Nucleotide sequence of the thrA gene of Escherichia coli

(bifunctional enzymes/gene fusion)

M. KATINKA*, P. COSSART*, L. SIBILLI[†], I. SAINT-GIRONS[†], M. A. CHALVIGNAC[†], G. LE BRAS[†], G. N. COHEN[†], AND M. YANIV^{*}

*Département de Biologie moléculaire; and †Département de Biochimie et Génétique moléculaire, Institut Pasteur, 28, rue du Dr. Roux, 75015 Paris, France

Communicated by Roger Y. Stanier, July 1, 1980

ABSTRACT The *thrA* gene of *Escherichia coli* codes for a single polypeptide chain having two enzymatic activities required for the biosynthesis of threonine, aspartokinase I and homoserine dehydrogenase I. This gene was cloned in a bacterial plasmid and its complete nucleotide sequence was established. It contains 2460 base pairs that encode for a polypeptide chain of 820 amino acids. The previously determined partial amino acid sequence of this protein is in good agreement with that predicted from the nucleotide sequence. The gene contains an internal sequence that resembles the structure of bacterial ribosome-binding sites, with an AUG preceded by four triplets, each of which can be converted to a nonsense codon by a single mutation. This suggests that the single polypeptide chain was formed by the fusion of two genes and that initiation of translation may occur inside the gene to give a protein fragment having only the homoserine dehydrogenase activity.

The thrA gene is the first structural gene of the threonine operon of Escherichia coli K-12 (1, 2). It is composed of two parts, thrA1 and thrA2 and codes for a bifunctional enzyme, aspartokinase I-homoserine dehydrogenase I (EC 2.7.2.4 and EC 1.1.1.3). The native enzyme (3) is a tetramer with each chain carrying, on discrete domains, the aspartokinase I and homoserine dehydrogenase I activities, which are regulated allosterically by L-threonine. Limited proteolysis of the native enzyme leads to a homodimeric fragment having the same COOHterminal sequence as the native enzyme having only the dehydrogenase activity and no longer inhibited by threonine (3). On the other hand, a polypeptide chain synthesized by an ochre mutant that has the same NH2 terminus as the native enzyme assembles as a tetramer having only the aspartokinase activity, still regulated by threonine (3). The determination of the primary structure of aspartokinase I homoserine-dehydrogenase I seemed warranted for a number of reasons. Sequence information was important to understand enzyme structure-function relationships and to elucidate the allosteric properties of the enzyme. It should permit the study of possible evolutionary relationships between the different proteins coded by the threonine operon and the homology with the isofunctional enzymes in E. coli, aspartokinase II-homoserine dehydrogenase II, coded by metL, and aspartokinase III coded by lysC.

The determination of the amino acid sequence of the aspartokinase I-homoserine dehydrogenase I was in progress (4-9) when the chemical and enzymatic DNA sequence determination techniques became available (10, 11). It then seemed advantageous to clone the gene and determine its sequence. Determination of the nucleotide sequence of *thrA* has now been completed and is presented here.

MATERIALS AND METHODS

Molecular Cloning of the *thrA* **Gene.** The pBR322 hybrid plasmid containing the *thrA* and *thrB* genes (pIPII) was constructed as described (12).

Enzymes and Materials. Restriction endonucleases EcoRI, Hpa II, HindII + HindIII, and Bgl I were purified according to published procedures (13), Sau3A, Hha I, Alu I, Msp I, Sal I, and Taq I were purchased from New England BioLabs or from Bethesda Research Laboratories (Rockville, MD). Phage T4 polynucleotide kinase was purified according to the method of Richardson (14). Acrylamide was from either Serva (Heidelberg, West Germany) (twice crystallized) or BDH (Poole, England), urea was from Schwarz/Mann or Merck, and dimethyl sulfate was from Aldrich. All other chemicals were analytical grade or purer, mostly from BDH or Merck. Phenol, formamide, and piperidine were distilled, and acrylamide was deionized.

