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 BIOMETRICS 31, 423-447
 Jutne 1975

 BEST LINEAR UNBIASED ESTIMATION AND PREDICTION
 UNDER A SELECTION MIODEL

 C. R. IIhENDERSON

 Department of Animal Science, Cornell University, Ithaca, N. Y. 14850, U.S.A.

 SUMMAItY

 Mixed liniear models are assumed ini most aniimal breedinig applicationis. Coniveniienit methods for coiii-
 putinig BLUE of the estimable liniear funictionis of the fixed elemenits of the model anid for computitng best
 liniear unibiased predictionis of the random elements of the model have been available. MIost data available
 to aniimal breeders, however, do niot meet the uistual requiiremenits of ranidom samplilng, the pioblem beilig
 that the data arise either from selectioni experimenits or fIom breeders' herds which are uinidergoinig selectioni.
 Conisequtenitly, the ustual methods are likely to yield biased estimates anid predictionis. Methods for dealilng
 with suich data are presenited ini this paper.

 1. INTRODUCTION

 Data available to animal breeding research workers for estimation of genetic and
 environmental parameters and to practitioners for making selection decisions almost
 invariably are provided by herds in which selection has been practiced. As a consequence,
 the usual assumptions of random sampling invoked for estimation and prediction are
 seldom valid. For example, production records in dairy cows have been used to estimate

 genetic and environmental trends. It is obvious from knowledge of the industry that the
 mean of first lactation records on cows that also produce a second record is higher than
 the mean of first records on contemporaries that do not produce a second record. This
 should suggest caution in applying the usual linear model methods to these data. Henderson

 [1949] and Henderson et al. [1959] presented methods for obtaining unbiased estimators
 in such cases. Similarly, Lush and Shrode [1950] described the bias in estimation of age

 effects due to culling on previous production. A similar problem occurs in evaluation
 of sires used in artificial breeding programs. P'rogeny tests are made on large numbers
 of sires. Then, only those with the best progeny are continued in service to produce many
 more progeny with records. Further, there is a tendency among those retained for the
 ntumber of subsequent progeny to be positively correlated with past progeny production.

 Two different possibilities for the solution of problems of this sort suggest themselves:
 (1) invoking a joint distribution of certain random variables of the model and the design
 matrix and (2) writing a distribution conditional on selected random variables. The first

 of these methods has proved to be extremely difficult, but some useful results can be at-
 tained using the second, as described in this paper. These are based on deriving best linear
 unbiased estimators and predictors under a model conditional on selection of certain
 linear functions of random variables jointly distributed with the random variables of
 the usual linear model. For example, in the cow culling case the selection variable could
 be the difference between means of first records on cows continuing in production and
 those that are cuilled.

 423
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 424 BIOMETRICS, JUNE 1975

 It is obvious that the subclass numbers are unequal in data which have arisen from
 selection situations, and in fact there are usually many empty subclasses. I'rofessor Snedecor
 helped many research workers deal with the problems of unequal subclass numbers through
 his teaching and his book with its examples of strains of mice crossclassified with isola-
 tions of typhoid bacilli (Snedecor [1946]).

 This paper presents some general results on best linear unbiased estimation and pre-
 diction from mixed linear models conditional on a selected vector variable. The methods
 are an extension of some of the author's mixed model techniques for the unconditional
 model. These latter methods are suimmarized in the next section.

 2. BEST LINEAlt UN13IASEI) PREDICTION

 2.1 A mixed linear model

 A mixed linear model is assumed in many genetic applications and can be represented
 as follows.

 y = X~ + Zu + e (1)

 where y is an n X 1 observation vector, X is a known, n X p matrix, 5 is an unknown,
 fixed vector, and Z is a known, it X q matrix. u and e are nonobservable random vectors
 with null means and

 Var puJ = [G O]2

 where a2 is a scalar, possibly unknown, and G and R are both nonsingular.
 Now, given a sample vector, y, we wish to do one or more of the following:
 1. Estimate some estimable linear function of .
 2. Test hypotheses regarding 1.
 3. Estimate G, R, and a2*
 4. Predict u or some linear functions of u.

 5. 1'redict linear functions of ) and u jointly.
 The animal breeding research worker is usually concerned with the first three, and the
 practitioner with the last twro of these. The research worker is concerned also with de-
 veloping better methods for the practitioner to accomplish the last two.

 2.2 Best linear predictio?l

 It is known that if ~, G, and R are known, the best linear predictor of k'P + m'u is

 k'l + m'GZ'V-l(y - X~) (2)

 where V = R + ZGZ'. In the multivariate normal case, (2) is of course E(k'p + m'u I y)
 and consequently is the best predictor. WVhether or not normality is implied, (2) is the
 usual selection index used in animal breeding.

 2.3 Best linear unibiased prediction

 Now if \ is unknown, as is usually the case, the method of (2) cannot be used. A modi-
 fication invoking unbiasedness can be employed, however. By unbiased wNre mean that
 E(predictor) = E(k'0 + m'u) = k'~. Henderson [1963] showed that the best linear un-
 biased predictor (BLU1') of k'~ + m'u is
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 PREDICTION UNDER A SELECTION MODEL 425

 k'W + m'GZ'V-1(y - X0) (3)

 where 0 is any solution to (4), the generalized least squares (GLS) equations,

 X'V-lX-= X'V-ly. (4)

 The difficultv with this method is that V is often a matrix so large that its inversion is

 very costly. An alternative method was suggested by Henderson [1950]. The prediction

 of k'P + m'u is k'- + m'uc where / and fi are any solution to (5);

 X'R -'X. X'R-'Z l p X'R- yl (5)

 Z'R-1X Z'R-1Z + G-1 -u L Z'R-ly

 Henderson et al. [1959] proved that 0 of (5) is a solution to (4), the GLS equations. The
 proof involved showing that

 R 1 - R-1Z(Z'R-1Z + G-)-Z'R-1 = V-1. (6)

 Henderson [1963] proved that u of (5) is equal to GZ'V-W(y - X-) of (3). This was done
 by showing that

 (Z'R -Z + G-1)-1Z' R1= GZ'VXU (7)

 and by noting that X- of (5) is the GLS estimator of X~.
 The obvious advantage computationally of (5) over (3) is that neither V nor its inverse

 is required. Of course R has the same dimensions as V, but it usually is an identity matrix.

