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Abstract
Key message  Population structure affects genomic selection efficiency as well as the ability to forecast accuracy using 
standard GBLUP.
Abstract  Genomic prediction models usually assume that the individuals used for calibration belong to the same population 
as those to be predicted. Most of the a priori indicators of precision, such as the coefficient of determination (CD), were 
derived from those same models. But genetic structure is a common feature in plant species, and it may impact genomic 
selection efficiency and the ability to forecast prediction accuracy. We investigated the impact of genetic structure in a dent 
maize panel (“Amaizing Dent”) using different scenarios including within- or across-group predictions. For a given training 
set size, the best accuracies were achieved when predicting individuals using a model calibrated on the same genetic group. 
Nevertheless, a diverse training set representing all the groups had a certain predictive efficiency for all the validation sets, 
and adding extra-group individuals was almost always beneficial. It underlines the potential of such a generic training set for 
dent maize genomic selection applications. Alternative prediction models, taking genetic structure explicitly into account, 
did not improve the prediction accuracy compared to GBLUP. We also investigated the ability of different indicators of 
precision to forecast accuracy in the within- or across-group scenarios. There was a global encouraging trend of the CD to 
differentiate scenarios, although there were specific combinations of target populations and traits where the efficiency of this 
indicator proved to be null. One hypothesis to explain such erratic performances is the impact of genetic structure through 
group-specific allele diversity at QTLs rather than group-specific allele effects.

Introduction

Recently, new breeding methods emerged grouped under 
the term genomic selection (GS). Their aim is to predict 
breeding values using all the genomic markers jointly rather 
than testing the significance of each of them (Meuwissen 
et al. 2001). Several models have been proposed in the 

literature, making different hypotheses on the distribution of 
QTL effects such as GBLUP, BayesA, BayesB or BayesC� 
(Heslot et al. 2012). Most of the time, genomic predictions 
are calibrated on a training set (TS) and then applied to a 
population to be selected, for which the genotypic data is 
the only source of information available. This scenario is 
interesting for traits that are expensive or difficult to evalu-
ate, but genomic prediction accuracy may be limited when 
the genetic distance is large between the TS and the valida-
tion set (VS) (Pszczola et al. 2012). Other applications have 
recently emerged such as a better monitoring of field trials 
by limiting repetitions (Endelman et al. 2014).

Along with the development of genomic prediction 
models, there has been a significant effort to develop a 
priori indicators of precision. The forecast of genomic 
prediction accuracy could allow breeders to evaluate the 
interest of a generic TS to predict breeding values in a 
given breeding population. It would also be possible to 
optimize the TS constitution in order to maximize genomic 
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prediction accuracy and more generally to optimize breed-
ing programs.

A first set of approaches using deterministic equations 
were developed involving different parameters such as the 
trait heritability, the population size and the effective num-
ber of chromosome segments linked to the effective popula-
tion size (Daetwyler et al. 2008; Goddard et al. 2011; Erbe 
et al. 2013; Elsen 2016). Their efficiency depends largely 
on the ability to estimate this latter parameter accurately, 
which proved complicated in practice (Brard and Ricard 
2015). An other set of approaches, further referred to as 
CD, used mixed model equations requiring only the relation-
ships between individuals using genomic or pedigree data 
and estimates of heritability (VanRaden 2008; Rincent et al. 
2012; Rabier et al. 2016).

The genomic prediction models and their corresponding 
indicators of precision were first developed while consider-
ing one homogeneous population. However, this assumption 
is often violated as genetic structure is a common feature in 
human, animal and plants. Genetic structure arises when the 
allele frequencies of subgroups of individuals differ when 
compared to the ancestral population from which they origi-
nate. It might be due to a reproductive isolation followed by 
an independent drift in each group. In maize, genetic struc-
ture is found at the level of heterotic groups, that have been 
selected for their complementarity in order to maximize 
heterosis of inter-group hybrids, but may also be observed 
within each of these heterotic groups (Rincent et al. 2014).

When doing GS, genetic structure can impact the accu-
racy of predictions (Guo et al. 2014; Albrecht et al. 2014). 
Most of the models assume a single population, presuppos-
ing the conservation of QTL effects between individuals. 
However, when a genetic structure is observed, differences 
between QTLs effects can be observed as well as differences 
in terms of LD extent (Wientjes et al. 2015c) and linkage 
phase between SNPs and QTLs across populations (Wientjes 
et al. 2015b). If the same structure is found within the TS 
and the VS, it is well taken into account by the kinship, 
when using a GBLUP model, and contributes to genomic 
prediction accuracy (Guo et al. 2014). But if the structure 
is different, the accuracy can be strongly impacted. In dairy 
cattle, when trying to predict breeding values of a breed with 
a small population size using information coming from a 
distantly related breed with a larger size, the gain in predic-
tion accuracy is generally very low and may even be negative 
(de Roos et al. 2009). Likewise, in maize, a TS combining 
dent and flint lines allowed marginal gains in terms of accu-
racy compared to pure dent or pure flint TS (Technow et al. 
2013). A substantial gain was nevertheless observed when 
combining related dairy cattle breeds (Brøndum et al. 2011).

To improve genomic prediction accuracy in structured 
populations, it is possible to adjust both the experimental 
design and data modeling. Concerning the experimental 

design, it is possible to improve accuracy by creating hybrids 
or admixed individuals allowing to connect the different 
groups (Toosi et al. 2013; Esfandyari et al. 2015). Concern-
ing the models, several alternatives have been proposed 
such as specifying the structure as a fixed effect (Guo et al. 
2014) or modeling genetic covariances between individuals 
from different groups by adapting multi-trait models. The 
latter led to improvement of genomic prediction accuracy in 
dairy cattle (Olson et al. 2012; Karoui et al. 2012) and dairy 
goat (Carillier et al. 2014) when the genetic correlations 
between groups were sufficiently high. In maize, such types 
of models were also applied and allowed very limited gains 
(Lehermeier et al. 2015). In the case of populations resulting 
from the admixture between groups, there were attempts to 
take into account the quantitative assignment of individuals 
to groups by applying random regression but this allowed 
limited gains (Strandén and Mäntysaari 2013; Makgahlela 
et al. 2013).

Structure does not only affect genomic prediction accu-
racy, but also the ability to forecast this accuracy using 
indicators. When the population features a strong genetic 
structure, a priori indicators proved to be inefficient to fore-
cast genomic prediction accuracy in multi-breed dairy cat-
tle populations (Hayes et al. 2009) and to optimize TS in 
rice populations (Isidro et al. 2015). To tackle this issue, 
new indicators were recently developed in order to take into 
account such structures, proving their efficiency on simu-
lated data (Wientjes et al. 2015a, 2016).