Nucleotide Sequence Determination. The nucleotide sequences were determined mostly by the chemical method of Maxam and Gilbert (10). Labeling the 5' extremities of DNA fragments with $[\gamma^{-32}P]$ ATP (Amersham) and T4 polynucleotide kinase was done by the exchange reaction of Berkner and Folk (15). Sequencing acrylamide-urea gels were made and run as described in ref. 10 or alternatively were the thin gels of Sanger and Coulson (16). One of the sequences was established by using the dideoxynucleoside triphosphate terminator technique (11), after cloning of a Sau3A fragment in the single-stranded phage vector M13mp2Bam (17). The primer used was an *Eco*RI 96-base-pair fragment from phage M13mp2962 (18).

Amino Acid Sequence Determination. The purification of the enzyme, the determination of its molecular weight and amino acid composition, the isolation of the cysteine- and tryptophan-containing tryptic peptide, and the purification and sequence of part of the cyanogen bromide fragments have already been described (4–9).

Computer Analysis. Analysis of the nucleotide sequences was done with the programs of Staden (19-21), and F. Schaeffer (personal communication). The protein secondary structure simulation was performed with the program of Garnier *et al.* (22).

RESULTS AND DISCUSSION

Nucleotide Sequence of the *thrA* Gene. A restriction fragment, containing a large fraction of the threonine operon, isolated from a $\lambda dthr$ transducing phage by cleavage with *Eco*RI and *Hin*dIII, was cloned in pBR322 (12). Genetic and biochemical analysis showed that this fragment contained the entire *thrA* gene (Fig. 1A). We then undertook the determination of the nucleotide sequence of the region presumably coding for *thrA*. The DNA fragments and the restriction sites

The publication costs of this article were defrayed in part by page charge payment. This article must therefore be hereby marked "*advertisement*" in accordance with 18 U. S. C. §1734 solely to indicate this fact.

FIG. 1. The pBR322-thr (pIPII) hybrid plasmid and the sequencing strategy for the thrA gene. (A) Restriction map with the HindIII and EcoRI sites used for the cloning of the 4-kilobase-pair thr fragment containing the thrA, thrB, and part of the thrC genes. bp, Base pairs. (B) Sequencing strategy for the thrA gene, the arrows indicating the sites used for 5' labeling as well as the direction and extent of the sequence (H, HindII; B, Bgl I; F, HinfI; E, Hae III; P, Hpa II; A, Alu I; S, Sau3A; T, Taq I). The dashed arrow indicates the sequence determined with the dideoxynucleotide-terminator technique. (C) Partial sequence of aspartokinase I-homoserine dehydrogenase I with the sequenced peptides given in the full line. The downward arrows point to the methionines of the protein. aa, amino acids.