 Further, G is often diagonal, and Z'R-1Z + G-1 is either diagonal or has a large diagonal
 submatrix.

 2.4 Distributional properties of 0 and fi

 Let some symmetric g-inverse of the coefficient matrix of (5) be

 :Cll C12I. (8)

 C12' C22,

 C22 is always unique, but C1l and C12 are unique only if X has full column rank. Now
 assuming that K'0 is estimable,

 Var (K'-) = K'C11Ko2,

 Cov (K'0, u') = 0,

 Cov (K'S, u') = -K'Cl2 0_

 Cov (K'0, u' - u') = K'C12&2,

 Var (u') = (G - C22)02,

 Cov (ui, u') = Var (ui),

 Var (ui - u) = C22o2.

 Accordingly,

 Var (K'- + M' - K'- M'u) = [K' M'] Cil C12 K[ a2
 C1'C 2 2J1DM
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 426 BIOMETRICS, JUNE 1975

 The proof of these results for the full rank case are presented in Appendix A.

 3. EXAMPLES OF BLUP IN THE NO SELECTION MODEL

 Suppose we have records on progeny of two sires in two herds with progeny numbers
 as follows.

 Herd

 Sire 1 2

 1 5 10

 2 5 0

 We assume that the model for the kth progeny of the ith sire in the jth herd is

 Yi k = + si + hi + eiik (9)

 where e' = [e111 , * *, e215], E(e) = 0, and Var(e) = Ia2.

 We wish to predict si - s2 . The best linear unbiased predictor depends upon the
 distribution of s' = [s s82] and h' = [h, h2]. Various assumptions are described below.

 3.1 Sires and herds fixed

 The regular least squares equations are

 20 15 5 10 10 A 5 10 5

 15 15 0 5 10 1 5 10 0

 5 0 5 5 0 A2 = 0 0 5 (10)

 10 5 5 10 0 hi 5 0 5

 i10 10 0 0 10 h2 0 10 0

 where Y' = [ Y12. Y21.]. For any solution to (10),

 s _ s2 [ 1 0 ]y(11)

 with variance = 0.4f_2.

 3.2 Sires fixed and herds random

 E(h) = 0 and Var(h) = 0.5I02. Then the BLUP equations according to (5) are the same
 as (10) except that a diagonal matrix with diagonal coefficients

 [0 0 0 2 2]

 is added to the coefficient matrix of (10). Now for any solution,

 81 - 52 = [11 2 13]y/13 (12)

 with variance = 240_2/65, which is less than O.4c_2. Therefore, if in fact h were random
 but computations were done as in (10), the prediction error variance would have been

 unnecessarily large.

 3.3 Sires random and herds fixed

 E(s) = 0 and Var(s) = O. 1I2. Now the BLUP equations are like those of (10) except
 that a diagonal matrix with diagonal elements

 [O 10 10 0 0]
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 PREDICTION UNDER A SELECTION MODEL 427

 is added to the coefficient matrix. The resulting solution is

 s- 82 = [1 0 -1]y/3 (13)

 with prediction error variance = 20_2/15. We illustrate calculation of this variance from

 a g-inverse of the coefficient matrix. A g-inverse is

 O O 0 0 0

 0 5 1 -3 -5

 0 1 5 3 -1 1
 60

 0 -3 -3 9 3

 o -5 -1 3 11

 and Var( -s 2 -SI + S2) 0-2[5 - (2)(1) + 5]/60 = 22/15.

 3.4 Sires and herds random

 Now the diagonal matrix with diagonals

 [0 10 10 2 2]

 is added to the coefficient matrix of (10). The solution to I - S2 is

 [11 2 -13]y//37 (14)

 with prediction error variance = 240_2/185.

 4. EXAMPLES OF EFFECT OF SELECTION

 The example of section 3 is used to illustrate the consequences of selection. Note that

 sire 2 has no progeny in herd 2. Suppose we know that the progeny in herd 1 were pro-

 duced earlier than those in herd 2 and we suspect that the reason sire 2 was not used in
 herd 2 was that his progeny were inferior to those of sire 1 in herd 1. If this is true, is the

 prediction of s - S2 biased as a consequence? In the absence of selection,

 E(ll. - Y21.) = E(si - S2)

 = SI - S2 in the fixed sire model

 -0 in the random sire model.

 Suppose that due to selection this expectation is sI - S2 + a in the fixed sire case or is
 a in the random sire case. Now assuming a multivariate normal distribution we examine

 the bias in prediction of si - S2 under the various models and suggest some unbiased
 predictors.

 4.! Fixed sires and herds

 Conditional means, given that E(gi,. - Y21.) = S - S2 + a, are

 Y 11. U + SI + hi 0.2

 E Y12. + s1 + h2 + 0
 y21. M + S2 + hi -0.2

 ,SI - S2, SI 1 S2 I O0
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 428 BIOMETRICS, JUNE 1975

 where t = [Var(11. - Y21.)/o-2]'a Consequently, s - s of (11) has expectation sl -

 S2 + .4t, a biased predictor. Does an unbiased linear predictor exist? Let a predictor be
 b'y. For unbiasedness, the following conditions are sufficient:

 11 1 ~~~0

 11 0 1

 0 0 1 -01

 10 1 0

 0 1 0 0

 0.2 0 -0.2 0

 No solution exists to b so no unbiased predictor exists.

