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Abstract

In this document, we make an overview of optimization features in Scilab. The goal of this
document is to present all existing and non-existing features, such that a user who wants to solve
a particular optimization problem can know what to look for. In the introduction, we analyse a
classification of optimization problems. In the first chapter, we analyse the flagship of Scilab in
terms of nonlinear optimization: the optim function. We analyse its features, the management of
the cost function, the linear algebra and the management of the memory. Then we consider the
algorithms which are used behind optim, depending on the type of algorithm and the constraints.
In the remaining chapters, we present the algorithms available to solve quadratic problems, non-
linear least squares problems, semidefinite programming, genetic algorithms, simulated annealing
and linear matrix inequalities. A chapter focus on optimization data files managed by Scilab,
especially MPS and SIF files. Some optimization features are available in the form of toolboxes,
the most important of which are the Quapro and CUTEr toolboxes. The final chapter is devoted
to missing optimization features in Scilab.
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Introduction

This document aims at giving Scilab users a complete overview of optimization features in Scilab.
It is written for Scilab partners needs in OMD project (http://omd.lri.fr/tiki-index.php). The
core of this document is an analysis of current Scilab optimization features. In the final part,
we give a short list of new features which would be interesting to find in Scilab. Above all the
embedded functionalities of Scilab itself, some contributions (toolboxes) have been written to
improve Scilab capabilities. Many of these toolboxes are interfaces to optimization libraries, such
as FSQP for example.

In this document, we consider optimization problems in which we try to minimize a cost
function f(x) with or without constraints. These problems are partly illustrated in figure 1.
Several properties of the problem to solve may be taken into account by the numerical algorithms :

• The unknown may be a vector of real values or integer values.

• The number of unknowns may be small (from 1 to 10 - 100), medium (from 10 to 100 - 1
000) or large (from 1 000 - 10 000 and above), leading to dense or sparse linear systems.

• There may be one or several cost functions (multi-objective optimization).

• The cost function may be smooth or non-smooth.

• There may be constraints or no constraints.

• The constraints may be bounds constraints, linear or non-linear constraints.

• The cost function can be linear, quadratic or a general non linear function.

An overview of Scilab optimization tools is showed in figure 2.
In this document, we present the following optimization features of Scilab.

• nonlinear optimization with the optim function,

• quadratic optimization with the qpsolve function,

• nonlinear least-square optimization with the lsqrsolve function,

• semidefinite programming with the semidef function,

• genetic algorithms with the optim_ga function,

• simulated annealing with the optim_sa function,

• linear matrix inequalities with the lmisolver function,
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Figure 1: Classes of optimization problems
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Figure 2: Scilab Optimization Tools
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• reading of MPS and SIF files with the quapro and CUTEr toolboxes.

Scilab v5.2 provides the fminsearch function, which a derivative-free algorithm for small
problems. The fminsearch function is based on the simplex algorithm of Nelder and Mead (not
to be confused with Dantzig’s simplex for linear optimization). This unconstrained algorithm
does not require the gradient of the cost function. It is efficient for small problems, i.e. up to
10 parameters and its memory requirement is only O(n). This algorithm is known to be able to
manage ”noisy” functions, i.e. situations where the cost function is the sum of a general nonlinear
function and a low magnitude function. The neldermead component provides three simplex-
based algorithms which allow to solve unconstrained and nonlinearly constrained optimization
problems. It provides an object oriented access to the options. The fminsearch function is, in
fact, a specialized use of the neldermead component. This component is presented in in depth in
[2].

An analysis of optimization in Scilab, including performance tests, is presented in ”Optimiza-
tion with Scilab, present and future” [3]. The following is the abstract of the paper :

”We present in this paper an overview of optimization algorithms available in theScilab soft-
ware. We focus on the user’s point of view, that is, we have to minimize or maximize an objective
function and must find a solver suitable for the problem. The aim of this paper is to give a simple
but accurate view of what problems can be solved by Scilab and what behavior can be expected
for those solvers. For each solver, we analyze the type of problems that it can solve as well as its
advantages and limitations. In order to compare the respective performances of the algorithms,
we use the CUTEr library, which is available in Scilab. Numerical experiments are presented,
which indicates that there is no cure-for-all solvers.”

Several existing optimization features are not presented in this document. We especially
mention the following tools.

• The fsqp toolbox provides an interface for a Sequential Quadratic Programming algorithm.
This algorithm is very efficient but is not free (but is provided by the authors, free of charge,
for an academic use).

• Multi-objective optimization is available in Scilab with the genetic algorithm component.

The organization of this document is as following.
In the first chapter, we analyse the flagship of Scilab in terms of nonlinear optimization: the

optim function. This function allows to solve nonlinear optimization problems without constraints
or with bound constraints. It provides a Quasi-Newton method, a Limited Memory BFGS algo-
rithm and a bundle method for non-smooth functions. We analyse its features, the management
of the cost function, the linear algebra and the management of the memory. Then we consider the
algorithms which are used behind optim, depending on the type of algorithm and the constraints.

In the second chapter we present the qpsolve and qp_solve functions which allows to solve
quadratic problems. We describe the solvers which are used, the memory requirements and the
internal design of the tool.

The chapter 3 and 4 briefly present non-linear least squares problems and semidefinite pro-
gramming.

The chapter 5 focuses on genetic algorithms. We give a tutorial example of the optim_ga

function in the case of the Rastrigin function. We also analyse the support functions which allow
to configure the behavior of the algorithm and describe the algorithm which is used.

8



The simulated annealing is presented in chapter 6, which gives an overview of the algorithm
used in optim_sa. We present an example of use of this method and shows the convergence of
the algorithm. Then we analyse the support functions and present the neighbor functions, the
acceptance functions and the temperature laws. In the final section, we analyse the structure of
the algorithm used in optim_sa.

The LMITOOL module is presented in chapter 7. This tool allows to solve linear matrix
inequalities. This chapter was written by Nikoukhah, Delebecque and Ghaoui. The syntax of the
lmisolver function is analysed and several examples are analysed in depth.

The chapter 8 focuses on optimization data files managed by Scilab, especially MPS and SIF
files.

Some optimization features are available in the form of toolboxes, the most important of which
are the Quapro, CUTEr and the Unconstrained Optimization Problems toolboxes. These modules
are presented in the chapter 9, along with other modules including the interface to CONMIN, to
FSQP, to LIPSOL, to LPSOLVE, to NEWUOA.

The chapter 10 is devoted to missing optimization features in Scilab.

9



Chapter 1

Non-linear optimization

The goal of this chapter is to present the current features of the optim primitive Scilab. The
optim primitive allows to optimize a problem with a nonlinear objective without constraints or
with bound constraints.

In this chapter, we describe both the internal design of the optim primitive. We analyse in
detail the management of the cost function. The cost function and its gradient can be computed
using a Scilab function, a C function or a Fortran 77 function. The linear algebra components
are analysed, since they are used at many places in the algorithms. Since the management of
memory is a crucial feature of optimization solvers, the current behaviour of Scilab with respect
to memory is detailed here.

Three non-linear solvers are connected to the optim primitive, namely, a BFGS Quasi-Newton
solver, a L-BFGS solver, and a Non-Differentiable solver. In this chapter we analyse each solver
and present the following features :

• the reference articles or reports,

• the author,

• the management of memory,

• the linear algebra system, especially the algorithm name and if dense/sparse cases are taken
into account,

• the line search method.

The Scilab online help is a good entry point for this function.

1.1 Mathematical point of view

The problem of the non linear optimization is to find the solution of

min
x
f(x)

with bounds constraints or without constraints and with f : Rn → R the cost function.

10
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1.2 Optimization features

Scilab offers three non-linear optimization methods:

• Quasi-Newton method with BFGS formula without constraints or with bound constraints,

• Quasi-Newton with limited memory BFGS (L-BGFS) without constraints or with bound
constraints,

• Bundle method for non smooth functions (half derivable functions, non-differentiable prob-
lem) without constraints.

Problems involving non linear constraints cannot be solved with the current optimization
methods implemented in Scilab. Non smooth problems with bounds constraints cannot be solved
with the methods currently implemented in Scilab.

1.3 Optimization routines

Non-linear optimization in Scilab is based on a subset of the Modulopt library, developed at
Inria. The library which is used by optim was created by the Modulopt project at INRIA and
developped by Bonnans, Gilbert and Lemaréchal [5].

This section lists the routines used according to the optimization method used.
The following is the list of solvers currently available in Scilab, and the corresponding fortran

routine :

• ”qn” without constraints : a Quasi-Newton method without constraints, n1qn1,

• ”qn” with bounds constraints : Quasi-Newton method with bounds constraints, qnbd,

• ”gc” without constraints : a Limited memory BGFS methoud without constraints, n1qn3,

• ”gc” with bounds constraints : a Limited memory BGFS with bounds constraints, gcbd,

• ”nd” without constraints : a Non smooth method without constraints, n1fc1.

1.4 The cost function

The communication protocol used by optim is direct, that is, the cost function must be passed
as a callback argument to the ”optim” primitive. The cost function must compute the objective
and/or the gradient of the objective, depending on the input integer flag ”ind”.

In the most simple use-case, the cost function is a Scilab function, with the following header :

[ f , g , ind ]= c o s t f (x , ind )

where ”x” is the current value of the unknown and ”ind” is the integer flag which states if ”f”, ”g”
or both are to be computed.

The cost function is passed to the optimization solver as a callback, which is managed with
the fortran 77 callback system. In that case, the name of the routine to call back is declared as
”external” in the source code. The cost function may be provided in the following ways :

11



• the cost function is provided as a Scilab script,

• the cost function is provided as a C or fortran 77 compiled routine.

If the cost function is a C or fortran 77 source code, the cost function can be statically or
dynamically linked against Scilab. Indeed, Scilab dynamic link features, such as ilib for link for
example, can be used to provide a compiled cost function.

In the following paragraph, we analyse the very internal aspects of the management of the
cost function.

This switch is managed at the gateway level, in the sci f optim routine, with a ”if” statement :

• if the cost function is compiled, the ”foptim” symbol is passed,

• if not, the ”boptim” symbol is passed.

In the case where the cost function is a Scilab script, the ”boptim” routine performs the copy of
the input local arguments into Scilab internal memory, calls the script, and finally copy back the
output argument from Scilab internal memory into local output variables. In the case where the
cost function is compiled, the computation is based on function pointers, which are managed at
the C level in optimtable.c. The optimization function is configured by the ”setfoptim” C ser-
vice, which takes as argument the name of the routine to callback. The services implemented in
AddFunctionInTable.c are used, especially the function ”AddFunctionInTable”, which takes the
name of the function as input argument and searches the corresponding function address, be it
in statically compiled libraries or in dynamically compiled libraries. This allows the optimization
solvers to callback dynamically linked libraries. These names and addresses are stored in the
hashmap FTab foptim, which maps function names to function pointer. The static field foptim-
fonc with type foptimf is then set to the address of the function to be called back. When the
optimization solver needs to compute the cost function, it calls the ”foptim”C void function which
in returns calls the compiled cost function associated to the configured address (*foptimfonc).

