
Introduction to Physical Modeling
with Modelica

THE KLUWER INTERNATIONAL SERIES
IN ENGINEERING AND COMPUTER SCIENCE

walter.ponge@terra.com.br

INTRODUCTION TO
PHYSICAL MODELING
WITH MODELICA

MICHAEL TILLER, PH.D.
Technical Specialist, Ford Motor Company
Member, Modelica Association

~.

" Springer Science+Business Media, LLC

walter.ponge@terra.com.br

Library of Congress Cataloging-in-Publication Data

Tiller, Michael, Ph.D.
Introduction to physical modeling with Modelica / Michael Tiller.

p. cm. - (The Kluwer international series in engineering and computer science; SECS 615)
Includes bibliographical references and index.

Additional material to this book can be downloaded from http://extras.springer.com.

ISBN 978-1-4613-5615-8 ISBN 978-1-4615-1561-6 (eBook)
DOI 10.1007/978-1-4615-1561-6

1. Computer simulation. 2. Object-oriented methods (Computer science) I. Title.
Series.

QA76.9.C65 T55 2001
005'.35133--dc21

Copyright © 2001 by Springer Science+Business Media New York
Originally published by Kluwer Academic Publishers. in 2001
Softcover reprint of the hardcover 1st edition 2001
Second Printing 2004.

Dymola software ©Dynasim AB
SimpleCar and Thermal software libraries ©Michael M. Tiller

2001029416

All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system or transmitted in any form or by any means, mechanical, photo-copying, recording,
or otherwise, without the prior written permission of the publisher, Springer Science+
Business Media, LLC.

Printed on acid-free paper.

walter.ponge@terra.com.br

Contents

List of Figures
List of Tables
Preface

Acknowledgements

Part I The Modelica Language

1 INTRODUCTION
1.1 What is Modelica? ..
1.2 What can Modelica be used for?
1.3 Modeling formalisms . . .
1.4 Modelica Standard Library
1.5 Basic vocabulary
1.6 Summary

2 DIFFERENTIAL EQUATIONS
2.1 Concepts
2.2 Differential equations
2.3 Physical types
2.4 Documenting models .
2.5 Language fundamentals
2.6 Problems

3 BUILDING AND CONNECTING COMPONENTS
3.1 Concepts
3.2 Connectors
3.3 Creating connectors and components
3.4 Defining a block
3.5 Existing rotational components
3.6 Language fundamentals

ix
xiii
xix

xxi

3
3
6

10
13
13
15

17
17
17
21
24
28
36

39
39
39
40
49
56
61

walter.ponge@terra.com.br

vi INTRODUCTION TO PHYSICAL MODEliNG WITH MODELICA

3.7 Summary .. .
3.8 Problems .. .

4 ENABLING REUSE
4.1 Concepts
4.2 Exploiting commonality
4.3 Reusable building blocks
4.4 Allowing replaceable components
4.5 Other replaceable entities
4.6 Limiting flexibility . . .
4.7 Other considerations ..
4.8 Language fundamentals
4.9 Problems

5 FUNCTIONS
5.1 Concepts
5.2 Introduction to functions
5.3 An interpolation function
5.4 Multiple return values
5.5 Passing records as arguments
5.6 Using extemal subroutines
5.7 Language fundamentals
5.8 Problems

6 USING ARRAYS
6.1 Concepts
6.2 Planetary motion: Arrays of components ..
6.3 Simple ID heat transfer: Arrays of variables
6.4 Using arrays with chemical systems
6.5 Language fundamentals
6.6 Problems

7 HYBRID MODELS
7.1 Concepts
7.2 Modeling digital circuits
7.3 Bouncing ball
7.4 Sensor modeling
7.5 Language fundamentals
7.6 Problems

8 EXPLORING NONLINEAR BEHAVIOR
8.1 Concepts ...
8.2 An ideal diode
8.3 Backlash ...
8.4 Thermal properties

65
66

69
69
70
71
75
79
82
84
85
88

91
91
92
94
96
97

100
102
110

113
113
113
120
132
143
152

155
155
155
162
166
178
186

189
189
189
193
199

walter.ponge@terra.com.br

8.5 Hodgkin-Huxley nerve cell models
8.6 Language fundamentals
8.7 Problems

9 MISCELLANEOUS
9.1 Lookup rules
9.2 Annotations ..

Part II Effective Modelica

10 MULTI-DOMAIN MODELING
10.1 Concepts
10.2 Conveyor system
10.3 Residential heating system
10.4 Automotive library
10.5 Summary
10.6 Problems

11 BLOCK DIAGRAMS VS. ACAUSAL MODELING
11.1 Objective
11.2 Block diagrams .
11.3 Acausal approach
11.4 Summary
11.5 Problems

12 BUILDING LIBRARIES
12.1 Objective ..
12.2 Classification .
12.3 Structure ...
12.4 Documentation
12.5 Maximizing reusability
12.6 Maximizing robustness
12.7 Storage of Modelica source code
12.8 Conclusion

13 INIDAL CONDITIONS
13.1 Objective
13.2 Mathematical formulation
13.3 Using attributes
13.4 Start of simulation
13.5 Initialization based on analysis type
13.6 Conclusion

14 EFFICIENCY
14.1 Objective .

Contents vii

203
206
210

213
213
225

231
231
231
236
244
252
253

255
255
256
262
263
264

265
265
265
266
271
272
274
276
278

279
279
279
282
283
284
286

287
287

walter.ponge@terra.com.br

viii INTRODUCTION TO PHYSICAL MODELING WITH MODELICA

14.2 Use equations
14.3 Avoid unnecessary events
14.4 Time scales
14.5 Providing Jacobians for functions
14.6 Choosing the proper integration routine
14.7 Tolerances
14.8 Variable elimination
14.9 Conclusion ..

Appendices
A- History of Modelica

A.1 Contributors to the Modelica language
A.2 Contributors to the Modelica Standard Library

B- Modelica Syntax
C- Modelica Standard Library: Connectors

C.1 Electrical (Analog) .
C.2 Block diagrams ...
C.3 Translational motion
C.4 Rotational motion

D- Modelica Standard Library: Common Units
D.1 Time and space
D.2 Periodic phenomenon
D.3 Mechanics
D.4 Thermodynamics .
D.5 Electricity
D.6 Physical chemistry

E- Modelica Standard Library: Constants
F- Modelica Standard Library: Math Functions

F.1 Geometric functions
F.2 Inverse geometric functions
F.3 Hyperbolic geometric functions
F.4 Exponential functions

Glossary
References
Index

287
288
288
289
292
292
293
294

295
295
299
300
301
309
309
310
312
312
315
315
315
316
317
318
318
321
323
323
323
323
323
324
331
337

walter.ponge@terra.com.br

List of Figures

1.1 A 0-100 kilometer per hour test. 6
1.2 Taking a look at what is under the hood. . 7
1.3 Looking inside the engine. 8
1.4 Looking inside an individual engine cylinder. 9
1.5 Simulation results from a sample race. . 10
1.6 PI Controller. 11
1.7 RLC circuit schematic. 12
2.1 A simple pendulum. 18
2.2 Solution for O(t) given L=2, 0(0) = 0.1 and w(O) = O. 20
2.3 Linear and non-linear solutions for O(t) given L=2,

0(0) = 2.3 and w(O) = O. ... 21
2.4 An RLC circuit. 21
2.5 Voltage response of model RLC. 24
2.6 Two hydraulic tallks filled with liquid. . 25
2.7 Solution with initial conditions Hl=O and H2=2 . 26
3.1 Another RLC circuit. 40
3.2 A "free body diagram" of a Resistor. .. 41
3.3 Schematic for RLC4 model in Example 3.8. . 48
3.4 PI controller with plant model. 49
3.5 Control system model using components from Model ica. -

Blocks. 56
3.6 A single pendulum system. 59
3.7 A system with multiple pendulums. . . . 60
4.1 The diagram view of PIController. . 72
4.2 PIController model icon. 73
4.3 PIControllerAndMotormodel. 74
4.4 Side by side comparison of controllers. 79
4.5 Schematic for Example 4.10.. 81
5.1 Output after simulating Testpiecewise for 10 seconds. 96

walter.ponge@terra.com.br

x INTRODUCTION TO PHYSICAL MODELING WITH MODELICA

5.2
5.3
6.1
6.2

6.3
6.4
6.5
6.6

6.7

6.8
6.9
6.10
7.1
7.2

7.3

7.4
7.5
7.6
7.7
7.8

7.9
7.10
7.11
7.12
7.13
8.1
8.2

8.3
8.4
8.5
8.6
8.7
8.8

8.9

Simulation results for TestComplexWave
Simulation results for TestComplexWave2
Several bodies mutually attracted by gravitational forces ..
Simulating the motion of the Earth and the Moon for
approximately 1 year.
Heat transfer in a one-dimensional rod.
Schematic for ConductingRod model in Example 6.14.
Solution for HTProbleml model in Example 6.15.
Schematic for ConductingRodWi thConvection
shown in Example 6.17.
Simulation results for HTProblem2 model shown in
Example 6.18.
Comparison of steady-state solutions to HTProbleml.
Visualization of the Oregonator reaction.
Oscillatory response from the Oregonator reaction. . .
Diagram for LogicCircuit model in Example 7.4.
Output signals from LogicCircui t model shown in
Example 7.4.
Diagram for LogicCircui twi thLagmodel shown
in Example 7.6.
Output signals from LogicCircuitWithLag, c = ~.
Output signals from LogicCircuitWithLag, c = ~.
Behavior of model BouncingBal12
Our sensor benchmark system.
Performance oflow (k=lO) and high (k=100) gain con­
trollers with ideal sensors.
Comparison of SampleHoldSensor with ideal case.
Comparison of QuantizedSensor with ideal case.
Comparison of PeriodSensor with ideal case ...
Comparison of CountingSensor with ideal case.
Circuit to model inertial delay.
Current-voltage charactelistics of an ideal diode. . .
Current-voltage charactelistics of an ideal diode plotted
parametrically.
Schematic of an AC/DC power supply.
Voltage response of an AC/DC power supply. . . .
Force-displacement characteristics for a backlash.
Backlash schematic with two inertias.
Backlash schematic with three inertias.
Comparison of the two backlash models for the cases
shown in Figures 8.6 and 8.7. ..
Plot of u(T) from Equation (8.9).

99
100
114

119
121
126
128

128

130
131
134
143
158

158

161
161
161
164
167

168
170
l73
l75
l78
187
190

191
192
192
193
196
196

197
199

walter.ponge@terra.com.br

8.10

8.11
8.12
8.13
9.1
9.2
9.3
9.4

10.1
10.2
10.3
10.4
10.5
10.6
10.7
10.8
10.9
10.10
10.11
10.12
10.13
10.14
10.15
10.16
10.17
10.18
10.19
10.20
11.1
11.2
11.3
11.4
12.1

14.1

14.2

List of Figures Xl

Temperature distributions in SolidifyingRod for
linear and nonlinear property models.
Nerve cell segment schematic
Dynamic response of the nerve cell.
Current-voltage characteristics of an ideal Zener diode ..
Sample package hierarchy.
Trace of p3 in Example 9.4.
Schematic for pendulum system.
Dymola rendering of HTML documentation for the
TwoTanks model shown in Example 9.6.
Schematic for the conveyor belt system.
Schematic for the electric motor. . . .
Schematic for the conveyor controller. .
Schematic for the factory.
Comparison of desired vs. actual factory behavior.
Motor voltage required.
Schematic for the Hous e model.
Schematic for the Furnace model.
Schematic for the Mechanical Thermostat model.
Schematic for the Digi tal Thermost at model.
Schematic for the ThermostatSystem model. .
Indoor and Outdoor temperature.
Packages nested inside the SimpleCar package.
Components of the Engine package.
Looking inside an individual engine cylinder.
Looking inside a 4 cylinder engine. .
A simplistic five speed transmission ..
Contents of the Chas sis package. .
Creating a vehicle model.
Top level model for dynamometer testing.
Grounded planetary gear with two inel1ias attached.
Planetary gear driven by the sun gear. . .
Block diagram of planetary gear system.
Planetary gear with torsional mount. . . .
Possible file and directory structure for the Chemi s t ry
package.
Comparison between a non-stiff (top) and stiff (bottom)
system
Comparison of simulation time and results for the sys-
tems in Figure 14.1.

203
204
206
210
215
224
227

228
232
233
234
234
235
235
236
238
240
241
243
243
244
246
248
248
249
250
250
252
256
258
260
262

277

289

290

walter.ponge@terra.com.br

List of Tables

1.1
5.1
5.2
5.3
6.1
6.2
7.1

Through and across variables from various domains.
Example analysis types.
Modelica types ++ C types..
Modelica types ++ FORTRAN77 types. .
Built-in functions for arrays in Modelica.
Solar system data.
Discrete behavior truth table.

12
105
108
109
153
154
155

walter.ponge@terra.com.br

List of Examples

2.1
2.2
2.3
2.4
3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14
3.15
3.16

3.17
3.18
3.19
3.20
3.21
3.22
4.1

4.2
4.3
4.4
4.5
4.6
4.7

Model of a simple pendulum ..
Model of a pendulum without linear assumption.
Model for an RLC circuit.
Hydraulic system of two tanks. .
Another RLC circuit.
A model for an electrical resistor. .
A model for an electrical capacitor ..
A model for an electrical inductor.
A model for a step voltage. . . .
A model for electrical ground.
Another model for our RLC circuit in Figure 3.1.
RLC circuit using MSL. .. .
A simple control system.
Connector used for a scalar signal.
A sinusoidal signal generator ..
A block which sums two signals.
An integrator block. . . .
A first order transfer function.
A multiplier block.
A component based control system model for the system
shown in Figure 3.4.
Controller and mechanism.
One-dimensional rotational connector.
A rotational pendulum model.
A frictionless bearing..
A simple pendulum system.. .
A system with mUltiple pendulums.
Defining a common base model for one port electrical
components.
Model for Resistor using OnePort ..
Source code for the PI controller model in Figure 4.1.
A PI controller controlling a motor ..
A generic controller interface.
A proportional gain controller.
An ideal proportional-differential gain controllel:

19
20
23
27
41
43
44
44
45
45
46
48
50
50
51
51
52
52
53

53
56
57
58
59
59
60

71
71
73
74
76
76
77

walter.ponge@terra.com.br

xvi INTRODUCTION TO PHYSICAL MODEUNG WITH MODEUCA

4.8
4.9
4.10
4.11
5.1
5.2
5.3
5.4
5.5
5.6
5.7
6.1

6.2

6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12
6.13
6.14
6.15
6.16
6.17
6.18
6.19
7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9
7.10
7.11
7.12
7.13
7.14
8.1
8.2
8.3

A system containing a controller and motor.
A compmison of controllers using redeclare. . ..
An example of how to redeclare several components.
A simple gear model.
A function to find a name in an array of names.
Invoking the FindName function
A piece-wise linear function.
Evaluation of a polynomial and its derivative.
Calculating the sum of a series of sine waves.
A Modelica wrapper function for a C subroutine.
A Modelica wrapper function for a FORTRAN77 subroutine ..
Poorly designed connector definition for use in multiple
body problems.
Better connector definition for multiple body problems
(using vectors).
Model for a free body in three dimensional space.
A function to calculate gravitational force.
A gravitational attraction model.
Encapsulating the gravitational force calculation.
Creating a binary system.
A system including the Earth, Sun and Moon. . .
Using arrays of variables to solve Equation (6.11) ..
Connector for heat transfer.
Thermal conduction.
Thermal capacitance.
Fixed temperature boundary condition. .
A rod which conducts heat.
Heat transfer in a conducting rod with boundary conditions ..
A model of thermal convection.
Addition 01' the convection effect.
Heat transfer problem involving conduction and convection.
A conducting rod using the Thermal library.
Model of an "and" gate ..
Model of an "or" gate.
Model of a "not" gate.
Model of a circuit to test And, Or and Not.
Modeling lag in a digital signal.
Introducing lag into our logic response.
A "continuous" bouncing ball. . .
A "discrete" bouncing ball.
Another "discrete" bouncing ball.
Source code for our sensor benchmark system.
Sensor that samples speed measurements.
Measurement with quantization.
Interval encoding measurement.
An interval counting approach.
An ideal diode model..
Non-linear spring backlash model.
Coefficient of restitution backlash model.

78
78
81
83
92
94
94
97
98

101
102

114

115
115
117
117
118
118
119
123
124
125
125
125
127
127
129
129
130
132
157
157
157
159
160
160
162
163
165
168
169
172
174
177
191
194
195

walter.ponge@terra.com.br

List of Examples xvii

8.4 A general thermal property model interface.
8.5 A specific thermal property model.
8.6 A non-linear thermal capacitance model. ..
8.7 A rod changing from solid to liquid.
9.1 Using a function to describe a gravity field.
9.2 A particle model that uses dynamic scoping ..
9.3 Gravitational acceleration generated by two bodies.
9.4 Particles orbiting two bodies in interesting ways.
9.5 A Modelica model with annotations ..
9.6 Using annotations for documentation

200
201
201
202
221
222
223
224
226
228

walter.ponge@terra.com.br

Preface

In writing this book, my goal is to demonstrate how easy, useful and fun, the
modeling of physical systems can be. For me, there is nothing that a computer
can be used for that is more interesting than simulating the behavior of physical
systems. The term "physical systems" refers to the behavior of physics-based
models found across many disciplines (e.g., electrical engineering, mechanical
engineering, chemistry, physics). Such systems can be identified by their use
of conservation principles (e.g., first law of thelmodynamics and conservation
of mass).

In this book I will describe how the Modelica modeling language can be
used to describe the behavior of physical systems. Modelica can be used for
a wide range of applications from simple systems with only a few degrees of
freedom all the way up to complex systems made of large networks of reusable
components.

The first part of the book is focused on introducing the reader to the Mod­
elica modeling language. The target audience would be somebody with an
understanding of basic physics and calculus, an interest in modeling and no
knowledge of Modelica. The intent is to cover all the basics of the language
using simple examples and enable the reader to begin writing models in Mod­
elica.

Each chapter in the first part of the book starts with an overview of the
important concepts the chapter introduces. Whenever a new term is introduced
it will appear italicized and a definition for it will be included in the glossary.
The overview is then followed by a series of examples meant to gradually
introduce Modelica functionality. I feel that examples are an important part of
the learning process. I have tried to avoid using contrived examples. In fact,
many of the examples come from real world problems I have encountered. The
difficulty with examples is that they do not introduce material in a structured
way, but rather in a "flowing" way. For this reason, many chapters include
a "Language Fundamentals" section which attempts to formalize all of the

walter.ponge@terra.com.br

xx INTRODUCTION TO PHYSICAL MODELING WITH MODELICA

concepts introduced by the examples. Readers may feel free to skip over the
material in the fundamentals section if they feel comfortable with the features
presented in that chapter. An important note about the structure of this book is
that each example introduces new concepts. In other words, do not assume
that because you understood the first example in a chapter all the remaining
examples are not worth studying.

The second part of the book demonstrates how to most effectively use the
powerful features of the Modelica language. This part is intended for people
who are already familiar with the basics of the Modelica language, including
existing users of Modelica and beginners who have completed the first part.

This book covers nearly all of the features of the Modelica language. How­
ever, much of this material is only required in advanced applications. The
"core" material required to begin doing meaningful modeling can be found in
Chapters 1, 2, 3 and 7. Readers may wish to focus their attention on those
chapters first and then consult the other chapters as they become more proficient.

Realize that it is not possible to introduce every nuance of the Modelica lan­
guage through examples. Once you have covered the material in this book,
you will require a definitive reference. The ultimate source of information
about Modelica is the language specification itself. For this reason, the Model­
ica language specification is included on the companion CD-ROM. While not
appropriate for learning the language, it is appropriate as a reference on the
semantics of the language.

In summary, this book includes material that will have broad appeal and
will serve both beginners and experienced users trying to get the most out of
physical system modeling.

MICHAEL TILLER

walter.ponge@terra.com.br

Acknowledgements

I would like to start by thanking my parents who have always encouraged
my curiosity. This curiosity has motivated me throughout my life to learn about
and understand math, engineering and modeling. In addition, I would also like
to thank my wife, Deepa Ramaswamy, for her support during this project.

The material in this book has benefited greatly from the proofreading and
technical insights of Hilding Elmqvist, Sven Erik Mattsson, Hans Olsson,
Deepa Ramaswamy, Michael R. Tiller, Martin Otter, Dag Bruck and Paul
Bowles.

This book is built on the foundations of the Modelica language itself. As
such, the members of the Modelica Association (designers of the Modelica lan­
guage, see Appendix A) deserve the credit for formulating such an elegant and
powerful modeling language. I would also like to thank Hilding Elmqvist,
Sven Erik Mattsson, Hans Olsson and Dag Bruck for their work on the Dymola
software used during the writing of this book and for contributing an evaluation
copy of Dymola for inclusion with this book.

Learning is not possible without people willing to teach. I would like to thank
the people I have worked with and learned from over the years for all I have
learned from them. I hope that the material in this book inspires the reader's cu­
riosity in the same way that the following people have inspired mine: Michael
R. Tiller, Eunice Tiller, Raimond Winslow, Robert F. Miller, Anthony Lee Kim­
ball, Anthony Varghese, Peter Steinmetz, Kim Stelson, Nicholas Zabaras, Jon
Dantzig, Daniel Tortorelli, Jamshid Ghaboussi, Thomas Kerkhoven, Charles
L. Tucker III, Ralph E. Johnson, Robert McDavid, Chuck Newman, George
Davis, William Tobler, Hilding Elmqvist and Martin Otter

I have had the opportunity, over the last few years, to work with several very
bright and energetic individuals on Modelica related projects. Cleon Davis
helped to develop the initial Modelica models used at Ford Motor Company.
In addition, I would like to thank Hubertus Tummescheit for the many long
discussions we have had on approaches to thermodynamic modeling in Model-

walter.ponge@terra.com.br

xxii INTRODUCTION TO PHYSICAL MODELING WITH MODELICA

ica. Finally, Paul Bowles was my co-author on several papers that were among
the first papers to demonstrate the scalability of the Modelica approach. His
contribution to internal projects at Ford and subsequent publications on that
work have been essential to their success.

I would like to close by pointing out all of the open source tools I have used in
the preparation of this book. I would like to show my appreciation to the authors
of Grace, xfig, transfig, XEmacs, CVS, TkCVS, WinCVS, Kdvi, Ghostview,
Ghostscript, TEX, Jb.TEX, AucTeX, MikTeX, Linux, KDE and Gnome. It should
be pointed out that all the source code listings of Modelica models in this book
were done with the Jb.TEX listings package by Carsten Heinz.

walter.ponge@terra.com.br

I

THE MODELICA LANGUAGE

walter.ponge@terra.com.br

Chapter 1

INTRODUCTION

1.1 WHAT IS MODELICA?
Before diving into the details of modeling using Modelica, let me provide a

brief description of what Modelica is, why it was developed and what it is used
for.

Since the invention of the computer, modeling and simulation have been
an important part of computing. Initially, modelers were burdened with con­
verting their models into systems of ordinary differential equations (ODEs)
and then writing code to integrate those differential equations in order to run
simulations. Eventually, a wide range of integrators were developed as inde­
pendent software units and modelers were able to focus on the formulation of
differential equations and use "off-the-shelf' integrators for simulation. This
trend of allowing modelers to focus more on the behavioral description of their
problems and less on the solution methods has continued ever since.

In the last three decades, numerous tools have been developed to assist
modelers in performing simulations. Some of these were general purpose
simulation tools such as ACSL I , Easy52, SystemBuild3 and Simulink.4 Other
tools were developed for simulations in specific engineering domains such
as electrical circuits (e.g., Spice5), multi-body systems (e.g., ADAMS6) or
chemical processes (e.g., ASPEN Plus7). Each type of tool has its advantages.

J ACSL is a trademark of The AEgis Technologies Group. Inc.
2Easy5 is a trademark of The Boeing Company.
3SystemBuild is a trademark of Wind River Systems, Inc.
4Simulink is a trademark of The MathWorks. Inc.
5 Spice is a trademark of the University of California at Berkeley.
6 ADAMS is a trademark of Mechanical Dynamics, Inc.
7 ASPEN Plus is a trademark of Aspen Technologies, Inc.

walter.ponge@terra.com.br

4 INTRODUCTION TO PHYSICAL MODELING WITH MODELICA

For example, general purpose tools do not restrict modelers to a particular
domain but they may require the modeler to spend some time formulating
their models for that particular tool. Likewise, tools developed for a specific
engineering domain have numerical methods and graphical user interfaces
which are optimal for that particular domain but they restrict the ability of the
modeler to create mixed-domain models.

In 1978, Hilding Elmqvist pioneered, as part of his Ph.D. thesis, a new
approach to modeling physical systems by designing and implementing the
Dymola modeling language (Elmqvist, 1978). The basic idea behind the Dy­
mola modeling language was to use general equations, objects and connections
to allow model developers to look at modeling from a physical perspective
instead of a mathematical one.8 For the Dymola implementation, graph theo­
retical and symbolic algorithms were introduced to transform the model to an
appropriate form for numerical solvers. An important milestone in the devel­
opment of this approach came in 1988 with the development of the Pantelides
algorithm for DAE index reduction (Pantelides, 1988). Following Dymola,
numerous other tools (e.g., Omola, see Mattsson et al., 1993) were developed
to further explore this new approach to modeling.

A major problem with all simulation tools has been that models developed
using one tool could not be used by another. In 1996, Hilding Elmqvist
initiated an effort to unify the splintered landscape of modeling languages
by initiating the development of the Modelica modeling language. Similar
initiatives have been undertaken by various other groups (see Heinkel et al.,
2000 and Fitzpatrick and Miller, 1995) but these efforts have been focused
primarily on the electrical domain, while Modelica strives to be completely
domain neutral.

The basic idea behind Modelica was to create a modeling language that
could express the behavior of models from a wide range of engineering do­
mains without limiting those models to a particular commercial tool. In other
words, Modelica is both a modeling language and a model exchange speci­
fication. To accomplish this goal, the developers of previous object-oriented
modeling languages like Allan, Dymola, NMF, ObjectMath, Omola, SIDOPS+
and Smile were brought together with experts from many engineering domains
to create the specification for the Modelica language based on their wide range
of experiences?

Modelica can be used to solve a variety of problems that can be expressed
in terms of differential-algebraic equations (DAEs) describing the behavior
of continuous variables. The ability to formulate problems as DAEs rather
than ODEs reduces the burden on the model developer because less effort is

SThe physical and mathematical approaches are contrasted in Chapter II.
9 A detailed history of how the Modelica modeling language was developed is contained in Appendix A.

walter.ponge@terra.com.br

Introduction 5

involved in formulating equations. In addition to handling continuous variables,
Modelica includes features for describing the behavior of discrete variables
(e.g., digital signals). Often, it is convenient or even necessary to simulate both
continuous and discrete behavior at the same time. Modelica allows both forms
of behavior to be described within the same system model or even the same
component model.

Modelica is a non-proprietary modeling language and the name is a trade­
mark of the Modelica Association which is responsible for publication of
the Modelica language specification. At present, Modelica is not an ISO,
ANSI or IEEE standard. This means that Modelica is presently a "moving
target" in much the same way as C++ was for about a decade. In the case
of C++, avoiding the rush to standardize did not prevent people from making
use of the language and ultimately led to a much better language. Hope­
fully, Modelica will follow a similar path. If a need can be demonstrated
for functionality not already present in the Modelica language, users can
work with the Modelica Association to fill functionality gaps. The current
Modelica specification can be found at the Modelica Association web site:
http://www . model ica . org. Version 1.4 of the Modelica specification
is included on the companion CD-ROM.

If you have ever been involved in large scale modeling projects you proba­
bly recognize that model development is in many ways similar to large scale
software development. Just like a programming language, the purpose of a
modeling language is to describe the behavior of small pieces of a larger sys­
tem. A modeling language should encourage reuse of previous work and help
manage the complexity of systems as they become larger. It should be possible,
once a reusable set of components has been created, to work at an increasingly
higher level (i.e., getting away from writing equations at the component level
and working more on the assembly of a complex system). Ultimately, this
leads to the ability to build systems using a "top-down" approach rather than a
"bottom-up" approach.

All simulation results presented in this book were generated using Dymola
(Dynamic Modeling Laboratory).l0 An evaluation copy of Dymola is pro­
vided by Dynasim (Elmqvist et aI., 2001) on the companion CD-ROM so that
readers may gain hands-on experience with using the Modelica language. To
understand how to simulate Modelica models using Dymola, please read the
documentation titled "Getting Started with Dymola" which is included with
the Dymola software. Dymola can also be used to generate models that can be
imported into Simulink.

IODymoia is a trademark of Dynasim AB.

walter.ponge@terra.com.br

6 INTRODUCTION TO PHYSICAL MODELING WITH MODELICA

1.2 WHAT CAN MODELICA BE USED FOR?
Modelica can be used for many things, including simulation of electrical

circuits (Clauss et aI., 2000), automotive powertrains (Otter et aI., 2000), power
system stability (Larsson, 2000), vehicle dynamics (Tiller et aI., 2000) and
hydraulic systems (Beater, 2000). However, the best way to understand what
Modelica can be used for is through an example. While most of the chapters in
the book use relatively simple examples to highlight specific language features,
we will start by giving a glimpse of "the big picture".

In this section we will show bits and pieces of a substantial library of
Modelica models for simulating automobile performance. The library was
developed for this book to demonstrate how reasonably complex systems can
be modeled. While the library contains a large number of models, most of
the models are quite simple. Because these models are relatively simple, they
will give us only a rough estimate of how particular automobile designs will
perform. The Modelica models from this section are provided on the companion
CD-ROM and discussed in greater detail in Chapter 10.

Figure 1.1. A 0-100 kilometer per hour test.

Imagine we wish to predict the acceleration performance for a particular
sports car design. In order to judge the pelformance, we will measure the time
it takes the vehicle to accelerate from zero to one hundred kilometers per hour.
Figure 1.1 shows our performance test which includes a sports car and a race
track.

Do not be fooled into thinking the model we are simulating is not detailed just
because the picture looks simple. This is just the top-level view of the problem.

walter.ponge@terra.com.br

Introduction 7

Figure 1.2 shows what we find if we look inside our sports car model. Behind
the scenes, the sports car model includes models of the chassis, transmission
and engine as well as a shifting strategy that decides when to change gears.
Behind all of these images are behavioral models (i.e., the images themselves
are just used to help identify what the models represent). As we shall see, even
this view of the sports car gives a deceptively simple impression.

road

Figure 1.2. Taking a look at what is under the hood.

The engine model for our sports car is one of many components in Figure 1.2.
If we open up the engine model we can see each of the four individual cylinders
(shown in Figure 1.3). Again, the images of engine cylinders are graphics added
to the models so they can be easily identified as engine cylinders. Behind each
of these pictures is a detailed schematic of the components used to model an
individual engine cylinder.

If we open up one of these cylinders, we find the numerous low-level com­
ponent models shown in Figure 1.4. By zooming in to each of the various
models shown so far, we have gone from the complete vehicle level (shown
in Figure 1.1) all the way down to models of individual components such as
engine valves (shown in Figure 1.4). The ability to construct such hierarchies
is a central feature of Modelica. In addition, the ability to include graphical
representations for the models, as we have seen in these figures, is also a feature
provided by Modelica.

Each of the graphics shown in Figure 1.4 represents a component involved
in the function of an individual engine cylinder. We cannot "zoom" into these

walter.ponge@terra.com.br

8 INTRODUCTION TO PHYSICAL MODELING WITH MODELICA

crankshaft

Figure 1.3. Looking inside the engine.

models because they represent the smallest pieces in the system. In a sense,
they are the "atoms" of our system. It is important to understand that these
pieces are not magical primitives that just happen to come with the software
package we used to build this model. In fact, it is at this component level
that we tum our attention away from all the graphics toward the real subject
of this book: the Modelica modeling language. Previously, we have seen
how the Modelica modeling language can be used to describe hierarchies of
components. At the "atomic" level, it can also be used to describe the behavior
of each of these components. The remainder of the book will provide all the
necessary information to build such components and an enormous variety of
other components in other engineering domains.

Building models is fun, but ultimately we want to see results from such mod­
els. When we run our simulation, we find that the sports car model presented
in this section can go from zero to 100 kilometers per hour in 6.88 seconds.
Figure 1.5 shows several different pieces of information recorded during the
test. Notice how the transmission gear changes at different vehicle speeds. We
can also see how the engine speed increases up until the transmission shifts
and then it drops again. These are just a handful of signals we can extract from
our simulation. Other useful pieces of information available include manifold
pressure, trapped mass in the cylinder, traction force on the tires, transmission
clutch pressures, etc. Studying such information can provide important insights
during the design process.

Once we have a model that gives us good results, the next logical step is to
ask ourselves "what if?". The sports car in our race model includes numerous

walter.ponge@terra.com.br

Introduction 9

.~.', ~ ::::i ~ ~ .••• i .. '" :-~

,n

A rn +--------------------<~

crankshaft

Figure 1.4. Looking inside an individual engine cylinder.

design details. For example, we can easily specify the engine geometry, valve
timing, shift schedule, vehicle weight, tire radius, and so on. By changing these
values, we can determine the impact each of these parameters has on overall
system performance.

Remember, Modelica is a domain-neutral modeling language useful for
creating models from nearly any engineering domain. The remainder of the
book shows how models from many other engineeling domains can be created
using the Modelica modeling language.

walter.ponge@terra.com.br

10 INTRODUCTION TO PHYSICAL MODELING WITH MODELICA

I~ES;::;J
j'~ : I
> 0 1 2 :I 4 5 6 7

I ~! : ; : ; : I : : : I: : : : : 1
o 2:1 4 5 6 7

Time [s]

Figure 1.5. Simulation results from a sample race.

1.3 MODELING FORMALISMS
Before we start discussing how to use Modelica to develop models, let us

take a moment to talk about modeling in general. There are many formalisms
used for modeling continuous systems. An excellent overview of different
formalisms is presented in Astrom et aI., 1998. Modelica supports two of the
common approaches to modeling in engineering. I I The first is called block
diagram modeling and the other is called acausal modeling.12 In this section
we will discuss block diagrams and acausal formulations to better understand
the differences between them.

1.3.1 Block diagrams
Using block diagrams, a system is described in terms of quantities that

are known and quantities that are unknown. A block diagram consists of
components, called blocks, which use the known quantities to compute the
unknown quantities. A block diagram of a PI (proportional-integral) controller
is shown in Figure 1.6.

II In addition, other formalisms like bond graphs (see Cellier. 1991) and petri nets can also be described in
Modelica.
12Acausal modeling is sometimes referred to as first principles modeling.

walter.ponge@terra.com.br

Difference
Block

+

(Om -------'

I . Gain Block

" \",

Figure 1.6. PI Controller.

Introduction 11

Summation

1 -s

Integrator

On the left side of Figure 1.6 are the known quantities We (the desired
speed), and Wm (the actual motor speed as read by the speed sensor). On the
right side of Figure 1.6, the torque used to control the system is computed.
In between are the blocks which describe the computations being performed.
In this example, the difference block takes the desired and sensed speed as
an input and computes as an output the difference (i.e., the error). One gain
block then multiplies the speed difference by the gain, Kp. The scaled speed
difference is passed through another gain block, scaled by -A and integrated.
We compute the control torque by summing the outputs from the gain blocks.

This approach to modeling is often used when designing control systems.
For example, tools such as. Simulink and SystemBuild use this approach. A
block diagram is a natural way of expressing a control system design. However,
such diagrams have their limitations as we shall demonstrate in Chapter 11.

1.3.2 Acausal modeling
Describing system or component behavior in terms of conservation laws

is referred to as acausal modeling. With acausal formulations, there is no
explicit specification of system inputs and outputs. Instead, the constitutive
equations of components (e.g., Ohm's law for a resistor) are combined with
conservation equations to determine the overall system of equations to be
solved. For example, when modeling electrical systems, like the circuit shown
in Figure 1.7, one can use Kirchhoff's current law (a conservation law), which
states that the sum of the currents into a particular node (in this case, a, b or
c) must be zero. The application of conservation laws results, in general, in

walter.ponge@terra.com.br

12 INTRODUCTION TO PHYSICAL MODEUNG WITH MODEUCA

systems of differential-algebraic equations (DAEs). Dymola and Saber13 are
two examples of tools that allow acausal formulations.

L=lOOmH R=15 n

+ n " --'--g-...... -
1=
"l

v

I
Figure 1.7. RLC circuit schematic.

In order to formulate acausal models, it is useful to identify the through
variables and the across variables for the component being modeled. In
general, the across variable represents the driving force in the system and
the through variable represents the flow of some conserved quantity. For an
electrical system, the voltage is the across variable and the current is the through
variable. Note that the product of the through variable and the across variable
typically has the units of power (i.e .• Watts in SI units). Table 1.1 includes
several examples of through and across variables for different engineering
domains.

Domain Through Across
Electrical Current (A) Voltage W)
Mechanical (translational) Force (N) Velocity (m/8)

Mechanical (rotational) Torque (Nm) Angular Velocity (Tad/8)

Hydraulic Flow Rate (m" / 8) Pressure (N/m")

Table 1.1. Through and across variables from various domains.

1.3.3 Further remarks on formalisms
As we shall demonstrate in Chapter 11, block diagrams are convenient for

control system modeling and acausal formulations are convenient for physical

13 Saber is a trademark of Avant! Corporation.

walter.ponge@terra.com.br

Introduction 13

system modeling (i.e., plant modeling). Not only does Modelica support both
of these important types of modeling, but it allows both of them to be used
together.

1.4 MODELICA STANDARD LIBRARY
In addition to defining the specification for the Modelica language, the

Modelica Association also publishes a standard library of Modelica models.
This library, called the Modelica Standard Library (or MSL), is available free
of charge. 14

The MSL was developed so that users of the Modelica language would
not have to create their own basic models for the common modeling domains.
Throughout this book, we start off by developing Modelica models from scratch
to demonstrate the fundamentals of the language. Then, we point out similar
models which already exist within the MSL. In this way, we can cover language
fundamentals and models available in the MSL.

Keep in mind that the MSL is not a collection of black box models which are
hard-wired into a tool. Instead, the Modelica representation of all the models
can be viewed to help understand exactly what behavior is modeled. These
models are no different than any other Modelica models. It should be noted
that while the models contained in the MSL are useful, you are not required to
use them.

While reading this book, be on the lookout for uses of the MSL. These can
be easily recognized by looking for names that begin with "Modelica. ". All
such entities belong to the MSL. For example, the physical type Model ica. -
SIunits. Vol tage is defined in the MSL. You should interpret this name to
mean "Va 1 t age is a type defined in the S I un its package nested inside the
Modelica package". The package structure of Modelica libraries (including
the MSL) is hierarchical and may contain numerous nested packages. Do not
be surprised to see much longer names like:

Modelica.Electrical.Analog.Basic.Resistor

1.5 BASIC VOCABULARY
The Modelica language specification uses a precise vocabulary for describing

the elements of the Modelica language. While being rigorous is necessary in a
formal specification, it is not always good in learning material. For this reason,
this book uses a simplified vocabulary. In the remaining chapters, the following
terms are used:

14As with most things related to Modelica, the MSL can be found at http://www ,modelica. org

walter.ponge@terra.com.br

14 INTRODUCTION TO PHYSICAL MODELING WITH MODELICA

model A model is a behavioral description. For example, a model of a resistor
is described by Ohm's law. The model is a description of resistor behavior,
not the resistor itself. In other words, it is important to separate the idea of a
resistor model (i.e., V = I *R) from the resistor instances (components with
different values of resistance, R). If you are familiar with object-oriented
programming, a model is analogous to a class.

component A component is an instance of a model. So, for a given model
(e.g., a resistor model), the actual instances (e.g., the resistors) would be
components.

subcomponent A subcomponent is used to refer to components which are
contained within other components. For example, a resistor might be a sub­
component of another component like an electrical circuit. Furthermore, the
electrical circuit could be a subcomponent of an appliance. Subcomponents
are used to form hierarchical models.

system model A system model is a model which is completely self-contained.
In other words, it does not have any external connections and it contains the
same number of equations as unknowns.

quantity A quantity refers to those entities which have a value (e.g., the
resistance of a resistor). In Modelica, all values are either real, integer,
string or boolean. Furthermore, a quantity might be a scalar or an array.

definition The description of all variables, parameters and equations associ­
ated with a model is called the model definition.

declaration When a component, parameter, variable or constant is instantiated
(either in a system model or inside another component), that is called a
declaration.

package A package refers to a collection of Modelica models, which are
meant to be used together. For example, an electrical package would likely
include definitions of resistor, capacitor and inductor models.

keyword A keyword is a word, such as mode 1, that has a specific meaning
in Modelica. As a result, keywords are reserved words and cannot be used
as names in declarations (e.g., of variables). In the examples, the keywords
will appear in bold.

Use the explanations of these terms as a reference to help understand the
more complicated explanations in this book. The glossary, which stm1s on page
324, includes these terms and many more used in this book.

walter.ponge@terra.com.br

Introduction 15

1.6 SUMMARY
In summary, the Modelica language is a non-proprietary, domain-neutral

modeling language that supports several different modeling formalisms. Mod­
elica can be used to model both continuous and discrete behavior and an
extensive multi-domain library of models known as the Modelica Standard
Library is available free of charge at http://www . model ica. org.

walter.ponge@terra.com.br

Chapter 2

DIFFERENTIAL EQUATIONS

2.1 CONCEPTS
Modelica is a powerful language for describing the behavior of dynamic

systems. At the heart of any model are mathematical equations. We begin our
discussion of Modelica by showing how simple systems of differential equa­
tions can be expressed using Modelica. The expression of differential equations
is the most basic example of Modelica's capabilities. Subsequent chapters will
use increasingly complex models to demonstrate how more advanced features
help model detailed physical systems, manage system complexity and promote
reuse of models.

In this chapter, we will demonstrate how to write some simple models
which include parameters, continuous variables and equations. These examples
should provide enough information to allow readers to begin creating their
own simple models. Remember that each of the examples introduces new
concepts. The final section of this chapter provides a comprehensive review of
the language features covered in this chapter.

2.2 DIFFERENTIAL EQUATIONS
2.2.1 Equations of motion

Let us consider the motion of a pendulum like the one shown in Figure 2.1.
From Euler's second law we know that the sum of the torques about a fixed
point must be equal to zero. There are two torques applied at the pivot point,
x, in Figure 2.1:

Tg mgL sin(O)
mL2jj

(2.1)

(2.2)

walter.ponge@terra.com.br

18 INTRODUCTION TO PHYSICAL MODELING WITH MODELICA

Figure 2.1. A simple pendulum

where e is the angular position (relative to gravity), L is the length of the
pendulum, m is the mass of the pendulum, 9 is the acceleration due to Earth's
gravity, Tg is the torque due to gravity and Ti is the inertial torque. Using the
fact that the sum of the torques about the pivot point, x, must be zero, we get:

Tg + Ti = mgL sin(e) + mL2fj = 0 (2.3)

which we can further reduce to
.. 9
e(t) = -L sin(e(t)) (2.4)

Finally, one simplifying assumption we can make, for the time being, is to
assume that e is small which means we can approximate sin (e) as just e. In
this case, our differential equation becomes simply:

fj(t) = -fe(t) (2.5)

Let us transform Equation (2.5) into a system of first-order ordinary differential
equations (ODEs):

(2.6)

where w is the angular velocity of the pendulum. Given initial values for wand
e, Equation (2.6) can be integrated to obtain the behavior of the pendulum as a
function of time.

walter.ponge@terra.com.br

model SimplePendulum
parameter Real L=2;
constant Real g= 9. 81 ;
Real theta;
Real omega;

equation
der(theta) = omega;
der(omega) = -(g/L)*theta;

end SimplePendulum;

Differential Equations 19

Example 2.1. Model of a simple pendulum.

2.2.2 Modelica model
Example 2.1 shows how we can use Mode1ica to represent the behavior of

the pendulum in Figure 2.1. We start by using the keyword model followed by
the name of our model, SimplePendulum. Next, we define the parameters
and constants that characterize our model as well as the variables which appear
in our equations. The parameters are quantities which remain constant during a
simulation but may have different values from one simulation to another (e.g.,
L). The variables in a problem are those quantities which are a function of time
(e.g., e and w). Lastly, constants are those quantities, like the acceleration due
to gravity, which are unlikely to change. To complete the model, an equation
section is created which includes the equations shown in Equation (2.6).

Note that the parameter quantities in Example 2.1 have the parameter
keyword in front of them. Likewise, constants are identified by the use of
the constant keyword. Since the declarations of omega and theta are not
qualified by parameter or constant, they are assumed to be variables. All
the quantities we have described are of type Real which means they are real
numbers (as opposed to integers, for example).

Examining the equation more closely, we see that Modelica includes a
built-in operator called der which is used to represent the time delivative
of a variable. Example 2.1 describes a complete set of first-order ordinary
differential equations with two equations and two unknowns. Figure 2.2 shows
the simulated solution of Example 2.1.

Now let us reconsider the assumption that e ~ sin(e). If we anticipate
seeing a wide range of motion for our pendulum, we would use the following
non-linear system of differential equations:

(W8) =(-f~n(e)) (2.7)

Example 2.2 shows that only a simple change is required to the Modelica model.
Apmt from changing the model name, the only other change is to use the

walter.ponge@terra.com.br

20 INTRODUCTION TO PHYSICAL MODELING WITH MODELICA

0.4

0.2

:0-.s
" 0

" ..::
I-

-0.2

-0.4

o

, '
'-,,'

/\ //'-\\,
, ,

Time [s]

,

, ,
'-'

/,~ ... ,
, ' , ' , ' , ' , '

j\
,
,

\,~;/

10

Figure 2.2. Solution for e(t) given L=2, 0(0) = 0.1 and w(O) = O.

Modelica. Math. s in function. If we were to plot the linear and non-linear
models for small displacements (such as shown in Figure 2.2), you would not
expect to be able to see the difference. However, Figure 2.3 demonstrates
that for large displacements there is a significant difference between these two
models.

model NonlinearPendulum
Real theta;
Real omega;
parameter Real L=2;
constant Real g=9. 81;

equation
der(theta) = omega;
der(omega) = -(g/L)*Modelica.Math.sin(theta);

end NonlinearPendulum;

Example 2.2. Model of a pendulum without linear assumption.