 4.2 Sires fixed ancl herds rando?

 Now the conditional means given E(y1,. - p2.) = S - S2 + a are

 YiI. I + si 0.2

 E Y12. + S 0

 Y21. i + S2 -0.2
 SI -S2 S1-S2 0O

 Then the expectation of s' - s' from (12) is s, - S2 + 24t/65, a biased predictor. If b'y
 is to be an unbiased predictor, a sufficient condition is

 11 1 ~~~0

 11 0 b 1
 0 0 1 -1

 0.2 0 -0.2. 0

 A unique solution exists. It is b' = [-1 2 - 1]. Thus, a single unbiased predictor exists.

 4.3 Sires random and herds fixed

 The conditional means given E(Y1,. -Y21.) = a are

 Yii. i + h1, 0.3

 E Y12 = ,'+ 1t2 0.1
 Y21. + ?t I -0.3
 01 - S2J 0 0.2j

 From the solution in (13), E(s& - s2) = 0.2t, an unbiased predictor. Note that if s, - s8
 had been predicted as though s weIeC fixed as in (11), the expectation of the predictor
 would be 0.6t. That is, the predictor of the difference is too large. It is easy to show that
 (13) is the only unbiased predictor.
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 PREDICTION UNDER A SELECTION MODEL 429

 4.4 Sires and hterds random

 The conditional means given E(Y1,. -9 ,.) a are

 Y11. 0.3

 E Y12. 0.1

 Y21. -0.3

 ,SI -S2 0 0.21

 From (14), E(S - S2) = .2t, an unbiased predictor. This is not the oily one, the complete

 set being b'y where b' = [1 + 2a -1 - 3a * a]. The solution of (14) has minimum vari-
 ance as we shall see in the next section.

 4.5 Selection on s

 Suppose that instead of production in herd ] the choice of sire to be used in herd 2
 was based on some prior knowledge of the sires regarded as random in the unconditional
 distribution.

 E(s -S2) = a X 0.

 Then the conditional means are

 YiI. 0.1

 E Y12. = 0.1

 Y21. -0.1

 S1 -2 S 0.2

 where t = (2oQf2/0f2) -'a. Assuming herds random, the BLUP solution for the unconditional
 distribution of (14) gives E(s - s2) = 0.0703t, which is biased.

 If instead we use the solution in (12) in which sires are regarded as fixed, E(S1 - S2) = 0.2t,

 an unbiased predictor. A general unbiased predictor is [a 1-a -l]y.

 5. BLUP IN A SELECTION MIODEL

 In this section, we derive the general solution to best linear unbiased prediction and
 estimation in a selection model. The examples of section 4 can all be described as a particular
 case of a model described in section 5.1.

 5.1 A mixed model vith selection

 The unconditional model for y is the same as (1) but with the additional condition
 that the form of distribution is multivariate normal. We also invoke an additional vector
 variable w, jointly normally distributed with y, u, and e. The follow ing additional param-
 eters exist.

 E (w) = d. (15)

 Covy uJ ,w'] = [E:I_2 (16)
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 430 BIOMETRICS, JUNE 1975

 where B = ZB, + Be

 Var(w) = Hu'. (17)

 Now suppose that some sort of selection on w has occurred such that in the selection

 model

 E(w) s # d, (18)

 Var (w) H,o-2 ? Hur2.
 For example, in the model of section 4.4,

 w Y11. - Y21.

 E(w)= s 0,

 H Var (Y1l. -y21.)/f = 0.6,

 s ~~~~~~0.1

 BL =- Cov S 22 (911. -821.) = 0.

 1 l -.0.1

 Be= -a Cov y 12 , (Y11. -Y21.) =

 0.2

 Be 1~~Y . .

 B -2Cov Y12. (11. -Y21.) = 0.1

 Y21. ~~~-0.3

 Given these parameters of (1), (15), (16), (17), anid (18), we can write the remaining
 parameters of the conditional (selection) model. For this purpose, we use a result due

 to Pearson [1903]. [v1' v2'] is normally distributed with mnean = [t1' L2'] and variance

 {Cll C12>

 C1' C22

 Then, if v2 is selected such that E(v2) = 2 + k and Var(v2) = C., the parameters of
 the conditional distribution are

 E(v,) l= 9 + C12C22-lk

 vl Cll-C12COC121' C12C22C C8
 Var L : (19)

 IV2, C.C22lCl2/ Ca

 where CO = C22'1(C92 - Cs)C22-1. Note that if v2 is fixed and consequently C8 = 0, we
 have the well-known result Var(v1) = C1l - C12C22 CI2'. Applying the result in (19)
 to our mixed model, the parameters of the conditional distribution are
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 PREDICTION UNDER A SELECTION MODEL, 431

 y X- + Bt

 E u Bjt (2'0)

 where t =H-'(s -d),

 Y V -BH,B' ZG -BH,B,,' BH-'H,

 Var u GZ' BUH0B': G -B,,HHBu': BW-'H, (21)

 w ~~H,H -'B' :H,H -'B,,' : HH

 where Ho = H-1(H - HS)H-.

 5.2 Best linear unbiased pr ediction

 We wr-ish to predict

 k'0 + m'u + f'(w - d)

 by b'y such that the predictor is unbiased and has iiinimumn variance of pirediction. error
 under the conditional model.

 D[k'0 + m'u + f'(w -d)] = k'0 + m'But + f'Ht

 E(b'y) - b'+X ? b'Bt

 For unbiasedness, it is required that X'b = k and B'b = B,,'m + Hf. T'lhc vaiiance of
 the error of prediction is

 Var(b'y - m'u - f'w) = {b'(V -BH,B')b - 2b'(ZG - BH,B,,')m

 - 2b'BH-'H8f + Var (m'u + f'w)}?2.

