in saying that the wind increases 
the plane's speed in one direction by the same amount 
that it decreases the speed in the other direction. But 
he is wrong when he says the wind will not affect the 
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plane's average ground speed for the entire round trip. 
What Mr. White failed to consider was the length 

of time that the plane Hies at each of the two speeds. 
The return trip against the wind will take much longer 
than the trip with the wind. As a result, more time is 
spent in Hying at the reduced ground speed, and so the 
average ground speed for both trips will be less than if 
there were no wind. The stronger the wind, the greater 
this reduction will be. When the speed of the wind 
equals or exceeds the plane's speed, then average 
ground speed for the round trip becomes zero because 
the plane is unable to return. 
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Plane Geometry 
Puzzles 

IF WE WANTED to be very up to date and technical we 
could define geometry by quoting this definition: "The 
study of invariant properties of given elements under 
specified groups of transformations." But to understand 
that, you would have to know what all the words mean 
and some of them are not easy to explain. So we will 
take a less technical approach and simply say that ge­
ometry studies the sizes and shapes of things. 

Plane geometry is the most elementary branch of 
geometry. It deals with the mathematical properties of 
Hat figures, such as lines, angles, triangles, squares, and 
circles, that can be drawn on a sheet of paper with a 
ruler and a compass. It had its beginnings in ancient 
Egypt, but it was the Greeks who first developed it into 
a science. They were interested in plane geometry not 
only because it was useful in surveying and carpentry 
and architecture, but also because of its great beauty. 
No man could call himself truly educated, the Greeks 
believed, who did not understand some geometry. 

The next four puzzles do not require any special 
knowledge of plane geometry, but they will test your 
ability in the kind of pictorial thinking that is so useful 
in solving geometrical problems. 
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CORNER TO CORNER 

MANY TIMES A geometrical problem is enormously dif­
ficult if it is approached the wrong way. Tackle it an­
other way and it is absurdly simple. This problem is a 
classic example. 

Given the dimensions (in inches) shown in the il­
lustration, how quickly can you compute the length of 
the rectangle's diagonal that runs from comer A to cor­
ner B? 

SOLUTION 

Draw the other diagonal of the rectangle and you 
will see at once that it is the radius of the circle. The 
diagonals of a rectangle are always equal, therefore the 
diagonal from comer A to corner B is equal to the cir­
cle's radius, which is 10 inchesl 
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THE HINDU AND THE CAT 

How MANY DIFFERENT squares can you count in the pic­
ture of the turbaned Hindu boy? 

How many different triangles can you count in the 
picture of the cat? 

Look carefully. The problems are not as easy as you 
might thinkl 
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SOLUTION 

In working on problems of this sort it is always best 
to count the figures in some systematic way. In the pic­
ture of the Hindu boy, let's take the squares in order of 
size: 

Small squares 5 <> ~ 
Middle-size 

squares 5 

Large squares 1 

Total 11 

The triangles in the cat can be counted as follows: 

Head 10 

Body and feet 3 

Tail 7 

Total 20 
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CUTTING THE PIE 

WITH ONE STRAIGHT cut you can slice a pie into two 
pieces. A second cut that crosses the first one will pro­
duce four pieces, and a third cut (see the illustration) 
can produce as many as seven pieces. 

What is the largest number of pieces that you can 
get with six straight cuts? 
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SOLUTION 

Instead of solving this puzzle by trial and error, a 
better way is to discover a rule that will give the largest 
number of pieces that can be obtained with any number 
of cuts. 

The uncut pie is one piece, so when cut No.1 is 
made, one more piece of pie is added to make two pieces 
in all. 

Cut No.2 adds 2 more pieces, making 4 in all. 
Cut No.3 adds 3 more pieces, making 7 in all. 
It looks as if each cut adds a number of pieces that 

is always equal to the number of the cut. This is true, 
and it is not hard to see why. Consider, for example, the 
third cut. It crosses two previous lines. Those two lines 
will divide the third line into three sections. Each of 
those three sections cuts a piece of pie into two parts, 
so each section will add one extra piece and the three 
sections naturally add three pieces. 

The same is true of the fourth line. It can be drawn 
so it crosses the other three lines. These three lines will 
divide the fourth line into four sections. Each section 
adds an extra piece so the four sections will add four 
more pieces. And the same is true of the fifth line, sixth 
line, and so on for as many lines as we care to add. 
This type of reasoning, from particular cases to an in­
finite number of cases, is known as mathematical in­
duction. 
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Bearing the rule in mind, it is now a simple matter 
to make a chart showing the largest number of pieces 
that each cut will produce: 

Number of cuts Number of pieces 
0 1 
1 2 
2 4 
3 7 
4 11 
5 16 
6 22 

How many pieces can you make with seven cuts? 
We simply add 7 to 22 and we know the answer is 29. 
The illustration shows how six cuts can be made to 
produce 22 pieces, the answer to the original problem. 
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WHERE DOES THE SQUARE GO? 

PAUL CURRY, an amateur magician in New York City, 
was the first to discover that a square can be cut into a 
few pieces and the pieces rearranged to make a square 
of the same size that has a hole in itl 

There are many versions of·the Curry paradox, but 
the one shown in Figures 1 and 2 is one of the Simplest. 
Paste a sheet of graph paper on a piece of cardboard. 
Draw the square shown in Figure I, then cut along the 
lines to make five pieces. When you rearrange these 
same :five pieces, in the manner shown in Figure 2, a 
hole will appear in the center of the squarel 

The square in Figure 1 is made up of 49 smaller 
squares. The square in Figure 2 has only 48 small 
squares. Which small square has vanished and where 
did it go? 
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SOLUTION 

When the two largest pieces are switched, each 
small square that is cut by the diagonal line becomes a 
trifle higher than it is wide. This means that the large 
square is no longer a perfect square. It has increased in 
height by an area that is exactly equal to the area of the 
hole. 
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Solid Geometry 
Puzzles 

WH:EN WE TURN from plane to solid geomeb'y, we tum 
from the Hat two-dimensional world of a sheet of paper 
or a TV screen to the rich three-dimensional world of 
everyday life. Our bodies are three-dimensional. Our 
houses are three-dimensional. We live on a 3-D solid 
that is a sphere slightly flattened at the poles and a triHe 
pear shaped. Solid geomeb'y studies the shapes and sizes 
of all three-dimensional things. 

You may have noticed that many familiar two­
dimensional figures have their close cousins in three 
dimensions. On the plane a compass b'aces a circle. In 
the air, if we keep the point of the compass in a fixed 
position and allow the pencil end to swing in all direc­
tions (or if we rotate a circle), it will range over the sur­
face of a sphere. When a Beatnik wants to describe 
someone as «squarer» than a «square," he calls him by 
the name of the square's three-dimensional counterpart, 
the cube. The equilateral triangle also has its 3-D coun­
terpart, the tetrahedron. It is a pyramid with four faces, 
each of which is an equilateral triangle. 