The objectives of this article are first to study the impact 
of genetic structure on genomic prediction accuracy within 
a diversity panel of maize dent lines. An important question 
for breeders is whether or not one should combine groups 
in TS in order to increase accuracy. A second objective is to 
evaluate the gain in accuracy one may expect when applying 
models that explicitly account for genetic structure rather 
than using a standard GBLUP analysis. The last objec-
tive is to compare different indicators of precision to study 
their ability to forecast GBLUP accuracy in the presence of 
genetic structure.

Materials and methods

Genetic material and genotypic data

Genetic material is a panel of 389 dent maize lines assem-
bled within the “Amaizing” project and aiming at repre-
senting the diversity of the dent heterotic group that can be 
used in European breeding. This panel includes most lines 
from panels assembled for previous projects: “CornFed” 
(Rincent et al. 2014) and “Drops” (Millet et al. 2016). 
This panel was constructed for Genome Wide Association 
Studies and to apply genomic prediction for traits that are 
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expensive to evaluate. One originality of the panel is to 
include 49 elite lines coming from seven breeding compa-
nies (Fig. 1a), all members of the Amaizing project.

The genotyping data, initially assembled for GWAS 
studies, included SNPs from different technologies: the 
50K Illumina MaizeSNP50 BeadChip (Ganal et al. 2011), 
the 600K Affymetrix Axiom Maize Genotyping Array 
(Unterseer et al. 2014) and Genotyping-By-Sequencing 
(Elshire et al. 2011; Glaubitz et al. 2014). The lines from 
public origin were all genotyped with the three SNP tech-
nologies. The lines from private origin were all genotyped 
with the 50K chip, 28 were also genotyped with the 600K 
but none with GBS. At each SNP, allele 0 was attributed 
to the allele carried by B73, the maize inbred line used as 
reference for sequencing, or to the allele carried by the 
first line in alphabetic order if B73 genotype was miss-
ing or heterozygous. A quality control on SNP data was 
applied, removing markers featuring heterozygosity above 
15% and missing value rate above 20% for 50K and 600K 
SNPs. For GBS data, heterozygous were transformed into 
missing values and markers with more than 70% of miss-
ing data were discarded. After merging the three datasets, 
duplicated SNPs were removed from the dataset based on 
physical position information leaving 986,045 SNPs. The 
imputation of missing values was done on the whole data-
set using Beagle v.3.3.2 and default parameters (Browning 
and Browning 2009).

Structure analysis

We performed a structure analysis using the ADMIXTURE 
software (Alexander et al. 2009) for different numbers of 
groups, ranging from 2 to 8 (Supplementary Figs. S1, S2 and 
S3). The cross-validation (CV) error criterion proposed by 
ADMIXTURE showed an improvement while increasing the 
number of groups. For the following analyses, we considered 
three groups which could be linked to well-defined groups 
in maize breeding which are A: Lancaster and other dent 
lines (207 lines), B: Stiff-Stalk (98 lines) and C: Iodent (84 
lines). Subdividing in more groups would have led to define 
families or specific pedigree structures rather than well-
known genetic groups and to insufficient number of lines per 
group to perform analyses. A PCoA was performed on 
genetic distances computed as Di,j = 1 − K0

i,j
 with K0

i,j
 being 

the kinship coefficient between lines i and j in Eq. (1, see 
below). This analysis clearly separated individuals based on 
their maximal admixture coefficient (Fig. 1b).

Phenotypic data

All the lines were crossed to the same tester UH007 to pro-
duce hybrid progenies for phenotypic evaluation. The 2014 
field trials (Supplementary Table S1) were conducted in 
seven locations in standard agronomic conditions includ-
ing Blois, Mons, Niederhergheim, Souprosse, Villampuy 
(France), Bernburg (Germany) and Graneros (Chile). Each 

Fig. 1   PCoA on genetic distances with coloration of individuals depending on a their origin (public/private) or b by assignment to genetic 
groups
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trial was a latinized alpha design where every genotype was 
repeated 2 times on average. Grain moisture (in % of humid-
ity), grain yield at 15% of humidity (quintals per hectare) 
and male flowering time were recorded for each plot. Male 
flowering time was converted into growing degree-days, 
considering a base temperature of 6 Celsius degrees, using 
the mean daily air temperature measured at each location. 
An economic index, called yield index, was also computed 
as: Yield Index = GrainYield − 2.5 × GrainMoisture . This 
index corresponds to grain yield penalized for an excess of 
humidity at harvest, which would require an expensive dry-
ing process, and is used for variety registration in France.

We started the analysis from data collected after correc-
tion for within trial spatial effects using different models 
(Supplementary Table S1). Then, we computed least-square 
means (LS-means) over the whole design using model: 
Yij = �i + Tj + Eij where Yij is the performance of individual 
i in the location j, �i is the intercept for individual i, Tj is 
the jth random trial effect where Tj ∼  (0, �2

T
) are all inde-

pendent and identically distributed (i.i.d.), Eij is the error 
were Eij ∼  (0, �2

E
) i.i.d. and Eij and Tj are assumed to be 

independent.

Genomic prediction models

All the genomic prediction models used in this study can 
be written as:

where y is the vector of LS-means which will be further 
referred to as phenotypes, X is the incidence matrix for fixed 
effects, � is the vector of fixed effects, Z is an incidence 
matrix linking observations to breeding values, g is the vec-
tor of breeding values and e is the vector of errors. All mod-
els assume independence between g and e.

GBLUP

We used a standard additive GBLUP model as a base model 
�� with the following assumptions: X = 1N was a vector of 
1 of length N (with N the number of individuals), � = � the 
general mean of performances, g ∼  (0,K�2

G
) and 

e ∼  (0, I�2

E
) with �2

G
 and �2

E
 being the genetic and residual 

variances, respectively. The kinship between individuals i 
and j, K0

i,j
 , was estimated using VanRaden (2008):

y = X� + Zg + e

(1)K0

i,j
=

∑M

m=1
(Wim − fm)(Wjm − fm)∑M

m=1
fm(1 − fm)

where Wim is the genotype of individual i at locus m (coded 0 
; 0.5 ; 1) and fm is the allele frequency of allele “1” at locus 
m, estimated on the whole dataset.

Structured GBLUP

The standard kinship estimation combines relatedness and 
genetic structure information. In order to test whether mod-
eling the structure as a fixed effect could improve the predic-
tions, we used two adapted GBLUP models.

Model �� followed the same assumptions as �� except 
that population structure was added as a fixed effect where 
X was the (N × Q) incidence matrix for fixed effects with 
Xiq = 1 if i was assigned to the qth genetic group (other-
wise Xiq = 0 ), Q = 3 is the number of genetic groups and 
� = (�A,�B,�C)

T is a vector of fixed group effects. For �� , 
the kinship was estimated following Plieschke et al. (2015), 
by centering the genotypes using group-specific allele fre-
quencies to remove the structure from the kinship and to 
avoid a redundancy of information in the model:

where pim =
∑Q

q=1
Xiqfmq and fmq is the allele frequency of 

group q as provided by ADMIXTURE.
Model �� followed the same assumptions as �� except 

that it considered quantitative assignments of individuals to 
groups in the prediction model and in the kinship. Thus Xiq 
became the admixture coefficient of individual i for group 
q. The kinship K2

i,j
 used in �� was estimated using the same 

expression as for K1

i,j
 in Eq. (2) but with pim being a weighted 

mean of ancestral group-specific allele frequencies with 
weights corresponding to admixture coefficients (Thornton 
et al. 2012).