 This is minimized subject to unbiasedness by b, the solution if it exists to (22),

 V- BH,,B' X .B b ZGm-BHOB,,'m + BH-'H,f

 [V 'H.B'O Bi = k . (22)

 B' ? Oi Bu'm + Hf
 From the third equatiorn of (22), B'b - Bu'm + Hf. Substituting this in the first equation
 of (22), we get

 V X B b ZGm + Bf

 XI O O 0 = k (23)

 1B' O O~ B,,'m + Hf~

 This is a fortunate result because the predictor does not require knowledge of s and H.
 Provided a solution exists, it is

 b'y = k'" + (m'Bu + f'H)t + (m'GZ' + f'B')V-'(y - X - Bt) (24)

 where 0 and t are any solution to (25),

 | . B] [ ] = {X'Vt Y] (25)
 IB/V-. 'X: B'V -'BJ B'V- 'y
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 432 1BI0METRICS. JUTNE. 1975

 Fromii the second equation of (25),

 B'V-'(y - X - Bt) O0.

 Substituting this in (24), we obtain

 b'y = k'0 + (m'Bu + f'H)t + (m'GZ'V-')(y - X- Bt). (26)

 Noow from the matrix identities in (6) and (7),

 b'y = k'" + (m'Bu + f'H)t + mr'v (27)

 where 0, t, and v are any solution to (28),

 X'R-'X: X'R-'Z X'R-'B X'R- 'y

 Z'R-'X Z'IU'Z + G': Z'R-'B 4 = Z'R-'y. (28)

 B'R-'X: B'R-'Z :B'R-'B t B'R-'y

 The advantages of the method of (27) and (28) over (24) and (25) are the same as de-
 scribed for the advantages of (5) over (3) and (4).

 A further modification of (28) that yields a direct solution to u', the best linear unbiased
 predictor of u, can be accomplished as follows. 1Premultiply each side of equation (28) by

 I 0 0

 P= 0 I 0 (29)

 0 -BUt' I

 This gives

 X'R-'X X'R-'Z X'R1B X'R-'y

 Z'R-'X Z'R-'Z + G' Z'R-'B v = Z'R-'y (30)

 Be'R-'X Be'R-'Z - B.G-1 Be'R-'B t Be'R'Y
 Now insert P'(P'<) = I between the coefficient matrix and [0' v' t']' of (30) and simplify.
 This gives

 X'R-'X X'R-'Z X'R'Be X'R y

 Z'R-'X Z'R-1Z + G-1 Z'R-'B. - GBu v4 + BjA _ Z'R-'y (31)

 IBe'R-'X: Be'R-'Z - Bu'G-' Be'R 'Be + Bu'G'Bu t Be'R'Y

 Now define v + But as ut and substitute this in (27) and (31). This is a logical definition
 since E(uf) = But. Now (27) can be written as

 by = k' + m'(4 + But) + f'Ht

 = k' + m'u1 + f'Ht (32)

 Nhere ', u', and t are solutions to (31) with u = v + BJ.

 5.3 Estirnability

 In the no selection case, the solution to ui is always unique, but 0 is estimable only
 if X has full column rank. In the selection case, however, u is not necessarily predictable.
 The requirement for this is that But be estimable. Of course, even if this is not true, there
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 PREDICTION UNDER A SELECTION MODEL 433

 may be certain linear functions of interest, say m'u, that are predictable. This will be
 true provided m'But is estimable. One way to check estimability is to determine if

 [k' m' f'H]'E[g' u' t']' = k'l + (m'Bu + f'H)t where

 1 X'R-1X X'R-'B

 E -u= Z'R-'X L + Z'R-'B t

 t Be'R- X Be'R`'BJ

 premultiplied by the g-inverse of the coefficient matrix of (31) used in the solution to

 [ 0/ '1 -]. [0 . u'. t']

 5.4 Distributional properties of estimators and predictors

 Let some symmetric g-inverse of the coefficient matrix in (31) be

 Cll C12 C13

 C12' C22 C23 (33)

 C13' C23' C33

 Then, Var(K'" + M'u + F't)/o-2 is

 [K' M' F']

 C1l C13B1' C13 1 K

 BuC13' G- C22 + C23Bu' + BUC23' - BUHoBu2 BUC33 - BHo M (34)

 C 13' C33Bu- HoBu' C33 - Ho F

 Cov ([K'" + M'u - F't], [u' fW])/0f2

 -C12 + C13Bu' 0

 - [K' M' F'] G - C22 + C23BU' - BuHoBu' BuH-1H8 (35)

 -C23' + C33Bu' - HoBu' H- H

 Note that in contrast to the no selection case Var(u) X Cov(u, u'). From (21),

 G BuHoB B (36) ~Var[U

 'wI I H,H -'B u' H8

 Combining the results of (34), (35), and (36), we obtain the results of (37) for variances
 of prediction errors where Ht is the predictor of w - d in the full rank case. The variance

 of error of prediction of K'g + M'u + F'(w - d) is

 C1l C12 C13H K

 [K' .M' F'] C12' C22 C23H1 M 2 (37)

 HC13 HC23': HC33H - H F

 From (31) and (37), we now have the fortunate result that best linear unbiased predictors
 and the prediction error variances require no knowledge of the intensity and not even
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 434 BIOMETRICS, JUNE 1975

 the direction of selection. In contrast, it can be seen that the correlation between u, and
 ui cannot be computed unless H8 is known. The results in (34) and (35) are proved for
 the full rank case in Appendix B.

 6,. SOME APPLICATIONS

 G.1 Selection o0?1. y

 The most common type of selection involves selection on y. For this case, let w = L'y

 where L' has full row rank. Then

 B,, = Cov (u, y'L)/ao = GZ'L,

 B, = Cov (e, y'L)/oa = RL,

 B = Cov (y, y'L)/ao = VL,

 H = Var (L'y)/lo = L'VL.

 Substitutiilg these in (31), the BLUP equations for the selection model arc

 X'R-'X. X'R-'Z X'L [R XR-hy

 Z'R--'X Z'R-'Z + G-' 0 u = Z'R-y (38)

 L'X 0 :L'VL 't Liy

 It should be noted in particular that if L'X = 0, 5 and ui are any solution to the BLUP
 equations in the no selection model. [See Eq. (5)].