The ability to think in three dimensions, tested by 
the four puzzles in this section, is of great importance in 
almost every science. 
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UNDER THE BAND 

IMAGINE THAT YOU are on a perfectly smooth sphere as 
big as the sun. A steel band is stretched tightly around 
the equator. 

One yard of steel is added to this band so that it is 
raised off the surface of the sphere by the same distance 
all the way around. will this lift the band high enough 
so that you can: 

SOLUTION 

(1) Slip a playing card under it? 
(2) Slip your hand under it? 
(3) Slip a baseball under it? 

It seems surprising, but that steel band, after a yard 
has been added to it, will be raised almost six inches all 
the way around I This is certainly high enough for a 
baseball to pass underneath. 

Actually, the height the band is raised is the same 
regardless of how large the sphere may be. It is easy to 
see why. When the band is tight around the sphere, it 
is the circumference of a circle with a radius that is the 
same as the radius of the sphere. We know from plane 
geometry that the circumference of a circle is equal to 
its diameter (which is twice its radius) times pi. Pi is 

47 



3.14+, a number that is a little more than 3. Therefore, 
if we increase the circumference of any circle by one 
yard, we must increase the diameter by a trifle less than 
one-third of a yard, or almost a foot. This means, of 
course, that the radius will increase by almost six inches. 

As the illustration makes clear, this increase in 
radius is the height that the band will be raised from 
the sphere's surface. It will be exactly the same, 5.7+ 
inches, regardless of whether the sphere be as large as 
the sun or as small as an orange! 
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THE THIRD LINE 

A STRAIGHT LINE is called self-congruent because any 
portion of the line can be exactly:fitted to any other por­
tion of the same length. The same is true of the cir­
cumference of a circle. Any part of the circumference is 
exactly like any other part of the same length. An oval 
line is not self-congruent because parts of it have differ­
ent curvature. A portion of an oval taken from the side 
would not :fit the more sharply curved portion at one of 
the ends. 

There is a third type of line that is self-congruent 
like the straight line and circle. Can you think of what 
sort of line it is? 

SOLUTION 

Because this problem is in a section on solid ge­
ometry, perhaps you have guessed that the third type 
of self-congruent line is one that cannot be drawn on 
a plane. It is called the circular helix-a line that spirals 
through space like a corkscrew or the lines on a barber's 
pole. If you study the illustration, you will see that any 
portion of this helix will :fit any other portion. 

There are other types of helices, but only the cir­
cular helix is self-congruent. The circular helix is one 
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that spirals with a constant angle around a cylinder that 
has a circular cross section. Other helices are those that 
spiral around cylinders with non circular cross sections, 
and around cones. A cone-shaped bedspring is a familiar 
example of a conical helix. Helices have many interest­
ing properties, and they are often encountered in phys­
ics, astronomy, chemistry, biology,and other sciences. 
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THE PAINTED CUBES 
IMAGINE THAT YOU have a can of red paint, a can of blue 
paint, and a large supply of wooden cubes, all the same 
size. You decide to paint the cubes by making each face 
either solid red or solid blue. For example, you might 
paint one cube all red. The next cube you may decide 
to give three red faces and three blue faces. Perhaps the 
third cube can also be given three red and three blue 
faces, but painted in such a way that it doesn't match 
the second cube. 

How many cubes can you paint in this manner that 
will be different from each other? Two cubes are con­
sidered alike if one can be turned so that all its sides 
match the corresponding sides of the other cube. 

SOLUTION 
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You can paint: 

1 cube that is all red, 
1 cube that is all blue, 
1 cube with 5 red faces, 1 blue, 
1 cube with 5 blue faces, 1 red, 
2 cubes with 4 red faces, 2 blue. 
2 cubes with 4 blue faces, 2 red, 
2 cubes with 3 red faces, 3 blue. 

This makes a total of ten different cubes. 



THE SPOTTED BASKETBALL 

WHAT IS THE largest number of spots that can be 
painted on a basketball in such a way that every spot 
is exactly the same distance from every other spot? 

"Distance" here means the distance measured on 
the surface of the sphere. A good way to work on this 
puzzle is to mark spots on a ball and measure the dis­
tances between them with a piece of string. 

SOLUTION 

No more than four spots can be painted on a 
sphere so that each spot is the same distance from every 
other spot. The illustration shows how the spots are 
placed. It is interesting to note that if we draw straight 
lines inside the sphere, connecting the centers of the 
four spots, these lines will mark the edges of a tetra­
hedron. 
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Game Puzzles 

DID YOU EVER stop to think that a great many games are 
really mathematical puzzles? Ticktacktoe, for exam­
ple, is pure mathematics. It is such a simple game that 
it is not hard to analyze it completely and become a 
player who never makes a mistake. In modern game 
theory, one of the newest branches of mathematics, such 
a player is said to play rationally. When two ticktacktoe 
players both play rationally, the game is always a draw. 

Chess and checkers are two other familiar examples 
of mathematical games, but there are so many different 
ways to make moves that no one has yet completely 
analyzed either game. If two chess or checker players 
play rationally, will the game always be a draw or does 
the first or second player have a sure way to win? 
Nobody knows. If they did, chess and checkers would 
be much less interesting games! 

The four puzzles in this section are four novel 
games that are easy to analyze and cannot end in draws. 
Try playing them with a friend and see how quickly you 
can discover how the first or second player can always 
win if he plays correctly. 
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THE CIRCLE OF PENNIES 

To PLAY THIS game, take any number of counters (they 
can be pennies, checkers, pebbles, or bits of paper) and 
arrange them in a circle. The illustration shows the start 
of a game with ten pennies. Players take turns remov­
ing one or two counters, but if two are taken they must 
be next to each other, with no counters or open spaces 
between them. The person who takes the last counter 
is the winner. 

If both sides play rationally, who is sure to win and 
what strategy should he use? 
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SOLUTION 

The second player, if he uses the following two­
part strategy, can always win this game: 

1. After the first player has removed one or two 
counters, there will be a single gap somewhere in the 
circle. The second player now takes either one or two 
counters from the opposite side of the circle so that the 
counters are left divided into two equal groups. 

2. From now on, whatever the first player takes 
from one group, the second player takes the correspond­
ing counter or counters from the other group. 

This strategy will become clear if you play over 
the following sample game. The numbers refer to the 
numbers given to each of the coins in the illustration on 
page 55. 