This simple example provides a good framework to demonstrate the basic
features of Modelica.

walter.ponge@terra.com.br

Differential Equations 21

Time [sl

Figure 2.3. Linear and non-linear solutions for 8(t) given L=2, 8(0) = 2.3 and w(O) = O.

2.3 PHYSICAL TYPES
Physical modeling involves specifying relationships between various quan­

tities such as voltage, pressure, mass, etc. Modelica includes features which
allow us to specify physical types (e.g., voltage, pressure, mass) and associate
them with quantities in our models. To demonstrate how this is done, we will
build a model of an RLC electrical circuit. An RLC circuit contains a resistor,
capacitor and inductor and exhibits oscillatory behavior in response to voltage
disturbances.

L=IOOmH R=15 Q

+
v

Figure 2.4. An RLC circuit.

n
!!. - -
8 -...---

1=
'TI

walter.ponge@terra.com.br

22 INTRODUCTION TO PHYSICAL MODELING WITH MODELICA

2.3.1 Constitutive equations
Figure 2.4 shows the schematic of an RLC circuit. Before we write our

Modelica model of this system, we must first write down the equations for
each of the components in the system. Unlike the previous example, there is
less manipulation of the fundamental equations.

First, let us assume that the voltage source, V, jumps from 0 Volts to 1 Volt
after one second of simulation. We can then write an explicit expression for
the voltage at node a as follows:

O~t<l

t ? 1

Next, we consider the inductor model. The equation for the current through
the inductor (from node a to node b) is:

LdiL=(V,_Vi)
dt a b

Likewise, using Ohm's law, the current through the resistor (from node b to
node c) can be expressed as:

R· iR = Vb - Vc

Finally, the current through the capacitor leaving node c and going to ground
can be expressed as:

. C dVc zc= -
dt

By using Kirchhoff's current law, we know that the sum of the currents
going into each node must be zero. This gives us:

ZV - ZL 0

ZL - ZR 0

ZR - Zc 0

Putting this all together, we have the following unknowns:

and the following equations:

{ ~ O~t<l

t ? 1

(2.8)

(2.9)

(2.10)

(2.ll)

walter.ponge@terra.com.br

Differential Equations 23

LdiL
dt

(Va - Vb) (2.12)

R· iR Vb - Ve (2.13)

~c
eVe

dt
(2.14)

2V - ~L 0 (2.15)

~L - ~R 0 (2.16)

2R - 2C 0 (2.17)

Note that we could have simplified these equations further. For example,
from Equations (2.15)-(2.17) we know that the current through all the compo­
nents must be equal to iv. This would have eliminated the need to solve for
iR, ic and iL altogether. For this example, we use all seven equations and all
seven unknowns to demonstrate that a priori manipulation of the equations is
not necessary. Instead, the information given in the model is sufficient for such
manipulations to be performed automatically by the simulator.

2.3.2 Modelica model

model RLC
parameter Modelica.Slunits.Resistance R=15;
parameter Modelica.Slunits.Capacitance C=100e-6;
parameter Modelica.Slunits.lnductance L=100e-3;

Modelica.Slunits.VoltageV_a;
Modelica.Slunits.Voltage V_b;
Modelica.Slunits.Voltage V_c;
Modelica.Slunits.Current i_V;
Modelica.Slunits.Current i_R;
Modelica.Slunits.Current i_C;
Modelica.Slunits.Current i_L;

equation
V a = if time>=l then 1.0 else 0.0;
L*der(i_L) = (V_a - V_b);
R*i R = V_b - V_c;
i C C*der(V_c);
i V - i L 0;
i L - i R 0;
i R - i C 0;

end RLC;

Example 2.3. Model for an RLC circuit.

The Modelica description of the RLC model is shown in Example 2.3 and the
results of simulating this circuit can be seen in Figure 2.5. The model shown in

walter.ponge@terra.com.br

24 INTRODUCTION TO PHYSICAL MODELING WITH MODELICA

1.5

0.5

o

Time [sl

Figure 2.5. Voltage response of model RLC.

Example 2.3 covers several new topics not seen in the previous example. The
first difference is the appearance of physical types (Le., Vol tage, Current,
Resistance, Capacitance and Inductance). As we shall see later,
these physical types provide important information about the quantities they are
associated with (e.g., units, limits and default values). These physical types are
defined in a package called Modelica. SIuni t s. This is why the physical
types all contain Modelica. SIuni ts in their name.

In the equation section, we see the first use of the if keyword. The use
of if in this context is called an if-expression. l For this example, when time
is less than 1, Va = 0 and once time is greater than I, Va = 1. The variable
time is used to represent simulation time.

2.4 DOCUMENTING MODELS
In this section, we create a model of a hydraulic system and show how

to include documentation in models. Such documentation not only helps
the model developer to remember how the model functions, it also helps the

I An if expression is similar to the ternary operator in C.

walter.ponge@terra.com.br

Differential Equations 25

developer and any new users of the model to understand exactly what each of
the components and quantities represent.

T
HI -r-

1~~~ 1
Figure 2.6. Two hydraulic tanks filled with liquid.

Figure 2.6 shows the schematic for a hydraulic system composed of two
tanks connected by a cylindrical pipe. For this example, we assume that the
fluid in the tanks is incompressible and each tank has a constant cross-sectional
area.

2.4.1 Constitutive equations
The first step in computing the flow, Q, through the pipe is to know the

pressure at the bottom of each tank. To determine the pressure we use the
following equation:

P=pgH

where P is the pressure, H is the height of the fluid in the tank, 9 is the
acceleration due to gravity and p is the density of the liquid. Using this
relationship, the pressures in the two tanks are determined by the following
equations:

(2.18)

(2.19)

Now that we know the pressures, we need to compute the volumetric flow
rate, Q, through the pipe. For laminar flow through a cylindrical pipe, we can
use the Hagen-Poiseuille relationship (see, e.g., Ogata, 1978):

1[D4

Q = (PI - P2) 128liL (2.20)

where PI is the pressure in the tank on the left, P2 is the pressure in the tank
on the right, D is the diameter of the pipe connecting the two tanks, Ii is the

walter.ponge@terra.com.br

26 INTRODUCTION TO PHYSICAL MODELING WITH MODELICA

dynamic viscosity and L is the length ofthe pipe. Note that the sign convention
for Q is that a positive value indicates flow from the tank on the left to the tank
on the right.

Lastly, we need an equation which relates the volumetric flow rate through
the pipes with the change in fluid height in each tank. Since the fluid flowing
between the tanks is incompressible, the volume of fluid flowing through the
pipe must be the same as the volume of fluid exchanged with the tanks. This
behavior can be expressed by the following equations:

(2.21)

(2.22)

where A 1 is the cross-sectional area of the tank on the left and A2 is the
cross-sectional area of the tank on the right.

2r-----,-----,------,-----,-----,------,-----,-----,

1.5

2.4.2

..........
.........

.......... ---

5 10 15

Time [s]

Figure 2.7. Solution with initial conditions Hl=O and H2=2

Modelica model

20

Example 2.4 shows the Modelica model that con'esponds to the hydraulic
system shown in Figure 2.6. Figure 2.7 shows the simulation results for that

walter.ponge@terra.com.br

Differential Equations 27

model TwoTanks "Hydraulic system involving two tanks"
import Modelica.Slunits;

II Constants
constant Real pi=Modelica.Constants.pi;
constant Real g=Modelica.Constants.g_n;

II Parameters
parameter SIunits.Length L=O.I "Pipe length";
parameter SIunits . Length D=O. 2 "Pipe diameter";
parameter SIunits .Density rho=O. 2 "Fluid density";
parameter SIunits.DynamicViscosity mu=2e-3;
parameter SIunits .Area AI=l. 0 "Area of left tank";
parameter SIunits.Area A2=2.O "Area of right tank";
parameter SIunits.KinematicViscosity c=(pi*D A 4)/(128*mu*L);

I I Variables
SIunits.Pressure PI, P2;
SIunits.Length HI, H2;
SIunits.VolumeFlowRate Q;

equation
II Pressure equations
PI rho*HI*g;
P2 = rho*H2*g;

II Flow rate
Q = c* (HI-H2) ;

II Conservation of mass
AI*der(HI) = -Q;
A2*der(H2) = Q;

end TwoTanks;

Example 2.4. Hydraulic system of two tanks.

system assuming the first tank starts at a height of 0 meters and the second tank
stmis with a height of 2 meters.

Instead of typing out the Modelica. S1units qualifier before each phys­
ical type as we did in Example 2.3, we instead chose to create an abbreviation,
S1, using the package keyword. Using this approach we are required to type
far fewer characters for each physical type name. Think of this as a way to
create aliases when working with long package names.

In Example 2.4, we can see the use of descriptive text (contained between
matching double quotation marks) associated with the model and parameters.
In addition, this example includes comments which provide additional docu-

walter.ponge@terra.com.br

28 INTRODUCTION TO PHYSICAL MODEUNG WITH MODEUCA

mentation. Whenever the characters "/ /" appear in a Modelica model, the
remainder of the line is considered a comment.

The remaining difference between this example and the previous examples in
this chapter is the use of the physical constants. The MSL contains a collection
of physical constants which commonly appear in engineering equations. In this
example, we have made use of Modelica. Cons tan ts. g.11 (representing
acceleration due to Earth's gravity) and Modelica. Constants. pi. Use
of physical constants in the MSL serves three purposes. First, the model
developer does not have to remember the value of the constants. Second, it
makes sure that the constant is specified to the complete numerical precision
for the computer it is used on. Third, it avoids the error prone process of typing
such numbers in manUally.

2.5 LANGUAGE FUNDAMENTALS
The purpose of this section is to provide a more comprehensive discussion

of the language fundamentals demonstrated by the examples in this chapter.
This section is included for completeness but it is not required. Readers may
feel free to skip this section entirely if they are comfortable with the material
presented so far.

2.5.1 Models
Models have behavior described by algebraic and/or differential equations.

Recall our use of the model keyword in Examples 2.1, 2.3 and 2.4. The
keyword model in Modelica is used to indicate the start of a model definition.
As we have seen in our examples, the end keyword (followed again by the
model name) is used to indicate the end of the model. 2

As seen in Example 2.4, the definition of a model may include descriptive
text to provide additional information about the model. The textual description
of a model must be contained within matching double quotation marks and must
appear directly after the model name. The textual description for constants,
parameters, variables or any component declarations must appear just prior to
the " ; " which is used to indicate the end of the declaration. While comments are
free form text with no particular association to any part of the Modelica source,
textual descriptions are directly associated with specific declarations. This link
to specific declarations allows textual descriptions to be used in graphical user
interfaces or automatically generated documentation.

In this chapter, we have seen models which contain constants, parameters,
variables and equations. While there are other things a model may contain,

2The reason the model name appears t~ice is to help identify possibly mismatched end keywords in nested
structures. As we will see later. this same technique is also used to align the beginning and end of control
structures such as if and while.

walter.ponge@terra.com.br

Differential Equations 29

these are the basic elements and should be sufficient for developing simple
models.

2.5.2
2.5.2.1

Variables, parameters and constants
Declarations

As you may have noticed from the examples in this chapter, the declaration
of every quantity (i.e., variables, parameters and constants) requires a type
(e.g., Real or Length) followed by a name. Furthermore, each declaration
may include an equation for that quantity (e.g., "=12") and/or descriptive text
associated with the quantity. The end of the declaration is indicated by a
semi-colon.

2.5.2.2 Types

In our first example, we used the built-in type Real to represent floating
point values. Modelica provides three additional built-in types: Integer,
Boolean and String.

In addition to the built-in types, it is possible to create derived types. Derived
types are specializations of the built-in types. For example, the derived type
Length shown in Example 2.4 is defined in the MSL as follows:

type Length=Real (quantity="Length", unit="m");

Derived types provide more specific information about the quantity. This
information is useful for documentation purposes (e.g., what physical units
are associated with a given parameter), unit conversion and in some cases
even some semantic analysis (e.g., unit checking in expressions). The most
commonly used derived types in the MSL are compiled in Appendix D.

2.5.2.3 Variability

Any declared quantity in Modelica has a specific variability. By default,
all declared quantities are assumed to change as a function of simulation time.
However, there are variability qualifiers which can be used to indicate different
levels of variability. In this chapter, we have introduced two such qualifiers,
constant and parameter. Both of these qualifiers prevent the value of a
quantity from changing during a simulation. Despite the fact that both are
restricted in this way, there are two important differences between constants
and parameters. First, once defined within a model a constant is not intended to
be changed. For this reason, the graphical user interface for some tools may not
allow adjustments to constants (or even display them). In practice, this means
the only way a constant can be changed is to modify the source code of a model.
The other-difference between constants and parameters is that the declaration
of a parameter may include an expression for the value of that parameter but

walter.ponge@terra.com.br

30 INTRODUCTION TO PHYSICAL MODELING WITH MODELICA

the declaration of a constant must include an expression for the value of that
constant (for example g in Examples 2.1 and 2.4).

There are other variability qualifiers but we will discuss those in the context
of subsequent examples.

2.5.3 Expressions
For the most part, expressions in Modelica look similar to expressions in

other computer languages. In this section, we will cover the basic types of
expressions used in our examples so far.

2.5.3.1 Basic expressions

In Example 2.1, we see our first use of an expression. We compute the
derivative of omega as - (giL) *theta. In this one expression we use
the multiplication, division and subtraction operators. Modelica uses the +,

-, * and I operators to represent addition, subtraction, multiplication and
division, respectively. Furthermore, the A operator is used to represent raising
an expression to a power. For example, the expression (x+y) A Z represents
the sum of x and y raised to the power of z. Use of the A operator can be
seen in Example 2.4 in determining the c parameter. The precedence of the
operators C, *, I, +, -) and the implications of parentheses are the same as in
algebra.

As we shall see in Chapter 6, the +, -, * and I operators can also be applied
to arrays (e.g., vectors and matrices). The + and - operators can be used to add
or subtract two arrays of the same shape. The * and I operators can be used to
multiply or divide an array by a scalar. Furthermore, the * operator represents
the inner product operator when used between two arrays of the appropriate
shape.

2.5.3.2 Conditional expressions

Conditional expressions are expressions which evaluate to either true or
false. Such expressions use the relational operators "==", "<>", "<", "<=",

">" and ">=" to represent equality, inequality, less than, less than or equal
to, greater than and greater than or equal to relationships, respectively (Just
as with basic expressions, conditional expressions in Modelica are similar to
conditional expressions in other computer languages). Note that the "==" and
"<>" operators cannot be applied to Real variables.

In Example 2.3, we saw how the ">=" operator was used to determine
when the simulation time had exceeded 1 second. Conditional expressions can
be combined using the or and and logical operators. In addition, the not
operator can be used to negate the value of a conditional expression. Finally,
parentheses can be used to explicitly control the precedence of the operators.

walter.ponge@terra.com.br

Differential Equations 31

2.5.3.3 Function calls

The Mode 1 i ca. Ma t h package in the MSL includes many useful functions
(see Appendix F for a complete list). For instance, we saw how the s in function
was invoked in Example 2.2. In the case where functions require more than one
argument, the arguments must be separated by commas. Chapter 5 discusses,
in detail, how to write and invoke functions.

2.5.3.4 Using if-expressions

In Example 2.3, we saw how a step voltage could be defined using an
if-expression. The syntax for an if-expression is:

if cond_expr then true_expr else false_expr

where cond_expr is a conditional expression evaluating to either true or
false. In the case where the conditional expression evaluates to true, the
if-expression evaluates to true _expr. If the conditional expression evaluates
to false, the if-expression evaluates to false_expr. Among other things,
this is a convenient way of representing simple functions and discontinuities.
Such if-expressions can be used anywhere a normal expression can be used and
may even be nested one inside another. For example, a step could be expressed
using if-expressions as follows:

v = if time<=l then 0 else if time<=2 then 1 else 2;

2.5.4 Equations
Each of the models in this chapter contains an equation. It is important to

recognize that the "=" operator in Modelica does not represent assignment.
Instead, the "=" operator defines a relationship between several quantities and
it does not necessarily have to be of the form:

variable = expression;

Instead, an equation expresses equality between two expressions and has the
more general form:

expressionl = expression2;

This is important because it means the model developer is not required to
manipulate equations to get them into assignment form (a task which can be
surprisingly difficult once complex systems of differential-algebraic equations
are involved). In fact, the equations specified in the equation can be any
combination of algebraic and differential equations. For example, consider the
following set of equations:

x time;
x = 4*y;

walter.ponge@terra.com.br

32 INTRODUCTION TO PHYSICAL MODELING WITH MODELICA

where time is the global simulation time. If Modelica were a procedural
language like C or FORTRAN, the first statement would assign a value to x
and the second statement would overwrite the value of x with a new value. This
is because in those languages the = operator is used to represent assignment.
In Modelica, the = represents an equality relationship and the : = represents
the operation of assignment.3 Assignments are not allowed in an equation.
Instead, they must be placed inside an algori thIn section (discussed in Chapter
5).

It is possible that the equations:

x time;
x 4.0*y;

might be rearranged by a simulator into the following set of assignments:

x .- time;
y .- x/4.0;

Note the use of the: = operator. The rearrangement of terms in this way is
called symbolic manipulation. When you provide equations in Modelica, a
simulator is free to perform such manipulations. Remember, Modelica is a
descriptive language which means that the model developer is only responsible
for providing the equations, not solving them.

Note that equations can appear outside the equation. Specifically, an
equation can also appear as part of a declaration. The following code fragment
demonstrates this:

model CoolingGlass
parameter Modelica.SIunits.CoefficientOfHeatTransfer h;
parameter Modelica.SIunits.SpecificHeatCapacity cp;
parameter Modelica.SIunits.Mass m;
Modelica.SIunits.Temperature T;
Modelica.SIunits.Temperature T_ambient=300+20*time;

equation
m*cp*der(T) = -h*(T-T_ambient);

end CoolingGlass;

The CoolingGlass model contains two variables and two equations al­
though only one of the equations appears in the equat ion. The other equation
appears in the declaration of Lambient. The ability to include equations
in this way can be convenient but also confusing since such equations are not
easily spotted when glancing at the model.

'The left hand side of an assignment statement must be a variable.

walter.ponge@terra.com.br

Differential Equations 33

2.5.5 Operators
In this chapter, we have used the der operator to represent the derivative

of a variable. In this section we will discuss the der operator and the delay
operator.

2.5.5.1 The derivative operator

In the expression der (x) , the der operator is used to represent the time
derivative of the variable x. One important restriction is that the der operator
can only be used on variables, not on expressions. Furthermore, the der
operator cannot be used recursively. In other words, the following is not a legal
way to represent the second derivative:

alpha = der(der(theta)); II Illegal

In order to represent the second derivative of a variable, the first derivative must
be assigned to a variable. For example:

omega der(theta); II First derivative
alpha = der(omega); II Second derivative

The simple pendulum model, presented in Example 2.1, shows how this is done
within a model.

2.5.5.2 The delay operator

The delay operator can be invoked with either two or three arguments. The
first argument of the delay operator is always an expression. The value of
the delay operator is the value of the expression delayed by some amount of
time. The amount of time delay is the second argument of the de 1 a y operator.

If only two arguments are present, then the second argument must be a pa­
rameter expression which means it cannot be a function of time. The following
is an example of using the delay operator with a fixed delay:

model FixedDelay
parameter Modelica.Slunits.Time dt=2;
Real x, y, Z;

equation
der (x) = ... ;
y - ... ,
z = delay(x+y,dt) ;

end FixedDelay;

The response of z would be equal to x(time - dt) + y(time - dt).
It is possible to use the delay operator to express a vmiable delay as well.

If a third argument is present it represents the maximum time delay allowed
and the second argument can then be a time-varying expression. If present,
the third argument must be a parameter expression and the value of the second

walter.ponge@terra.com.br

34 INTRODUCTION TO PHYSICAL MODELING WITH MODELICA

argument must always be greater than zero and less than the value of the third
argument.

2.5.6 Attributes
Each declared quantity (e.g., a parameter or constant) has a set of at­

tributes. These attributes can be associated either with the type of the quantity
or the specific instance of the quantity. For example:

type Length=Real(start=l.O,
quantity="Length" ,
unit="m") ;

Length x(start=2.0);

In the first statement, the start, quantity and unit attributes are associ­
ated with the type Length. Any declaration of type Length automatically
inherits the attributes of Length. In the second case, the declaration of x
overrides the value of the start attribute inherited from type Length. Any
such adjustment to the attributes in a declaration is called a modification. More
details on modifications can be found in Chapter 3. We conclude this section
with a brief list of common attributes.

2.5.6.1 The "start" attribute

When declaring a variable, the start value is used to provide a reasonable
initial guess (see the explanation of the fixed attribute for an important
exception). This can be useful in problems which involve non-linear systems
of equations. In such systems, multiple solutions are possible and the start
attribute can be used to influence which solution is found.

Each of the built-in types has a start attribute. The default value for
the start attribute is zero. Note that the value of the start attribute for a
type is ignored when declaring a constant of that type because each constant
declaration must provide a value. For example,

constant Length L=2;

2.5.6.2 The "fixed" attribute

The fixed attribute can be used, in conjunction with the start attribute,
to specify the initial value for a variable at the start of a transient simulation.
When the fixed attribute is false, which is the default value, the start
attribute merely indicates an initial guess for variables (e.g., when solving non­
linear equations). However, when the fixed attribute is true the start
attribute indicates the value the variable must have at the start of the simulation.
A more complete discussion of how the fixed attribute is used can be found
in Chapter 13.

walter.ponge@terra.com.br

Differential Equations 35

2.5.6.3 The ''min'' and ''max'' attributes

The min and max attributes define the minimum and maximum values for a
given numeric type. These attributes are used to identify when a quantity has an
unreasonable value. For example, thermodynamic temperatures are measured
relative to absolute zero, so negative values are non-physical. To indicate this
in a model, the min attribute would be set to zero. Both Real and Integer
types have the min and max attributes.

These attributes are mainly used in model development to prevent the user
of a model from entering non-physical values for parameters and for letting the
simulator know when it has found an unreasonable solution.4

2.5.6.4 The "quantity" attribute

The quanti ty attribute is a character string which describes the nature of
a type. In most cases, the string contains the type name. For example:

type Strain = Real (quantity="Strain") ;

In other cases involving derived types, the quanti t y attribute of the base
type (Energy in this case) is inherited, as in:

type Energy = Real (quantity="Energy") ;
type PotentialEnergy=Energy; II quantity="Energy"
type KineticEnergy=Energy; II quantity="Energy"

All built-in types have the quanti t y attribute.

2.5.6.5 The "unit" and "displayUnit" attribute

The uni t attribute serves mainly as documentation for a type. Assigning
a string to the uni t attribute sets the units for that type. If units are provided
for a particular type, it is important that all values given for quantities of that
type be in those units because all equations in the model are written with the
assumption that values are provided in the specified units. Both Real and
Integer types have the unit attribute.

The MSL provides a large collection of types with the proper units defined
(see Appendix D for a list of the most commonly used types). The Model­
ica specification, which can be found on the companion CD-ROM, contains
details about the format for strings that represent physical units (e.g., "m/ s"
for meters per second or ''V'' for voltS).5

When entering data or displaying results, the values for a given type are
normally provided in the physical units assigned with the unit attribute.
However, it is possible to use different units when entering data or displaying

4The details of what happens if these limits are violated vary from program to program.
5The Modelica specification defines a syntax for representing units.

walter.ponge@terra.com.br

36 INTRODUCTION TO PHYSICAL MODEliNG WITH MODEliCA

results by setting the displayUnit attribute to the desired physical unit.
Only the Real type has the displayUnit attribute.

If a tool has unit conversion capability, it can do such unit conversions behind
the scenes. For example, angular position is defined in the MSL as follows:

type Angle = Real (quantity="Angle",
unit="rad" ,
displayUnit="deg") ;

This is because few people think of angles in terms of radians. For entering data
or displaying results, most people would prefer to see degrees instead of radians
(or revolutions per minute instead ofradians per second). The displayUnit
attribute indicates the preferred unit for pre-processing and post-processing.
The displayUnit only has an effect if the tool you are using supports such
unit conversion. In any case, the uni t attribute will always indicate what units
are used inside the models.

2.5.7 Physical types
Section 2.5.2.2 described how new, more specialized types can be created

from the built-in types. Throughout this chapter we have used a variety of
physical types (e.g., Vol tage, Veloci ty and AngularAcceleration)
derived in this way.

The main advantage of these specialized types is that they are better at de­
scribing the nature of a given quantity than the generic type Real. In complex
models it may be difficult to figure out the physical type of some quantities
and what the intended units should be. As we have seen in these examples,
a parameter named L might indicate a quantity of length or inductance. By
using predefined physical types, the intended usage of a parameter or variable
is much clearer. Furthermore, a clever analysis tool may check dimensional
consistency of the units involved in expressions. The use of physical types in
this way can improve the readability of the code as well.

2.6 PROBLEMS
PROBLEM 2.1 Rewrite the model shown in Example 2.1 to use physical types
and provide descriptive text for the model, variables and parameters.

PROBLEM 2.2 Write physical type definitionsforfrequency, absolute temper­
ature and mass fraction. What are the units for these? Do they have upper
and/or lower bounds?

PROBLEM 2.3 There are many conservation principles we may employ. Is
the fact that all torques around a point must sum to zero a conservation law?
If so, explain what is being conserved.

walter.ponge@terra.com.br

Differential Equations 37

PROBLEM 2.4 Run the models shown in Examples 2.1 and 2.2 for a variety
of initial positions and velocities. In each case, plot omega as a junction
of theta and compare the linear and non-linear trajectories. What are the
interesting characteristics of these trajectories?

PROBLEM 2.5 Write a modelfor a "predator-prey" system using the Lotka­
Volterra system of equations:

:i; = QXy - (3x

if ,y - oxy

where x represents the predator population and y represents the prey popula­
tion. Suggested values for model coefficients are Q = 0.1, (3 = 2, , = 4 and
o = 0.4. Build a Modelica model for this system and experiment with different
initial population levels. Visualize the solution by plotting prey population
versus predator population.

PROBLEM 2.6 Create a model, similar to the one shown in Example 2.4,
containing three (or more) tanks connected by pipes.

PROBLEM 2.7 Write a Modelica expressionfor V_a in Example 2.3 such that:

Va={! O:St<l
1:St<2
2:St<oo

(2.23)

PROBLEM 2.8 The longitudinal dynamics of an aircraft can be approximated
by the following equations (found in Brogan, 1991):

iJ q (2.24)

q _w2(Q - 08) (2.25)
Q

(2.26) Q = --+q
T

where (), q and Q are variables representing pitch, pitch velocity and angle
of attack while T, wand 8 are flight dynamics parameters and 0 is an input
representing the elevator angle. Using these equations, create models which
predict the behavior of the aircraft during different maneuvers (Le., time­
varying elevator positions). Sample values for T, wand 8 are 0.25, 2.5 and
1.6, respectively.

walter.ponge@terra.com.br

Chapter 3

BUILDING AND CONNECTING COMPONENTS

3.1 CONCEPTS
While equations are an essential part of model development, it quickly

becomes tedious to write out all the equations for the components in a system.
In this chapter, we show how to reuse constitutive equations like Ohm's law and
automatically generate conservation equations for quantities like energy and
mass. In doing so, it is possible to quickly build up large models of interacting
components. Once again, examples will demonstrate various language features
and the section at the end of the chapter will discuss these features in detail.

3.2 CONNECTORS
The focus of this chapter will be creating reusable component models and

then connecting instances of these models together to form complex networks.
In order to discuss the connection of components, we must first discuss a new
type of definition called a connector.

The best physical analogy of a connector is an electrical plug. The advan­
tage of electrical plugs is that when you plug, for example, a television into
an electrical outlet, you can be sure that each wire in the plug will connect to
the appropriate wire in the wall. A connector in Modelica serves the same
purpose by matching up the appropriate variables from connectors on different
components.

A connector definition contains variables which describe the interaction
between components. The following is a sample connector definition:

connector HydraulicPort
Modelica.Slunits.Pressure p;
flow Modelica.Slunits.VolumeFlowRate q;

end HydraulicPort;

walter.ponge@terra.com.br

40 INTRODUCTION TO PHYSICAL MODELING WITH MODELICA

3.3 CREATING CONNECTORS AND COMPONENTS
Let us start by considering a familiar example. Figure 3.1 shows a slight

variation on the electrical circuit shown in Figure 2.4. Because a new resistor
was added in Figure 3.1, the behavioral equations are slightly different than
before.

L==lOOmH

+
V C==lOOW

Figure 3.1. Another RLC circuit.

3.3.1 Equation based approach
If we were to write a Modelica model for the system in Figure 3.1 the same

way we did for Figure 2.4, the resulting model might look something like the
one shown in Example 3.1.

One problem with the Modelica model in Example 3.1 is that it is getting a
little difficult to understand what it is a model of, just by looking at the source
code. In other words, you would have to carefully study the description in
Example 3.1 to realize it represents the circuit shown in Figure 3.l.

Another problem is that we are starting to write equations multiple times.
Ohm's law, for example, appears twice in Example 3.1. While writing Ohm's
law twice may not seem like much of a burden, writing it 25 times for a
complex circuit is tedious and the process would be error prone. Furthermore,
if a mistake is made it must be corrected in 25 places. Likewise, making sure
the conservation equations are written correctly can also be a tedious and error
prone task. For these reasons, the preferred way to model the system in Figure
3.1 is to use a component based approach.

walter.ponge@terra.com.br

Building and Connecting Components 41

model RLC2
import Modelica.Slunits;

parameter SIunits.Resistance Rl=15;
parameter SIunits.Resistance R2=5000;
parameter SIunits.Capacitance C=100e-6;
parameter SIunits.lnductance L=100e-3;

SIunits.Voltage V_a, V_b, V_c;
SIunits.Current i_V, i_Rl, i_R2, i_C, i_L;

equation
V a = if time>=l then 1.0 else 0.0;
L*der(i_L) = V_a - V_b;
Rl*i_Rl = V_b - V_c;
i C = C*der(V_c);
R2*i_R2 = V_b;
i_V - i_L = 0;
i L - i Rl - i R2 0;
i Rl - i C = 0;

end RLC2;

Example 3.1. Another RLC circuit.

3.3.2 Component based approach
With a component based approach, we create a single model for each of the

components we require (i.e .. Vol tageSource, Resistor, Capacitor
and Inductor). Once these models exist, we can connect instances of them
together in a vatiety combinations.

The key to modeling using a component based approach is to think about the
free body diagram for a component. A free body diagram (borrowing a term
from mechanical dynamics) is a diagram which describes all state information
associated with a component and identifies all possible external influences. For
example, consider the resistor shown in Figure 3.2. We can see that the resistor
has two voltages associated with it, one at each connection point. In addition,
there are currents flowing through each of these connection points.

Figure 3.2. A "free body diagram" of a Resistor.

walter.ponge@terra.com.br

42 INTRODUCTION TO PHYSICAL MODELING WITH MODELICA

3.3.2.1 ElectricalPin

Before we can begin writing models for the electrical components, we must
first identify the appropriate connector for these components. Let us define
the connector for our electrical system as:

connector ElectricalPin
Modelica.Slunits.Voltage v;
flow Modelica.Slunits.Current i;

end ElectricalPin;

This connector identifies the two quantities associated with a single connection
point l in the free body diagram shown in Figure 3.2. For the ElectricalPin
connector, v represents the voltage at that connection point and i represents
the current flowing into the resistor.

An important thing to note about this connector is the flow qualifier in front
of the current, i. The flow qualifier identifies quantities that must sum to
zero, at a connection point. Identifying the appropriate flow variables allows
a simulator to implicitly generate the conservation equations like those for
Kirchhoff's current law shown in Equations (2.15)-(2.17). This is the first step
in making system models easier to build and less error prone. Typically, the
flow qualifier is applied to time derivatives of conserved quantities (i.e., the
current, i, is the time derivative of charge, which is a conserved quantity).

Now that we have defined the connector type, we can move on to the
component models.

3.3.2.2 Resistor

Ohm's law describes the behavior of a resistor, i.e.,

v=iR (3.1)

Example 3.2 shows how a Modelica model could be written for the re­
sistor shown in Figure 3.2. The"." in quantities like p. v is a way of
accessing the internal elements of a component. Since p is an instance of an
ElectricalPin it contains a variable for voltage called v. In this way, the
quantity p . v represents the voltage associated with pin p.

It is important when developing component models to use a consistent sign
convention for the flow quantities. The normal sign convention for Mod­
elica components is defined such that positive flow is into the component.
Therefore inside the Resistor model, the value of p. i refers to the current
flowing into the resistor from pin p and the value of n . i refers to the current

I The black circles in Figure 3.2 are the connection points for the resistor.

walter.ponge@terra.com.br

Building and Connecting Components 43

model Resistor "An electrical resistor"
import Modelica.Slunits;

parameter SIunits .Resistance R=300 "Resistance";
ElectricalPin p, n; II Naming the connection points

equation
R*p.i = p.v - n.v;
p.i + n.i = O·

end Resistor;

Example 3.2. A model for an electrical resistor.

flowing into the resistor from pin n. From Example 3.2 we can see that a
positive value for p . i results when p . v is greater than n. v. This is consistent
with the normal sign convention. Likewise, a positive value for n . i results
when n . v is greater than p . v.

In Example 3.2, the current p. i is used to represent the current in Ohm's
law. This choice between using p . i and n . i is arbitrary. However, if n . i
had been used in the equation, it would need to be written as:

R*n.i = n.v - p.v;

in order to satisfy the sign convention for flow variables (i.e., a positive value
represents flow into the component). Finally, note that a default value of 300n
is given for the resistance of the resistor.

3.3.2.3 Capacitor

The constitutive equation for the behavior of an ideal capacitor is:

c dv = i
dt

(3.2)

Once we have written the model for the Resistor, it is easy to imagine
how a model for a capacitor would be written. Example 3.3 shows just such a
model. Note that we must continue to use the same sign convention. Looking
at the model in Example 3.3, one might wonder if it would be possible to write
the equation for p. i as follows:

p.i = C*der(p.v-n.v);

As we pointed out in Section 2.5.5.1, this is not legal because the der operator
cannot be applied to an expression. In the case of the Capacitor model, we
handle this by introducing the v variable which represents the voltage difference
across the capacitor. The default capacitance for this capacitor model is 10-6 F.

walter.ponge@terra.com.br

44 INTRODUCTION TO PHYSICAL MODELING WITH MODELICA

model Capacitor "An electrical capacitor"
import Modelica.SIunits;

parameter SIunits. Capacitance C=le-6 "Capacitance";
ElectricalPin p, n;
SIunits.Voltage V;

equation
V = p.v-n.v;
p.i = C*der(v);
p.i + n.i = 0;

end Capacitor;

Example 3.3. A model for an electrical capacitor.

3.3.2.4 Inductor

The constitutive equation for an inductor is:

v = L di
dt

model Inductor "An electrical inductor"
import Modelica.SIunits;

parameter SIunits. Inductance L=le-3 "Inductance";
ElectricalPin p, n;

equation
L*der(p.i) = p.v-n.v;
p.i + n.i = o·

end Inductor;

Example 3.4. A model for an electrical inductor.

(3.3)

Example 3.4 shows a Modelica model for an inductor. Again, we take care
to use the correct sign convention. Can you see the similarity to the Res i s tor
and Capaci tor model? We will take advantage of the similarities in later
examples. The default inductance value is 10-3 H.

3.3.2.5 Step voltage source

We now need a model for the voltage source shown in Figure 3.1. Example
3.5 shows how such a model could be written. The Vol tageSource model
consists of two algebraic equations. The first dictates what the voltage drop is
across the Vol tageSource from connection point p to n The other equation
dictates that the current coming in one side of the component must exactly

walter.ponge@terra.com.br

Building and Connecting Components 45

model VoltageSource "A voltage source"
import Modelica.Slunits;

parameter SIunits.Voltage vl=O, v2=1;
parameter SIunits.Time jump_time=l.O;

ElectricalPin p, n;
equation

p.v-n.v = if time>=jump_time then v2 else vl;
p.i + n.i = 0;

end VoltageSource;

Example 3.5. A model for a step voltage.

balance the current going out the other side. Unlike our previous examples,
the Vol tageSource model does not contain an explicit equation for the
current flowing through the device as a function of the voltage drop across it.
Instead, an explicit equation is provided for the voltage across the device and
the simulator will be responsible for determining what amount of current is
necessary to satisfy the voltage equations.

Note that this is an idealized voltage source model and the discontinuous
voltage drop might cause trouble in some circuits. For example, if this voltage
source were connected in parallel to a capacitor the instantaneous jump in
voltage (due to the step) should trigger an infinite current spike through the
capacitor. For more realistic systems you might need to create a less idealized
voltage source.

By default, the voltage source has an initial voltage drop of zero Volts and
jumps to a voltage drop of 1 Volt after 1 second.

3.3.2.6 Ground

model Ground "Ground"
ElectricalPin ground;

equation
ground. v = 0;

end Ground;

Example 3.6. A model for electrical ground.

The last component model we require to simulate the circuit shown in Figure
3.1 is Ground. The Ground model is different from all the other electrical
models presented so far because it only has a single ElectricalPin con­
nector. In addition, there are no parameters associated with a Ground model.

walter.ponge@terra.com.br

46 INTRODUCTION TO PHYSICAL MODEUNG WITH MODEUCA

The only equation required for the Ground model is to set the voltage at the
connection point to zero. The Ground <;:omponent model can be seen in Exam­
ple 3.6. The Ground and Vol tageSource are quite similar. The difference
is that the Ground model constrains the absolute voltage at a connection point
whereas the Vol tageSource model constrains the relative voltage between
two connection points. Both models will require the solver to implicitly solve
for the current through the device.

3.3.2.7 Circuit model

model RLC3 "Yet another RLC circuit"
Resistor Rl(R=lS);
Resistor R2(R=SOOO);
Capacitor C(C=lOOe-6);
Inductor L(L=lOOe-3);
VoltageSource vs;
Ground g;

equation
connect (vs.n,g.ground) ;
connect (vs.p,L.p);
connect (L. n, RI. p) ;
connect (L.n,R2.p) ;
connect (Rl.n,C.p) ;
connect (C.n,g.ground) ;
connect (R2.n,g.ground) ;

end RLC3;

Example 3.7. Another model for our RLC circuit in Figure 3.1.

Now that we have written our component models, we can bring them all
together to build a circuit like the one shown in Figure 3.1. Example 3.7 shows
what the Modelica code for our circuit model looks like. Note in Example
3.7 that resistors Rl and R2 have different values for their Resistance
parameter. We can see this because the declarations of these resistors contain a
modification (i.e .. the assignments contained within parentheses) to change the
value of the R parameter of each component. Because the declaration of the
voltage source component, VS, does not specify values for its parameters (i.e.,
there are no modifications), the default values defined inside the component
models will be used.

In order to fully understand Example 3.7, some explanation must be provided
for the connect command. Because the details of the connect command are
covered in Section 3.6.1, we only present a cursory explanation here.

The connect command generates equations based on the contents of the
connectors being connected. Equations are generated by considering the com-

walter.ponge@terra.com.br

Building and Connecting Components 47

ponents of each connector with matching names. Normally, the connect
command generates an equation which sets the matching components equal to
each other. However, if a component has the flOlJ qualifier (i.e., it is a through
variable), then an equation is generated which sums the matching components
to zero. So for our ElectricalPin connector definition, the voltage, v, is
set equal to all other voltages at the connection point and the sum of all current
contributions at the connection point is set equal to zero.

Using these rules, we find that the connect statements in Example 3.7 would
generate the following equations:

vS.n.v g.ground.v
Equality Vs.p.v L.p.v
equations L.n.v Rl.p.v
generated for L.n.v R2.p.v (3.4)

across Rl.n.v C.p.v
variables. C.n.v g.ground.v

R2.n.v g.ground.v

Conservation 0 vs.p.i + L.p.i
equations 0 L.n.i + Rl.p.i + R2.p.i
generated 0 Rl.n.i + C.p:i

(3.5)

for the flow 0 vs.n.i + R2.n.i + C.n.i + g.ground.i
variables.

The order of the arguments to the connect command is not important. As
a result, the statement:

connect (a, b) ;

is equivalent to:

connect (b, a) ;

3.3.3 Standard electrical components
We went to a great deal of trouble to create definitions for the connectors and

electrical components (e.g., Resistor, Capacitor, etc.) in this section.
Hopefully this was instructive in showing how to build up such components.
However, it turns out that all of this has already been done for us. This is
because the MSL has a library of electrical components like the components
we created in this section (and many more).

To demonstrate the usefulness of the MSL, we will reimplement Example
3.7 using components from the MSL. As Example 3.8 shows, everything we
need is available within the MSL. The Modelica language features the ability

walter.ponge@terra.com.br

48 INTRODUCTION TO PHYSICAL MODELING WITH MODELICA

to include graphical information about components (for more details about
graphical information, see Section 9.2). Because the MSL provides such
graphical information about each component, schematics like the one shown in
Figure 3.3 can be easily created directly from the Modelica source code.2

model RLC4 "An RLC circuit using standard components"
import Modelica.Electrical.Analog;

Analog.Basic.Resistor Rl(R=15);
Analog.Basic.Resistor R2(R=5000);
Analog.Basic.Capacitor C(C=lOOe-6);
Analog.Basic.lnductor L(L=lOOe-3);
Analog.Sources.StepVoltage vs(startTime=l);
Analog.Basic.Ground g;

equation
connect (vs.n,g.p) ;
connect (vs.p,L.p) ;
connect (L.n,Rl.p);
connect (L.n,R2 .p);
connect(Rl.n,C.p) ;
connect (C.n,g.p);
connect (R2.n,g.p) ;

end RLC4;

Example 3.8. RLC circuit using MSL.

L R1
uuuu.JVYYU'G- uuuu_uuuuuuuuu_{ Jo

L=100e-3 • R=15
:IJ

[J~ II
(J1
0
0
0

[j]

0
"
0
0
CD
0,

I//-'~'\

~
~

i

l±J

~ . ~~~-.----------------------~

vs=1

9

()

Figure 3.3. Schematic for RLC4 model in Example 3.8.

2The ability to create slIch schematics requires a tool, slIch as Dymola. which is capable of parsing and
rendering the graphical information contained in the models.

walter.ponge@terra.com.br

Building and Connecting Components 49

Note how little work was required to build the RLC circuit this time because
we did not need to write any component models. The MSL contains a large
number of predefined electrical components.

3.4 DEFINING A BLOCK

Gain Block

Gain Block

Plant Model 1---------
Summation

1 't 1
)---..... ~'J'*'B+'d

1 ----- ----

Integrator

Figure 3.4. PI controller with plant model.

Recall our discussion of the block diagram approach described in Section
1.3.1. Let us consider how such a system could be constructed in Modelica.
The block diagram we are interested in modeling is shown in Figure 3.4. This
system represents the control of a rotational shaft (the plant) by a PI controller.
The PI controller uses a speed sensor to determine the angular velocity of the
system and an electric motor as an actuator. The signal We represents the desired
angular velocity which, for this example, happens to be a sine wave. The signal
Wm represents the speed sensor reading from the shaft. The combination of the
gain blocks and the integrator yields a torque signal, r which is applied to the
plant model. The response of the plant model, given by a transfer function,
then provides the feedback signal Wm .

3.4.1 Equation based approach
If we create a model of the control system shown in Figure 3.4 by simply

listing all the equations, the resulting Modelica model would look something
like Example 3.9. With this approach, we will find ourselves rewriting equations
over and over again. We can avoid this problem by using a component based
approach. '

3.4.2 Component based approach
Once again, our goal is to create reusable components. This time we will

develop models which can be used to build the system shown in Figure 3.4

walter.ponge@terra.com.br

50 INTRODUCTION TO PHYSICAL MODELING WITH MODELICA

model ControlSysteml "A PI Controller with Plant Model"
import Modelica.SIunits;

parameter Real Kp=O.4, Ti=1.0;
parameter SIunits.AngularVelocity wO=1.0;
parameter SIunits.AngularVelocity A=O.2;
parameter SIunits.Frequency F=O.3;
parameter SIunits.MomentOfInertia J=O.8;
parameter SIunits.DampingCoefficient d=O.l;

SIunits.AngularVelocity w_c, w_m, delta_w;
SIunits.Torque tau, i, p;

equation
w_c = A*sin(2.0*Modelica.Constants.pi*F*time)+wO;
delta_w = w_c-w_m;
der(i) = Kp*delta_w/Ti;
p = Kp*delta_w;
tau = i+p;
J*der(w_m)+d*w_m tau;

end ControlSysteml;

Example 3.9. A simple control system.

as well as any number of other possible configurations. For this example, we
must introduce the concept of a block. A block is a special kind of model
where each connector (or its contents) is explicitly marked as either an input
or output. It is expected that each component will provide equations for its
outputs written in terms of its inputs.

3.4.2.1 Connector definitions

[oonneotor Signal
Real val;

end Signal;

Example 3.10. Connector used for a scalar signal.

In order to create our component models, we must know what information
is available from the connectors. In this case, the information shared between
these models is a single floating point value. For this reason, we define our
connector as shown in Example 3.10.

walter.ponge@terra.com.br

Building and Connecting Components 51

3.4.2.2 Creating a sinusoidal signal generator

The natural place to start is with the desired angular velocity signal, We =
A sin(27rFt). The model for this driving signal is shown in Example 3.11.

block SinusoidalSignal
output Signal out_sig;

parameter Real A=l.O "Amplitude";
parameter Real offset=l.O "Offset";
parameter Modelica. SIunits. Frequency F=l.O "Frequency";

equation
out_sig.val = offset+

A*sin(2.0*Modelica.Constants.pi*F*time) ;
end SinusoidalSignal;

Example 3.11. A sinusoidal signal generator.

3.4.2.3 Summation block

The model for a Summation block is shown in Example 3.12. Note that this
model includes two scale factors which allow the inputs to be scaled indepen­
dently (Le., output = scalel * inputl + scale2 * input2) which increases the
reusability of the model. For example, we can use this to turn our Summa t ion
block into a difference block by setting one of the scale factors to -1.

block Summation
input Signal in_sigl, in sig2;
output Signal out_sig;
parameter Real scalel=l.O "Scale factor l";
parameter Real scale2=l.O "Scale factor 2";

equation
out_sig.val = scalel*in_sigl.val+scale2*in_sig2.val;

end Summation;

Example 3.12. A block which sums two signals.