1.5 Linear algebra

The linear algebra which is used in the ”optim” primitive is dense. Generally, the linear algebra
is inlined and there is no use the BLAS API. This applies to all optimization methods, except
”gcbd”. This limits the performance of the optimization, because optimized libraries like ATLAS
cannot not used. There is only one exception : the L-BFGS with bounds constraints routine gcbd
uses the ”dcopy” routine of the BLAS API.

1.6 Management of memory

The optimization solvers requires memory, especially to store the value of the cost function,
the gradient, the descent direction, but most importantly, the approximated Hessian of the cost
function.

Most of the memory is required by the approximation of the Hessian matrix. If the full
approximated Hessian is stored, as in the BFGS quasi-Newton method, the amount of memory
is the square of the dimension of the problem O(n2), where n is the size of the unknown. When

12



a quasi-Newton method with limited memory is used, only a given number m of vectors of size n
are stored.

This memory is allocated by Scilab, inside the stack and the storage area is passed to the
solvers as an input argument. This large storage memory is then split into pieces like a piece
of cake by each solver to store the data. The memory system used by the fortran solvers is the
fortran 77 ”assumed-size-dummy-arrays” mechanism, based on ”real arrayname(*)” statements.

The management of memory is very important for large-scale problems, where n is from 100
to 1000. One main feature of one of the L-BFGS algorithms is to limit the memory required.
More precisely, the following is a map from the algorithm to the memory required, as the number
of required double precision values.

• Quasi-Newton BFGS ”qn” without constraints (n1qn1) : n(n+ 13)/2,

• Quasi-Newton BFGS ”qn” with bounds constraints (qnbd) : n(n+ 1)/2 + 4n+ 1,

• Limited Memory BFGS ”gc” without constraints (n1qn3) : 4n+m(2n+ 1),

• Limited Memory BFGS ”gc” with bounds constraints (gcbd) : n(5 + 3nt) + 2nt + 1 with
nt = max(1,m/3),

• Non smooth method without constraints (n1fc1) : (n+ 4)m/2 + (m+ 9) ∗m+ 8 + 5n/2.

Note that n1fc1 requires an additionnal 2(m + 1) array of integers. Simplifying these array
sizes leads to the following map, which clearly shows why Limited Memory BFGS algorithms in
Scilab are more suitable for large problems. This explains why the name ”cg” was chosen: it refers
to the Conjugate Gradient method, which stores only one vector in memory. But the name ”cg”
is wrongly chosen and this is why we consistently use L-BFGS to identify this algorithm.

• Quasi-Newton ”qn” without constraints (n1qn1) : O(n2),

• Quasi-Newton ”qn” with bounds constraints (qnbd) : O(n2),

• Limited Memory BFGS ”gc” without constraints (n1qn3) : O(n),

• Limited Memory BFGS ”gc” with bounds constraints (gcbd) : O(n),

• Non smooth method without constraints (n1fc1) : O(n).

That explains why L-BFGS methods associated with the ”gc” option of the optim primitive
are recommended for large-scale optimization. It is known that L-BFGS convergence may be slow
for large-scale problems (see [21], chap. 9).

1.7 Quasi-Newton ”qn” without constraints : n1qn1

The author is C. Lemarechal, 1987. There is no reference report for this solver.
The following is the header for the n1qn1 routine :
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subroutine n1qn1 (simul,n,x,f,g,var,eps,

1 mode,niter,nsim,imp,lp,zm,izs,rzs,dzs)

c!but

c minimisation d une fonction reguliere sans contraintes

c!origine

c c. lemarechal, inria, 1987

c Copyright INRIA

c!methode

c direction de descente calculee par une methode de quasi-newton

c recherche lineaire de type wolfe

The following is a description of the arguments of this routine.

• simul : point d’entree au module de simulation (cf normes modulopt i). n1qn1 appelle
toujours simul avec indic = 4 ; le module de simulation doit se presenter sous la forme
subroutine simul(n,x, f, g, izs, rzs, dzs) et être declare en external dans le programme
appelant n1qn1.

• n (e) : nombre de variables dont depend f.

• x (e-s) : vecteur de dimension n ; en entree le point initial ; en sortie : le point final calcule
par n1qn1.

• f (e-s) : scalaire ; en entree valeur de f en x (initial), en sortie valeur de f en x (final).

• g (e-s) : vecteur de dimension n : en entree valeur du gradient en x (initial), en sortie valeur
du gradient en x (final).

• var (e) : vecteur strictement positif de dimension n. amplitude de la modif souhaitee a la
premiere iteration sur x(i).une bonne valeur est 10% de la difference (en valeur absolue)
avec la coordonee x(i) optimale

• eps (e-s) : en entree scalaire definit la precision du test d’arret. Le programme considere
que la convergence est obtenue lorque il lui est impossible de diminuer f en attribuant à au
moins une coordonnée x(i) une variation superieure a eps*var(i). En sortie, eps contient le
carré de la norme du gradient en x (final).

• mode (e) : definit l’approximation initiale du hessien

– =1 n1qn1 l’initialise lui-meme

– =2 le hessien est fourni dans zm sous forme compressee (zm contient les colonnes de
la partie inferieure du hessien)

• niter (e-s) : en entree nombre maximal d’iterations : en sortie nombre d’iterations reellement
effectuees.

• nsim (e-s) : en entree nombre maximal d’appels a simul (c’est a dire avec indic = 4). en
sortie le nombre de tels appels reellement faits.

• imp (e) : contrôle les messages d’impression :
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– = 0 rien n’est imprime

– = 1 impressions initiales et finales

– = 2 une impression par iteration (nombre d’iterations, nombre d’appels a simul, valeur
courante de f).

– >=3 informations supplementaires sur les recherches lineaires ; tres utile pour detecter
les erreurs dans le gradient.

• lp (e) : le numero du canal de sortie, i.e. les impressions commandees par imp sont faites
par write (lp, format).

• zm : memoire de travail pour n1qn1 de dimension n*(n+13)/2.

• izs,rzs,dzs memoires reservees au simulateur (cf doc)

The n1qn1 solver is an interface to the n1qn1a routine, which really implements the optimiza-
tion method. The n1qn1a file counts approximately 300 lines. The n1qn1a routine is based on
the following routines :

• simul : computes the cost function,

• majour : probably (there is no comment) an update of the BFGS matrix.

Many algorithms are in-lined, especially the line search and the linear algebra.

1.7.1 Management of the approximated Hessian matrix

The current BFGS implementation is based on a approximation of the Hessian [21], which is based
on Cholesky decomposition, i.e. the approximated Hessian matrix is decomposed as G = LDLT ,
where D is a diagonal n× n matrix and L is a lower triangular n× n matrix with unit diagonal.
To compute the descent direction, the linear system Gd = LDLTd = −g is solved.

The memory requirements for this method is O(n2) because the approximated Hessian matrix
computed from the BFGS formula is stored in compressed form so that only the lower part of
the approximated Hessian matrix is stored. This is why this method is not recommended for
large-scale problems (see [21], chap.9, introduction).

The approximated hessian H ∈ Rn×n is stored as the vector h ∈ Rnh which has size nh =
n(n+ 1)/2. The matrix is stored in factored form as following

h = (D11L21 . . . Ln1|H21D22 . . . Ln2| . . . |Dn−1n−1Lnn−1|Dnn) . (1.1)

Instead of a direct acces to the factors of D and L, integers algebra is necessary to access to the
data stored in the vector h.

The algorithm presented in figure 1.1 is used to set the diagonal terms the diagonal terms of D,
the diagonal matrix of the Cholesky decomposition of the approximated Hessian. The right-hand
side 0.01cmax

v2
i

of this initialization is analysed in the next section of this document.
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k ← 1
for i = 1 to n do
h(k) = 0.01cmax

v2
i

k ← k + n+ 1− i
end for

Figure 1.1: Loop over the diagonal terms of the Cholesky decomposition of the approximated
Hessian

Solving the linear system of equations

The linear system of equations Gd = LDLTd = −g must be solved to computed the descent
direction d ∈ Rn. This direction is computed by the following algorithm

• compute w so that Lw = −g,

• computed d so that DLTd = w.

This algorithm requires O(n2) operations.

1.7.2 Line search

The line search is based on the algorithms developped by Lemaréchal [26]. It uses a cubic inter-
polation.

The Armijo condition for sufficient decrease is used in the following form

f(xk + αpk)− f(xk) ≤ c1α∇fT
k pk (1.2)

with c1 = 0.1. The following fortran source code illustrates this condition

if (fb-fa.le.0.10d+0*c*dga) go to 280

where fb = f(xk + αpk), fa = f(xk), c = α and dga = ∇fT
k pk is the local directional derivative.

1.7.3 Initial Hessian matrix

Several modes are available to compute the initial Hessian matrix, depending on the value of the
mode variable

• if mode = 1, n1qn1 initializes the matrix by itself,

• if mode = 2, the hessian is provided in compressed form, where only the lower part of the
symetric hessian matrix is stored.

An additionnal mode=3 is provided but the feature is not clearly documented. In Scilab, the
n1qn1 routine is called with mode = 1 by default. In the case where a hot-restart is performed,
the mode = 3 is enabled.

If mode = 1 is chosen, the initial Hessian matrix H0 is computed by scaling the identity matrix

H0 = Iδ (1.3)
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where δ ∈ Rn is a n-vector and I is the n× n identity matrix. The scaling vector δ ∈ Rn is based
on the gradient at the initial guess g0 = g(x0) = ∇f(x0) ∈ Rn and a scaling vector v ∈ Rn, given
by the user

δi =
0.01cmax

v2
i

(1.4)

where cmax > 0 is computed by

cmax = max

(
1.0,max

i=1,n
(|g0

i )|)
)

(1.5)

In the Scilab interface for optim, the scaling vector is set to 0.1 :

vi = 0.1, i = 1, n. (1.6)

1.7.4 Termination criteria

The following list of parameters are taken into account by the solver

• niter, the maximum number of iterations (default value is 100),

• nap, the maximum number of function evaluations (default value is 100),

• epsg, the minimum length of the search direction (default value is %eps ≈ 2.22e− 16).

The other parameters epsf and epsx are not used. The termination condition is not based
on the gradient, as the name epsg would indicate.

The following is a list of termination conditions which are taken into account in the source
code.