Multi‑group GBLUP

We also used a multivariate model �� considering categori-
cal assignments to genetic groups, which is an adaptation of 
a multi-trait model to the analysis of one trait in different 
groups proposed by Lehermeier et al. (2015).

In this model, X and � are the same as in �� , Z is an 
incidence matrix linking phenotypes to the corresponding 
group-specific breeding value (categorical assignments), 

g =

⎡⎢⎢⎣

g∗A
g∗B
g∗C

⎤⎥⎥⎦
 is the expanded vector of breeding values of each 

(2)K1

i,j
=

∑M

m=1

�
Wim − pim

��
Wjm − pjm

�
∑M

m=1
fm(1 − fm)
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individual in each group with a size of 3N and e =
⎡⎢⎢⎣

eA
eB
eC

⎤⎥⎥⎦
 is 

the vector of errors of size N where:

with �GX,Y
 being the genetic covariance between groups X 

and Y (the letters X, Y and Z were further used as group 
names when not specifically designating group A, B or C). 
In this model, the kinship between individuals i and j, K0′

i,j
 

(Eq. 3), was computed following Astle and Balding (2009) 
as recommended by Lehermeier et al. (2015), although 
results were very consistent using the kinship defined by 
VanRaden (2008) (Eq. 1).

Note that the genetic covariance between groups results from 
the genetic covariance between allele effects in each group 
as described in Karoui et al. (2012) and Lehermeier et al. 
(2015).

We also defined rX,Y =
�GX,Y

�GX
�GY

 where rX,Y is the genetic 

correlation between groups X and Y.
For each model, the Genomic Estimated Breeding Values 

(GEBV) of the VS were computed as: �̂VS = �VS�̂ + �̂VS
Model parameters were estimated using ASReml-R (But-

ler et al. 2009) for models �� , �� and �� , using restricted 
maximum likelihood method. For the last model �� , a 
Gibbs sampler implemented in R was used to estimate the 
parameters.1 The choice of hyper-parameters was the same 
as described in Lehermeier et al. (2015). A total of 300,000 
MCMC samples were collected with 100,000 discarded as 
burn-in and thinning was done by keeping one every two 
samples. The parameter estimates were obtained by comput-
ing posterior means.

⎡
⎢⎢⎣

g∗A
g∗B
g∗C

⎤
⎥⎥⎦
∼ 

⎛
⎜⎜⎜⎝
0,

⎡
⎢⎢⎢⎣

𝜎2

GA
𝜎GA,B

𝜎GA,C

𝜎GA,B
𝜎2

GB
𝜎GB,C

𝜎GA,C
𝜎GB,C

𝜎2

GC

⎤
⎥⎥⎥⎦
⊗ K0

⎞
⎟⎟⎟⎠

⎡
⎢⎢⎣

eA
eB
eC

⎤
⎥⎥⎦
∼ 

⎛
⎜⎜⎜⎝
0,

⎡
⎢⎢⎢⎣

IA𝜎
2

EA
0

0 IB𝜎
2

EB
0

0 0 IC𝜎
2

EC

⎤
⎥⎥⎥⎦

⎞
⎟⎟⎟⎠

(3)K0�

i,j
=

1

M

M∑
m=1

(Wim − fm)(Wjm − fm)

fm(1 − fm)

Evaluation of the precision of genomic predictions

The precision of the models was evaluated using four dif-
ferent CV procedures either neglecting genetic structure or 
aiming at evaluating its impact on the precision of genomic 
predictions.

The first CV procedure was an averaged Holdout (HO) 
method and allowed us to study the level of precision that 
can be obtained when neglecting the role of genetic struc-
ture. The initial dataset was split with proportions 4

5
 and 1

5
 for 

the TS and the VS, respectively. The splitting was repeated 
100 times and the precision criteria were averaged over 
repetitions.

The second CV procedure was a Leave-One-Out method 
(LOO) where every individual was predicted with a model 
calibrated using all the remaining individuals. It allowed a 
simple graphic representation of the quality of prediction 
of each individual using all the other individuals from the 
panel, whatever their group of origin. We also used this 
approach to evaluate the link between the CD (see below) 
and the prediction of each individual.

The third CV procedure, named Structured Holdout 
(SHO), allowed us to study the impact of genetic structure 
in genomic prediction accuracy using different scenarios. It 
considered samples of restricted sizes where 18 individuals 
are predicted using the model calibrated with 66 other indi-
viduals, repeating sampling 100 times. Those numbers were 
chosen in order to fit with all the scenarios (Table 1), know-
ing that group C is limited to 84 individuals. The individuals 

Table 1   Scenarios evaluated with the structure-based cross-valida-
tions (SHO) where 18 individuals are predicted by 66 other individu-
als (x100 samples)

Scenario TS composition VS composition

ABC_ABC 1

3
 A + 1

3
 B + 1

3
C 1

3
 A + 1

3
 B + 1

3
C

ABC_A 1

3
 A + 1

3
 B + 1

3
C A

A_A A A
B_A B A
C_A C A
BC_A 1

2
 B + 1

2
C A

ABC_B 1

3
 A + 1

3
 B + 1

3
C B

B_B B B
A_B A B
C_B C B
AC_B 1

2
 A + 1

2
C B

ABC_C 1

3
 A + 1

3
 B + 1

3
C C

C_C C C
A_C A C
B_C B C
AB_C 1

2
 A + 1

2
B C

1  https​://githu​b.com/Quant​Gen/MTM.

https://github.com/QuantGen/MTM
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were assigned to the three groups according to their maximal 
admixture coefficient. All the scenarios are designated as 
TS_VS, TS and VS referring to the groups represented in 
the TS and VS, respectively. When there were more than 
one group in the TS or the VS, the composition was always 
perfectly balanced between groups. As an example, ABC_A 
referred to a TS equally composed of individuals from the 
three groups and a VS composed of lines from group A 
only. Note that the across-group SHO scenarios (i.e., when 
no individual from the group forming the VS is present in 
the TS) cannot be evaluated using model �� and �� . They 
require a TS where all the genetic groups are represented in 
order to estimate all the group-specific intercept and vari-
ance parameters.

The fourth CV procedure, referred to as Structured 
Holdout + (SHO+ ), aimed at evaluating the benefits of 
extra-group individuals (individuals from a group absent 
of the VS) to improve genomic prediction accuracy. It 
considered the same samples as in SHO for intra-group 
predictions (scenarios X_X) complemented with 66 indi-
viduals of each of the two other groups, reaching a size 
of 198 individuals. For instance, ABC+ _A referred to the 
SHO+ scenario to predict group A.