NET ATG	ARG CGA	GT	L LEI G TTI	J LY S AA	s phi g tti	E GL C GG	Y GL C GG	y th t aci	r sei A tci	R LEI 9 TTI	g gci	a asi a aat	V ALI T GCI	a GLU a GAA	i Ar	G PHE T TTI	E LEO	I AR	g ual T gti	r GCC	a Asf C Gai	P ILE T ATI	T LEL	GLU GAU	i sei A Agu	t ASI C AA1	GCC					GTC
ALA GCC	THR ACC		L LEI C CTI	J SEI ; TC	R ALI T GCI	a pri	O ALI T GC	A LY: C AAI	S ILI A ATO	e thi C aci	r Asi C Aad	HIS	S LEU C CTO	i ual GTO	. ALI GCI	A MET	T ILE T ATI	E GLI T GAI	I LYS	S THR	R ILE C ATI	e ser F ago	; GL) ; GGC	GLI CAG	i asi Gat	P ALA	LEL	I PRO) asi ; aa1	I ILI TATO	e sei : Agi	r Asp : cat
199 ALA 500	GLU	AR			E ALA	A GLI		U LEO	U TH			ALA	ALA	ALA) LEL	I ALA	GLA						ASP	GLI CAG			
298 GLN	ILE	LYS	S HIS	UAL		U HIS	S GL	Y ILI	E SEA				GL	I CYS	PR) ASF	SEA	ILE	ASA	ALA	ALA		ILE	CYS	ARG	GLY	a	LYS	MET	SEA		ALA
CAA 397 ILE	ATA NET	AAA ALA	A CAT	r Gti V UAL	C CTO L EL	5 CAI I GLI	t GGI V ALI	C ATI A ARI	T AGI T GLY	T TTO T HTS	; TTG : Ask	; GGG I UAL	THE	t tgc Tgc	CCC : זגו	t gat E asp	' AGC ' PRO	: Atc 1 ual	; AAC GLU	: GCT I LYS	GCG LEU	; CTG I LEU	; att I Ala	TGC UAL	: ככו בנו	' GGC ' HÌS	: GAG : TYR	; AAG ? LEU	; ATU I GLU	SER	; ATC ; THE	: GCC : UAL
ATT 496	ATG	GCC		GTI	A TTA	GAI	GCI	G CGC	GGI	CAC	AAC	GTT	ACI	GTT	ATC	GAT	CCC	GTC	GAA	AAA	CTG	CTG	GCA	GTG	GGG	CAT	TAC	CTO	GAA	TCC	ACC	: 6TC
GAT 595	ATT	GCC	GAG	TC	C ACC	CGC	C CG	T ATA	GCG	GCA	AGC	CGC	ATT	CCG	GC1	GAT	CAC	ATG	GTG	CTG	ATG	GCA	GGT	TTC	ACC	GCC	GGT	AAT	GAG	AAA	GGC	GAA
LEU CTG (ual GTG	UAL GTG	LEU CTI	GGA	r arg a cgc	asi Aac	GEN GEN	Y SER T TCC	r Asp Gac	tyr Tac	SER TCT	GCT	ALA GCG	GTG	LEL CTG	i Ala GCT	ALA GCC	CYS TGT	LEU TTA	ARG CGC	ALA GCC	asp Gat	CYS TGT	CYS TGC	GLU GAG	ILE ATT	TRP TGG	THR ACG	ASP GAC	G1T	asn Aac	GLY GGG
UAL	TYR TAT	THR ACC	CYS TGC	ASF GAC	PRO	ARG	GLI CAG	UAL GTG	PRO	ASP GAC	ALA GCG	ARG AGG	LEU TTG	LEU TTG	LYS	SER TCG	MET ATG	SER TCC	TYR TAC	GLN CAG	GLU GAA	AL A GCG	MET ATG	GLU GAG	LEU CTT	SER TCC	TYR TAC	PHE	GCC	ALA GCT	LYS	UAL GTT
LEU I CTT (4IS Cac	PRO CCC	ARG CGC	THR	ILE ATT	THR ACC	PRO) ILE C ATC	ALA GCC	GLN CAG	PHE	GLN CAG	ILE ATC	PRO	CYS TGC	LEU CTG	ILE ATT	LYS	ASH AAT	THR	GLY GGA	ASH AAT	PRO CCT	GLN CAA	ALA GCA	PRO CCA	GL Y GG T	THR	LEU CTC	ILE ATT		AL A GCA
892 SER (ARG	ASP	GLU	ASP	GLU				LYS	GLY	ILE	SER	ASN	LEU	ASN	ASN	MET	ALA	MET	PHE	SER	UAL	SER	GLY	PRO	GLY	HET	LYS		MET	UAL	ar
991 MET (H.A	ALA	ARG	UAL	PHE	ALA	ALA	MET	SER	ARG	ALA	ARG	ILE	SER	UAL	UAL	LEU	ILE	THR	GLN	SER	SER	SER	au	TYR	SER	ILE	SER	PHE	CYS	UAL	PRO
ATG (1 890 GLN S	ICG SER	GCG ASP	CGC CYS	GTC VÁL	ARG	GCA ALA	GCG GLU	: ATG ARG	TCA ALA	CGC MET	GCC LEU	CGT GLU	ATT GLU	TCC PHE	GTG TYR	GTG LEU	CTG GLU	ATT LEU	ACG LYS	CAA GLU	TCA GLY	TCT LEU	TCC LEU	GAA GLU	TAC PRO	AGC LEU	ATC ALA	agt Ural	TTC ALA	TGC GLU	GTT ARG	CCA LEU
CAA A 1189	GC .	GAC	TGT	GTG	CGA	GCT	GAA		GCA	ATG	CTG	GAA	GAG	TTC	TAC	CTA	GAA	CTG	AAA	GAA	GGC	TTA	CTG	GAG	CCG	CTG	GCA	GTG	GCG	GAA		CTG
GCC 4 1288	TT	ATC	TCG	GTG	GTA	GGT	GAT	GGT	TTG	CGC	ACC	TTG	CGT	GGG	ATC	TCG	GCG	AAA	TTC	ΤΠ	GCC	GCA	CTG	GCC	CGC	GCC	AAT	ATC	AAC	ATT	GTC	ĉĉĉ
