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Abstract
Key message  We propose the application of enviromics to breeding practice, by which the similarity among sites 
assessed on an “omics” scale of environmental attributes drives the prediction of unobserved genotype performances.
Abstract  Genotype by environment interaction (GEI) studies in plant breeding have focused mainly on estimating genetic 
parameters over a limited number of experimental trials. However, recent geographic information system (GIS) techniques 
have opened new frontiers for better understanding and dealing with GEI. These advances allow increasing selection accu-
racy across all sites of interest, including those where experimental trials have not yet been deployed. Here, we introduce the 
term enviromics, within an envirotypic-assisted breeding framework. In summary, likewise genotypes at DNA markers, any 
particular site is characterized by a set of “envirotypes” at multiple “enviromic” markers corresponding to environmental 
variables that may interact with the genetic background, thus providing informative breeding re-rankings for optimized deci-
sions over different environments. Based on simulated data, we illustrate an index-based enviromics method (the “GIS–GEI”) 
which, due to its higher granular resolution than standard methods, allows for: (1) accurate matching of sites to their most 
appropriate genotypes; (2) better definition of breeding areas that have high genetic correlation to ensure selection gains 
across environments; and (3) efficient determination of the best sites to carry out experiments for further analyses. Envi-
ronmental scenarios can also be optimized for productivity improvement and genetic resources management, especially in 
the current outlook of dynamic climate change. Envirotyping provides a new class of markers for genetic studies, which are 
fairly inexpensive, increasingly available and transferable across species. We envision a promising future for the integration 
of enviromics approaches into plant breeding when coupled with next-generation genotyping/phenotyping and powerful 
statistical modeling of genetic diversity.
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Introduction

One of the greatest challenges of modern agriculture is deal-
ing with an accelerated growth of the human population 
worldwide, together with limited prospects of significantly 

expanding farmed land. Tailoring highly adapted genetic 
material to the available environments becomes a key ele-
ment to increase agricultural yields without the conversion 
of additional land and losses due to adverse environmental 
impact (Garnett et al. 2013). The differential response of 
genotypes across variable environments, known as genotype 
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by environment interaction (GEI), represents one of the 
major challenges faced by essentially all animal and plant 
breeding programs.

Traditional GEI studies are based on the evaluation of 
trials designed to estimate parameters that describe the 
interaction of tested genetic materials with a restricted set 
of environments or environmental conditions (Elias et al. 
2016). However, to maximize genetic gains over a range 
of local conditions, it is desirable to collect data from all 
measurable environmental factors affecting the performance 
of genotypes in any particular site (Des Marais et al. 2013). 
Patterns of relationships between environmental variables 
and the expression of genotypes can be investigated through 
modern concepts of phenomics and genomics, which rely on 
high-throughput, large-scale data collection and evaluation 
techniques (Houle et al. 2010; van Eeuwijk et al. 2018). Such 
changes in the physical environment can then be incorpo-
rated into genetic analyses to better understand the inter-
relationships between environmental factors and yield or 
performance variables for detection of the best combinations 
of genetic and environmental conditions.

In contemporary genetic analyses, the pattern of expres-
sion of a trait for a particular genotype across environments, 
or for various genotypes along descriptors of the environ-
ment, can be analyzed using reaction norm models (Ribeiro 
et al. 2015), which rely on the definition of an environmental 
variable that satisfactorily describes diverse environmental 
conditions. In breeding programs, an environmental variable 
for a reaction norm model of selection is usually calculated 
as the mean phenotypic performance of a trait in a restricted 
range of environments (Finlay and Wilkinson 1963; Eberhart 
and Russell 1966), and genetic covariance structures are pro-
posed to re-rank genotypes by calculating breeding values 
taking into account GEI (Calus et al. 2004). The effect of 
describing an environmental variable when building genetic 
covariance structures for reaction norm models of selection 
has been investigated, for instance, in animal breeding (for 
a review, see Rauw and Gomez-Raya, 2015).

The possibility of using experimental data from a particu-
lar environment to anchor the prediction of performance and 
subsequent recommendation of potentially successful geno-
types in other untested sites has been a topic of great interest 
in plant and animal breeding. This task has been explored by 
a number of authors by addressing environmental similarity 
based on multiple environmental attributes. To be able to 
predict the performance of individuals in an untested site, 
environmental covariables need to be used (Piepho et al. 
1998; Malosetti et al. 2016). The combination of environ-
mental covariables with geographic information systems 
(GIS) has been proposed also by Annicchiarico et al. (2006), 
and the use of extensive environmental information in reac-
tion norm models has been recommended by Jarquín et al. 
(2014). In Jarquín et al. (2014), 68 environmental covariates 

were used to evaluate grain yield of commercial wheat lines, 
allowing the prediction of unobserved lines in untested envi-
ronments based on high-dimensional environmental and 
genomic data. Several other authors have implemented and 
expanded this idea, such as Pérez-Rodríguez et al. (2015), 
who used 76 environmental covariables and pedigree infor-
mation in nine cotton trials. Additionally, to improve pre-
dictive accuracy through the exploration of environmental 
co-variation, the concept of on-farm trials has been used, 
which allows the generation of large volumes of data to tap 
into hundreds or even thousands of environments (Schmidt 
et al. 2018). The inclusion of environmental information in 
the genetic models has resulted in significant gains in pre-
diction accuracy of genotype performance, often improving 
the predictive ability by around 20% and, in some cases, by 
up to 34% (Jarquín et al. 2014; Acosta-Pech et al. 2017). 
Performance prediction using environmental data also opens 
possibilities to expand recommendations of genetic mate-
rials across countries that lack experiments for particular 
crops of interest, thus saving resources, avoiding sanitary 
barriers and reducing phenotyping costs (Pérez-Rodríguez 
et al. 2017; Sukumaran et al. 2017).

Various modeling techniques have shown their usefulness 
in the analysis of data from multiple environments, includ-
ing mixed-effects models, linear-bilinear, crop growth and 
Bayesian approaches (van Eeuwijk et al. 2016). Despite the 
impact that such approaches have already had in understand-
ing and exploiting GEI for prediction of yet-to-be-observed 
phenotypes, there is still room for expanding and improving 
their use in applications not yet explored. Understanding the 
sources of environmental variation has increasingly become 
a key element for the assessment and recommendation of 
genotypes under probabilistic scenarios of global climate 
change and rapid landscape modification by human action 
(Raza et al. 2019). Such models can be used along the vari-
ous stages of a breeding cycle (Annicchiarico and Iannucci 
2008) to identify loci related to phenotypic trait expression 
(Ferrero-Serrano and Assmann 2019) and to determine sets 
of environmental factors underlying phenotypic plasticity 
(Piepho 2000; Nicotra et al. 2010). For example, traditional 
genomic selection (GS) and genome-wide association stud-
ies (GWAS) can also be developed under environmental gra-
dient models (Acosta-Pech et al. 2017; Velazco et al. 2017; 
Mota et al. 2020).

Integrating enviromics with breeding

To more thoughtfully explore the effects of the various 
environmental factors on selective breeding, we borrow the 
term “enviromics” from human medicine, i.e., the study 
of the environmental conditions that affect human health 
in the context of precision medicine (Gad 2008; Teixeira 
et al. 2011; Riggs et al. 2018). Here, however, we extend 
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this concept and apply it to the environment-dependent 
part of reaction norm models for genetic selection with 
the goal of exploiting patterns of GEI in local environ-
ments, mainly in plant, but readily extendable to animal 
breeding. This work is inspired by exciting developments 
in the field of population genomics and epidemiology in 
which a new type of analysis of phenotypic and genotypic 
data and environmental variables, termed “phenome-wide 
association studies” has been used to investigate the effects 
of environmental variables on clinical outcomes using 
data from large and diverse populations such as the PAGE 
consortium (Matise et al. 2011). Along the same lines, a 
recent study involving an extensive analysis of the local 
environments described by 204 geoclimatic variables of 
Arabidopsis accessions and 131 phenotypes revealed can-
didate adaptive genetic variation, such as cold tolerance 
associated with high-dimensional environmental variables 
(Ferrero-Serrano and Assmann 2019).