• The iteration is greater than the maximum.

if (itr.gt.niter) go to 250

• The number of function evaluations is greater than the maximum.

if (nfun.ge.nsim) go to 250

• The directionnal derivative is positive, so that the direction d is not a descent direction for
f .

if (dga.ge.0.0d+0) go to 240

• The cost function set the indic flag (the ind parameter) to 0, indicating that the optimization
must terminate.

call simul (indic,n,xb,fb,gb,izs,rzs,dzs)

[...]

go to 250
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• The cost function set the indic flag to a negative value indicating that the function cannot
be evaluated for the given x. The step is reduced by a factor 10, but gets below a limit so
that the algorithm terminates.

call simul (indic,n,xb,fb,gb,izs,rzs,dzs)

[...]

step=step/10.0d+0

[...]

if (stepbd.gt.steplb) goto 170

[...]

go to 250

• The Armijo condition is not satisfied and step size is below a limit during the line search.

if (fb-fa.le.0.10d+0*c*dga) go to 280

[...]

if (step.gt.steplb) go to 270

• During the line search, a cubic interpolation is computed and the computed minimum is
associated with a zero step length.

if(c.eq.0.0d+0) goto 250

• During the line search, the step length is lesser than a computed limit.

if (stmin+step.le.steplb) go to 240

• The rank of the approximated Hessian matrix is lesser than n after the update of the
Cholesky factors.

if (ir.lt.n) go to 250

1.7.5 An example

The following script illustrates that the gradient may be very slow, but the algorithm continues.
This shows that the termination criteria is not based on the gradient, but on the length of the
step. The problem has two parameters so that n = 2. The cost function is the following

f(x) = xp
1 + xp

2 (1.7)

where p ≥ 0 is an even integer. Here we choose p = 10. The gradient of the function is

g(x) = ∇f(x) = (pxp−1
1 , pxp−1

2 )T (1.8)

and the Hessian matrix is

H(x) =

(
p(p− 1)xp−2

1 0

0 p(p− 1)xp−2
2

)
(1.9)
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The optimum of this optimization problem is at

x? = (0, 0)T . (1.10)

The following Scilab script defines the cost function, checks that the derivatives are correctly
computed and performs an optimization. At each iteration, the norm of the gradient of the cost
function is displayed so that one can see if the algorithm terminates when the gradient is small.

function [ f , g , ind ] = myquadratic ( x , ind )
p = 10
i f ind == 1 | ind == 2 | ind == 4 then

f = x (1)ˆp + x (2)ˆp ;
end
i f ind == 1 | ind == 2 | ind == 4 then

g (1 ) = p ∗ x (1 )ˆ ( p−1)
g (2 ) = p ∗ x (2 )ˆ ( p−1)

end
i f ind == 1 then

mprintf (”|x|=%e, f=%e, |g|=%e\n” ,norm( x ) , f ,norm( g ) )
end

endfunction
function f = quadfornumdif f ( x )

f = myquadratic ( x , 2 )
endfunction
x0 = [−1.2 1 . 0 ] ;
[ f , g ] = myquadratic ( x0 , 4 ) ;
mprintf ( ”Computed f (x0) = %f\n” , f ) ;
mprintf ( ”Computed g(x0) = \n”) ; disp ( g ’ ) ;
mprintf ( ”Expected g(x0) = \n”) ; disp ( derivative ( quadfornumdif f , x0 ’ ) )
nap = 100
i t e r = 100
epsg = %eps
[ f opt , xopt , gradopt ] = optim ( myquadratic , x0 , . . .

”ar” , nap , i t e r , epsg , imp = −1)

The script produces the following output.

−−>[ f opt , xopt , gradopt ] = optim ( myquadratic , x0 , . . .
”ar” , nap , i t e r , epsg , imp = −1)

| x |=1.562050 e+000 , f =7.191736 e+000 , | g |=5.255790 e+001
| x |=1.473640 e+000 , f =3.415994 e+000 , | g |=2.502599 e+001
| x |=1.098367 e+000 , f =2.458198 e+000 , | g |=2.246752 e+001
| x |=1.013227 e+000 , f =1.092124 e+000 , | g |=1.082542 e+001
| x |=9.340864 e−001 , f =4.817592e−001 , | g |=5.182592 e+000
[ . . . ]
| x |=1.280564 e−002 , f =7.432396e−021 , | g |=5.817126 e−018
| x |=1.179966 e−002 , f =3.279551e−021 , | g |=2.785663 e−018
| x |=1.087526 e−002 , f =1.450507e−021 , | g |=1.336802 e−018
| x |=1.002237 e−002 , f =6.409611e−022 , | g |=6.409898 e−019
| x |=9.236694 e−003 , f =2.833319e−022 , | g |=3.074485 e−019
Norm of p ro j e c t ed grad i ent lower than 0.3074485D−18.
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gradopt =
1 .0D−18 ∗
0.2332982 0.2002412

xopt =
0.0065865 0.0064757

fopt =
2.833D−22

One can see that the algorithm terminates when the gradient is extremely small g(x) ≈ 10−18.
The cost function is very near zero f(x) ≈ 10−22, but the solution is not accurate only up to the
3d digit.

This is a very difficult test case for optimization solvers. The difficulty is because the function
is extremely flat near the optimum. If the termination criteria was based on the gradient, the
algorithm would stop in the early iterations. Because this is not the case, the algorithm performs
significant iterations which are associated with relatively large steps.

1.8 Quasi-Newton ”qn” with bounds constraints : qnbd

The comments state that the reference report is an INRIA report by F. Bonnans [4]. The solver
qnbd is an interface to the zqnbd routine. The zqnbd routine is based on the following routines :

• calmaj : calls majour, which updates the BFGS matrix,

• proj : projects the current iterate into the bounds constraints,

• ajour : probably (there is no comment) an update of the BFGS matrix,

• rlbd : line search method with bound constraints,

• simul : computes the cost function

The rlbd routine is documented as using an extrapolation method to computed a range for the
optimal t parameter. The range is then reduced depending on the situation by :

• a dichotomy method,

• a linear interpolation,

• a cubic interpolation.

The stopping criteria is commented as ”an extension of the Wolfe criteria”. The linear algebra does
not use the BLAS API. It is in-lined, so that connecting the BLAS may be difficult. The memory
requirements for this method are O(n2), which shows why this method is not recommended for
large-scale problems (see [21], chap.9, introduction).

1.9 L-BFGS ”gc” without constraints : n1qn3

The comments in this solver are clearly written. The authors are Jean Charles Gilbert, Claude
Lemarechal, 1988. The BFGS update is based on the article [34]. The solver n1qn3 is an interface
to the n1qn3a routine. The architecture is clear and the source code is well commented. The
n1qn3a routine is based on the following routines :
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• prosca : performs a vector x vector scalar product,

• simul : computes the cost function,

• nlis0 : line search based on Wolfe criteria, extrapolation and cubic interpolation,

• ctonb : copies array u into v,

• ddd2 : computed the descent direction by performing the product hxg.

The linear algebra is dense, which limits the feature to small size optimization problems. The
linear algebra does not use the BLAS API but is based on the prosca and ctonb routines. The
prosca routine is a call back input argument of the n1qn3 routine, connected to the fuclid routine.
This implements the scalar product, but without optimizaion. Connecting BLAS may be easy
for n1qn3. The algorithm is a limited memory BFGS method with m levels, so that the memory
cost is O(n). It is well suited for medium-scale problems, although convergence may be slow (see
[21], chap. 9, p.227).

1.10 L-BFGS ”gc” with bounds constraints : gcbd

The author is F. Bonnans, 1985. There is no reference report for gcbd. The gcbd solver is an
interface to the zgcbd routine, which really implements the optimization method. The zgcbd
routine is based on the following routines :

• simul : computes the cost function

• proj : projects the current iterate into the bounds constraints,

• majysa : updates the vectors y = g(k + 1)− g(k), s = x(k + 1)− x(k), ys,

• bfgsd : updates the diagonal by Powell diagonal BFGS,

• shanph : scalse the diagonal by Shanno-Phua method,

• majz : updates z,zs,

• relvar : computes the variables to relax by Bertsekas method,

• gcp : gradient conjugate method for Ax = b,

• dcopy : performs a vector copy (BLAS API),

• rlbd : line search method with bound constraints.

The linear algebra is dense. But zgcbd uses the ”dcopy” BLAS routine, which allows for some
optimizations. The algorithm is a limited memory BFGS method with m levels, so that the
memory cost is O(n). It is well suited for medium-scale problems, although the convergence may
be slow (see [21], chap. 9, p.227).
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1.11 Non smooth method without constraints : n1fc1

This routine is probably due to Lemaréchal, who is an expert of this topic. References for this
algorithm include the ”Part II, Nonsmooth optimization” in [5], and the in-depth presentation in
[18, 19].

The n1fc1 solver is an interface to the n1fc1a routine, which really implements the optimization
method. The n1fc1a routine is based on the following routines :

• simul : computes the cost function,

• fprf2 : computes the direction,

• frdf1 : reduction du faisceau

• nlis2 : line search,

• prosca : performs a vector x vector scalar product.

It is designed for functions which have a non-continuous derivative (e.g. the objective function is
the maximum of several continously differentiable functions).
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Chapter 2

Quadratic optimization

Quadratic problems can be solved with the qpsolve Scilab macro and the qp_solve Scilab prim-
itive. In this chapter, we presents these two primitives, which are meant to be a replacement for
the former Quapro solver (which has be transformed into a Scilab toolbox). We especially analyse
the management of the linear algebra as well as the memory requirements of these solvers.

2.1 Mathematical point of view

This kind of optimization is the minimization of function f(x) with

f(x) =
1

2
xTQx+ pTx

under the constraints :

CT
1 x = b1 (2.1)

CT
2 x ≥ b2 (2.2)

(2.3)

2.2 qpsolve

The Scilab function qpsolve is a solver for quadratic problems when Q is symmetric positive
definite.

The qpsolve function is a Scilab macro which aims at providing the same interface (that is,
the same input/output arguments) as the quapro solver.

For more details about this solver, please refer to Scilab online help for qpsolve
The qpsolve Scilab macro is based on the work by Berwin A Turlach from The University of

Western Australia, Crawley [38]. The solver is implemented in Fortran 77. This routine uses the
Goldfarb/Idnani algorithm [11, 12].

The constraints matrix can be dense or sparse.
The qpsolve macro calls the qp_solve compiled primitive. The internal source code for

qpsolve manages the equality and inequality constraints so that it can be processed by the
qp_solve primitive.
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2.3 qp solve

The qp_solve compiled primitive is an interface for the fortran 77 solver. The interface is im-
plemented in the C source code sci qp solve.c. Depending on the constraints matrix, a dense or
sparse solver is used :

• If the constraints matrix C is dense, the qpgen2 fortran 77 routine is used. The qpgen2
routine is the original, unmodified algorithm which was written by Turlach (the original
name was solve.QP.f)

• If the constraints matrix C is a Scilab sparse matrix, the qpgen1sci routine is called. This
routine is a modification of the original routine qpgen1, in order to adapt to the specific
Scilab sparse matrices storage.

2.4 Memory requirements

Suppose that n is the dimension of the quadratic matrix Q and m is the sum of the number of
equality constraints me and inequality constraints md. Then, the temporary work array which is
allocated in the primitive has the size

r = min(n,m), (2.4)

lw = 2n+ r(r + 5)/2 + 2m+ 1. (2.5)

This temporary array is de-allocated when the qpsolve primitive returns.
This formulae may be simplified in the following cases :

• if n � m, that is the number of constraints m is negligible with respect to the number of
unknowns n, then the memory required is O(n),

• if m � n, that is the number of unknowns n is negligible with respect to the number of
constraints m, then the memory required is O(m),

• if m = n, then the memory required is O(n2).