3.4.2.4 Integrator block

Our Integrator model can be seen in Example 3.13. There is no built-in
integration operator. Instead, integrals are represented in terms of derivatives
using the der operator. In this case, the integration is expressed as:

d .
dt output = mput (3.6)

walter.ponge@terra.com.br

52 INTRODUCTION TO PHYSICAL MODEliNG WITH MODEliCA

block Integrator
parameter Real init_val=O;
input Signal in_sig;
output Signal out_sig(val(start=init_val));

equation
der(out_sig.val) = in_sig.val;

end Integrator;

Example 3.13. An integrator block.

The initial output value for the integrator is given by the ini Lval parameter
which is used as the start value (from Section 2.5.6.1) for the output signal.

3.4.2.5 Transfer function

Example 3.14 shows a representation of a first order transfer function model.
The transfer function is characterized by the following mathematical equation:

1
y(s) = u(s)

CIS + C2

where u (s) represents the input signal and y (s) represents the output signal.
Note that the equation contains two characteristic parameters, cl and c2.

block TransferFunction
input Signal in_sig;
output Signal out_sig;
parameter Real c1=O. 8;
parameter Real c2=O.1;

equation
c1*der(out_sig.val)+c2*out_sig.val

end TransferFunction;

Example 3.14. A first order transfer function.

3.4.2.6 Gain block

The behavior of a gain block is represented by the following equation:

output = k * input (3.7)

The Gain block model appears in Example 3.15. Can you spot the similarity
the Gain block has with the models in Examples 3.13 and 3.14? It is a good
idea to get in the habit of spotting such similarities for reasons we will explain
in the next chapter.

walter.ponge@terra.com.br

block Gain
input Signal in_sig;
output Signal out_sig;

Building and Connecting Components 53

parameter Real K=l.O "Gain factor";
equation

out_sig.val
end Gain;

K*in_sig.val;

Example 3.15. A multiplier block.

3.4.2.7 Complete control system

At this point, we are able to put all these models together into a complete
system. Example 3.16 shows the model, written in terms of component models,
for the system shown in Figure 3.4. While Example 3.16 looks more compli­
cated than Example 3.9, component based models are easier to build because
they can be constmcted graphically.

model ControlSystem2 "A PI Controller with Plant Model"
SinusoidalSignal sinsig(A=O.2,F=O.3,offset=1.O);
Summation diff(scale2=-1.O) , sum;
Gain KP(K=O.4), KI(K=l.O);
Integrator integrator;
TransferFunction motor(cl=O.8,c2=O.1);

equation
connect (sinsig.out_sig,diff.in_sigl) ;
connect(diff.out sig,KP.in_sig);
connect (KP.out_sig,KI.in_sig) ;
connect (KP.out_sig, sum.in_sigl) ;
connect (KI.out_sig,integrator.in_sig) ;
connect(integrator.out sig,sum.in_sig2);
connect (sum.out_sig,motor.in_sig) ;
connect (motor.out_sig,diff.in_sig2) ;

end ControlSystem2;

Example 3.16. A component based control system model for the system shown in Figure 3.4.

3.4.3 Standard block diagram components
Once again, we have gone to a great deal of trouble to implement a collection

of models that already exist in the MSL. Remember, the purpose of this chapter
is to show you how to write models when they are not available.

walter.ponge@terra.com.br

54 INTRODUCTION TO PHYSICAL MODELING WITH MODELICA

3.4.3.1 Connectors

Our Signal connector is actually defined using two different connector
definitions in Modelica. Blocks. This is because there is one connector
for input and another for output (each with the ability to handle an array of
signals). The connectors are defined as follows:

connector InPort "Connector with Real Inputs"
parameter Integer n=l "Signal Array Dimension";
input Real signal [nl "Real Input Signals";

end InPort;

connector OutPort "Connector with Real Outputs"
parameter Integer n=l "Signal Array Dimension";
output Real signal [nl "Real Output Signals";

end OutPort;

These connector definitions can be found in the Modelica. Blocks. -
In t e rf a ce s package which contains all the connectors for the Mode 1 i ca. -
Blocks package. Instead of using:

input Signal in_sig;
output Signal out_sig;

we can now use the following MSL components, respectively:

Modelica.Blocks.Interfaces.InPort in_sig;
Modelica.Blocks.Interfaces.OutPort out sig;

Using the MSL components seems like it would require a great deal more
typing. However, a graphical tool would typically be used to construct such
systems and so typing would be replaced by simpler "drag and drop" operations.
Furthermore, we have already seen examples where the import keyword has
been used to minimize the amount of typing necessary.

There are some important differences between the connectors defined in
the MSL and the one we defined earlier in Example 3.lO. The first is that
the input qualifier is included inside the definition of the InPort connector
rather than as a qualifier on each Signal connector. The presence of the
input qualifier dictates that the InPort connector can only be connected to
a "mating" connector.3 As a result of having the input qualifier inside, we
eliminate the possibility of accidentally forgetting to include the qualifier while
building models.

The other difference is that the signal carried by the MSL connectors is
an array whereas our val was a scalar. By default, the size of the signal
array is 1 (indicated by the n parameter). The fact that signal is an array

3 Mating connectors are ones with complementary input and output qualifiers

walter.ponge@terra.com.br

Building and Connecting Components 55

is useful because it allows several signals to be "multiplexed" onto the same
connection. Think of it like an electronic cable with multiple wires inside it
(e.g., a ribbon cable). More information on using arrays in Modelica can be
found in Chapter 6.

3.4.3.2 Other necessary blocks

Now that we have covered the connectors, let us tum our attention to the other
blocks required to build our controller. The commanded rotational velocity
was previously represented using the SinusoidalSignal block. The anal­
ogous block in the MSL is Modelica. Blocks. Sources. Sine which
has parameters for amplitude, frequency and signal offset. The Modelica. -
Blocks. Sources package contains a number of other useful signal gener­
ators as welL

The Gain block can be replaced by the Modelica. Blocks. Math. -
Gain model from the MSL. The Modelica. Blocks. Math package con­
tains the blocks which are used for the algebraic manipulation of signals. In fact,
there are two models which could serve as replacements for Summation. The
first, Modelica. Blocks. Math. Feedback, is used in feedback loops
(like the one we have in our example). The other model, Modelica. -
Blocks. Math .Addis more like our original Summation model because it
allows arbitrary gains to be associated with each of the input signals.

Finally, we require blocks which express relationships involving the time
derivatives of signals. These can be found in the Modelica. Blocks. -
Continuous package. One useful block from this package is Modelica. -
Blocks. Continuous. Integrator which can serve as a replacement
for our previous model (also called Integrator4). Another useful block
from the same nested package is the Modelica. Blocks. Continuous. -
TransferFunction block which is expressed as:

b(s)
y(s) = a(s) u(s) (3.8)

3.4.3.3 Complete diagram

Now, we have all the pieces we need to build our controller system using
components defined in Modelica. Blocks. The result is shown in Figure
3.5. The complete Modelica code for the diagram shown in Figure 3.5 is shown
in Example 3.17.

4There is no potential name conflict here because our previous Integrator was defined globally (i.e.,
not part of a specific package) whereas the Integrator model we have just introduced exists within
the Modelica. Blocks. Continuous package. The reason there is no name conflict is that the
Integrator model in Modelica. Blocks. Continuous must be referenced by its fully qualified
name (i.e., Modelica. Blocks. Continuous. Integrator).

walter.ponge@terra.com.br

56 INTRODUCTION TO PHYSICAL MODELING WITH MODELICA

sinsig PGain

PlantModei

+1
'-----'

~(S)
a(s)

IntegratorBlock

Figure 3.5. Control system model using components from Modelica. Blocks.

model ControlSystem3
parameter Real Kp=. 4 ;
parameter Real Ti=l;
import Blocks=Modelica.Blocks;
Blocks.Math.Feedback Difference;
Blocks.Math.Gain PGain(k={Kp});
Blocks.Math.Gain TiGain(k={l/Ti});
Blocks.Math.Add Summation;
Blocks.Continuous.lntegrator IntegratorBlock;
Blocks.Sources.Sine sinsig(

amplitude={.2}, freqHz={.3}, offset={l});
Blocks.Continuous.TransferFunction PlantModel(

a= { . 8, . l} , b= { 1 }) ;
equation

connect (sinsig.outPort, Difference.inPortl);
connect (Difference.outPort, PGain.inPort);
connect (PGain. out Port , Summation.inPortl);
connect (PGain.outPort, TiGain.inPort);
connect (TiGain.outPort, IntegratorBlock.inPort);
connect (IntegratorBlock.outPort, Summatlon.inPort2);
connect (Summation. outPort , PlantModel.inPort);
connect (PlantModel.outPort, Difference.inPort2);

end ControlSystem3;

Example 3.17. Controller and mechanism.

3.5 EXISTING ROTATIONAL COMPONENTS
Let us revisit our simple pendulum model in Section 2.2 and use it to

introduce the Modelica. Mechanics. Rotational package in the MSL.

walter.ponge@terra.com.br

Building and Connecting Components 57

3.5.1 Connectors
The connector used in the Modelica. Mechanics. Rotationalli­

brary is called a "flange". There are actually two different flange connectors
in the MSL. These two connectors are called Flange_a and Flange-.b.
With the exception of their graphical representations, these two connectors are
identical. The Modelica definition for Flange_a is shown in Example 3.18.

connector Flange _a "lD Rotat ional Connector"
Modelica.Slunits.Angle phi

"Absolute rotation angle of flange";
flow Modelica.Slunits.Torque tau

"Torque applied to the flange";
end Flange_a;

Example 3.18. One-dimensional rotational connector.

3.5.2 Special models
Our original model of a pendulum was described by a combination of gravity

and inertia. We will represent these behaviors by the model Rota t ional­
Pendulum shown in Example 3.19. The FrictionlessJoint model,
shown in Example 3.20, will be used to connect the pendulum to a frame of
reference.

3.5.2.1 A rotational pendulum model

Recall from Example 2.2 that the torque on the pendulum due to gravity and
inertia is:

T Tg + Ti

mgL sin(O) + mL2jj (3.9)

Example 3.19 shows the Modelica code for our RotationalPendulum
model. We use the connector definition from Example 3.18 along with the
behavioral equations shown in Equation (3.9).

Unlike our previous pendulum example, for this model we need to consider
the "free body diagram" for our pendulum. In other words, we need to consider
the possibility that some external torque (e.g., due to friction or elasticity) might
also contribute to the motion of the pendulum. So, we must assume that the
sum of the torques about the pivot point is equal to Tg + Ti + Text where Text is
the sum of all external torques.

There are several differences between the RotationalPendulummodel
and the simpler model we created in Chapter 2. The first difference is that the

walter.ponge@terra.com.br

58 INTRODUCTION TO PHYSICAL MODELING WITH MODELICA

model RotationalPendulum
import Modelica.Slunits;

Modelica.Mechanics.Rotational.lnterfaces.Flange_a p;
parameter SIunits.Length L=2.0;
parameter SIunits.Mass m=l.O;

protected
SIunits.AngularVelocity omega;
SIunits.AngularAcceleration alpha;
parameter SIunits.MomentOflnertia J=m*L~2;
constant Real g=Modelica.Constants.g_n;

equation
omega = der(p.phi);
alpha = der(omega);
m*g*L*Modelica.Math.sin(p.phi)+J*alpha p.tau;

end RotationalPendulum;

Example 3.19. A rotational pendulum model.

Flange_a connector defines the angular position of the pendulum as phi
but previously we had used theta to represent the same thing.

The next difference is that in the previous example the pendulum mass, m,
was not significant because we could cancel it out of each term in the system
of equations. That was possible because we had the complete set of behavioral
equations. This time though, we cannot be sure what other terms may be
involved (via the Text contribution) so we cannot cancel the mass out.

Finally, recall that the Modelica convention is that the flOTJ quantities on
a connector are assumed to be positive when they flow into the component
they belong to. This means that the external torque p. tau would increase the
momentum. So in the absence of gravity, a p. tau greater than zero should
imply an alpha greater than zero. We can use this case to verify that we have
used the correct sign for each term.

3.5.3 A frictionless pin model
Previously, we had not considered what relationship our pendulum had with

its surroundings. The implicit assumption was that the pendulum was connected
to some fixed point by a frictionless bearing. Example 3.20 shows a model
which captures the behavior of such a joint. In essence, the joint transmits
no torque regardless of the relative angular velocity or position between the
pendulum and its surroundings.

walter.ponge@terra.com.br

Building and Connecting Components 59

model FrictionlessJoint
Modelica.Mechanics.Rotational.lnterfaces.Flange_a a;
Modelica.Mechanics.Rotational.lnterfaces.Flange_b b;

equation
a. tau = 0;
b.tau = 0;

end FrictionlessJoint;

Example 3.20. A frictionless bearing.

fixed=O

Figure 3.6. A single pendulum system.

3.5.4 A simple rotational system
The Modelica code in Example 3.21 recreates our example from Chapter 2.

In addition, Figure 3.6 shows the schematic for this simple system.

model PendulumSysteml "Simple Pendulum"
RotationalPendulum pend;
FrictionlessJoint joint;
Modelica.Mechanics.Rotational.Fixed fixed;

equation
connect (pend.p,joint.a) ;
connect (joint.b,fixed.flange_b) ;

end PendulumSysteml;

Example 3.21. A simple pendulum system.

The Modelica. Mechanics. Rotational. Fixed model is analo­
gous to the Ground model in Example 3.6 (i.e., it provides a fixed reference
for other components).

walter.ponge@terra.com.br

60 INTRODUCTION TO PHYSICAL MODELING WITH MODELICA

3.5.5 Building more complex systems

p1
s1

p2
s2

c=1 c=2

d1 d2

d=.1 d=.2

fixed=O

Figure 3.7. A system with multiple pendulums.

One of the great things about having libraries of components is the vast
number of combinations that are possible. So far, we have only been concerned
with a single pendulum. but what if we wanted to construct a system with
mUltiple springs. dampers and pendulums? Figure 3.7 shows just such a
system. The spring, damper and fixed point models all come from the MSL.
The code for this system is shown in Example 3.22.

model PendulumSystem2 "Simple Pendulum"
RotationalPendulum pl(m=l,p(phi(start=l,fixed=true)));
Modelica.Mechanics.Rotational.Spring sl(c=l);
Modelica.Mechanics.Rotational.Damper dl(d=.l);
RotationalPendulum p2(L=7,m=.7);
Modelica.Mechanics.Rotational.Spring s2(c=2);
Modelica.Mechanics.Rotational.Damper d2(d=.2);
Modelica.Mechanics.Rotational.Fixed fixed;

equation
connect (pl.p,sl.flange_a) ;
connect (pl.p,dl.flange_a) ;
connect (sl.flange_b,p2.p) ;
connect (dl.flange_b,p2.p) ;
connect(p2.p,s2.flange_a) ;
connect(p2.p,d2.flange_a) ;
connect (s2.flange_b,fixed.flange_b) ;
connect(d2.flange_b,fixed.flange_b) ;

end PendulumSystem2;

Example 3.22. A system with multiple pendulums.

Note that the modifications to pendulum pI in Example 3.22 are nested.
In other words, modifications to pI may include modifications to components

walter.ponge@terra.com.br

Building and Connecting Components 61

inside pI (e.g., p). Such recursive modifications allow modifications to be
applied to components within a hierarchy.

3.6 LANGUAGE FUNDAMENTALS
This chapter has introduced many new ideas. Let us explore all of these new

constructs in a little more depth.

3.6.1 Connections
A connector defines information which is to be shared between compo­

nents. There is no limit on the number of variables which can be declared
inside a connector. It is even possible to create a connector which contains
arrays of arbitrary but fixed size like the InPort and Out Port connectors in
Modelica.Blocks.

The connect keyword is used within an equation section to "link" con­
nector instances. The connect command always appears in the equation
section because each connection results in a set of equations being generated.
Each connector must have exactly the same number of components with exactly
the same names. Furthermore, components with the same name must be type
compatible (see Section 2.5.2.2) and flow quantities can only be connected to
other flow quantities.

A connect statement includes two arguments. In other words, all connect
statements should be of the general form:

connect (a, b) ;

where a and b are connectors (subject to the constraints mentioned earlier).
The order of the connectors is not significant so there is no difference between
the previous connect statement and:

connect (b, a) ;

Normally, the effect of using connect is that equations are generated which
equate each quantity in one connector with its counterpart (with the same name)
in the other connector. The exception is when quantities have the flow qualifier
applied to them. Since flow quantities are generally the time derivatives of
conserved quantities, connecting them together generates an equation which
sums all the flow quantities to zero (e.g., Kirchhoff's current law). Quite often
a connection involves multiple components (e.g., connection point b in Figure
3.1). In these cases, the sum of the flow quantities from all connections is set
equal to zero. Finally, if a connector is never connected to anything, then any
flow quantities in that connector are implicitly set to zero.s

5Intuitively. this makes sense since nothing can flow through a unconnected connector since it would have
no place to go.

walter.ponge@terra.com.br

62 INTRODUCTION TO PHYSICAL MODEUNG WITH MODEUCA

As mentioned previously, connectors can have parameters associated with
them.6 Such parameters are usually used to indicate the size of one or more array
quantities within the connector. Special consideration is given for parameters
inside connectors. If a parameter appears inside a connector, the connect
statement verifies that the corresponding parameters in the two connectors have
the same value but no equations are generated. In other words, the following
code would generate an error:

connector ArrayCon
parameter Integer n=2;
Real x[nl;

end ArrayCon;

model Mismatch
ArrayCon a(n=3);
ArrayCon b(n=4);

equation
connect (a,b) ; II Error, a.n not equal to b.n

end Mismatch;

In summary, the connect keyword allows us to quickly, safely (i.e., without
the possibility of human error) and automatically generate equations appropri­
ate for a given connector.

3.6.2 Qualifiers
The input qualifier identifies quantities which are intended to be inputs to a

model. The input qualifier is useful for two different reasons. First, it explains
the intent to anybody viewing the source of the model (Le., it explicitly states
that the input quantity should originate from an output somewhere else in the
system). More importantly, connecting two inputs together, at the same level of
the hierarchy, is not allowed. In this way, the input qualifier essentially forces
the quantity to be computed by an external model. Note that Figure 3.4 seems
to violate this notion that two inputs cannot be connected together because it
appears that the inputs of the two gain blocks are connected. However, note
that the implementations in Examples 3.16 and 3.17 show that in fact each of
the gain block inputs is connected to the output of another block and not to
another input.

There is one additional wrinkle in the semantics of the input qualifier. It is
possible to connect two input connectors together if they are not in the same
level of the hierarchy. This is necessary in order to allow input signals to be
propagated into hierarchies (see Section 4.3 for an example of such usage).

6Recall the discussion in Section 3.4.3 ofthe InPort connector in the Modelica. Blocks package.

walter.ponge@terra.com.br

Building and Connecting Components 63

The output qualifier is the counterpart to the input qualifier. The output
qualifier indicates that a given quantity is computed by the model in which it
is contained. Again, the purpose of this qualifier is to express the intent of the
model developer and to prevent certain kinds of connections (i.e., it is not legal
to connect together two quantities which both have the output qualifier).

The flo"lo1 qualifier is useful in systems where conservation principles are
applied (e.g., electrical or mechanical systems). Any quantity identified as
a flo"lo1 is summed at each connection point. The flo"lo1 qualifier is generally
applied to components with a physical type (e.g., Current, Power) that is the
time derivative of conserved quantities (e.g., charge, energy). By convention, a
positive value for a flow in a connector represents a flow into the model which
contains the connector. Note that we follow this convention in all examples.

As a general rule, qualifiers applied to a connector are effectively propagated
into every member of the connector. When developing a connector you should
consider whether you want the qualifier to be applied by the definition:

connector ConnectorA
input Real x;
input Real y;

end ConnectorA;

model ModelB
ConnectorA a;

end ModelB;

or at the time of declaration:

connector ConnectorA
Real x;
Real y;

end ConnectorA;

model ModelB
input ConnectorA a;

end ModelB;

In both cases, the components a. x and a . yare considered inputs. The
former case is useful when a connector is meant to be used as either an input
or output connector. The latter case is useful to force the connector to have
a specified directionality, either input or output.7 Finally, another reason
for placing the qualifiers inside the connector would be to create "mating"
connectors with complementary input and output qualifiers, e.g.,

7Note that the connectors for the Modelica. Blocks package (discussed briefly in Section 3.4.3) place
the input and output qualifiers inside the connector definition to force them to play either an input or
output role.

walter.ponge@terra.com.br

64 INTRODUCTION TO PHYSICAL MODELING WITH MODELICA

3.6.3

connector Plug
input Real x;
output Real y;

end Plug;

connector Socket
output Real x;
input Real y;

end Socket;

Modifications
When a model is written, default values for parameters are often provided

by the model itself. As we have shown in Example 3.7, we can override
these internal defaults when the component is declared. Changes to attributes,
like the start, min and unit attributes discussed in Section 2.5.6, are also
considered modifications.

Modifications can be applied to components throughout a component hier­
archy. For example, consider the following example:

model Circuit
Resistor Rl, R2
Capacitor Cl, C2, C3(C=le-6);
ElectricalPin p, v;

equation

end Circuit;

model Appliance
Circuit c(Rl(R=12) ;C2(C=le-3));

end Appliance;

In this case, from the Appl ianee level, we have applied a modification to a
resistor and capacitor inside the Cireui t component. As can be seen by this
example, modifications on nested components are made within nested pairs of
parentheses.

If we had attempted to modify capacitor C3 from the Appl ianee level,
we would have overridden the modification included in the Cireui t model.
As a general rule, modifications in a declaration always override modifications
lower down in the hierarchy. However, there are many cases not covered by
this rule. The precise rules about the precedence of modifications can be found
in the Modelica language specification included on the companion CD-ROM.

Another example of hierarchical modification can be seen in Example 3.22.
Instead of parameters, attributes of the phi variable associated with the p pin
on the RotationalPendul urn were modified.

walter.ponge@terra.com.br

Building and Connecting Components 65

3.6.4 Defining a block
As mentioned in our control system example, a block is a special case of a

model where all connectors (or the contents of the connectors) are marked as
either input or output. Designating something as a block has the potential to
simplify model processing, increase simulation speed and improve the quality
of diagnostic messages.

3.6.5 Finding and using component models
So far, when we have required physical units (e.g., Voltage), we have

included the line "import Modelica. SIuni ts;" at the start of our mod­
els. This allows us to use SIuni t s as an alias for the full library path where
the physical unit information resides. We have to include this path because
Modelica tools will not automatically search through the hierarchies of models,
types, etc. to find something they are not familiar with. Here are three things
you can do to make sure a tool can locate the definition you wish to use:

• Use the full name: You can use the full name (e.g., Modelica.­
Constants. pi or Modelica. SIuni ts. Pressure) to refer to an
entity you require within a model. Do not worry for the moment where
these models are stored (to be discussed later in Chapter 9).

• Define an alias: For example, if we wish to access the types contained in
Model ica . SIuni t s package, we can include the line:

import Modelica.Slunits;

within our models which creates the SIunits alias.

• Place models in the same directory: One way to make sure your model
definitions are found is to store them in the directory you are working in. If
you place all models in the same directory then there should be no difficulty
in finding them. While we can do this for our simple examples, there are
better ways of storing models which will be discussed later in Chapter 12.

This is a simplified version of the lookup rules. For a complete understanding
of how such lookups are done, consult Chapter 9 or the language specification
included on the companion CD-ROM.

For all of our examples, we assume that the other component models we have
written are in the same directory as the models which use them. In this way,
we can use component models like Resistor or TransferFunction
without having to provide a qualified hierarchical name (e.g., Model ica. -
SIunits. Pressure).

3.7 SUMMARY
Component based approaches have the following advantages:

walter.ponge@terra.com.br

66 INTRODUCTION TO PHYSICAL MODEUNG WITH MODEUCA

1. The constitutive equations for a component need only be written once (i.e.,
within the component model).

2. Hierarchies of components (possibly many levels deep) can be created and
such hierarchies are much easier to understand compared to a "flattened"
representation where all parameters, variables and equations are present in
a single model.

3. By using the connect keyword, we can automatically generate multiple
equations for a single connector. In addition, this is not as error prone as
writing the equations by hand.

4. Restrictions can be imposed against connections which do not make sense
(e.g., connecting two input quantities or mixing flow variables with non­
flow variables).

In summary, these are the reasons why component based approaches to model
development are superior to equation based approaches for large problems.

3.8 PROBLEMS
PROBLEM 3.1 Use the electrical components developed in this chapter as
a guide to develop analogous components in other domains. For example, a
translational system has the following equations:

F kf:j.x (3.10)

F
d

c dt (f:j.x) (3.11)

F
d2 x

(3.12)
m dt2

to represent the behavior of springs, dampers and inertias where F represents
force transmitted by an element, k is the spring stiffness, c is the damping
coefficient and m is the mass.

For a given analogous domain, what are the variables associated with the
connectors in that domain and which components in that domain correspond
to the resistor, capacitor and inductor components in the electrical domain?

PROBLEM 3.2 Develop a model for the circuit shown in Example 3.7 using
the block diagram component models from the Examples in Section 3.4. Assume
that the input to the system is the voltage at pill a in Figure 3.1 and the output
we are interested in is the voltage at pin c. You might start by writing down
all the constitutive and conservation equations and trying to formulate them
in such a way that each equation can be represented by a block in the block
diagram.

walter.ponge@terra.com.br

Building and Connecting Components 67

PROBLEM 3.3 Browse the MSL and look at the connector definitions for
different domains. Are there any common themes?

PROBLEM 3.4 Implement a non-linear rotational spring with the following
constitutive equation:

(3./3)

where T represents torque, ¢ represents angular position and the subscripts, a
and b, represent connectors. Once implemented, use the the spring in a system
that contains components from the MSL.

PROBLEM 3.5 The power output of a resistor can be found by taking the
product of the current through the resistor, i, and the voltage across the resistor,
v. Create a model of a resistor whose resistance is a function of temperature
T as follows:

where Tr is the reference temperatures, Ro is the nominal resistance at the
reference temperature, T is the temperature of the resistor and S is the (lin­
earized) sensitivity of the resistance with respect to temperature. Compute the
temperature of the resistor using the following energy balance:

where m is the mass of the resistor, Cp is the specific heat capacity of the
resistor, h is the convective heat transfer coefficient and Tamb is the ambient
temperature. Examine how this resistor peiforms in some of our RLC example
circuits with different parameter values(e.g., does the natural frequency of the
oscillations change?). Here are some sample values to try:

Ro R (the normal resistance)

Tamb 400

Tr 300

m 0.01

Cp 384

h 0.1

S 0.01

walter.ponge@terra.com.br

Chapter 4

ENABLING REUSE

4.1 CONCEPTS

Knowing how to build components is only the first step in an efficient model
development process. In order to maximize the usefulness of these components
it is necessary to understand how to make them reusable. The Modelica
Standard Library is a good example of a reusable collection of components.

Many of the features in Modelica exist to promote reuse. The object-oriented
nature of Modelica was specifically introduced to parallel the reuse capabilities
of languages like Ada and C++. While not necessary, being familiar with such
languages and the techniques used to promote reuse in those languages will
help in understanding similar features in Modelica.

There are several aspects to making models reusable in Modelica. For ex­
ample, creating a set of component models that work together requires the use
of common connector definitions in order for them to share information with
each other. In Chapter 3, we showed that connector definitions for several
domains have already been defined in the MSL. By using the MSL connector
definitions, we can create new models that are compatible with the rich collec­
tion of existing models.

Reusability is also achieved by extending existing models. As we will show
in this chapter, this technique allows common sets of equations, parameters,
algorithms, etc. to be shared between models. While this chapter introduces
functionality in the Modelica language to promote reuse, the usefulness of this
kind of reusability may only become clear after you have attempted to create
a non-trivial collection of models. As usual, we begin with several examples
and include a summary of the features which promote reuse in the last section
of this chapter.

walter.ponge@terra.com.br

70 INTRODUCTION TO PHYSICAL MODELING WITH MODELICA

An important aspect of physical system modeling is to exploit the reusability
gained by using acausal modeling formulations. In general, acausal models
(rather than block diagrams) are easier to reuse because each component model
can be formulated independently without knowledge ofthe equations or causal­
ity assumptions used in other parts of the system. This is an issue because the
causality for physical component models changes depending on the context in
which the model is used. While we do not discuss the details in this chapter,
this aspect of reusability is discussed in greater detail in Chapter 11.

One final aspect of reusability worth mentioning is that reusability is affected
by the quality of model documentation. The better the documentation, the easier
(and therefore more likely) it will be for others to reuse your models.

4.2 EXPLOITING COMMONALITY

In general, having the same code fragment appear multiple times in different
locations usually leads to problems. This is true in languages such as C++ and
FORTRAN as well as in Modelica. This redundancy is bad because it makes
maintenance difficult. For example, if a bug is found in one copy of such a
code fragment it is difficult to track down all places where that same code may
have been repeated. In Modelica, such redundancies might include repeated
equations, repeated parameter or repeated connector definitions. In this section
we will describe how to avoid such redundancy.

4.2.1 Identifying commonality

Let us revisit the models presented in Section 3.3. Looking at Examples
3.2-3.5, can you see the similarities between these models? As it turns out,
these models have many things in common. Note that the electrical models
presented use the voltage drop across them and the current flow through them
in their constitutive equations. Furthermore, they all have two pins with the
same names, p and n. In other words, there is a good deal of repetition between
those models.

In order to help avoid this repetition, the Model ica. Elect rical . -
Analog package defines (in its nested Interfaces package) a partial
model called One Port . A One Port component is one which has exactly two
electrical pins associated with it and therefore only one current path through it.
Example 4.1 shows the One Port model which represents the common subset
between the Resistor, Capacitor, Inductor and VoltageSource
models. An important thing to note about the OnePort model is that its
definition is qualified with the partial keyword which implies that this model
is not complete but merely a base on which to build other models.

walter.ponge@terra.com.br

Enabling Reuse 71

partial model OnePort "Two pinned electrical component"
Modelica.Slunits.Voltage v "Voltage from pin p to pin n";
Modelica.Slunits.Current i "Current entering at pin p";
Modelica.Electrical.Analog.lnterfaces.Pin p "Positive";
Modelica.Electrical.Analog.lnterfaces.Pin n "Negative";

equation
v p.v - n.v;
0 = p. i + n.i;
i = p.i;

end OnePort;

Example 4.1. Defining a common base model for one port electrical components.

4.2.2 Extending from a common definition
The advantage of defining a partial definition like the one shown in Ex­

ample 4.1 is that we can reuse the different pieces (e.g .. connections, types,
variables or equations) of the OnePort model when writing models for a
Resistor orVoltageSource. Example 4.2 shows how compact the def­
inition of the Resistor model becomes by using the OnePort definition.

model Resistor "An electrical resistor"
extends Modelica.Electrical.Analog.lnterfaces.OnePort;
parameter Modelica.Slunits.Resistance R=300 "Resistance";

equation
i*R = v;

end Resistor;

Example 4.2. Model for Resistor using OnePort.

The definition shown in Example 4.2 succinctly describes what a Re sis tor
is. At a glance we can easily surmise that a Resistor is something which
shares the same charactelistics as a One Port with an additional parameter R of
type Resistance and a constitutive relationship between i and v desclibed
by the equation i * R=v.

4.3 REUSABLE BUILDING BLOCKS
So far, we have shown how to create new models by extending existing ones.

In this section we describe how to create new models by combining several
existing models (e.g .. to create package definitions containing commonly used
configurations of existing models).

walter.ponge@terra.com.br

72 INTRODUCTION TO PHYSICAL MODELING WITH MODELICA

4.3.1 Building a controller model
In Section 3.4, we showed a complete system containing a controller and

plant model. In practice, we would not want to create a new PI controller
from scratch for each system that needed a PI controller. Instead, we should
build a PI controller model that we can include in any model that needs one.
Figure 4.1 shows a PI controller model built using the Modelica. Blocks
package. Example 4.3 shows the Modelica source code for the controller. Note
the similarity of Example 4.3 to Example 3.17.

Models which are built from other models can be visualized in two ways.
The first way is to look at them as schematic diagrams like the one shown in
Figure 4.1.

Summation

~lY~l------F;::>
driver

k={1}

sensor

Figure 4.1. The diagram view of PIController.

The second way is to look at our model from the "outside". This is called the
icon view and Figure 4.2 shows the PIController from this perspective.
The icon view hides the internal details of the model and presents only a "black­
box" representation. The input connectors, command and sensor, and the
output connector, driver, shown in Figure 4.1 represent the external con­
nections of the PIController model. These correspond to the connectors
visible in Figure 4.2.

Figure 4.1 shows how a component model (e.g., PIController) can
be built from other models (e.g., Summation and Gain). Think of the
subcomponent models as building blocks. Ultimately, this approach makes the
building and enhancement of complex systems easier.

Example 4.4 shows how we can use the PIController to create a system
equivalent to the one presented in Example 3.17. Example 4.4 demonstrates
how much simpler models become when we encapsulate the details of particular
components.

walter.ponge@terra.com.br

PI Controller

Kp=1

Ti=1

Enabling Reuse 73

Figure 4.2. PIController model icon.

block PIController "A PI Controller"
parameter Real Kp=l "Proportional Gain";
parameter Real Ti=l "Integral Time Constant";
import Modelica.Blocks;

Blocks.Interfaces.InPort command "Command signal";
Blocks.Interfaces.InPort sensor "Sensor signal";
Blocks.Interfaces.OutPort driver "Driver signal";
Blocks.Math.Feedback Difference;
Blocks.Math.Gain Kl(k={Kp});
Blocks.Math.Gain K2(k={1/Ti});
Blocks.Math.Add Summation;
Blocks.Continuous.Integrator IntegratorBlock;

equation
connect (command, Difference.inPortl);
connect (sensor, Difference.inPort2);
connect (Difference.outPort, Kl.inPort);
connect (Kl.outPort, Summation.inPortl);
connect (Kl.outPort, K2.inPort);
connect (K2.outPort, IntegratorBlock.inPort);
connect (IntegratorBlock.outPort, Summation.inPort2);
connect (Summation. outPort , driver);

end PIController;

Example 4.3. Source code for the PI controller model in Figure 4.1.

4.3.2 Propagating information
When building a new model using a collection of subcomponents it is nec­

essary to propagate connections and parameters down through the hierarchy of
subcomponents.

walter.ponge@terra.com.br

74 INTRODUCTION TO PHYSICAL MODELING WITH MODELICA

model PIControllerAndMotor
import Modelica.Blocks;

Blocks.Sources.Sine sinsig(
amplitude={O.2}, freqHz={O.3}, offset={l.O});

PIController pic(Kp=O.4);
Blocks.Continuous.TransferFunction motor(a={O.8,O.1});

equation
connect (sinsig.outPort,pic.command) ;
connect (pic.driver,motor.inPort) ;
connect (motor.outPort,pic.sensor) ;

end PIControllerAndMotor;

Example 4.4. A PI controller controlling a motor.

sinsig

freqHz={.3}

PI Controller

Kp=.4

Ti=1

motor

b(s)

a(s)

Figure 4.3. PIControllerAndMotor model.

4.3.2.1 Parameters

h , ,

i

The PIController shown in Example 4.3 is characterized by the two
parameters at the top of the model. These parameters are the proportional gain,
Kp, and the integral time constant, Ti. We need to propagate these parameters
to the gain block subcomponents. We do this when we declare the gain blocks.
Note how, in Example 4.3, Kp and Ti are used to set the gain parameter, k, for
subcomponents Kl and K2, respectively.

4.3.2.2 Connections

Propagating connections is quite straightforward. To establish a connection
between the external connection of a model and one of its subcomponents, the
connect command is used to connect two connectors just like it would be for
any other connection. Previously in Section 3.6.1 we mentioned that two input
connectors could not be connected using connect unless they were at different
hierarchical levels. Example 4.3 is an example of why this exception exists.

walter.ponge@terra.com.br

Enabling Reuse 75

Note the connection between command and Difference. inPortl. Both
of these connectors are input connectors from the Modelica. Blocks pack­
age but because they are at different hierarchical levels I, this connection is
allowed. This allows external input signals to be passed down through the
hierarchy of subcomponents.

4.3.3 Summary
When building components from other "building block" components, the

first step is to determine what the external connections and parameters should
be. In other words, what should this model look like from the "outside". Next,
we declare and connect the internal components. Finally, we propagate the
external parameters and connectors to the subcomponents.

4.4 ALLOWING REPLACEABLE COMPONENTS
Example 4.4 in the previous section shows a motor being controlled by one

specific controller. In this section, our goal is to demonstrate how we can easily
"plug and play" different kinds of controllers and compare their performance.
In order for one model to replace another, the two models must be compatible.
In other words, the new model must have the same connectors and parameters
as the old model. In the technical vocabulary of Modelica, the new model must
be a "subtype" of the model it is replacing (see Section 4.8.3 for a complete
description of the subtype concept).

4.4.1 The generic controller interface
One way to ensure that the controller blocks are compatible is to extend them

from a common partial block. To do this, we need to establish a common
interface for our controllers. We accomplish this the same way we did in
Section 4.2. Specifically, we identify the common attributes of a controller and
create a partial block that all of our controllers can be extended from.

The inputs to our generic models are a command signal and a sensor signal.
The model should also have a single output for the driver signal. All these
signals were present in our PIController model. Now, we consider the
parameters for our generic controller. We cannot assume that all controllers
have the same parameters, Kp and Ti, that our PIController has. In
fact, we cannot make any assumptions about what parameters a controller
might have. After considering all this, Example 4.5 shows what our generic
controller model would look like.

I These connectors are at different hierarchical levels because one connector belongs to the P I Con t ro lIe r
model directly (i.e .. it is declared within the PIController model) while the other connector belongs to
the Difference component which is nested inside the PIController.

walter.ponge@terra.com.br

76 INTRODUCTION TO PHYSICAL MODELING WITH MODELICA

partial block Controller "A generic controller interface"
import Modelica.Blocks;

Blocks.Interfaces.InPort command "Command signal";
Blocks.Interfaces.InPort sensor "Sensor signal";
Blocks. Interfaces .OutPort driver "Driver output signal";

end Controller;

Example 4.5. A generic controller interface.

4.4.2 Specific controller models
Let us use the Controller definition in Example 4.5 to create several

different types of controllers so we can do some comparisons.

4.4.2.1 Proportional controller

Example 4.6 shows a proportional gain controller that is defined by extending
from the Controller model shown in Example 4.5. The equation for a
proportional gain controller is:

driver = Kp * e (4.1)

where Kp is the gain of the controller (represented by the Kp parameter in the
model) and e is the difference between the commanded and measured response.
In Example 4.6, we have used two simple equations to express the mathematical
relationship between the inputs and outputs. This is in contrast to Example 4.3
where we used the mathematical blocks, such as the Ga in block, found in the
Modelica. Blocks package.

block PController "A proporational gain controller"
extends Controller;
parameter Real Kp=l "Proportional gain";

protected
Real e "reference error";

equation
e = command. signal [1] - sensor. signal [1] ;
driver. signal [1] = Kp*e;

end PController;

Example 4.6. A proportional gain controller.

4.4.2.2 Proportional-differential controller

Example 4.7 shows how an ideal proportional-differential controller can be
created by extending the Controller interface. Again, we have chosen to

walter.ponge@terra.com.br

write the mathematical relationship, e.g.,

driver = Kp * e + Kd * ~~

block PDController "An ideal PD controller"
extends Controller;
parameter Real Kp=l "Proportional gain";
parameter Real Kd=l "Differential gain";

protected
Real e "reference error";

equation
e = command. signal [1] - sensor. signal [1] ;
driver. signal [1] = Kp*e + Kd*der(e);

end PDController;

Enabling Reuse 77

(4.2)

Example 4.7. An ideal proportional-differential gain controller.

4.4.2.3 Proportional-integral controller

Each of the other controllers described in this section extends from the
Controller model. In this way, they inherit all the components they need.
Another benefit of extending from the Controller model is that each of the
other controllers is automatically a sUbtype of the Controller model.

In the case of the PIController model, we do not have to rewrite the
model to extend from the pat1ial model Controller. We can continue
to use the model as it appears in Example 4.3. This is because our exist­
ing PIController can be considered a subtype (i.e., specialization) of
the Controller model because it contains all of the components of the
Controller model. While using extends, as we did in Examples 4.6 and
4.7, is convenient because it automatically includes everything that is needed,
it is not necessary in order for a model to be considered a subtype.

4.4.3 Using replaceable components
Let us create a new version of the model shown in Example 4.4 that allows

us to replace the controller model. The new model for this system is shown in
Example 4.8.

The only difference between Example 4.4 and Example 4.8 is the change of
the controller declaration from:

PIController pic(Kp=O.4);

to:

walter.ponge@terra.com.br

78 INTRODUCTION TO PHYSICAL MODELING WITH MODELICA

replaceable PIController con(Kp=O.4} extends Controller;

Think of the new declaration as saying: "Declare a PIContro11er called
con that can be replaced by any component which is a subtype of Con t ro 11 e r".
In essence, the extends qualifier at the end of the declaration represents a con­
straint on the model being declared and any models it may be replaced with.

model ControllerAndMotor
import Modelica.Blocks;

Blocks.Sources.Sine sinsig(
amplitude={O.2}, freqHz={O.3}, offset={l.O}};

replaceable PIController con(Kp=O.4} extends Controller;
Blocks.Continuous.TransferFunction motor(a={O.8,O.1}};

equation
connect (sinsig.outPort, con. command} ;
connect (con.driver,motor.inPort) ;
connect (motor. outPort , con. sensor} ;

end ControllerAndMotor;

Example 4.8. A system containing a controller and motor.

N ow, let us create a model which tests all of these controllers side by side. Ex­
ample 4.9 shows a system composed of three instances of our Contro11er­
AndMotor model. Note that the first instance does not make any modification
and therefore uses the default PIContro11er. The next instance redeclares
the controller component con, inside the Contro11erAndMotor model,
to be of type PContro11er. The last instance also redeclares the controller,
but this time it specifies the controller type to be PDContro11er. Figure 4.4
shows the results of a side by side comparison between the 3 controller models.

model CompareControllers "Comparing various controllers"
ControllerAndMotor pic;
ControllerAndMotor pc(

redeclare PController con(Kp=l.l}};
ControllerAndMotor pdc(

redeclare PDController con(Kp=1.1,Kd=.2}};
end CompareControllers;

Example 4.9. A comparison of controllers using redeclare.

walter.ponge@terra.com.br

Enabling Reuse 79

1.5,-----,------.-----..-----.------.-----,------,-----,

4.4.4

I . : i

Reference Signal
PI Controller
P Controller
PD Controller

0 ••• :",

°o~----~----~-----L----~----~------L-----~----~
5 10 15 20

Time [5]

Figure 4.4. Side by side comparison of controllers.

Summary
In this section, we have shown how to design components or systems that

allow us to easily substitute one model for another. For our example, we used
this capability to do a side by side comparison of different controller types.

Another use for this functionality is to substitute models with different levels
of detail. When designing controllers, the plant models are often linearized
and expressed in terms of transfer functions (like our motor). However, in
practice it is useful to replace these simple linear models with detailed models
which consider non-linear effects (e.g., backlash) and then re-simulate the
system to compare how different controllers perform in the presence of such
non-linearities.

4.5 OTHER REPLACEABLE ENTITIES
In Section 4.4, we showed how components could be made replaceable.

Besides making components replaceable, the replaceable keyword can also
be used to make the types of components replaceable. Instead of just redeclar­
ing one component, this feature allows several components to be redeclared
simultaneousl y.

walter.ponge@terra.com.br

80 INTRODUCTION TO PHYSICAL MODELING WITH MODELICA

Before going into the details of how this is done, we must first cover a few
other features of the Modelica language. Let us revisit Example 3.8. Note that
the two resistor components in that example are declared as follows:

Analog.Basic.Resistor Rl(R=lS);
Analog.Basic.Resistor R2(R=SOOO);

Imagine we wanted to save ourselves from having to type out the full name of
the resistor model. To do this, we could define a local model and then declare
Rl andR2 using our local model as follows:

model ResModel
extends Analog.Basic.Resistor;

end ResModel;
ResModel Rl(R=lS);
ResModel R2(R=SOOO);

We do not appear to have saved ourselves too much typing. However, we can
accomplish exactly the same thing by using an abbreviated way of extending a
model called a short definition. Our previous code fragment can be rewritten
as:

model ResModel=Analog.Basic.Resistor;
ResModel Rl(R=lS);
ResModel R2(R=SOOO);

In other words,

model ResModel=Analog.Basic.Resistor;

is equivalent to

model ResModel
extends Analog.Basic.Resistor;

end ResModel;

Now, we can use a short definition in conjunction with the replaceable
qualifier to allow the type of resistor used to be easily redeclared. Example
4.10, a variation on Example 3.8, shows how a replaceable object type can
be implemented. The difference is that the RLCS model defines a local model
called ResModel. This local model is then used when declaring components
Rl and R2. Figure 4.5 shows which components in the schematic use the
ResModel definition. Note that the definition of the model Resistor is
just a short definition with the replaceable qualifier in front of it.

walter.ponge@terra.com.br

Enabling Reuse 81

model RLC5 "An RLC circuit using standard components"
import Modelica.Electrical.Analog;

replaceable model ResModel=Analog.Basic.Resistor;
ResModel Rl(R=15);
ResModel R2(R=5000);
Analog.Basic.Capacitor C(C=lOOe-6) ;
Analog.Basic.lnductor L(L=lOOe-3);
Analog.Sources.StepVoltage vs(startTime=l);
Analog.Basic.Ground g;

equation
connect (vs.n,g.p) ;
connect (vs.p,L.p);
connect (L.n,Rl.p) ;
connect(L.n,R2.p) ;
connect (Rl.n,C.p) ;
connect (C. n, 9 .p) ;
connect (R2.n,g.p) ;

end RLC5;

Example 4.10. An example of how to redeclare several components.

'-----l

L I Ri I
I I

I I

L=100e-3 I R=i5 I L ____ .-l

,-- ---l

IJJ I 0
III I II

101 JJ 0
1°

!\) 0

18
CD

I
(j)

L __

vs=1

9

Figure 4.5. Schematic for Example 4.10.

walter.ponge@terra.com.br

82 INTRODUCTION TO PHYSICAL MODELING WITH MODELICA

The advantage of defining a local model as shown in Example 4.10 is that
all instances of that model can be redeclared simultaneously. For example, if
we wanted to create a new version of the circuit shown in Example 4.10 using
a different resistor model, we would do something like the following:

model MyRLC=RLC5(redeclare model ResModel=MyResistor);

This code fragment shows another example of how a Sh0l1 definition can be
used. In this case, the MyRLC model extends from RLCS but it redeclares
the ResModel model to be an extension of some other resistor model called
MyResistor. The result is that components Rl and R2 within the MyRLC

model will be declared as instances of the MyResistor model. Note that the
syntax of a redeclaration is the same as a declaration except that it is preceded
by the keyword redeclare.