First player 
8 

1,2 
7 
6 

Second player 
3 

5,4 
9 

10 (wins) 

Try using this strategy. on. your friends and you'll 
soon see why it cannot fail to win for the second player, 
regardless of how many counters are used in forming 
the circle. 
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FOX AND GOOSE 

17_1 ____ ~.:B-2-----.3 .4~ ____ :~1-----:: 
.1_3 ___ .1_4 ___ .1;.;;;5 ___ .~ __ .1;...7 ___ .18 
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THIS AMUSING GAME is played on the above board. 
place a penny on the picture of the fox and a dime 

on the picture of the goose. 
One player moves the fox, the other moves the 

goose. A "move" consists of sliding the coin from one 
dot to an adjacent dot, along a black line. The fox tries 
to capture the goose by moving onto the spot occupied 
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by the goose. The goose tries to prevent this. If the fox 
captures the goose in ten moves or less (that is, ten of 
the fox's moves), then he wins. If he fails to capture the 
goose in ten moves, the goose wins. 

Now, if the goose had the first move it would be 
very easy for the fox to trap her in that lower left corner 
of the board. But in this game the fox must always move 
first. This seems to give the goose a good chance to 
escape being caught. 

Can the fox always capture the goose in ten moves, 
if he plays correctly, or can the goose always get away? 

SOLUTION 

The fox can always capture the goose in less than 
ten moves. This is how it's done: 

His first three moves must take him around one of 
the two triangles in the center of the board. After com­
pleting this circuit, it is then a simple matter for him to 
trap the goose in a corner square before his ten moves 
are up. 

The following game is typical: 

Move Fox Goose Move Fox Goose 
(1) 16 32 (5) 28 32 
(2) 22 33 (6) 27 31 
(3) 21 27 (7) 26 25 
(4) 22 33 (8) 25 (wins) 
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BRIDG-IT 

THIS UNUSUAL GAME was invented by David Gale, a 
professor of mathematics at Brown University, and has 
been marketed under the trade name of Bridg-It. It can 
be played on boards of various sizes. The version ex­
plained here is easy to play on paper, with pencils of 
two different colors. If s more fun than ticktacktoe! 

Suppose that the pencils you use are red and black. 
With the black pencil, make a rectangle of 12 dots as 
shown in Figure 1. With the red pencil, add 12 more 
dots as shown in Figure 2. (In these pictures the red 
dots are shown as shaded circles.) Figure 2 is the board 
on which the game is played. 

• 
• 
• 
• 
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One player holds the black pencil, his opponent 
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holds the red. The first player draws a horizontal or 
vertical line that connects two adjacent dots of his own 
color. Then the other player does the same thing, con­
necting two adjacent dots of his color. They take turns 
doing this. Black tries to form a continuous path of lines 
from the top row of black dots to the bottom row. The 
path does not have to be straight; it can twist in any 
way so long as it connects opposite sides of the board. 
Red tries to form a similar path from the left column of 
red dots to the column of red dots at the right end. Each 
of course also uses his lines for blocking the other 
player's path. 

The first player to complete his path is the winner. 
Figure 3 shows the finish of a typical game. Red (whose 
lines are shown as dotted) has won. 

The game cannot end in a draw. Who is sure to win 
if he plays rationally, the first player or the second 
player? 

R 
E 
D 
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SOLUTION 

A number of opening moves will always win for 
the first player. One of them is to connect the two dots 
that are closest to the center of the board. There are 
too many qif!erent lines of play to discuss all of them 
here, but this move and careful playing thereafter will 
w~ the game. 

There is an interesting way to prove that the first 
player, ~o matter how large the board, can always win 
if he plays correctly. 

It goes like this: 
( 1) As~ume, just for fun, that the second player 

has a sure strategy for winning. 
(2) The first player draws his first line anywhere. 

Then after the second player has drawn a line, the first 
player pretend~ that he is the second player, and plays 
the winning strategy. 

(3) The linethat the first player made on his :Srst 
move cannot int~rfere with his winning strategy. If this 
line is not part of the strategy, then it doesn't matter. If 
it is part of the strategy, then when the time comes to 
draw it, he Simply draws a line somewhere else. 

(4) Therefore the :Srst player can always win. 
( 5) But this contradicts our :Srst assumption that 

the second player could win. Therefore the assumption 
was wrong. 

( 6) The game cannot end in a draw, /)0 if there 
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is no winning strategy for the second player, there must 
be one for the first playerl 

This proof, which applies to games other than 
Bridg-It, is a famous proof in game theory because it 
shows that there is a winning strategy for the first 
player, . on any size board, but it doesn't explain what 
that strategy is. The proof is not easy to understand 
when explained as briefly as it is here, but if you think 
it through carefully, it should eventually become clear. 
Mathematicians call it an existence proof because it 
proves that something exists without telling how to go 
about finding it. 

In this case, the type of reasoning used in the proof 
is known as reductio ad absurdum, which is Latin for 
«reduction to absurdity." You show that one of two 
things must be true, you assume one to be true, it leads 
to a logical absurdity, therefore the other thing must be 
true. Here the proof runs as follows: (1) one of two 
players must win, (2) it is assumed that the second 
player can always win, (3) this leads to a logical con­
tradiction, (4) therefore, the first player can always 
win. 

This is a powerful form of proof that is often used 
by mathematicians. 
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NIM 

ARRANGE NINE PENNIES in three rows as shown. Players 
take turns removing one or more pennies provided they 
all come from the same row. For example, a player 
could take one penny from the top row, or all the 
pennies in the bottom row. The person who is forced 
to take the last penny is the loser. 

If the nrst player makes a correct first move, and 
continues to play rationally, he can always win. If he 
fails to make this move, his opponent, by playing ra­
tionally, can always win. 

Can you discover the winning first move? 
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SOLUTION 

The only way that the :first player can be sure of 
winning is by taking three pennies from the bottom 
row on his first move. 

Any play that leaves one of the following patterns 
is sure to win: 

1. One coin in each of three rows. 
2. Two coins in each of two rows. 
3. Three coins in each of two rows. 
4. One coin in one row, two in another, three in a 

third. 
If you keep these four winning patterns in mind, 

you should be able to defeat an inexperienced player 
every time that you have the first move, as well as every 
time that he goes first and fails to make the correct 
opening move. 

Nim can be played with any number of counters in 
any number of rows. The game has been completely 
analyzed by using the binary system of arithmetic. 

It is believed to be Chinese in origin, but the name 
«Nim" was given to it in 1901 by Charles Leonard 
Bouton, a professor of mathematics at Harvard Uni­
versity, who was the :first to make a complete analysis 
of the game. «Nim" is an obsolete English word mean­
ing «to steal or take away." 
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Probability Puzzles 

EVERYTIDNG WE DO, everything that happens around us, 
obeys the laws of probability. We can no more escape 
them than we can escape gravity. The phone rings. We 
answer it because we think someone is calling our num­
ber, but there is always a chance that the caller dialed 
the wrong number by mistake. We tum on a faucet be­
cause we believe it is probable that water will come out 
of it, but maybe it won't. "Probability," a philosopher 
once said, "is the very guide of life." We are all gam­
blers who go through life making countless bets on the 
outcome of countless actions. 