2.5 Internal design

The original Goldfarb/Idnani algorithm [11, 12] was designed to solve the following minimization
problem:

min
x
−dTx+

1

2
xTDx

where

AT
1 x = b1 (2.6)

AT
2 x >= b2 (2.7)

where the matrix D is assumed to be symmetric positive definite. It was considered as a building
block for a Sequential Quadratic Programming solver. The original package provides two routines :
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• solve.QP.f containing routine qpgen2 which implements the algorithm for dense matrices,

• solve.QP.compact.f containing routine qpgen1 which implements the algorithm for sparse
matrices.
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Chapter 3

Non-linear least square

3.1 Mathematical point of view

The problem of the non linear least-quare optimization is to find the solution of

min
x

∑
x

f(x)2

with bounds constraints or without constraints and with f : Rn → Rm the cost function.

3.2 Scilab function

Scilab function called lsqrsolve is designed for the minimization of the sum of the squares of non-
linear functions using a Levenberg-Marquardt algorithm. For more details about this function,
please refer to Scilab online help

3.3 Optimization routines

Scilab lsqrsolve function is based on the routines lmdif and lmder of the library Minpack (Ar-
gonne National Laboratory).
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Chapter 4

Semidefinite programming

4.1 Mathematical point of view

This kind of optimization is the minimization of f(x) = cTx under the constraint:

F0 + x1F1 + ...+ xmFm ≥ 0 (4.1)

or its dual problem, the maximization or −Trace(F0, Z) under the constraints:

Trace(Fi, Z) = ci, i = 1, ...,m (4.2)

Z ≥ 0 (4.3)

4.2 Scilab function

The Scilab function called semidef is designed for this kind of optimization problems. For more
details about this function, please refer to Scilab online help

4.3 Optimization routines

Scilab semidef function is based on a routine from L. Vandenberghe and Stephen Boyd.
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Chapter 5

Genetic algorithms

5.1 Introduction

Genetic algorithms are search algorithms based on the mechanics on natural selection and natural
genetics [17, 28]. Genetic algorithms have been introduced in Scilab v5 thanks to a work by Yann
Collette [9]. The solver is made of Scilab macros, which enables a high-level programming model
for this optimization solver.

The problems solved by the current genetic algorithms in Scilab are the following :

• minimization of a cost function with bound constraints,

• multi-objective non linear minimization with bound constraints.

Genetic algorithms are different from more normal optimization and search procedures in four
ways :

• GAs work with a coding of the parameter set, not the parameters themselves,

• GAs search from a population of points, not a single point,

• GAs use payoff (objective function) information, not derivativess or other auxiliary knowl-
edge,

• GAs use probabilistic transition rules, not deterministic rules.

A simple genetic algorithm that yields good results in many practical problems is composed
of three operators [17] :

• reproduction,

• cross-over,

• mutation.

Many articles on this subject have been collected by Carlos A. Coello Coello on his website
[7]. A brief introduction to GAs is done in [43].

The GA macros are based on the ”parameters” Scilab module for the management of the
(many) optional parameters.
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5.2 Example

In the current section, we give an example of the user of the GA algorithms.
The following is the definition of the Rastrigin function.

function Res = min_bd_rastrigin()

Res = [-1 -1]’;

endfunction

function Res = max_bd_rastrigin()

Res = [1 1]’;

endfunction

function Res = opti_rastrigin()

Res = [0 0]’;

endfunction

function y = rastrigin(x)

y = x(1)^2+x(2)^2-cos(12*x(1))-cos(18*x(2));

endfunction

This cost function is then defined with the generic name ”f”. Other algorithmic parameters,
such as the size of the population, are defined in the following sample Scilab script.

func = ’rastrigin’;

deff(’y=f(x)’,’y = ’+func+’(x)’);

PopSize = 100;

Proba_cross = 0.7;

Proba_mut = 0.1;

NbGen = 10;

NbCouples = 110;

Log = %T;

nb_disp = 10;

pressure = 0.05;

Genetic Algorithms require many settings, which are cleanly handled by the ”parameters”
module. This module provides the nit_param function, which returns a new, empty, set of pa-
rameters. The add_param function allows to set individual named parameters, which are configure
with key-value pairs.

1 ga params = in i t param ( ) ;
2 // Parameters to adapt to the shape of the optimization problem
3 ga params = add param ( ga params , ’minbound ’ , eval ( ’min bd ’+func+ ’ () ’ ) ) ;
4 ga params = add param ( ga params , ’maxbound’ , eval ( ’max bd ’+func+ ’ () ’ ) ) ;
5 ga params = add param ( ga params , ’dimension ’ , 2 ) ;
6 ga params = add param ( ga params , ’beta ’ , 0 ) ;
7 ga params = add param ( ga params , ’ delta ’ , 0 . 1 ) ;
8 // Parameters to fine tune the Genetic algorithm .
9 ga params = add param ( ga params , ’ init func ’ , i n i t g a d e f a u l t ) ;

10 ga params = add param ( ga params , ’ crossover func ’ , c r o s s o v e r g a d e f a u l t ) ;
11 ga params = add param ( ga params , ’mutation func ’ , mutat ion ga de fau l t ) ;
12 ga params = add param ( ga params , ’ codage func ’ , c od i ng ga i d en t i t y ) ;
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13 ga params = add param ( ga params , ’ selection func ’ , s e l e c t i o n g a e l i t i s t ) ;
14 ga params = add param ( ga params , ’ nb couples ’ , NbCouples ) ;
15 ga params = add param ( ga params , ’ pressure ’ , p r e s su r e ) ;

The optim_ga function search a population solution of a single-objective problem with bound
constraints.

1 [ pop opt , fob j pop opt , pop in i t , f o b j p o p i n i t ] = . . .
2 optim ga ( f , PopSize , NbGen , Proba mut , Proba cross , Log , ga params ) ;

The following are the messages which are displayed in the Scilab console :

optim_ga: Initialization of the population

optim_ga: iteration 1 / 10 - min / max value found = -1.682413 / 0.081632

optim_ga: iteration 2 / 10 - min / max value found = -1.984184 / -0.853613

optim_ga: iteration 3 / 10 - min / max value found = -1.984184 / -1.314217

optim_ga: iteration 4 / 10 - min / max value found = -1.984543 / -1.513463

optim_ga: iteration 5 / 10 - min / max value found = -1.998183 / -1.691332

optim_ga: iteration 6 / 10 - min / max value found = -1.999551 / -1.871632

optim_ga: iteration 7 / 10 - min / max value found = -1.999977 / -1.980356

optim_ga: iteration 8 / 10 - min / max value found = -1.999979 / -1.994628

optim_ga: iteration 9 / 10 - min / max value found = -1.999989 / -1.998123

optim_ga: iteration 10 / 10 - min / max value found = -1.999989 / -1.999534

The initial and final populations for this simulation are shown in 5.1.
The following script is a loop over the optimum individuals of the population.

1 printf ( ’Genetic Algorithm : %d points from pop opt\n ’ , nb disp ) ;
2 for i =1: nb disp
3 printf ( ’ Individual %d: x(1) = %f x(2) = %f −> f = %f\n ’ , . . .
4 i , pop opt ( i ) ( 1 ) , pop opt ( i ) ( 2 ) , f ob j pop opt ( i ) ) ;
5 end

The previous script make the following lines appear in the Scilab console.

Individual 1: x(1) = -0.000101 x(2) = 0.000252 -> f = -1.999989

Individual 2: x(1) = -0.000118 x(2) = 0.000268 -> f = -1.999987

Individual 3: x(1) = 0.000034 x(2) = -0.000335 -> f = -1.999982

Individual 4: x(1) = -0.000497 x(2) = -0.000136 -> f = -1.999979

Individual 5: x(1) = 0.000215 x(2) = -0.000351 -> f = -1.999977

Individual 6: x(1) = -0.000519 x(2) = -0.000197 -> f = -1.999974

Individual 7: x(1) = 0.000188 x(2) = -0.000409 -> f = -1.999970

Individual 8: x(1) = -0.000193 x(2) = -0.000427 -> f = -1.999968

Individual 9: x(1) = 0.000558 x(2) = 0.000260 -> f = -1.999966

Individual 10: x(1) = 0.000235 x(2) = -0.000442 -> f = -1.999964

5.3 Support functions

In this section, we analyze the GA services to configure a GA computation.
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Figure 5.1: Optimum of the Rastrigin function – Initial population is in red, Optimum population
is accumulated on the blue dot
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5.3.1 Coding

The following is the list of coding functions available in Scilab’s GA :

• coding_ga_binary : A function which performs conversion between binary and continuous
representation

• coding_ga_identity : A ”no-operation” conversion function

The user may configure the GA parameters so that the algorithm uses a customized coding
function.

5.3.2 Cross-over

The crossover function is used when mates have been computed, based on the Wheel algorithm :
the crossover algorithm is a loop over the couples, which modifies both elements of each couple.

The following is the list of crossover functions available in Scilab :

• crossover_ga_default : A crossover function for continuous variable functions.

• crossover_ga_binary : A crossover function for binary code

5.3.3 Selection

The selection function is used in the loop over the generations, when the new population is
computed by processing a selection over the individuals.

The following is the list of selection functions available in Scilab :

• selection_ga_random : A function which performs a random selection of individuals. We
select pop size individuals in the set of parents and childs individuals at random.

• selection_ga_elitist : An ’elitist’ selection function. We select the best individuals in
the set of parents and childs individuals.

5.3.4 Initialization

The initialization function returns a population as a list made of ”pop size”individuals. The Scilab
macro init_ga_default computes this population by performing a randomized discretization of
the domain defined by the bounds as minimum and maximum arrays. This randomization is
based on the Scilab primitive rand.

5.4 Solvers

In this section, we analyze the 4 GA solvers which are available in Scilab :

• optim_ga : flexible genetic algorithm

• optim_moga : multi-objective genetic algorithm

• optim_nsga : multi-objective Niched Sharing Genetic Algorithm
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• optim_nsga2 : multi-objective Niched Sharing Genetic Algorithm version 2

While optim_ga is designed for one objective, the 3 other solvers are designed for multi-
objective optimization.

5.4.1 optim ga

The Scilab macro optim_ga implements a Genetic Algorithm to find the solution of an optimiza-
tion problem with one objective function and bound constraints.

The following is an overview of the steps in the GA algorithm.

• processing of input arguments

In the case where the input cost function is a list, one defines the ”hidden” function _ga_f

which computes the cost function. If the input cost function is a regular Scilab function,
the ”hidden” function _ga_f simply encapsulate the input function.

• initialization

One computes the initial population with the init_func callback function (the default value
for init_func is init_ga_default)

• coding

One encodes the initial population with the codage_func callback function (default : coding_ga_identity)

• evolutionary algorithm as a loop over the generations

• decoding

One decodes the optimum population back to the original variable system

The loop over the generation is made of the following steps.