In our conceptualization of enviromics in breeding, a 
particular land area is a geoprocessing environment cor-
responding to a grid of pixels, just like those of a digital 
image, and for any single environmental variable a value 
can be assigned to every pixel. The distribution of values 
of a particular environmental variable in this collection of 
pixels constitutes the range of envirotypes (Beckers et al. 
2009), that have arisen in a specific land area (Fig. 1). In 
this context, for each set of pixel coordinates it is possible 
to assess an effect on the evaluated trait. Thus, connec-
tions between pixels allow making feasible predictions in 
the absence on genomic and/or genealogical relationship 
information between evaluated genotypes (see Fig. 2, parts 
“a” and “b”). In crop plants that allow obtaining large 
numbers of identical copies of the same genotype (e.g., 
inbred lines, hybrids or clonal varieties), any individual 
genotype can be tested in multiple sites and over time, 
so that the notion of a reaction norm of the genotypes 
distributed across a wide environmental range is straight-
forward. In animal breeding, or in outbred plant species, 
the reaction norm of an individual genotype needs to be 
inferred based on the performance of genetically related 
individuals across a range of environments and moments 
(Rauw and Gomez-Raya 2015; Fernandes et al. 2019). In 
any case, if phenotypic data from an individual genotype 
in existing field trials is available in some pixels, one can 
relate the distribution of a particular phenotypic value with 
the envirotypes using statistical modeling (Hyman et al. 
2013; van Eeuwijk et al. 2018). 

Beckers et al. (2009) and Xu (2016) first proposed the 
term envirotypes (environment + types) as all potential envi-
ronmental factors that affect plant growth and yield, together 
with the definition of envirotyping as the process for deter-
mining and measuring all these environmental factors. In 
our conceptual framework, the environmental variables that 

can be obtained by envirotyping can be termed “enviromic 
markers” (Fig. 1). The potential features that an enviromic 
marker presents within each site/pixel are the envirotypes. In 
turn, the combination of all the envirotypes at these markers 
corresponds to the envirome and the marker polymorphism 
is the envirotypic variation. As proposed by Xu (2016), envi-
rotyping is therefore a third “typing” technology, alongside 
genotyping and phenotyping, and enviromics would then be 
a corresponding third “omics” technology, alongside with 
genomics and phenomics technologies. Reaction norm mod-
els are then built for the whole evaluated area and used to 
predict the performance of any tested genotype for the trait 
under evaluation in any pixel (tested and non-tested) in the 
geoprocessing environment.

Integrating breeding and environmental data relies on the 
increasing worldwide availability of geoprocessing tech-
nologies, such as GIS in the scope of precision agriculture 
(PA) (Lindblom et al. 2017). The collection and process-
ing of spatiotemporal data on weather, water, soil and yield 
variables is rapidly increasing due to the societal need for 
food security and technological advances. The Arabidop-
sis CLIMtools repository (https​://githu​b.com/CLIMt​ools/) 
is, to our knowledge, the first repository of data and tools 
specifically tailored for the exploitation of environmental 
variation associated with any gene or variant of interest in 
plants. In crop plants, the international DivSeek initiative 
is a remarkable example (Nature Genetics Editorial 2015), 
and we can envisage in the near future a rapid expansion of 
similar efforts toward the organization and availability of 

Fig. 1   Enviromics terms anchored into a geoprocessing environment 
(a land area with nine pixels). Enviromic markers (e.g., time-trend 
climate, landscape or management treatments) are massively achieved 
by means of modern envirotyping techniques; thus, an exhaustive set 
of such markers composes the envirome. A possible value/feature 
that an enviromic marker can assume is called an envirotype, and the 
combined envirotypes compose the envirotypic polymorphic variation

https://github.com/CLIMtools/
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Fig. 2   Schematic conceptualization. a Target population of environments (TPE) and global enviromic markers, b illustrative example of an envi-
romics data set, and c hypothetical GIS–GEI method application containing just 20 trials and 5 genotypes, applying the “part b” example
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very large collections of genetics and genomics data linked 
to physical resources, germplasm curators, breeders and 
researchers alike.

The main challenge in the implementation of enviro-
mics approaches is that only a few of the pixels represent-
ing a land area contain breeding trials having phenotypic 
and genotypic information (Fig. 2b). However, all pixels 
have environmental information since affordable meteoro-
logical stations have been increasingly installed in multiple 
and diverse locations, such that environmental data can be 
interpolated by kriging across any desired area (Oliver and 
Webster 2015). Because geospatial information is now easily 
accessible, data-driven approaches supported by GIS can be 
exploited for breeding practices. Challenges of data analysis 
in agricultural research are changing as the features of avail-
able data improve (Wolfert et al. 2017), especially through 
the use of modern geotechnologies (Xu 2016). Remote-sens-
ing technologies can also provide data that can be used with 
specific spectral bands for the aimed purposes (Kasampalis 
et al. 2018). Precipitation, temperature, terrain altitude (in 
the form of digital elevation models), some cultural treat-
ment, solar radiation, soil properties and water deficit infor-
mation are some of the variables that relate well to most phe-
notypic traits evaluated in agricultural production (Xu 2016; 
Chang 2017). Indeed, the combination of GIS and breeding 
has been gradually showing its potential (Hyman et al. 2013; 
Haghighattalab et al. 2017; Marcatti et al. 2017; Costa-Neto 
et al. 2020). For example, the spatial positioning of trials 
or even experimental plots linked to the measurement of 
multiple environmental information by envirotyping, either 
at macro- or micro-scales, suggests that the prospect of envi-
romic techniques is especially promising in association with 
breeding cycles and genotypic recommendations.

In this study, we explore the concept of enviromics in the 
context of phenotypic breeding by presenting and applying 
a method based on geographic information systems coupled 
with genetics (GIS–GEI) to a case study based on advanced 
environmental interpolation techniques. We show that the 
main advantages brought by this method are an improved 
matching of genotypes to their most appropriate sites (either 
tested or non-tested), a detailed zoning of breeding areas 
with high genetic correlation among sites within zones, and 
the identification of the best sites to carry out experiments 
for further analysis based on regions that maximize trait 
heritability.

Methods

Environmental and genetic data simulation

Two sequential algorithms were adopted in the simulation 
process. The first algorithm generated and characterized 

the land area composition within a geoprocessing envi-
ronment and formulated the envirotypic data, indepen-
dently of genotypic and phenotypic information. Figure 2b 
shows a schematic example containing some trials, and 
the arrangement of the envirotypic data of each enviromic 
marker. The second algorithm entailed generating trials 
and genotypes, while the plant phenotypes were simulated 
to provide four sources of variation: (i) genotypic values 
normally distributed with known mean and variance; (ii) 
an infinitesimal genotypic relationship with each enviro-
typic information of the previous simulation stage; (iii) 
a particular trial effect; and (iv) an overall random error. 
For a better understanding of the simulation process and 
algorithms, please refer to the commented simulation code 
“code_data-simulation.R” provided at [https​://
figsh​are.com/artic​les/Envir​omics​_data/82641​32].