 We illustrate L'y type of selection with a sire example. Suppose we have the following
 progeny from 4 sires in 2 herds.

 Her(I

 GIroup SiIre 1 2

 1 1 5 20
 2 3 0

 2 3 4 0

 4 6 0

 The model assumed is

 Yiikl = gi + Sii + 1, k+ eiiki

 where, g is fixed; s, h, and e are normally distributed with null means, and

 s O.1I 0 0

 Var h 0 0.5I O 2.

 ei 0 0 I

 Now we assume that sire 1 was selected to have progeny in herd 2 because his progeny
 were better in herd 1 than were those of the other sires. In terms of the model,

 E(g1 + si + It1 + e111.) > E(g, + S2 + hi + e121.)
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 PREDICTION UNDER A SELECTION MODEL 435

 or Ej'[(si + eL1) - (S2 + 8121.)] > 0,

 E(gi + Si + hi + el11.) > E(92 + 83 + hi + 8231)

 or E[(s, + ,11. ) - (s, + e231.)] > (92 - 91)-

 Also E[(s, + 1.) - (S4 + 8241.)] > (g2 - 91).
 Rewrite the model as

 Y.jk. = ,9gi + Si; + Ilk + 8ijk.

 wherc s and h have the same distributional properties as before and

 5

 0

 20

 Var (e)= 3 a2

 4

 0

 6

 Now we can describe the selection as

 1 0 -1 0 0 Yil,.

 L'y= 1 0 0 -1 0

 .1 0 0 0 -1 9241.

 0.8 0.1 0.5 0.5 0.5

 0.1 0.65 0 0 0

 V= 0.5 0 0.933... 0.5 0.5

 0.5 0 0.5 0.85 0.5

 0.5 0 0.5 0.5 0.766...

 0.733... 0.3 0.3

 L'VL= 0.3 0.65 0.3

 0.3 0.3 0.566...

 1 0

 10 0

 L'X = L' 1 0 =1 -1 .

 10 1
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 436 BIOMETRICS, JUNE 1975

 Then the BLUP equations according to (38) are

 28 0 25 3 0 0 8 20 0 1 1 91 5 20 3 0 0

 0 10 0 0 4 6 10 0 0 -1 -1 a2 0 0 0 4 6

 25 0 35 0 0 0 5 20 0 0 0 sl 5 20 0 0 0

 3 0 0 13 0 0 300 0 0 82 0 0 3 0 0

 0 4 0 0 14 0 4 0 0 0 0 83 0 0 0 4 0

 0 6 0 0 0 16 6 00 0 0 84 = 0 0 0 6 Y.

 8 10 5 3 4 6 20 00 0 0 ? 5 0 3 4 6 (39)

 20 0 20 0 0 0 0 22 0 0 0 h2 0 20 0 0 0

 0 0 0 0 0 0 0 0 0.733... 0.3 0.3 t, 1 0 - 1 0 0

 1 -1 0 0 0 0 0 0 0.3 0.65 0.3 t2 1 0 0 -1 0

 1 -1 0 0 0 0 0 0 0.3 0.3 0.566 ...t 1 0 0 0 -1

 The sires are evaluated by di + si i . The solution is

 gl +81 0 1 0 0 0

 8i +82 = -0.3846 1.1538 0.2308 0 0 (40)

 92 +83 0.6653 -0.9148 0.2495 0.5946 0.4054

 02 ? 84 0.5821 -0.8004 0.2183 0.2703 0.7297

 To check that this solution is unbiased, note that

 91 0.3 0.3 0.3

 0.1 0.1 0.1

 E(y) = Ui + -0.433... 0 0 t.

 g2 0 -0.35 0

 192, 0 0 -0.266...

 Using this result and the solution of (40),

 g + 81 91 0.1 0.1 0.1

 E 1+ 2 = i + -0.1 0 0 t

 2 +83 U2 0 -0.1 0

 02 +84 92, 0 0 -0.1.

 which is unbiased because this is the expectation of g + s. Observe that if the model had
 been

 Yiik = u + si + hi + ei3k,

 X = [1 1] and L'X = 0. Consequently, regular BLUP would be unbiased.
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 PREDICTION UNDER A SELECTION MODEL 437

 6.2 Selection on u

 In some cases selection may have occurred on u. In this case, let w = L'u. Then

 BX = Cov (u, u'L)/o-2 = GL,

 Be = Cov (e, u'L)/o2 = 0,

 B = Cov (y, u'L)/o2 = ZGL,

 H = Var (L'u)/o-2 = L'GL.

 Substituting in (31), we get as the BLUP equations

 X'R-'X X'R-1 Z 0 e X'R-1y

 Z'R-1X Z'R-'Z + G`: -L u = ZR-1y (41)

 0 -L' :L'GL t 0.

 As an example of this, suppose we have progeny on 6 sires numbering 5, 8, 3, 2, 4,
 and 2. The model is

 Y= /i + Si + eii

 where A is fixed, si and ei are normally distributed with means = 0,

 1 0 0 0 0 0

 0 1 0.5 0 0 0

 Var (s) = 1 0 0.5 1 0 0 0 a2
 0 0 0 1 0 0

 O O O 0 1 0

 O0 O O O 0 1,

 Var(e) = Io2, and Cov(s, e') = 0. Var(s) might imply an additive genetic model with
 all sires unrelated except 2 and 3 which are full sibs. Now suppose we have prior informa-

 tion on the sires that makes us believe that Si + S2 > S3 + S4 and sl+ S2 > S5 + S6 . Then,