Probability theory is that branch of mathematics 
that tells us how to estimate degrees of probability. If 
an event is certain to happen, it is given a probability of 
1. If it is certain not to happen, it has a probability of O. 
All other probabilities that lie between 1 and 0 are ex­
pressed as fractions. If an event is just as likely to hap­
pen as not, we say the probability is Y2. Every field of 
science is concerned with estimating probability. A 
physicist calculates the probable path of a particle. A 
geneticist calculates the chances that a couple will have 
blue-eyed children. Insurance companies, businessmen, 
stockbrokers, SOciologists, politicians, military experts 
-all have to be skilled in calculating the probability 
of the events with which they are concerned. 
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THE THREE PENNIES 

JOE: "fm going to toss three pennies in the air. If they 
all fall heads, fIl give you a dime. If they all fall tails, 
fIl give you a dime. But if they fall any other way, you 
have to give me a nickel." 

Jim: «Let me think about this a minute. At least 
two coins will have to be alike because if two don't 
match, the third will have to match one of the other 
two. [See the problem of the colored socks in the first 
section of this book.] And if two are alike, then the third 
penny will either match the other two or not match 
them. The chances are even that the third penny will or 
won't match. Therefore the chances must be even that 
the three pennies will be all alike or not all alike. But 
Joe is betting a dime against my nickel that they won't 
be all alike, so the bet should be in my favor. Okay, Joe, 
111 take the bet!" 

Was it wise for Jim to accept the bet? 

SOLUTION 

It was not very wise of Jim to take that bet. His 
reasoning about it is completely wrong. 

To nnd the chances that the three coins will fall 
alike or not alike, we must nrst list all the possible ways 
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that three coins can fall. There are eight such ways, 
shown in the illustration. 

Each way is just as likely to occur as any other 
way. Note that only two of them show all the coins 
alike. This means that the chances of all three coins be­
ing alike is two out of eight, or %, a fraction that can 
be simplified to %. 

There are six ways that the coins can fall without 
being all alike. Therefore the chance that this will hap­
pen is % or %. 

In other words, Joe would expect, in the long run, 
to win three times out of every four tosses. For these 
wins, Jim would pay him fifteen cents. For the one time 
that Jim would win, he would pay Jim a dime. This 
gives Joe a profit of five cents every four tosses-a tidy 
profit if they kept repeating the bet. 
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THE TENTH ROLL 

AN ORDINARY DIE (such as used in gambling) has six 
sides, so the probability that anyone side will come up 
is one out of six, or ¥s. Suppose you roll a certain die 
nine times. Each time the I-spot turns up. 

What is the probability that the I-spot will tum up 
again on the next roll? Is it better than ¥G, less than 
¥G, or is it still %? 
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SOLUTION 

If we know positively that it is a fair die, then no 
matter how many times it is rolled. or what turns up, 
the probability on the next roll will still be 'lG for each 
of the six faces. A die has no way of remembering what 
it rolled before! 

This is hard for many people to believe. All sorts 
of foolish systems for playing roulette and other games 
of chance are based on the superstition that the more 
often something happens by chance. the less likely it is 
to happen again. Soldiers in the First World War 
thought that if they hid in fresh shell holes they were 
safer than in old ones because, they reasoned, it was 
unlikely that a shell would explode twice within a short 
time in exactly the same spot! A mother with five chil­
dren, all girls, thinks the chances are better than Y2 
that her next child will be a boy. Both of these beliefs 
are unfounded. 

Now for the other side of the question. In rolling 
an actual die, it is difficult to be sure that it is not a 
loaded one, or perhaps controlled by hidden magnets. 
So if we get an ace on the first nine rolls, we have strong 
reason for suspecting that the die is what statisticians 
call a biased one. Therefore the probability is better 
than ?i that we will get another ace on the tenth roll! 
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ODDS ON KINGS 

SIX PLAYING CARDS are lying face down on the table. 
You have been told that two and only two of them are 
kings, but you do not know the positions of the kings. 

up. 
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You pick two cards at random and turn them face 

Which is the most likely: 

(1) There will be at least one king among the 
two cards? 

(2) There will be no king among the two 
cards? 



SOLUTION 

To solve this problem, let's number the six cards 
from 1 to 6, and assume that cards 5 and 6 are the two 
kings. 

We now make a list of all the different combina­
tions of two cards that can be picked from the six. 
There are 15 such combinations: 

1-2 2-3 3-4 4-5 5-6 
1-3 2-4 3-5 4 .. 6 
1-4 2-5 3-6 
1-5 2-6 
1-6 

Notice that the kings (cards 5 and 6) appear in 
nine out of the 15 pairs. Sinc~ one pair is just as likely 
as another, this means that,.. in the long run, you will 
turn up at least one king in nine out of every 15 tries. 
In other words, the chance of getting a king is %5, a 
fraction that Simplifies to %. This of course is better 
than %, so the answer to the problem is that you are 
more likely to get at least one king than no king at all. 

What are your chances of finding both kings when 
you turn over two cards? Only one combination among 
the 15 contains both kings, so the answer is %5. 
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BOYS vs. GIRLS 

GEORGE GAMOW and Marvin Stem, in their stimulating 
little book Puzzle-Math, tell about a sultan who con­
sidered increasing the number of women in his country, 
as compared to the number of men, so that the men 
could have larger harems. To accomplish this, he pro­
posed the following law: as soon as a mother gave birth 
to her first son, she would be forbidden to have any 
more children. 

In this way, the sultan argued,·some families would 
have several girls and only one boy, but no family could 
have more than one boy. It should not be long until the 
females would greatly outnumber the males. 

Do you think the sultan's law would work? 

73 



SOLUTION 

No, the sultan's law would not work. 
In obedience to the laws of chance, the first chil­

dren born to all the women would tend to divide evenly 
between boys and girls. The mothers of the boys would 
have no more children. The mothers of the girls would 
then have their second round of children, and again 
half would be boys and half girls. Once more the 
mothers of the boys would drop out, leaving the other 
mothers to have a third round of children. In each 
round, the number of girls would tend to equal the 
number of boys, so the ratio of boys to girls would 
never change. 