Three criteria of precision were used to compare models 
and scenarios. The first was the predictive ability, defined 
as the correlation between GEBV and the phenotypes. The 
second was the accuracy which was computed by dividing 
the predictive ability by the square root of the heritability. 
Here, the heritability was computed using the estimated 
variances obtained by applying �� to the whole panel. 
The third criterion was the Root Mean Square error of 
Prediction (RMSP), defined as the root mean square of the 
differences between LS-means and the GEBV.

A priori estimation of accuracy

In mixed models, the accuracy related to the prediction of 
individual i can be quantified by its associated Coefficient 
of Determination (CD), using the general formula:

where gi and ĝi are the breeding value of individual i and its 
corresponding BLUP, respectively, Gi,TS is the covariance 
matrix between breeding values of i and the TS, Gi,i is the 
genetic variance of i and �TS,TS is the covariance matrix 
between phenotypic values within the TS.

The standard CD in a GBLUP model assumes an 
unstructured population, as described in model �� and is 
computed using Eq. (4), where:

(4)CDi = Cor(gi, ĝi)
2 =

Gi,TS�
−1

TS,TS
GTS,i

Gi,i

•	 Gi,TS = K0
i,TS�̂

2

G

•	 Gi,i = K0
i,i�̂

2

G

•	 �TS,TS = K0
TS,TS�̂

2

G
+ I�̂2

E

•	 �̂2

G
 and �̂2

E
 are the genetic and residual variances, 

respectively, estimated using �� calibrated with all the 
individuals.

We also considered the multi-group CD as proposed by 
Wientjes et al. (2015a) and derived from �� . When con-
sidering scenario XY_Z, the elements of Eq. (4) become:

•	 Gi,TS =

[
KZ,X �̂GZ,X

KZ,Y �̂GZ,Y

]
i,TS

•	 Gi,i =

[
KZ,Z �̂

2

GZ

]
i,i

•	 �TS,TS =

[
KX,X �̂

2

GX
+ I�̂2

EX
KX,Y �̂GX,Y

KY ,X �̂GX,Y
KY ,Y �̂

2

GY
+ I�̂2

EY

]

TS,TS

•	 �̂GZ,X
 , �̂2

GX
 and �̂2

EX
 are the genetic covariance between 

group Z and X, the genetic variance in group X and the 
residual variances in group X, respectively, estimated 
on the whole dataset.

Two versions of this multi-group CD were computed using 
different kinships K . The first version called CDgp1 used 
K0 defined in Eq. (1) while the second called CDgp2 used 
a new estimator recommended by Wientjes et al. (2017):

with pim =
∑Q

q=1
Xiqfmq where Xiq considered categorical 

assignment of individuals to groups as defined in ��.
CDgp1 is computed using variances estimated with 

�� and K0′ (computed using Eq. (3) as recommended by 
Lehermeier et al. 2015) on the whole dataset, although 

(5)K3

i,j
=

∑M

m=1

�
Wim − pim

��
Wjm − pjm

�
�∑M

m=1

�
pim(1 − pim)

��∑M

m=1

�
pjm(1 − pjm)

�

Table 2   Summary table of empirical and a priori accuracies using 
different CDs, describing the statistical model, the kinship matrix and 
the variance estimates used to compute them

The statistical model and the kinship used to estimate variances are 
shown between braces
aVariances were estimated for each cross-validation training set (CV 
est.) or through a single estimation using the whole dataset (Whole 
data est.)

Accuracy Model Kinship Variancesa

Empirical �� K
0 CV est. { ��, K0}

CD �� K
0 Whole data est. { ��, K0}

CDgp1 �� K
0 Whole data est. { ��, K0′}

CDgp2 �� K
3 Whole data est. { ��, K3}
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parameters estimates were very consistent using K0 
(Eq. 1). CDgp2 is computed using variances estimated with 
�� and K3 on the whole dataset as summarized in Table 2.

After computing the CD values of every individual of 
the VS, we averaged them and computed the square root 
to obtain an a priori indicator of accuracy.

The a priori estimates of accuracy were compared to 
empirical accuracies, obtained from model �� with the 
SHO method, for the different scenarios described above 
using two criteria of precision. The first criterion was the 
correlation between the a priori estimates of accuracy and 
the empirical accuracies. The second criterion was the 
Root Mean Square error of Estimation (RMSE) which is 
defined as the root mean square of the differences between 
a priori and empirical accuracies.

We also computed standard CD for each predicted indi-
vidual in the context of LOO CV.

Results

Global, within‑ and across‑group precision 
of genomic predictions

We first estimated variances for the four traits by apply-
ing model �� . The estimated heritabilities were very high 
(Table 3), between 0.86 and 0.95 and consistent with the 

high heritabilities computed in each trial without consider-
ing kinship (Supplementary Table S1).

The estimates of accuracy obtained with the HO method 
and �� model ranged from 0.77 for yield index to 0.84 for 
grain yield (Table 4). The accuracy estimates were close 
to the predictive abilities as a consequence of high herit-
abilities. We also studied the ability of all the lines from 
public origin to predict all the private lines. The accuracies 
obtained were 0.64, 0.49, 0.33 and 0.76 for grain moisture, 
grain yield, yield index and male flowering respectively.

In Fig. 2, where predictions were obtained with LOO, 
we observed a differentiation between groups for the four 
traits. For instance, groups B and C were almost perfectly 
separated along the two axes for male flowering. These 
mean differences may be partly responsible for the high 
level of correlation obtained in Table 4.

In order to study more carefully the impact of genetic 
structure on genomic predictions, we performed a third 
type of CV named SHO using �� with different scenarios 
defined in Table 1. Accuracies (Table 5) and predictive 
abilities (Supplementary Table S2) showed similar trends. 
Scenario ABC_ABC displayed in general a higher accu-
racy than scenarios ABC_X but its RMSP was generally 
not the lowest (Table 6).

Considering group-specific VS, the best predictions, both 
in terms of accuracy and RMSP, were achieved when pre-
dicting one group with individuals from the same group. The 
only exception was grain moisture and male flowering in 
group C for which the lowest RMSP and the highest accura-
cies were obtained by using a TS consisting of individuals 
from the three groups (scenario ABC_C). The worst predic-
tions were always achieved when trying to predict one group 
using only one other group (scenarios X_Y) while using 
the two other groups allowed intermediate accuracies and 
RMSP (scenarios XY_Z). Except for yield index, trying to 
predict group C using scenario AB_C was among the best 
options, conversely to what was observed for the symmetric 
scenarios in the other group for which BC_A and AC_B 
were outperformed by A_A and B_B, respectively. 

In general, group-specific accuracies tended to be higher 
in group A than in group B and C, regardless of the trait 
considered. The opposite was generally observed when 
considering RMSP, for which group A presented a higher 
prediction error, meaning a lower precision.