ILE A ATT G 1387	ict Ict	GLN CAG	GL Y GGA	SER TCT	SER	GLU GAA	ARG CGC	SER TCA	ILE ATC	SER TCT	ual GTC	ual GTG	ual Gta	ash Aat	asn Aac	asp Gat	asp Gat	ALA GCG	thr ACC	thr Act	GL Y GGC	ual GTG	arg CgC	GTT	THR ACT	HIS CAT	GLN C AG	MET ATG	LEU CTG	PHE TTC	ash Aat	THR ACC
ASP G GAT C	LN AG	ual GTT	ILE ATC	GL U GAA	ual GTG	PHE TTT	ual GTG	ILE ATT	GL Y GGC	ual GTC	GL Y GG T	GL Y GGC	ual GTT	GL Y GGC	GL Y GG T	AL A GCG	LEU CTG	LEU CTG	GL U GAG	GLN CAA	LEU CTG	LYS AAG	ARG CGT	GL N CAG	GLN CAA	SER AGC	TRP TGG	LEU CTG	LYS AAG	asn Aat	LYS AAA	HIS CAT
ILE A ATC G	ISP AC	LEU TTA	ARG CGT	UAL GTC	CYS TGC	GL Y GG T	ual GTT	AL A GCC	asn Aac	SER TCG	L YS AAG	ALA GCT	LEU CTG	LEU CTC	thr ACC	asn Aat	ual Gta	HIS CAT	GL Y GGC	LEU CTT	aśn Aat	LEU CTG	GLU GAA	ash Aac	TRP TGG	GLN CAG	GLU GAG	ĠLU GAA	LEU CTG	ALA GCG	GLN C AA	ALA ECC
1585 LYS G AAA G	LU AG	PRO CCG	PHE TTT	ASN AAT	L E U CTC	GL Y GEG	ARG CGC	LEU TTA	ILE ATT	ARĠ CGC	L E U CTC	UAL GTG	LYS	GLU	TYR TAT	HIS Cat	LEU CTG	LEU CTG	ASN	PRO CCG	UAL	ILE ATT	UAL GTT	ASN AAC	CYS	THR	SER	SER	GLN CAG	ALA CCA	UAL GTG	
1684 ASP G	LN	TYR	ALA	ASP	PHE	LEU	ARG	GLU	GLY	PHE	HIS	UAL	UAL	THR	PRO	ASH	LYS	LYS	ALA	ASN	THR	SER	SER	NET	ASP	TYR	TYR	HIS	GLN	LEU	ARG	TYR
1783 ALA A	LA	ฉบ	LYS	SER	ARG	ARG	LYS	PHE		TYR	ASP	ILE	ASN	VAL	GLY	ALA	GLY	LEÜ	PRO	unil.	ILE	GLU	ASN .	LEU	GLN	ASN	LEU	LEU	asn	ALA	сы GLY	ASP
GCG G 1882 GLU LI	CG EU i	GAA MET	AAA LYS	TCG PHE	CGG SER	CGT GLY	AAA ILE	TTC LEU	CTC SER	TAT GLY	GAC SER	ATC LEU	AAC SER	GTT TYR	GGG ILE	gct Phe	GGA GL Y.	TTA LYS	CCG LEU	GTT ASP	ATT GLU	GAG GL Y	AAC NET	CTG SER	caa Phe	AAT SER	CTG GLU	CTC ALA	AAT THR	gca Arg	GET LEV	GAT AL A
GAA T 1981 ARG G	TG 	ATG MET	AAA GLY	TTC	TCC	GGC	ATT	CTT	TCT	GGT	TCG	CTT	TCT	TAT	ATC	TTC	GGC	AAG	TTA	GAC	GAA	GGC .	ATG I	AGT	TTC	TCC	GAG	GCG .	ACC		CTG	
CGG GI 2080	AA I	ATG	GGT	TAT	ACC	GAA	CCG	GAC	CCG	CGA	GAT	GAT	CTT	TCT	GGT	ATG	GAT	GTG	GCG	CGT	AAA	CTA	TTG	ATT	CTC	GCT	CGT	GAA I	ACG	GGA	CGT	GAA
LEU GL CTG GI 2179	AG I	CTG	AL A GCG	asp Gat	ILE ATT	GLU GAA	ILE ATT	GL U GAA	PRO CCT	ual Gtg	LEU CTG	PRO CCC	ALA GCA	GLU I GAG	PHE TTT	asn A ac	ala GCC	GLU GAG	GLY GGT	asp Gat	ual i GTT i	ALA I GCC I	ALA I GCT	PHE I	MET ATG	ALA I GCG I	ash i Aat i	LEU CTG	ser i Tca i	glni i Caa	LEU CTC	asp Gac
ASP LE GAT CI	EU P TC 1	PHE	ALA GCC	AL A GCG	ARG CGC	UAL GTG	AL A GCG	l ys Aag	ALA GCC	A rg Cgt	ASP GAT	GLU (GAA (GLY GGA	LYS (AAA (ual GTT	LËU I TTG I	arg CGC	TYR TAT	ual (GTT (GLY I GGC I	asn . Aat i	ILE (ATT (ASP (GAT (slu i Saa i	a sp Gat	GLY (GGC (GTC	CYS I TGC (ARG (CGC (STG I	LYS . Rac i	ILE NTT
ALA GL GCC GA	.U (A (JAL TG	asp Gat	GL Y GG T	ASN AAT	ASP GAT	PRO CCG	LEU CTG	PHE TTC	LYS AAA	ual i GTG	LYS I AAA I	ASN (AAT (GLY (GGC (GLU GAA	ash i Aac i	ALA I GCC (LEU I CTG	ALA I GCC	PHE TTC	TYR S TAT I	SER I AGC I	HIS T	TYR TAT	TYR (TAT (gln i C ag i	PRO I	LEU I CTG (PRO I	EU (TTG (UAL I Sta i	LEU CTG
ARG GL CGC GG	.Y 1 A 1	TYR TAT	GLY I GGT I	AL A GCG	GLY GGC	ASN AAT	asp Gac	UAL GTT -	THR I ACA	ALA I GCT I	ALA (GCC	GLY (GGT /	VAL I	PHE A	ALA	ASP I	LEU I	EU I	ARG 1 CGT 4	THR L	LEU S	SER 1	T RP L TGC 4	YS I	LEU (TTP -			t## 164				
																•																