"You see," Gamow and Stern write in their an­
swer to the sultan's problem, "that the ratio is main­
tained. Since in any round of births the ratio of boys 
to girls is one to one, it follows that when you sum the 
results of all the rounds, the ratio remains one to one 
throughout. " 

Of course while this was going on, girl children 
would grow up and become new mothers. but the same 
argument applies to them also. 
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Topology Puzzles 

TOPOLOGY IS ONE of the youngest and rowdiest branches 
of modern geometry. Some of its curious figures-one­
sided surfaces, closed bottles with no "insides," inner 
tubes that turn inside out-are so weird that they seem 
to have been invented by writers of science fiction in­
stead of sober-minded mathematicians. 

What is topology? It is the study of properties that 
remain unchanged regardless of how we twist, stretch, 
or compress a figure. To a topologist a triangle is the 
same as a circle because if we imagine the triangle to 
be made of string, we can easily pull the string into the 
shape of a circle. Suppose that we have a doughnut (a 
topologist calls it a torus) made of a plastiC substance 
that can be molded in any way we please, but it does 
not stick to itself and it is impossible to break. You 
might think that no original features of the doughnut 
would survive if we pulled, bent, and deformed it 
enough. But there are many that do survive. For ex­
ample, it would always have a hole. Such unchangeable 
properties are its topological properties. They have 
nothing to do with size, or shape in the sense in which 
shape is usually understood. They are the deepest of all 
geometrical properties. 

Many puzzles are topological in nature. The fol­
lowing are four of the best. 
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THE FIVE BRICKS 

Tms IS ONE of the oldest and most famous of all topo­
logical puzzles. Your grandfather probably worked on 
it in school when he was supposed to be studying his 
history books. Yet not one person in a thousand knows 
for sure whethet it can or can not be done. 

The problem is this. Can you draw the diagram in 
Figure 1 with three strokes of the pencil? You are not 
permitted to go over any line twice. It's easy to draw all 
of the figure except for one little segment (a few such 
attempts are shown in Figure 2), but can the entire 
figure be drawn with three strokes? If not, why not? 

The puzzle is topological because the actual sizes 
and shapes of the bricks do not matter. For example, if 
we distort the figure as shown in Figure 3, the problem 
remains exactly the same. Any solution for Figure 1 
would be a solution for Figure 3 and vice versa. 
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SOLUTION 

It is impossible to draw the :five bricks with three 
pencil strokes, and there is a simple way to prove it. 

When three line segments come together at a 
point, as shown in Figure 4, it is obvious that the point 
must mark the end of at least one stroke. It could also 
be the end of three strokes, but this does not concern 
us. We are interested only in the fact that at least one 
line must end at point P in the illustration. 

" 2 P.----
13 4 

Count the number of points, in Figure 1, showing 
the bricks, where three line segments meet. There are 
eight such pOints. Each must mark the end of at least 
one stroke, so the entire figure contains at least eight 
ends of strokes. No Single stroke can have more than 
two ends, therefore the :figure cannot be drawn with 
less than four strokes. 

This is a simple example of what mathematicians 
call an impossibility proof. Very often in the history of 
mathematics a great deal of time is wasted in trying to 
solve a problem; like the trisecting of an angle with 
only a compass and straightedge, that has no solution. 
So it is very important to search for impossibility proofs. 
Another excellent example of such a proof will be found 
in the five-tetrominoes puzzle in the next section. 
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OUTSIDE OR INSIDE? 

ONE OF THE fundamental theorems in topology is called 
the Jordan curve theorem. (It is named after the French 
mathematician Camille Jordan.) This theorem states 
that any simple closed curve (a curve that is joined at 
the ends and does not cross itself) divides the surface 
of a plane into two regions-an outside and an inside 
(Figure 1). The theorem seems quite obvious, but as a 
matter of fact it is rather difficult to prove. 

1 
If we draw a simple closed curve that is very 

twisty, such as the one shown in Figure 2, it is not easy 
to say at once whether a certain spot, such as the one 
marked by the small cross, is inside or outside. Of 
course we can find out by tracing the region containing 
this spot to the edge of the curve to see if it does or does 
not lead outside. 

2 
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Figure 3 shows only a small interior portion of a 
simple closed curve. The rest of the curve, on all four 
sides, is hidden from view by sheets of paper, so there 
is no way to trace any of the visible regions out to the 
boundary. We are told that the region marked A is in­
side the curve. 

Is region B inside or outside, and how do you 
know? 

3 
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SOLUTION 

Region B is inside. 
This can be said because of another interesting 

theorem about simple closed curves. All "inside" regions 
of such a curve are separated from each other by an 
even number of lines. The same is true of all "outside" 
regions. And any inside region is separated from any 
outside region by an odd number of lines. Zero is con­
sidered an even number, so if there are no lines be­
tween two regions, then of course they will be part of 
the same "side," and our theorem still holds. 

When we pass from any part of region A to any 
part of region B, along any path, we cross an even num­
ber of lines. In Figure 4 one such path is shown by the 
dotted line. As you can see, it crosses four lines, an even 
number. So we can say with certainty that no matter 
what the rest of this curve looks like, region B is also 
insidel 

~ ~ 
~ 
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THE TWO KNOTS 

MANY PEOPLE TODAY know what a Moebius strip is. It 
is a strip of paper that is given one half-twist before the 
ends are pasted together as shown in Figure 1. It has 
only one side and one edge. 

Many people know also that if you try to cut a 
Moebius strip in half, cutting . lengthwise down the 
middle of the strip, it will not make two strips as you 
would expect. It opens up into one large strip. And if 
you start cutting a third of the way from the side, you 
will cut twice around the strip to produce one large 
strip that has a smaller one linked through it. 
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If you give the strip two half-twists before you 
paste together the ends (Figure 2), cutting down the 
middle produces two strips of the same size, but linked. 
What happens if you cut a strip that has three half­
twists? (Figure 3.) This time you get one large strip 
that is tied in a knot! (Figure 4.) 

There are two ways to make a strip with three half­
twists. We can twist the strip clockwise or we can twist 
it counterclockwise. In both cases, cutting the strip will 
form a knot. 

Now for the question: are these two knots exactly 
alike? 
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SOLUTION 

At first glance you might suppose that the two 
knots are alike, but if you examine them more carefully 
you will notice a curious difference. One knot is a mir­
ror image of the other. No matter how we try to alter 
the shape of one knot, it can never be made to look 
exactly like the other. 

Geometrical structures that are not the same as 
their mirror images are called asymmetric. When we 
formed the two strips, twisting one in one direction and 
the other in the other direction, we formed two asym­
metric strips, each a mirror image of the other. This 
asymmetry is carried over into the asymmetry of the 
two knots that result from cutting. 

We are so used to tying overhand knots the same 
way that we do not realize that there are two quite 
distinct ways of tying them. Perhaps left-handed people 
tend to tie them one way and right-handed people the 
other way. If so, then Sherlock Holmes would have a 
good way of dedUcing, from the way a criminal tied up 
his victim, whether the criminal was right- or left­
handed. 