In order to study the impact of adding extra-group indi-
viduals on the accuracy of genomic predictions, we per-
formed SHO+ CV (Table 7). Adding individuals always 
increased accuracy and decreased RMSP except in group C 
for yield index. Generally, the gain in precision was greater 
in group C than in group B, itself greater than in group A.

Table 3   Mean, genetic variance, environmental variance and herit-
ability estimated on all the data using ��

Standard errors for variances estimates are shown between brackets

� �2

G
�2

E
h2

Grain mois-
ture 

27.50 2.52 (0.26) 0.14 (0.09) 0.95

Grain yield 84.51 50.27 (5.75) 6.87 (2.34) 0.88
Yield index 15.80 57.77 (6.77) 9.46 (2.94) 0.86
Male flow-

ering
891.13 518.09 (50.11) 26.64 (15.43) 0.95

Table 4   Average of precision criteria evaluated with the standard 
cross-validations (HO) using ��

SD are shown between brackets

Predictive ability Accuracy RMSP

Grain moisture 0.76 (0.02) 0.78 (0.03) 1.33 (0.06)
Grain yield 0.78 (0.02) 0.84 (0.03) 6.20 (0.38)
Yield index 0.73 (0.03) 0.79 (0.03) 6.71 (0.43)
Male flowering 0.75 (0.02) 0.77 (0.02) 19.45 (0.82)
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Accounting for structure in genomic prediction 
models

We tested three other models, taking into account genetic 
structure, to compare them to model �� on scenario ABC_
ABC and on scenarios ABC_X (SHO CV). In general, the 
four models tended to reach similar performances when con-
sidering accuracy as a criterion (Fig. 3). Model �� reached 
performances below the other models in all the scenarios for 
male flowering and for some scenarios in the other traits such 
as scenario ABC_C for grain moisture. However it allowed 
better accuracies in scenario ABC_ABC and ABC_C for 
yield index. The same conclusions could be made consider-
ing predictive ability or RMSP as criteria (Supplementary 
Figs. S4 and S5). The across-group scenarios were also 
tested to compare �� and �� (model considering quantita-
tive assignment to groups) showing no improvement when 
using the latter (Supplementary Figs. S6, S7 and S8).

A priori estimation of precision

To compute the CD, variances were estimated within the 
whole population using �� (Table 3). To compute CDgp1 
and CDgp2 , variances and genetic correlations were esti-
mated between groups using �� with K0′ (Table 8) and K3 
respectively (Supplementary Table S3). For all traits, the 
genetic variance estimates were lower in group C than in 
the other groups. The genetic correlations between groups 
were very high, around 0.90, except for grain moisture 
where they ranged from 0.72 to 0.76 using K0′ and from 
0.62 to 0.72 using K3 . The group-specific heritabilities 
obtained from these estimates were also high (results not 
shown).

Before studying the ability of CD values to reflect the 
accuracy in the VS, we observed how CD values were 
connected to the prediction of individual performances 
obtained with LOO CV (Fig. 4). For grain moisture and 

Fig. 2   LS-means values plotted against GEBV obtained by LOO cross-validations using �� and coloration of individuals dots using assignment 
to groups for a grain moisture, b grain yield, c yield index and d male flowering
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male flowering (Fig. 4a, d), the individuals featuring low 
CD values were predicted close to the mean and were more 
likely to have important observed errors of prediction. 
Conversely, individuals featuring high CD values had a 

broader range of predicted values and the predictions were 
more accurate. A different situation was observed for grain 
yield and yield index which are submitted to directional 
selection (Fig. 4b, c). For these traits, individuals with 
low CD values were predicted to have low performances. 
Conversely, those with high CD values were predicted to 
have high performances.

The a priori accuracy of the different SHO scenarios were 
estimated by computing the square root of the average of the 
CDs over the individuals of the VS. The a priori estimates of 
accuracy were compared to the empirical accuracies using 
the correlation between a priori estimates and empirical 
accuracies and the RMSE between these two accuracies.

When first looking at the different plots between a priori 
and empirical accuracies (Supplementary Figs. S9, S10, 
S11 and S12), one could notice that there was a high vari-
ability of the empirical accuracies for a defined scenario 
(see also Table 5). All the indicators (CD, CDgp1 and 
CDgp2 ) led to either positive or null values of correlation 
between the a priori estimates of accuracy and the empiri-
cal accuracies (Table 9). There were different abilities to 
forecast accuracy depending on the trait and the group 
considered. It was harder to predict the level of accuracy 
in group C than in groups A and B for all the traits except 
yield index. For instance, the correlation was almost null 
regardless of the indicator used for grain moisture in this 
group. In contrast, the ability to forecast the level of preci-
sion was up to 0.56 in group C for yield index. When com-
paring the three indicators using the correlation between 
empirical and a priori accuracies, it was difficult to assess 
which one performed best. The differences were very low 
between CD, CDgp1 and CDgp2 which might be explained 
by the high genetic correlation between groups (except 
for grain moisture), as well as a limited impact of the kin-
ship used to compute the CDs. Along with the correlation, 
using the RMSE between a priori and empirical accuracies 
did not allow us to identify a better indicator of accuracy 
(Supplementary Table S4).

Discussion

The impact of genetic structure on genomic 
prediction accuracy

We investigated genomic prediction accuracy using LS-
means corrected for trial effects as observed phenotypes to 
minimize environmental effects. As a consequence, the esti-
mates of heritabilities obtained when fitting additive model 
�� were very high and consistent with the high heritabilities 
obtained for each trial without considering kinship. Along 
with the high heritabilities, the predictive abilities and the 
accuracies were high when neglecting population structure, 

Table 5   Average of accuracies obtained with the structure-based 
cross-validations (SHO) using ��

SD are shown between brackets

Scenario Grain mois-
ture

Grain yield Yield index Male flower-
ing

ABC_ABC 0.74 (0.13) 0.74 (0.13) 0.70 (0.16) 0.70 (0.12)
ABC_A 0.63 (0.17) 0.64 (0.18) 0.55 (0.20) 0.62 (0.15)
A_A 0.70 (0.12) 0.70 (0.14) 0.62 (0.16) 0.70 (0.12)
BC_A 0.56 (0.18) 0.50 (0.19) 0.25 (0.25) 0.55 (0.16)
B_A 0.50 (0.21) 0.54 (0.18) 0.30 (0.21) 0.54 (0.16)
C_A 0.59 (0.16) 0.48 (0.18) 0.15 (0.24) 0.52 (0.16)
ABC_B 0.68 (0.13) 0.65 (0.15) 0.45 (0.19) 0.51 (0.15)
B_B 0.71 (0.11) 0.69 (0.12) 0.51 (0.16) 0.57 (0.14)
AC_B 0.59 (0.17) 0.53 (0.19) 0.43 (0.19) 0.51 (0.15)
A_B 0.50 (0.18) 0.51 (0.18) 0.29 (0.22) 0.46 (0.18)
C_B 0.62 (0.13) 0.57 (0.16) 0.33 (0.21) 0.46 (0.16)
ABC_C 0.63 (0.14) 0.64 (0.15) 0.41 (0.20) 0.61 (0.12)
C_C 0.53 (0.13) 0.63 (0.14) 0.55 (0.14) 0.55 (0.15)
AB_C 0.63 (0.15) 0.61 (0.13) 0.24 (0.24) 0.62 (0.15)
A_C 0.57 (0.16) 0.53 (0.17) 0.06 (0.28) 0.58 (0.14)
B_C 0.57 (0.17) 0.46 (0.18) 0.23 (0.20) 0.41 (0.20)