4.6 LIMITING FLEXIBILITY
The focus of this chapter is how to make components more reusable because

this translates into greater flexibility and less duplication of effort. For that
reason, it may seem strange to introduce a section to discuss limiting the
reusability of a definition. However, there is good reason for this because, in
addition to being reusable, we also want our models to be robust.

To understand why flexibility must sometimes be limited, let us consider
one problem with Example 4.3. Note that the parameter Ti is used to give a
value to the gain parameter, k, of gain block K2. First, let us consider a typical
use of the PIController model:

model ControllerApplicationl

PIController con(Kp=O.4,Ti=O.2);
equation

end ControllerApplicationl;

Note that the Ti parameter was set to 0.2. This should result in the k parameter
of gain block K2 being set to 5. New model developers may not immediately
notice the details of Example 4.3 so they may not realize that the Ti parameter
gets propagated to the k parameter of one of the gain blocks. As a result, they
might try to directly set the k parameter themselves as follows:

model ControllerApplication2

PIController con(Kp=O.4,K2(k=5));
equation

end ControllerApplication2;

walter.ponge@terra.com.br

Enabling Reuse 83

The intention of the PIController model developer was that only parame­
ters Kp and T i should be set by users of the model and that parameters inside the
PIController hierarchy should not be changed. To prevent such changes,
the declaration of the K2 block within the PIController model should be
changed to:

Blocks.Math.Gain K2(final k={l/Ti});

The use of the final keyword in this way indicates that no further modifications
to the parameter k are allowed. Any attempt to do so, like we showed previously
in Con t ro lApp 1 i cat i on2, will trigger an en-or.

This kind of limitation can be important when building up configurations of
existing components. This is because while a new model may be built using
instances of existing models, it may be desirable for the new model to behave
like a black box (i.e., not allowing others to get inside and change some of the
underlying assumptions). The final keyword can be used to disallow such
changes.

model Gear
import Modelica.Mechanics.Rotational;

Rotational.lnterfaceS.Flange_a flange_a;
Rotational.lnterfaces.Flange_b flange_b;
parameter Real gear_ratio=l

"Gear ratio (flange_a.phi/flange_b.phi) ";
equation

flange_a.phi = ratio*flange_b.phi;
o = ratio*flange_a.tau + flange_b. tau;

end Gear;

Example 4.11. A simple gear model.

Another example of where final might be used is in the development
of a timing belt model. In an internal combustion engine, the timing belt
connects the crankshaft to the camshaft. The timing belt is designed so that
two revolutions of the crankshaft result in one revolution of the camshaft. So
it appears a timing belt is just a special case of a gear with a gear ratio of two.
Example 4.11 shows one way of writing a gear model using the Model ica. -
Mechanics. Rota tionallibrary.2

We can reuse this Gear model to create our TimingBel t model as follows:

"This is nearly identical to the ideal gear model found in the MSL with the name Modelica.­
Mechanics.Rotational.ldealGear

walter.ponge@terra.com.br

84 INTRODUCTION TO PHYSICAL MODEUNG WITH MODEUCA

model TimingBelt=Gear(final gear_ratio=2);

The final keyword prevents any subsequent change in the gear ratio by in­
stantiation or specialization. As a result, the following examples would be
prohibited:

model Engine
TimingBelt belt (gear_ratio=3) ; II Error
model OddTimingBelt=

TimingBelt(gear_ratio=2.25); IIError
end Engine;

This is because the geaLratio component of TimingBel t was declared
final.

4.7 OTHER CONSIDERATIONS
4.7.1 Parameters

It is usually undesirable for a model to have numbers appearing directly in
equations. For example, the SimplePendulum model in Example 2.1 could
have been written as:

model SimplePendulum
Real theta, omega;

equation
der(theta) = omega;
der(omega) = -4.905*theta;

end SimplePendulum;

However, this not only hides the fact that 4.905 is really g / L but it also
prevents the length from being easily changed. Making L a parameter and
g a constant makes the model easier to understand and easier to reuse (i.e.,
allowing different values of L).

4.7.2 Generality
The most reusable models are the ones that make the fewest assumptions.

Unfortunately, the more general a model, the more abstract and complicated it
tends to be.

For example, we could have solved the pendulum dynamics described in
Equation (2.6) by first developing a general model that described the motion
of a mass in three-dimensional space. Then, we could have created a sim­
ple pendulum model that extended the general model and included additional
equations to constrain the motion of the mass to be that of a simple planar
pendulum. In the case of our SimplePendulum model, it would probably
be simpler just to create a model directly from Equation (2.6) than to reuse a
more general existing model by adding constraints.

walter.ponge@terra.com.br

Enabling Reuse 85

When developing a reusable model try to understand how it will be reused.
The model should be general enough that it can be used as the basis for several
other models. At the same time, it must be simple enough that using it as the
basis for developing other models leads to models that are simple and easy to
understand. The OnePort model, shown in Example 4.1, is a good example
because it satisfies both of these criteria.

4.7.3 Documentation
An important part of reusability is documentation. There are several different

types of documentation that should be part of any reusable model. First,
descriptive text can be used when the model and any of its components are
declared. Refer to Example 2.4 for a demonstration of how this is done. In
addition, comments (starting with" / /") can be used within the model text to
explain the origin of equations or logic of algorithms. Finally, we shall see in
Section 9.2.2 that it is also possible to embed HTML code that describes the
details behind the model.

The ability to document models in this way is a deliberate attempt, by the
designers of the Modelica language, to give model developers every opportunity
to explain the details of their models. By documenting models in this way, the
documentation moves with the model which makes it easier to update the
documentation as the model changes.

4.8 LANGUAGE FUNDAMENTALS
4.8.1 Extending a model

The basic idea behind the extends keyword is that, roughly speaking, it
allows you to "copy and paste" the contents of one model into another. This is
useful when many models have the same variables, connectors, equations, etc.

Through the examples in this chapter, we have shown that once a common
subset is identified, other models can be specialized from the common subset
using the extends keyword. Example 4.2 shows how the Resistor model
was made simpler and easier to understand by deriving it from a base model.
It is even possible to extend from two or more base models.

There are several important restrictions to keep in mind when using ext ends.
The first restriction is that you cannot replace any of the equations in a model
you are extending. For example, if we define a model A as follows:

model A
Real x;

equation
x = 5;

end A;

and then we extend A to create a new model B1 which looks like this:

walter.ponge@terra.com.br

86 INTRODUCTION TO PHYSICAL MODEUNG WITH MODEUCA

model Bl
extends A;

equation
x = 3;

end Bl;

The definition ofBl above is equivalent to the following definition ofB2 which
does not utilize extends:

model B2
Real x;

equation
x = 5;

x = 3;
end B2;

As a result, in both Bl and B2 we end up creating a model with two equations
which is probably not our intention because this results in a system of two
equations with only one unknown (i.e., it is over-determined).

Care should be taken when developing partial models to give derived
models sufficient flexibility for their equations by including the minimum
number of equations in the partial model.

4.8.2 Short definitions
In Example 4.10, we introduced the idea of a short definition. It is often

the case that a new model is so similar to something that already exists that its
definition looks something like:

model MyRLC
extends RLC5(Rl(R=12»;

end MyRLC;

Note that this model involves a slight modification of an existing model (i.e.,
it does not introduce any new subcomponents). In such cases, it is possible to
use the slightly less complicated short definition approach. The short definition
would be:

model MyRLC=RLC5(Rl(R=12»;

This second form allows you to essentially replace the extends keyword with
an equal sign and the end statement with a simple semi-colon;

We have shown how to create a short definition for a model. A similar ap­
proach can be taken when defining a connector, block or record (described
in Chapter 5). Note that a type is always defined using a short definition, e.g.,

type Pressure=Real(quantity=IPressure", unit=IN/m A 2");

walter.ponge@terra.com.br

Enabling Reuse 87

4.8.3 Concept of subtype
In Section 4.4, we talked briefly about the notion of a sUbtype relationship.

Since sUbtypes are important for several features presented in this chapter, a
more rigorous discussion of the sUbtype concept is included.

4.8.3.1 Theory

Imagine two models, A and B. Roughly speaking, model B is a subtype of
model A if B contains all of the same components (with the same names) as A.
To illustrate this, consider the following model:

model BaseModel
Real x, y;

end BaseModel;

Now assume we have another model like this one:

model DerivedModel
extends BaseModel;
Real Z;

end DerivedModel;

As was described in Section 4.8.1, this definition of Deri vedModel is equiv­
alent to:

model DerivedModel
Real x, y, z;

end DerivedModel;

In either case, the Deri vedModel is a subtype of the BaseModel because
it has all of the components of BaseModel (i.e .• x and y). It does not matter
that Deri vedModel has more components (i.e .• z) than BaseModel. It also
does not matter whether the definition of Deri vedModel uses the extends
keyword or whether it contains its own declarations of x and y, with the
appropriate types, as long as it has all of the components of BaseModel.

Subtype relationships are not limited to models. Such relationships apply
for all definitions in Modelica (e.g .. connector definitions).

4.8.4 Creating partial definitions
In Example 4.1, the model definition was preceded by the partial keyword.

The part ial keyword indicates that while this model can be extended, it cannot
be instantiated. In other words, the model is a foundation on which to build
new models, but it is not a proper model by itself (usually because it is missing
some constitutive equations). The partial keyword, like many features in
Modelica, not only enforces certain semantics but also documents the intent
of the original model developer. In other words, if you see a partial model,

walter.ponge@terra.com.br

88 INTRODUCTION TO PHYSICAL MODELING WITH MODELICA

you know immediately that this is not something you would declare but rather
something to extend from.

4.8.5
4.8.5.1

Making elements of a model replaceable
Replaceable subcomponents

Example 4.8 showed how we can declare a component to be replaceable.
There are two differences between a normal declaration and a replaceable
declaration. First, the replaceable declaration is preceded by the replaceable
keyword. In addition, a replaceable declaration can be followed by an optional
extends clause which indicates the constraining type of the declaration. The
constraining type limits what a component can be replaced with, which provides
some degree of robustness. So in Example 4.8, the extends clause indicates
that in all cases con must be a subtype of Controller. Of course, if the
component is never redeclared, its type will be whatever was specified in the
original declaration.

4.8.5.2 Using replaceable type definitions

Replaceable type definitions are really not significantly different than re­
placeable component declarations. The replaceable keyword is placed in
front of a definition (e.g., a model definition in Example 4.10) and an optional
extends can be added to the end followed by the constraint type. The only
difference, when compared to replaceable components, is that a replaceable
type definition can be used to change the types of numerous components si­
multaneously rather than one at a time. Replaceable type definitions usually
involve the definition of a local type (i.e., a type which is only used within the
context of a specific model).

4.8.6 Making components "final"
Flexibility sometimes comes at the cost of robustness. The final keyword

is used to restrict flexibility by disallowing further changes. As was shown
in Section 4.6, there are times when final can be used to eliminate the
possibility of inappropriate modification. The final keyword can be placed in
front of modifications to imply that those modifications cannot be subsequently
changed. Modifications include the assignment of values to constants and
parameters and also any redeclarations made using the redeclare keyword
(as shown in the MyRLC model on page 82).

4.9 PROBLEMS
PROBLEM 4.1 Write models for a Capaci tor and an Inductor by ex­
tending the OnePort model shown in Example 4.1.

walter.ponge@terra.com.br

Enabling Reuse 89

PROBLEM 4.2 The Integrator, TransferFunctionandGainblocks
(found in Examples 3.13, 3.14 and 3.15, respectively) all have a single input
and a single output. Create a base model that all of these models can be ex­
tended from (i.e., something analogous to the OnePort model in the previous
problem).

PROBLEM 4.3 Create a version of the circuit shown in Example 3.7 (found
in page 46) that uses the MSL. Furthermore, make the resistor, capacitor and
inductor replaceable with any component that satisfies the One Port inteiface
from Example 4.1. What happens if you replace the capacitor with a resistor
that has very small resistance? Compare the voltage across the inductor in
both cases.

PROBLEM 4.4 Create a resistor model like the one described in Problem 3.5
that is a subtype of the OnePort model in Example 4.1. Redeclare the resistor
model in the solution to Problem 4.3 as an instance of this new resistor model.
Then, run a simulation using the new resistor model and compare the results
to the results obtained using an ideal resistor.

PROBLEM 4.5 Create a version of the ControllerAndMotor model shown
in Example 4.8 where the plant model is also replaceable. Use the solution
from Problem 4.2 as the base model for all plant models. Then, create a
plant model from the Ro ta t i onal Pendu 1 ummodel shown in Example 3.19
and use that as the plant. You will need to connect a torque source as input
and speed sensor as an output (both of which can befound in Modelica. -
Mechanics. Rota tional).

You will probably want to change the offset value for the signal genera­
tor, sinsig, to zero. In addition, start the pendulum in a non-equilibrium
state. Then, try clwnging the controller parameters to improve the overall
pelfonnance.

walter.ponge@terra.com.br

Chapter 5

FUNCTIONS

5.1 CONCEPTS
While writing equations (i.e., equating two expressions) is sufficient for

most modeling, there are cases where a procedural or algorithmic approach,
involving explicit assignment, is necessary. To address this need, Modelica
includes support for algorithmic functions. While a function in Modelica is
like a block because all quantities must be explicitly labeled as either input
or output, it is different from a block or model because it is not connected to
other components. Instead, it is invoked during the evaluation of expressions.
Another difference between a function and a block or model is that a
function is not allowed to have any persistent internal state. As a result, there
are several restrictions on the statements which can appear within a function
(e.g., the der operator cannot appear within a function).

In this chapter, we will describe an alternative to an equation section
called an algori thm section. The algori thm section is used when procedural
semantics are required. While a block or model definition can contain any
number of equation or algorithm sections, a function definition must
contain exactly one algorithm section which performs all calculations for
that function.

In this chapter, we will show several examples of Modelica functions. In
addition, we will show how to call external subroutinesl (written in languages
such as C or FORTRAN77) from within a Modelica model.

I To avoid confusion, the term subroutine will refer to C or FORTRAN77 code and junction will refer to
Modelica functions.

walter.ponge@terra.com.br

92 INTRODUCTION TO PHYSICAL MODELING WITH MODELICA

5.2 INTRODUCTION TO FUNCTIONS
Let us start with a simple function. Imagine we wish to search through an

array of names for a particular name and find the index of that name in the array.
The two arguments to the function will be an array of names and the name we
are looking for. The output will be the index where the name was found or
an error will occur if the name was not found. Each name is represented as a
String in Modelica. The input components of the function correspond to
the arguments of the function when it is invoked and the output component
corresponds to the value of the function when used in an expression.

function FindName
input String names[:);
input String name_to_find;
output Integer index;

protected
Integer i, len=size(names, 1) ;

algorithm
index := -1;
i : = 1;

while index==-l and i<=len loop
if names [i) ==name_to_find then

index : = i;
end if;
i := i+1;

end while;
assert (index<>-l, "FindName: failed");

end FindName;

Example 5.1. A function to find a name in an array of names.

5.2.1 Arrays
This example is the first to contain the declaration of an array. We do not

describe arrays in detail until Chapter 6. However, we need to cover a few
basics in order to explain this example. First, the presence of the" [" and "] "
characters in the declaration of names indicates that names is an array. In
the declaration, the size for each dimension of the array appears as a comma
separated list between the" [" and "] " characters. The use of":" in such a
declaration indicates that any size for that dimension is allowed. In this case,
we can determine from the declaration that names is a one-dimensional alTay
of an unspecified size. We can also see, from the if statement, that the" [" and
"] " characters are also used in expressions to reference individual elements of
the array.

walter.ponge@terra.com.br

Functions 93

5.2.2 Robustness
This funct ion demonstrates several features that promote the development

of robust functions. For example, note that the declaration of the names
argument does not include a size for the array. This indicates that this funct ion
is defined so that it can handle anyone-dimensional array of names. However,
within the function we must know how many names are in the array. We
could add an additional argument to the function to allow the size of the array
to be passed into the function. However, the risk still remains that an incorrect
size could be passed in. A more robust way to determine the size of the name s
array is to use the size () function. The size () function will always return
the correct size of an array. More details on size () and other array related
functions can be found in Chapter 6.

Another thing to notice about the FindName function is the use of the
assert () function. We can use the assert () function to verify certain
conditions. For example, if the index variable is unchanged after the while
loop, then we failed to find the name we were looking for. In other words, at
the end of this function we would like to make sure that the index variable
has not kept its initial value of -1. We can do this by using the assert ()
function to verify that index is not equal to -1 at this point. If the assertion
is false (i.e., index is equal to -1), then the message contained in the second
argument to the assert () function will be displayed to the user and the
simulation will stop.

5.2.3 Function contents
Example 5.1 may be simple, but it introduces many new ideas. First, it

contains a protected section. Within a function, the protected2 section
contains declarations for all local variables. The local variables are only visible
within the function. They are created during each invocation of the function
and destroyed when the function invocation is completed. Such variables are
typically used as temporary variables in calculations performed internally to
the function.

Note that this function uses the :::: operator. Recall, from Chapter 2 that
the :::: operator indicates assignment rather than equality. The variable being
assigned to must appear on the left hand side of the :::: operator. We can see
that the :::: operator is used extensively in this function. Finally, we see the use
of a while loop. In this example, we use the while statement to repeatedly
check whether we have found the string we are looking for.

2The use of the protected keyword within models will be discussed in Chapter 6.

walter.ponge@terra.com.br

94 INTRODUCTION TO PHYSICAL MODELING WITH MODELICA

5.2.4 Invoking a function

model TestFindName
parameter String names [:] = {"H20"," C02" , "N2" } ;
parameter Integer C02=FindName (names, "C02") ;

end TestFindName;

Example 5.2. Invoking the FindName function.

Example 5.2 shows an example of a model which invokes the FindName
function. Note that the arguments to the function must be passed according to
the order they were declared in the function definition (i.e., names followed by
name_to_find). Even though the FindName function is used in Example
5.2 to initialize a parameter, we have seen previously (e.g., Example 2.2) that
functions can be used in equations as well.

5.3 AN INTERPOLATION FUNCTION
Let us move on to a more complex example. Since it is common to require

interpolation when modeling, the next example is a function which can perform
linear interpolation for us. To keep things simple, we restrict this example,
shown in Example 5.3, to the case of one dimensional linear interpolation.
Furthermore, an assertion will fail if the value of the independent variable, x,
is outside the range of values found in x_grid.

function Piecewise "A piecewise linear interpolation"
input Real x "Independent variable";
input Real x_grid [:] "Independent variable data points";
input Real y _grid [:] "Dependent variable data points";
output Real y "Interpolated result";

protected
Integer n;

algorithm
n := size (x_grid,l) ;
assert (size (x_grid, 1) ==size (y_grid, 1), "Size mismatch") ;
assert (x>=x_grid [1] and x<=x_grid [n], "Out of range");
for i in 1:n-1 loop

if x>=x_grid[i] and x<=x_grid[i+1] then
y := y_grid[i]+(y_grid[i+1]-y_grid[i])*

((x-x_grid[i])/(x_grid[i+1]-x_grid[i]));
end if;

end for;
end Piecewise;

Example 5.3. A piece-wise linear function.

walter.ponge@terra.com.br

Functions 95

5.3.1 Explanation
Once again, we see the size () function being used to determine the size of

the input arrays. In addition, we see several uses of the assert () function.
These assertions make sure that the input arrays, x_grid and y _grid, are
the same size and that the independent variable, x, is within the range given by
the x_grid argument.

Linear interpolation involves finding the location, in the x_grid array, of
the data points immediately above and below the independent vmiable, x.
Once these have been located, the output of the function, y, is computed by
linearly interpolating between the values in the y _grid which correspond to
the adjacent data points.

5.3.2 Using for loops
Another interesting thing about this example is that it contains a for loop.

The expression 1: n - 1 is actually short hand for a complete array which
includes elements (1, ... , n - 1). As an argument to for, it provides the
range of values for the variable i. It should be pointed out that i is a variable
which is local to the f or loop. This means that it is created at the start of the
for loop and disappears after the "end for;" statement is reached. For this
reason, there is no need to declare i as a variable.

5.3.3 Named arguments
In Modelica, there are two ways to invoke functions. The first is to pass the

arguments in the order they are declared in the function definition. This is
what we did in Example 5.2. Let us test the Piecewise function using the
alternative way of invoking a function:

model TestPiecewise
package SI=Modelica.Slunits;
parameter SI.Time x_vals[6] = {O, 2, 4, 6, 8, 10};
parameter Real y_vals[6] = {O, 0, 4, 16, 36, 64};
Real y;

equation
y = Piecewise (x=time,x_grid=x_vals,y grid=y vals);

end TestPiecewise;

In this case, we have provided an explicit equation for each input argument
when invoking the funct ion. Invoking functions in this way is legal in
Modelica so long as an equation is provided for each argument. Figure 5.1
shows the values for y generated by this code fragment.

walter.ponge@terra.com.br

96 INTRODUCTION TO PHYSICAL MODEliNG WITH MODEliCA

60

50

40

30

20

10

o

Time [s]

Figure 5.1. Output after simulating TestPiecewise for 10 seconds.

5.4 MULTIPLE RETURN VALUES
For our next example, we consider a function which has more than one return

value. Imagine we need to evaluate a polynomial in x and the derivative of
that polynomial with respect to x. Given an array containing the coefficients
of the polynomial, Example 5.4 shows a function which uses a single loop to
compute both the value of the polynomial and its derivative.

Once again, we use the size () function to determine the size of the arrays
being passed in. Using this size information, a for loop can be constructed to
evaluate the polynomial and its derivative. The following model can be used
to validate the calculation of the derivative:

model TestPolyEval
parameter Real coefs[3] = {2.0, 1.0, 2.0};
Real y;
Real fdy;
Real dy;

equation
(y,fdy) = PolyEval(time,coefs);
dy = der(y);

end TestPolyEval;

We can validate the PolyEval function by comparing fdy and dy.

walter.ponge@terra.com.br

Functions 97

function PolyEval "Evaluate polynomial and derivative"
input Real x "Independent variable";
input Real coef [:] "Coefficients (low to high order)";
output Real y "Result of polynomial evaluation";
output Real dydx "Deri vati ve of polynomial";

protected
Integer n;

algorithm
n := size(coef,l);
y := coef[n];
dydx := 0.0;
for i in n-l:-l:l loop

y := y*x + coef[i];
dydx := dydx*x + i*coef[i+l];

end for;
end PolyEval;

Example 5.4. Evaluation of a polynomial and its derivative.

5.5 PASSING RECORDS AS ARGUMENTS
For complex functions, passing in large numbers of arguments can become

cumbersome. In these cases, it is useful to define a record type which can be
used to group several logically related arguments together.3 Imagine we wish
to create a function which evaluates the sum of several sine waves, i.e.,

(5.1)

where each wave has its own amplitude, Ai, frequency, fi and phase shift, (Pi­
Example 5.5 shows how we might write such a function.

Note that Example 5.5 includes a local record definition. Local definitions
are useful because they are clearly associated with a specific model or function
(e.g., ComplexWave). There is no chance that this Data record could
be confused with another record also named Data because the definition
is nested within the ComplexWave function and therefore a qualified name
(i.e., ComplexWave. Data), must be used in any declarations of the Data
record outside the ComplexWave function.

5.5.1 Building a record
The following code fragment gives an idea how the Comp 1 exWa ve function

in Example 5.5 could be used:

3 A record in Modelica is similar to a struct in C.

walter.ponge@terra.com.br

98 INTRODUCTION TO PHYSICAL MODELING WITH MODELICA

function ComplexWave
record Data

constant Integer num "Number of waves";
Real a [num] "Wave amplitudes";
Modelica.SIunits.Frequency f[num] "Wave frequencies";
Modelica.SIunits.Angle phase [num] "Wave phase offset";

end Data;

input Real x "Independent variable";
input Data d "Wave data";
output Real y "Sum of sine waves";

protected
Integer n;
Real s;

algorithm
n := d.num;
y := 0;
for i in l:n loop

s := Modelica.Math.sin(
2*Modelica.Constants.pi*d.f[i]*x+d.phase[i]) ;

y .- y + d.a[i]*s;
end for;

end ComplexWave;

Example 5.5. Calculating the sum of a series of sine waves.

model TestComplexWave
parameter ComplexWave.Data wdata(num=3,

a= {l. 3, 2.2, 5.8},
f={2.0, 3.0, 7.0},
phase={O, Modelica.Constants.pi, O});

Real signal;
equation

signal = Comp 1 exWave (time,wdata) ;
end TestComplexWave;

Remember, because Data is defined within the function ComplexWave,

we reference that re cord definition using the qualified name Comp 1 exWa ve . -

Data. We then provide the necessary data for each of the waves and in­
voke the function. In this way, we have reduced the number of arguments to
ComplexWave from four to two. The data provided in this case should cause
the ComplexWave function to evaluate the following expression:

y(X) = 1.3sin(47rx) + 2.2sin(67rx + 7r) + 5.8sin(147rx) (5.2)

Figure 5.2 shows the results of simulating the TestComplexWave model.

walter.ponge@terra.com.br

Functions 99

IOr--------.-------,,-------,--------,--------,--------,

5

;;:. 0

-5

-IO~-------L------~L-------~------~--------~------~ o :2 3

Time [s]

Figure 5.2. Simulation results for TestComplexWave.

5.5.2 Variables within a record
A re cord does not have to be a par ameter as it is in the Te s t Comp 1 exWa ve

model. In some cases, it may be useful to declare a record which contains
time varying quantities. The following code fragment shows how this can be
accomplished.

model TestComplexWave2
ComplexWave.Data wdata(num=3); II Not a parameter
Real signal;

equation
wdata.a = {1.3, 2.2, 5.8*Modelica.Math.exp(-.54*time)};
wdata. f = {2. 0, 3.0, 7.0};
wdata.phase = {o, Modelica.Constants.pi, O};
signal = Comp 1 exWave (time,wdata) ;

end TestComplexWave2;

For this example, we are using essentially the same data as we did in the
TestComplexWave model except we allow the last term to diminish with
time. Mathematically, this should lead to the evaluation of the following
expression:

y(X) = 1.3sin(47rx) + 2.2sin(67rx + 7r) + 5.8e-·S4x sin(147rx) (5.3)

walter.ponge@terra.com.br

100 INTRODUCTION TO PHYSICAL MODELING WITH MODELICA

The results of simulating the TestComplexWave2 model are shown in
Figure 5.3. The results also include evaluations of the following two equations:

A(x) 1.3 sin(47rx) + 2.2 sin(67rx + 7r) + 5.8 sin(147rx) (5.4)

B(x) 1.3sin(47rx) + 2.2sin{67rx + 7r) (5.5)

As we would expect, the results show that the value of the signal variable
initially follows the function A(x) but gradually moves closer to B(x) as the
contribution of the last term diminishes.

>.

10,-------.-------,-------,-------,--------.------,

5

, , , , ,
,

0 ,
, , , , , , , , , ,

-5

, , , , , , , , ,

, , , , , , ,

..

, ,

I ::
\ .: , . , , , ,

-100~------~----~·~1------~------~2--------~----~3

Time [sl

Figure 5.3. Simulation results for TestComplexWave2.

5.6 USING EXTERNAL SUBROUTINES
We have demonstrated how a variety of functions can be implemented in

Modelica. While it is easy to write Modelica functions, it is sometimes conve­
nient to call a subroutine written in C or FORTRAN77. In this section we will
show an example of how this is done.

5.6.1 External subroutines
A common requirement for thermodynamic models is to compute prop­

erties (e.g., enthalpy) of a working fluid (e.g., water) for a given pressure

walter.ponge@terra.com.br

Functions 101

and temperature. Imagine we have an existing external C subroutine named
compute_enthalpy that takes pressure and temperature as an input and
computes the enthalpy of our working fluid as an output. Rather than rewrite
such a subroutine as a Modelica function, let us look at how we can call the
external subroutine directly from a Modelica model.

In order to use an existing external subroutine, we must first write a "wrapper"
funct ion in Modelica before we can call the external subroutine. Example 5.6
shows how we would write a wrapper function for the compute_enthalpy
subroutine.

function Enthalpy
input Modelica.SIunits.Pressure P;
input Modelica.SIunits.Temp_K T;
output Modelica.SIunits.Enthalpy h;

external "C" compute_enthalpy(P,T,h);
end Enthalpy;

Example 5.6. A Modelica wrapper function for a C subroutine.

The subroutine compute_enthalpy used in Example 5.6 should have a
C function prototype that looks something like:

void compute_enthalpy(double P, double T, double *h);

The detail of how the C function prototypes are defined will be covered shortly
in Section 5.7.8.

5.6.2 Language specification
Enthalpy is not the only property we would typically need. In fact, many

similar properties are often required. Properties of working fluids are often
tabulated in what are called "steam tables". Example 5.7 shows how we could
write a function which calls an external subroutine that returns several
properties at once. In this example, we have assumed the subroutine is written
in FORTRAN77. 4 The FORTRAN77 code for the calcprops subroutine
from Example 5.7 would be similar to:

SUBROUTINE CALCPROPS(PRES, TEMP, H, U, CP, RHO)
DOUBLE PRECISION PRES, TEMP, H, U, CP, RHO

END

4The specification of any language besides C is required because subroutines differ in many ways from
one language to another. lssues such as argument ordering, pass-by-value vs. pass-by-reference and name
mangling are a few aspects of subroutines that depend on what language the subroutine was written in.

walter.ponge@terra.com.br

102 INTRODUCTION TO PHYSICAL MODEUNG WITH MODEUCA

function SteamTable
input Modelica.Slunits.Pressure P;
input Modelica.Slunits.Temp_K T;
output Modelica.Slunits.SpecificEnthalpy h;
output Modelica.Slunits.SpecificEnergy u;
output Modelica.Slunits.SpecificHeatCapacity cp;
output Modelica.Slunits.Density rho;

external "FORTRAN 77" calcprops(P,T,h,u,cp,rho);
end SteamTable;

Example 5.7. A Modelica wrapper function for a FORTRAN77 subroutine.

5.6.3 Invoking external subroutines
External subroutines are invoked just like any other Modelica funct ion. In

order to invoke the function, the simulation tool requires access to the subrou­
tine. Typically, only a compiled version of the subroutine would be required
and not the source code. How the subroutine is accessed (e.g., compiled or
linked) is a tool specific issue not covered by the language specification.

5.7 LANGUAGE FUNDAMENTALS
5.7.1 Arguments

As we have seen in this chapter, the arguments to a function are defined by
the input components in the public section of the function definition. Any
component preceded by the input qualifier represents a quantity being passed
into the function. Likewise, any component preceded by the output qualifier
represents a quantity being returned by the function. All components in the
public section must be labeled as input or output.

As we saw in Example 5.5, when the number of arguments stmts getting
large it is useful to pass information into a function as arecord. This reduces
the number of arguments (and confusion about argument order).

5.7.2 Local variables
Any quantities which are calculated from the input variables, but m·e not

output variables, are called local variables. As we saw in Example 5.1,
such variables must be declared in the protected section of the function
definition. It is important to keep in mind that the values of these local variables
are not stored between funct ion invocations. In other words, if you assign a
value to a variable during one invocation of the function, you cannot expect
it to still have that value at the next invocation.

walter.ponge@terra.com.br

Functions 103

5.7.3 Algorithmic semantics
The main purpose of a function is to perform algorithmic calculations.

These calculations often involve looping and conditional statements and appear
within an algorithm section.

The most important thing to remember about an algorithm section is that
it is possible to assign to the same variable multiple times. In each case, the
new assignment will replace the value from any previous assignments. To
understand the significance of this; consider the following code fragment:

algorithm
x .- y;
X := z;

In this case, only the last assignment, x : = Z, is important. This is in contrast
to an equation section where multiple equality relationships represent multiple
equations, e.g.,

equation
x y;
x = Z;

Both of these equations are significant and lead to the implication x = y = z.
There are two ways to tell the difference between assignments and equations.

First, assignment involves the : = operator while equations use the = operator.
Second, an assignment must appear within an algorithm section and an
equation must appear within an equation section. This helps to avoid any
confusion about whether a statement is an assignment or an equation.

Essentially, what this all means is that a function in Modelica behaves
almost exactly like a subroutine in C or FORTRAN77 where variables can be
assigned and reassigned values.

5.7.4 Branching
Examples 5.1 and 5.3 both contain if statements. An if statement can also

include an else clause as well as several elseif clauses. For example:

if x>=o then
y := x;

else if x<=-3 then
y := -6;

else
y := -2*x;

end if;

walter.ponge@terra.com.br

104 INTRODUCTION TO PHYSICAL MODEliNG WITH MODEliCA

5.7.5 Looping in algorithms
Looping is used to implement algorithms that require iteration (e.g., the y

and dydx variables used by the PolyEval function in Example 5.4). There
are two kinds of loops. A while loop is one where operations are performed
repeatedly while some condition remains satisfied. Generally, a while loop is
preceded by some initialization statements. The FindName model in Example
5.1 shows how a while loop can be used. A while statement has the general
form:

II initialization (if required)
while (someCondition) loop
II do something

end while;

After any initialization statements, the statements inside the while loop are
evaluated repeatedly while the boolean expression someCondi tion remains
true.

The f or statement in Modelica is convenient for looping over the contents
of vectors 5 and is similar to the "foreach" construct in languages such as Perl
and Tcl. The general form of the for statement is:

for someVar in some Vector loop
II do something (presumably involving someVar)

end for;

This statement can be interpreted as: "Evaluate the statements inside this loop
with someVar successively set to each value contained within the vector
someVector". An important point here is that it is only possible to loop over
vectors (i.e., one-dimensional arrays).

In Example 5.5, the expression 1: n evaluates to a vector of all integers
between 1 and n. In Example 5.4, the expression n - 1 : - 1 : 1 evaluates to a
vector starting with n - 1 and counting down to 1 by intervals of - 1. This kind
of vector shorthand is discussed in detail in Section 6.5.2.1.

5.7.6 Invoking a function
If a function is invoked by providing each argument in the form of an

equation (as we saw in TestPiecewise), the arguments may appear in any
order. If an equation is provided for one argument, then an equation must be
present for all arguments. On the other hand, if the function invocation does not
include equations for the arguments but simply a collection of values then the
order of the components in the function definition determines the required
order of the arguments in the invocation.

5Note that the use of for in Modelica is different from C and C++.

walter.ponge@terra.com.br

Functions 105

Now let us examine how to use the return value of the function. If
a function has a single return value (i.e., a single output variable in its
definition as in Example 5.3), then it may be used in expressions such as:

y = x*Piecewise(x=time,x_grid=x_vals,y_grid=y_vals)+
z*Piecewise(x=time,x_grid=z_vals,y_grid=y_vals) ;

On the other hand, if there are multiple return values (as in Example 5.7), the
funct ion invocation can only be used in an equation or assignment and it must
form the complete right hand side. Furthermore, the left hand side should be a
comma separated list of variables enclosed in parentheses. The following is a
legal example of invoking a function with multiple return values:

(h, u, cp, rho) = SteamTable(P,T);

On the other hand, this is not a legal invocation:

(h, U/m, cp, m/V) = SteamTable(P,T);

because only variables (i.e., no expressions) may appear on the left hand side.

5.7.7 Built-in functions
Modelica provides a collection of built-in functions. In this section, we will

discuss some of the built-in functions and the remainder will be discussed in
Chapter 6 because they involve array operations.6

5.7.7.1 Analysis type

The analysisType () function is used to give the model a chance to
customize its behavior to different types of analyses. The anal ys i sType ()
returns a string to indicate the type of analysis currently being performed. The
possible return values may include, but are not limited to, the ones shown in
Table 5.1.

Type Meaning

"dynamic" Evaluating transient response.
"static" Determining steady state response.
" 1 inear" Linear analysis (e.g., analyzing frequency response).

Table 5.1. Example analysis types.

6Chapter 7 reviews many of the built-in functions and explains their effects in the context of hybrid behavior.

walter.ponge@terra.com.br

106 INTRODUCTION TO PHYSICAL MODELING WITH MODELICA

5.7.7.2 Absolute value

The abs () function takes a single argument, x, and computes the absolute
value of x. The argument type can be either Real or Integer and the return
type is the same as the argument type. Mathematically, the function is defined
as:

abs(x} = {

5.7.7.3 Sign

-x
x

x<O
x~O

(5.6)

The sign () function takes a single argument, x, and returns an indication
whether x is negative or positive. The type of x can be either Real or In teger
but the return value is always an Integer. The sign () function is defined
mathematically as:

sign(x) = {

5.7.7.4 Square root

-1
o
1

x<O
x=O
x>O

(5.7)

The sqrt () function takes a single argument, x, and returns the square
root of x. The type of x can be either Real or Integer but the return value
of sqrt () is always a Real. The value of x must be greater than or equal to
zero or an error will occur.

5.7.7.5 Ceiling and floor function

The ceil () function takes a single argument, x, and returns the smallest
integer not less than x. Likewise, the floor () function takes a single argu­
ment, x, and returns the largest integer not greater than x. An important thing
to realize about these functions is that while the return value is an integer in the
mathematical sense, it is not an Integer in the Modelica sense. Instead, the
argument and return type for both ceil () and floor () is Real. Examples
of using these functions include:

5.7.7.6 Truncation

ceil(3.2}
floor(3.2}
ceil(-3.2)
floor (-3.2)

---+ 4.0
---+ 3.0
---+ -3.0

(5.8)

---+ -4.0

The integer () function, just like the floor () function, takes a single
argument, x and returns the largest integer not greater than x. The difference

walter.ponge@terra.com.br

Functions 107

is that while floor () returns a Real, integer () returns an Integer.
Examples of using the integer () function include:

5.7.7.7 Division

integer(3.2) -+ 3
integer (-3.2) -+ -4

(5.9)

The di v () function takes two arguments, x and y, and returns the algebraic
quotient of x/y with any fractional part discarded (i.e., truncation toward zero).
The arguments may be of type Real or Integer. If either of the arguments
is a Real, the result is a Real otherwise the result is an Integer. Examples
of using the di v () function include:

div(3.2,1.2) -+ 2.0
div(-3.2,1.2) -+ -2.0
div(3.2, -1.2) -+ -2.0
div(-3.2, -1.2) -+ 2.0

(5.10)
div(7,2) -+ 3
div(-7,2) -+ -3
div(7, -2) -+ -3
div(-7,-2) -+ 3

5.7.7.8 Remainder

The rem () function takes two arguments, x and y, and returns the remainder
discarded by the di v () function. This can be expressed mathematically as:

rem(x, y) = x - div(x, y) * y (5.11)

The arguments may be of type Real or Integer. If either of the arguments
is a Real, the result is a Real otherwise the result is an Integer. Examples
of using the rem () function include:

5.7.7.9 Modulo

rem(3.2,1.2)
rem(-3.2,1.2)
rem(3.2, -1.2)
rem(-3.2, -1.2)

-+ 0.8
-+ -0.8
-+ 0.8

(5.12)

-+ -0.8

The mod () function takes two arguments, x and y, and returns the modulus
of x and y, i.e.,

mod(x, y) = x - floor(x/y) * y (5.13)

The arguments may be of type Real or Integer. If either of the arguments
is a Real, the result is a Real otherwise the result is an Integer. Examples

walter.ponge@terra.com.br

108 INTRODUCTION TO PHYSICAL MODEUNG WITH MODEUCA

of using the mod () function include:

5.7.8

mod(3.2, 1.2)
mod(-3.2,1.2)
mod(3.2, - 1.2)
mod(-3.2, - 1.2)

External subroutines

-t 0.8
-t 0.4
-t -0.4
-t -0.8

(5.14)

As discussed in Section 5.6, it is often desirable to use existing subroutines
written in C or FORTRAN77. Let us review the details that were not covered
by the examples.

5.7.8.1 Type matching

Table 5.2 shows the Modelica built-in types and their corresponding C type.7

This is why the C function prototype for Example 5.6 was:

void compute_enthalpy(double P, double T, double *h);

If Example 5.7 were written in C, its function prototype would be:

void calcprops(double P, double T, double *h, double *u,
double *cp, double *rho);

Modelicatype C type (inputs) C type (outputs)
Real double double *
Integer int int *
Boolean int int *
String const char * N/A (input only)
Real [dim!,··· ,dimn 1 double * , size_t diml, ... , size_t dimn

Integer [dim!,···, dimn 1 int * , size_t diml, ... , size_t dimn
Boolean [dim!, ... ,dimn 1 int * , size_t diml, ... , size_t dimn

Table 5.2. Modelica types H C types.

When invoking a C language subroutine, it is possible to pass a record to
the external subroutine. When passing a record, it is important to keep several
things in mind. First, when a Modelica record is passed into a C language
subroutine it appears in the C subroutine as a pointer to a structure. The structure
definition should include the same components as the Modelica record in the
same order and using the type mapping shown in Table 5.2. So, the following
record definition:

7The C type size_t used in Table 5.2 is defined in header file stddef. h.

walter.ponge@terra.com.br

record RecDef
Real a[S];
Integer b[10];
Real c;

end RecDef;

would correspond to the following C structure definition:

struct RecDef
double a[S];
int b [10] ;
double c;

} ;

Functions 109

Note that Modelica does not support the passing of records containing variable
sized arrays. If that is an issue, it is better to pass the record as individual
arguments.

In addition to the C language, the Modelica language specification also
provides for the possibility that the external subroutine is written in FOR­
TRAN77. Table 5.3 shows the mapping between Modelica built-in types and
FORTRAN77 types.s This mapping was used to create the subroutine header
shown in Section 5.6.2.

Modelicatype

Real
Integer
Boolean

FORTRAN77 type

DOUBLE PRECISION

INTEGER
LOGICAL

Real [dim1, ... , dimn] DOUBLE PRECISION, INTEGER DIM!, ... ,

INTEGER DIMN
Integer [dim],"', dimn]

Boolean [dim1,"', dimn]

INTEGER, INTEGER DIM!,
LOGICAL, INTEGER DIM!,

Table 5.3. Modelica types B FORTRAN77 types.

5.7.8.2 Custom subroutine invocation

INTEGER DIMN
INTEGER DIMN

In our examples, we have seen one way that external subroutines can be
invoked. In all cases, the language and the order of arguments was specified
explicitly. It is recommended that external subroutines be invoked in this way
whenever possible to avoid any potential confusion.

However, in some circumstances it may be necessary to customize the han­
dling of return values. This case comes about primarily when a C subroutine

8Note. there is no mapping to FORTRAN77 for the String type in Modelica.

walter.ponge@terra.com.br

110 INTRODUCTION TO PHYSICAL MODELING WITH MODELICA

already exists that returns its value (in the C sense) rather than assigning to
a variable which was passed by reference. For example, let us imagine that
the compute_enthalpy subroutine discussed in Section 5.6 and used in
Example 5.6 had a prototype which looked like:

double compute_enthalpy(double P, double T);

and the return value of the subroutine was the enthalpy. To use this subroutine
directly, we could substitute the external declaration in Example 5.6 with the
following declaration:

external "e" h = compute_enthalpy (P,T) ;

5.7.8.3 Compiler options

Simply saying the external subroutines are written in C or FORTRAN77
does not always provide enough information. For example, FORTRAN77 and
C compilers sometimes append or prepend a "_" character to subroutine names
in the compiled object code. It is the responsibility of the simulation tool to
provide a way to deal with compiler and operating system specific issues like
these.

5.7.8.4 Side effects

Functions should not have side effects (i.e., they must always return the same
output for a given set of inputs). This is particularly important to keep in mind
when writing external subroutines because it is easy to inadvertently introduce
such side effects. These side effects may come from reading from or writing to
global variables or from the use of third party libraIies which themselves have
side effects.

The way to avoid side effects is to make sure that a function's outputs are
dependent only on the inputs. In other words, do not read from or write to any
persistent data (e.g., global vaIiables or files). In some cases, it is impractical
to avoid keeping persistent data but it is still possible to avoid side effects.
For example it is useful, when optimizing the performance of an external
subroutine, to introduce some kind of persistent cache. Such approaches are
fine so long as they continue to satisfy the restIiction that for a given set of
input values, the output values are always the same (i.e., the cache improves
performance but does not affect the result).

5.8 PROBLEMS
PROBLEM 5.1 Write a function to perform cubic interpolation. III addition
to the arguments usedfor the Piecewisefunctionfrom Example 5.3, add an
additional argument that provides the slope of the junction (i.e., ~;) at each
grid point. Assuming the value of x is defined such that Xk ::; x ::; Xk+l. the

walter.ponge@terra.com.br

Functions 111

value of the function can be interpolated using the following equations:

e = x -Xk

Xk+1 - Xk

a = Yk+1 + (~~) k+1 + 3 [(~~) k + Yk - Yk+1]

b

c

d

y(x)

-2 (dY) - Yk
dx k

(dY) + 3(Yk+1 _ Yk _ (dY)) _ (dY)
dx k dx k dx k+1

(~~) k

(5.15)

(5.16)

(5.17)

(5.18)

(5.19)

(5.20)

where Yi is the value of the function at the ith grid point and (~)i is the slope
of the function at the ith grid point.

PROBLEM 5.2 Read Section 14.5 and then create a Modelicafunction that
computes the Jacobian for the interpolation function in Problem 5.1. To keep
things simple, assume that the x_grid, y_grid and dydx_grid values are
all constant. (Hint: You really only need to differentiate Equation (5.20) but
remember that e = e (x))

PROBLEM 5.3 Write a function that takes a vector (i.e., an array of real
numbers) as an argument and returns the magnitude of the vector.

PROBLEM 5.4 Write afunction to take the inner product of two vectors. Be
sure to include assertions that ensure the vectors are the same size.

PROBLEM 5.5 Write afunctioll that takes the position and masses of two free
bodies and calculates the gravitational force between them. The gravitational
force should be returned as a vector. The magnitude of the gravitational force
is given by the equation:

p= M I M2G
r2

The force vectors are then calculated as:

iA-+2 =
p(X2 - xI)

r

F2-+I =
p(XI-X2)

r

(5.21)

(5.22)

(5.23)

walter.ponge@terra.com.br

Chapter 6

USING ARRAYS

6.1 CONCEPTS
Although we have covered enough material to build up complex systems,

there is still quite a bit of important functionality left to cover. In this chapter,
we focus on arrays and the control structures (i.e., if, for and while) used to
operate on them.