 L'u 1 11 -1 0 0 u
 1 1 0 0 -1 -1

 The equations of (41) become

 24 5 8 3 2 4 2 0 0 5 8 3 2 4 2

 5 14 0 0 0 0 0 -1 -1 s, 5 0 0 0 0 0

 8 0 20 -6 0 0 0 -1 -1 82 0 8 0 0 0 0

 3 0 -6 15 0 0 0 1 0 83 0 0 3 0 0 0

 2 0 0 0 11 0 0 1 0 A = ? 2 0 0Y

 4 0 0 0 0 13 0 0 1 05 0 0 0 ? 4 0

 2 0 0 0 0 0 11 0 1 06 0 0 0 0 ? 2

 0 -1 -1 1 1 0 0 0.33... 0.166... t4 0 0 0 0 0 0

 0 -1 -1 0 0 1 1 0.166... 0.44... t2 0 0 0 0 0
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 438 BIOMETRICS, JUNE 1975

 where y' = [Y.. -6.]. The solution is approximately

 0.134 0.180 0.148 0.150 0.244 0.144

 sl 0.594 0.165 -0.195 -0.226 -0.213 -0.125

 82 0.082 0.519 -0.043 -0.138 -0.264 -0.156

 83 = -0.213 0.101 0.388 0.143 -0.263 -0.156 Y

 S4 -0.323 -0.129 0.292 0.466 -0.192 -0.114

 85 -0.095 -0.221 -0.162 -0.125 0.493 0.110

 8S6, -0.088 -0.228 -0.165 -0.120 0.264 0.338

 1 1

 -0.5 1

 E(y) = M + -0.5 0.5 t9 E g 05t/9.
 -1 0

 0 -1

 0 -1

 Then,

 0 0

 S 0 1 1

 s2 0 0.5 1

 E S3 0 + -0.5 0.5 t/9,

 84 0 1 0

 85 0 0 1

 0 0 -1U

 which is the expectation of

 In some applications, equations (41) may be difficult to write or to solve. An unbiased

 but not minimum prediction error variance method is available. Suppose selection has
 the form Ll'u1 where u' = [ul/ u2'] and

 G== fG11 0]
 IO G22J

 Then it is easy to prove that a solution to equations of the form of (5) with u, regarded
 as fixed yield these results: 1) ut2 is a unique, unbiased predictor of u2 and 2) k'0 + m1'ut

 is a unique, unbiased predictor of k'0 + m1'ui provided this is an estimable function under
 a fixed u, model.
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 PREDICTION UNDER A SELECTION MODEI, 439

 6.3 Selection on e

 In this case, let w = L'e. Then,

 Bu = Cov (u, e'L)/o-2 = 0,

 Be = CoV (e, e'L)/o-2 = RL,

 B = Cov (y, e'L)/o2 = RL,

 H = Var (L'e)/o2 = L'RL.

 Substituting these in (31), wve get

 X'R-'X X'R-' Z X'L XIR-1y

 Z'R-'X Z'R-'Z + G-1: Z'L u = Z'R -yy (42)

 L'X L'Z L'RL 't L'y

 As an example, suppose that 4 sires have progeny numbering 5, 10, 5, and 4. The model is

 yii = A + si + eii

 where s and e are normal]ly distributed wsith means zeolO and

 Var (s: = o1 0].

 We suspect that the ei associated with sires 1 and 2 are better than those for 3 and 4 because
 of differential selectioni of mates. Then,

 L'e= [1 1 -1 -l]e

 where e' = [,. --. e.]. Then the equations according to (42) are

 24 5 10 5 4 0 5 10 5 4

 (5 15 0 0 0 1 &1 5 0 0 0

 10 0 20 0 0 1 82 2 0 10 0 0
 y

 5 0 0 15 0 -1 83 0 0 5 0

 4 0 0 0 14 -1 84 0 0 0 4

 0 1 1 -1 -1 0.75 t 1 1 -1 -1

 where y' [= . .. 4.]. The solution is approximately

 A 0.251 0.361 0.211 0.177

 sl 0.153 -0.198 0.013 0.032

 2= -0. 198 0.261 -0.043 -0.020 Y

 83 0.013 -0.043 0.180 -0.150

 84 0.032 -0.020 -0.150 0.138
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 440 BIOMETRICS, JUNE 1975

 0.2

 E(y) = + 01 t.
 -0.2

 .-0.25,

 Then,

 0

 0 0

 E 8 2= 0 + O t,

 83 0 0

 84, 10 10

 as it should be for unbiasedness.

 6.4 Sequential selection

 The foregoing methods apply to sequential selection. To illustrate, suppose we wish
 to select for genetic merit of trait 1. We observe traits 1 and 2 on several animals. A selec-
 tion index for trait 1 is constructed and a certain fraction of animals is selected. Later

 trait 3 is observed in the survivors of the initial selection. What is the best predictor of
 trait 3 and what are its distributional properties?

 Suppose the model for traits 1, 2, and 3 is

 y = Ig + Ie

 where y, g, and e are column vectors of order 3; E(g) = E(e) = 0;

 3 -1 1

 Var (e) = - 4 2 02

 1 2 3

 5 2 -1

 Var (g) = 2 6 3 a2

 13 7

 Note that E(y) = 0, a usual assumption in selection index applications but not a vely
 realistic one.

 Now, given a sample [Y1 Y2], the best predictor of [g, q2]' is

 - (R2-' + G2-1) R21 = 1 [- 4 ii] FY'1 Hi 7 14 46J tY2J

 where R2 and G2 refer to 2 X 2 submatrices of R and G. Now we select on the basis of

 1 [48 11]Yi]

This content downloaded from 
����������179.234.167.102 on Tue, 15 Aug 2023 19:48:45 +00:00����������� 

All use subject to https://about.jstor.org/terms



 PREDICTION UNDER A SELECTION MODEL 441

 such that the expectation of this function is not 0. That is, L' = [48 11],/79. Clearly

 L'X does not exist since X does not exist. Consequently, BLUP of g, given [Y Y, yY],
 is the same solution as in the unconditional model. That is,

 031 g2= (R-1 ? G1Y1-R-ly

 1.2983 -0.0305 0.4203 0.6154 0.3846 -0.4615 Yi

 = -0.0305 2.1508 1.3661 0.3846 0.6154 -0.5385 Y2

 0.4203 1.3661 1.9559, -0.4615 -0.5385 0.8462 YJ
 The variance of the prediction error of g1 is 1.2983or_ from (37). Let us examine the cor-

 relation between 'i and gi . For this, we need Bu and H,, .