Table 6   Average of RMSP obtained with the structure-based cross-
validations (SHO) using ��

SD are shown between brackets

Scenario Grain mois-
ture

Grain yield Yield index Male flow-
ering

ABC_ABC 1.41 (0.27) 6.58 (1.43) 7.06 (1.60) 20.21 (3.54)
ABC_A 1.63 (0.29) 8.70 (1.99) 8.79 (2.35) 26.00 (3.34)
A_A 1.56 (0.35) 7.58 (1.78) 7.71 (2.22) 24.58 (3.61)
BC_A 1.77 (0.30) 11.72 (2.32) 12.27 (2.44) 27.59 (3.90)
B_A 1.84 (0.27) 11.44 (2.23) 10.99 (2.27) 29.33 (4.10)
C_A 1.93 (0.34) 14.08 (2.23) 15.83 (2.21) 28.08 (4.13)
ABC_B 1.46 (0.24) 5.83 (0.91) 6.88 (1.06) 18.99 (2.69)
B_B 1.46 (0.20) 5.75 (0.92) 6.91 (1.17) 18.73 (2.46)
AC_B 2.05 (0.35) 7.50 (1.47) 7.31 (1.07) 22.61 (3.71)
A_B 2.03 (0.30) 9.79 (1.67) 9.10 (1.40) 21.16 (3.02)
C_B 2.33 (0.33) 7.42 (1.30) 9.73 (1.74) 25.04 (4.04)
ABC_C 0.95 (0.16) 4.85 (0.99) 5.16 (0.90) 15.16 (2.38)
C_C 0.97 (0.15) 4.81 (0.84) 4.63 (0.64) 15.89 (3.23)
AB_C 1.26 (0.28) 5.49 (1.13) 7.27 (1.43) 23.89 (3.99)
A_C 1.29 (0.26) 8.31 (1.74) 10.45 (1.64) 24.45 (4.27)
B_C 1.39 (0.29) 5.59 (0.85) 5.44 (0.84) 28.98 (3.55)
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revealing both the relevance of model �� to make predic-
tions and the quality of the data.

In this dataset, structure participated to genomic predic-
tion accuracy, as the accuracy was generally higher in sce-
nario ABC_ABC than in scenarios ABC_X for a given TS 
size. The standard kinship matrix contains information about 
the structure of the population in genetic groups. When there 

is a difference of mean between groups and the same struc-
ture is found in the TS and the VS, this difference is well 
taken into account by the GBLUP model and participates to 
the accuracy (Guo et al. 2014). At the extreme, one could 
imagine a trait for which there would be a global positive 
correlation between predicted and true breeding values but 
with a null accuracy within each group composing the VS. 

Table 7   Average of accuracies and RMSP obtained with the within-group cross-validations (SHO) compared to those obtained with the cross-
validations adding extra-group individuals to the TS (SHO+)

SD are shown between brackets

Grain moisture Grain yield Yield index Male flowering

Accuracy RMSP Accuracy RMSP Accuracy RMSP Accuracy RMSP

A_A 0.70 (0.12) 1.56 (0.35) 0.70 (0.14) 7.58 (1.78) 0.62 (0.16) 7.71 (2.22) 0.70 (0.12) 24.58 (3.61)
ABC+_A 0.72 (0.13) 1.48 (0.33) 0.72 (0.14) 7.37 (2.00) 0.64 (0.17) 7.65 (2.25) 0.73 (0.11) 23.19 (3.65)
B_B 0.71 (0.11) 1.46 (0.20) 0.69 (0.12) 5.75 (0.92) 0.51 (0.16) 6.91 (1.17) 0.57 (0.14) 18.73 (2.46)
ABC+_B 0.76 (0.10) 1.33 (0.19) 0.72 (0.11) 5.45 (0.79) 0.56 (0.15) 6.59 (0.95) 0.67 (0.11) 16.71 (2.43)
C_C 0.53 (0.13) 0.97 (0.15) 0.63 (0.14) 4.81 (0.84) 0.55 (0.14) 4.63 (0.64) 0.55 (0.15) 5.89 (3.23)
ABC+_C 0.71 (0.11) 0.83 (0.13) 0.69 (0.12) 4.66 (0.87) 0.52 (0.15) 4.82 (0.71) 0.70 (0.13) 13.49 (2.62)

Fig. 3   Box-plots of accuracies obtained with the structure-based cross-validations (SHO) for scenarios ABC_ABC and ABC_X using different 
models of prediction for a grain Moisture, b grain yield, c yield index and d male flowering
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The RMSP criterion is not impacted by genetic structure like 
the accuracy, as RMSP is not lower in scenario ABC_ABC 
than in scenarios ABC_X. RSMP is thus complementary 
to the accuracy to evaluate the precision of the predictions.

The main interest of a plant breeder is to know the level of 
precision that can be reached within each genetic group, as 
selection will be often applied on individuals derived from 
crosses between related elite lines from a same group. In this 
dataset, to predict a group-specific VS for a given size of 
TS, it was generally better to use a TS from the same group 
(scenarios X_X), as previously shown in soybean (Duh-
nen et al. 2017). Depending on the trait, accuracy could be 
severely impacted by not representing relatives of the VS in 
the TS (scenarios X_Y and XY_Z). This suggests an incon-
sistency of allele effects between groups, or different LD 
extent between SNPs and QTLs. However, these hypotheses 

Table 8   Posterior mean of group-specific genetic variances, genetic 
correlations and environmental variances estimated using �� and K0 
on all the data

Posterior standard deviations, obtained on Gibbs samples, are shown 
between brackets

Grain moisture Grain yield Yield index Male flowering

�2

GA

2.11 (0.24) 52.78 (6.03) 56.55 (6.32) 508.88 (52.79)
�2

GB

3.02 (0.57) 44.81 (9.73) 54.44 (17.24) 490.26 (87.32)

�2

GC

1.36 (0.28) 42.81 (9.37) 30.84 (10.25) 453.57 (69.18)
rAB 0.76 (0.10) 0.96 (0.05) 0.97 (0.05) 0.99 (0.01)
rAC 0.73 (0.10) 0.95 (0.07) 0.93 (0.09) 0.99 (0.01)
rBC 0.73 (0.11) 0.96 (0.04) 0.95 (0.08) 0.99 (0.00)
�2

EA

0.34 (0.10) 5.02 (2.19) 4.34 (1.93) 45.42 (17.43)

�2

EB

0.52 (0.20) 6.82 (3.49) 14.57 (7.23) 36.61 (24.52)

�2

EC

0.31 (0.09) 3.94 (2.47) 7.91 (3.76) 9.37 (6.38)

Fig. 4   LS-means values plotted against GEBV obtained by LOO cross-validations using �� and coloration of individuals dots using standard 
CD values for a grain moisture, b grain yield, c yield index and d male flowering
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are not supported by the high genetic correlations estimates 
between groups for all the traits.