Envirotypic algorithm

A set of 50 trials was randomly allocated to a square area 
covering 100 × 100 = 10,000 pixels. One hundred overlap-
ping rasters containing envirotypic information of a single 
environmental variable at their corresponding sites/pixels 
were simulated. Overlapping sites/pixels across all the 
rasters constitute an enviromic marker for the land area. 
We then simulated data for each enviromic marker cor-
responding to the values of some exogenous environmen-
tal variable that could potentially affect yield in the area, 
by adopting a simple matrix multiplication between two 
smoothed vectors of dimensions 100 × 1 and 1 × 100, thus 
composing a 100 × 100 squared matrix of a gradient of 
values. In our simulation, the values attributed to the envi-
romic markers were merely random, but in practice they 
would correspond, for example, to the historical annual 
temperature, historical annual precipitation, any cultural 
treatments, terrain altitude, nutritional or physical soil 
characteristics, radiation and vegetation indices, among 
others, as described by Xu (2016).

The formulation of the envirotypic data based on purely 
random values of some environment variables should be 
seen as a simplification for the purpose of our simulations. 
In fact, this formulation could be particularly challenging 
for the genetic modeling in enviromics, which may have 
important implications for the assessment of the model 
performance on relating, for instance, the influence of 
time-dependent trends of climate or cropping management 
treatments to the phenotypic trait of interest.

Genotypic and phenotypic algorithms

Values for a particular phenotype collected from 100 plant 
genotypes (coded as G001, G002, up to G100) in multiple 

https://figshare.com/articles/Enviromics_data/8264132
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trials were simulated, mimicking a response trait, e.g., agri-
cultural yield. It could correspond, for instance, to the yield of 
an annual crop, timber volume of a planted forest tree, forage 
biomass or fruit crop yield. The envirotypes of the overlap-
ping enviromic markers can influence (either positively or 
negatively) the phenotypic trait expression of a plant genotype 
at the particular site/pixel, with hypothetically known latent-
effect magnitudes, similar to allele types of a molecular marker 
at a genomic locus.

More specifically, the raw genetic effect of each genotype 
was considered as normally distributed with known trait mean 
and variance. In addition, the primary relationship between 
enviromic markers and the trait expression was modeled as 
linear, and embedded in phenotypic values, weighted by the 
latent importance of each marker. This envirotypic weighted 
effect on the trait was also used to order trials from the least to 
the most favorable one over the trait expression.

The simulation of GEI effects was performed based on a 
general first-order autoregressive process to describe the spa-
tially variable genotypic interactions across the ordered trials. 
This simulation process specified the behavior of the genotype 
across environments depending on its previous values com-
bined with a non-predictable stochastic term (random noise) 
to set the next value. This process was performed until all tri-
als characterized suitable information in terms of nonlinear 
predictable trends (please, see Fig. 3b to check GEI levels over 
different environments).

To establish sets of phenotypic, environmental and genetic 
data suitable for enviromic marker analysis, the simulation 
process was repeated with varying parameter values targeting a 
relative genetic variance of approximately 10% ( h2  ≈  0.10), a 
typical value for a considerable proportion of quantitative traits 
in plants. Note that for simplicity, we used the term heritability 
throughout the study to express the relative genetic variance of 
a trait. For a more in-depth treatment of the precise definition 
and estimates of heritability in the context of plant breeding, 
see Schmidt et al. (2019a). The following model was used for 
the simulations:

where y is the vector of phenotypic means per genotype and 
trial; � represents the vector of fixed effects (overall inter-
cept); g represents the vector of random effects of genotypes, 
assumed g ∼ N

(
0,K�2

g

)
 ; K is a kinship matrix built from 

pedigree or genomic information; t represents the vector of 
random effects of trials, assumed t ∼ N

(
0, I�2

t

)
 ; and X, Z 

and W are known incidence matrices for � , g and t, respec-
tively. The residual vector � was assumed as � ∼ N

(
0, I�2

�

)
 . 

The relative genetic variance, herein termed trait heritability, 
is given by h2 = �2

g
∕
(
�2
g
+ �2

t
+ �2

�

)
 , where �2

g
 , �2

t
 and �2

�
 are 

the variance components related to genotypes, trials and 
residuals, respectively.

(1)y = X� + Zg +Wt + �,

Case study: GIS–GEI method for enviromics

To establish a case study for enviromics for the joint analysis 
of an experimental setting accounting for phenotypic, geno-
typic and envirotypic data, we propose the geospatial (geo-
graphic information system) genetics–environment interac-
tion (GIS–GEI) method. GIS–GEI proceeds by introducing a 

Fig. 3   Features of the environmental index (EI) obtained in the simu-
lations. a Comparison between EI of all area pixels and EI of the 50 
trials; b phenotypic means across environments for the 100 simulated 
genotypes: genotypes with the highest (G061), lowest (G039) and 
intermediate (G074) yield are highlighted; c reaction norm from the 
linear random regression model addressing the 100 genotypes. The 
blue dotted line is the overall fit tendency
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new approach for evaluating a phenotypic trait by converting 
the land area into a set of pixels in a geoprocessing frame-
work, making full use of the envirotyping implementation 
for breeding purposes. The general idea of the method is to 
generate maps to be utilized within an optimal genotype rec-
ommendation framework. Thus, it is possible to identity geo-
graphic zones with high genetic correlation between them, 
i.e., a mega-environment (ME) in which genotype classi-
fication changes are minimized (Gauch and Zobel 1997). 
Additionally, it provides maximization of selection accuracy 
by using GEI in the model, which often implies a substantial 
reduction of the residual variance.

The analytical procedures used in GIS–GEI consist of 
two steps. The first one refers to the development of the 
enviromic markers relating the trait with the environmental 
variables, from which an environmental index (EI) is built. 
The second one refers to the genetic modeling, which con-
sists in fitting reaction norm mixed models assuming the 
EI as explanatory variable. This second step also considers 
the estimation of genetic-environmental parameters such 
as trait heritability based on the enviromic markers. These 
procedures are summarized in Fig. 2c (parts c1 and c2) and 
detailed below.

Step 1: Environmental index (EI)

For computing the EI, the phenotypic mean within the 50 
trials deployed in the area was calculated and subsequently 
EI values were generated for the entire range of pixels ras-
ter by using a random forest (RF) regression in R software 
(Liaw and Wiener 2002). Random forest is a nonparamet-
ric multivariate modeling technique that is well suited to 
capture nonlinear dependencies among variables and uses a 
common machine learning algorithm based on an enhanced 
utilization of regression trees. Several studies from differ-
ent geoscience fields have found a superiority of RF over 
other machine learning techniques (Koch et al. 2019). In our 
study, five hundred decision trees (default arguments of the 
randomForest R function) were built to establish the rela-
tionships between the 100 enviromic markers and the mean 
performance of the genotypes within trial for the evaluated 
yield trait. To this end, the RF models obtained from the 
phenotypic mean data were used to predict the EI across all 
pixels in the area, using kriging interpolation (see Fig. 2c1). 
We assumed that a higher predicted phenotypic mean of a 
specific site indicates higher local adaptive fitness or produc-
tivity of the genotype and, consequently, better site quality. 
In this context, if there is interest in establishing any specific 
EI threshold value (e.g., to discriminate good sites from poor 
ones), breeders can use information from previous experi-
ments, such as meta-analysis, or exploit future perspectives 

according to expected phenotypic gains to ensure profits 
from a given breeding program. Finally, the EI values were 
rescaled to a 0–1 interval, with 0 being the worst site, and 
1 the best one. In addition to composing the genetic model 
elucidated below, the EI has an important role in imputing 
the envirotypes for all pixels of the area, which may then be 
used for further breeding inferences.

As any other data-based modeling technique, the RF algo-
rithm requires training and validation. The assessment of EI 
quality for the whole area was carried out using leave-one-
out cross-validation (Kohavi 1995), so that the model was 
trained with data of 49 trials to predict the 50th. The valida-
tion procedure was repeated until all environments had a 
predicted value, and subsequently, the correlation between 
the observed and predicted values was calculated.