84 



REVERSING THE SWEATER 

IMAGINE THAT YOUR wrists are tied together with a 
piece of rope, as shown in the illustration, and that you 
are wearing a slipover sweater. 

Is there any way that you can take off your sweater, 
turn it inside-out, and put it back on again? Remember, 
the sweater has no buttons and you are not allowed to 
untie or cut the rope. 

85 



SOLUTION 

Yes, the sweater can be reversed as follows: 
( 1) Pull it over your head, reversing it as you do 

so, and allow it to hang, inside-out, on the rope as 
shown in Figure 1. 

(2) Reverse the sweater again by pushing it 
through one of its sleeves. It now hangs on the rope 
right-side out (Figure 2). 

( 3) Put it on again, over your head, by going 
backwards through the actions by which you took it 
off. This reverses the sweater a third time, and puts it 
on your body inside-out (Figure 3). 

Before trying it, see if you can visualize the process 
in your mind. If your sweater has a school letter sewn 
on the front, will this letter be touching your chest or 
your back after you have finished the three steps? 
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Miscellaneous 
Puzzles 

THERE ARE so many different branches of mathematics 
that, if we included a problem taken from each of them, 
this book would have to be fifty times larger than it is. 
The next five puzzles do not fit well into any of the 
previous sections, but they are included here because 
they are especially interesting and because they in­
troduce important mathematical ideas. 

The first puzzle involves a branch of geometry 
called combinatorial geometry. It shows how to make a 
type of jigsaw puzzle that has interested many top 
flight mathematicians. The second and fifth puzzles in­
volve logic. From Aristotle's day until a century ago, 
logic was considered part of philosophy; now it is 
regarded as the study of the most fundamental laws 
of mathematics. The third puzzle points out an amusing 
pitfall in a field of mathematics called statistics. 

The fourth puzzle shows how mathematical rea­
soning can often increase the efficiency of work, even 
the work of a person having breakfast. Today, the ap­
plication of mathematics to industry and warfare, to 
make their operations more efficient, is known as opera­
tions research, or O.R. It is one of the fastest growing 
fields of modern mathematics. 
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THE FIVE TETROMINOES 

TRACE THE FIVE shapes shown in Figure 1 on a sheet of 
stiff paper or cardboard, and cut them out. Can you fit 
them together to make the 4 X 5 rectangle shown in 
Figure 2? Pieces may be turned over and placed with 
either side up. 

I I I I I 
A B 

c 

E 

2 
D 
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The five shapes are called tetrominoes. A domino is 
formed by putting together two small squares. Tetrom­
inoes consist of four small squares joined together. 
Shapes made of three squares are called trominoes, and 
those made with five squares are called pentominoes. 

The general name for all such shapes is poly­
ominoes. Hundreds of interesting puzzles are based 
upon them. 

SOLUTION 

There is no way to solve this puzzle. Perhaps you 
convinced yourself of this by trying for a long time to 
form the rectangle, but without success .. A mathemati­
cian, however, is never content with just suspecting that 
something is impossible. He wants to prove it. In this 
case, there is a surprisingly simple way to do so. 

First color the small squares of the rectangle so 
that it looks like a checkerboard (Figure 3). If you try 
placing tetrominoes A, B, C, D on this checkerboard 
you will see that no matter where you place them, each 
must cover two black squares and two white ones. The 
four together, then, must always cover a total area of 
eight black and eight white squares. 

This is not true, however, of tetromino E. It always 
covers three squares of one color and one of the other. 

The rectangle has ten small white squares, ten 
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black ones. No matter where we place tetrominoes A, 
B, C, D, we will have to cover eight squares of each 
color. This will leave two black and two white squares 
yet to be covered by tetromino E. But E cannot cover 
two white and two black squares. Therefore the puz­
zle cannot be solved. 

Figure 4 shows a figure shaped like a skyscraper, in 
which there are two more black squares than there are 
white, so our impossibility proof no longer applies. Try 
to form this figure with the five pieces. It can be donel 

4 
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THE TWO TRIBES 

AN ISLAND IS inhabited by two tribes. Members of one 
tribe always tell the truth, members of the other always 
lie. 

A missionary met two of these natives, one tall, the 
other short. "Are you a truth-teller?" he asked the 
taller one. 

"Oopf," the tall native answered. 
The missionary recognized this as a native word 

meaning either yes or no, but he couldn't recall which. 
The short native spoke English, so the missionary asked 
him what his companion had said. 

"He say 'yes,'" replied the short native, "but him 
big liar!" 

What tribe did each native belong to? 

SOLUTION 

When the missionary asked the tall native if he was 
a truth-teller, the answer "Oopf" has to mean "yes." If 
the native is a truth-teller, he would tell the truth and 
answer yes; if he is a liar, he would lie and still answer 
yes! 

So when the short native told the missionary that 
his companion said "yes," the short native was telling 
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the truth. Therefore he must also have told the truth 
when he said his friend was a liar. 

Conclusion: the tall man is a liar, the short one a 
truth-teller. 
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NO TIME FOR SCHOOL 

"BUT I DON'T have time for school," explained Eddie to 
the truant officer. "I sleep eight hours a day, which adds 
up to about 122 days a year, assuming each day is 24 
hours. There's no school on Saturday or Sunday, which 
amounts to 104 days a year. We have 60 days of sum­
mer vacation. I need three hours a day for meals­
that's more than 45 days a year. And I need at least 
two hours a day for recreation-that comes to over 30 
days a year." 

Eddie jotted down these figures as he spoke, then 
he added up all the days. They came to 361. 

Sleep (8 hours a day) 
Saturdays and Sundays 
Summer vacation 
Meals (3 hours a day) 
Recreation (2 hours a day) 

Total 

122 
104 
60 
45 
30 

361 days 

"You see," continued Eddie, "that leaves me only 4 
days to be sick in bed, and I haven't even taken into 
consideration the 7 school holidays that we get every 
year." 

The truant officer scratched his head. "Some­
thing's wrong here," he mumbled. But try as he could, 
he was unable to find anythinginaccurata about Ed­
die's figures. Can you explain what is wrong? 
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SOLUTION 

The joker in Eddie's figures is that his time cat­
egories overlap so that the same periods of time are 
counted more than once. To give one example, during 
his vacation period of 60 days he both ate and slept. 
This eating and sleeping time is counted in thevaca­
tion period and also counted separately in his eating 
and sleeping times for the entire year. 