FIG. 2. Sequence of the *thrA* gene. The given sequence is that of the noncoding strand. The deduced amino acid sequence for the correct reading frame is shown.

FIG. 3. Predicted secondary structure of the aspartokinase Ihomoserine dehydrogenase I. The boxes correspond to the possible α -helix structures, the lines to the possible extended regions of the protein. The coordinates above are the amino acids from 1 to 820. The arrow indicates the position of limited proteolysis cleavage generating an active homoserine dehydrogenase fragment. The asterisk corresponds to the position of methionine-249.

used in the sequence determination are indicated in Fig. 1B. The sequence was determined for over 70% of both strands. In Fig. 1C are indicated the regions where the corresponding amino acid sequence had been previously determined; the nucleotide and amino acid sequences are shown in Fig. 2. The gene is 2460 nucleotides long and encodes a single polypeptide chain of 820 amino acids. Except for a few explainable discrepancies (e.g., Glu for Gln), the predicted amino acid sequence is in good agreement with the partially determined amino acid sequence. Examination of the sequence homologies between thrA1 and thrA2 cistrons did not show any large duplications. However, several tetrapeptides are reported twice (Leu-Arg-Thr-Leu, positions 406 and 811; Leu-Ala-Arg-Glu, positions 659 and 686; Ala-Ala-Arg-Val, positions 322 and 730). One tetrapeptide (Ile-Ser-Val-Val) is present three times at positions 344, 399, and 439.