Step 2: Genetic modeling

To represent the association of the evaluated trait with EI, 
the following linear model (for the single-trait case) can be 
adopted (Resende et al. 2001):

where yij is the measurement of the genotype j associated 
with the trial i ( i = 1, 2,… , 50 ; j = 1, 2,⋯ , 100 ); �0 and 
�1 are fixed (population-level) intercept and slope for EI, 
the environmental index; a0j and a1j are random intercept 
and slope coefficients (individual-level) of genotype j , both 
jointly forming the random effects of additive genetic value; 
and eij is the random error. A bivariate normal distribution 
needs to be assumed here to make the model invariant with 
respect to re-scaling of the EI covariate. In matrix notation, 
this model can be written as follows:

where y is the vector of phenotypic observations; � is the 
vector of fixed effects; e is the vector of residual terms, 
assumed as N(0,I�2

ei
 ), with �2

ei
 being the residual variance in 

the i th EI; and a0 and a1 are the vectors of random regression 
coefficients, i.e., the intercepts and EI slopes, respectively. 
In addition, X is the incidence matrix for the fixed effects; 
Z0 is the incidence matrix for a0 , containing zeros and ones; 
Z1 is the incidence matrix for a1 , containing zeros and EI 
values. Notice that heterogeneity of residual variances was 
assumed in this model, since EI is randomly generated with 
different noises. With such model specifications, the 
expected value of y across trials (i.e., model averages) is 
E(y) = X� , meaning that E

(
yij
)
= �0 + �1EI  for all yij , 

which refers to the overall mean in EI. The structure of vari-
ances and covariances is given by:

yij = �0 + �1EI +
(
a0j + a1jEI

)
+ eij

(2)y = X� + Z0a0 + Z1a1 + e,
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where K is the kinship matrix; �2
a0

 , �2
a1

 and �a0a1 (or �a1a0 ) are 
variances of and covariances between the random regression 
coefficients, i.e., they are covariance functions that continu-
ously describe the covariance structure for the trait, in the 
range of EI covered by the data; I is an identity matrix; and 
�2
ei
 is the residual variance across environments, which is 

described in more detail below. The covariance matrix ( �a ) 
between random genetic effects for an individual genotype 
is:

The estimation and prediction of fixed and random 
effects according to the linear model specified above can be 
obtained through the mixed model equations (MME):

Genetic and residual variances are dependent on EI, that 
is, they can increase or decrease throughout sites. The 
genetic variance in the i  th EI can be written as: 
�2
gi
= H�

i
�aHi = �2

a0
+ 2EIi�a0a1 + EI2

i
�2
a1

  ,  w h e r e 
Hi =

{
1,EIi

}
 ; h2

gi
= �2

gi
∕
(
�2
gi
+ �2

ei

)
 is the relative genetic 

variance, herein termed heritability, for a particular EIi ; 
�gii∗ = H

�

i
�aHi∗ = �2

a0
+
(
EIi + EIi∗

)
�a0a1 + EIiEIi∗�

2
a1

 is the 
genetic covariance between sites i and i∗ (dependent on EI 
information); rgii∗ = �gii∗ ∕

(
�2
gi
�2
gi∗

)1∕2

 is the genetic correla-
tion between sites i and i∗ (dependent on EI information), 
and Hi∗ =

{
1,EIi∗

}
.

For the use of MME, estimates of �a and �2
ei
 are required. 

Estimates of the genetic parameters for spatial data were 
obtained by restricted maximum likelihood (REML) using 
the EM algorithm. At each EM iteration, the mixed model 
equations were solved marginally for the assumed EI. This 
process was implemented as a generalization of genetic 
parameters estimation for spatial data under heterogeneous 
residual variances. In summary, the EM algorithm alternates 
between calculating conditional expected values and maxi-
mizing the restricted likelihoods. In this context, the term y 
(observed phenotypic values) are defined as “incomplete 
data”, whereas the “complete data” is defined as y and the 
unobservable random effects ( a0 and a1 ). The convergence 

Var
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criterion was 10−6, and the number of iterations varied 
around 100. The implemented EM algorithm was compared 
with the package “sommer” (Covarrubias-Pazaran 2016) 
with equivalent results. The variance component estimators 
under an EM algorithm are given by the following 
equations:

𝜎̂2
ei
=

y�y−𝛽
�
X′y−â

�

0
Z
�

0
y−â�

1
Z
�

1
y

N−rank(X)
 , calculated marginally according 

to EIi values; and

where N is the total number of observations; rank(X) is the 
rank of X (or number of linearly independent columns of X); 
q is the number of random elements (i.e., number of indi-
viduals or genetic values to be predicted); tr() is the matrix 
trace operation or sum of matrix diagonal elements; Cij is a 
partition of the inverse ( C ) of the coefficients matrix of the 
mixed model equations:

Starting from initial values for �a and �2
e
 , we obtain � , a 

and � from the mixed model equations, which are used to 
update the estimates of �2

e
 , �2

a0
 , �a0a1 , �a1a0 and �2

a1
 which are 

then returned to the mixed model equations. This is per-
formed successively until convergence. Initial values of �2

a0
 , 

�a0a1 and �2
a1

 can be obtained using REML estimates 𝜎̂2
gi
 for 

some EI.
The estimated genetic value (EGV) for any genotype j 

can be obtained for various sites (indicated by the EI) 
through the random linear regression: EGVij = â0j + â

1j
EIi . 

The obtained EGV allows the re-ordering of the candidates 
to selection, according to the desired EI. Within a real breed-
ing program, the proposed methodology can be applied to 
candidate genotypes to be tested into a next-stage recurrent 
breeding strategy, or even to evaluate cultivars in a final 
stage of a breeding cycle. These features are discussed in 
more detail in the Discussion section.

Based  on  the  genet ic  cor re la t ion  mat r ix 
among g rouped  EI  ( i . e . ,  p ixe l s  address ing 
0 ≤ EI < 0.1, 0.1 ≤ EI < 0.2,… , 0.9 ≤ EI ≤ 1 ), we used a 
popular distance-based method, the Unweighted Pair Group 
Method with Arithmetic mean (UPGMA), to define breed-
ing zones, which are locations within which genetic correla-
tions between genotype and EI were optimized. In addition, 
a recommendation map for potential yield of the best-ranked 
genotypes was also provided as additional visual information 
derived from GIS–GEI.

Σ̂aij =
â0iK

−1â1i + tr
(
K−1

)
Cij𝜎̂

2
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q
,
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Validation on unbalanced data scenarios

Finally, in order to evaluate the proposed methodology under 
unbalanced data conditions, the random regression model 
was tested for the following two situations described below. 
Inferences were carried out based on phenotypic averages 
of the selected genotypes (i.e., the best ranked genotype for 
each pixel).

•	 Random reduction of the number of trials (down to a 
minimum of three). The data from trials that were 
removed were assigned as validation groups, and those 
from the remaining trials as training groups. Thus, more 
than one draw was made in each reduction stage account-
ing for approximately a total of 1000 iterations;

•	 Different levels of genotype imbalance per trial with the 
constraint that all genotypes were always present in the 
analysis, i.e., for each genotype, the number of experi-
ments was reduced (approximately 500 iterations were 
performed). The data from genotypes that were removed 
were assigned as validation groups, and those from the 
remaining genotypes as training groups.