This fallacy of overlapping categories is a very 
common one in statistics, especially medical statistics. 
You may read that in a certain community 30 per cent 
of the people have vitamin A deficiency, 30 per cent 
have vitamin B deficiency, and 30 per cent have vitamin 
C deficiency. If you conclude from this that only 10 per 
cent have no deficiency of these three vitamins, then 
you are guilty of the same kind of faulty reasoning that 
Eddie used on the truant officer. It is possible that 30 
per cent of the people have deficiencies in all three 
vitamins, leaving 70 per cent of the population with no 
deficiencies at all. 
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TIME FOR TOAST 

THE SMITIIS OWN an old-fashioned toaster that takes 
only two slices of bread at a time, toasting one side of 
each. To toast the other sides, you have to remove the 
slices, turn them over, and put them back into the 
toaster. It takes exactly one minute for the toaster to 
toast one side of each piece of bread that it contains. 

One morning Mrs. Smith wished to toast both sides 
of three slices. Mr. Smith watched over the top of his 
newspaper and smiled when he saw how his wife went 
about it. It took her four minutes. 

"You could have toasted those three slices in less 
time, my dear," he said, "and kept down the cost of our 
electric bill:~ 

Was Mr. Smith right, and if so, how could his wife 
have toasted those three slices in less than four min­
utes? 

SOLUTION 

It is a Simple matter to toast all three slices, on 
both sides, in three minutes. Let's call the slices A, B, 
and C. Each slice has side 1 and side 2. This is the 
procedure: 

First minute: Toast sides Al and Bl. Remove the 
slices, turn B around and put it back into the toaster. 
Put A aside and put C in the toaster. 
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Second minute: Toast sides B2 and Cl. Remove 
the slices, turn C around and put back in the toaster. 
Put B aside (it is now toasted on both sides) and put A 
back in the toaster. 

Third minute: Toast sides A2 and C2. All sides of 
all three slices are now toasted. 
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THE THREE NECKTIES 

MR. BROWN, Mr. Green, and Mr. Black were having 
lunch together. One wore a brown necktie, one a green 
tie, one a black. 

"Have you noticed," said the man with the green 
tie, "that although our ties have colors that match our 
names, not one of us has on a tie that matches his own 
name?" 

"By golly, you're right!" exclaimed Mr. Brown. 
What color tie was each man wearing?" 

SOLUTION 

Mr. Brown had a black tie. 
Mr. Black had a green tie. 
Mr. Green had a brown tie. 
Brown couldn't be wearing a brown tie, for then it 

would correspond to his name. He couldn't be wearing 
a green tie because a tie of this color is on the man who 
asked him a question. Therefore Brown's tie must be 
black. 

This leaves the green and brown ties to be worn 
respectively by Mr. Black and Mr. Green. 
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Tricky Puzzles 

THE TWENTY-EIGHT PUZZLES in this section are short and 
easy, but each involves a funny twist of some sort that 
gives the answer an unexpected turn. In a way, you 
could call them humorous or catch problems, but I 
have chosen to end the book with them for a very spe­
cial reason. 

The reason is this: a truly creative mathematician 
or scientist must have a mind that is constantly on the 
alert for surprising, off-beat angles. Einstein, for ex­
ample, the greatest scientist of recent times, would 
never have developed his famous theory of relativity if 
he had not questioned certain assumptions that for 
centuries other scientists had not dared to question. He 
tackled problems that seemed to have no solution, and 
solved them by finding their "catch" element-that 
strange hidden factor that everyone else had over­
looked. Sometimes the new twist is so Simple that once 
it is discovered other scientists wonder why they didn't 
think of it. They didn't, of course, because their minds 
were nailed down by habit to familiar, orthodox ways 
of thinking. 

So limber up your brain before you try these amus­
ing questions. They are not important mathematically, 
but they will teach you that in mathematics, as well as 
in life, things are not always what they seeml 
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TRICKY PUZZLES 

1. Can you place ten lumps of sugar in three empty 
cups so that there is an odd number of lumps in each 
cup? 

2. At the local hardware store. Jones learned that 1 
would cost him 50 cents, 12 would cost $1.00. and the 
price of 144 was $1.50. What was Jones buying? 

3. See how quickly you can jot down the digits from 
9 to 1 backwards. then check the answer to see how 
carefully you followed directions. 

4. How quickly can you find the product of the follow­
ing numbers? 

256 X 3 X 45 X 3.961 X 77 X 488 X 2,809 X 0 

5. Laryngitis, a Greek orator. was born on July 4. 30 
B.C. He died on July 4.30 A.D. How old was he when he 
died? 

6. A dog and cat together weigh 27 pounds. If the dog's 
weight is an odd number. and if he weighs twice as 
much as she does, how much does each weigh? 

7. After a series of experiments, a chemist discovered 
that it took 80 minutes for a certain chemical reaction 
to take place whenever he was wearing a green necktie, 
and the same reaction always took an hour and twenty 
minutes when he wore a purple tie. Can you think of 
why this might be so? 
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8. A mathematician retired at 8 o'clock one evening, 
set the alann for 9 in the morning, and promptly went 
to sleep. When the alann woke him up, how many 
hours of sleep had he had? 

9. Divide 30 by ~ and add 10. What is the result? 

10. A boy had five apples and ate all but three. How 
many were left? 

11. What two whole numbers (not fractions) make 
the unlucky number 13 when multiplied together? 

12. A reader of this book was so angry at not being able 
to guess the answers to all of these problems that he 
tore out pages 6, 7, 84, 111, and 112. How many sheets 
of paper did he rip out? 

13. If a clock takes five seconds to strike 6 o'clock, how 
long will it take to strike 12 o'clock? 

14. A triangle has sides of 17, 35, and 52 inches. What 
is its area in square inches? 

52 
15. Can you draw four straight lines, without taking the 
pencil point off the paper, that will pass through all 
nine dots below? 

• • • 
• • • 
• • • 
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16. Can you draw two straight lines, without taking the 
pencil from the paper, that will pass through all six 
baseballs in the drawing below? 

17. Each book in the set below is two inches thiclc. This 
includes the covers, which are Ys of an inch thick. If a 
bookworm starts on the first page of volume 1 and bores 
his way straight through the set to the last page of 
volume 4, how far will the worm have gone? 

18. Can you circle six digits here that will add to 21? 
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19. Show how to cut a pancake into eight pieces with 
three straight cuts of the knife. 

20. An anonymously written old jingle reads as fol­
lows: 

Four folly men sat down to play, 
And played all night till break of day. 

They played for cash and not for fun, 
With separate scores for everyone. 

Yet when they came to square accounts, 
They all had made quite fair amounts! 

Can you this paradox explain? 
If no one lost, how could all gain? 

21. A ladybug crawls along a ruler from the 12-inch 
mark at one end to the 6-inch mark in the center. It takes 
her 12 seconds. Continuing on her way, she crawls from 
the 6-inch mark to the I-inch mark, but this takes her 
only 10 seconds. Can you think of a good reason for the 
time difference? 