First, we focus on the declaration of arrays. Modelica allows us to declare
arrays of scalars (e.g., an array of floating point numbers) as well as arrays
of components (e.g., an array of Resistor instances or an array of record
instances). Arrays of scalars are useful for representing mathematical entities
like vectors and matrices. l Furthermore, Modelica includes features to support
writing vector and matrix equations or assignments. Arrays of components are
most useful when a large or variable number of components are needed.

As soon as you start using arrays, you quickly recognize the need for control
structures like for and while. When working with arrays of scalars, control
structures are useful for looping over the elements of an array. For arrays
of components, these same control structures can be used to help connect
components within an array to other models.

6.2 PLANETARY MOTION: ARRAYS OF
COMPONENTS

In this section, we look at simulating the motion of several bodies exerting
a gravitational force on each other. Figure 6.1 shows a sample configuration of
bodies.

I Modelica supports arrays with any number of dimensions. In this chapter. we will focus on vectors (i. e.,
one dimensional arrays).

walter.ponge@terra.com.br

114 INTRODUCTION TO PHYSICAL MODELING WITH MODELICA

Figure 6.1. Several bodies mutually attracted by gravitational forces.

6.2.1 Connector

connector BodyAttachment
import S1=Modelica.S1units;
S1.Position x, y, z; II Prevents using vector equations
flow S1.Force fx, fy, fz;
S1.Mass m;

end BodyAttachment;

Example 6.1. Poorly designed connector definition for use in multiple body problems.

In order to proceed, we must first decide what our connector definition
should look like. Each of the objects in our simulation has a mass, position
and external force associated with it. One possible connector definition for
these bodies is shown in Example 6.1. However, writing equations for x, y and
z is tedious since the same equation (i.e., Newton's Law) applies to each of
them. For that reason, we use vectors to represent position and force as shown
in Example 6.2.

Because the forces on each body must sum to zero (in each dimension), the
Force component of the connector has been declared as a flow variable.

walter.ponge@terra.com.br

Using Arrays 115

connector BodyAttachment
import Modelica.Slunits;

SIunits.Position x[3] ;
flow SIunits.Force f[3];
SIunits.Mass m;

end BodyAttachment;

Example 6.2. Better connector definition for multiple body problems (using vectors).

model Body
import Modelica.Slunits;
parameter SIunits.Mass M=l.O;
parameter SIunits.Velocity init_v[3]
parameter SIunits.Position init_x[3]

BodyAttachment b;
protected

{o,o,o};
{O,O,O};

SIunits. Position x [3] (start=init_x, fixed=true) ;
SIunits.Velocity v[3] (start=init_v,fixed=true);
SIunits.Acceleration a[3];

equation
b.x = x;
b.m = M;
v = der (x) ;
a = der (v) ;
M*a = b.f;

end Body;

Example 6.3. Model for a free body in three dimensional space.

6.2.2 Bodies in three dimensional space
To model the behavior of a body floating in three dimensional space subject

to external forces, we use Newton's law:

F =ma (6.1)

where F is the force exerted on the body, m is the mass of the body and a is
the acceleration ofthe body. Using Newton's Law, creating a model for such a
body is quite simple as shown in Example 6.3.

Notice how compactly the equations of motion can be written for these bod­
ies. Equations like v = de r (b. x) are vector equations. In other words, each
component of v is equated to the derivative of the corresponding component of
b.x.

walter.ponge@terra.com.br

116 INTRODUCTION TO PHYSICAL MODEUNG WITH MODEUCA

The purpose of the protected section in models is to declare any quantities
that are internal to the model. Such protected quantities, like the Veloci ty in
this case, cannot be accessed by external models. These protected components
can only be accessed by the model in which they appear or any model which
extends from it.

Because the position and velocity of each body are protected, it is not
possible for other models to directly modify the start attributes of these
variables. Instead, their initial values are supplied by the public parameters
iniLx and init_v respectively. Note how these parameters are used in
modifying the start attribute. This is one way to allow limited access (e.g.,
access for modifying only the start attribute) to protected components.

6.2.3 Gravitational attraction
Gravitational attraction between two bodies is computed using the following

equation:

F = MI M 2G (6.2)
r2

where F is the magnitude of the attracting force, MI is the mass of the first
body, M2 is the mass of the second body, G is the universal gravitational
constant and r is the distance between the bodies. This equation only computes
the magnitude ofthe force. It is then necessary to multiply this force by the unit
vectors representing the relative positions of each body from the other. This
leads to the following two equations:

F(X2 - Xl)
r

F(XI - X2)
r

(6.3)

(6.4)

where iA-+2 is the force exerted on the first body by the second and F2-+1 is
the force exerted on the second body by the first. This gravitational force is
computed by the function shown in Example 6.4. Note that the equation for
on-hodyl in Example 6.4 is a vector equation.

Just having a function that computes gravitational forces is not sufficient,
we must have a gravitational attraction model which applies those forces to the
bodies in our system. Once we have the CalcForce function in Example
6.4, we can write our gravitational attraction model as shown in Example 6.5.

Here we see again another parallel to software development. When de­
veloping a large software system, the declaration of a function with such a
specific purpose and generic name would be frowned upon. The reason is
that somebody else may have written a function with the same name for use
with a different model. For example, imagine some day we wish to use a
model developed by someone else and this model also uses a function called

walter.ponge@terra.com.br

Using Arrays 117

function CalcForce "Calculate Force on bodyl due to body2"
import Modelica.Slunits;

input SIunits.Position bodyl[3];
input SIunits.Mass MI;
input SIunits.Position body2[3];
input SIunits.Mass M2;
output SIunits.Force on_body I [3] ;

protected
SIunits.Distance r;
SIunits.Force F;

algorithm
r := sqrt«bodyl[I]-body2[1])A2+(bodyl[2]-body2[2])A2+

(bodyl[3]-body2[3])A2);
F .- MI*M2*Modelica.Constants.G/rA2;
on_body I := F*(body2-bodyl)/r;

end CalcForce;

Example 6.4. A function to calculate gravitational force.

model GravitationalAttraction
BodyAttachment bl, b2;

equation
. bl.f = -CalcForce(bl.x, bl.m, b2.x, b2.m);

b2.f = -blof;
end GravitationalAttraction;

Example 6.5. A gravitational attraction model.

CalcForce. Let us assume that their CalcForce is different from ours
(i.e., it performs a different calculation and/or uses a different number of argu­
ments). One of two things is likely to happen. One possibility is that we will
not realize that they require a function named CalcForce and their model
will attempt to use our funct ion called Cal cForce. The other possibility is
that we realize their function is required in which case we have two functions
named CalcForce, which is not allowed.2

One way to avoid both of these situations is to declare the function within
the model that uses it. In such a case, our model would look like the one seen in
Example 6.6. Notice that we have included the function in a protected sec­
tion so that other models may not make use of this funct ion (except any model
that extends from the GravitationalAttraction model). The other

2In Modelica, it is illegal to define two function with the same (fully qualified) name.

walter.ponge@terra.com.br

118 INTRODUCTION TO PHYSICAL MODELING WITH MODELICA

way to protect against such problems is to give functions very specific names so
there will be no potential for confusion (e.g., CalcGravi tationalForce).

model GravitationalAttraction
BodyAttachment bl, b2;

protected
function CalcForce "Calculate Force on bodyl from body2"

input Modelica.SIunits.Position bodyl[3];
input Modelica.SIunits.Mass Ml;
input Modelica.SIunits.Position body2[3];
input Modelica.SIunits.Mass M2;
output Modelica.SIunits.Force on_body 1 [3] ;

end CalcForce;
equation

bl.f = -CalcForce(bl.x, bl.mass, b2.x, b2.mass);
b2. f = -bI. f;

end GravitationalAttraction;

Example 6.6. Encapsulating the gravitational force calculation

6.2.4 Simulating several bodies

model BinarySystem "A binary system"
Body sun(M=1.98ge+30);
Body earth(M=5.976e+24, init_v={O, 29.2ge+3, o},

init_x={152.1e+9, 0, o});
GravitationalAttraction earth_sun;

equation
connect (earth_sun.bl,sun.b) ;
connect (earth_sun.b2,earth.b) ;

end BinarySystem;

Example 6.7. Creating a binary system.

Example 6.7 shows how we might write a model for a binary system (i.e.,
a system containing two bodies). The model includes astronomical data for
the Earth and the Sun. Example 6.8 shows how easy it is for us to extend the
BinarySystem to include the Moon as well. Figure 6.2 shows the path of
the Earth during a simulation of 31.5581 . 106 seconds (approximately 1 year).
As expected, this results in one orbit of the Earth around the sun. In addition,
it also shows the Moon's path, exaggerated in the figure by a factor of 20, as it
orbits the earth dming the same period.

walter.ponge@terra.com.br

Using Arrays 119

2e+llr---~----'---~r----r----~--~-----r----'

Moon (exaggerated)

Earth

le+l1

o

-le+ll

-2e+llL---~----~--~----~----~--~----~--~

-2e+ll -le+ll o le+l1 2e+ll

X Position [m]

Figure 6.2. Simulating the motion of the Earth and the Moon for approximately 1 year.

model TernarySystem "Earth, Moon & Sun"
extends BinarySystem;
Body moon(M=7.34ge+22,

init_v={0,29290+1020,0},
init_x={152484e+6, 0, O});

GravitationalAttraction moon_earth;
GravitationalAttraction moon_sun;

equation
connect (moon_earth.bl,moon.b) ;
connect (moon_earth.b2,earth.b) ;
connect (moon_sun.bl,moon.b) ;
connect(moon_sun.b2,sun.b) ;

end TernarySystem;

Example 6.8. A system including the Earth. Sun and Moon.

walter.ponge@terra.com.br

120 INTRODUCTION TO PHYSICAL MODEUNG WITH MODEUCA

6.3 SIMPLE ID HEAT TRANSFER: ARRAYS OF
VARIABLES

When performing simulations, a common need is to solve for variables
which are not only a function of time, but also of location. Now we will use a
one-dimensional heat transfer problem to demonstrate how arrays can be used
to simulate such systems.

6.3.1 Governing equations
We start by listing the equations needed to solve this problem. These

equations will then be transformed into Modelica models.

6.3.1.1 Conservation of energy

For example, consider the following partial differential equation for heat
conduction (see, e.g., Fowler, 1997):

dd r pCpT dV = - r .f. it dS
t lv' ls (6.5)

where V is the volume of the domain being considered, S is the boundary
surface of V, P is the density of the material, Cp is the specific heat capacity
of the material, T is the temperature at any given point in the domain, .f is the
heat flux at a given point on the boundary and it is the vector normal to the
surface S at a given point on the surface.

Let us assume we are solving this equation in a rod with a uniform cross­
sectional area, A (see Figure 6.3). Integrating the left hand side of Equation
(6.5) over a section of length L gives us:

d 1 aTv -d pCpT dV =} ALpcp - a t v t
(6.6)

which represents the thermal capacitance of that section assuming the section
has an effective uniform temperature of Tv. The right hand side of Equation
(6.5) could represent a variety of different heat transfer mechanisms (i.e., con­
duction, convection or radiation) over all surfaces of the rod. For the moment,
let us consider only the case of conduction over the surfaces Sl and Sr, in
Figure 6.3. Using Fourier's law (if = -k%) the contribution of these surfaces
to the right hand side of Equation (6.5) would be:

- r .f. it =} Ak aT I ls ax s (6.7)

where k is the thermal conductivity of the material and fx' I s is the temperature
gradient normal to the surface S. Assuming these specific surfaces and modes

walter.ponge@terra.com.br

Using Arrays 121

Figure 6.3. Heat transfer in a one-dimensional rod.

of heat transfer, we can rewrite Equation (6.5) as:

ALfJCp OTv = Ak OT I _ Ak OT I
&t ax Sr ax SI

(6.8)

6.3.1.2 Spatial discretization

The next step in deriving the system of equations is to eliminate the spatial
derivatives (i.e., fx). To do this, we must make some a priori assumptions
about how the temperature, T, is distributed along the rod in the x-direction. Let
us assume that from one discrete section of the rod to another the temperature
varies linearly. If we make this assumption, Equation (6.8) can be rewritten as:

ALfJCp fJ7i = Ak 'Ii + I -'Ii _ Ak Ti -'Ii-I
&t XHI - Xi Xi - Xi-I

(6.9)

Now we have an equation for the time derivative of the temperature, T, for
the ith section of the rod written in terms of geometric quantities (Le., A and
L), material properties (i.e., k, p and Cp) and the temperatures of neighboring
sections (i.e., 'Ii-I and'Ii+l).

walter.ponge@terra.com.br

122 INTRODUCTION TO PHYSICAL MODELING WITH MODELICA

6.3.1.3 Simplifications

At this point, we may be tempted to divide Equation (6.9) by A in order to
simplify it into an equation like:

L a~ _k(1i+l-~ _ ~-~-l) pCp -,
at Xi+l - Xi Xi - xi-l

(6.10)

Furthermore, we might wish to assume that the discretization of the rod is
uniform which would further reduce the equation to:

~ k (Ti+l - 2~ + Ti-d
pCp at = ~x2 (6.11)

In fact, this is a common form of the heat transfer equation. Notice that the
terms in Equation (6.8) have units of heat flow rate (i.e., the time derivative
of a conserved quantity). However, in Equation (6.11) the terms have units of
heat flow rate per unit volume. The problem with Equation (6.11) is that it is
no longer a conservation equation. To understand this, let us revisit Equation
(6.8). Let us annotate the equation with information about each term:

aT
ALpcp at
'-----.---'

thermal capacitance

aTl Ak ax r

'---.".----'
conduction at 5 r

Ak:11
'---v----'"

conduction at 5l

(6.12)

Imagine we wish to add a convective heat transfer term to represent heat loss
over the surface Sp (see Figure 6.3). In that case, we would amend Equation
(6.12) to include an additional term giving us:

aT aTl aTI ALpcp-a = Ak -a - Ak -a - Aph (Ti - Too)
t Xr Xl' v j

(6.13)

convection at 5p

where Too represents the ambient temperature and Ap is the area of surface Sp
in Figure 6.3. Note that the simplifying assumptions are no longer possible
with this form of the equation (e.g., we cannot eliminate A from each term).
Because this equation remains in units of heat flow rate, adding a new mode of
heat transfer is as simple as adding another term. The same cannot be said of the
simplified form shown in Equation (6.10. In the next sections we will consider
the advantages and disadvantages of creating models based on Equation (6.9)
and Equation (6.11).

6.3.2 Equation based approach
Example 6.9 shows a model which uses Equation (6.11) and also includes

several boundary conditions. The initial temperature of every point is 300K .
We assume that the temperature of the first node jumps from 300K to lOOOK

walter.ponge@terra.com.br

Using Arrays 123

after 1 second and the temperature of the last node is fixed at 300K (these
conditions are enforced by the last two equations in Example 6.9). For this
example, the solution reaches steady state after approximately 25 seconds of
simulation time (as we will see later in Figure 6.8). Example 6.9 uses the
f i 11 () function (which is described in greater detail in Table 6.1) to create
the array of initial temperatures.

Example 6.9 shows an equation based approach to solving partial differential
equations. In this example, the temperature variables are represented by an
array and the equations are generated using for loops. Note that we can
choose how fine the discretization is by changing the value of n independent
of the geometry of the problem (Le., total length). As mentioned previously, a
system written in this way lacks the flexibility to add additional modes of heat
transfer without having to reformulate the fundamental equation (i.e., Equation
(6.11).

model HeatTransfer "One Dimensional Heat Transfer"
import Modelica.SIunits;

II Configuration parameters
parameter Integer n=lO "Number of Nodes";
parameter SIunits .Density rho=!. 0 "Material Density";
parameter SIunits.HeatCapacity c-F=l.O;
parameter SIunits.ThermalConductivity k=l.O;
parameter SIunits . Length L=lO. 0 "Domain Length";

II Temperature Array
SIunits.Temp_K T[n] (start=fill(300,n)) "Nodal Temperatures";

protected
II Computed parameters
parameter SIunits . Length dx=L/n "Distance between nodes";

equation
II Loop over interior nodes
for i in 2:n-l loop

rho*c_p*der(T[i]) = k*(T[i+1]-2*T[i]+T[i-1])/dx A 2;
end for;

II Boundary Conditions
T [1] = if time>=l then 1000 else 300;
T[n] = 300;

end HeatTransfer;

Example 6.9. Using arrays of variables to solve Equation (6.11).

walter.ponge@terra.com.br

124 INTRODUCTION TO PHYSICAL MODEUNG WITH MODEUCA

6.3.3 Component based approach
In Chapter 3, we saw how to transform a model containing a complete system

of equations into a collection of reusable models. We will once again demon­
strate how to perform such a transformation but this time using models which
contain partial differential equations. Using Equation (6.9) as the basis for our
component based approach, each term in Equation (6.9) will be represented by
a different model and the terms will be summed automatically when the models
are connected.

6.3.3.1 Connector definitions

connector ThermalNode "Thermal Connector"
Modelica.Slunits.Temp_K T(start=300);
flow Modelica.Slunits.HeatFlowRate q;

end ThermalNode;

Example 6.10. Connector for heat transfer.

As usual, we start with the connector definition. We will use a connector with
temperature as the across variable and heat flow rate as the through variable.
Example 6.10 shows the connector used for this example.

6.3.3.2 Thermal conduction

Now that we have our connector definition, we can begin writing the various
models required. We start with the heat conduction model which represents
the right hand side terms in Equation (6.9). Example 6.11 shows how we can
express thermal conduction as a model independent of other modes of heat
transfer.

6.3.3.3 Thermal capacitance

Next, we need to represent the contribution on the left hand side of Equation
(6.9). This term represents the thermal capacitance of the rod material for a
given volume. A model which describes this behavior is shown in Example
6.12.

6.3.3.4 Fixed temperature boundary condition

The last component we need, shown in Example 6.13, is one to represent a
fixed temperature, or Dirichlet, boundary condition.

walter.ponge@terra.com.br

Using Arrays 125

model ThermalConduction "l-D Conduction Heat Transfer"
import Modelica.Slunits;
II Physical parameters
parameter SIunits.ThermalConductivity k=1.0;
parameter SIunits.Length L=1.0;
parameter SIunits.Area A=1.0;

I I Connectors
ThermalNode a, b;

equation
a.q = A*k*(a.T-b.T)/L;
b.q = -a.q;

end ThermalConduction;

Example 6.11. Thermal conduction.

model ThermalCapacitance "Capacitance of a rod section"
ThermalNode p "Midpoint connection";
parameter Modelica.Slunits.SpecificHeatCapacity cp;
parameter Modelica.Slunits.Density rho;
parameter Modelica.Slunits.Length L;
parameter Modelica.Slunits.Area A;

protected
parameter Modelica.Slunits.Volume V=A*L;

equation
II Conservation of energy
V*cp*rho*der(p.T) = p.q;

end ThermalCapacitance;

Example 6.12. Thermal capacitance.

model FixedTemperature
Modelica.Blocks.lnterfaces.lnPort T(final n=l);
ThermalNode d;

equation
d.T = T.signal[l];

end FixedTemperature;

Example 6.13. Fixed temperature boundary condition.

6.3.3.5 Conducting rod

Now before bringing all the components together, let us look at an example
of how the spatial aspect of the problem can be bundled up within a single
component model. We do this by creating a network of lumped components

walter.ponge@terra.com.br

126 INTRODUCTION TO PHYSICAL MODEUNG WITH MODEUCA

as we have in previous sections.3 Figure 6.4 gives a graphical representation
of such a one dimensional conducting rod and Example 6.14 contains the
Modelica source code. Note that the connectors a and b in ConductingRod
represent the external connection points for the rod.

Also note that the Conduc t ingRod model enforces the uniform discretiza­
tion of the rod (see Figure 6.4). For example, the model makes sure the length
in the conduction models (distance from center of one segment to center of an­
other) is consistent with the length of the thermal capacitance models (distance
from left surface to right surface).

..

I- dx -I I- dx -I

Figure 6.4. Schematic for ConductingRod model in Example 6.14.

6.3.3.6 Sample heat transfer problem

Now we have all the components we need to represent the same system
as the one shown in Example 6.9. This time, we have created our system,
HTProbleml, from reusable components rather than writing the complete
conservation equation inside a single model as we did in the HeatTransfer
model from Example 6.9.

The simulation results from HTProbleml can be seen in Figure 6.5. The
temperatures at the end of the simulation are plotted in Figure 6.8 as a function
of longitudinal distance along the rod. Figure 6.8 demonstrates that the steady
state temperature profile develops into a linear solution which is exactly the
solution expected for this problem.

The results from Example 6.9 (i.e., HeatTransfer) and Example 6.15
(i.e., HTProbleml) are identical. While the HTProbleml model is more
compact and readable, some people prefer the approach taken in the Hea t­
Transfer model because the partial differential equation is shown explicitly.

3The term lumped refers to models where the spatial aspect of the problem is not considered. The term
distributed is used when the spatial aspect is explicitly described. In this sense. Example 6.14 encapsulates
a distributed model inside a lumped model.

walter.ponge@terra.com.br

model ConductingRod
import Modelica.SIunits;

Using Arrays 127

parameter SIunits . Length L=l.O "Total length";
parameter SIunits .Area A=l.O "Cross-sectional area";
parameter SIunits.SpecificHeatCapacity cp=l.O;
parameter SIunits.Density rho=l.O;
parameter SIunits.ThermalConductivity k=l.O;
parameter Integer n=lO "Number of sections";

ThermalNode a, b; II External connections
protected

parameter SIunits.Length dx=L/n;
ThermalCapacitance cap[nl (L=dx,A=A,rho=rho,cp=cp);
ThermalConduction c_cond[n-1] (L=dx,A=A,k=k);
ThermalConduction l_cond(L=dx/2,A=A,k=k);
ThermalConduction r_cond(L=dx/2,A=A,k=k);

equation
for i in 1:n-1 loop

connect (c_cond[il .a,cap[i] .p);
connect (c_cond[i] .b,cap[i+1] .p);

end for;
connect (a, l_cond.a) ;
connect (l_cond.b,cap [1] .p);
connect (b,r_cond.b) ;
connect (r_cond.a,cap [nl .p);

end ConductingRod;

Example 6.14. A rod which conducts heat.

model HTProblem1 "Conducting rod with boundary conditions"
Modelica.Blocks.Sources.Constant Tl(k={300.0});
Modelica.Blocks.Sources.Step Tr(height={700.0},

offset={300.0}, startTime={lO.O});
FixedTemperature left, right;
ConductingRod rod(n=lO,L=lO.O,k=l.O,cp=l.O,rho=l.O);

equation
connect (Tl.outPort,left.T) ;
connect (Tr.outPort,right.T) ;
connect (left.d, rod.a);
connect (right.d, rod.b);

end HTProblem1;

Example 6.15. Heat transfer in a conducting rod with boundary conditions.

walter.ponge@terra.com.br

128 INTRODUCTION TO PHYSICAL MODELING WITH MODELICA

L LOO r---.,-----.------,--,---,---,---r-,---.r-----r,-----r---,

L 000 I- --- Node 2
.. Node 4

.- .. - Node 6
900 t- -.-- Node 8

...... Node LO

gOO I- - Rightend

500

:.

400 f- i ,. _---------------------------------
___ ---"'-/.c../ ~=_.:.:~----- ...

300 t-

Time [s]

Figure 6.5. Solution for HTProbleml model in Example 6.15.

6.3.3.7 Conducting rod with convection

Now, let us model the system described by Equation (6.l3). In other words,
we wish to add a thermal convection term. Example 6.16 shows a model for
representing thermal convection.

f- dx -t f- dx -t f- dx -t f- dx -t

Figure 6.6. Schematic for ConductingRodWi thConvection shown in Example 6.17.

Next, Example 6.17 shows how we can extend the Conduct ingRod model
in Example 6.14 to include thermal convection by adding a few components
and connections. Note the difference between the diagram for Conduct ing­
RodWithConvection shown in Figure 6.6 and the original diagram for
ConductingRod shown previously in Figure 6.4.

walter.ponge@terra.com.br

Using Arrays 129

model Thermal Convect ion "l-D Convective Heat Transfer"
II Physical parameters
import Modelica.Slunits;
parameter SIunits.CoefficientOfHeatTransfer h=l.O;
parameter SIunits.Area A=1.0;

II Connectors
ThermalNode a, b;

equation
a.q = A*h*{a.T-b.T};
b.q = -A*h*{a.T-b.T};

end ThermalConvection;

Example 6.16. A model of thennal convection.

model ConductingRodWithConvection
import Modelica.Slunits;
extends ConductingRod;

parameter SIunits . Length perimeter=l. 0;
parameter SIunits.CoefficientOfHeatTransfer h=1.0;
ThermalNode ambient;

protected
- parameter SIunits.Area As=perimeter*dx;

ThermalConvection conv[nl {h=h,A=As};
equation

for i in l:n loop
connect {cap [il .p, conv [il . a} ;
connect {ambient, conv [il .b};

end for;
end ConductingRodWithConvection;

Example 6.17. Addition of the convection effect.

6.3.3.8 Another sample heat transfer problem

By adding a convective heat transfer contribution to Example 6.15 we arrive
at the model shown in Example 6.18. Figure 6.7 shows simulation results
for Example 6.18. If we compare the results in Figures 6.5 and 6.7, we
can see two distinct features resulting from the convection. The first is that
the temperatures shown in Figure 6.7 start rising immediately because of the
convective heat transfer. Another effeCt, due to convection, is that the steady
state temperatures are not evenly spaced as they were in Figure 6.5.

Another interesting comparison between Examples 6.15 and 6.18 is shown
in Figure 6.8. The figure contains a comparison between the steady state

walter.ponge@terra.com.br

130 INTRODUCTION TO PHYSICAL MODELING WITH MODELICA

model HTProblem2 "Variation on HTProbleml"
Modelica.Blocks.Sources.Constant Tl(k={300.0});
Modelica.Blocks.Sources.Constant Tinf(k={600.0});
Modelica.Blocks.Sources.Step Tr(height={700.0},

offset={300.0}, startTime={lO.O});
FixedTemperature left, right, wall;
ConductingRodWithConvection rod(n=lO,L=lO.O,

k=1.O,cp=1.O,rho=1.O,h=O.3) ;
equation

connect (TI.outPort,left.T) ;
connect (Tr.outPort,right.T) ;
connect (Tinf.outPort,wall.T) ;
connect (left.d, rod.a);
connect (right.d, rod.b);
connect (wall.d, rod.ambient);

end HTProblem2;

Example 6.18. Heat transfer problem involving conduction and convection.

1100 r--,----,---r--,--,----,---,--.....----,---.----,

1000

900

800

g
~ 700
~

i 600

~
500

400

300

Node 2
Node 4
Node 6
Node 8
Node 10

- Rightend

-,._", _., -.. _.-_ .. _ .. -.. _ .. _." _., -,. _ .. -.. -.. -.. -.. _ .. -.. -,.- .. _ .. -. '-'
-,:," --------------------------------

i:~:~-~ ~- t_ ~~_ ~~ _________________ --- -- -- -- --- --- ---- -- ---- --- --- -----

y

200~-0~-~-~IO-~-~20~~--730~~~~4~0--L-~50

Time [s]

Figure 6.7. Simulation results for HTProblem2 model shown in Example 6.18.

temperature distributions of these two examples. The solution involving only
conduction develops into a linear profile which is also the analytical solu­
tion. The solution with conduction and convection is clearly influenced by the
ambient temperature of 600K.

walter.ponge@terra.com.br

6.3.4

Using Arrays 131

I~r---.---.---.---'---.---.---.---'---'---~

- Conduction
900 ---- Conduction & Convection

soo

SOO /_///-

/'/

400 ///

~~ .. ~,,..,..

~""

~"" """

100~/--~---7--~---7--~--~--~--~--~--~
- 0 4 6 10

Longitudinal Position [rn]

Figure 6.S. Comparison of steady-state solutions to HTProbleml.

Standard heat transfer components
While the MSL does not currently contain definitions to support heat transfer

modeling, a library of heat transfer component definitions, called Thermal,
is included on the companion CD-ROM. Furthermore, a thermal library will
eventually be incorporated into the MSL and it is likely such a library will have
the same basic components and connector definitions as those found in the
Thermal library.

Example 6.19 shows how the ConductingRod model from Example 6.14
would look if we had used the components in the Thermal package. As we
shall see in Section 10.3, the Thermal package contains additional models,
beyond the ones shown in Example 6.19, which provide connections between
the thermal domain and other domains like the electrical and mechanical do­
mains.

6.3.5 Summary
We started by showing how we can quickly express a particular partial

differential equation in Modelica. Then, we saw how, with a little more
work, we could create a collection of reusable component models. With these
reusable component models we can pose and solve a wide variety of heat
transfer problems with different heat transfer pathways, modes and boundary
conditions.

walter.ponge@terra.com.br

132 INTRODUCTION TO PHYSICAL MODEUNG WITH MODEUCA

model ConductingRod_Thermal
import Thermal.BasiclD;
import Modelica.SIunits;

parameter SIuni ts. Length L=l.O "Total length";
parameter SIunits . Area A=l.O "Cross-sectional area";
parameter SIunits.SpecificHeatCapacity cp=l.O;
parameter SIunits.Density rho=l.O;
parameter SIunits.ThermalConductivity k=l.O;
parameter Integer n=lO "Number of sections";

Thermal.Interfaces.Node a, b;
protected

parameter SIunits.Length dx=L/n;
BasiclD.Capacitance cap[n] (V=dx*A,rho=rho,cp=cp);
BasiclD.Conduction c_cond[n-l] (L=dx,A=A,k=k);
BasiclD.Conduction 1_cond(L=dx/2,A=A,k=k);
BasiclD.Conduction r_cond(L=dx/2,A=A,k=k);

equation
for i in l:n-l loop

connect (c_cond[i] .a,cap[i] .n);
connect (c_cond[i] .b,cap[i+l] .n);

end for;
connect (a, l_cond.a) ;
connect (l_cond.b, cap [1] .n);
connect (b,r_cond.b) ;
connect (r_cond.a, cap [n] .n);

end ConductingRod_Thermal;

Example 6.19. A conducting rod using the Thermal library.

6.4 USING ARRAYS WITH CHEMICAL SYSTEMS
6.4.1 Background

Simulations of chemical systems are usually concerned with the reaction and
transport of chemical constituents. These constituents do not move through the
system on their own. Instead, they are generally found in mixtures with other
chemicals.

In this section, we first discuss how general chemical systems can be rep­
resented in Modelica. To do this, we will build a basic collection of general
chemical models. Then, we will create a specific chemical system to test these
basic models.

Before we start introducing models it is necessary to cover some basic
notation. When a constituent is surrounded by square brackets (e.g., [AD that
quantity is the concentration of that constituent measured in moles per cubic

walter.ponge@terra.com.br

Using Arrays l33

meter. Furthermore, this chapter contains several chemical equations, e.g., :

A+Y -+
kay

X+P (6.14)

The constituents on the left hand side of the equation are called the reactants
and the constituents on the right hand side are called the products. The reaction
coefficient, in this case kay, appears below the arrow and is used to compute
the rate of the reaction (as we shall see shortly).

The model we have chosen to use as our example is called the "Oregona­
tor".4 The Oregonator is a simplified model of the Field-Koros-Noyes (FKN)
mechanism (see Earley, 1998) which is a chemical model of the Belousov­
Zhabotinskii reaction (described in detail in Fowler, 1997).

The Oregonator model is represented by the following reactions:

A+Y -+ X+P (6.15)
kay

X+Y -+ 2P (6.16)
k xy

A+X -+ 2X+2Z (6.17)
k ax

2X -+ A+P (6.18)
k2x

B+Z -+ (1/2)fY (6.19)
kbz

where A, P, X, Y and Z represent Br03, HOBr, HBr02, Br- and Ce4+
respectively, B represents oxidizable organic species and f represents the extent
to which organic species participate which, in tum, regulates the regeneration
of Y. Figure 6.9 shows how the Oregonator system could be visualized.

6.4.2 Chemical reactions
The Oregonator model is very simple and we could write out the differential

equations in just a few lines of Modelica. On the other hand, a better investment
of our time would be to build a collection of reusable Modelica models to
represent chemical systems in general. Once such a collection exists, with
a minimal amount of Modelica code we can create models for an enormous
variety of chemical systems rather than just one.

4The model is called the Oregonator because it was developed at the University of Oregon.

walter.ponge@terra.com.br

134 INTRODUCTION TO PHYSICAL MODEUNG WITH MODEUCA

Reaction Reaction

X+Y->2P

[A),[B),[P),[X),[Y),[Z)

Reaction Reaction
Reaction

B+Z-> (.5f)Y A+X->2X+2Z
2X->A+P

Figure 6.9. Visualization of the Oregonator reaction.

6.4.3 Mathematical form
Many chemical system models are represented as ordinary differential equa­

tions of the form:
[e] = g([e]) (6.20)

where [e] is a vector that represents the concentration of the different con­
stituents. As an example, after a tedious set of transformations the Oregonator
system of equations can be written as:

[X]

[Y]

[Z]

-kxy[X][Y] - 2k2x[X][Y] + kay [A][Y]

-kxy[X][Y]- kay[A][Y] + (f /2)kbz[B][Z]

2[A][X] - kbz[B][Z]

(6.21)

(6.22)

(6.23)

assuming [A] and [B] are fixed. The equation for [P] is usually neglected since
it is a product but not a reactant and therefore does not influence the trajectories
of [X], [Y] and [Z].

The difficulty with this form is that all the reactions are combined on the
right hand side of the equation. It is not possible to pick out details of specific
reactions or to understand some of the fundamental assumptions that went into
the formulation of the differential equations. As a consequence, in order to
make adjustments (e.g., adding another reaction) it is necessary to work back­
ward from these equations to Equations (6.15)-(6.19), make any adjustments
and then re-derive a new set of mathematical equations.

In contrast, the models we will develop in this section map directly to
Equations (6.15)-(6.19) and no further derivation will be necessary. In other
words, the natural representation of chemical reactions can be used. This allows
much greater flexibility in modifying the system of reactions. Furthermore, it

walter.ponge@terra.com.br

Using Arrays 135

will allow us to isolate the effects of individual reactions and avoid the tedious
task of performing the state space transformation.

6.4.4 Basic chemical models
In this section, we will develop a library of models and place them in a

package called Chemi s t ry. The following packages will be nested inside
the Chemistry package:

• Types: Contains any definitions that are specific to the Chemistry
package.

• Interfaces: Contains connector definitions and any partial model
definitions.

• Funct ions: Contains funct ion definitions specific to the Chemi s try
package.

• Basic: Contains basic models used for chemical models.

6.4.4.1 Connector definition
Normally, we would begin by creating a connector definition. However,

in this case we must first define a molar flow rate type as follows:

package Chemistry
package Types

type MolarFlowRate=Real(guantity=IMolarFlowRate",
unit="mol/s") ;

end Types;

end Chemistry;

Now that we have defined MolarFlowRate we can define the connector.
For the chemical systems presented in this chapter, we represent the availability
of constituents using concentrations (Le., number of moles per cubic meter).
The concentration of a particular constituent is an intensive property of the
mixture. It is quite common and convenient to measure the potentials (i.e.,
the across variables) in a system using intensive properties. For example, in
thermodynamic systems pressure and temperature (both of which are intensive)
are frequently used as the potentials.

On the other hand, in order for a connect statement to generate proper
conservation equations, the flow variables must be the time derivative of an
extensive property (an issue we touched on briefly in Section 6.3.1.3 as well).
For example, in thermodynamic systems the flow variables are typically mass
flow rate and heat flow rate which are the time derivatives of mass and energy,
respectively. Applying this same modeling principle (of extensive flows) to our

walter.ponge@terra.com.br

136 INTRODUCTION TO PHYSICAL MODEUNG WITH MODEUCA

chemical system results in the flow variables being measured as molar flow
rates (i.e., number of moles per second).5

Taking these considerations into account, we will use the following connectol
definition for all of our chemical models:

package Chemistry

package Interfaces
connector Mixture "A chemical mixture"

parameter Integer nspecies;
Modelica.SIunits.Concentration c[nspecies];
flow Chemistry.Types.MolarFlowRate r[nspecies];

end Mixture;
end Interfaces;

end Chemistry;

This connector is used for interactions involving chemical mixtures. The
concentrations, c, will have units mol 1m3 and the flow rates will be in moll s.
This means that any model which attaches to such a connector will have
access to the concentrations of each of the constituents at that connection point
and will have the ability to absorb or emit chemicals (e.g., due to chemical
reactions). Note that this model (and all the others in this section) will require
knowledge of how many chemical species are present. It is assumed that if
there are nspecies number of species, then each species will have a unique
identifying number between 1 and nspecies which will be used as an index
into the various arrays in the models.

One thing to note about the nested Types and Interfaces packages
inside the Chemistry package is that they are used by other nested packages.
The lookup rules in Modelica (described in detail in Chapter 9) allow other
nested packages to refer to the components of the Types and Interfaces
using names such as Interfaces. Mixture. Such usage can be seen in
several of the following code fragments.

6.4.4.2 Chemical control volume

The first thing we require is a place to keep our chemicals. For this, we
define the following Vol ume model:

package Chemistry

)While this combination of intensive potentials and extensive flows is quite common in thennodynamic
systems. it is important to note that this is an unusual convention for chemical systems. The typical
convention used in chemical systems is 10 measure the potential in moles and the reaction rates in moles per
second or to measure the potential in moles per cubic meter and the reaction rates in moles per cubic meter
per second (see Barton. 2(00).

walter.ponge@terra.com.br

Using Arrays 137

package Basic
model Volume "Volume containing a chemical mixture"

import SI=Modelica.SIunits;
parameter Integer nspecies;
parameter SI.Volume v=.OOl;
parameter SI.AmountOfSubstance i_moles[nspeciesl=

fill (l,nspecies) ;
Interfaces.Mixture p(nspecies=nspecies);

protected
SI.AmountOfSubstance moles [nspeciesl (start=i_moles);

equation
der(moles) = p.r;
p.c = moles/v;

end Volume;

end Basic;
end Chemistry;

The total volume is represented by the parameter v. Internally, the Volume
models uses the variable moles to keep track of the total number of moles of
each constituent present in the control volume. The change in the total number
of moles of each constituent is computed from the flow through the connector.

In some cases, we will wish to hold the concentration of a particular con­
stituent constant. In this case, we require a model which can add or remove
the number of moles necessary to keep the concentration fixed. The following
model describes the required behavior:

package Chemistry

package Basic

model Stationary "Stationary concentration"
parameter Integer nspecies;
parameter Integer stat species;
parameter Modelica.SIunits.Concentration c;
Interfaces.Mixture p(nspecies=nspecies);

protected
Types.MolarFlowRate r;

equation
p.c[stat_speciesl = c;
for i in l:nspecies loop

p.r[il = if i==stat_species then r else 0.0;
end for;

end Stationary;

end Basic;
end Chemistry;

walter.ponge@terra.com.br

138 INTRODUCTION TO PHYSICAL MODELING WITH MODELICA

The variable r in this model represents the flow necessary to keep the con­
centration of a particular constituent (identified by the stat-species index)
constant at a value of c.

6.4.4.3 Chemical reactions

Finally, let us look at how to model reactions which are the primary source
of dynamics in a chemical system. Reactions are the result of different kinds of
molecules bumping into each other. When these collisions occur, the elements
sometimes rearrange themselves into new molecules. The frequency of such
transformations is dependent on the availability of the reactants (the initial
molecules) and their kinetic energy.

Assume we have a reaction of the form:

aA+bB +cC -t
k products (6.24)

where a molecules of A react with b molecules of Band c molecules of C.
In this section, we present a simple chemical reaction model. To keep

things simple, we have ignored the temperature dependency of the reaction
coefficient, k, and we make the simplifying assumption that we can compute
the order of the reaction based on the stoichiometry (a reasonable assumption
if the concentrations of the reactants are low, see Pauling, 1988). Based on
these assumptions, we can use the following simple equation to compute the
rate of the reaction, r:

(6.25)

Typically, the units of k are such that r will have units of moles per cubic meter
per second. The value for r calculated from Equation (6.25) will always be
negative. As a result of our connector definition, it is necessary to compute
the molar flow rate of each constituent. We do this by multiplying the reaction
rate, r, by the volume in which the reaction is occurring and the number of
molecules of the reactant participating in the reaction. As a result, the rate at
which molecules of A are converted into products is expressed as:

dA
- =arV
dt

(6.26)

where a is the number of A molecules participating in the reaction and V is the
volume in which the reaction is taking place. For products, we use the same
equation but the sign of the equation is changed since products are produced
by reactions (remember, r is negative).

For each reaction we can write a vector equation that relates the reaction rate
to the rate of change in the number of moles of each constituent. For example,
consider the following reaction:

A+X 2X+2Z (6.27)

walter.ponge@terra.com.br

Using Arrays 139

This reaction is particularly interesting because X appears on both sides of the
reaction (i.e., as both a reactant and a product). The rate for this reaction would
be computed as:

7' = -kax[A][X] (6.28)

Vectorizing Equation (6.26) gives us the following equation for the total change
in the number of moles of each constituent:

A
B

d P
iii7'V (6.29)

dt X
Y
Z

where iii is computed based on the number of molecules of each constituent
participating as reactant and product. For the reaction shown in Equation
(6.27), iii is computed as follows:

mA 1 0 1
mB 0 0 0

iii =
mp 0 0 0

(6.30)
mx 1 2 -1
my 0 0 0
mz 0 2 -2

'---.,.---' '---.,.---'

reactants products

Note the sign convention used. Since iii represents the number of moles
consumed in the reaction, the reactant contributions are positive while the
product contributions are negative.

We use the CalcMultiplier function to compute iii from Equation
(6.29). As we have seen, when iii is multiplied by the reaction rate, computed
by the CalcReactionRate function, the result is the rate of change in
the number of moles for each constituent within the control volume. This
formulation results in the following reaction model:

package Chemistry

package Basic

partial model Reaction
parameter Modelica.SIunits.Volume v=O.OOl;
parameter Integer nspecies;
Interfaces.Mixture p(nspecies=nspecies);
parameter Real k "Reaction coefficient";

walter.ponge@terra.com.br

140 INTRODUCTION TO PHYSICAL MODEUNG WITH MODEUCA

parameter Integer reactants[:,2];
parameter Integer products [: ,2] ;

protected
Types.MolarFlowRate reaction_rate "Reaction rate";
parameter Real mult[nspecies]=

Chemistry. Functions. CalcMultiplier (nspecies,
reactants, products};

equation
reaction rate

Chemistry.Functions.CalcReactionRate(nspecies,
k, p.c, reactants};

p.r = mult*reaction_rate*v;
end Reaction;

end Basic;
end Chemistry;

The Reaction model contains several interesting constructions. First,
the public parameters reactants and products are both two dimensional
arrays with the number of rows unspecified (indicated by the' :') and the
number of columns fixed at 2. Each row of the reactants and products
arrays represents a constituent (either a reactant or a product, respectively) in
a reaction. The first column is the number of moles of that constituent present
in the reaction and the second column is the unique index for that constituent.6

Internally, the model declares a protected parameter named mul t which
represents the level to which each constituent participates in the reaction (i.e.,
m, the result of the CalcMul tiplier function call). This pm1icipationisjust
the balance of the number of moles of a particular constituent present as a reac­
tant minus the number of moles present as a product. An interesting thing to note
about the mult parameter is that since the arguments to CalcMultiplier
are parameters7 , it is sufficient to call CalcMultiplier only once at the
start of the simulation.

Finally, the function to calculate the reaction rate, CalcReactionRa te,
is invoked continuously during the simulation. This function computes the
reaction rate based on the concentrations of the reactants and the reaction
coefficient, k.

The CalcMultiplier and CalcReactionRate are defined as fol­
lows:

package Chemistry

package Functions

6The examples that follow should help make this concept of a unique index clearer.
7This is a requirement in this case. since a parameter, which is fixed in time, cannot be computed from
quantities that are time-varying. In other words, since mul t is a parameter (i.e., it does not vary with time),
it must be computed from quantities which do not vary with time.

walter.ponge@terra.com.br

Using Arrays 141

function CalcReactionRate
input Integer nspecies "Number of species";
input Real k "Reaction coefficient";
input Real c[nspecies] "Species concentrations";
input Integer reactants [:,2] "Reactant information";
output Real rate "Reaction rate";

algorithm
/ / Compute rate=k* [A] A a * [B) Ab • .•

rate = k;
for i in l:size(reactants,l) loop

rate := rate*c[reactants[i,2]] Areactants[i,l] ;
end for;
assert (rate>=-le-12,

"Error: chemical reaction moving backward");
end CalcReactionRate;
function CalcMultiplier

input Integer nspecies "Number of species";
input Integer reactants [:,2] "Reactant information";
input Integer products [:,2] "Product information";
output Real m[nspecies] "Multiplier";

algorithm
m := zeros (nspecies) ;
m [reactants [:,2]] : = reactants [:,1] ;
m [products [: ,2]] . - m [products [:,2]] -products [:,1] ;

end CalcMultiplier;
end Functions;

end Chemistry;

6.4.5 The Oregonator model
In order to understand how the Chemistry package should be used, we

include an example which models the reactions in Equations (6.15)-(6.19). For
this we will develop a separate package, called Oregona tor, that contains
all the details of the Oregonator model. We start by identifying the constituents
as follows:

package Oregonator
constant Integer A=l "Br03 (-) " ;
constant Integer
constant Integer
constant Integer
constant Integer
constant Integer
constant Integer

end Oregonator;

B=2 "Organic Species";
P=3 "HOBr";
X=4 "HBr02";
Y=5 "Br(-)";
Z=6 "Ce4+";
nspecies=6;

walter.ponge@terra.com.br

142 INTRODUCTION TO PHYSICAL MODELING WITH MODELICA

Next, we must create models for each of the reactions. Rather than include
each of these models, we will include only one. It is trivial to see how the other
reactions would be defined. As an example, the reaction which transforms [A]
and [Y] into [X] and [P] is defined as:

package Oregonator

package Reactions
model R AY

parameter Reak k_AY=l.O;
extends Chemistry.Basic.Reaction(k=k_AY,

reactants={{l,A}, {l,Y}},
products= { {I, X}, {I, p} }) ;

end R_AY;

end Reactions;
end Oregonator;

Now that we have all the building blocks, the complete system can be
constructed as follows:

package Oregonator

model ChemicalSystem
Chemistry.Basic.Volume v(nspecies=nspecies,v=l,

moles(start=fill(l,nspecies))) ;
Reactions.R AY r_ay(nspecies=nspecies);
Reactions.R XY r_xy(nspecies=nspecies) ;
Reactions.R AX r_ax(nspecies=nspecies);
Reactions.R xx r_xx(nspecies=nspecies);
Reactions.R_BZ r_bz(nspecies=nspecies);
Chemistry. Basic. S-tationary c_A (stat_species=A,

nspecies=nspecies, c=l.O);
Chemistry.Basic.Stationary c_B(stat_species=B,

nspecies=nspecies, c=l.O);
equation

connect (v.p,r_ay.p) ;
connect (v.p,r_xy.p) ;
connect (v.p,r_ax.p) ;
connect (v.p,r_xx.p) ;
connect (v.p,r_bz.p) ;
connect (v.p,c_A.p) ;
connect (v.p,c_B.p) ;

end ChemicalSystem;
end Oregonator;

The results from simulating Oregona tor. ChernicalSys tern are shown
in Figure 6.10. The results show several oscillations. Each oscillation is
characterized by an initial rise in both [Z] and [X]. A rise in [Y] is initially
prevented because of the abundance of [X] which reacts with [Y] to produce

walter.ponge@terra.com.br

Using Arrays 143

[Pl. Once the production of [X] becomes limited, [Y] rises. This production of
[Y] causes a decline in [Z]. Eventually, enough [X] is produced to consume the
remaining [Y] and the cycle begins again.