Computer-Predicted Secondary Structures of Aspartokinase I-Homoserine Dehydrogenase I. The predicted secondary structure of the protein was calculated according to Garnier (22) and is shown in Fig. 3. This analysis gave a high percentage of extended regions (34%) and α helices (52%). This percentage of α helix is not in agreement with the value of 31% calculated from circular dichroism experiments (23). The site of limited proteolysis seems to be located in a nonstructured region.

Codon Utilization. The codon usage in thrA gene was found to be highly nonrandom (Table 1). The thrA gene shows a preference for the use of only two codons (CGU and CGC) out of the six codons for arginine, CUG for leucine, GGY for glycine (Y, pyrimidines), AUY for isoleucine, GAA for glutamic acid, AAA for lysine, and CCG for proline. For each of these cases, the codons preferentially used are those recognized efficiently by the most abundant tRNA species (24–30). However, the alanine codon GCC is used the most frequently and is recognized by a minor tRNA^{Ala} species (31, 32). Nonrandom use of the codons for asparagine and threonine was also noted, but there are not enough data available to link this to the abundance of the tRNA species. One can only notice that the codons mostly used for threonine and isoleucine in the protein are those mostly used in the leader peptide of the attenuator region of the threonine operon, where seven of the eight threonine codons are ACC and three of the four isoleucine codons are AUU (33).

The overall codon usage is similar to that found in the *trpA* gene of *E. coli* (34). The frequency of nucleotides employed in the third positions of the codons is also similar for the two genes (in *thrA*, A = 15.7%, U = 26%, G = 28.4%, C = 29.7%; in *trpA*, A = 18.6%, U = 25%, G = 28.7%, C = 27.6%).

An interesting feature of the sequence is the cluster of methionine residues in the middle part of the protein: 10 out of the 22 methionine residues lie in a region corresponding to 16% of the protein, starting at methionine-249. We have looked for a Shine and Dalgarno sequence (35) before the corresponding ATGs in the DNA sequence. In fact, only methionine-249 is actually preceded by the sequence G-A-G-G-U, which is complementary to the 3' end of the ribosomal 16S RNA. As shown in Fig. 4A, the sequence surrounding this region can be folded into a stem and loop structure that resembles in its properties the functional intergenic ribosomal binding sites identified in E. coli (36). The calculated ΔG value for formation of this structure is about -13 kcal (-54 kJ)/mol (37). In Fig. 4B is presented one of the other more energetically stable potential mRNA secondary structures, which also would have a functional ribosomal binding site.

The methionine in position 249 could correspond to a start codon of the dehydrogenase part of the polypeptide chain. This residue is preceded by the sequence TTG TTG AAG TCG ATG. These four triplets can be converted into termination codons by a single base change. Two separate base changes could have abolished two termination triplets frequently found at the end of the genes and hence created a bifunctional polypeptide chain. It was previously shown that the NH₂-terminal sequence of the proteolytic fragment carrying only the dehydrogenase activity starts at serine-297 (6). This finding is not in contradiction with the idea that a gene fusion has indeed occurred during evolution. The presumptive kinase would have