22. What is the basis for the order in which these ten 
digits have been arranged? 

8-5-4-9-1-7-6-3-2-0 

23. If there are 12 one-cent stamps in a dozen, then 
how many two-cent stamps are in a dozen? 

24. Place a penny on each of the spots in the illustration 
on the facing page. Can you change the position of one 

104 



penny only and make two straight rows, each row con­
taining four pennies? 

25. A logician found himself in a small town that had 
only two barbers, each with his own shop. Needing a 
haircut, he glanced into one shop and saw at once that 
it was extremely dirty. The barber himself needed a 
shave, his clothes were untidy, his hair unkempt and 
badly cut. The other shop proved to be spick-and-span. 
The barber was freshly shaved, spotlessly dressed, and 
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his hair was neatly trimmed. The logician thought a 
moment, then returned to the first shop for his haircut. 
Why? 

26. When their blind dates arrived to take them. to a 
football game, Katy and Susan were astonished to see 
that the two young men looked exactly alike. 

"Yes, we're brothers," one of them explained. "We 
were born on the same day in the same year, and we 
have the same parents." 

"But we're not twins," said the other. 
Katy and Susan were puzzled. Can you explain the 

situation? 

27. Multiplying 10 feet by 10 feet equals 100 square 
feet. How much is ten dollars times ten dollars? 

28. When the young man paid the cashier for his break­
fast, she noticed that he had drawn a triangle on the 
back of the check. Underneath the triangle he had writ­
ten: 13 X 2=26. 
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SOLUTIONS 

1. There are fifteen different solutions to this problem, 
but all involve the same gimmick. For example: put 
seven lumps in one cup, two in another, one in a third. 
Now place the last cup in the second one. The second 
cup will then contain three lumps! 

2. Jones was buying house numbers. 

3. The digits from 9 to 1 backwards are: 

1-2-3-4-5-6-7-8-9 

4. Did you notice that zero at the end before you started 
multiplying? It tells you at once that the final answer 
must be zero! 

5. Laryngitis was 59 years old (there was no year zero) . 

6. The dog, a little Pomeranian named Henrietta, 
weighs 9 pounds, and the huge tomcat tips the scale at 
18. If you assumed the dog was a "he" and the cat a 
"she," you probably gave up on this one. 

7. There is nothing to explain because 80 minutes is the 
same as an hour and twenty minutes. 

8. The mathematician had only one hour of sleep. The 
alarm woke him up at 9 o'clock that evening. 

9. Thirty divided by ~ is 60, so when you add 10 the 
final answer is 70. 

10. Three apples were left. 
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11. 13 X 1 = 13. 

12. He ripped out only four sheets because pages 111 
and 112 are two sides of the same sheet. 

13. The clock will take 11 seconds to strike 12 o'clock. 
There is one second between each stroke. 

14. A «triangle" with the sides given would be a straight 
line (mathematicians sometimes call this a "degenerate 
triangle"), so it would have no area at all. True, a tri­
angle was shown in the illustration, but that was just to 
throw you off; it could not possibly have sides of the 
lengths indicated. 

15. 

16. Because the baseballs are large spots, all of them 
can be crossed by drawing two lines that meet far to the 
right as shown. 
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17. The first page of volume 1 is on the right side of the 
book when the volumes are standing on the shelf, and 
the last page of volume 4 is on the left side of the 
book. The worm therefore has only to bore through the 
cover of volume 1, all the way through volumes 2 and 
3, and the cover of volume 4, making a total distance 

of 4* inches. 

18. Turn the page upside down and circle three 6' sand 
three 1's. 

19. Two cuts at right angles will cut the pancake into 
four pieces. Pile them up in one pile and cut them all 
in half with the third cut to make eight pieces. 

20. The four jolly men were four jolly jazz musicians. 

21. The ladybug moves at a constant speed of one inch 
every two seconds. Did it occur to you that the distance 
from the center of the ruler to the orie-inch mark is only 
five inches? 

22. The digits are arranged so that their names are in 
alphabetical order. 

23. Twelve. 
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24. Pick up the lowest penny and put it on top of the 
penny at the corner. 

25. Since there were only two barbers in town, each 
must have cut the other's hair. The logician picked the 
barber who had given his rival the best haircut. 

26. The two boys belonged to a set of triplets. 

27. The question is meaningless. Dollars can be added 
to dollars, or subtracted from dollars, but not multi­
plied or divided by anything but a pure number. 

28. The young man was wearing a sailor suit! 
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Suggestions for Furth,er Reading 

After you have finished this book, you may wish to go 
on to read other books that contain mathematical puzzles. 
Those listed below are all in print and easily obtained 
through any bookstore or at your library. 

EASY PUZZLES 

The Arrow Book of Brain Teasers, by Martin Gardner. 
New York: Tab Books, 1959.' 64 pages. Amusing'puzzles for 
pre-teeners, in an inexpensive paperback. 

Encyclopedia of Puzzles and Pastimes, edited by Clark 
Kinnaird.' New York: Grosset and Dunlap, Inc., 1946, 431 
pages. A mammoth collection of puzzles of all types, most 
of them reprinted from the newspaper puzzle page syndi­
cated by King Features. 

Figures for Fun, by Yakov Perelman. Moscow: Foreign 
Languages' Publishing House, 1957. An English translation 
of a book by Russia's leading puzzlist. 

NOT-SO-EASY PUZZLES 

The Canterbury Puzzles, by H. E. Dudeney. New 
York: Dover Publications, Inc., 1959, 255 pages. A paper­
back reissue of the first puzzle book by England's greatest 
puzzlist. 
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Amusements in Mathematics, by H. E. Dudeney. New 
York: Dover Publications, Inc., 1959, 258 pages. A paper­
back reissue of the author's second collection of puzzles 

Puzzle-Math, by George Gamow and Marvin Stern. 
New York: The Viking Press, 1958, 128 pages. A splendid 
collection of amusing new brain teasers. 

The Scientific American Book of Mathematical Puzzles 
and Diversions, by Martin Gardner. New York: Simon and 
Schuster, Inc., 1959, 178 pages. The first sixteen of the au­
thor's puzzle columns in Scientific American,. with new 
material added. 

Best Mathematical Puzzles of Sam Loyd, edited by 
Martin Gardner. New York: Dover Publications, Inc., 1959, 
167 pages. A paperback selection from the fabulous, long 
out-of-print Cyclopedia of Puzzles by Loyd, the greatest of 
U.S. puzzlists. 

Mathematical Puzzles for Beginners and Enthusiasts, 
by Geoffrey Mott-Smith. New York: Dover Publications, 
Inc., 1954,256 pages. An excellent paperback selection by 
one of the nation's leading experts on games and puzzles. 
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