• reproduction : two list of children populations are computed, based on a randomized Wheel,

• crossover : the two populations are processed through the crossover_func callback function
(default : crossover_ga_default)

• mutation : the two populations are processed throught the mutation_func callback function
(default : mutation_ga_default)

• computation of cost functions : the _ga_f function is called to compute the fitness for all
individuals of the two populations

• selection : the new generation is computed by processing the two populations through the
selection_func callback function (default : selection_ga_elitist)

5.4.2 optim moga, pareto filter

The optim_moga function is a multi-objective genetic algorithm. The method is based on [15].
The function pareto_filter extracts non dominated solution from a set.
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5.4.3 optim nsga

The optim_nsga function is a multi-objective Niched Sharing Genetic Algorithm. The method is
based on [37].

5.4.4 optim nsga2

The function optim_nsga2 is a multi-objective Niched Sharing Genetic Algorithm. The method
is based on [14].

34



Chapter 6

Simulated Annealing

In this document, we describe the Simulated Annealing optimization methods, a new feature
available in Scilab v5 .

6.1 Introduction

Simulated annealing (SA) is a generic probabilistic meta-algorithm for the global optimization
problem, namely locating a good approximation to the global optimum of a given function in a
large search space. It is often used when the search space is discrete (e.g., all tours that visit a
given set of cities) [42].

Genetic algorithms have been introduced in Scilab v5 thanks to the work by Yann Collette
[9].

The current Simulated Annealing solver aims at finding the solution of

min
x
f(x)

with bounds constraints and with f : Rn → R the cost function.
Reference books on the subject are [24, 25, 13].

6.2 Overview

The solver is made of Scilab macros, which enables a high-level programming model for this opti-
mization solver. The GA macros are based on the ”parameters”Scilab module for the management
of the (many) optional parameters.

To use the SA algorithm, one must perform the following steps :

• configure the parameters with calls to ”init param” and ”add param” especially,

– the neighbor function,

– the acceptance function,

– the temperature law,

• compute an initial temperature with a call to ”compute initial temp”

• find an optimum by using the ”optim sa” solver
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6.3 Example

The following example is extracted from the SA examples. The Rastrigin functin is used as an
example of a dimension 2 problem because it has many local optima but only one global optimum.

1 //
2 // Rastrigin function
3 //
4 function Res = min bd ra s t r i g i n ( )
5 Res = [−1 −1] ’ ;
6 endfunction
7 function Res = max bd ras t r ig in ( )
8 Res = [1 1 ] ’ ;
9 endfunction

10 function Res = o p t i r a s t r i g i n ( )
11 Res = [0 0 ] ’ ;
12 endfunction
13 function y = r a s t r i g i n (x )
14 y = x(1)ˆ2+x(2)ˆ2−cos (12∗x(1))−cos (18∗x ( 2 ) ) ;
15 endfunction
16 //
17 // Set parameters
18 //
19 func = ’ rastrigin ’ ;
20 Proba star t = 0 . 8 ;
21 I t i n t e r n = 1000 ;
22 I t e x t e r n = 30 ;
23 I t Pre = 100 ;
24 Min = eval ( ’min bd ’+func+ ’ () ’ ) ;
25 Max = eval ( ’max bd ’+func+ ’ () ’ ) ;
26 x0 = (Max − Min ) . ∗ rand ( s ize (Min , 1 ) , s ize (Min , 2 ) ) + Min ;
27 deff ( ’y=f (x) ’ , ’y=’+func+ ’ (x) ’ ) ;
28 //
29 // Simulated Annealing with default parameters
30 //
31 printf ( ’SA: geometrical decrease temperature law\n ’ ) ;
32
33 sa params = in i t param ( ) ;
34 sa params = add param ( sa params , ’min delta ’ ,−0.1∗(Max−Min ) ) ;
35 sa params = add param ( sa params , ’max delta ’ , 0 . 1∗ (Max−Min ) ) ;
36 sa params = add param ( sa params , ’ neigh func ’ , n e i gh f un c d e f au l t ) ;
37 sa params = add param ( sa params , ’ accept func ’ , a c c ep t f un c d e f au l t ) ;
38 sa params = add param ( sa params , ’temp law ’ , t emp law defau l t ) ;
39 sa params = add param ( sa params , ’min bound ’ ,Min ) ;
40 sa params = add param ( sa params , ’max bound ’ ,Max ) ;
41
42 T0 = compute in i t i a l t emp (x0 , f , Proba start , I t Pre , sa params ) ;
43 printf ( ’ In i t i a l temperature T0 = %f\n ’ , T0 ) ;
44
45 [ x opt , f opt , sa mean l i s t , s a v a r l i s t , t emp l i s t ] = . . .
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46 optim sa ( x0 , f , I t ex t e rn , I t i n t e r n , T0 , Log = %T, sa params ) ;
47
48 printf ( ’ optimal solution :\n ’ ) ; disp ( x opt ) ;
49 printf ( ’ value of the objective function = %f\n ’ , f op t ) ;
50
51 s c f ( ) ;
52 drawlater ;
53 subplot ( 2 , 1 , 1 ) ;
54 xt i t le ( ’Geometrical annealing ’ , ’ Iteration ’ , ’Mean / Variance ’ ) ;
55 t = 1 : length ( s a mean l i s t ) ;
56 plot ( t , s a mean l i s t , ’ r ’ , t , s a v a r l i s t , ’g ’ ) ;
57 legend ( [ ’Mean’ , ’Variance ’ ] ) ;
58 subplot ( 2 , 1 , 2 ) ;
59 xt i t le ( ’Temperature evolution ’ , ’ Iteration ’ , ’Temperature ’ ) ;
60 for i =1: length ( t )−1
61 plot ( [ t ( i ) t ( i +1)] , [ t emp l i s t ( i ) t emp l i s t ( i ) ] , ’k− ’ ) ;
62 end
63 drawnow ;

After some time, the following messages appear in the Scilab console.

optimal solution:

- 0.0006975

- 0.0000935

value of the objective function = -1.999963

The figure 6.1 presents the evolution of Mean, Variance and Temperature depending on the
iteration.

6.4 Neighbor functions

In the simulated annealing algorithm, a neighbour function is used in order to explore the domain
[43].

The prototype of a neighborhood function is the following :

1 function x ne igh = ne i gh f un c d e f au l t ( x current , T, param)

where:

• x current represents the current point,

• T represents the current temperature,

• param is a list of parameters.

The following is a list of the neighbour functions available in the SA context :

• neigh_func_default : SA function which computes a neighbor of a given point. For
example, for a continuous vector, a neighbor will be produced by adding some noise to each
component of the vector. For a binary string, a neighbor will be produced by changing one
bit from 0 to 1 or from 1 to 0.
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Figure 6.1: Convergence of the simulated annealing algorithm

• neigh_func_csa : The classical neighborhood relationship for the simulated annealing.
The neighbors distribution is a gaussian distribution which is more and more peaked as the
temperature decrease.

• neigh_func_fsa : The Fast Simulated Annealing neghborhood relationship. The corre-
sponding distribution is a Cauchy distribution which is more and more peaked as the tem-
perature decreases.

• neigh_func_vfsa : The Very Fast Simulated Annealing neighborhood relationship. This
distribution is more and more peaked as the temperature decreases.

6.5 Acceptance functions

There exist several kind of simulated annealing optimization methods:

• the Fast Simulated Annealing,

• the simulated annealing based on metropolis-hasting acceptance function,

• etc...

To implement these various simulated annealing optimization methods, you only need to
change the acceptance function. For common optimization, you need not to change the default
acceptance function.

The following is a list of acceptance functions available in Scilab SAs :
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• accept_func_default : is the default acceptance function, based on the exponential func-
tion

level = exp

(
−Fneigh − Fcurrent

T

)
• accept_func_vfsa : is the Very Fast Simulated Annealing function, defined by :

Level =
1

1 + exp
(
−Fcurrent−Fneigh

T

)
6.6 Temperature laws

In the simulated annealing algorithm, a temperature law is used in a statistical criteria for the
update of the optimum [43]. If the new (neighbor) point improves the current optimum, the
update is done with the new point replacing the old optimum. If not, the update may still be
processed, provided that a statistical criteria is satisfied. The statistical law decreases while the
iterations are processed.

There are 5 temperature laws available in the SA context :

• temp_law_default : A SA function which computes the temperature of the next tempera-
ture stage

• temp_law_csa : The classical temperature decrease law, the one for which the convergence
of the simulated annealing has been proven

• temp_law_fsa : The Szu and Hartley Fast simulated annealing

• temp_law_huang : The Huang temperature decrease law for the simulated annealing

• temp_law_vfsa : This function implements the Very Fast Simulated Annealing from L.
Ingber

6.7 optim sa

The optim_sa macro implements the simulated annealing solver. It allows to find the solution of
an minimization problem with bound constraints.

It is based on an iterative update of two points :

• the current point is updated by taking into account the neighbour function and the accep-
tance criterium,

• the best point is the point which achieved the minimum of the objective function over the
iterations.

While the current point is used internally to explore the domain, only the best point is returned
as the algorithm output.

The algorithm is based on the following steps, which include a main, external loop over the
temperature decreases, and an internal loop.
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• processing of input arguments,

• initialization,

• loop over the number of temperature decreases.

For each iteration over the temperature decreases, the following steps are processed.

• loop over internal iterations, with constant temperature,

• if history is required by user, store the temperature, the x iterates, the values of f,

• update the temperature with the temperature law.

The internal loop allows to explore the domain and is based on the neighbour function. It is
based on the following steps.

• compute a neighbour of the current point,

• compute the objective function for that neighbour

• if the objective decreases or if the acceptance criterium is true, then overwrite the current
point with the neighbour

• if the cost of the best point is greater than the cost of the current point, overwrite the best
point by the current point.
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Chapter 7

LMITOOL: a Package for LMI
Optimization in Scilab

R. Nikoukhah Ramine.Nikoukhah@inria.fr
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L. El Ghaoui ENSTA, 32, Bvd. Victor, 75739 Paris, France. Internet: elghaoui@ensta.fr.
Research supported in part by DRET under contract 92017-BC14

This chapter describes a user-friendly Scilab package, and in particular its two main functions
lmisolver and lmitool for solving Linear Matrix Inequalities problems. This package uses Scilab
function semidef, an interface to the program Semidefinite Programming SP (Copyright c©1994
by Lieven Vandenberghe and Stephen Boyd) distributed with Scilab.

7.1 Purpose

Many problems in systems and control can be formulated as follows (see [6]):

Σ :


minimize f(X1, . . . , XM)

subject to

{
Gi(X1, . . . , XM) = 0, i = 1, 2, ..., p,
Hj(X1, . . . , XM) ≥ 0, j = 1, 2, .., q.

where

• X1, . . . , XM are unknown real matrices, referred to as the unknown matrices,

• f is a real linear scalar function of the entries of the unknown matrices X1, . . . , XM ; it is
referred to as the objective function,

• Gi’s are real matrices with entries which are affine functions of the entries of the unknown
matrices, X1, . . . , XM ; they are referred to as “Linear Matrix Equality” (LME) functions,

• Hj’s are real symmetric matrices with entries which are affine functions of the entries of the
unknown matrices X1, . . . , XM ; they are referred to as “Linear Matrix Inequality” (LMI)
functions. (In this report, the V ≥ 0 stands for V positive semi-definite unless stated
otherwise).
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The purpose of LMITOOL is to solve problem Σ in a user-friendly manner in Scilab, using the code
SP [23]. This code is intended for small and medium-sized problems (say, up to a few hundred
variables).