Results

Data simulation and building of the environmental 
index (EI)

Simulated data sets are available at [https​://figsh​are.com/
artic​les/Envir​omics​_data/82641​32]. The final phenotypic 
mean of the simulated yield trait was 46.10 units with stand-
ard deviation equal to 12.90 and minimum and maximum 
values equal to 5.50 and 117.10, respectively. To illustrate 
the simulation framework, three enviromic markers as well 
as the spatial distribution of the genotypic trials within the 
target area are illustrated in Fig. 2b.

The EI was constructed by extrapolating yield for the 
whole area, and subsequently rescaling it to a 0–1 inter-
val. The EI mean and standard deviation for all pixels were 
0.53 ± 0.27, and for the 50 trials, they were 0.43 ± 0.29. 
The EI distribution for the entire area presented an irreg-
ular shape with a higher density around 0.10 and 0.75. 
Lower densities were observed in the lower and upper tails 
(Fig. 3a). Figure 3b shows the behavior of the 100 genotypes 
along the range of EI values in terms of the reaction norm for 
all EIs. The EI distribution for the 50 trials showed a well-
distributed range between 0 and 1 (Fig. 3c).

A great overlap was observed between the EI of the 
whole area and EI subset to the 50 trials (Fig. 3a), which is a 
desired feature for the application of the GIS–GEI approach. 
Moreover, the EI is expected to show a positive correlation 
with the simulated trait yield. The correlation between the 

average yield of the 50 trials and the EI was 0.98, whereas it 
was 0.54 when considering both trials and genotypes. The 
decreased correlation is explained by the within-trial geno-
typic variability. The cross-validation predictive ability (pre-
dictive correlation) of the RF model was 0.87. These metrics 
together highlight the suitability of the GIS–GEI approach, 
even when there are no yield records from existing trials in 
the target area. Finally, the general mean and standard devia-
tion of yield considering all 100 genotypes and interpolating 
to the whole area (10,000 pixels) were equal to 47.23 ± 5.46.

Genetic modeling

Throughout the pixels across the area, and considering the 
assumed range of EI, the trait heritabilities varied between 
0.41 (EI = 0.00) and 0.47 (EI = 1.00), with the lowest valley 
value equal to 0.19 when EI = 0.32. The two highest herit-
ability values were observed at the EI distribution extremes 
(Fig. 4a). The average estimated heritability was 0.32, thus 
larger than the parameter value used in the simulation (with-
out the GEI factor). In terms of the worst (EI = 0) and the 
best (EI = 1) environments, the genetic variances were 39.18 
and 138.29, respectively. The lowest value was equal to 
16.95 at EI = 0.30. The residual variance was 56.75 at EI = 0 
(the lowest value) and 154.50 at EI = 1. The model with-
out EI, which considers the trials as experimental blocks, 
yielded an overall 𝜎̂2

g
= 20.00 ; 𝜎̂2

t
= 40.75 and 𝜎̂2

e
= 106.23 , 

resulting in an overall trait heritability equal to 0.12.
Higher genetic correlations (rg) were observed between 

EI = 1.00 and EI = 0.50, with rg values ranging between 0.99 
and 0.84, suggesting low re-ranking between genotypes in 
these locations (Fig. 4b). The lowest genetic correlation 
(rg = −0.49) occurred between the extremes EI = 0.00 and 
EI = 1.00. The UPGMA procedure for grouping the loca-
tions with high genetic correlation between EI and geno-
types resulted in the definition of three breeding zones: 
red (EI between 0.00 and 0.32); khaki (EI between 0.32 
and 0.44) and blue (EI between 0.44 and 1.00) (Fig. 5a). 
Among the set of 50 trials, 25 belonged to the red zone, five 
experiments were within the khaki zone, and the blue zone 
encompassed 20 trials. Within the red zone, the genetic cor-
relation (rg) was, on average, equal to 0.92; within the khaki 
zone the average correlation was equal to 0.98; and for the 
blue zone it was 0.96. The genetic correlations between the 
red and khaki zones, red and blue and khaki and blue were 
0.39, − 0.05 and 0.70, respectively, indicating a substantial 
genetic re-ranking shared between the khaki and the blue 
breeding zones. The red zone is the one with the lowest yield 
potential, with an average EI of 0.16, the khaki zone has 
an intermediate potential (average EI of 0.38), and the blue 
zone has the highest potential (average EI of 0.72).

Of the 100 genotypes evaluated through GIS–GEI, there 
were five (namely G050, G061, G062, G065 and G098) 

https://figshare.com/articles/Enviromics_data/8264132
https://figshare.com/articles/Enviromics_data/8264132
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ranking first in at least one pixel, which were the best in 
14.1, 30.2, 1.85, 15.3 and 38.6% of the whole area, respec-
tively (Fig. 5b). When looking for the best genotype for each 
pixel, the tendency was that neighboring pixels shared the 
same genotype. The expected yield potential when deploying 
these five recommended genotypes in the field conditions of 
the evaluated envirome is shown in Fig. 5c with an average 
yield equal to 62.24. It is important to notice that each pixel 
in the area has a particular genotypic ranking. For example, 
when removing the best one (first selected), the second-best 
genotypes were G006, G032, G041, G074 and G089 in 4.3, 
44.9, 25.7, 0.1 and 25.0% of the area, respectively. Thus, 
different genotypic recommendation panels can be allocated 
to the area according to the different rankings of genotypes 
in the environmental gradient.

Validation in unbalanced data scenarios

Considering the two different conditions of unbalanced data 
tested, the reduction in the number of experimental trials 
resulted in a constrained EI predictive ability to recommend 
genotypes to locations in the area. In terms of yield poten-
tial, a reduction was observed for the selected genotypes, 
but the study indicates that an unbalancing of up to 40% 
of the total number of trials (a reduction from 50 to ~ 30 
trials in our simulated case study) did not result in signifi-
cant loss of predictive ability for genotype recommendation. 
However, using a very small number of experiments should 
be avoided, because this condition can, by chance, result in 
biased yield potential estimates for the area given the use of 
inadequate genotypes (Fig. 6a). In contrast, imbalance of 
genotypes within the experiments did not present major risks 
for the application GIS–GEI. It is a good practice, however, 
to have genotypes allocated in at least 20 of the 50 evalu-
ated experiments (Fig. 6b), to ensure an appropriate level 
of representativeness of the genotypes across the land area.

Discussion

Enviromics in the quantitative genetics’ framework

Finding an environmental benchmark that represents agri-
cultural productivity is one way of characterizing the qual-
ity of the environment, independent of the in-depth knowl-
edge of the sources of the observed variation in phenotypic 
expression. Individually, a particular environmental factor 
that affects plant growth and yield (an envirotype) may not 
significantly affect large groups of genotypes that share 
diverse levels of genetic relationship across locations in a 
wide geographical area. For a single envirotype, repeated 
observation of an individual genotype (or its progeny) may 
show that its performance has a spatially dependent pattern 
across the locations within the area. In the concept underly-
ing our study, the geographical area is a virtual image so 
that each location is a multiple overlapped pixel space in a 
coordinate system. Each pixel has intensity in some range, 
so that the envirotypes are now an image consisting of a big 
collection of pixels (Fig. 1). It is noteworthy that only a few 
pixels contain genetic trials with phenotypic and possibly 
genotypic information, but all pixels should have environ-
mental information.

Grouping together images with similar pixels is analo-
gous to the concept of linkage disequilibrium (LD) among 
genetic markers. It is known that many loci may not be 
directly involved in the expression of the phenotype itself, 
but their association to the causal loci due to LD increases 
the accuracy of predictive models (Jannink et al. 2010). 