2,+05 ..-------.---r-----.----,---,--,----r-----,..-------.--,-----r-,

l.5e+05

50000 :

: .:

Time [s]

Figure 6.10. Oscillatory response from the Oregonator reaction.

6.5 LANGUAGE FUNDAMENTALS
6.5.1 Information hiding

In this chapter we have shown several uses of the protected keyword. If
you have parameters or variables which you wish to hide from users of your
model you can place them in a protected section. The obvious question is
then, "Why would I want to hide things"?

The first reason is that internals of the model (e.g., parameters and variables)
contained within a protected section cannot be referenced externally. This
allows the model developer the freedom to change some of the implementation
details at some later time without fear of "breaking" any existing models that
relied on the original model.

The second reason is that it is not necessary for users of the model to be aware
of all of the internal details. By hiding the details of the model, the interface of
the model (the publicly accessible pOltion) is simplified. This makes the model
simpler and easier for others to use.

The drawback of making declarations protected is that external modifica­
tions are not possible. For example, consider a model with an internal variable

walter.ponge@terra.com.br

144 INTRODUCTION TO PHYSICAL MODEUNG WITH MODEUCA

whose solution is determined by a differential equation. The start attribute
for the internal variable cannot be modified externally (i.e., modifications can
only be made by the model that contains the variable or by a derived model,
as we saw in the Body model in Example 6.3). This can make it difficult
to control the initial state of the entire system since that variable cannot be
modified. Of course, putting the variable in a protected section is still a good
idea if a change in implementation (e.g., one that would eliminate the variable)
is likely, since it prevents users of the model from relying on the presence of
that variable.

6.5.2 Arrays
As shown in this chapter, arrays in Modelica can be useful in solving many

kinds of problems. In addition to creating arrays of variables (as in Section
6.3.2), it is possible to declare arrays of connectors and subcomponents as well
(as shown in Section 6.3.3). In this section we will review the functionality
presented in this chapter and present additional details not covered by the
examples.

6.5.2.1 Arrays of scalars

Arrays of scalars are the simplest example of array usage in Modelica. For
example, declaring an array, x, of 5 Real variables is done as follows:

Real x [5] ;

In some cases we might wish to allow a parameter to govern the size of the
array. In that case we would do something like:

parameter Integer x_size=5;
Real x [x_size] ;

In yet other cases, we might wish to leave the size of the array unspecified and
let an initializer determine the size. In that case the array declaration would
look something like:

model Beam
parameter Real x [:] ;

end Beam;

Later, when an instance of a Beam is declared we can initialize x by writing:

Beam b (x= {O. 2, 0.77, O.92});

Within the Beam model, if we wish to know how big the x array is, after the
initialization, we can use the si ze () function as follows:

walter.ponge@terra.com.br

model Beam
parameter Real x [: 1 ;

equation
for i in l:size(x,l) loop

end for;
end Beam;

Using Arrays 145

The first argument to the size () is the array we are interested in and the
second argument indicates which dimension we are interested in. In this case,
x only has one dimension.

Arrays can be initialized in several ways, as the following code fragment
shows:

parameter Real x[51={O.I,O.3,O.5,O.7,O.9};
parameter Real y [: 1 =X;
parameter Real z [: 1 =0.1: 0 . 2: 0.9;
parameter Integer evens [: 1 =2: 2: 10;

Array x is initialized directly from an explicit array. The size of y is left
unspecified in the declaration but then the initialization establishes the size as
5 because the values are copied from x.

In the case of z, the array is constructed by starting with the number .1 and
incrementing by .2 until the value exceeds .9 which means that z will have the
same values as y and x. The array construction syntax also works in the same
way with integers, as can be seen in the initialization of evens which creates
the array {2 I 4 I 6 I 8 I 10 }. In fact, this is the most common form of such
constructions and is often used in conjunction with for loops. If no increment
value is given (i.e., there are only two numbers given with a semicolon in
between), it is assumed that the increment is 1 for both Integer and Real
cases.

An important point to make regarding array expressions is that there is no
difference between:

x = {I, 2, 3, 4, 5}

and

x = 1:5

Likewise, there is no difference between:

for i in {I, 2, 3, 4, 5} loop

end for;

and

walter.ponge@terra.com.br

146 INTRODUCTION TO PHYSICAL MODELING WITH MODELICA

for i in 1:5 loop

end for;

Because the loop is performed over the elements of an array, loops can be
constructed over non-contiguous or non-sequential indices, for example:

for i in {1, 3, 2, 5, 4, 7, 9, 8, 6} loop

end for;

6.5.2.2 Arrays and attributes

Although we have discussed how to declare and initialize an array of scalars,
there is still the issue of how to initialize array attributes. For example, we can
declare an array as:

Real x[5] ;

But, what if we would like to set the start attribute for each of these five
elements? Just as x is an array, the start attribute is also an array.s Therefore,
the start attribute could be initialized as follows:

Real x[5] (start={O.1,O.2,O.3,O.4,O.S}l;

6.5.2.3 Arrays of components

As we have seen in several examples, the Modelica syntax allows us to
declare arrays of components. Such arrays can be useful because they provide
increased flexibility for applying constitutive equations to a large number of
variables. In all of the examples shown with arrays of components, each
component in the array was initialized using the same parameter value. This
is often the case and easily accomplished. However, there are cases where
it is useful to initialize each component in the array with a unique parameter
value. Unfortunately, the Modelica language specification does not completely
specify how this can be accomplished?

6.5.2.4 Multi-dimensional arrays

Most of the examples contain arrays with only a single dimension. Such
arrays are used primarily to represent mathematical vectors. Arrays with
more than a single dimension (e.g., representing matrices) are also possible.
The Reaction model in Section 6.4.4 demonstrated how to create multi-

8These are the semantics in version 1.4 of the Modelica language semantics. However, there are some
problems with this syntax and newer versions of the semantics may be slightly different.
9It is currently an issue being discussed by the Modelica Association.

walter.ponge@terra.com.br

Using Arrays 147

dimensional arrays in Modelica. When declaring multi-dimensional arrays,
each dimension of the array must be separated by a comma. For example:

Real x[5,2,7,8,12);

While most models use either 1, 2, or 3 dimensional arrays, there is no limit
imposed by the Modelica language on the dimensionality of arrays.

In some cases, a type may define the dimensionality of an array. For
example:

type Point=Real[3);

In such cases, an array of that type such as

Point particles [12) ;

creates an array with the same shape (i.e., number of rows and columns) as:

Real particles[12,3);

Another issue with multi-dimensional arrays is initialization. To initialize a
multi-dimensional array from a set ofliteral values, an array ofthe appropriate
shape must be constructed. For example,

Real x[2,3) = {{1,2,3},{4,5,6}};

Note that the first index represents the "outer" array (i.e., the rows of a two
dimensional array) and the second index represents the "inner" array (i.e., the
columns of a two dimensional array). In this way, a three-dimensional array
could be initialized as follows:

Real y [2,3,4) = {{ {1, 2,3,4} , {5, 6,7,8} , {9, 10,11,12} }.
{ {12 , 11, 10, 9} , { 8 , 7, 6, 5} , { 4, 3, 2 , 1} } } ;

As mentioned previously, arrays can be constructed by choosing an interval
and an increment value. So, the following two initializations are equivalent:

Real x [2 , 3) { {1, 2, 3} , { 4, 5, 6} } ;

Real z [2,3) = {1: 3 , 4 : 6} ;

6.5.3 Looping and equations
In this chapter, we have seen how looping can be used to generate sets of

equations. We discussed looping earlier in Section 5.7.5 but the focus then
was on algorithms. In this section, we will focus on the special implications of
using for within an equation section as opposed to an algorithm section.
While for loops can be convenient in an equation section, they are not always
necessary. For instance, as we can see in Example 6.3, it is not necessary to
write explicit loops because implicit ones are generated when working with
arrays.

walter.ponge@terra.com.br

148 INTRODUCTION TO PHYSICAL MODELING WITH MODELICA

The important thing to remember about looping in an equation section is
that the statements contained within the loop are equations, not assignments.
For example, the following code fragments have quite different meanings:

equation
var = 0;
for i in 1:4 loop

var = var*x+i;
end loop;

algorithm
var := 0
for i in 1:4 loop

var := var*x+i;
end loop;

When the for loop appears in an equation section, the following 5 equations
are generated:

equation
var 0;
var var*x+1;
var var*x+2;
var var*x+3;
var var*x+4;

Note that these equations are not linearly independent (i.e., they are singular).
On the other hand, when the for loop occurs within an algorithm section it
generates the following assignments:

algorithm
var .- 0;
var .- var*x+1;
var .- var*x+2;
var .- var*x+3;
var .- var*x+4;

the net effect of these assignments is equivalent to:

algorithm
var := 5+x*(4+x*(3+x*(2+x*1)));

The fact that this assignment was carried out in five separate steps is no different
than if it had been carried out in one.

6.5.4
6.5.4.1

Advanced array manipulation features
MATLAB compatibility

Although the examples in this chapter have focused on basic array manipu­
lation techniques, Modelica also includes many advanced array manipulation

walter.ponge@terra.com.br

Using Arrays 149

features. Modelica shares many of the same features and, in general, the same
syntax for array manipulation as MATLAB. 10

6.5.4.2 Array construction and concatenation

For example, matrices can be created using the same syntax that is used in
MATLAB, i.e.,

Real x[2,3] = [1,2,3;4,5,6];

The fact that the expressions are contained between the" [" and "] " characters
indicates that this is a matrix construction. Within such matrix construction
expressions, a " , " indicates the construction is proceeding to the next column
(i.e., the second dimension) and the" i" indicates the construction is proceeding
to the next row. In this way, matrices can be constructed by concatenating
matrices, vectors and scalars.

6.5.4.3 Array subsets

We saw in the CalcMultiplier function, defined in Section 6.4.4.3, the
following array shorthand:

m [products [: ,2]] : = m [products [: ,2]] -products [:,1] ;

If the dimensions of each array at the location of the" : " are equal, then such
equations represent relationships between subsets of matrices. For example,
this equation could have been written more explicitly as:

for i in l:size(products, 1) loop
m[products[i,2]] .- m[products[i,2]] -products [i,l] ;

end for;

Similar types of equations can be written that specify specific elements. For
example, the following is also equivalent to the previous two code fragments:

n = size(products,l);
m[products[1:n,2]] := m[products[1:n,2]] -products [l:n,l] ;

Remember that "1: n" expands to a vector containing every integer value
between 1 and n, inclusively.

6.5.4.4 Vectorizing of functions

The semantics of Modelica are designed so that it is not necessary to create
special vectorized forms of functions. Instead, the normal form of the function
can still be used. For example:

IOMATLAB is a registered trademark of The MathWorks, Inc.

walter.ponge@terra.com.br

150 INTRODUCTION TO PHYSICAL MODELING WITH MODELICA

sqrt ({ 1 , 2, 3});

is equivalent to:

{sqrt (1), sqrt (2), sqrt (3)};

In this way, even though sqrt () was defined to take a scalar argument, it can
be applied element-wise to an array.

The general rule for taking advantage of this functionality is that the dimen­
sionality of one or more of the arguments to a function can be given additional
dimensions. However, all arguments that are given additional dimensions must
have the same size in each additional dimension. For example, the following
is legal:

mod ({ 10 , 2 0 , 3 0 } , { 4 , 5 , 6 }) ;

and yields:

{ mod (1 0 , 4), mod (2 0 , 5), mod (3 0 , 6) } ;

Furthermore, this is also legal:

mod ({ 1 0 , 2 0 , 3 0 } , 4) ;

because only one argument was expanded and it is equivalent to:

{mod(10,4), mod(20,4), mod(30,4)};

On the other hand, this is not legal:

mod ({ 10, 20, 30 } , { 4, 5}) ;

because the additional dimensions are not the same size.

6.5.4.5 Mathematical operators

The mathematical operators such as "+" and "*" are frequently used with
scalars, but can also be used with arrays. For example, the "+" and "-"
operators can be used to add and subtract arrays that have the same size in each
dimension. Furthermore, the "*" can be used with arrays in several ways.

The simplest example of using the "*" with arrays is the combination of
multiplying a scalar by an array. Each element of the resulting array is equal
to the product of the scalar and the corresponding element in the array being
multiplied. Another example would be to use the "*" to take the inner product
of two vectors of the same size. In other words. the following code fragment:

Real u[5], v[5];

Real s;

equation
s = u*v;

walter.ponge@terra.com.br

is equivalent to:

Real u[5], v[5];
Real s;

algorithm
s : = 0;

for i in l:size(u,l) loop
s = s + u [i] *v [i] ;

end for;

Using Arrays 151

More complex examples are also possible. For example, the "*" can be used
to represent the product of any two arrays as long as the sizes are mathematically
compatible. For example, the following shorthand:

Real A[5,7], u[5], v[7];
equation

u = A*v;

is equivalent to:

Real A[5,7], u[5], v[7];
algorithm

for i in 1:5 loop
uri] := 0;
for j in 1:7 loop

uri] = uri] + A[i,j] *v[j];
end for;

end for;

Another example is that the following:

Real A [5,7], u [5], v [7] ;
equation

v = u*A;

is equivalent to:

RealA[5,7], u[5], v[7];
algorithm

for j in 1:7 loop
v[j] := 0;
for i in 1:5 loop

v[j] = v[j] + u[i]*A[i,j];
end for;

end for;

Taking the matrix product of two matrices is also possible, as in:

Real A[5,3], B[3,7];
Real C [5, 7] ;

equation
C = A*B;

walter.ponge@terra.com.br

152 INTRODUCTION TO PHYSICAL MODELING WITH MODELICA

which is equivalent to:

Real A[5,3], B[3,7];

Real C[5,7];
algorithm

C := fill(O,5,7);

for i in l:size(A,l) loop
for j in 1:size(B,2) loop

for k in 1:size(A,2) loop
C[i,j] = C[i,j] + A[i,k]*B[k,j];

end for;
end for;

end for;

One final trick that can be very useful (e.g., in fonnulating transfer functions)
is to compute an array containing:

{ x, x, x, ... , :t: x }

We can do this with the following code fragment:

Real x;
Real dx[5];

equation
x = Modelica.Math.Sin(time);
dx [1] = der (x) ;

dx [2 : 5] = der (dx [1 : 4]) ;

(6.31)

In this way, we can construct a vector, dx, such that dx [i] represents the ith

derivative of x.

6.5.5 Built-in functions for arrays
Table 6.1 contains several of the built -in functions for manipulating arrays

in Modelica. Full details of these functions (and others not described) can be
found in the Modelica language specification.

6.6 PROBLEMS
PROBLEM 6.1 Extend the BinarySystem model so that the total energy
and momentum of the system is computed and make sure that it remains constant
throughout the simulation.

PROBLEM 6.2 Using the material presented in Section 6.2, create a model of
the solar system using the information provided in Table 6.2.

PROBLEM 6.3 Create a model to solve the hyperbolic PDE:

d2u d2u
dt2 = C dx 2

(6.32)

walter.ponge@terra.com.br

Using Arrays 153

Function name Purpose

cross (x, y) Returns the cross product of the x and y vectors.
The size of both vectors must be 3.

diagonal (v) Generates a square matrix with the elements ofv on
the diagonal.

fill (s, nl, n2, ...) Generates an array of size nlxn2 x ... and fills it with the
value s.

identity (n) Returns an nxn identity matrix.

linspace (xl, x2, n) Linearly interpolate n evenly spaced points along
a line between xl and x2

matrix (A) Similar to vector (A) except the size of two
dimensions must be greater than 1.

max (A) Returns the largest element of A.

min (A) Returns the smallest element of A.

ndims (A) Returns the number of dimensions A has.

ones (n) Generates an array oflength n and fills it with the value 1.0.

outerProduct (vl, v2) Returns the outer product of vl and v2.

product (A) Returns the product of all elements of A.

scalar (A) Assuming size (A, i) ==1 for 1 ~ i ~ ndims (A),
scalar (A) returns the single element of A.

size (A) Returns a vector containing the size for each dimension of A.

size (A, i) Returns the size of dimension i in array A.

skew (x) Returns the 3x3 skew matrix for x where size (x, 1) ==3.

sum (A) Returns the sum of all elements of A.

symmetric (A) Returns a matrix where the upper triangular elements of
A are copied to the lower triangular portion.

transpose (A) Permutes the first two dimensions of A.

vector (A) If A is a scalar, vector (A) returns a vector with A as the
only element. If A is an array, it must have only one
dimension with a size greater than 1 and that dimension is
extracted as a vector.

zeros (n) Generates an array of length n and fills it with the value 0.0.

Table 6.1. Built-in functions for arrays in Modelica.

walter.ponge@terra.com.br

154 INTRODUCTION TO PHYSICAL MODELING WITH MODELICA

Object Mass (kg) Distance from Sun (m) Tangential Velocity (m/ s) Radius (m)

Sun 1.989.1030 0 0 1.39 . 109

Mercury 3.303.1023 69.82.109 38.03.103 4.879.106

Venus 4.869.1024 108.92.109 34.79.103 12.10· 106

Earth 5.976 . 1024 152.10.109 29.29.103 12.74.106

Mars 6.421. 1023 249.2 . 109 21.87· 103 6.780.106

Jupiter 1.900 . 1027 816.4 . 109 12.42 . 10.3 139.8.106

Saturn 5.688 . 1026 1.510 . 1012 9.11 . 10:3 116.4 . 106

Uranus 8.686 . 1025 3.001 . 1012 6.49.10.3 50.72.106

Neptune 1.024 . 1026 4.555 . 1012 5.38·10.3 49.24.106

Pluto 1.270 . 1022 7.358 . 1012 3.58.103 2.390.106

Table 6.2. Solar system data.

You may choose to use the following spatial approximation:

Ui+l - 2Ui + ui-l

~x2
(6.33)

PROBLEM 6.4 Create a model for a "collision force" model between two
bodies such that when they are in contact (i.e., the total distance between the
centers of the bodies is less than the sum of their radii) they generate a repelling
force as follows:

(6.34)

where c is a large "stiffness" coefficient, r is the distance between the centers
of the bodies, rl is the radius of body J and r2 is the radius of body 2.

Next, create a "pool table" model with several billiard balls on it. Only
one ball should have an initial velocity. Position the balls so that at least two
collisions take place. Using Dymola, you can declare a Spherefor each body
so that the collisions can be animated (see Example 9.2 for an example).

walter.ponge@terra.com.br

Chapter 7

HYBRID MODELS

7.1 CONCEPTS
Up to this point, we have been discussing systems of equations involving

continuous variables. In this chapter, we will discuss hybrid system behav­
ior. Hybrid behavior involves not just continuous variables and equations, but
also piecewise continuous variables with discontinuities and discrete variables
which have values that are piecewise constant with respect to time (e.g., an
Integer or Boolean). This chapter presents Modelica functionality used
to describe such hybrid behavior.

7.2 MODELING DIGITAL CIRCUITS
Hybrid models are a combination of both continuous and discrete behavior.

Before mixing the two, let us introduce a few examples which highlight discrete
behavior by itself. Digital circuits are an excellent example of systems which
can be simulated using discrete behavior exclusively. Imagine we wish to
construct a model with three inputs and two outputs which behaves according
to the "truth table" shown in Table 7.1.

i1 i2 i3 01 02
false false false true false
true false false true false
false true false true true
true true false true false
false false true true false
true false true false false
false true true true true
true true true true false

Table 7.1. Discrete behavior truth table.

walter.ponge@terra.com.br

156 INTRODUCTION TO PHYSICAL MODEliNG WITH MODEliCA

7.2.1 Connectors
For this section, we will rely on connectors from the Model ica. Blocks. -

Interfaces package. The two connectors we are interested in using are the
BooleanInPort and the BooleanOutPort. The definitions for these
connectors are essentially:

connector BooleanInPort "Boolean Input Port"
parameter Integer n=1 "Signal vector size";
input Boolean signal [nJ "Signal values";

end BooleanInPort;

connector BooleanOutPort "Boolean Output Port"
parameter Integer n=1 "Signal vector size";
output Boolean signal [nJ "Signal values";

end BooleanOutPort;

These connectors can be used to represent the logical values of the inputs and
outputs in a digital circuit.

The signals carried by these connectors are Boolean. Boolean and
Integer quantities have discrete values (i.e., they cannot change continu­
ously as a function of time). Because their values are discrete, they jump
instantaneously from one value to another.

7.2.2 Components
The behavioral description in Table 7.1 can be represented using the follow­

ing boolean equations:

01 = (il AND i3) OR i2

02 il AND i2

0.1)
(7.2)

One way to model such a system would be to write a model which directly
implemented these equations, e.g.,

block LogicEquation
Modelica.Blocks.Interfaces.BooleanInPort il(n=I);
Modelica.Blocks.Interfaces.BooleanInPort i2(n=I);
Modelica.Blocks.Interfaces.BooleanInPort i3(n=I);
Modelica.Blocks.Interfaces.BooleanOutPort 01 (n=l) ;
Modelica.Blocks.Interfaces.BooleanOutPort 02(n=I);

equation
ol.signal = not (il.signal and i3.signal) or i2.signal;
02. signal = not il. si.gnal and i2. signal;

end LogicEquation;

As we have seen previously, creating a model based on the specific equations
for a problem results in a model without much reusability.

walter.ponge@terra.com.br

Hybrid Models 157

Just as we have done before, we want to make a library of reusable compo­
nents so we can build a variety of logic circuits. For this example, we need
an And model, an Or model and a Not model. These models are shown in
Examples 7.1-7.3 respectively.

block And
Modelica.Blocks.lnterfaces.BooleanlnPort inPortl(n=l);
Modelica.Blocks.lnterfaces.BooleanlnPort inPort2(n=1);
Modelica.Blocks.lnterfaces.BooleanOutPort out Port (n=l) ;

equation
outPort.signal = inPortl.signal and inPort2.signal;

end And;

Example 7.1. Model of an ··and" gate.

block Or
Modelica.Blocks.lnterfaces.BooleanlnPort inPortl(n=l);
Modelica.Blocks.lnterfaces.BooleanlnPort inPort2(n=1);
Modelica.Blocks.lnterfaces.BooleanOutPort outPort(n=l);

equation
outPort.signal = inPortl.signal or inPort2.signal;

end Or;

Example 7.2. Model of an "or" gate.

block Not
Modelica.Blocks.lnterfaces.BooleanlnPort inPort(n=l);
Modelica.Blocks.lnterfaces.BooleanOutPort outPort(n=l);

equation
outPort.signal = not inPort.signal;

end Not;

Example 7.3. Model of a "not'" gate.

7.2.3 Simple logic circuit
Example 7.4 shows a model which should behave according to Table 7.1.

The period of each input signal is such that all possible combinations of inputs
are generated every 8 seconds of simulation time. Note that our input signals
are generated using the boolean signal generator models from the MSL.

It might be easier to understand Example 7.4 by looking at a diagram of its
components and connections as shown in Figure 7.1. The results of running
this simulation can be seen in Figure 7.2.

walter.ponge@terra.com.br

158 INTRODUCTION TO PHYSICAL MODELING WITH MODELICA

i1

ill
period={2}

i2

period={4}
i3

ill
period={8}

not2
'>02

or1 >01

Figure 7-1. Diagram for LogicCircui t model in Example 7.4.

truelJl

'6 false ____ . n n n
0 I 2 3 4 5 6 7 8 9 10 11 12 13 14

0,] U U
0 2 3 4 5 6 7 8 9 10 11 12 13 14

true [

~ false I
0 2 3 4 5 6 7 8 9 10 11 12 13 14

true [

,J false I
0 2 3 4 5 6 7 8 9 10 11 12 13 14

true

]
15 16

]
15 16

]
15 16

]
15 16

false ____________________________

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Time [s]

Figure 7.2. Output signals from LogicCircui t model shown in Example 7.4.

walter.ponge@terra.com.br

model LogicCircuit
import BS=Modelica.Blocks.Sources;

BS.BooleanPulse il(width={50},period={2});
BS.BooleanPulse i2(width={50},period={4});
BS.BooleanPulse i3(width={50},period={8});
And andl, and2;
Or orl;
Not notl, not2;
Boolean 01, 02;

equation
II 01
connect (il.outPort,andl.inPortl) ;
connect (i3.outPort,andl. inPort2) ;
connect (andl. out Port , notl. inPort) ;
connect (notl.outPort,orl. inPortl) ;
connect (i2.outPort,orl. inPort2) ;
01 = orl.outPort.signal[I];
II 02
connect (il.outPort,not2.inPort) ;
connect (not2.outPort,and2. inPortl) ;
connect (i2.outPort,and2.inPort2) ;
02 = and2.outPort.signal[I];

end LogicCircuit;

Hybrid Models 159

Example 7.4. Model of a circuit to test And, Or and Not.

7.2.4 Mixing discrete and analog behavior
In our previous circuit, signals propagated through the circuit instantly.

Now, let us consider a case which introduces lag (e.g., due to capacitance in
the circuit) in the response of the components. To model this, we use the Lag
block shown in Example 7.5. The parameters to this model are c, the time
constant of the response, and threshold, the analog threshold between true
and false. The output of the Lag element depends on whether the continuous
response of the Lag element is above or below the value of threshold.

This is an example of a hybrid model because it mixes analog and discrete
behavior. Example 7.6 shows a circuit similar to the one shown in Example 7.4
except that it includes lag in the output of all of the components. A diagram
of Example 7.6 is shown in Figure 7.3. Finally, the results of simulating the
model with different values for c can be seen in Figures 7.4 and 7.5.

walter.ponge@terra.com.br

160 INTRODUCTION TO PHYSICAL MODEUNG WITH MODEUCA

block Lag
parameter Real c=l "lag time constant";
parameter Real threshold=. 7 "logical threshold";
Modelica.Blocks.lnterfaces.BooleanlnPort inPort(n=l);
Modelica.Blocks.lnterfaces.BooleanOutPort outPort(n=l);

protected
Real state "Continuous state of the wire";

equation
c*der(state) = if inPort.signal[l] then I-state else -state;
outPort.signal[l] = state>=threshold;

end Lag;

Example 7.5. Modeling lag in a digital signal.

model LogicCircuitWithLag
parameter Real c=l "lag time constant";
model Pulse=Modelica.Blocks.Sources.BooleanPulse;
Pulse il(period={2});
Pulse i2(period={4});
Pulse i3(period={8});
And andl, and2;
Or orl;
Not notl, not2;
Boolean 01, 02;
Lag andl_lag(c=c), and2 lag(c=c), orl_lag(c=c),

not I_lag (c=c) , not2_lag(c=c);
equation

connect (il.outPort,andl.inPortl) ;
connect (i3.outPort,andl.inPort2) ;
connect (andl.outPort, andl_lag. inPort) ;
connect (andl_lag.outPort,notl.inPort) ;
connect (notl.outPort,notl_lag.inPort) ;
connect (notl_lag.outPort,orl.inPortl) ;
connect (i2.outPort,orl.inPort2) ;
connect(orl.outPort,orl lag.inPort);
01 = orl_lag.outPort.signal[l];
connect (il.outPort,not2. inPort) ;
connect (not2.outPort, not2_lag. inPort) ;
connect (not2_lag . out Port , and2 .inPortl) ;
connect (i2.outPort,and2.inPort2) ;
connect (and2.outPort,and2_lag.inPort) ;
02 = and2_lag.outPort.signal[1];

end LogicCircuitWithLag;

Example 7.6. Introducing lag into our logic response.

walter.ponge@terra.com.br

i1

ill
period={2}

i2

ill
period={4}

i3

period={8}

Hybrid Models 161

02

Figure 7.3. Diagram for LogicCircui tWithLag model shown in Example 7.6.

true Ul"" ("'I . . o ..

false~""
012

,
.' 4 5

n~ "",~~ n J
6 7 8 9 10 11 12 13 14 15 16

°f~~~C~····_· ____ ~~=\="'=·~···_··· ____________________ ~~=·==,~,_. __ ~ .. ,_,-.,_i_·~_~.~_~_~'_"'_'=J
o 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Figure 7.4. Output signals from LogicCircuitWithLag, c = %.

true [

'2l false
~n

" in in c;i'i;;~ ini J
0 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

°f:0 U
......

tJ
.....

J ~ ~~t~Uf.~~~~~~g=3'
..... ;.

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Figure 7.5. Output signals from LogicCircuitWithLag, C = ~.

walter.ponge@terra.com.br

162 INTRODUCTION TO PHYSICAL MODELlNG WITH MODELlCA

7.3 BOUNCING BALL
Another typical example of hybrid behavior is a bouncing ball. Using

Newton's Law, we know that the equation for a falling object is:

ma = -mg (7.3)

where m is the mass of the object, a is the acceleration of the object and g is the
acceleration due to Earth's gravity. These equations are continuous in nature.
However, what do we do when the ball actually strikes a surface? There are at
least two ways to approach this problem.

The first is to treat the system as completely continuous by using a non-linear
spring to model the collision. When the ball comes in contact with a surface,
Equation (7.3) is changed to:

ma = -mg - c * (h - r) - d * v (7.4)

where c is the compliance of the ball, h is the height of the ball's center, r is the
radius of the ball, d is the damping coefficient of the ball and v is the velocity
of the ball.

An example of this approach can be seen in Example 7.7 which shows
a model with only continuous variables and equations. While this model is
completely valid, it does have one drawback. It requires a numerical solver to
resolve the collision of the ball and the surface. So, for some finite time, during
the collision, the solver will be presented with a stiff problem.

model BouncingBalll
import Modelica.Slunits;

parameter SIunits.Mass m=l.O "Mass of the ball";
parameter Real c (final unit="N/m") =le+4 "Compliance";
parameter Real d(final unit="N/(m.s)")=20 "Damping";
parameter SIunits.Radius r=0.02 "Radius of the ball";

SIunits.Height h(start=5.0) "Height of the ball center";
SIunits.Velocity v "Velocity of the ball";
SIunits.Acceleration a "Acceleration of the ball";
SIunits.Force f "Force on the ball";

equation
v = der (h) ;
a = der (v) ;
m*a = f-m*Modelica.Constants.g_n;
f if h<=r then -c*(h-r)-d*v else 0.0;

end BouncingBalll;

Example 7.7. A ··continuous" bouncing ball.

walter.ponge@terra.com.br

Hybrid Models 163

The second approach, shown in Example 7.8, is to treat the collision as
an instantaneous event. Instead of providing a spring constant and damping
coefficient, this model requires a coefficient of restitution which is defined as:

Vafter
Cr = ----

Vbefore
0.5)

where Vafter is the velocity of the ball after the collision and Vbefore is the
velocity of the ball before the collision.

model BouncingBal12
import Modelica.Slunits;

parameter SIunits.Mass m=l.O "Mass of the ball";
parameter Real c_r=. 725 "Coef. of restitution";
parameter SIunits.Radius r=O.02 "Radius of the ball";

SIunits.Height h(start=5.0) "Height of the ball center";
SIunits.Velocity v "Velocity of the ball";
SIunits.Acceleration a "Acceleration of the ball";

equation
v = der (h) ;
a = der (v) ;
m*a = -m*Modelica.Constants.g_n;
when h<=r then

reinit(v,-c_r*pre(v)) ;
end when;

end BouncingBall2;

Example 7.8. A "discrete" bouncing ball.

Using the second approach, the BouncingBal12 model avoids the nu­
metical stiffness present in Example 7.7. Instead of including equations to
resolve the contact with the surface, the BouncingBal12 model makes an
instantaneous change to the velocity, based on the coefficient of restitution, at
the moment of contact. This approach may allow the simulation to run faster
since it will not have to solve the stiff equations associated with the collision.
There is a subtle drawback to this model which is not easily demonstrated by
this example but which is described along with the backlash examples found
in Section 8.3. The results from simulating the BouncingBal12 model are
shown in Figure 7.6.

A practical issue for both of these models is what happens over long periods
of time. Mathematically, we can show that the ball stops bouncing in some
finite time but bounces an infinite number of times in that interval. Such a
system is called a Zeno system. For numerical reasons, it eventually becomes
impossible to resolve the motion of the ball. This is because the velocities and

walter.ponge@terra.com.br

164 INTRODUCTION TO PHYSICAL MODELING WITH MODELICA

5
BouncingBall2 --

4.5

4

3.5

3

2.5

2

1.5

0.5

o~--------~-------~--~----~----~--~--~----~
o 2 3 4 5

Time!s]

Figure 7.6. Behavior of model BouncingBal12.

positions become very small. At some point, we must decide that the ball is no
longer bouncing. If we do not do this, large amounts of computational time will
be wasted trying to resolve the tiny (and increasingly frequent) collisions. On
top of that, numerical errors may result in the ball "falling" below the surface
it is bouncing on because we can no longer detect the collisions.

Example 7.9 shows a modified version of the discrete model which rec­
ognizes when the ball has essentially stopped bouncing. The difficulties in
such models occur because as the height of each successive bounce becomes
smaller and smaller, it is possible for the condition h<=r to remain true (i.e.,
the ball is still in contact with the surface) while v again becomes negative (i.e.,
the ball begins settling back into the surface before contact with the surface
was broken). For this reason, we wish to distinguish between the case where
impact becomes true by itself and when the combination of impact and
v < = 0 becomes true. The first case represents a real impact while the second
case indicates that the ball has begun falling again before leaving the surface.

This example highlights several of the more sophisticated features in hybrid
modeling. First, the conditional expression for the when clause is a vector.
When a vector of conditions is provided to a when clause, the when clause is
activated at the instant any of the conditions becomes true. It is important to
note that:

walter.ponge@terra.com.br

Hybrid Models 165

model BouncingBal13
import Modelica.Slunits;

parameter SIunits .Mass m "Mass of the ball";
parameter Real c r "Coefficient of restitution";
parameter SIunits.Radius r=le-3 "Radius of the ball";

SIunits.Height h(start=5.0) "Height of the ball center";
SIunits.Velocity v "Velocity of the ball";
SIunits.Acceleration a "Acceleration of the ball";
Boolean bouncing(start=true)

"Is the ball to still be bouncing?";
Boolean impact "Indicates when impact occurs";

equation
v = der (h) ;
a = der (v) ;
m*a = if bouncing then -m*Modelica.Constants.g_n else 0;

algorithm
impact := h<=r;
when {impact, impact and v<=O} then

if edge(impact) then
bouncing := pre (v) <=0;
reinit(v,-c_r*pre(v)) ;

else
reinit(v,O.O) ;
bouncing .- false;

end if;
end when;

end BouncingBal13;

Example 7.9. Another "discrete" bouncing ball.

when {impact, impact and v<=O} then
II ...

end when;

is equivalent to:

when impact then
II ...

end when;
when impact and v<=O then
II ...

end when;

In other words, each component in the vector of conditional expressions can be
treated as if it were in a separate when clause. It is important to point out that
the vector form of the when clause is not equivalent to:

walter.ponge@terra.com.br

166 INTRODUCTION TO PHYSICAL MODELING WITH MODELICA

when impact or (impact and v<=O) then
II ...

end when;

The important thing to remember is that the vector form of a when clause
is activated if any of the individual conditional expressions inside the vector
become true. In the case where the or operator is used, the when clause
will not be activated in response to one condition becoming true if the other
condition is already true since the value of the entire expression would not
change in such a case.

The other feature introduced in this example is the use of the edge ()
function inside the when clause to determine which of the conditions in the
vector of conditional expressions triggered the activation of the when clause.
The edge () function can take a Boolean variable as an argument and is
defined as follows:

edge (b) = b and not pre (b) ;

In other words, "is b true now and was it not true before this when clause
was activated?" In the case of the BouncingBal13 model, we can use the
edge () function to determine if impact just occurred or whether we are in the
middle of an ongoing collision.

7.4 SENSOR MODELING
7.4.1 Introduction

While there are numerous textbooks on control theory, their emphasis is gen­
erally on the mathematical theory behind control system design (e.g., Brogan,
1991) as opposed to some of the practical issues faced when deploying control
systems. Oftentimes, the plant models are assumed to be linear and the sensors
and actuators are assumed to be ideal. From a teaching perspective, this is
desirable because it keeps the focus on the theory of control system design.

In this section, we will examine the effects of using non-ideal sensors by
developing several non-ideal sensor models and comparing their performance
against the benchmark system shown in Figure 7.7. As we shall see, the
behavioral description of non-ideal sensors demonstrates many of the hybrid
modeling features in Modelica.

The controller for the system in Figure 7.7 is a simple PI controller. In
all variations of the system presented in this section, the plant model will be
linear and the actuator will be ideal. The controller performs quite nicely with
ideal sensor and actuator models but can easily be driven unstable by non-ideal
sensor models. The non-ideal sensor models presented in this section were
not implemented simply to torture the existing control system but rather to
represent more realistic control system applications. The non-ideal models

walter.ponge@terra.com.br

Hybrid Models 167

ref controller
actuator inertia

period={1} T={.1}

ground=O

Figure 7.7. Our sensor benchmark system.

lre quite reasonable and based on common methods for measuring system
:esponse.

Since the emphasis of this book is on physical modeling, we have tried
to present more realistic physical models. In addition to the response of the
physical system, it is also important to accurately capture effects of sensors
and actuators. In this section, we will examine the effects of placing non-ideal
sensor models into our benchmark system using closed-loop control.

7.4.2 Ideal case
As shown in Figure 7.7, a reference signal is fed to our controller to indicate

the desired speed of the system. The controller compares the desired speed to
the current speed measurement from the sensor and, based on the difference,
determines what torque is required from the actuator. For this case, an ideal
sensor model is used to generate a baseline for comparison.

One other nice thing about this benchmark system is that it helps to reinforce
some of the features discussed in Chapter 4. For example, all the sensor
models discussed in this section will be derived from the MSL rotational library
definition of an AbsoluteSensor shown below:

partial model AbsoluteSensor
package Rotational=Modelica.Mechanics.Rotational;
Rotational.lnterfaces.Flange_a flange_a;
Modelica.Blocks.lnterfaces.OutPort outPort(final n=l);

end AbsoluteSensor;

By using this partial model in conjunction with the replaceable and
redeclare keywords, we will see shortly that we can easily generate variations
on the baseline system shown in Figure 7.7 and modeled by Example 7.10.

walter.ponge@terra.com.br

168 INTRODUCTION TO PHYSICAL MODELING WITH MODELICA

model SensorBenchmark
import Modelica.Mechanics.Rotational;
import Modelica.Blocks;

Rotational.Inertia inertia(J=O.8);
Rotational.Fixed ground;
Rotational.Damper damper (d=O.2) ;
Rotational.Torque actuator;
replaceable Rotational.Sensors.SpeedSensor sensor extends

Rotational. Interfaces.AbsoluteSensor;
Blocks.Continuous.PI controller(k={lOO}, T={O.l});
Blocks.Math.Feedback feedback;
Blocks.Sources.Trapezoid ref(offset={SO}, rising={O.2},

width={O.2S}, falling={O.2}, amplitude={SO});
equation

connect (ground.flange_b, damper. flange_b) ;
connect (damper. flange_a, inertia. flange_b) ;
connect (actuator.flange_b, inertia. flange_a) ;
connect (sensor. flange_a, inertia. flange_a) ;
connect (controller.outPort, actuator.inPort);
connect (feedback. outPort , controller.inPort);
connect (sensor.outPort, feedback.inPort2);
connect (ref.outPort, feedback.inPortl);

end SensorBenchmark;

!
Q
.~

0

~
" :;
."

.;:

Example 7.10. Source code for our sensor benchmark system.

100

50

/'-

J~\ r\
;j \. il! \\
if \. / \\

: \\ " ~

:,,:,'

/ "/" ~~://
Baseline. k= I °
Baseline. k= I 00

°O~--~~--~O.-5----~----~----~----~1.5----~----~

Time Is]

Figure 7.8. Perfonnance of low (k=lO) and high (k=lOOj gain controllers with ideal sensors.

walter.ponge@terra.com.br

Hybrid Models 169

Figure 7.8 shows an example of the performance of our idealized system.
The figure includes three curves. The first is the reference signal for the
response we are trying to achieve. The next is the response with a low gain
(k = 10) PI controller. Finally, the performance of a high gain (k = 100)
controller is shown. As you can see, the high gain controller has no difficulty
controlling the system response to closely follow the reference signal.

7.4.3
7.4.3.1

Sample and hold sensor
Behavioral description

model SampleHoldSensor
import Modelica.Mechanics.Rotational;

extends Rotational. Interfaces.AbsoluteSensor;
Modelica.Slunits.AngularVelocity W;
parameter Modelica.Slunits.Time sample_interval=O.l;

equation
w = der(flange_a.phi);
flange_a. tau = 0;

algorithm
when sample (O,sample_interval) then

outPort.signal[l] .- w;
end when;

end SampleHoldSensor;

Example 7.11. Sensor that samples speed measurements.

The first variation on our sensor benchmark will be to utilize a sample and
hold (i.e., zero-order hold) sensor. The only difference between this sensor
model and the ideal one is that it does not provide continuous updating of
shaft speed. Instead, at regular intervals, it outputs the system speed and holds
that reading until the next sampling interval. As a result, the output of the
sensor is a piecewise constant signal. Example 7.11 contains the source for the
SampleHoldSensor model.

Something to notice about Example 7.11 is the use of the when clause. This
when clause is used to update the value of the output signal every time the
system speed is sampled. The assignment:

outPort . signal [1] : = W;

is only performed at the instant the sampling occurs. The interval between
samples is given by the sample_interval parameter. The sample ()
function is a built-in function used to generate sampling events. The first
argument to sample () is the time at which it should generate the first sample

walter.ponge@terra.com.br

170 INTRODUCTION TO PHYSICAL MODELING WITH MODELICA

event and the second argument is the time interval between subsequent sample
events.

7.4.3.2 Simulation results

To create a simulation using the SampleHoldSensor shown in Example
7.11 all we need to do is redeclare the sensor model from our benchmark
case. As described in Chapter 4, this is done as follows:

model SamplingCasel
extends SensorBenchmark(redeclare

SampleHoldSensor sensor(sample_interval=O.Ol));
end SamplingCasel;

In other words, we create a new model, SamplingCasel, which extends
our previous model, SensorBenchmark, while redeclaring the sensor
component. This saves us from having to copy and paste the model shown in
Figure 7.10 with the only difference being the type of sensor model.!

°O~·------L-----O~.-5----~------~----~------!~.5------~----~2

Time [sl

Figure 7.9. Comparison of SampleHoldSensor with ideal case.

1 This kind of copying and pasting is bad because it leads to redundancy which becomes a significant
maintenance problem.

walter.ponge@terra.com.br

Hybrid Models 171

Figure 7.9 shows a comparison between the SampleHoldSensor model
and the ideal case. Two different values for the sampl e _in t erval parameter
are shown.

7.4.3.3 Limitations

The problem with the SampleHoldSensor model is that we must care­
fully choose the sample_interval parameter. For Figure 7.9, the values
of 0.01 and 0.015 were chosen because they represent a small fraction of
the time constant used in the PI controller. However, the upper bound on
the sample_interval parameter for this problem is approximately 0.015
(shown at the bottom of Figure 7.9). Any sampling interval significantly larger
than 0.015 will drive the controller unstable during the initial transients. What
we can learn from Figure 7.9 is that this type of sensor performs acceptably for
small errors between the reference and actual speed but large errors will drive
the system unstable.

7.4.4
7.4.4.1

Quantization
Behavioral description

In addition to sampling data at a specific frequency, data acquisition systems
frequently digitize the sensor readings. In these cases, the resolution of the
readings is affected by the number of bits used in the digital representation of
the signal. This effect is called quantization.

Example 7.12 shows a behavioral description of the QuantizedSensor
model. The parameters of this model are the number of bits used in the output
signal, bits, the sampling interval, sample_interval, and the minimum
and maximum values for the output reading. min and max respectively. In­
ternally, the model uses an Integer, called level, with a value between
o and 2bits to indicate the digital value. The value of 1 eve 1 is then scaled
appropriately for output.

Finally, the actual output signal is scaled based on the number of bits and
the range of measured values. If the measured signal falls outside the range of
the sensor, the sensor returns either the minimum or maximum value.
7.4.4.2 Simulation results

Once again, we can easily generate a model that uses the Quantized­
Sensor by writing a few lines of Modelica code, e.g.,

model QuantizedCase1=SensorBenchmark(
redeclare QuantizedSensor sensor (sample_interval=O. 01,

bits=8)) ;

Simulation results using the QuantizedSensorare shown in Figure 7.10.
Since we already know, from Figure 7.9 what the effect of different sampling

walter.ponge@terra.com.br

172 INTRODUCTION TO PHYSICAL MODELING WITH MODELICA

model QuantizedSensor
import Modelica.SIunits;
import Modelica.Mechanics.Rotational;
extends Rotational.Interfaces.AbsoluteSensor;

parameter Integer bits=4;
parameter SIunits.Time sample_interval=0.02;
parameter SIunits.AngularVelocity min=-150;
parameter SIunits.AngularVelocity max=150;
SIunits.AngularVelocity w;

protected
parameter Real delta=(max-min)/2 A bits;
Integer level;

equation
w = der(flange_a.phi) ;
flange_a.tau = 0;

algorithm
when sample(O,sample_interval) then

level := integer((w-min)/delta);
end when;
if level<O then

outPort.signal[l] .- min;
elseif level>=2 A bits then

outPort.signal[l] := max;
else

outPort.signal[l] .- level*delta+min;
end if;

end QuantizedSensor;

Example 7.12. Measurement with quantization.

intervals can be, Figure 7.10 includes a comparison for different values of the
bits parameter.