7.2 Function lmisolver

LMITOOL is built around the Scilab function lmisolver. This function computes the solution
X1, . . . , XM of problem Σ, given functions f , Gi and Hj. To solve Σ, user must provide an
evaluation function which “evaluates” f , Gi and Hj as a function the unknown matrices, as well
as an initial guess on the values of the unknown matrices. User can either invoke lmisolver

directly, by providing the necessary information in a special format or he can use the interactive
function lmitool described in Section 7.3.

7.2.1 Syntax

[XLISTF[,OPT]] = lmisolver(XLIST0,EVALFUNC[,options])

where

• XLIST0: a list structure including matrices and/or list of matrices. It contains initial guess
on the values of the unknown matrices. In general, the ith element of XLIST0 is the initial
guess on the value of the unknown matrix Xi. In some cases however it is more convenient
to define one or more elements of XLIST0 to be lists (of unknown matrices) themselves. This
is a useful feature when the number of unknown matrices is not fixed a priori (see Example
of Section 7.2.2).

The values of the matrices in XLIST0, if compatible with the LME functions, are used as
intial condition for the optimization algorithm; they are ignored otherwise. The size and
structure of XLIST0 are used to set up the problem and determine the size and structure of
the output XLISTF.

• EVALFUNC: a Scilab function called evaluation function (supplied by the user) which evalu-
ates the LME, LMI and objective functions, given the values of the unknown matrices. The
syntax is:

[LME,LMI,OBJ]=EVALFUNC(XLIST)

where

– XLIST: a list, identical in size and structure to XLIST0.

– LME: a list of matrices containing values of the LME functions Gi’s for X values in
XLIST. LME can be a matrix in case there is only one LME function to be evaluated
(instead of a list containing this matrix as unique element). It can also be a list of a
mixture of matrices and lists which in turn contain values of LME’s, and so on.

– LMI: a list of matrices containing the values of the LMI functions Hj’s for X values
in XLIST. LMI can also be a matrix (in case there is only one LMI function to be
evaluated). It can also be a list of a mixture of matrices and lists which in turn contain
values of of LMI’s, and so on.
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– OBJ: a scalar equal to the value of the objective function f for X values in XLIST.

If the Σ problem has no equality constraints then LME should be []. Similarly for LMI and
OBJ.

• options: a 5×1 vector containing optimization parameters Mbound, abstol, nu, maxiters,
and reltol, see manual page for semidef for details (Mbound is a multiplicative coefficient
for M). This argument is optional, if omitted, default parameters are used.

• XLISTF: a list, identical in size and structure to XLIST0 containing the solution of the
problem (optimal values of the unknown matrices).

• OPT: a scalar corresponding to the optimal value of the minimization problem Σ.

7.2.2 Examples

State-feedback with control saturation constraint

Consider the linear system
ẋ = Ax+Bu

where A is an n × n and B, an n × nu matrix. There exists a stabilizing state feedback K such
that for every initial condition x(0) with ‖x(0)‖ ≤ 1, the resulting control satisfies ‖u(t)‖ for all
t ≥ 0, if and only if there exist an n×n matrix Q and an nu×n matrix Y satisfying the equality
constraint

Q−QT = 0

and the inequality constraints

Q ≥ 0

−AQ−QAT −BY − Y TBT > 0(
u2

maxI Y
Y T Q

)
≥ 0

in which case one such K can be constructed as K = Y Q−1.
To solve this problem using lmisolver, we first need to construct the evaluation function.

function [LME,LMI,OBJ]=sf_sat_eval(XLIST)

[Q,Y]=XLIST(:)

LME=Q-Q’

LMI=list(-A*Q-Q*A’-B*Y-Y’*B’,[umax^2*eye(Y*Y’),Y;Y’,Q],Q-eye())

OBJ=[]

Note that OBJ=[] indicates that the problem considered is a feasibility problem, i.e., we are only
interested in finding a set of X’s that satisfy LME and LMI functions.

Assuming A, B and umax already exist in the environment, we can call lmisolver, and recon-
struct the solution in Scilab, as follows:
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--> Q_init=zeros(A);

--> Y_init=zeros(B’);

--> XLIST0=list(Q_init,Y_init);

--> XLIST=lmisolver(XLIST0,sf_sat_eval);

--> [Q,Y]=XLIST(:)

These Scilab commands can of course be encapsulated in a Scilab function, say sf_sat. Then,
To solve this problem, all we need to do is type:

--> [Q,Y]=sf_sat(A,B,umax)

We call sf_sat the solver function for this problem.

Control of jump linear systems

We are given a linear system
ẋ = A(r(t))x+B(r(t))u,

where A is n×n and B is n×nu. The scalar parameter r(t) is a continuous-time Markov process
taking values in a finite set {1, . . . , N}.

The transition probabilities of the process r are defined by a “transition matrix” Π = (πij),
where πij’s are the transition probability rates from the i-th mode to the j-th. Such systems,
referred to as “jump linear systems”, can be used to model linear systems subject to failures.

We seek a state-feedback control law such that the resulting closed-loop system is mean-square
stable. That is, for every initial condition x(0), the resulting trajectory of the closed-loop system
satisfies limt→∞E‖x(t)‖2 = 0.

The control law we look for is a mode-dependent linear state-feedback, i.e. it has the form
u(t) = K(r(t))x(t); K(i)’s are nu × n matrices (the unknowns of our control problem).

It can be shown that this problem has a solution if and only if there exist n × n matrices
Q(1), . . . , Q(N), and nu × n matrices Y (1), . . . , Y (N), such that

Q(i)−Q(i)T = 0,

TrQ(1) + . . .+ TrQ(N)− 1 = 0.

and [
Q(i) Y (i)T

Y (i) I

]
> 0,

−

[
A(i)Q(i) +Q(i)A(i)T +B(i)Y (i) + Y (i)TB(i)T +

N∑
j=1

πjiQ(j)

]
> 0, i = 1, . . . , N,

If such matrices exist, a stabilizing state-feedback is given by K(i) = Y (i)Q(i)−1, i = 1, . . . , N .
In the above problem, the data matrices are A(1), . . . , A(N), B(1), . . . , B(N) and the tran-

sition matrix Π. The unknown matrices are Q(i)’s (which are symmetric n × n matrices) and
Y (i)’s (which are nu × n matrices). In this case, both the number of the data matrices and that
of the unknown matrices are a-priori unknown.

The above problem is obviously a Σ problem. In this case, we can let XLIST be a list of two
lists: one representing the Q’s and the other, the Y ’s.

The evaluation function required for invoking lmisolver can be constructed as follows:
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function [LME,LMI,OBJ]=jump_sf_eval(XLIST)

[Q,Y]=XLIST(:)

N=size(A); [n,nu]=size(B(1))

LME=list(); LMI1=list(); LMI2=list()

tr=0

for i=1:N

tr=tr+trace(Q(i))

LME(i)=Q(i)-Q(i)’

LMI1(i)=[Q(i),Y(i)’;Y(i),eye(nu,nu)]

SUM=zeros(n,n)

for j=1:N

SUM=SUM+PI(j,i)*Q(j)

end

LMI2(i)= A(i)*Q(i)+Q(i)*A(i)’+B(i)*Y(i)+Y(i)’*B(i)’+SUM

end

LMI=list(LMI1,LMI2)

LME(N+1)=tr-1

OBJ=[]

Note that LMI is also a list of lists containing the values of the LMI matrices. This is just a matter
of convenience.

Now, we can solve the problem in Scilab as follows (assuming lists A and B, and matrix PI

have already been defined).
First we should initialize Q and Y.

--> N=size(A); [n,nu]=size(B(1)); Q_init=list(); Y_init=list();

--> for i=1:N, Q_init(i)=zeros(n,n);Y_init(i)=zeros(nu,n);end

Then, we can use lmisolver as follows:

--> XLIST0=list(Q_init,Y_init)

--> XLISTF=lmisolver(XLIST0,jump_sf_eval)

--> [Q,Y]=XLISTF(:);

The above commands can be encapsulated in a solver function, say jump_sf, in which case
we simply need to type:

--> [Q,Y]=jump_sf(A,B,PI)

to obtain the solution.

Descriptor Lyapunov inequalities

In the study of descriptor systems, it is sometimes necessary to find (or find out that it does not
exist) an n× n matrix X satisfying

ETX = XTE ≥ 0

ATX +XTA+ I ≤ 0

where E and A are n × n matrices such that E,A is a regular pencil. In this problem, which
clearly is a Σ problem, the LME functions play important role. The evaluation function can be
written as follows
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function [LME,LMI,OBJ]=dscr_lyap_eval(XLIST)

X=XLIST(:)

LME=E’*X-X’*E

LMI=list(-A’*X-X’*A-eye(),E’*X)

OBJ=[]

and the problem can be solved by (assuming E and A are already defined)

--> XLIST0=list(zeros(A))

--> XLISTF=lmisolver(XLIST0,dscr_lyap_eval)

--> X=XLISTF(:)

Mixed H2/H∞ Control

Consider the linear system

ẋ = Ax+B1w +B2u

z1 = C1x+D11w +D12u

z2 = C2x+D22u

The mixedH2/H∞ control problem consists in finding a stabilizing feedback which yields ‖Tz1w‖∞ <
γ and minimizes ‖Tz2w‖2 where ‖Tz1w‖∞ and ‖Tz2w‖2 denote respectively the closed-loop transfer
functions from w to z1 and z2. In [22], it is shown that the solution to this problem can be
expressed as K = LX−1 where X and L are obtained from the problem of minimizing Trace(Y )
subject to:

X −XT = 0, Y − Y T = 0,

and

−
(
AX +B2L+ (AX +B2L)T +B1B

T
1 XCT

1 + LTDT
12 +B1D

T
11

C1X +D12L+D11B
T
1 −γ2I +D11D

T
11

)
> 0(

Y C2X +D22L
(C2X +D22L)T X

)
> 0

To solve this problem with lmisolver, we define the evaluation function:

function [LME,LMI,OBJ]=h2hinf_eval(XLIST)

[X,Y,L]=XLIST(:)

LME=list(X-X’,Y-Y’);

LMI=list(-[A*X+B2*L+(A*X+B2*L)’+B1*B1’,X*C1’+L’*D12’+B1*D11’;...

(X*C1’+L’*D12’+B1*D11’)’,-gamma^2*eye()+D11*D11’],...