				Ta	ble 1.	Codon usage in thrA											
		U		•	С			Α		G							
U	UUU	Phe	11	UCU	Ser	10	UAU	Tyr	12	UGU	Cys	3					
	UUC	Phe	19	UCC	Ser	11	UAC	Tyr	8	UGC	Cys	9					
	UUA	Leu	10	UCA	Ser	6	UAA	Ochr	е	UGA	Opal	1					
	UUG	Leu	16	UCG	Ser	9	UAG	Amb	er	UGG	Trp	4					
С	CUU	Leu	8	CUU	Pro	4	CAU	His	8	CGU	Arg	18					
	CUC	Leu	13	CCC	Pro	5	CAC	His	6	CGC	Arg	19					
	CUA	Leu	3	CCA	Pro	2	CAA	Gln	11	CGA	Arg	3					
	CUG	Leu	42	CCG	Pro	18	CAG	Gln	18	CGG	Arg	5					
A	AUU	Ile	29	ACU	Thr	4	AAU	Asn	22	AGU	Ser	3					
	AUC	Ile	16	ACC	Thr	18	AAC	Asn	18	AGC	Ser	12					
	AUA	Ile	2	ACA	Thr	3	AAA	Lys	22	AGA	Arg	0					
	AUG	Met	22	ACG	Thr	6	AAG	Lys	12	AGG	Arg	2					
G	GUU	Val	19	GCU	Ala	14	GAU	Asp	29	GGU	Gly	22					
	GUC	Val	18	GCC	Ala	36	GAC	Asp	13	GGC	Gly	22					
	GUA	Val	5	ĠCA	Ala	15	GAA	Glu	38	GGA	Gly	9					
	GUG	Val	26	GCG	Ala	27	GAG	Glu	15	GGG	Glv	10					

FIG. 4. Possible RNA secondary structures around an internal initiation site. (A) Stem and loop structure as described by Selker and Yanofsky (36) with the five base pairs complementary to the 3' extremity of 16S ribosomal RNA, and the partially paired AUG initiation codon in boldface letters. The numbering system is that of Fig. 2. (B) A more thermodynamically stable conformation of the same sequence, in an almost perfect tRNA structure.

a molecular weight of about 25,000. The formation of a fused protein may have given the bacteria an advantage in controlling coordinatively both activities at the transcription and translation levels, in addition to the allosteric control of both activities by L-threonine.

E. coli has two proteins with aspartokinase activities that are fused to proteins with homoserine dehydrogenase activities and a third protein that has only aspartokinase activity. Further cloning and sequence studies are required to establish the evolutionary relationships among these homologous proteins.

We are grateful to R. Staden, F. Schaeffer, and R. Garnier for making available to us their computer programs. M.K. is extremely grateful to G. Winter and F. Sanger for the opportunity of learning the dideoxy-terminator sequencing technique. We thank S. Busby for valuable comments and C. Maczuka for help with the preparation of the manuscript. This work was supported by grants from the Centre National de la Recherche Scientifique (LA 270 and Action Thématique Programmée: Séquence des acides nucléiques informationnels), the Institut National de la Santé et de la Recherche Médicale (Action Thématique Programmée 77-82), and the Délégation Générale à la Recherche Scientifique et Technique.

- Theze, J., Margarita, D., Cohen, G. N., Borne, F. & Patte, J. C. 1. (1974) J. Bacteriol. 117, 133-143.
- 2 Theze, J. & Saint Girons, I. (1974) J. Bacteriol. 118, 990-998.
- Cohen, G. N. & Dautry-Varsat, A. (1980) in Multifunctional 3. Proteins, eds. Bisswanger, H. & Schmincke-Ott, E. (Wiley, New York), pp. 49–121.
- Sibilli, L., Cossart, P., Chalvignac, M. A., Briley, P. A., Costrejean, 4. J. M., Le Bras, G. & Cohen, G. N. (1977) Biochimie 59, 943-945.
- Cossart-Gheerbrant, P., Sibilli-Weil, L., Briley, P. A., Chalvignac, 5. M. A., Le Bras, G. & Cohen, G. N. (1978) Biochim. Biophys. Acta 535. 206-215
- Briley, P. A., Sibilli, L., Chalvignac, M. A., Cossart, P., Le Bras, 6. G., DeWolf, A. & Cohen, G. N. (1978) J. Biol. Chem. 253, 8867-8871
- Sibilli, L., Le Bras, G., Cossart, P., Chalvignac, M. A., Le Bras, 7. G., Briley, P. A. & Cohen, G. N. (1979) Biochimie 61, 733-739.
- Sibilli, L. (1977) Dissertation (University of Paris, Paris, 8. France).
- 9. Cossart, P. (1977) Dissertation (University of Paris, Paris, France).
- 10. Maxam, A. & Gilbert, W. (1977) Proc. Natl. Acad. Sci. USA 74, 560-564.