7.4.4.3 Limitations

In addition to the limits generally associated with a sample and hold sensor,
as we saw in Example 7.11, the QuantizedSensor is also limited by the
number of bits used in sampling and the allowed range of measurements. Not
having enough bits results in coarse output and can drive the controller unstable
by creating large swings in the sensed values. The range of measurements
must be large enough to bound the actual sensed values but not so large as to
contribute to coarseness of the output signal.

walter.ponge@terra.com.br

Hybrid Models 173

ISOr-----,-----~----~r_----~----_.----_.------r_--__,

~
.::,
o 100
"g
<l
>
i3 c¢ SO
-; II
gf.~
<:t:e

Reference
Actual Speed

Sensed Speed

OL' ____ ~ ______ L_ ____ ~ ____ _L ____ ~~ ____ ~ ____ _L ____ ~

o O.S I.S:2

ISO
v;'
:0
co
.::,
0 ·u
0
<l
> ... ~
371
bJl~ t::.-<:t:e

0
0 o.s 1.5 :2

Time [s]

Figure 7.10. Comparison of QuantizedSensor with ideal case.

7.4.5 Period measurement sensor
Another way of sensing rotational velocity is to instrument a system with a

sensor (e.g., an optical encoder) which reports complete revolutions (or some
integer fraction of a complete revolution) and then inferring the velocity from
those measurements. By timing the interval between these reports, the rota­
tional speed of the system can be estimated. Example 7.13 shows a model of
such a sensor.

7.4.5.1 Behavioral description

The first thing to notice about the PeriodSensor model is the use of the
discrete keyword. This keyword is used to indicate that the variables (i.e.,
upper and lower) are not continuous variables. The discrete qualifier
indicates that these values are piecewise constant with respect to simulation
time. The discrete keyword is not required but it does have the advantage
that any Real variable labeled as discrete must be assigned within a when
clause in an algori thIn section. This allows any changes that treat the variable
as continuous to be detected.

The uppe r and lowe r variables represent the point, forward and backward,
at which the next interval signal is triggered. Mechanically, this triggering

walter.ponge@terra.com.br

174 INTRODUCTION TO PHYSICAL MODELING WITH MODELICA

model PeriodSensor
import Modelica.Mechanics.Rotational;

extends Rotational.Interfaces.AbsoluteSensor;
parameter Integer divisions=4;

protected
parameter Modelica.SIunits.Angle trigger_interval=

2*Modelica.Constants.pi/divisions;
discrete Modelica.SIunits.Angle upper, lower;
Modelica.SIunits.Time last_time;

equation
flange_a.tau = 0;

algorithm
when initial() or flange_a.phi>=upper

or flange_a.phi<=lower then
upper := flange_a.phi+trigger_interval;
lower := flange_a.phi-trigger_interval;
last_time := time;
outPort.signal[l] := if initial() then 0.0

else trigger_interval/(time-pre(last_time));
end when;

end PeriodSensor;

Example 7.13. Interval encoding measurement.

usually corresponds to the location of an optical or magnetic sensor mounted
on the rotating body. In our model, once that location has been reached, the
upper and lower limits are changed to correspond to the next location.2

This example includes the use of the initial () function. This function
returns a value of true only at the instant the simulation starts. As we can
see in Example 7.13, the initial () function can be used in conditional
expressions for when and if clauses. Because we have no data at the start of
the simulation, we use the ini t ial () function to set the initial output from
the sensor to zero.

The logic in the PeriodSensor model is more complicated than the sensor
models presented so far. This model demonstrates how the logical operators
(e.g., or) can be used in conjunction with a when clause. As a result, if any of
the three conditional expressions becomes hue, the body of the when clause is
executed.

"For the sake of keeping the PeriodSensor model simple, it is assumed that the rotation sensed by the
sensor will be in one direction for the duration of the simulation. This is a reasonable assumption for this
type of sensor since it would not give accurate readings for the case where the rotational speed oscillated
between forward and backward motion (unless a more complicated encoding scheme were used).

walter.ponge@terra.com.br

Hybrid Models 175

The output signal is updated depending on which of the conditions leads to
the execution of the when clause. For initialization, the output signal is set to
zero. In the case of motion, the rotational speed is estimated by dividing the
sensor spacing by the time between reports.

To calculate the approximate speed, we must know the time between the last
position report and the current position report. The time of the current report
is represented by the global simulator variable time. At the time of each
report, we also record the current time in a variable called last_time. The
problem we face within the when clause is that we wish to use last_time in
a calculation and then update its value. To make sure we do not accidentally
use the updated value of last_time, we use the pre operator to obtain the
previous value for lasLtime (i.e., the value before the current when clause
was triggered).

7.4.5.2 Simulation results

Simulation results for the PeriodSensor model are shown in Figure 7.11.
The divisions parameter ofthe PeriodSensor model is used to indicate
how many positions are reported over a single rotation of the sensor. Figure
7.11 compares the control system behavior using an ideal sensor as well as a
PeriodSensor with 8 and 16 divisions.

c­
'u ---0'0

~]
.... 0:
.9 .~
~.~
~~

o~'----~----~----~L-----L-----~----~----~----~ o 0.5 1.5 2

~ 100
g
c­·u
o~

~~
.... 0:

oS .2
~o·~
~~

O~'~L-~ ______ L-____ ~ ____ ~ ______ L-____ ~ ____ ~ ____ ~

o 0.5 1.5 2

Time [5]

Figure 7.11. Comparison of PeriodSensor with ideal case.

walter.ponge@terra.com.br

176 INTRODUCTION TO PHYSICAL MODEUNG WITH MODEUCA

7.4.5.3 Limitations

The PeriodSensor model has several limitations. First, it is incapable
of distinguishing between forward and backward motion. For this reason,
it would be completely inappropriate for measuring rotational speeds which
oscillate around zero. It could also produce incorrect results when used to
measure systems where the rotational speed came close to zero because of the
possibility that the actual speed might cross zero.

Another limitation of the PeriodSensor is the resolution of the measure­
ment. This is dictated largely by the number of locations (i.e., divisions
in the model) reported during a single revolution. The higher the speed, the
fewer locations required. In other words, the divisions parameter must be
chosen based on the range of speeds being measured. This effect is visible in
Figure 7.11 which shows that the combination of low speeds and few divisions
can lead to poor performance.

7.4.6 Counter sensor

The last model we will discuss, the Count ingSensor , is similar to the
PeriodSensor. It operates on the same principle by relying on position
sensors to indicate when critical locations have been crossed. The differ­
ence between the CountingSensor and the PeriodSensor is that the
CountingSensor counts the number of these intervals crossed in a given
period of time to estimate speed. This can be important when large speeds
are being measured because the measuring equipment may not have time to
compute the speed at every report. Furthermore, the time intervals between
reports become very small and this can lead to numerical scaling issues.

7.4.6.1 Behavioral description

Even though the physical principles are the same between the Period­
Sensor and the CountingSensor, the approach taken in the Counting­
Sensor is slightly different. As we can see in Example 7.14, the variables
upper and lower used in PeriodSensor for reporting locations are not
present. Instead, a continuous sinusoidal signal is generated by the motion of
the system and when this sinusoidal signal crosses zero from below (i.e., with
a positive slope) a counter is incremented. The number of times such crossings
will occur in a given rotation of the system is indicated by the division
parameter.

At the sampling interval specified by the sample_interval parameter,
the tally is cleared and the tally of reports from the previous cycle, obtained
using the pre operator, is used to determine the speed of the sensor. Note that
the initial () function is used in this case to initialize the count variable.

walter.ponge@terra.com.br

Hybrid Models 177

model CountingSensor
import Modelica.Mechanics.Rotational;

extends Rotational.Interfaces.AbsoluteSensor;
parameter Integer divisions=4;
parameter Modelica.SIunits.Time sample_interval=O.l;

protected
constant Real pi=Modelica.Constants.pi;
parameter Modelica.SIunits.Angle trigger_interval=

2*pi/divisions;
Integer count;
Real s;

equation
flange_a.tau = 0;
s = Modelica.Math. sin (flange_a.phi*divisions) ;

algorithm
when initial() then

count := 0;
end when;
when s>=O then

count := pre (count) +1;
end when;
when sample (sample_interval,sample_interval) then

count := 0;
outPort. signal [1] : =

(pre(count)+l)*trigger_interval/sample_interval;
end when;

end CountingSensor;

Example 7.14. An interval counting approach.

Remember that the statements inside the when clauses are only evaluated for
the instant the conditional expressions are true.
7.4.6.2 Simulation results

Figure 7.12 shows a comparison between the performance of our benchmark
system using a CountingSensor and an ideal sensor. It should be noted
that the gain on the PI controller had to be reduced in order for the control to
be stable. As a result, even with an ideal sensor this system does not follow the
reference signal as closely as in previous comparisons. Results are presented
for different values of the sample_interval parameter.

7.4.6.3 Limitations

The CountingSensor has essentially the same limitations as the Period­
Sensor (i.e .. good for one directional, high speed measurement). However, it

walter.ponge@terra.com.br

178 INTRODUCTION TO PHYSICAL MODEliNG WITH MODEliCA
150r-----,-----,------.-----.----~----_.------._--~

OL·----~----~----~L-----L-____ ~ ____ ~ ____ ~ ____ ~
o 0.5 1.5

.• ,<': .. T----- ~«
:" <

Reference
Actual Speed

Sensed Speed

:.':-.... ;----- :.~:..-

2

°O~----~----~-----L-----L----~----~------L------~_
0.5 1.5

Time [s]
.lIllIe; L~J

Figure 7.12. Comparison of CountingSensor with ideal case.

also suffers from some of the problems that the QuantizedSensor model
has as well (i.e., coarse signal output).

7.4.7 Summary of sensor modeling
This section has demonstrated several different features of the Modelica lan­

guage related to hybrid modeling. In addition, we discussed sensor modeling
which is an important aspect of physical system modeling. For example, such
sensor modeling could be used to determine the effects of a sensor failure.
Along the way, we presented several interesting examples which demonstrate
how sensor characteristics must be carefully chosen to be compatible with the
control system design.

7.5 LANGUAGE FUNDAMENTALS
7.5.1 Algorithms in models

In this chapter, we have seen several models that contain an algorithm
section. It is important to understand that statements within an algorithm
(or equation) section that do not appear within a when or if clause can be
evaluated at any time by the simulator. On the other hand, statements inside

walter.ponge@terra.com.br

Hybrid Models 179

a when clause are evaluated only when the conditional expression in the when
clause becomes true (this will be discussed in greater detail shortly).

7.5.2 Discrete variables
In Section 2.5.2.3 we mentioned that parameters, constants and variables

all have a different variability. Recall that parameters and constants have
a value which is held constant for the duration of a simulation while Real
variables have the potential to change continuously. Integer and Boolean
variables have piecewise constant solutions which means they have values that
are constant most of the time but occasionally jump discontinuously to new
values.

In some cases, it is useful to have Real variables that have piecewise
constant solutions. Applying the discrete qualifier to the declaration of a
Real variable ensures that the variable will be piecewise constant because the
value of such a variable can only be modified by an assignment statement within
a when clause. The discrete qualifier is provided to help model developers
ensure that a variable is piecewise constant, but it is not required (i.e., for all
Real variables assigned within when clauses). The following code fragment
demonstrates different uses of the discrete keyword:

model DifferentUses
discrete Real x, y;
Real Z;

algorithm
when initial () then

x := 0; II ok, within when clause
end when;
when time>=1 then

x := 1; II ok, within when clause
end when;
y := if time>=1 then 1 else 0; II error, outside of when
Z := if time>=1 then 1 else 0; II ok, not discrete

end DifferentUses;

Because x is assigned within a when clause it will always have a piecewise
constant solution. Even though the assignment to y would appear to give the
same solution as x, it will generate an error. This is because an if expression
can contain time varying expressions (even though it does not in this case). The
assignment to z is acceptable because it was not declared as discrete.

The discrete keyword can also be applied to a connector or record. In
such a case, all Real variable declarations nested inside the connector or
record declaration will be considered discrete.

walter.ponge@terra.com.br

180 INTRODUCTION TO PHYSICAL MODEUNG WITH MODEUCA

7.5.3 Reacting to changing conditions
The when clause is generally used to either reinitialize a continuous variable

using the reinit operator or to change the value of a discrete variable. A
when clause may appear in either an algorithm section or in an equation
section. If possible, it is preferable to place the when clause in an equation
section for efficiency reasons. However, in some cases (e.g., when two different
when clauses within the same model modify the same discrete variable) it may
be necessary to put the when clause in an algorithm section.

The statements inside a when clause are applied only at the instant in time at
which the conditional expression (which follows the when keyword) becomes
true. The when keyword differs from the if keyword because the statements
inside an if clause continue to be applied as long as the conditional expression
remains true. Furthermore, if the conditional expression in a when clause is a
vector, then the when clause is activated if any of the conditions becomes true
regardless of the value of the others.

When multiple when clauses within the same algorithm section of a model
assign to the same discrete variables, the order of when clauses is important.
For example, consider the case where we are developing a controller for a boat
with two pumps. Assume we only have enough power to run one pump at a
time. Imagine one pump is a bilge pump which keeps the boat from filling
with water and the other pump is for a shower. Clearly, the bilge pump is more
important. So, our controller may contain the following when statements:

model PumpController
parameter Modelica.Slunits.Height h_crit;
parameter Modelica.Slunits.Pressure p_crit;
Modelica.Slunits.Height water_height;
Modelica.Slunits.Pressure shower_pressure;
Boolean shower_pump (start=false) , bilge-pump(start=false};

algorithm
when not bilge_pump and shower_pressure<=p_crit then

shower-pump := true;
end when;
when water_height>=h_crit then

shower_pump := false;
bilge_pump := true;

end when;
end PumpController;

The order of the when statements is imp011ant. Within an algorithm section,
the last when clause is the last one evaluated. The ordering of the when clauses
in this way was intentional. Consider the case where the bilge pump was not
on and the shower pressure dropped below the critical level while at the same
time the water height rose above the critical level. In such a case, it would be
as if the statements in the when clause appeared in the following order:

walter.ponge@terra.com.br

Hybrid Models 181

shower-pump := true; II From the first when clause
shower-pump := false; II From the second when clause
bilge_pump := true;

In other words, the bilge pump would take precedence. Note that the shower
pump came on and then was turned off immediately in this case. To prevent
this, we might use an elsewhen clause to make sure that the actions taken were
mutually exclusive, e.g.,

algorithm
when water_height>=h_crit then

shower-pump := false;
bilge-pump := true;

elsewhen not bilge-pump and shower_pressure<=p_crit then
shower_pump .- true;

end when;

In this case, the shower pump can only be turned on when the water height is
below the critical level. Note how the use of the elsewhen construct allows us
to reorder the conditions so the most important condition comes first.

One final note about when clauses. It is important to understand that the
following when clause:

when not bilge_pump and shower_pressure<=p_crit then
shower-pump .- true;

end when;

is not the same as:

when shower-pressure<=p_crit then
if not bilge_pump then

shower-pump .- true;
end if;

end when;

To understand the difference, consider the following scenario. Imagine the
shower pressure drops below p_crit but the bilge pump is on. Then at some
later time the bilge pump turns off while the shower pressure is still below
p_crit. In the first case, the shower pump will come on as soon as the bilge
pump turns off because the conditional expression will only become true at that
instant. In the second case, the shower pump will not come on because the
when clause was evaluated when the shower pressure became critical. Because
the bilge pump was on, the opportunity to turn the shower pump on was lost
because of the way the logic was written.

This PumpController example was written to be simple. However,
writing such logic for controllers can be tricky. It is possible to use the
basic hybrid language features in Modelica to write high level controller logic

walter.ponge@terra.com.br

182 INTRODUCTION TO PHYSICAL MODELING WITH MODELICA

representations (e.g., petri nets). Oftentimes, such high-level representations
may be a better choice than low level ~hen statements.

7.5.4
7.5.4.1

Built-in functions and operators in hybrid systems
Reinitializing a variable

The reini t operator is used to make a discontinuous change in the value of
a continuous variable. The reinit operator can only be applied to variables
that have had the der operator applied to them.

The effect of the reini t operator is to stop simulation time, make a change
to the value of one or more continuous variables and then resume simulation.
It is effectively like statting a new initial value problem. It is important to
recognize the implication a re ini t might have on the algebraic equations as
well as the differential equations in a system. A more detailed discussion of
these implications can be found in Chapter 13.

7.5.4.2 Values prior to events

For the PeriodSensor and CountingSensor models (shown in Ex­
amples 7.13 and 7.14), we used the pre operator to access the previous value
for a discrete variable at the instant it changed. Whenever a variable changes
value discontinuously, the pre operator can be used to find the previous value at
the instant of the discontinuity. The pre operator can be used with continuous
variables, but only within a ~hen clause. Mathematically, the previous value is
defined as the left limit of the variable at the time the discontinuity occurs (e.g ..
the time the ~hen clause is activated). At the start of the simulation, the pre
operator returns the value of its argument (i.e .. pre (x) =x).

7.5.4.3 Masking events

Conditional expressions in Modelica have an interesting property. If a con­
ditional expression changes value during a simulation, it forces the underlying
solver to stop at the point the transition occurs. This is done because discon­
tinuities in the continuous system of equations generally occur as a result of
such changes in conditional expressions. For numerical reasons, it is best to
stop the integration at that point and restatt so that the discontinuity does not
occur in the middle of an integration step.

Most of the time, this rule makes sense. However, in some cases it is
undesirable for such interruptions to occur. In general, such interruptions are
not necessary when the model developer knows for certain that no discontinuity
actually occurs. Such interruptions can be avoided by using the noEvent
operator to indicate that no discontinuity occurs as a result of the conditional
expression. By avoiding the interruption, some computation effort is saved
both in determining exactly when the conditional expression changes value and

walter.ponge@terra.com.br

Hybrid Models 183

in computing the extra time step. Another reason to use the no Event operator
is to enforce interpretation of the conditional expression. To understand why
this might be necessary, consider the case of a tank of liquid which empties
according to the following equation:

~; = { -~ x>O
x~O

(7.6)

where x is the height of liquid in the tank. One way to write a model for such

a tank would be:

model EmptyingTankl
Real x;

equation
der (x) ~ if x>O then - (x A

• 5) else 0.0;
end EmptyingTankl;

It appears, at first glance, that there is no danger that an attempt will be made
to take the square root of x when x is negative. The conditional expression
x > 0 would seem to protect against this. However, this is not the case. To
understand why, consider the following equivalent model:

model EmptyingTank2
Real x;
Boolean cond;

equation
cond = x>O;
der (x) ~ if cond then - (x A .5) else 0.0;

end EmptyingTank2;

If a simulation starts with a positive value for x, then cond will be true.
As long as cond is true, - y'X will be evaluated. Remember that conditional
expressions cause the simulator to try and identify the time at which the condi­
tional expression changes value. As a result, the value of cond is not evaluated
constantly. Instead, the simulator looks for the point at which x dips below
zero. It is only once that point has been identified that the value of cond is
changed to false. In the meantime, while searching for that point, negative
values of x will be considered and used in evaluating any expressions. In
summary, the simulator cannot know for sure that x is less than zero until it
sees a negative value for x and then it is too late because it has used that value
as the argument to a square root operation.

The remedy for this situation is to place the noEvent operator around
the conditional expression. However, some continuous expressions can also
trigger events (e.g., the built-in abs () function), so it is best to place the entire
expression within the noEvent as follows:

walter.ponge@terra.com.br

184 INTRODUCTION TO PHYSICAL MODELING WITH MODELICA

model EmptyingTank3
Real x;

equation
der(x) = noEvent(if x>O then _(x A .5) else 0.0);

end EmptyingTank3;

The noEvent operator suppresses events from being generated by the expres­
sion it is applied to. This avoids the problem of taking the square root of a
negative number because the simulator tests the condition x > 0 during every
evaluation of the right hand side of the equation rather than waiting to identify
when the condition changes. The drawback is that if a discontinuity did occur,
some numerical error would be introduced.

It should be noted that there are a few restrictions on the use of the noEvent
operator. First, the conditional expression of a when clause cannot be qualified
by the noEvent operator. In addition, the noEvent operator cannot be used
in Boolean, Integer or String equations.

As a final note, there have been proposals within the Modelica Association to
revise the noEvent operator. As of the writing of this book, none of these
proposals have been accepted. For the near term, it should continue to function
as described here. However, if you run into difficulties you might want to make
sure the semantics have not been revised.

7.5.4.4 Detecting changes

Two more useful functions are the edge () and change () functions.
These functions are designed to indicate when variables change their val­
ues. The edge () function can only be used with a Boolean variable
and the change () function can only be used on Boolean, Integer and
String variables. Each function has an equivalent conditional expression.
The edge () function is defined as:

edge (x) = x and not pre (x) ;

In other words, edge () is true at the instant that the argument, x, has just
become true (i.e., x is true and was not previously true). The change ()
function is defined as:

change (x) = x < > pre (x) ;

In other words, change () is true at the instant that x has a different value
than it previously had.

7.5.4.5 Generating events at regular intervals

The sample () function is a built-in function that takes two arguments.
The first argument is the time at which sampling begins. The second argument

walter.ponge@terra.com.br

Hybrid Models 185

is how frequently sampling occurs once it begins. Both arguments are of type
Modelica. SIuni ts. Time (i.e., seconds).

The sample () function returns the value false except at the instant when
sampling begins (i.e., the first argument) and after every sampling interval (i.e.,
the second argument). The true value only occurs for an instant.

7.5.4.6 Identifying the start and end of analysis

Two more built-in functions which can be used for hybrid models are the
initial () and terminal () functions. The initial () function be­
comes true only for an instant just as a simulation starts. It can be useful
for setting initial conditions for both continuous and discrete variables (see
Chapter 13 for more details). Likewise, the terminal () function becomes
true for an instant at the end of a successful simulation. One example of how
the terminal () might be used would be to call an external function which
writes out final simulation results to a file.

7.5.4.7 Terminating a simulation

Finally, we come to the terminate () function. This function is used to
indicate that it is no longer useful to continue a simulation. The termina te ()
function takes a single argument, s, of type String. This argument represents
the message that will be displayed to explain the termination of the simulation.

The main reason to terminate a simulation is because the simulation has
already evaluated what is of interest and so therefore further simulation would
not yield anything useful. For example, if we wish to simulate a thermal system
response up until the point where the temperature of the system stops changing,
we could use terminate as follows:

Modelica.Slunits.Temperature T;

algorithm
when abs(der(T))<le-3 then

terminate ("Temperature at steady-state");
end when;

As a result, when the rate of temperature change drops below 10-3 ~, the
simulation will be terminated.

The terminate () function is usually used to indicate the end of a suc­
cessful simulation. If you wish to terminate a simulation because something
has gone wrong with the simulation (e.g., the value of a variable is outside the
valid range) then the assert () function should be used.

walter.ponge@terra.com.br

186 INTRODUCTION TO PHYSICAL MODELING WITH MODELICA

7.5.4.8 Special considerations for other functions

Special consideration must be given for some of the built-in functions in
Modelica. For example, the following code fragment:

x := if y<O then -y else y;

could also be written, using the built-in abs () , as follows:

x := abs (y) ;

Since there is an implicit conditional expression within the definition of abs () ,
it has the same effect (i.e., stopping the integration when y crosses zero) as the
conditional expression it replaces. In order to avoid such interruptions, the
noEvent operator can be used just as it is with other expressions, e.g.,

x := noEvent(abs(y));

The functions abs () , ceil () , di v () , floor () , integer () , mod () ,
rem () and sign () may cause an interruption in the integration process
due to discontinuities. These discontinuities occur because the return value
of the function (or one of its derivatives) is not continuous with respect to
its arguments. For example, the use of the integer () function in the
QuantizedSensor model from Example 7.12 will trigger an interruption
every time the level variable changes.

7.5.5 Well posed problems
In algebra class, we first learn that in order to solve a system of equations

we must have exactly as many variables as equations. The same holds true for
Modelica models. However, for Modelica we need the number of variables to
be equal to the number of equations plus the number of assignments. There are
some important caveats to this rule. First, all equations and assignments within
when clauses are counted. Furthermore, all assignments to the same variable
within a single algorithm section count as a single assignment.

7.6 PROBLEMS
PROBLEM 7.1 In practice, simulations are primarily used to perform "What
If?" analyses. Re-run the LogicCircui twi thLag model for different
values of the lag parameter c. Look at the effect it has not only on the time
delay in the circuit, but also on the accuracy of the output signals. These
models can be found on the companion CD-ROM.

PROBLEM 7.2 The lag discussed in Section 7.2.4 is caused by capacitance
in the wires, delaying the rise of the voltage. Assume that a true value
corresponds to 5 Volts and a false value corresponds to 0 Volts. Create a lag

walter.ponge@terra.com.br

Hybrid Models 187

model using two resistors and a capacitor as shown in Figure 7.13. Compare
the results with those shown in Figures 7.4 and 7.5.

b

C=lOO fJF

Figure 7.13. Circuit to model inertial delay.

PROBLEM 7.3 Run the benchmarking cases from Section 7.4, but this time
lower the reference speed amplitude and/or offset values. What does this do to
the peljormance of the various controllers?

PROBLEM 7.4 The different kinds of sensor models developed in this section
were always connected directly to the mechanical system. Create blocks for the
four different types of sensor models that take the actual velocity as an input and
output the velocity indicated by the sensor. Using these blocks, you can "daisy­
chain" effects. For example, you could read the actual velocity using an ideal
sensor and then feed that signal into a Peri odSensor block. Then, you could
feed the output from the PeriodSensor block into a QuantizedSensor
and look at what the overall effect is on the velocity signal.

PROBLEM 7.5 Create a sensor model that introduces a delay in the feedback
loop. Put that in the benchmark case and study the effects for different delay
values.

PROBLEM 7.6 As we discussed in Section 7.4, in addition to modeling the
plant, modeling of sensors and actuators is important. Many of the sensor
models presented in that section can cause the system to become unstable. To
further demonstrate real-world situations, develop an actuator model which
saturates at some predetermined level (i.e., a torque source that can only
produce specified minimum and maximum values regardless of the commanded
value). In which cases does this mitigate the instabilities due to non-ideal
sensors and in which cases does it make things worse?

walter.ponge@terra.com.br

188 INTRODUCTION TO PHYSICAL MODEUNG WITH MODEUCA

PROBLEM 7.7 Create a model of a block that numerically computes the
derivative of its input. To do this, you must sample the input signal at reg­
ular intervals and compute a finite difference approximation for the signal,
e.g., :

du u(t) - u(t - ~t)

dt ~t
(7.7)

walter.ponge@terra.com.br

Chapter 8

EXPLORING NONLINEAR BEHAVIOR

8.1 CONCEPTS
The point at which modeling gets particularly interesting is when model

behavior becomes increasingly nonlinear. It is no coincidence that this is the
point where simulation tools start having trouble. Nonlinear behavior is hard to
avoid in real world models. The examples in this chapter will introduce some
of the approaches used to describe nonlinear behavior.

8.2 AN IDEAL DIODE
We begin our examples with an ideal electrical diode. This example intro­

duces a useful parameterization technique in modeling non-linear systems.

8.2.1 Mathematical background
In order to understand the parameterization technique, we must first examine

the problem that makes this technique necessary. Consider the following ideal
diode equations:

i = 0 when v ~ 0
v = 0 when i ~ 0

(8.1)

In order to get a better understanding of how an ideal diode behaves, consider
the graphical representation of Equation (8.1) shown in Figure 8.1. The thick
line represents possible states of the diode. What makes such behavior difficult
to model is that the current cannot be written in terms of the voltage and the
voltage cannot be written in terms of the current. In mathematical terms, the
current is not a proper function of the voltage and the voltage is not a proper
function of the current.

walter.ponge@terra.com.br

190 INTRODUCTION TO PHYSICAL MODELING WITH MODELICA

I

s>o

--~~----~------~----~ V

s<o ~s=o
Figure 8.1. Current-voltage characteristics of an ideal diode.

This leads us to the technique which allows us to work around the issue (see
Otter et aI., 1999). Specifically, we must express the behavior parametrically
in terms of another variable. Let us call this parametric variable s. The
variable s must be chosen such that the current and the voltage can both be
written explicitly in terms of s. In this way, the state of the diode becomes a
continuous function of s. One way to perform this mapping is to consider s
to be the distance along the curve shown in Figure 8.1, starting at the origin.
Mathematically, we can then write voltage and current in terms of 8 as follows:

v = { ~

i = { ~

8<0
82:0

8<0
82:0

(8.2)

(8.3)

Once again, a graphical representation is sometimes easier to understand. Fig­
ure 8.2 shows the voltage and current plotted with respect to 8.

8.2.2 Model description
Now we must translate Equations (8.2) and (8.3) into Modelica code. It

turns out that by reusing the One Port pattial model from Example 4.1, we
can write this model in a few lines as shown in Example 8.1.

Note that our IdealDiode model contains two internal variables, s and
open. The s variable is our parametric variable used as the independent
variable in Figure 8.2. The variable open represents which patt of the curve

walter.ponge@terra.com.br

Exploring Nonlinear Behavior 191

0.5,..----r--,----,.---.---y----r--.-----,

o

" ~ -0.5

~

-1.5_1 -0.5 o 0.5

1.5

~
C 0.5
~
" U

0

-0.5
-I -0.5 o 0.5

Parameter Variable: s

Figure 8.2. Current-voltage characteristics of an ideal diode plotted parametrically.

we are on in Figure 8.1. If open is true, then s represents the voltage drop
across the diode (the horizontal line in Figure 8.1). On the other hand if open is
false, then s represents the current flow through the diode (the vertical line in
Figure 8.1). As a result, a change in open represents a fundamental behavioral
change in the model (additional details about these kinds of behavioral changes
can be found later in Section 8.6.2).

model IdealDiode "An Ideal Diode"
extends Modelica.Electrical.Analog.Interfaces.OnePort;

protected
Real s "Parametric independent variable";
Boolean open;

equation
open = s<=O;
v = if open then s else 0;
i = if open then 0 else s;

end IdealDiode;

Example 8.1. An ideal diode model.

8.2.3 Sample circuit
Figure 8.3 shows the schematic of an alternating current (AC) to direct

current (DC) power supply. After the AC voltage has been stepped down using
a transformer, the diode is used to rectify the resulting AC signal and the ripples

walter.ponge@terra.com.br

192 INTRODUCTION TO PHYSICAL MODELING WITH MODELICA

that result from this rectification are damped out by a resistor and capacitor.
A switch is used to connect the load to the power supply. Figure 8.4 shows
the results of simulating this system for one second. The top plot shows the
supplied voltage, Vsupply, the middle plot is the voltage across the load, Vioad,

and the bottom plot shows the state of the switch.

6f-
~
" OJ)

E
'0
>

4

2

0

6

4

2

o

Open

Closed

0

f-

f-

r-

o

-

o

Power Supply Load Device

road

Figure 8.3. Schematic of an ACIDC power supply.

I I I I -

-
1- Supply Voltage I_

-
I I I I

0.2 0.4 0.6 0.8
I -

-

1- Load Voltage I -
-

0.5
I

-
1- Switch State I

I

0.5

Time [s]

Figure 8.4. Voltage response of an ACIDC power supply.

One thing to note about the circuit in Figure 8.3 is the fact that a small
resistance, Rshort was placed in series with the diode. This was done because
simulation tools often have difficulty modeling ideal components. For example,

walter.ponge@terra.com.br

Exploring Nonlinear Behavior 193

if the resistor in Figure 8.3 is left out, the resulting system of DAEs will have a
variable index (for details see Mattsson and Soderlind, 1993). For this reason,
the ideal diode model in the MSL has a resistance built into the model.

8.3 BACKLASH
A common nonlinearity introduced when building mechanical models is the

representation of backlash. Backlash can occur in both rotational and trans­
lational systems and can be an important effect for many types of mechanical
models. We will describe two approaches to handling the backlash problem
and discuss the advantages and disadvantages of both approaches.

8.3.1 Non-linear spring approach
The first approach to consider is called the "non-linear spring approach".

This approach involves implementing a spring with a force-displacement curve
like the one shown in Figure 8.5.

Angular Displacement [rad]

Figure B.5. Force-displacement characteristics for a backlash.

The basic idea behind this approach is to implement a "spring" that exerts
no force until sufficient angular displacement occurs such that there is no more
backlash in the system. At that point, the spring becomes stiff (corresponding
to the collision of two rigid bodies) and the two rigid bodies "bounce" away
from each other. These collisions will rarely be modeled as perfectly elastic
and therefore a damping term is usually added as well. The equation for the

walter.ponge@terra.com.br

194 INTRODUCTION TO PHYSICAL MODELING WITH MODELICA

force between the two colliding bodies is:

¢ <-~
A. < Q
'I' - 2

¢
(8.4)

where ¢ is the angular displacement across the backlash component, b is the
amount of backlash, c is the spring constant and d is the damping coefficient.
Example 8.2 shows a model for such behavior.

model SpringBacklash
import Modelica.Mechanics.Rotational;
extends Rotational.lnterfaces.Compliant;
parameter Modelica.Slunits.Angle b=0.05 "Backlash amount";
parameter Real c=le+5 "Spring stiffness";
parameter Real d=O "Damping coefficient";

protected
Modelica.Slunits.AngularVelocity w_rel;

equation
w_rel = der(phi_rel);
if phi_rel<=-b/2 then

tau = c*(phi_rel+b/2)+d*w_rel;
elseif phi_rel>=b/2 then

tau c*(phi_rel-b/2)+d*w_rel;
else

tau 0;
end if;

end SpringBacklash;

Example 8.2. Non-linear spring backlash model.

The drawback of this approach is that the system of equations becomes
very "stiff" when contact is made. This is not desirable for several reasons.
First, the system of equations can become difficult and time consuming to
solve. Second, prolonged contact will result in a persistent, high-frequency
vibrational response. Ultimately, this mode may be damped out but it could
cause robustness problems with the model. Finally, it is not necessarily easy
to know exactly what the compliance and damping properties of the colliding
materials are. In those cases, it becomes difficult to correctly capture the
dynamics.

8.3.2 Coefficient of restitution approach
The coefficient of restitution approach, modeled in Example 8.3, avoids the

problems with the stiff spring. The idea behind the BacklashCOR model is to

walter.ponge@terra.com.br

Exploring Nonlinear Behavior 195

model BacklashCOR
import Modelica.Mechanics.Rotational;
extends Rotational.1nterfaces.Compliant;
parameter Modelica.S1units.Angle b=0.05;
parameter Modelica.S1units.1nertia 11=1, 12=1;
parameter Real K=l "Coefficient of Restitution";

protected
Mode1ica.S1units.AngularVelocity w1, w2;
Modelica.S1units.AngularAcceleration a1, a2;

equation
w1 der(flange_a.phi);
w2 der(flange_b.phi);
a1 der (w1) ;
a2 der (w2) ;
tau = 0;

algorithm
when phi_rel>=b/2 or phi_rel<=-b/2 then

reinit (w1, ((11-K*12) *pre (w1) +12* (l+K) *pre (w2)) / (11+12)) ;
reinit(w2, ((12-K*11)*pre(w2)+11*(l+K)*pre(w1))/(11+12));

end when;
end BacklashCOR;

Example 8.3. Coefficient of restitution backlash model.

recognize the point at which the collision occurs, compute how much momen­
tum will be lost (determined by the coefficient of restitution) and recompute
the velocity of the two colliding bodies as follows:

(11 - K12)Wl + h(l + K)W2

h+h
(h - K11)W2 + h (1 + K)Wl

h+h

(8.5)

(8.6)

where W represents rotational velocity, 1 represents rotational inertia and K is
the coefficient of restitution. This adjustment to the angular velocity is done
in a single step by using the reini t operator (i.e., the simulator does not
attempt to resolve the dynamics of the collision) so the numerical issues are
avoided. Prolonged contact of the two bodies can still be a problem but this
can be overcome (as we previously showed with the bouncing ball model in
Example 7.9).

The problem with the coefficient of restitution model is that it requires
knowledge of the effective inertia of each body. This is not something a
single model can know because it is possible that additional inertias are rigidly
connected to the backlash model. These rigid connections change the effective
inertia of the bodies and make the internal momentum calculation incorrect.

walter.ponge@terra.com.br

196 INTRODUCTION TO PHYSICAL MODEliNG WITH MODEliCA

Even worse is the case where multiple inertias are connected by multiple
backlashes because the effective inertia of the assembly changes depending on
the current state of each backlash. This places a burden on the user of the model
to make sure the correct values for the effective inertia are somehow provided
to the model.

Another interesting thing to note about the BacklashCOR model is the
fact that the reinit operator can only be applied to a variable which has had
the der operator applied to it. The variables al and a2 are dummy variables
introduced so that reinit could be applied to wI and w2.1 Finally, the
pre operator was used (see Section 7.5.4.2 for further details) to reference the
angular velocities prior to the collision.

8.3.3 Comparison
Let us do a quick comparison of both of these approaches. Figure 8.6 shows

the schematic of one test case where there are two inertias and both are directly
connected to the backlash model. We will refer to this as the "two inertia" case.
For the next case, an additional inertia was added. This new inertia is rigidly
connected (through an ideal gear with a gear ratio of 1) to one of the previous
inertias. We will call this the "three inertia" case. The values of the inertias
were adjusted so that these two cases (i.e., the two and three inertia cases) are
physically identical. In other words, the effective inertia on both sides of the
backlash is the same in both cases.

signal [§J.. , torque

A ~ "G-----IEZZ ... ·····V tau L-_--'

J=1

11 backlash=1.e5 12

freqHz={1} b=O

Figure 8.6. Backlash schematic with two inertias.

signal ~
.•.. torque 11 backlash=1.e5 12 ~ i 13 liVf ~~ ,.; ... =----
freqHz={1} J=1 b=O J=3 gear= 1 J=1

Figure 8.7. Backlash schematic with three inertias.

I In fact. the current semantics of re-initialization are being examined to see if there is a way to avoid the
necessity of adding such dummy variables.

walter.ponge@terra.com.br

Exploring Nonlinear Behavior 197

The problem for our BacklashCOR model is that it needs to know the
effective inertia at both of its connection points, not just the value of the inertia
directly connected to it. For the "3 inertia" case, we have deliberately chosen
to include only the value of the inertia directly connected to the backlash and
not the inertia contribution across the gear. This is an easy mistake to make
because it is not necessarily obvious to somebody building such a schematic
that the effective inertia is required or how to calculate it. This is because that
calculation depends on the equations contained within the various components.
In summary, even though we have made this error intentionally, it is the kind
of error that is made easily by accident.

0.06 r-------,-----,----.,-------,-----,----,.----,

phi2 (2 inertias+spring)
phi2 (2 inertias+cor)
phi2 (3 inertias+spring)
phi2 (3 inertias+cor)

-0.02 l-__ --'-___ ...l..... ___ L-__ --'-___ ...l..... ___ L-__J

o 0.2 0.4 0.6

0.2,----.---,----..-----.---,----,.----,
';;;'

~ 0.15
.!::,

o ·13 0.1

~
> 0.05
~

], 0
~

-0.050L-----'----...l.....---L----0.L.4-----'-----:-oL.6------'

Figure 8.8. Comparison of the two backlash models for the cases shown in Figures 8.6 and
8.7.

The top plot in Figure 8.8 shows the angular position of the second inertia,
12, for both the "two inertia" and "three inertia" cases using both backlash
models. As we can see from this plot, all the models give the correct answer
except for the coefficient of restitution model using three inertias. This demon­
strates that the coefficient of restitution model is less robust than the non-linear
spring approach because it requires the user to carefully make sure that the
data given to the backlash model (i.e., the effective inertia on both sides of the
backlash) is consistent with the physical characteristics of the schematic. Such
situation are always troublesome and should be avoided.

walter.ponge@terra.com.br

198 INTRODUCTION TO PHYSICAL MODELING WITH MODELICA

The bottom plot in Figure 8.8 shows the angular velocity of the first inertia,
I 1, using both backlash models in the "two inertia" case. This plot demon­
strates an interesting property of the different solution methods. The dashed
line indicates the coefficient of restitution model for the "two inertia" case.
Note the abrupt changes in the velocity. These jumps are the result of using the
reinit operator.

Let us focus on the first collision. Note how both solutions at the bottom
of Figure 8.8 are identical up until the first collision occurs. The coefficient
of restitution model jumps immediately to a new value when the collision
occurs. The non-linear spring model takes a finite amount of time to resolve
the collision. The difference in the models leads to a delay for the non-linear
spring model. This delay accumulates at each collision.

The amount of the delay is related to the stiffness of the spring. This
means that if you choose the stiffness value arbitrarily, you will get an arbitrary
delay. This highlights one of the drawbacks of the non-linear spring approach.
Specifically, the method requires you to treat the colliding bodies as "very
stiff". The problem is "how stiff is very stiff?". As we have seen, the value
chosen for the stiffness will make some difference in the solution so it should
be chosen carefully. The other drawback of the approach is that, in general,
the stiffer you make the spring, the longer it will take the simulation tool to
simulate the collision.

8.3.4 Summary and future directions

As pointed out in our discussion of backlash models, the non-linear spring ap­
proach has the disadvantage that it can lead to inefficient numerical simulations.
In addition, it may not be easy to measure the compliance and damping factors
for the materials involved. On the other hand, the reinit approach avoids
those problems but will not work correctly if one of the inertias connected to
the backlash model is rigidly connected to another inertia. If stiff connections
are substituted for rigid connections, then undesirable high frequency modes
will appear.

As a result, the best approach currently available for modeling backlash is
to use the non-linear spring approach because it is general enough to handle all
cases and it is robust. However, there is a proposal currently being formulated
for an extension to the Modelica modeling language which would introduce
the ability to model collisions using impulses. This would provide a general,
robust and computationally efficient approach to modeling backlashes and
several other phenomena. If you are interested in effects like backlash, check
with the Modelica Association to find out when such impulse handling is likely
to be available and whether it will be suitable for you.

walter.ponge@terra.com.br

Exploring Nonlinear Behavior 199

8.4 THERMAL PROPERTIES
8.4.1 Background

In Section 6.3, we described how a simple heat transfer system can be
modeled in Modelica. In this section, we will show how to introduce non­
linear thermal properties into a heat transfer model.

By applying conservation of energy to a control volume we arrive at the
following equation:

dd f. pu(T)dV=- f f·nds
t i" is

(8.7)

where u(T) represents the specific internal energy of the material within the
volume V. If we assume that the density and temperature do not vary over the
volume then we can simplify Equation (8.7) to:

V p du(T) = _ f f. n dS (8.8)
dt is

2.5e+06

g l.5e+06
1e
.=;
u

~ le+06
15-
v;

5e+05

~oo 1800 2000

Figure 8.9. Plot of u(T) from Equation (8.9).

Note that Equation (8.8) does not specify relationship between u and T.
Such relationships are often non-linear and present some interesting modeling
challenges. In order to explore this possibility, let us assume the following
relationship between specific internal energy and temperature:

{
900T

u(T) = 90000T - 89100000
900T - 891000

200::; T < 1000
1000::; T ::; 1010
1010 < T ::; 2000

(8.9)

walter.ponge@terra.com.br

200 INTRODUCTION TO PHYSICAL MODELING WITH MODELICA

Figure 8.9 shows a plot of u as a function of T. Since cp(T) is defined as the
derivative of specific internal energy, u, with respect to temperature, we find
that ep for our non-linear material, based on Equation (8.9), would be:

{
900

ep(T) = 9000
900

200::; T < 1000
1000::; T ::; 11 00
1100 < T ::; 2000

(8.10)

One important thing to note about the material properties shown in Equations
(8.9) and (8.10) is that they are limited to the temperature range 200K to
2000K.

8.4.2 Creating a thermal property model
Creating a property model involves encapsulating Equation (8.9) into a

Modelica model. Since different materials have different specific internal
energy relationships, Example 8,4 shows how we can define a partial model
to capture the essence of what a property model consists of.

partial model ThermalPropertyModel
Modelica.Slunits.Temperature T;
Modelica.Slunits.SpecificlnternalEnergy u;

end ThermalPropertyModel;

Example 8.4. A general thermal property model interface.

Example 8.5 shows how we can capture the specific internal energy relation­
ship in Equation (8.9). Note that Example 8.5 uses the assert () function to
verify that the property model is used in a valid region. If the simulated solution
ever fails to satisfy the conditional expression inside the assert () function
invocation, an error occurs and the message provided in the assert () func­
tion invocation will be given as an explanation. The ability to impose such
restrictions and present a meaningful message when they are violated is impor­
tant in creating robust simulations.

In addition, notice that start values have been provided for both u and T
in Example 8.5. This is always a good idea when building non-linear models.
Remember, the start attribute is just a guess about what a reasonable value
might be (i.e .. it provides the simulator a good initial guess).

A subtle property of Example 8,4 is that it is not represented as a block. In
other words, we have not identified the temperature and specific internal energy
as either inputs or outputs of the model. This allows the model to be used either
as an explicit equation for u as a function of T or as an implicit equation for T
as a function of u.

walter.ponge@terra.com.br

Exploring Nonlinear Behavior 20 I

model SimplePropertyModel
parameter Modelica.Slunits.Temperature Tl=lOOO;
parameter Modelica.Slunits.Temperature Tu=llOO;
parameter Modelica.Slunits.SpecificHeatCapacity cp_s=900;
parameter Modelica.Slunits.SpecificHeatCapacity cp_m=9000;
parameter Modelica.Slunits.SpecificHeatCapacity cp_l=900;
extends ThermalPropertyModel(u(start=cp_s*300»;

equation
assert(T>=200 and T<=2000, "T out of range");
if T<=Tl then

u = cp_s*T;
elseif T<=Tu then

u = cp_m*(T-Tl)+Tl*cp_s;
else

u = cp_l*(T-Tu)+cp_m*(Tu-Tl)+Tl*cp_s;
end if;

end SimplePropertyModel;

Example 8.5. A specific thennal property model.