[Y,C2*X+D22*L;(C2*X+D22*L)’,X])

OBJ=trace(Y);

and use it as follows:

--> X_init=zeros(A); Y_init=zeros(C2*C2’); L_init=zeros(B2’)

--> XLIST0=list(X_init,Y_init,L_init);

--> XLISTF=lmisolver(XLIST0,h2hinf_eval);

--> [X,Y,L]=XLISTF(:)
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Descriptor Riccati equations

In Kalman filtering for descriptor system

Ex(k + 1) = Ax(k) + u(k)

y(k + 1) = Cx(k + 1) + r(k)

where u and r are zero-mean, white Gaussian noise sequences with covariance Q and R respec-
tively, one needs to obtain the positive solution to the descriptor Riccati equation (see [33])

P = −
(

0 0 I
) APAT +Q 0 E

0 R C
ET CT 0

−1 0
0
I

 .

It can be shown that this problem can be formulated as a Σ problem as follows: maximize
Trace(P) under constraints

P − P T = 0

and  APAT +Q 0 EP
0 R CP

P TET P TCT P

 ≥ 0.

The evaluation function is:

function [LME,LMI,OBJ]=ric_dscr_eval(XLIST)

LME=P-P’

LMI=[A*P*A’+Q,zeros(A*C’),E*P;zeros(C*A’),R,C*P;P*E’,P*C’,P]

OBJ=-trace(P)

which can be used as follows (asuming E, A, C, Q and R are defined and have compatible
sizes–note that E and A need not be square).

--> P_init=zeros(A’*A)

--> P=lmisolver(XLIST0,ric_dscr_eval)

Linear programming with equality constraints

Consider the following classical optimization problem

minimize eTx
subject to Ax+ b ≥ 0,

Cx+ d = 0.

where A and C are matrices and e, b and d are vectors with appropriate dimensions. Here the
sign ≥ is to be understood elementwise.

This problem can be formulated in LMITOOL as follows:

function [LME,LMI,OBJ]=linprog_eval(XLIST)

[x]=XLIST(:)

[m,n]=size(A)
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LME=C*x+d

LMI=list()

tmp=A*x+b

for i=1:m

LMI(i)=tmp(i)

end

OBJ=e’*x

and solved in Scilab by (assuming A, C, e, b and d and an initial guess x0 exist in the environment):

--> x=lmisolver(x0,linprog_eval)

Sylvester Equation

The problem of finding matrix X satisfying

AX +XB = C

or
AXB = C

where A and B are square matrices (of possibly different sizes) is a well-known problem. We refer
to the first equation as the continuous Sylvester equation and the second, the discrete Sylvester
equation.

These two problems can easily be formulated as Σ problems as follows:

function [LME,LMI,OBJ]=sylvester_eval(XLIST)

[X]=XLIST(:)

if flag==’c’ then

LME=A*X+X*B-C

else

LME=A*X*B-C

end

LMI=[]

OBJ=[]

with a solver function such as:

function [X]=sylvester(A,B,C,flag)

[na,ma]=size(A);[nb,mb]=size(B);[nc,mc]=size(C);

if ma<>na|mb<>nb|nc<>na|mc<>nb then error("invalid dimensions");end

XLISTF=lmisolver(zeros(nc,mc),sylvester_eval)

X=XLISTF(:)

Then, to solve the problem, all we need to do is to (assuming A, B and C are defined)

--> X=sylvester(A,B,C,’c’)

for the continuous problem and

--> X=sylvester(A,B,C,’d’)

for the discrete problem.
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7.3 Function LMITOOL

The purpose of LMITOOL is to automate most of the steps required before invoking lmisolver.
In particular, it generates a *.sci file including the solver function and the evaluation function
or at least their skeleton. The solver function is used to define the initial guess and to modify
optimization parameters (if needed).

lmitool can be invoked with zero, one or three arguments.

7.3.1 Non-interactive mode

lmitool can be invoked with three input arguments as follows:

Syntax

txt=lmitool(probname,varlist,datalist)

where

• probname: a string containing the name of the problem,

• xlist: a string containing the names of the unknown matrices (separated by commas if
there are more than one).

• dlist: a string containing the names of data matrices (separated by commas if there are
more than one).

• txt: a string providing information on what the user should do next.

In this mode, lmitool generates a file in the current directory. The name of this file is obtained
by adding “.sci” to the end of probname. This file is the skeleton of a solver function and the
corresponding evaluation function.

Example

Suppose we want to use lmitool to solve the problem presented in Section 7.2.2. Invoking

-->txt=lmitool(’sf_sat’,’Q,Y’,’A,B,umax’)

yields the output

--> txt =

! To solve your problem, you need to !

! !

!1- edit file /usr/home/DrScilab/sf_sat.sci !

! !

!2- load (and compile) your functions: !

! !

! getf(’/usr/home/DrScilab/sf_sat.sci’,’c’) !
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! !

!3- Define A,B,umax and call sf_sat function: !

! !

! [Q,Y]=sf_sat(A,B,umax) !

! !

!To check the result, use [LME,LMI,OBJ]=sf_sat_eval(list(Q,Y)) !

and results in the creation of the file ’/usr/home/curdir/sf sat.sci’ with the following content:

function [Q,Y]=sf_sat(A,B,umax)

// Generated by lmitool on Tue Feb 07 10:30:35 MET 1995

Mbound = 1e3;

abstol = 1e-10;

nu = 10;

maxiters = 100;

reltol = 1e-10;

options=[Mbound,abstol,nu,maxiters,reltol];

///////////DEFINE INITIAL GUESS BELOW

Q_init=...

Y_init=...

///////////

XLIST0=list(Q_init,Y_init)

XLIST=lmisolver(XLIST0,sf_sat_eval,options)

[Q,Y]=XLIST(:)

/////////////////EVALUATION FUNCTION////////////////////////////

function [LME,LMI,OBJ]=sf_sat_eval(XLIST)

[Q,Y]=XLIST(:)

/////////////////DEFINE LME, LMI and OBJ BELOW

LME=...

LMI=...

OBJ=...

It is easy to see how a small amount of editing can do the rest!

7.3.2 Interactive mode

lmitool can be invoked with zero or one input argument as follows:
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Syntax

txt=lmitool()

txt=lmitool(file)

where

• file: is a string giving the name of an existing “.sci” file generated by lmitool.

In this mode, lmitool is fully interactive. Using a succession of dialogue boxes, user can com-
pletely define his problem. This mode is very easy to use and its operation completely self
explanatory. Invoking lmitool with one argument allows the user to start off with an existing
file. This mode is useful for modifying existing files or when the new problem is not too much
different from a problem already treated by lmitool.

Example

Consider the following estimation problem

y = Hx+ V w

where x is unknown to be estimated, y is known, w is a unit-variance zero-mean Gaussian vector,
and

H ∈ Co {H(1), ..., H(N)} , V ∈ Co {V (1), ..., V (N)}

where Co denotes the convex hull and H(i) and V (i), i = 1, ..., N, are given matrices.
The objective is to find L such that the estimate

x̂ = Ly

is unbiased and the worst case estimation error variance E(‖x− x̂‖2) is minimized.
It can be shown that this problem can be formulated as a Σ problem as follows: minimize γ

subject to

I − LH(i) = 0, i = 1, ..., N,

X(i)−X(i)T = 0, i = 1, ..., N,

and (
I (L(i)V (i))T

L(i)V (i) X(i)

)
≥ 0, i = 1, ..., N,

γ − Trace(X(i)) ≥ 0, i = 1, ..., N.

To use lmitool for this problem, we invoke it as follows:

--> lmitool()

This results is an interactive session which is partly illustrated in following figures.
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7.4 How lmisolver works

The function lmisolver works essentially in four steps:

1. Initial set-up. The sizes and structure of the initial guess are used to set up the problem,
and in particular the size of the unknown vector.

2. Elimination of equality constraints. Making repeated calls to the evaluation function,
lmisolver generates a canonical representation of the form

minimize c̃T z

subject to F̃0 + z1F̃1 + · · ·+ zm̃F̃m̃ ≥ 0, Az + b = 0,

where z contains the coefficients of all matrix variables. This step uses extensively sparse
matrices to speed up the computation and reduce memory requirement.

3. Elimination of variables. Then, lmisolver eliminates the redundant variables. The equality
constraints are eliminated by computing the null space N of A and a solution z0 (if any) of
Ax+ b = 0. At this stage, all solutions of the equality constraints are parametrized by

z = Nx+ z0,

where x is a vector containing the independent variables. The computation of N, z0 is done
using sparse LU functions of Scilab.

Once the equality constraints are eliminated, the problem is reformulated as

minimize cTx
subject to F0 + x1F1 + · · ·+ xmFm ≥ 0,

where c is a vector, and F0, . . . , Fm are symmetric matrices, and x contains the indepen-
dent elements in the matrix variables X1, . . . , XM . (If the Fi’s are dependent, a column
compression is performed.)

Figure 7.1: This window must be edited to define problem name and the name of variables used.
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Figure 7.2: For the example at hand the result of the editing should look something like this.

4. Optimization. Finally, lmisolver makes a call to the function semidef (an interface to SP
[23]). This phase is itself divided into a feasibility phase and a minimization phase (only
if the linear objective function is not empty). The feasibility phase is avoided if the initial
guess is found to be feasible.

The function semidef is called with the optimization parameters abstol, nu, maxiters,
reltol. The parameter M is set above the value

Mbnd*max(sum(abs([F0 ... Fm])))

For details about the optimization phase, and the meaning of the above optimization pa-
rameters see manual page for semidef.

7.5 Other versions

LMITOOL is also available on Matlab. The Matlab version can be obtained by anonymous ftp from
ftp.ensta.fr under /pub/elghaoui/lmitool.
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Figure 7.3: This is the skeleton of the solver function and the evaluation function generated by
LMITOOL using the names defined previously.
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Figure 7.4: After editing, we obtain.

Figure 7.5: A file is proposed in which the solver and evaluation functions are to be saved. You
can modify it if you want.
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Chapter 8

Optimization data files

This section presents the optimization data files which can be used to configure a specific opti-
mization problem in Scilab. The following is a (non-exhaustive) list of ASCII file formats often
used in optimization softwares :

• SIF : Standard Input Format [1, 30],

• GAMS : General Algebraic Modeling System [40, 16]

• AMPL : A Mathematical Programming Language [10, 39]

• MPS : Mathematical Programming System [27, 41]

but other file formats appeared in recent years, such as the XML-based file format OSiL [35, 8, 36].
The following sections describe Scilab tools to manage optimization data files.

8.1 MPS files and the Quapro toolbox

The Quapro toolbox implements the readmps function, which reads a file containing description
of an LP problem given in MPS format and returns a tlist describing the optimization problem.
It is an interface with the program rdmps1.f of hopdm (J. Gondzio). For a description of the
variables, see the file rdmps1.f. MPS format is a standard ASCII medium for LP codes. MPS
format is described in more detail in Murtagh’s book [30].