Group C showed interesting results as it was best pre-
dicted with a diverse TS, except for yield index. Simultane-
ously, the accuracy of scenario AB_C was as high or higher 
than the accuracy achieved in scenario C_C. We can hypoth-
esize that the allele effects are conserved between groups and 
that there are none or few QTLs specifically polymorphic in 
group C for these three traits. This hypothesis is supported 
by SNP data as group C features less specifically polymor-
phic SNP and a lower genome-wide genetic diversity than 
the other two groups (results not shown). As this group is 
the less diverse, with a high degree of relatedness between 
individuals, it might be beneficial to calibrate a model on a 
diverse set of individuals. Indeed, from a statistical point of 
view, the precision of the estimation of the effects of each 
locus or each breeding value gets worse as the diversity 
decreases within the TS. The situation is different for groups 
A and B which possibly presented specifically polymorphic 
QTLs. Thus, when trying to predict group A or B by the two 
other groups (using scenarios B_A, C_A, BC_A, A_B, C_B 
and AC_B), the effects associated to these group-specific 
polymorphisms cannot be taken into account by the model. 
The particular situation of group C (Iodents) is supported by 
its recent history as it was initially derived from individuals 
from group A for its complementarity with group B (Stiff 
Stalks) 50 to 70 years ago. Yield index presented a different 
behavior and possibly involves yield QTLs independent from 
precocity that are specifically polymorphic in each group. 
We also checked that this different behavior was not due to 
predicting yield index directly rather than computing it using 
the individual predictions of grain yield and grain moisture 
(results not shown).

One could notice that QTLs specifically polymorphic in 
one group is the extreme case of QTLs having group-specific 
allele diversities.

In a configuration where allele effects seem conserved 
between groups (based on genetic correlations estimates in 
Table 8), which is consistent with a moderate and recent 
genetic structure, one should recommend the constitution of 
a TS as diverse as possible where all the genetic groups are 
represented. This is supported by the high level of accuracy 
reached for scenarios ABC_X and by the accuracy gains 

obtained by adding extra-group individuals to the TS in 
SHO+ CV. Such diverse TS should be efficient to calibrate 
prediction models for a wide range of genetic material. This 
underlines its value as a generic TS for expensive traits eval-
uated on high-throughput phenotyping platforms or through 
extensive field trials (Millet et al. 2016). We showed that the 
accuracies, obtained when predicting the elite private lines 
by lines from public origin, were moderate or high depend-
ing on the trait. The accuracy was lower for traits submitted 
to directional selection such as grain yield or yield index 
for which the variability is limited among the elite lines. As 
elites lines were distributed in the three groups, we checked 
that accuracies were not entirely explained by the genetic 
structure (results not shown). As more data were imputed for 
elite lines, we also checked the impact of imputation by per-
forming a subset of analyses (within-group or across-group 
SHO scenarios) on 50K data that were available for all the 
lines and found very limited changes in terms of accuracy.

Modeling genetic structure to improve predictions

When performing genomic predictions within a structured 
population, one may wish to improve accuracy by using 
specific models taking into account this structure. There 
are different possibilities such as specifying structure 
as a fixed effect considering categorical or quantitative 
assignments of individuals to groups. It is also possible to 
model group-specific random effects, with group-specific 
variances and covariances between groups.

For this dataset, applying different models did not allow 
to improve the accuracy on the scenarios tested (ABC_
ABC and ABC_X). For model �� and �� , structure was 
removed from the kinship in Eq. (2) after being included 
as a fixed effect thanks to a genotypic centering using 
group-specific allele frequencies. One could expect that 
modeling groups as fixed effect would be advantageous if 
the differences between groups are larger than what can 
be attributed to differences in allele frequencies (Plieschke 
et al. 2015). Such benefits were not observed on our data. 
In �� the assumption is not only that groups differ in terms 
of mean but that allele effects may be potentially corre-
lated between groups, leading to group-specific genetic 
variances and specific covariances between groups. This 

Table 9   Correlations between a priori estimates of accuracy and empirical accuracies using �� and structure-based cross-validations (SHO) for 
group-specific VS (e.g., A includes ABC_A, A_A, BC_A, B_A and C_A)

VS Grain moisture Grain yield Yield index Male flowering

A B C A B C A B C A B C

CD 0.47 0.46 − 0.03 0.36 0.38 0.30 0.46 0.31 0.55 0.44 0.25 0.13
CDgp1 0.42 0.41 − 0.05 0.37 0.38 0.30 0.52 0.31 0.55 0.43 0.25 0.13
CDgp2 0.40 0.38 − 0.07 0.39 0.41 0.28 0.56 0.31 0.56 0.44 0.24 − 0.07
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model did not improve genomic prediction accuracy and 
sometimes reached substantially lower accuracies than �� . 
When applying �� , there was a variability of genetic cor-
relations estimates probably due to small TS sizes (results 
not shown) which might explain its poorer performances. 
One should also notice that the inference procedure dif-
fered between model �� (Bayesian inference) and the 
three other models (REML), which could possibly explain 
part of the differences in terms of performance.

It is important to note that for �� and �� which con-
sider categorical assignments, all the parameters are not 
estimable for across-group predictions. For instance, sce-
nario AB_C requires to estimate �C for both models, and 
�2

GC
 , �GAC

 and �GBC
 for model �� . These quantities cannot 

be estimated if group C is absent of the TS. In such a con-
text, one should either neglect genetic structure or take 
advantage of the admixed individuals to connect groups. 
We tested model �� which take into account such admix-
ture as fixed effects showing no clear improvement in 
terms of accuracy compared to ��.

Is it possible to forecast accuracy using CD?