 48

 Bu = Cov (g,, Lay)/i_2 = [5 2 -1] 11 1 = 3.3165;

 H = Var (L'y)/o_2 = 262/79 = 3.3165.

 Let H8 = kH where k is in the range 0 to 1. Then Ho = H-1(H - H)H1 = 0.3015(1- k).
 From (34),

 Var (91)/a = 5 - 1.2983 - (3.3165)2(0.3015)(1 - k)

 = 0.3853 + 3.3165k

 This also is Cov(d1, ,g)// .

 Var (gl)/o_2 = 5 - 3.3165(1 - k)

 = 1.6835 + 3.3165k

 Therefore,

 /0.3853 + 3.3165k1

 24o,? - 1.6835 + 3.3165k

 As would be expected, the more intense selection is in stage 1; that is, the smaller k is,
 the smaller the correlation is.

 It should be noted that the results of this paper do not necessarily apply to more than
 two stage selection because the selected variates are not normally distributed and con-
 sequently the results of (21) do not apply.

 7. BIAS DUE TO INCORRECT VARIANCES

 It should be recognized that the equations of (31) give unbiased estimates and pre-

 dictions under the assumption that the correct R, G, Be , and B" are used. Statements
 of the bias due to using some other values can be written but ate hard to interpret. In
 the case of selection on y and with L'X = 0, some fairly simple results can be stated.

 Suppose that R = I as is often the case, and we use an estimate of G, say G. Then
 the BLUP equations for estimation of 1 and prediction of u are
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 442 BIOMETRICS, JUNE 1975