8.2 SIF files and the CUTEr toolbox

The SIF file format can be processed with the CUTEr Scilab toolbox. Given a SIF [1] file the func-
tion sifdecode generates associated Fortran routines RANGE.f, EXTER.f, ELFUN.f, GROUP.f
and if automatic differentiation is required ELFUND.f, GROUPD.f, EXTERA.f. An associated
data file named OUTSDIF.d and an Output messages file OUTMESS are also generated. All
these files are created in the directory whose path is given in Pathout. The sifdecode function
is based on the Sifdec code [20]. More precisely it results of an interface of SDLANC Fortran
procedure.
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Chapter 9

Scilab Optimization Toolboxes

Some Scilab toolboxes are designed to solve optimization problems. In this chapter, we begin by
presenting the Quapro toolbox, which allows to solve linear and quadratic problems. Then we
outline other main optimization toolboxes.

9.1 Quapro

The Quapro toolbox was formely a Scilab built-in optimization tool. It has been transformed into
a toolbox for license reasons.

9.1.1 Linear optimization

Mathematical point of view

This kind of optimization is the minimization of function f(x) with

f(x) = pTx

under:

• no constraints

• inequality constraints (9.1)

• or inequality constraints and bound constraints ((9.1) & (9.2))

• or inequality constraints, bound constraints and equality constraints ((9.1) & (9.2) & (9.3)).

C ∗ x ≤ b (9.1)

ci ≤ x ≤ cs (9.2)

Ce ∗ x = be (9.3)
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Scilab function

Scilab function called linpro is designed for linear optimization programming. For more details
about this function, please refer to Scilab online help This function and associated routines
have been written by Cecilia Pola Mendez and Eduardo Casas Renteria from the University of
Cantabria. Please note that this function can not solve problems based on sparse matrices. For
this kind of problem, you can use a Scilab toolbox called LIPSOL that gives an equivalent of
linpro for sparse matrices. LIPSOL is available on Scilab web site

Optimization routines

Scilab linpro function is based on:

• some Fortran routines written by the authors of linpro

• some Fortran Blas routines

• some Fortran Scilab routines

• some Fortran Lapack routines

9.1.2 Linear quadratic optimization

Mathematical point of view

This kind of optimization is the minimization of function f(x) with

f(x) =
1

2
xTQx+ pTx

under:

• no constraints

• inequality constraints (9.1)

• or inequality constraints and bound constraints ((9.1) & (9.2))

• or inequality constraints, bound constraints and equality constraints ((9.1) & (9.2) & (9.3)).

Scilab function

Scilab functions called quapro (whatever Q is) and qld (when Q is positive definite) are designed
for linear optimization programming. For more details about these functions, please refer to
Scilab online help for quapro and Scilab online help for qld qld function and associated routine
have been written by K. Schittkowski from the University of Bayreuth, A.L. Tits and J.L. Zhou
from the University of Maryland. quapro function and associated routines have been written
by Cecilia Pola Mendez and Eduardo Casas Renteria from the University of Cantabria. Both
functions can not solve problems based on sparse matrices.
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Optimization routines

Scilab quapro function is based on:

• some Fortran routines written by the authors of linpro

• some Fortran Blas routines

• some Fortran Scilab routines

• some Fortran Lapack routines

9.2 CUTEr

CUTEr is a versatile testing environment for optimization and linear algebra solvers [31]. This
toolbox is a scilab port by Serge Steer and Bruno Durand of the original Matlab toolbox.

A typical use start from problem selection using the scilab function sifselect. This gives
a vector of problem names corresponding to selection criteria [32]. The available problems are
located in the sif directory.

The sifbuild function can then be used to generate the fortran codes associated to a given
problem, to compile them and dynamically link it to Scilab. This will create a set of problem
relative functions, for example, ufn or ugr. This functions can be called to compute the objective
function or its gradient at a given point.

The sifoptim function automatically applies the optim function to a selected problem.
A Fortran compiler is mandatory to build problems.
This toolbox contains the following parts.

• Problem database

A set of testing problems coded in ”Standard Input Format” (SIF) is included in the sif/
sub-directory. This set comes from www.numerical.rl.ac.uk/cute/mastsif.html. The Scilab
function sifselect can be used to select some of this problems according to objective
function properties, contraints properties and regularity properties

• SIF format decoder

The Scilab function sifdecode can be used to generate the Fortran codes associated to a
given problem, while the Scilab function buildprob compiles and dynamically links these
fortran code with Scilab

• problem relative functions

The execution of the function buildprob adds a set of functions to Scilab. The first one
is usetup for unconstrained or bounded problems or csetup for problems with general
contraints. These functions are to be called before any of the following to initialize the
problem relative data (only one problem can be run at a time). The other functions allow
to compute the objective, the gradient, the hessian values, ... of the problem at a given
point (see ufn, ugr, udh, ... for unconstrained or bounded problems or cfn, cgr, cdh, ...
for problems with general contraints)
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• CUTEr and optim The Scilab function optim can be used together with CUTEr using either
the external function ucost or the driver function sifoptim.

The following is a list of references for the CUTEr toolbox :

• CUTEr toolbox on Scilab Toolbox center

• CUTEr website

9.3 The Unconstrained Optimization Problem Toolbox

The Unconstrained Optimization Problem Toolbox provides 35 unconstrained optimization prob-
lems.

The goal of this toolbox is to provide unconstrained optimization problems in order to test
optimization algorithms.

The More, Garbow and Hillstrom collection of test functions [29] is widely used in testing
unconstrained optimization software. The code for these problems is available in Fortran from
the netlib software archives.

It provides the function value, the gradient, the function vector, the Jacobian and provides
the Hessian matrix for 18 problems. It provides the starting point for each problem, the optimum
function value and the optimum point x for many problems. Additionnally, it provides finite
difference routines for the gradient, the Jacobian and the Hessian matrix. The functions are
based on macros based functions : no compiler is required, which is an advantage over the CUTEr
toolbox. Finally, all function values, gradients, Jacobians and Hessians are tested.

This toolbox is available in ATOMS :

http://atoms.scilab.org/toolboxes/uncprb

and is manage under Scilab’s Forge :

http://forge.scilab.org/index.php/p/uncprb

To install it, type the following statement in Scilab v5.2 (or better).

1 a toms In s t a l l ( ’ uncprb ’ )

9.4 Other toolboxes

• Interface to CONMIN: An interface to the NASTRAN / NASA CONMIN optimization
program by Yann Collette. CONMIN can solve a nonlinear objective problem with non-
linear constraints. CONMIN uses a two-step limited memory quasi-Newton-like Conjugate
Gradient. The CONMIN optimization method is currently used in NASTRAN (a profes-
sionnal finite element tool) and the optimization part of NASTRAN (the CONMIN tool).
The CONMIN fortran program has been written by G. Vanderplaats (1973).

– CONMIN on Scilab Toolbox center

• Differential Evolution: random search of a global minimum by Helmut Jarausch. This
toolbox is based on a Rainer-Storn algorithm.
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– Differential Evolution on Scilab Toolbox center

• FSQP Interface: interface for the Feasible Sequential Quadratic Programming library.
This toolbox is designed for non-linear optimization with equality and inequality constraints.
FSQP is a commercial product.

– FSQP on Scilab Toolbox center

– FSQP website

• IPOPT interface: interface for Ipopt, which is based on an interior point method which
can handle equality and inequality nonlinear constraints. This solver can handle large scale
optimization problems. As open source software, the source code for Ipopt is provided
without charge. You are free to use it, also for commercial purposes. This Scilab-Ipopt
interface was based on the Matlab Mex Interface developed by Claas Michalik and Steinar
Hauan. This version only works on linux, scons and Scilab >=4.0. Tested with gcc 4.0.3.
Modifications to Scilab Interface made by Edson Cordeiro do Valle.

– Ipopt on Scilab Toolbox center

– Ipopt website

• Interface to LIPSOL: sparse linear problems with interior points method by H. Rubio Scola.
LIPSOL can minimize a linear objective with linear constraints and bound constraints. It
is based on a primal-dual interior point method, which uses sparse-matrix data-structure to
solve large, sparse, symmetric positive definite linear systems. LIPSOL is written by Yin
Zhang . The original Matlab-based code has been adapted to Scilab by H. Rubio Scola
(University of Rosario, Argentina). It is distributed freely under the terms of the GPL.
LIPSOL also uses the ORNL sparse Cholesky solver version 0.3 written by Esmond Ng and
Barry Peyton by H. Rubio Scola.

– LIPSOL on Scilab Toolbox center

– LIPSOL website

– LIPSOL User’s Guide

• LPSOLVE: an interface to lp solve. lp solve is a free mixed integer/binary linear program-
ming solver with full source, examples and manuals. lp solve is under LGPL, the GNU lesser
general public license. lp solve uses the ’Simplex’ algorithm and sparse matrix methods for
pure LP problems.

– LPSOLVE toolbox on Scilab Toolbox center

– lp solve solver on Sourceforge

– lp solve on Geocities

– lp solve Yahoo Group

• NEWUOA: NEWUOA is a software developped by M.J.D. Powell for unconstrained op-
timization without derivatives. The NEWUOA seeks the least value of a function F(x)
(x is a vector of dimension n ) when F(x) can be calculated for any vector of variables x
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. The algorithm is iterative, a quadratic model being required at the beginning of each
iteration, which is used in a trust region procedure for adjusting the variables. When the
quadratic model is revised, the new model interpolates F at m points, the value m=2n+1
being recommended.

– NEWUOA toolbox on Scilab Toolbox center

– NEWUOA at INRIA Alpes
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Chapter 10

Missing optimization features in Scilab

Several optimization features are missing in Scilab. Two classes of missing features are to analyse :

• features which are not available in Scilab, but which are available as toolboxes (see previous
section),

• features which are not available neither in Scilab, nor in toolboxes.

Here is a list of features which are not available in Scilab, but are available in toolboxes. These
features would be to include in Scilab.

• integer parameter with linear objective solver and sparse matrices : currently available in
LPSOLVE toolbox, based on the simplex method,

• linear objective with sparse matrices : currently available in LIPSOL, based on interior
points method,

• nonlinear objective and non linear constraints : currently available in interface to IPOPT
toolbox, based on interior point methods,

• nonlinear objective and non linear constraints : currently available in interface to CONMIN
toolbox, based on method of feasible directions,

Notice that IPOPT is a commercial product and CONMIN is a domain-public library. Therefore
the only open-source, free, nonlinear solver with non linear constraints tool available with Scilab
is the interface to CONMIN.

Here is a list of features which are not available neither in Scilab, nor in toolboxes.

• quadratic objective solver with sparse objective matrix,

• simplex programming method (*),

• non-linear objective with nonlinear constraints (*),

• non-linear objective with nonlinear constraints problems based on sparse linear algebra,

• enabling/disabling of unknowns or constraints,

• customization of errors for constraints.

Functionalities marked with a (*) would be available in Scilab if the MODULOPT library
embedded in Scilab was updated.
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Conclusion

Even if Scilab itself has lacks in optimization functionalities, all embedded functions are very
useful to begin with. After that, by downloading and installing some toolboxes, you can easily
improve your Scilab capabilities.

One of the questions we can ask is: “Why are these toolboxes not integrated in Scilab dis-
tribution?”. The answer is often a problem of license. All GPL libraries can not be included in
Scilab since Scilab is not designed to become GPL.
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