Being able to forecast the accuracy of predictions would 
allow many applications such as the optimization of TS or 
the anticipation of genetic gain in breeding programs. Many 
indicators were developed in order to get an a priori esti-
mation of accuracy. Among them, the CD is well known 
(VanRaden 2008) and can be easily derived as the square 
correlation between the breeding value of an individual and 
its corresponding BLUP in a standard GBLUP model. The 
estimate obtained is supposed to quantify the amount of 
information available from the TS to correctly predict the 
breeding values, with a value scaled between 0 and 1. In 
theory, when the CD value is low, the prediction is more 
likely to be inaccurate (high expected errors of prediction) 
and will be strongly shrunk toward the mean and conversely 
for a high CD value. This situation was observed for grain 
moisture and male flowering on the LOO plot. A different 
situation was observed for grain yield and yield index and 
could be interpreted as an effect of modern breeding. In this 
panel, the lines featuring a high CD were recent and related 
to several older ones featuring lower CDs. As those two 
traits are those of major interest in breeding and this panel 
included lines that have been under directional selection, 
it yielded this gradient of CD values along the prediction 
axis. Individuals featuring high CD values were predicted to 
have high performances and conversely for low CD values. 
Male flowering and grain moisture on opposite were not 
submitted to directional selection. Thus individual CD value 
is an interesting criterion in breeding but one could question 

whether it could be informative about the accuracy of a set 
of individuals.

The CD value is linked to the accuracy as it represents 
its square value. For a defined TS and VS, one can easily 
compute each individual CD of the VS and compute the 
square root of the average CD to get an a priori estimation 
of accuracy. Such CD-based accuracy usually succeeded 
in differentiating the structure-based scenarios in terms of 
accuracy. However, there were differences depending on 
the trait and the genetic group considered. For instance the 
null correlation between empirical and a priori accuracies 
encountered in group C for grain moisture was probably due 
to the overestimation of within-group a priori accuracy (Sup-
plementary Fig. S9 and scenario C_C).

The use of standard CD in the presence of a genetic struc-
ture was already criticized in the literature for TS optimiza-
tion (Isidro et al. 2015) or to forecast accuracy (Hayes et al. 
2009). One hypothesis to explain the poor performance of 
the CD in such context is the existence of different but cor-
related allele effects between groups. To tackle this problem, 
a new CD indicator was derived from a multi-group model 
(Wientjes et al. 2015a). The authors also recommended the 
use of an alternative Kinship estimator, using group-specific 
allele frequencies to standardize the genotypic data. In this 
study, we tested two versions of this indicator, one using a 
standard Kinship: CDgp1 , and the other using the Kinship K3 
in Eq. (5) recommended by Wientjes et al. (2017): CDgp2.

Both indicators required estimates of genetic correlations 
between groups. These correlations were originally defined 
as resulting from the correlation between allele effects in the 
different groups (Karoui et al. 2012; Lehermeier et al. 2015). 
Each correlation may also be considered at the level of one 
individual where its breeding value in one group could be 
correlated to its potential breeding value in another group, 
assuming that these two groups showed correlated allele 
effects. The estimated correlations obtained in this study 
by applying �� using K0′ for CDgp1 or K3 for CDgp2 , were 
very high except for grain moisture. One could wonder how 
accurate they were as these values did not allow us to explain 
the differences in prediction accuracies observed between 
traits. In a recent study, Wientjes et al. (2017) investigated 
the impact of different genomic relationship matrices on the 
estimation on genetic correlations between groups. While 
they showed that using the genomic relationship matrix K0 
of VanRaden (2008) or K3 of Wientjes et al. (2017) esti-
mated genetic correlations between groups unbiasedly, they 
warned about the use of K0′ defined in Astle and Balding 
(2009) that we used in �� . However, we could check that the 
kinship of VanRaden (2008) and the one of Astle and Bald-
ing (2009) gave very close estimates (results not shown).

As a consequence of high genetic correlations, CD and 
CDgp1 gave very similar results. One could notice that using 
genetic correlations of 1 and equal genetic and residual 
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variances for each group would result in CDgp1 and CD 
being perfectly equal. Using K3 and a set of parameters esti-
mated using �� with K3 to compute CDgp2 also led to very 
similar results which indicated us that the kinship estima-
tor did not have much of an impact to forecast accuracy in 
this dataset. Grain moisture is the only trait featuring lower 
genetic correlations between groups but both multi-group 
CD did not outperform standard CD for this trait.

As CDgp1 and CDgp2 assume an �� genetic model, one 
could wonder whether they would not be better correlated 
to empirical accuracies obtained with the �� model instead 
of �� . As mentioned in the previous part of the discussion, 
�� cannot be used as a predictive model for across-group 
scenarios. However, we predicted breeding values and com-
puted empirical accuracies obtained with �� , using param-
eters estimated on the whole dataset. Multi-group CDs did 
not better forecast these empirical accuracies (Supplemen-
tary Figs. S13 and S14).

Once again, these results supported the hypothesis that 
the allele effects were indeed highly correlated between 
groups and the impact of genetic structure would mostly be 
due to different group-specific allele diversity at QTLs. The 
CD indicators are based on macro-parameters such as the 
global genetic variance, but they do not take into account 
more detailed information like the number of QTLs and their 
localization along the genome. Simple simulations, using 
real genotypic data, of traits similar in terms of genetic vari-
ance and heritability with the ones measured in our study, 
showed an important variability of the impact of genetic 
structure on accuracy considering SHO results (Supplemen-
tary Fig. S15). The differences between traits were only due 
to allele effects sampling and they could not be captured by 
CD indicators, thus supporting this hypothesis. The impact 
of QTLs specifically polymorphic in DH bi-parental fami-
lies on genomic prediction accuracy was recently shown by 
Schopp et al. (2017) when performing across family predic-
tions. The authors also discussed the impact of such QTLs 
on CD-based estimations of accuracy and recommended to 
use K3 , the kinship estimator we used in CDgp2 . However, 
we showed that CDgp2 did not improve estimations of accu-
racy in our study. We also tested other CDs such as the CD 
of contrast (Rincent et al. 2012, 2017) between breeding 
values and the mean breeding value of the TS, or the new 
proxy developed by Rabier et al. (2016). Both approaches 
did not give better results than the individual CD (results 
not shown).

Conclusion

In conclusion, genetic structure impacted genomic predic-
tion accuracy in this dent maize panel. For a given size of 
TS, the highest accuracies were often achieved when the 
TS and the VS were consistent in terms of group composi-
tion. However, a diverse TS remained efficient for every VS 
and adding extra-group individuals almost always improved 
accuracy. These results are encouraging concerning the use 
of this panel as a generic TS to be characterized on high-
throughput phenotyping platforms or through extensive 
field trials. Using alternative prediction models, taking 
genetic structure into account, did not allow any precision 
gain compared to GBLUP. Finally, the use of CD, a priori 
indicator derived from mixed model equations, proved to 
be sometimes but not always effective to forecast the level 
of precision in a set of predicted individuals. New indica-
tors taking structure into account did not achieve better per-
formances. This study has highlighted that, in groups that 
diverged recently, the impact of group structure is likely due 
to differences in group-specific allele diversity instead of 
differences in allele effects that cannot be captured by global 
parameters such as genetic covariances between groups used 
in indicators proposed so far. As the distribution of allele 
effects along the genome is probably of great importance, 
new a priori indicators of precision taking such information 
into account need to be developed.
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