Fig. 4   Breeding parameters across the environmental index (EI). a 
Heritability estimate across the entire EI range. b Heatmap depicting 
the genetic correlation between different EI values



105Theoretical and Applied Genetics (2021) 134:95–112	

1 3

The conceptualization of enviromics is built on this same 
principle. If measurable environmental variables are miss-
ing or neglected (equivalent to missing molecular marker 
genotype data at genomic regions), the combination of 
enviromic markers may still represent the explanation of a 
representative fraction of the phenotypic variation, either for 
all genotypes or for just some of them. Additionally, under 
a structured environmental and genetic (pedigree- and/or 
marker-based) dataset, the model’s predictive ability may be 
enhanced using the general concept of distance based on lati-
tude/longitude (for example) and/or LD between markers. In 

this case, cross-validation analysis can be performed consid-
ering specific spatial patterns (for instance, testing extreme 
environments) and genetic relationships (for instance, testing 
subpopulations) in order to account for possible structures 
in the dataset.

The resolution of an enviromic model will depend pri-
marily on the size of the available sample unit (pixel). For 
example, when using geographic information, the pixel size 
will delimit the refinement level of the genotypic evalua-
tion (Marcatti et al. 2017). Environmental information with 
high spatial resolution, particularly adequate to contemplate 

Fig. 5   Genetic extrapolations. a Breeding zones map depicting the 
three zones fitted by the UPGMA clustering procedure. A higher 
genetic correlation is observed within zones, as opposed to across 
zones, indicating fewer genotypic ranking changes are expected with 

zones. b Recommendation map depicting the distribution of the top 
five genotypes for yield. (c) Yield extrapolation for the top five geno-
types across the land area

Fig. 6   Enviromic prediction under two unbalanced data scenarios. 
a Impact of reducing the number of trials on yield projection of the 
selected genotypes. b Impact of reducing the average number of tri-

als that include a specific genotype on yield projection of the selected 
genotypes. The dotted blue line is the average yield for the entire area 
without genotypic selection/recommendation
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forest stands, crop plantations and livestock farms, should be 
preferred to improve the accuracy of the models.

Equivalent to the metrics of Call Rate and MAF (Minor 
Allele Frequency), when using DNA marker data, enviromic 
markers also require quality control measures. The number 
of missing values described by the Call Rate parameter can 
be solved by adopting two strategies. The first would be to 
increase the size of all pixels in the area, and use the average 
information available in the neighborhood. Although this 
will increase the unit-of-handling area, thereby decreasing 
the accuracy of the recommendation or prediction, it may 
still be a suitable alternative. The second, probably more 
feasible strategy, would be to impute the values of the miss-
ing pixels by means of kriging, for which both the neighbor-
hood values and the values of other enviromic markers can 
be used. For example, similar temperature values between 
close locations are more likely than between distant ones, 
and on a local scale, the temperature correlates well with 
terrain elevation, or with global latitude. Like MAF for a 
genetic marker, an enviromic marker with small variance 
would have a low SEV (Scale of Environmental Variation), 
such that environmental covariates would have a low vari-
ance in under-sampled pixels compared to all pixels in the 
area. In this case, enviromic markers with low SEV, i.e., 
low information content, could be discarded. In the present 
study, markers were simulated without missing data. None-
theless, additional follow-up studies should be performed 
to define optimal thresholds for quality control metrics of 
enviromic markers.

Enviromics applied to general breeding practice

Within the context of maximizing genetic gains through 
selective breeding, phenotypic traits are thought to be 
affected by several environmental variables. An environ-
mental variable that is favorable for the field deployment of 
a particular plant species is not always the same for another 
species. For example, while the presence of exchangeable 
aluminum in the soil is unfavorable to most annual crops, 
for some forest tree crops it will be irrelevant (Poschenrieder 
et al. 2008). In addition, such environmental conditions in 
a land area may interact at different levels to determine the 
final genotype yield (Resende et al. 2018). Additive Main-
effects and Multiplicative Interaction (AMMI) and Geno-
type × Genotype × Environment interaction (GGE) models 
have been successfully applied to quantify individual site 
effects and their interactions on the expression of complex 
traits (Yan et al. 2000; Gauch 2006) under a multiple latent 
variables framework.

Along these lines, enviromic models can be easily gener-
alized with multiple regressors to address specific objectives, 
such as to relate productivity of annual grain crops to flower-
ing time and environmental markers based on photoperiods 

at different photometric scales (Millet et al. 2019). Moreo-
ver, such model can be used to conjecture on rotation yield 
of perennial crops, in which the stands are planted and har-
vested at different times, by using enviromic markers allow-
ing differentiation of particular growth periods in each stand. 
Lastly, they can aid in proposing environmental-based strate-
gies for integrated management of biotic stresses, thus pro-
viding model ability to capture effects related to resistance 
to different pathogens in the field. Another alternative is to 
group the environmental markers into sets by some sort of 
similarity, such as temperatures measured daily throughout 
the entire period of growth and development of the crop.

Several types of environmental variables can be used in 
enviromics, such as temporal climatic information (Fick and 
Hijmans 2017) and vegetation indices obtained from remote 
sensing based canopies (Xue and Su 2017). Xu (2016) lists 
a number of environmental factors affecting plant growth 
and yield. Categorical indices can also be used, such as the 
climatic index of Köppen (Kottek et al. 2006), or even soil 
classes (Hartemink 2015), since each class is properly repre-
sented by one or more experimental points. Although enviro-
mics could be expected to be more suitable for continuously 
distributed traits, given the intimate relationship between the 
GEI and quantitative traits, it can also be applied to more 
discretely distributed traits related to resistance or tolerance 
to biotic and abiotic stressors, provided that the model for 
generation of EI is fed with data from environmental vari-
ables that trigger the targeted physiological stresses. For 
instance, if the focus of the study is to improve drought toler-
ance, it is extremely important that data on water availability 
(or a highly correlated variable used as proxy) is included 
in the envirotyping routine. Similarly, if the focus is resist-
ance to tick-borne diseases in animals, it is important to 
feed the model with data on the occurrence and density of 
the arachnids responsible for the disease (Giles et al. 2014). 
Thus, it is possible to adopt the enviromics approach to traits 
with different levels of heritability, including disease escape 
in regions with endemic pests for example (Shakoor et al. 
2017).

Enviromics may be applied in conjunction with the breed-
ing program strategy specific to each crop or even livestock 
species or at any specific stage of the program. Annic-
chiarico and Iannucci (2008) suggested genetic improve-
ment pathways specific to each geoclimatic area based on 
distinct genetic basis and selection environments. In maize 
breeding, for example, differences in the capture of genetic 
variances can be observed along the trials carried through-
out the breeding program (Cooper et al. 2014). Enviromics 
may also have applications in recurrent selection programs, 
directing preferred crosses and selecting suitable parents to 
specific sites. On the other hand, in annual crop improve-
ment programs, propagated exclusively via crossing, the rec-
ommended genetic materials can be found from the parents’ 
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performance, even if these parents have never been tested 
in the target environment. One can take advantage of the 
predicted pixel-by-pixel genetic values by coupling kinship 
structures to the enviromics models, according to the stage 
of the breeding program, and simply devise the strategy that 
best suits the specific situation or application. One can also 
perform it in a mixed model approach, by using the direct 
product of the kinship matrix ( K ) with the reaction norm 
covariance ( �a ), i.e., as K ⊗ �a , where ⊗ is the Kronecker 
product.

Additionally, the generation of phenotypic variability is 
fundamental to any breeding program, as a result of har-
nessing the genetic resources in germplasm banks. The 
enviromics models can also direct the rescue of materials 
with location-specific phenotypes, or according to the local 
consumer profile or preference, directing the trials to target 
population of environments (TPE) (Chapman et al. 2000). 
The TPE considering all pixels with a rectangular area (a 
naïve strategy) is just an illustration, but it can be much 
more general, such as combining on-farm data from an entire 
country, sets of countries or data collected across countries, 
by which economically underdeveloped countries could also 
benefit (Pérez-Rodríguez et al. 2017). In other words, a TPE 
can be quite large, depending on data availability (Fig. 2a), 
as envirotypic data should only be linked to the crop growth 
period. It is important to notice that while breeders do not 
need to have an in depth understanding of geotechnologies, 
a reasonable assumption is that they should get acquainted 
with the use of spatial data.