 X'X. X'Z ' X/y

 ~~~ [:1 = ~~~~~~~~~(43) 1Z'X Z'Z + G-1, u 1Z/

 Now under the distribution conditional on L'y,

 E(y) = X5 + (I + ZGZ')Lt,

 E(u) = GZ'Lt.

 Assume that X is full rank. Then, an inverse of the coefficient matrix of (43) is

 [Cll C12l

 C12' C22,

 E(-) = (ClIX' + C12Z')[X5 + (I + ZGZ')Lt].
 1iaking use of L'X = 0, this simplifies to

 5 + Cl2(G' - G-)GZ'Lt

 which, of course, reduces to 5 if G = G or if no selection has been practiced. Note further
 that if regular least squares were used, G = 0 and the bias is Cl2Z'Lt, assuming in this

 last case that 5 and u are estimable under a fixed u model. Similarly,

 E(fi) = GZ'Lt + C22(G-1 - G-')GZ'Lt

 which reduces to the correct expectation, GZ'Lt, if G = G or if no selection had been
 practiced.

 MEILLEUR ESTITIATEUR LINEAIRE SANS BIAIS (BLUE) ET PREDICTEUR
 SOUS UN MXIODELE DE SELECTION

 RESUTME

 Les modeles lineaires mixtes sont choisis dans la pltupart des applications siir lignees animales. Sont
 disponibles des methodes de calcul:
 -des BLUE des fonctions lineaires estimables des elements fixes du modele,
 -des predicteurs lineaires sans biais des elements aleatoires dil modele.
 La pltupart des donnees relatives aux lignees animales ne satisfont cependant pas aux conditions usilelles
 de l'echantillonnage aleatoire. Le probleme est quie les donnees proviennent soit d'tine experimentation
 de selection, soit de trotipeaux qui subissent tine selection.

 Par consequent, les methodes usuelles donnent vraisemblablement des estimaletirs et des predicteurs
 biaises. On presente, dans ce papier, des methodes pour traiter de telles donnees.
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 APPENDIX A

 Derivation. of Varia7ice-Covariance Matrix of Estimators, Predictors, and Prediction Errors in

 the No Selection Model.

 Let a regular inverse of the coefficient matrix of (5) be

 [Cil C12.

 C12' C22

 Then

 [0 Cil C12 X'-y [Q1'Y - I I __I = ,~~ say.
 lC12' C22J Z'R Q2

 The following identity is useful,

 QII (CII CC28 X'R'-'X X'R-'Z G 0 O0

 Q1'X = I,

 Q Z = -C12G1

 Q2'X = 0,

 Q2'Z = I-C22GG- .

 Using these results,

 Var (')/o2 = Q'(R + ZGZ')Q1

 = Q1'XC11 + Q1'ZC12' + Q1'ZGZ'Q1

 = IC11- C12G-'C12' + C12'G-1GG-1C12

 = Cli.

 COV (a, O/)/0_2 = Q1 '(R + ZGZ')Q2

 = Q1'XC12 + Q1'ZC22 + Q1'ZGZ'Q2

 = IC12 - C12G-1C22 - C12G-1G(I - G-C22)

 = 0.
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 444 BIOMETRICS, JUNE 1975

 Cov (, u')/o2= Q,'ZG

 =-Cl2G-'G

 - -C12.

 Coy (0, Vu -u')AT2 = 0- (-C12)

 = C12 -

 Var (Of/of - Q2'(R + ZGZ')Q2

 = Q2'XC12 + Q2'ZC22 + Q2'ZGZ'Q2

 = 0 + (I - C22G-')C22 + (I - C22G-')G(I G-'C22)

 = G -C22

 Coy (u u)/of = Q2'ZG

 - (I -C22G-)G

 G - C22.

 Var (u - u)/_2 = G -C22 - 2(G - C22) + G

 = C22

 APPENI)IX B

 Derivation of Variance-Covariance Matrix of Estimators, Predictors, and Prediction Error in
 Selection M31odel.

 Let the regular inverse of the coefficient matrix of (25) be

 IT131 Tl33,B1

 Then,

 fTil T,31X'V'y I, [gj =1J - Q Y, say.
 tJ (T13' T33J B'V-'y) Q3

 The following identity is useful,

 Q LX B] Ti T13 ]X'V'X X'V-B] [I o

 kQ3'j {T13' T33J(B'V-1X B'V-1BJ OIJ

 Thus, Q,'X = I, Q,'B = 0, Q3'X = 0, and Q3'B = I.

 Var (^)/If2 = Ql'(V - BHoB')Q,

 = Q,'XTI, + Q,'BT13' - Ql'BHoB'QI

 = IT,, + 0 - 0

 = T 1.
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 PREDICTION UNDER A SELECTION MODEL 445

 Cov (, )/2 = Q(V-BHoB')Q3

 = Q 'XT13 + Q1'BT33- Q1'BHoB/Q3

 = IT13 + 0 - 0

 = T13 .

 Cov (C, w')/o_2 = Q1'BH1HB

 = 0.

 Var (t)/ QV2 = - BH0B')Q3

 = Q3'XT13 + Q3'BT33 -Q3'BHoB'Q3

 = 0 + T33 -Ho

 = T33 -Ho

 Cov (t, w')/o_2 = Q3'BH-1H

 = H-1H8.

 Let the regular inverse of the coefficient matrix of (28) be

 Til T12 T13

 T12' T22 T23 (B2)

 TJ3/ T23/ T33,

 From partitioned matrix inversion methods and the identity of (6), it is clear that Tl
 T13, and T33 of (B2) are identical to submatrices of (Bi) with the same identification.
 From (B2) and (28),

 Til T12 T13 X/R-1 Q'

 v= T12' T22 T23 Z'R-1 Y Q2' Y= say.
 t T13' T23' T33J B'RQ

 Til T12 Tl31FX RlX: X'R-1Z :X'R-1B 0 0 01

 Q2' [X *. Z * B] = T12' T22 T23 Z'R-1X Z'R-1Z + G-1: Z'R-1B - 0 G-1 0
 Q3' T13' T23' T33, B'R-1X: B'R-1Z :B'R-1B 0 0 0

 I 0 0 0 T12G-1 0

 - 0 - 0 0 T22G-1 0

 O 0 I O T23'G-1 0.

 That is, Q1'X = I, Q1'Z = - T12G-1, Q1'B = 0, Q2'X = 0, Q2'Z = I - T22G-1, Q2'B = O,
 Q3'X = o0 Q3'Z = - T23'G-1, and Q3'B = I. These identities are used extensively.

 Coy (}, vJ)/2 = Ql'(R + ZGZ' -BHoB')Q2

 = Q1'XT12 + Q1'ZT22 + Q1'BT23' + Q1'ZGZ'Q2 + Q1'BHoB'Q2

 = IT12 - T12G-1T22 + O(T23') - T12G-1G(I - G-1T22) - o(HoB')Q2

 = 0.
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 446 BIO-LrEDRCS, JUNE 1975

 Cov u')/2 = Q1(ZG - BHoBU')

 - TI2G- G-O(HoBu')

 - -T12.

 Var (v)/2 = Q2'(R + ZGZ' -BHOB')Q2

 = Q2'XT12 + Q2'ZT22 + Q2'BT23' + Q2'ZGZ'Q2 -Q2'BHoB'Q2

 = (O)(T12) + (I - T22G ')T22 + (O)(T23')

 + (I - T22G-')G(I - G-lT22) + (O)(H,,)(O)

 = G - T22

 Cov (v, i')/2 = Q2'(R + ZGZ' - BHoB')Q3

 - Q2'XT13 + Q2'ZT23 + Q2'BT33 + Q2'ZGZ'Q3- Q2'BHoB'Q3

 - O(T13) + (I - T22G-I)T23 + o(T33)

 + (I - T22G-')G(-G-'T2:i) -(O)(H B')Q3

 - 0.

 Cov (v, u')/o2 = Q2'(ZG - BHoBu')

 = (I - T22G-')G - (O)(HoB')

 = G -T22

 Cov (v, w')/o2 = Q2'BH-f'H

 = 0.

 Cov (t, u')/o2 Q3'(ZG - BHoBu')

 = -T23' - HoBB.

 iNow utilizing u = v + But,

 Cov (rX, u') = Cov (x, v') + Cov (, ti'Bu')

 = T13B. 0_2.

 Var (u) = Var (v + Bit)

 = (G - T22 + BUT33BU' - B.HoB.')O2.

 Cov (u, t') = Cov (v, t') + Bu Var (t)

 = (BUT33 - BH 0)_2.

 Cov (u, u') = Cov (v, u') + Cov (Bit, u')

 = (G - T22 - BUT23' - B.H oB ')2.

 Cov (u', w') = Cov (v, w') + Cov (Bit, w')

 - B,,H-'H 2_
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 PREDICTION UNDER A SELECTION MODEL 447

 Now we look at the elements in the inverse of the coefficient matrix in (31),

 Cl1 C12 C13 I 0 O Tl T12 T13 I 0 O

 C12' C22 C23 = 0 I -B T12' T22 T23 0 I O

 C13' C23' C33 0 0 IT13' T23' T33 O -B/' I

 Til . T12 + Tl3Bu' T13

 - T12' + BUT13' T22 + BUT23' + T23BU' + B.T33B.' * T23 + B.T33 .

 T13' T23' + T33B.' T33 J

 Using these relationships between the elements of C and of T applied to the preceding

 variances and covariances of this appendix, we obtain

 (} u Cll C C13Bu'

 -12 COy U, it = BUC13' G -C22 + C23Bu' + BUC23' -BUHoBU
 0'

 t u C13' C33Bu' - HoBu'

 C13 -C12 + C13Bu' 0

 BUC33 - BuHo G -C22 + C23B - BUHoBu' BuH-'HS

 C33 -Ho -C23' + C33Bu' -HoBU H-1H.

 Received November 1974

 Key Words: Unbiased predictors; Selection bias; Prediction error variance; Sequential selection; Selection
 index.
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