- 11. Sanger, F., Nicklen, S. & Coulson, A. (1977) Proc. Natl. Acad. Sci. USA 74, 5463-5467
- Cossart, P., Katinka, M., Yaniv, M., Saint-Girons, I. & Cohen, G. 12. N. (1979) Mol. Gen. Genet. 175, 39-44.
- Greene, P. J., Heyneker, H. L., Bolivar, F., Rodriguez, R. L., 13 Betlach, M. C., Covarrubias, A. A., Backman, K., Russel, D. J., Tait, R. & Boyer, H. (1978) Nucleic Acids Res. 5, 2373-2380.
- Richardson, C. C. (1971) in Procedures in Nucleic Acids Re-14. search, eds., Cantoni, G. L. & Davies, D. R. (Harper & Row, New York), Vol. 2, pp. 815-828.
- 15. Berkner, K. L. & Folk, W. R. (1977) J. Biol. Chem. 252, 3176-3184.
- 16. Sanger, F. & Coulson, A. (1978) FEBS Lett. 87, 107-110.
- Schreier, P. H. & Cortese, R. (1979) J. Mol. Biol. 129, 169-172. 17.
- 18. Heidecker, G., Messing, J. & Gronenborn, B. (1980) Gene 10, 69-73.
- Staden, R. (1977) Nucleic Acids Res. 4, 4037-4051. 19.
- Staden, R. (1978) Nucleic Acids Res. 5, 1013-1015. 20.
- Staden, R. (1979) Nucleic Acids Res. 6, 2601-2610. 21.
- 22. Garnier, J., Osguthorpe, D. J. & Robson, B. (1978) J. Mol. Biol. 120, 97-120.
- Heck, H. d'A. & Truffa-Bachi, P. (1970) Biochemistry 9, 23. 2776-2783
- 24 Celis, T. F. R. & Maas, W. J. (1971) J. Mol. Biol. 62, 179-188.
- Blank, H. U. & Söll, D. (1971) J. Biol. Chem. 246, 4947-4956. 25.
- Fleck, E. W. & Carbon, J. (1975) J. Bacteriol. 122, 492-501. 26
- 27. Yarus, M. & Barrell, B. G. (1971) Biochem. Biophys. Res. Commun. 43, 729-734.
- 28. Ohashi, Z., Sanzoyoshi, M., Harada, F., Hara, M. & Nishimura, S. (1970) Biochem. Biophys. Res. Commun. 40, 866-872.
- 29. Chakraburtty, K., Steinschneider, A., Case, R. V. & Mehler, A. H. (1975) Nucleic Acids Res. 2, 2069-2075.
- 30. Söll, D., Cheravil, J. D. & Bock, R. M. (1967) J. Mol. Biol. 29, 97-112.
- Williams, R. J., Nagel, W., Roe, B. & Dudock, B. (1974) Biochem. 31. Biophys. Res. Commun. 60, 1215-1221
- 32 Lund, E. & Dahlberg, J. E. (1977) Cell 111, 247-262.
- 33. Gardner, J. F. (1979) Proc. Natl. Acad. Sci. USA 76, 1706-1710.
- 34. Nichols, B. P. & Yanofsky, C. (1979) Proc. Natl. Acad. Sci. USA 76, 5244-5248.
- 35. Shine, J. & Dalgarno, L. (1975) Nature (London) 254, 34-38.
- 36. Selker, E. & Yanofsky, C. (1979) J. Mol. Biol. 130, 135-143.
- 37 Tinoco, I., Jr., Borer, P. N., Dewgler, B., Levine, M. D., Uhlenbeck, O. C., Crothers, D. M. & Gralla, J. (1973) Nature (London) 246, 40-41.