Selection and recommendation via enviromics can also 
be addressed at multiple times. In a big data context, it is 
perfectly feasible to assume that one or more environments 
sampled today will behave similarly to others in the future. 
Nevertheless, considering a specific location, the value of 
environmental covariates cannot be known with certainty for 
the coming year. In order to get around this issue, the models 
must be implemented considering the local environmental 
data in times closer to the moment of the crop implementa-
tion, or alternatively implemented using environmental data 
from future weather forecasts. This premise is also valid 
for climate change scenarios, in which one or more envi-
ronments already represent sites with warming weather or 
even rain scarcity that another environment may have in the 
future. It is prudent nonetheless to mention that other stud-
ies should be done to validate the operation of enviromic 
models for environmental scenarios with a high degree of 
uncertainty.

Still from the point of view of selection, a great benefit of 
enviromics models is the possibility of quantifying residual 
variances inherent to the whole geographic environment, and 
possibly maximizing the genetic variance captured, espe-
cially in those breeding program stages that eventually dis-
play low heritabilities. Thus, in addition to maximizing the 

genetic variance components for the selection of individuals, 
families or parents (Gomez-Raya and Burnside 1990), it is 
possible to optimize selection by identifying sites that pro-
vide a higher ratio between genetic and residual variances. 
Especially in populations with a high level of improvement, 
or even in the stages of the program when trait heritabili-
ties are lower, such high-heritability environments can help 
increasing the accuracy of genotypic selection.

Enviromics to improve cultivar recommendation

In the routine of a crop breeding program, it is common 
practice to allocate experiments to several sites throughout 
a land area, to better cover the spectrum of possible sites 
for genotype recommendation (Annicchiarico et al. 2006). 
This procedure aims to identify those particular genotypes 
that may be recommended for the largest number of sites 
in terms of their phenotypic means in comparison to their 
competitors. Underlying this practice is the assumption that 
the top genotypes in the evaluated trials may perform better 
across the whole area in which the breeding experiments 
were deployed. The extrapolation arguments are mostly ad-
hoc as they rely on parameter estimates that may be unre-
alistic for a new location. It can be noted, thus, that these 
practices often assume that the evaluated and non-evaluated 
sites across the land area show a high level of correlation in 
terms of the effect of their environmental variables, mainly 
on growth and yield. The high correlations among environ-
mental variables across the area are indeed a necessary con-
dition to preclude changes in genotypic ranking.

Models based on reaction norms are interesting because 
they show the stability of genotypes to environmental 
changes and their adaptive ability. Although stable geno-
types may be attractive, as they generally do not result in 
unexpected surprises to the breeder, adaptive genotypes may 
respond better to crop management procedures such as irri-
gation and fertilization (Cobb et al. 2013), control of biotic 
agents (Shakoor et al. 2017) or even improvements in animal 
comfort in the case of livestock. Negative predicted yields 
at lower EI may indicate that the genotype would not sur-
vive in such environments, or would have exceedingly low 
yields. On the other hand, genotypes with positive predicted 
yields in extreme environments may indicate genotypes with 
high resilience potential. These resilient genotypes usually 
do not have high regression slopes and are considered to be 
less adaptive and very stable in their response to different 
environmental variables (Fig. 3c).

Although simulations were carried out with a relatively 
low heritability trait, results showed that it is possible to 
capture greater heritabilities in extreme locations (i.e., EI 
close to 0 or to 1) (Fig. 4a). Although Bänziger et al. (2000) 
argue that differences between genotypes are generally 
smaller under stress and larger differences are, therefore, 
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more difficult to detect, sites with limiting characteristics 
to plant development may lead to selection pressure on the 
most adapted individuals (McKown et al. 2014), favoring the 
manifestation of more productive genotypes. Sites with bet-
ter conditions may also provide similar results, since some 
genotypes may demonstrate better ability to take advantage 
of the available resources. This behavior is usually demon-
strated in reaction norm studies in animal breeding (Ribeiro 
et al. 2015), forest tree improvement (Resende et al. 2018) 
and agricultural grain crops (Jarquín et al. 2014).

Identifying the spatial boundaries in which a selected 
genotype may be recommended would be an important 
advance (Annicchiarico et al. 2005), considering that it is 
usually impossible to deploy a large number of trials in a 
certain area due to limited resources. Across the EI built 
with the GIS–GEI method, our results showed genetic cor-
relations between − 0.49 and 1.00, indicating that depending 
on the relationship between selection and recommendation 
site, it is possible to accurately detect superior genotypes 
avoiding make a major mistake (Fig. 4b). The efficacy of 
a system of evaluation of cultivars depends largely on the 
genetic correlation between genotype performance in multi-
environmental trials (MET) (Löffler et al. 2005). Pixels can 
then be grouped in sets that produce a similar ranking of the 
genotypes, i.e., the breeding zones (also known as mega-
environments). To explore different scenarios of genetic cor-
relations between sites, a full range of variance–covariance 
matrices could be considered in GEI models, in particular 
addressing Genotypes × Mega-environments, e.g., com-
pound symmetry, to access a single covariance between site 
groups, either unstructured or factor analytical matrices, 
allowing heterogeneous residues per site group (Kleinknecht 
et al. 2013).

A map of breeding zones is therefore indicated, pre-
cisely linked to the size of the pixel used (Fig. 5a). In our 
simulations, three breeding zones were assumed, with high 
genetic correlations within each one, indicating high agree-
ment between the selection and recommendation site. The 
definition of fewer breeding zones provided a lower genetic 
correlation within them (results not shown), and adopting 
more breeding zones caused the opposite. In this context, 
three zones provided reasonable amount of information to 
be exploited under a breeding framework. When no trials 
are available in any particular breeding zone, one can use 
selection decisions from a zone with the highest average cor-
relation. In our simulation, the genetic correlation between 
the khaki and blue zones was 0.70, indicating that no drastic 
GEI would be expected between these two macro-environ-
ments. Furthermore, within a breeding area, priority should 
be given to allocate trials where a better ability to capture 
missing heritability is expected, as sites with higher herit-
ability are expected to provide higher selection accuracy.

With a recommendation map in hands, the breeder or the 
agricultural extension service may indicate better genotypes 
for very specific boundaries in the area (Fig. 5b). More than 
one genotype should be recommended per site, contemplat-
ing two points highlighted by Annicchiarico et al. (2006): (i) 
mitigate the risk of unexpected susceptibility to a biotic or 
abiotic stress by a single recommended cultivar; and (ii) take 
into account genotypic differences that were not statistically 
significant during the recommendation analysis. Schedule 
and logistic issues can also be incorporated into enviromics 
models, such as the availability of improved seeds for grain 
crops or seedlings for forest trees. If the recommended geno-
types are effectively deployed in the area, the potential yield 
may increase by 32% when compared to the average yield of 
the area planted with unselected genotypes (Fig. 6). This is a 
key point as it addresses the challenge of increasing produc-
tion with the same land area.

The proposed genetic modeling adopted in the GIS–GEI 
methodology is based on mixed models, which deliver a 
powerful statistical framework for dealing with unbalanced 
data (Gianola and Rosa 2015). However, when tested with 
an unbalanced dataset, by radically reducing the number of 
experiments in the field, even such models were not able 
to satisfactory select genotypes that maintained the average 
yield. Although mixed models have the ability to work with 
unbalanced data, like any other statistical procedure, they 
are unable to correct for exceedingly inefficient sampling 
(Schmidt et al. 2019). On the other hand, genotypic imbal-
ance was not detrimental to the recommendation ability of 
the GIS–GEI model. Using information from mega-environ-
ments (here denoted as breeding zones—Fig. 5a), González-
Barrios et al. (2019) demonstrated that genotypic imbalance 
in different environments can be circumvented with special 
designs, corroborated by our inferences in the enviromics 
context. In practice, these results indicate that if a choice 
has to be made, it is better to establish more and smaller 
trials with less replication of genotypes than deploying a 
smaller number of more highly replicated trials (Moehring 
et al. 2014).

An insufficient number of trials may sometimes over- or 
underestimate the yield of selected genotypes. This happens 
because when the trials show yields above the average of 
the area, the yield of the recommended genotypes will be 
overestimated in relation to the expected future yield. The 
reverse is also true with an inadequate sampling of trial envi-
ronments, resulting in below-average yields. While Pérez-
Rodríguez et al. (2015) achieved predictive capacity gains of 
approximately 4–6% when evaluating only nine experiments, 
Jarquín et al. (2014) achieved up to 34% gain by evaluating 
on-farmer trials addressing 134 locations.

Finally, when there is no phenotypic information from 
the target environment, predictive ability measures can be 
achieved through individual prediction error variance (PEV) 
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because the proposed estimation method is based on mixed 
model equations. When using Bayesian methods, an equiva-
lent measure of uncertainty can be obtained by the posterior 
standard deviation (Sorensen and Gianola 2002).

Future perspectives of enviromics in breeding

New genomic methods have paved the way for predicting 
phenotypes of unobserved genotypes in untested environ-
ments (Malosetti et al. 2016; Voss-Fels et al. 2019). Our 
work provides a glimpse into the promising area of further 
including enviromics in this context to optimize the ability 
to predict the performance of breeding material, especially 
for species subject to complex response patterns across 
environments and time. The enviromics models presented 
may seamlessly incorporate any kinship structure (K) by 
changing the existing relationship matrix between genotypes 
from the traditional numerator relationship matrix A, to the 
genomic relationship matrix G. In the context of using G 
matrix, improved genomic predictions of complex pheno-
types are expected across environments by simultaneously 
taking into account information from molecular (e.g., SNP 
data) and enviromic markers, especially for late-expressing 
or difficult to measure phenotypes. Additionally, given the 
very high genotyping density possible with current SNP 
panels, the enviromics approach may also be used to gen-
erate a catalog of SNP markers for each micro-region in 
a target area, naturally respecting the strong GEI typically 
displayed by traits of low heritability. Additionally, genomic-
based enviromics models can also exploit precise field-level 
information of the trial, such as competition between plants 
(Cappa et al. 2017). Finally, environmental information can 
be incorporated into prediction models via envirotyping (Xu 
2016) combining genomics, controlled crosses, germplasm 
data and next-generation phenotyping (Cobb et al. 2013). We 
can also mention that epigenetic effects triggered by changes 
in the environment can also be better captured with enviro-
mic models, by the incorporation of epigenetic matrices T 
into the breeding analysis (Varona et al. 2015).

The construction of environmental indexes can also benefit 
from the application of artificial intelligence, eco-physiolog-
ical process models (Asseng et al. 2013) or biogeographical 
similarity approaches (Vilhena and Antonelli 2015), in order 
to obtain indexes that relate more closely to the target trait, 
avoiding the inclusion of trait-irrelevant enviromic markers. 
As the methodology maximizes the number of recommended 
genotypes based on the potential yield of the area, one should 
also be concerned with the maintenance of genetic variance 
throughout the selection cycles. This can be accomplished by 
using optimization models that maximize selection gains with 
genetic diversity of the selected individuals (El-Kassaby and 
Lstibůrek 2009; Mullin 2017), and also provide multi-trait 
gains for all pixels in the geoprocessing area, in scenarios of 

different environmental conditions (Bustos-Korts et al. 2019). 
Another interesting strategy would be the recommendation of 
specific parents and crosses for specific environments, generat-
ing progeny based on the combination of the best individuals 
by environment (van Ginkel and Ortiz 2017).

A possible limitation of the proposed GIS–GEI method is 
the assumption of a common GEI profile for two sites with 
similar environment index. Different factors that make the 
two sites similar for productive potential may in fact result 
in different GEI patterns. To overcome this issue, a single-
step enviromics model would improve the prediction accu-
racy over environments. These models can be frequentist 
or purely Bayesian, since associated covariates are treated 
as unknown, thereby allowing inference for all unknowns 
together within a single-step linear random regression as fol-
lows: y = X� + Pw + Z0a0 + Z1a1 + e , where y is the vector 
of observations, � is the fixed effects vector of order p, w is 
the vector of environmental effects, a0 is the vector of random 
genetic intercepts, a1 is the vector of random genetic slopes. It 
can be assumed that 

[
a0, a1

]�
∼ N

(
0,G⊗�a

)
 , with G being 

the genomic relationship matrix under a GBLUP framework. 
Furthermore, X , P , Z0 and Z1 are the respective known inci-
dence matrices, whereas each row of Z1 has exactly one ele-
ment equal to the environmental covariate ( wi or an estimate 
of wi ), with all other elements in that row equal to zero, and 
e is the vector of random residuals. To infer environmental 
sensitivities, three stages are required. The first stage defines 
the distribution of the phenotypic data conditional on all other 
parameters; the second stage is represented by the prior dis-
tributions of the location parameters (� , w , a0 and a1 ); and the 
third one is based on specifying prior distributions for the (co)
variance components. In addition, the previously described 
model is based on GBLUP, which is not suitable for variable 
selection (shrinkage estimates) in the presence of many cor-
related covariates (enviromic or molecular markers). However, 
we believe that other specific genomic prediction models like 
Bayes A, Bayes B or Bayesian LASSO (Gianola et al. 2009) 
can be adapted to infer on GEI. Furthermore, new combina-
tions and synergism between enviromics and modern GEI 
approaches, using the mixed models explored here, as well as 
crop growth models, are envisioned.

Concluding remarks

In the context of breeding practice, the term enviromics 
involves the application of envirotyping techniques to 
describe the performance of a plant or animal along the 
different gradients of a large number of environmental 
variables. To account for the environmental effect on 
a phenotype, we have developed an infinitesimal-like 
approach taking into account additive and non-additive 
contributions from enviromic markers in an analogous 
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fashion as traditional quantitative genetics models. Multi-
variate models, such as principal components analysis and 
modern approaches from artificial intelligence will likely 
allow better definition of enviromic markers improving 
the computation of EI. Enviromics models are flexible 
and can be easily adjusted according to changes in the 
environment, a particularly useful tool in the context of 
climate change scenarios. Additionally, enviromic mark-
ers are climatic or landscape-based variables. As such, 
they are not only universally applicable to any animal or 
plant species, but more importantly they can be obtained 
and used jointly with omics marker data such as DNA, 
RNA, proteomic, metabolomic and epigenomics. Finally, 
we have also proposed a methodology called GIS–GEI, 
which is a remake of classical GEI approaches derived 
from the enviromics conceptualization. It can be useful 
for recommending genotypes for specific areas, for defin-
ing optimal breeding zones (i.e., mega-environments), for 
understanding the spatial boundaries in which a genetic 
trial can be used for selecting breeding material, and for 
identifying sites that provide better capabilities for the 
genetic expression of a phenotypic trait. We believe that 
the concept presented here should represent a relevant 
advance in the existing approaches and be a useful addi-
tion to the toolbox of modern breeding programs, espe-
cially with the increasing availability of genomic and 
environmental big data.
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