8.4.3 Modeling non-linear thermal capacitance
Example 8.5 defines our material property behavior but now we must use

it within the context of a non-linear capacitance model. Example 8.6 shows
a non-linear version of the thermal capacitance model found in the Thermal
package.

model ThermalCapacitanceNL "Non-linear rod section"
Thermal.lnterfaces.Node n;
parameter Modelica.Slunits.Density rho;
parameter Modelica.Slunits.Volume V;
replaceable ThermalPropertyModel props (T=n.T) ;

equation
II Conservation of energy
V*rho*der(props.u) = n.q;

end ThermalCapacitanceNL;

Example 8.6. A non-linear thennal capacitance model.

There are several interesting things to point out about the declaration of the
property model. First, the declaration is replaceable which allows us to use
a wide variety of property models with this capacitance model.

Secondly, note that the modification T=n. T has been applied to the props
component. This modification represents an equation just as if we had added
the line

walter.ponge@terra.com.br

202 INTRODUCTION TO PHYSICAL MODEliNG WITH MODEliCA

props.T = n.T;

to the equation section of the model. It is often useful to specify equations in
this way because the implications of the equation appear close to the compo­
nent they modify. The disadvantage of including an equation in a component
declaration is that it is easy to forget about such equations because they do not
appear explicitly in an equation section.

8.4.4 Simulating solidification
Now we wish to combine the specific material property relationship defined

in Example 8.5 with the general non-linear thermal capacitance model shown in
Example 8.6. The material property relationship defined in Example 8.5 is in­
teresting because the steep region (i.e., between lOOOK and nOOK) represents
the transition from a solid state to a liquid state.

model SolidifyingRod
import Thermal.BasiclD;
import BCs=Thermal.BoundaryConditions;
import Modelica.SIunits;
parameter SIunits. Length L=O. 3 "Total length";
parameter SIunits .Area A=4. 0 "Cross-sectional area";
parameter SIunits.Density rho=5.0;
parameter SIunits.ThermalConductivity k=O.5;
parameter SIunits.CoefficientOfHeatTransfer h=lO;
parameter Integer nsections=30 "# of sections";
parameter SIunits.Length sec_L=L!nsections;
/ / Components

ThermalCapacitanceNL .cap[nsections] (V=sec_L*A,rho=rho,
redeclare SimplePropertyModel props(Tu=lOlO,cp_m=90000));

BCs.FixedTemperature Tr(T=1800);
BasiclD.Conduction c_cond[nsections-l] (L=sec_L,A=A,k=k);
BasiclD.Convection r_conv(A=A,h=h) ;

equation
for i in l:nsections-l loop

connect (c_cond[i] .a,cap[i] .n);
connect (c_cond [i] .b, cap [i+l] .n) ;

end for;
connect (Tr.n,r_conv.b) ;
connect (r_conv.a, cap [nsections] .n);

end SolidifyingRod;

Example 8.7. A rod changing from solid to liquid.

Example 8.7 is similar to the HTProbleml model from Example 6.15 with
a few important differences. First, the thermal capacitance model shown in
Example 8.6 is used for the segments of the rod. In addition, the model uses the

walter.ponge@terra.com.br

Exploring Nonlinear Behavior 203

models contained in the Thermal package. Finally, the boundary conditions
for this problem have changed. The left end is now adiabatic (i.e., no heat
transfer) and the right end has a convective boundary condition attached to it.

The results of running the simulation are shown in Figure 8.10. The plot
shows a series of temperature curves as a function of longitudinal distance
along the rod for various times during the solidification. The discontinuity in
the slope of the temperature curve between 1000K and 1100K is an artifact
of the non-linear property relationship. The classic reference for this type of
problem is (Stefan, 1891).

g
~

~
E"
Q,l

1500

Linear Model (after 150 seconds)
Linear Model (after 300 seconds)
Nonlinear Model (after 300 seconds)
Nonlinear Model (after 600 seconds)

.... 1000 •••.•.•..•••••.••.•

500

o 0.5 1.5

Position Along Rod Length (m)

3

Figure 8.10. Temperature distributions in Sol idi fyingRod for linear and nonlinear prop­
erty models.

8.5 HODGKIN-HUXLEY NERVE CELL MODELS
One of the most interesting non-linear models I have seen is the Hodgkin­

Huxley model (see Hodgkin and Huxley, 1952). This model, used for simulat­
ing the electrical activity of nerve cells, was the basis for awarding Hodgkin and
Huxley the Nobel Prize in 1963. We will only present a cursory explanation
of the behavior of this model. A more detailed explanation can be found in (
Bower and Beeman, 1994).

walter.ponge@terra.com.br

204 INTRODUCTION TO PHYSICAL MODELING WITH MODELICA

8.5.1 Background
The basic idea in this model is that molecules of sodium and potassium move

across the membrane of a nerve cell. Because these molecules are ionized, they
carry with them an electric charge. As a result, the motion of these molecules
results in an electrical current through the membrane of the cell which then
causes a change in the voltage difference across the membrane. The motion of
the sodium and potassium ions is governed by ion channels in the membrane
wall. The activation level of the ion channels is represented by a real number
between 0 (completely closed) and 1 (completely open). Rather than having
a fixed conductance, the conductance of the ion channels is determined by a
differential equation which depends on the voltage drop across the membrane
and the activation level of the ion channel.

8.5.2 Circuit model

9

Figure 8.11. Nerve cell segment schematic.

Figure 8.11 shows an electrical schematic of a nerve cell. The purpose of
the model is to predict the changes in voltage across the membrane of the nerve
cell in response to the injection of a pulse of current. The non-linear behavior
of the ion channels in the nerve cell along with the time scale variation in the
response of each type of ion channel causes fluctuations in the voltage across
the cell membrane.

Figure 8.12 shows the voltage, current and channel activation levels as a
function of time for the schematic shown in Figure 8.11. Note how the voltage

walter.ponge@terra.com.br

Exploring Nonlinear Behavior 205

spikes in response to the injected current and then recovers after the current
excitation has stopped.

A complete model for the circuit shown in Figure 8.11 is included on the
companion CD-ROM. However, to give a sample of the types of equations
used, we will include some discussion of the sodium channel model. The con­
ductance, G, of the sodium channel is determined by the following equations:

E+Va b
(8.11) ah 0.07e- 20

bh
-E+Vbb

(l+e 10)-1 (8.12)

E+Vam (8.13) am E+Vam
10(1 - e- 10)

bm
E+Vhm

4e- 18 (8.14)

h 1000 (ah(l - h) - hbh) (8.15)

m 1000 (am(1- m) - mbm) (8.16)

G m 3hAGNa (8.17)

where m and h are internal activation levels, A is the membrane area and G Na
is the maximum conductance of the sodium channel.

Using these equations, we can implement the sodium channel model in
Modelica as follows:

model SodiumChannel "Hodgkin-Huxley Sodium Channel"
extends Modelica.Electrical.Analog.lnterfaces.OnePort;
parameter SIunits.Area membrane area;

protected
constant HodgkinHuxley.MilliVoltage V_am=40, V_bm=65;
constant HodgkinHuxley.MilliVoltage V_ah=65, V_bh=35;
Real m_prob "Probability of activation of channel";
Real h_prob "Probability of inactivation of channel";
SIunits.DecayConstant a_m, b_m;
SIunits.DecayConstant a_h, b_h;
SIunits.Conductance G;
HodgkinHuxley.MilliVoltage E=1000*v;
parameter SIunits.Conductance g_max=membrane_area*G_Na;

equation
G = m_probA3*h-Frob*g_max;
i = G*(v - E_Na);
der(m_prob) = 1000* (a_m*(1 - m_prob) - b_m*m-Frob);
am = (.l*(E + V_am))/

(1 - Modelica.Math.exp(-(E + V_am)/10));
b_m = 4*Modelica.Math.exp(-(E + V_bm)/18);
der(h_prob) = 1000* (a_h*(1 - h-Frob) - b_h*h-Frob);
a_h = .07*Modelica.Math.exp(-(E + V_ah)/20);
b_h = 1/(1 + Modelica.Math.exp(-(E + V_bh)/10));

end SodiumChannel;

walter.ponge@terra.com.br

206 INTRODUCTION TO PHYSICAL MODELING WITH MODELICA

To put the complexity of this model in perspective, compare it to the resistor
model shown Example 3.2.

le-08 ,----,---,---,,---,---,----. ~

ETI ~
..... ~ .. h 0.8 :.0

" .D

0.6 £

5e-09

0)

" 0 .. " oj
.<:
U

0.2 E
-2e-08 ~

0
0 ifJ

0.55 0.6
-2.Se-08 ':-:-----'--::'-:---''---::-':-::----'---:-'

0.45 0.6

V
&

0.8 :.0
" .D
0

0.6 0:;
0)

"
o.~

§
.c
U
E

o.os

~
" "" ~ ;;

I

r

r-

I n I 0.2 " "E
0 ~

0.55 0.56 0.6

-0.05 r
V- V L-r /, V

0.45 0.5 0.55 0.6

Time [s] Time [s]

Figure 8.12. Dynamic response of the nerve cell.

8.6 LANGUAGE FUNDAMENTALS
Nonlinear models are often required for practical engineering analysis.

Therefore, it is important to be able to represent such nonlinearities and have
tools available which are capable of simulating highly nonlinear systems. Let
us summarize some of the important aspects of the Modelica language that
support the creation of nonlinear models.

8.6.1 Parametric formulation
Example 8.1 used a technique that parameterizes non-linearities in terms

of an intermediate variable. This technique is quite useful when you have
relationships between through and across variables that cannot be expressed
using a simple functional relationship.

We saw (e.g .• in the IdealDiode model) how an if statement or if
expression can be used to construct functions which compute the through and
across variables for different regimes of behavior. It is important when using
parametric formulations to make sure that the through and across variables can
be expressed as continuous functions of the intermediate variable.

walter.ponge@terra.com.br

Exploring Nonlinear Behavior 207

8.6.2 Behavioral changes
As we have seen (e.g., in the IdealDiode model from Example 8.1 and

the SimplePropertyModel model from Example 8.5), the presence of
either an if expression or an if statement can introduce behavioral changes in
a model.

The most obvious effect is that the model containing an if statement or if
expression has two different modes of behavior. It is important that these two
modes provide a continuous description of behavior. For example, the specific
internal energy, u, shown in Example 8.5 is a continuous function of T even
though it contains an if statement. Without this continuity, there would likely
be numerical problems.

The more subtle effect, introduced by the presence of conditional expres­
sions, is the generation of events as described previously in Section 7.5.4.3. Let
us consider the IdealDiode model in Example 8.1. Note that a Boolean
variable was introduced to represent the state of the diode. This allowed the
model to be expressed with only a single conditional expression. If, instead,
we had written the model as:

model IdealDiode "An Ideal Diode"
extends Modelica.Electrical.Analog.Interface8.0nePort;

protected
Real 8 "Parametric independent variable";

equation
v = if 8<0 then 8 else 0;
i = if 8<0 then 0 else 8'

end IdealDiode;

we might have run into some difficulty. The reason is that then we would have
two conditional expressions. We can tell by looking at these expressions that
they are identical. However for numetical reasons, we cannot be sure that a
given tool will recognize this.

If these two conditional expressions are treated independently, we have no
way to make sure that the behavioral changes triggered by the conditional
expressions will happen at the same time. In other words, the simulator may
determine that the conditional expression used to compute v becomes true
slightly before (or after) the conditional expression used to compute i. This
could lead to difficulties when solving a problem. The open variable in the
IdealDiode model was introduced to synchronize the behavior change of
both v and i.

It seems obvious that two identical conditional expressions should be treated
as a single conditional expression. However, it is not always so easy to recog­
nize equivalent conditional expressions because they may be mathematically
equivalent but they are not necessarily numerically equivalent. For example,

walter.ponge@terra.com.br

208 INTRODUCTION TO PHYSICAL MODELING WITH MODELICA

the following conditional expressions are all mathematically equivalent but it
is easy to see why a tool may not recognize that they are:

s < 0;
5*s < 0;
-s > 0;
not s >: 0;

4000+s < 4000;
s~3 < 0;

Another way to make sure that behavior changes are synchronized is to use
an if statement. For example, the IdealDiode model in Example 8.1 could
have been written as:

model IdealDiode "An Ideal Diode"
extends Modelica.Electrical.Analog.Interfaces.OnePort;

protected
Real s "Parametric independent variable";

equation
if (s < 0) then

v = s·
i = 0;

else
v 0;
i = s;

end if;
end IdealDiode;

This approach also results in a single conditional expression which triggers
only a single event.

It should be pointed out that both if statements and if expressions in an
equation section must include an else clause. In addition, all possible
branches of an if statement in an equation section must contain the same
number of equations. As mentioned previously in Chapter 5, an if statement
can also include several elseif clauses.

8.6.3 Discontinuities
The reinit operator is used to make a discontinuous change in the value

of a variable providing that variable has had the der operator applied to it. This
operator allows us to model discontinuities as we did in the BacklashCOR
model shown in Example 8.3. The first argument to the reini t operator
is the variable whose value should change and the second argument is the
value it should change to. The reinit operator can only be used within a
when clause because it is meant to represent an abrupt change. In other words,
re ini t is fundamentally different from an assignment or an equation because
it represents an abrupt change in value rather than a continuous change. When

walter.ponge@terra.com.br

Exploring Nonlinear Behavior 209

the new value is a function of the previous value, the pre operator can be used
to refer to the previous value.

In the future, it is expected that additional features will be added to the
Modelica language that will allow the description of physical collisions more
directly. These will make the behavioral descriptions in such models easier to
express and will address some of the robustness issues with the BacklashCOR
model described in Section 8.3.2.

8.6.4 Implicit equations
Nonlinear models often contain implicit equations. An implicit equation is

an equation where the unknowns are not solved for directly. For example, the
equation

(8.18)

cannot be solved directly for T because there is no closed form solution to such
a general polynomial equation. Such an equation must be solved implicitly.
As we saw in Section 8.4, we had a system with the following equations:

du
Vp-=q

dt

{
900T

u(T) = 90000T - 89100000
900T - 891000

200::; T < 1000
1000::; T ::; 1010
1010 < T ::; 2000

(8.19)

(8.20)

Clearly, it is not easy to rearrange-this system of equations to yield an equation
for T directly. Instead, Equation (8.19) would typically be used to solve for u
and then T would be solved implicitly using Equation (8.20).

As we have seen in this chapter, such systems of equations are easy to
pose in Modelica. While such systems are slightly more complicated to solve,
the burden of solving these equations falls on the tool and not on the model
developer. While other approaches (e.g., block diagrams) may discourage the
use of such expressions, they should not be a problem for any tool which uses
Modelica because the ability of tools to solve such systems is a necessity.

8.6.5 Idealizations
One thing to keep in mind when trying to model nonlinear systems like the

ones presented in this chapter, is that idealizations can sometimes make the task
easier and sometimes make it harder depending on the situation. For example,
we saw in Figure 8.4 that the resistance of the ideal diode had to be included to
simulate that problem. In the case of the backlash models presented in Section
8.3, the idealized model (i.e., the coefficient of restitution model) also had
difficulties with multiple rigidly connected inertias.

walter.ponge@terra.com.br

210 INTRODUCTION TO PHYSICAL MODELING WITH MODELICA

Often, some understanding of the implications of such idealizations is re­
quired when building models (in Modelica or any other modeling language).
With perfectly ideal models, it is often necessary to introduce some additional
effect which is more physically reasonable (e.g., the resistance in the diode
model). This can often help mitigate numerical difficulties.

8.7 PROBLEMS
PROBLEM 8.1 A Zener diode behaves like a regular diode (i.e., it does not
allow current flow for negative voltage drops across it) except when the voltage
drop supported by the diode goes below a critical negative voltage, called the
breakdown voltage. When this happens, the diode again allows current flow.
Figure 8.13 shows the behavior of a Zener diode in the iv-plane. Develop a
parametric formulation of this behavior and create a Modelica model. Then,
test the model by placing a sinusoidal voltage across the diode whose amplitude
exceeds the breakdown voltage. When building such a model, keep in mind the
issues mentioned in Section 8.6.5.

Breakdown
Voltage

j

.
I

v

Figure 8.13. Current-voltage characteristics of an ideal Zener diode.

PROBLEM 8.2 Create some additional property models which extend the
ThermalPropertyModel shown in Example 8.4 and use them in con­
junction with the SolidifyingRod model.

walter.ponge@terra.com.br

Exploring Nonlinear Behavior 211

PROBLEM 8.3 Create a Modelica model to solve the following equations:

x

x

(8.21)

(8.22)

where t is time. Note that because the first equation already provides an
equation for x in terms of quantities which are already known, the second
equation becomes an implicit equation for y in terms of x.

When you simulated this problem, what solution do you get for y? How
many different analytical solutions are there and which one did you find when
ran a simulation? How could you control the choice of which solution is used?

PROBLEM 8.4 Write a model to simulate the Lorentz-Lorenz equation:2

x

iJ =

z

a(y - x)

px - y - xz

xy - j3z

(8.23)

(8.24)

(8.25)

Parameters values to try are a = 10, j3 = 2.6667 and p = 28. Try several
initial values for x, y and z. Visualize the result by plotting any variable as a
function of the other two.

lf you are using Dymola, include the following declaration:

Sphere p(x=x, y=y, z=z, R=O.Ol);

and you can visualize the dynamics in three dimensions using the animation
feature in Dymola.

2 As an interesting aside. this same equation was derived independently by Hendrik Lorentz and Ludwig
Valentin Lorenz in 1880.

walter.ponge@terra.com.br

Chapter 9

MISCELLANEOUS·

The previous chapters focused on demonstrating language features which
allow robust and reusable models to be written. In this chapter, we will cover
a few "loose ends" which should be discussed for completeness but are not
required in order to begin using Modelica.

9.1 LOOKUP RULES
Writing and maintaining large collections of models requires the use of

packages and other organizational features of Modelica. In this section, we
will explain the lookup rules used in conjunction with those features. Before we
start, it is important to understand the difference between a package hierarchy
and an instance hierarchy.

Package hierarchies, like the Chemistry package developed in Section
6.4.4, are collections of Modelica definitions. In other words, they are the
definitions of records, connectors, etc. not actual instances. For example, the
following is a package hierarchy:

package A
model X

end X;

model Y

record R II <- Definition of R
Real c;

end R;
R r;

end Y;
end A;

II <- Instantiation of R

walter.ponge@terra.com.br

214 INTRODUCTION TO PHYSICAL MODELING WITH MODELICA

In this case, the name A. X refers to the definition of the model named
X nested inside the package named A. Even though this is called a package
hierarchy, not everything in it has to be a package. For example, the name
A. Y . R refers to the record definition nested inside the model named Y which
is nested inside the package named A.

In addition to package hierarchies, we also have instance hierarchies which
appear once a definition has been declared. For example, using the previous
package hierarchy example, consider the following model definitions:

model M
A.Y y;

equation
der (y. r. c)

end M;

In this case, the only definition is the definition of M. However, within the defi­
nition, we reference a variable called y. r . c. This is the variable c contained
within the record instance r inside the component y. In this case, we are
using the" ." operator to traverse the instance hierarchy (i.e., the hierarchy of
instantiated components).

One important thing to note is that const ant declarations are also considered
definitions. In other words, a constant declaration exists in both the package
hierarchy and the instance hierarchy.

When you see a collection of names separated by the "." operator in
Modelica (e.g., a. b. c), it is impossible to tell whether the names represent a
definition (i.e., A. Y . R in our package hierarchy example) or an instance (i.e.,
y. r. c in our instance hierarchy example). Simply being aware of the source
of the confusion will help somewhat. In addition, some people choose to adopt
a policy of starting definition names with a capital letter and instance names
with a lowercase letter. This allows definitions and instances to be more easily
distinguished.

9.1.1 Static scoping
Given an existing package hierarchy, it is important to understand how to

access Modelica definitions that might be contained within the hierarchy. This
problem can be broken into two distinct pieces. In this section we will discuss
how to access definitions from within a given package hierarchy. The other
issue, discussed later in Chapter 12, is how that package (possibly spanning
multiple files) can be stored on the computer.

Every Modelica definition exists somewhere in the package hierarchy. All
the different packages, taken together, are like the branches of a tree. For
example, all the definitions in the MSL exist in the Modelica hierarchy. Any

walter.ponge@terra.com.br

Miscellaneous 215

definition that is not explicitly placed in a package hierarchy must be contained
at the root of all the different hierarchies.

In order to understand how the lookup rules work, consider the following
fragment of Modelica code:

package Pneumatic
package Interfaces

connector Port

end Port;
end Interfaces;
model Valve;

end Valve;
model Pump

end Pump;
end Pneuma tic;

model PneumaticModell

end PneumaticModell;

This code fragment would result in the package hierarchy shown in Figure
9.1.

(root)

9.1.1.1

Pneumatic L Interfaces

cvalve

Pump

PneumaticModel1

Figure 9.1. Sample package hierarchy.

Normal search behavior

Port

Suppose, within the Valve and Pump models, we wish to use the definition
for the Port connector found in the Interfaces package. To do this, we
must have a way of referring to the Port definition. The lookup rule used in
this case could be paraphrased as:

To find a definition, first the site of the declaration is searched. If this fails, we move up
the package hierarchy toward the root of the hierarchy, searching at each level as we go
until the root is reached. If the definition cannot be found from any of these levels, the
search fails.

walter.ponge@terra.com.br

216 INTRODUCTION TO PHYSICAL MODEUNG WITH MODEUCA

Using this rule, let us examine several ways we might go about referencing
the Port connector definition. First, we could use a name that includes each
package that the Port definition is nested inside of, i.e.,

package Pneumatic

model Valve
Pneumatic.Interfaces.Port pI, p2;

end Valve;
end Pneumatic;

For this case, the search consists oflooking for the Pneumatic package and
then, once that is found, looking inside it for the definition of the Interfaces
package, and if that succeeds, finally inside that for the Port definition. In
other words, the search is always for the outermost definition. So, we start
at our current location in the hierarchy (i.e., within the Valve model) and
search for a definition for Pneumatic. Since it cannot be found at the
current position, we must then look in the next higher level of the hierarchy
(i.e., the Pneumatic package itself). There is no definition for Pneumatic
within the Pneumatic package so finally we arrive at the root. At the root,
we find the definition for Pneuma tic and it in turn contains the definitions
for Interfaces and Port that we are seeking. I In this case, the search
succeeds.

Now, let us consider another case. We could also write our model in this
way:

package Pneumatic

model Valve
Interfaces.Port pI, p2;

end Valve;
end Pneumatic;

Now, we are looking for the definition of something called Interfaces and
we expect to find the definition of something called Port inside that. Starting
at the Valve model, we find no definition for Interfaces. So, we move to
the Pneumatic package which does contain a definition for Interfaces
that in turn contains a definition for Port. So again, the search succeeds.

Once the definition of the first component in a composite name is found, if
the subsequent components in the name cannot be located inside the definition
of the first component, the search fails. In other words, the search will not

I A name that includes every package name from the root down to the definition itself is called a fully
qualified name.

walter.ponge@terra.com.br

Miscellaneous 217

continue up the hierarchy to find yet another definition for the first component
in the name that might contain the necessary subcomponent definitions. For
example, imagine we are searching for the definition of Interfaces. Port.
During our search we find a package called Interfaces. So, we check to
see if a definition for Port can be found inside. If not, the search fails. The
search does not continue looking for an alternate definition of Interfaces,
farther along the hierarchy, that does contain a definition for Port.

9.1.1.2 Searching other locations

The normal search pattern is to search up the package hierarchy until the
root of the package hierarchy is reached and if the definition is not found, then
the search fails. There is a way to cause the search to look in other packages
as well. For these cases, we use the import keyword. Recall from previous
sections how we used import to shorten the names of physical types, e.g.,

model Resistor
import Modelica.S1units;
parameter S1units.Resistance R;

end Resistor;

An important restriction on import statements is that the name of the definition
being imported must be a fully qualified name (i.e., the name of the definition
relative to the top of the package hierarchy). Furthermore, the definition being
imported must be defined within a package.

If the search comes across an import statement in any of the packages it
is searching, the imported package is searched as if its definition appeared at
the location of the import statement. Sometimes, the name of the imported
definition might be the same as a another definition higher up in the package
hierarchy. In order to avoid confusion about which one should be searched, the
import command allows a different name to be used for the imported package,
e.g.,

model Resistor
import S1=Modelica.S1units;
parameter S1.Resistance R;

end Resistor;

The use of import is not limited to packages either. An import statement
can be used for other types of definitions. For example, this is also possible:

model Resistor
import Modelica.S1units.Resistance;
parameter Resistance R;

end Resistor;

walter.ponge@terra.com.br

218 INTRODUCTION TO PHYSICAL MODELING WITH MODELICA

Finally, import is only relevant for searching, which means it does not
actually change the package hierarchy in which it appears. To illustrate this,
consider the following example:

package MyElectrical
model Resistor=Modelica.Electrical.Analog.Basic.Resistor;
import Modelica.Electrical.Analog.Basic.Capacitor;

end MyElectrical;

model MyCircui t
MyElectrical.Resistor R; II Legal
MyElectrical.Capacitor C; II Illegal, no such definition

end MyCircuit;

In this example, the use of the import statement is only useful to definitions
contained within the MyElectrical package and does not result in new
definitions being added to the MyElectrical package hierarchy.

9.1.1.3 Limiting searches

So far, we have described how the search proceeds up the package hierarchy.
Normally, the search continues up to the root of the package hierarchy. How­
ever, in some cases we may not wish to allow definitions to be used beyond a
certain point in the hierarchy. For example, we may wish to define a package
or model that can be easily relocated in the package hierarchy. To understand
why, consider the following example:

package TestProblems "A collection of tests"
constant Real g=Modelica.Constants.g_n;
model Pendulum

parameter Real L=2;
Real theta, omega;

equation
der(theta) = omega;
der(omega) = -(g/L)*theta;

end Pendulum;

end TestProblems;

The difficulty here is that the Pendulum model requires the gravitational
constant, g, defined in its package hierarchy (remember, constants can be
accessed through both a package hierarchy or an instance hierarchy). In order
to be able to move this model outside of the TestProblems package, we
would need to define g within the Pendulum model.

In this case, it is easy to see that we will have problems if we try to move the
Pendul urn model. In more complex cases, these kinds of issues are difficult to
identify. For this reason, the Modelica language includes the encapsulated

walter.ponge@terra.com.br

Miscellaneous 219

qualifier. The effect of the encapsulated qualifier is to stop the search from
going beyond the boundary ofthe encapsulated definition. If we rewrite our
Pendul urn example as follows:

package TestProblems "A collection of tests"
constant Real g=Modelica.Constants.g_n;
encapsulated model Pendulum

parameter Real L=2;
Real theta, omega;

equation
der(theta) = omega;
der(omega) = -(g/L)*theta; II Error, no definition for 9

end Pendulum;

end TestProblems;

The search for g will fail because the search cannot go beyond the enc apsul at ed
model. By using the encapsulated qualifier, we can identify any current dan­
gling references and prevent introducing any in the future.

The encapsulated keyword only prevents the search from proceeding up
the package hierarchy. It does not limit the use of import statements in any
way. So, to make our Pendulum model independent of the TestProblems
package, we should write it as follows:

package TestProblems "A collection of tests"
constant Real g=Modelica.Constants.g_n;
encapsulated model Pendulum

import Modelica;
constant Real g=Modelica.Constants.g_n;
parameter Real L=2;
Real theta, omega;

equation
der(theta) = omega;
der(omega) = -(g/L)*theta;

end Pendulum;

end TestProblems;

9.1.1.4 Making a definition local

Rather than searching up through the hierarchy as we have been doing, there
are several ways to make a definition local so we do not need to search through
the hierarchy for it. A simple example of this would be:

package Pneumatic

model Valve
connector Port=Interfaces.Port;
Port pI, p2;

walter.ponge@terra.com.br

220 INTRODUCTION TO PHYSICAL MODEUNG WITH MODEUCA

end Valve;
end Pneumatic;

What we have done is create a new definition locally (i.e., within the Valve
model itself) and used that definition.

As another example, let us consider the Pump model. Because the pump
involves both pneumatic and rotational connections, it might be written as
follows:

package Pneumatic

model Pump
Pneumatic.lnterfaces.Port pI, p2;
Modelica.Mechanics.Rotational.lnterfaces.Flange_a fa;

end Pump;
end Pneumatic;

Note that in this case the fully qualified names have been used. Let us try to
shorten some of the names. One way would be to create local definitions as in:

package Pneumatic

model Pump
connector Port=Interfaces.Port;
package Rotational=Modelica.Mechanics.Rotational;
Port pI, p2;
Rotational.lnterfaces.Flange_a fa;

end Pump;
end Pneumatic;

Note that in one case, we made a local definition of a connector and in the
other case we made a local definition of a package. The drawback to this
approach is that it creates new definitions that must be parsed and interpreted.
For example, the local package definition recreates the entire Modelica. -
Mechanics. Rotat ional hierarchy inside this single model. If this is
done in several models, the time required to parse and interpret such a large
and complex package hierarchy becomes a factor. If these local definitions are
not likely to be used by other models, modified or redeclared in the future, the
definitions should be imported as follows:

package Pneumatic

model Pump
import Pneumatic. Interfaces.Port;
import Modelica.Mechanics.Rotational;
Port pI, p2;

walter.ponge@terra.com.br

Rotational.lnterfaces.Flange_a fa;

end Pump;
end Pneumatic;

which avoids cluttering the package hierarchy.

9.1.1.5 Conclusion

Miscellaneous 221

These are just several examples of how to access definitions and components
that exist outside the current model. A detailed discussion of the lookup
semantics can be found in the language specification on the companion CD­
ROM. The examples in this section demonstrate most of the common methods
of accessing definitions.

9.1.2 Dynamic scoping
As we saw in the previous section, static scoping is used to access definitions

from within the package hierarchy. In contrast, dynamic scoping involves
searching the instance hierarchy rather than the package hierarchy. Dynamic
scoping can be used to refer to declarations and definitions since both are
contained within the instance hierarchy.

In Section 4.3 .2, we described how to propagate information through a hierar­
chy of components. Such propagation is used to promote reuse of components.
In some cases, the methods described in Section 4.3.2 are not sufficient. In
this section, we will describe how to use dynamic scoping to automatically
establish connections between declared components and their surroundings.

9.1.2.1 Particles and fields

To understand what dynamic scoping is and why it is useful, let us consider
the case of simulating small particles in a gravitational field. In this case, each
particle needs to know the gravitational acceleration at the particle's current
location. The most convenient way to express such information is by using a
function. For simulations in three dimensional space, the function should
be a SUbtype of the GravityField function shown in Example 9.1.

partial function GravityField
input Modelica.Slunits.Position x[3] ;
output Modelica.Slunits.Acceleration g[3] ;

end GravityField;

Example 9.1. Using a function to describe a gravity field.

walter.ponge@terra.com.br

222 INTRODUCTION TO PHYSICAL MODELING WITH MODELICA

If each particle is assumed to be so small that it has no influence on other
particles in the system, then the motion of the particle can be expressed as:

a = g(x)

where a is the acceleration of the particle, x is the current location of the particle
and 9 is the gravitational acceleration.

The issue in this example is that the particle model needs information about
the gravitational field it is moving in (i.e., any relationship between position, x,
and gravitational acceleration, g). In other words, the particle requires infor­
mation about its environment in order to describe its behavior. This situation is
not unique to gravitational examples. Environmental information can also be
important in other situations such as thermal or electrical systems.

The difficulty in creating Modelica models that require such environmental
information is that it is not possible to connect a particle declaration to a
function. In such cases, we can use the inner and outer keywords to
indicate that dynamic scoping should be used. With dynamic scoping, the
particle can lookup information about its environment (i.e., the component
hierarchy in which the particle has been declared).

model Particle
parameter Modelica.Slunits.Position x_init[3];
parameter Modelica.Slunits.Velocity v_init[3];

protected
outer function gravity=GravityField;
Modelica.Slunits.Position x[3) (start=x_init);
Modelica.Slunits.Velocity v[3) (start=v_init);
Modelica.Slunits.Acceleration a(3);
Sphere p(x=x[l) ,y=x(2) ,z=x(3) ,R=O.Ol); II Dymola specific

equation
v der (x) ;
a = der (v) ;
a = gravi ty (x) ;

end Particle;

Example 9.2. A particle model that uses dynamic scoping.

To see how this is done, let us look at the Particle model shown in
Example 9.2. The variables x, v and a in Example 9.2 represent the position,
velocity and acceleration of the particle, respectively. The declaration of the
Sphere model is a Dymola specific enhancement that will allow a 3D anima­
tion of the particle. If you are working with another simulator that does not
support animation in this way, simply comment out the Sphere declaration.

The gravitational field is represented by the function named gravi ty
which is an extension ofthe GravityField function shown in Example 9.1.

walter.ponge@terra.com.br

Miscellaneous 223

Note that the GravityField is only a partial definition. In this case, the
use of the Gravi tyField function establishes a minimum requirement for
the gravity function.

What is new in this example is the use of the outer keyword. When the
outer keyword is placed in front of a declaration or definition it means that
whatever is being declared or defined does not really exist within that model.
Instead, the declaration or definition should match a similar declaration or
definition in the instance hierarchy. In the case of the Particle model, the
gr a vi t y function needed by the Pa rt i c 1 e model must be found somewhere
within the enclosing models (i.e., the models that contain the Particle
declarati ons).

9.1.2.2 Orbiting particles

Trying to describe exactly how dynamic scoping works is difficult without
looking at a concrete example. So, let us now try to construct a complete model.
First, we must define the gravitational field to be used. Example 9.3 shows
the gravitational field created by two masses located at (0,0,0) and (0,1,0),
respectively.

function TwoBodyField
extends GravityField;

protected
Modelica.Slunits.Position bl[3], b2[3];
Modelica.Slunits.Distance nl[3], n2[3];

algorithm
bl . - {O, 0, O} ;

b2 . - {O, 1 , 0 } ;
nl .- -(x-bl}!sqrt((x-bl}*(x-bl});
n2 .- -(x-b2}!sqrt((x-b2}*(x-b2});
9 := nl!((x-bl}*(x-bl}}+n2!((x-b2}*(x-b2}};

end TwoBodyField;

Example 9.3. Gravitational acceleration generated by two bodies.

Imagine we wish to model three particles moving within the gravitational
field described in Example 9.3. Setting up such a problem requires two steps.
First, we must declare the three particles and their initial positions and ve­
locities. Second, we must provide a gravity function that these particles
can use. In other words, we must provide the gravity function that each
of these particles requires but does not contain. It is not sufficient to simply
create a function called gravi t y for this purpose. We must also qualify
the declaration of the gravity function with the inner keyword so that it
"matches" with the outer declaration inside the Particle definition. The

walter.ponge@terra.com.br

224 INTRODUCTION TO PHYSICAL MODELING WITH MODELICA

resulting model is shown in Example 9.4. As noted previously, the Sphere
declarations are Dymola specific enhancements that can be commented out if
Dymola is not being used.

model ParticleField
inner function gravity=TwoBodyField;
Sphere bl(x=O,y=O,z=O,R=O.05); II Dymola specific
Sphere b2(x=O,y=1,z=O,R=O.05); II Dymola specific
Particle pl(x_init={2,-2,O},v_init={O.7,O,O});
Particle p2(x_init={O,O.5,O},v_init={-1,-1,O});
Particle p3(x_init={O.5,2,O},v_init={-1,-O.5,O});

end ParticleField;

Example 9.4. Particles orbiting two bodies in interesting ways .

- • " .g
":;:;
0
"- • >- 0

-I

-2~--_73--~--~--~--~_~1 ---L---o~--~--7-~

X Position [m 1

Figure 9.2. Trace of p3 in Example 9.4.

9.1.2.3 Philosophy of dynamic scoping

The general idea behind inner and outer is to allow components to locate
information contained higher up in the instance hierarchy. In our example,
the ParticleField model contained the gravity function and several
instances of the Particle model. Each Particle was able to use the
gravity function defined in ParticleField. In other words, the sub­
components (i.e., the particles) were able to locate the necessary information

walter.ponge@terra.com.br

Miscellaneous 225

(i.e., about the gravitational field) higher up in the instance hierarchy (i.e., in
the ParticleField model).

One way to think about the inner and outer keywords is as a statement
of implicit requirements. When you see outer in front of a declaration think
of that as a requirement (i.e., the Part ic 1 e model requires a function called
gravity that is a subtype of GravityField). In a similar way, the inner
qualifier indicates that this declaration provides something that might be re­
quired from subcomponents. The type of the outer declaration must be a
sUbtype of the type used in the inner declaration in order for them to match.
Furthermore, the outer declaration is not allowed to have any modifications
applied to it.

9.1.2.4 Use of dynamic scoping

Dynamic scoping can be used with any declaration. For example, you might
wish to create an electrical circuit that has an outer declaration for an electrical
connector which represents the electrical ground of its environment (i.e., by
placing the outer qualifier in front of the declaration of the Ground compo­
nent, g, in the RLC3 model shown in Example 3.7). In this way, the circuit
could implicitly be connected to the electrical ground of its environment (as­
suming there was a corresponding inner declaration somewhere in its instance
hierarchy). Another example is having an outer declaration for parameters so
that they are automatically available from the environment. However, both of
these examples can also be written using the methods in Section 4.3.2.

The issue is whether the association is explicit, as it is using the methods in
Section 4.3.2, or whether it should be implicit as it is with dynamic scoping.
Implicit associations are nice because they can eliminate the task of propagating
connections and parameters through complex hierarchies. The danger with such
implicit associations is that it is not obvious what is being associated when
looking at models for the first time. Furthermore, they may create difficulties
when trying to debug and validate models. Such considerations should be kept
in mind when choosing between the implicit and explicit approaches.

9.2 ANNOTATIONS
After going through the preceding chapters you might wonder where all

the nice graphical schematics came from and what relation they have to the
models themselves. The answer is that the graphical layout of a model and
the graphical appearance of the components is achieved using the annotation
keyword.

Annotations are used to provide additional information about the model that
is not related to the behavior of the model during analysis. Annotations
are typically used to embed documentation and graphical information inside
a model. Annotations were not shown in the previous examples or discussed

walter.ponge@terra.com.br

226 INTRODUCTION TO PHYSICAL MODEUNG WITH MODEUCA

earlier because they do not affect behavior and because they are generally
inserted and interpreted by the analysis tool. A model developer rarely sees the
textual representation of the annotations.

There are two possible locations for an annotation. The first location is
following a declaration. In this case, the annotation will appear near the end of
the declaration. The other location is within the body of a definition without
association to any internal components.

Because the focus of this book is on modeling and because annotations are
usually inserted and interpreted by simulation tools, we will present explana­
tions for only a few of the different annotations. For more information on this
subject, consult the Modelica language specification.

9.2.1 Graphical annotations

model PendulumSystem1 "Simple Pendulum"
annotation (

Coordsys(
extent=[-100, -100; 100, 100),
grid=[2, 2),
component=[20, 20)),

Window (x=O. 13, y=0.13, width=0.6, height=0.6),
Icon (Rectangle (extent= [-100, 100; 100, -100),

style (color=O, fillColor=8)),
Text (extent= [-74, 54; 76, -14),

string="Double Pendulum", style(color=O))));
RotationalPendulum pend

annotation (extent=.[-100, -40; 0, 60));
FrictionlessPin pin annotation (extent=[-20, -10; 20, 30));
Modelica.Mechanics.Rotational.Fixed fixed

annotation (extent=[40, -10; 80, 30));
equation

connect (pend.p, pin.a) annotation (points=[-50, 10; -20, 10));
connect (pin.b, fixed. flange_b)

annotation (points=[20, 10; 60, 10));
end PendulumSystem1;

Example 9.5. A Modelica model with annotations.

The first annotation in Example 9.5 is a description of how the Pen­
dulumSysteml model should be represented graphically. In other words, it
contains information about what drawing primitives should be used to construct
the external representation for PendulumSysteml (i.e., an "icon" view like
the one shown in Figure 4.2). This information applies to the definition and
therefore it is associated with all instances.

walter.ponge@terra.com.br

Miscellaneous 227

The other annotations in Example 9.5 are used to construct the diagram view
for the system. These annotations describe the placement of components and
connections. These annotations are then used to generate the diagram shown
in Figure 9.3. Note that the extent annotations associated with components
only provide a "bounding box" in which to draw the graphical icon of the
components. The location of the icon is specific to each declaration but the
actual description of what the icon is composed of is contained within the
definitions of the component models themselves (as in the case of the first
annotation in Example 9.5 described earlier).

fixed=O

Figure 9.3. Schematic for pendulum system.

9.2.2 Documentation
Apart from descriptive text like that shown in the TwoTanks model from

Example 2.4, there is one other method for documenting Modelica models. A
specific annotation exists to allow developers to embed HTML descriptions in
their models. Example 9.6 shows an alternative form of Example 2.4 where
such annotations are used.2

Figure 9.4, generated using Dymola, shows a rendering of the HTML source
code generated as documentation. Note how the descriptive text and the anno­
tations have been merged. Also note the units and default values for parameters
are also included. The point is that Modelica models contain a great deal of in­
formation (particularly if documentation annotations have been included) and
this allows Modelica tools to automatically generate excellent HTML docu­
mentation for individual models or even generate documentation for complete
libraries of components.

2The text of the model has been removed for brevity.

walter.ponge@terra.com.br

228 INTRODUCTION TO PHYSICAL MODELING WITH MODELICA

model TwoTanks "Hydraulic system involving two tanks"

II Parameters
parameter 81.Length L=O.1 "Pipe length";

annotation
Documentation (info="<HTML>

This component represents two tanks connected by a
pipe. The constitutive relationship of the pipe is
the Hagen-Poiseuille relationship:

Q = (P1-P2) * (pi*D A 4) / (128*mu*L) ... </HTML>"))
equation

end TwoTanks;

Example 9.6. Using annotations for documentation

TwoTanks

Hydraulic system involving two tank.;

Information

This componenl represents two tanks {;onnected by a pipe. The constitutive relationship of the pipe is the
Hagen-Poiseuille relationship:

Q::;: (PI-P2)*(pi*D"4)/(128*mu~'Ll

This component was originally dt'veloped to demonstrate how to include descriptive text in models.
Subsequently, it was reused as an example of how to embed HThlL documel1latioll in models.

Parameters

Name Default Description

L 0.1 Pipe length [ml

D 0.2 Pipe diameter [m]

rho 0.2 Ruid density [kg/mJ]

IllU 2e-:\ [Pa.s]

AI 1.0 Area of left tank (m2]

Ac 2.0 Area of right tank [m2]

(pi*D"4)/(12S·I'mu*LJ [m2/s1

Modelica definition

model TwoTanks "Hydraulic system involving two tanks"

end TwoTanks;

HTML-doClfll1CllIatiofl gCI/('/"clf('d bv D\'I1lO/a 5,"1111 No)' 5 07:57:23 2000.

Figure 9.4. Dymola rendering of HTML documentation for the TwoTanks model shown in
Example 9.6.

walter.ponge@terra.com.br

II

EFFECTIVE MODELICA

walter.ponge@terra.com.br

Chapter 10

MULTI-DOMAIN MODELING

10.1 CONCEPTS

This chapter presents several multi-domain system models. Multi-domain
models are characterized by the fact that they have components belonging to
different engineering domains. In this chaptel~ we will see models from the
mechanical (both rotational and translational), electrical and thermodynamic
domains. In addition, many of the examples contain block diagrams for some
subsystems (e.g., for control systems).

Unlike the examples in previous chapters which illustrated specific language
features, the purpose of this chapter is to examine what can be done when we
combine Modelica language features. Because the models presented in this
chapter are so large, the complete Modelica models are not presented in the
text of the book. In place of the Modelica source code, schematics are used
to illustrate the structure of the models. The Modelica source code for these
models can be found on the companion CD-ROM.

10.2 CONVEYOR SYSTEM

The example presented in this section was inspired by a previously published
example (Elmqvist et aI., 1998) which nicely illustrates the Modelica modeling
language. The model is composed of a control system and a plant model. The
plant model contains electrical and mechanical components. Although the plant
model for the conveyor system is more detailed than the ControlSysteml,
ControlSystem2 and ControlSystem3 models found in Examples 3.9,
3.16 and 3.17, the architecture is very similar.

walter.ponge@terra.com.br

232 INTRODUCTION TO PHYSICAL MODELING WITH MODELICA

10.2.1 Mechanical load
The plant model is composed of electrical and mechanical components. We

start by looking at the mechanical load. In this example, the mechanical load
represents the force required to move a "product" along a conveyor belt in a
factory. As shown in Figure 10.1, the schematic of the mechanical load includes
a gear, an inertia, damping, the motion of the belt and the mass of the product.
All the models shown in the schematic are linear (i.e., no backlashes or other
non-linearities).

axle

ground=O

Figure 10.1. Schematic for the conveyor belt system.

10.2.2 Electric motor
The other part of the plant model consists of the electric motor used to

drive the conveyor belt. The motor model, shown in Figure 10.2, consists of
a resistor, inductor, electro-magnetic torque source, and inertia. Clearly, more
complicated models for electric motors may be more realistic than the one
shown here. Any model with the same interface as this one (i.e., two electrical
pins, p and n, and a rotational pin, driver) could be easily dropped in as a
replacement for this one.

10.2.3 Control system
Figure 10.3 shows a schematic of the control system used to control the

motor and conveyor belt. The desired response for this controller would move
the product along the conveyor belt from station to station in the factory. The
product would then pause at each station for some amount of time in order for
operations to be performed on the product. This desired response is fed to the
PD controller which calculates the voltage to be supplied to the motor.

Again, several idealizations have been made. For example, the voltage
source which supplies power to the motor is an ideal voltage source capable of

walter.ponge@terra.com.br

Multi-Domain Modeling 233

L1

p

Ideal Motor

driver

n

Figure 10.2. Schematic for the electric motor.

delivering as much current as required. Also, the required voltage computed
by the control system does not contain any quantization error which might be
present as a result of digital to analog conversions. These are just two examples
of details that may have an effect on the performance of the system but could
be modeled within the controller itself (i.e., without having to change any of
the other models).

One last point to mention about the controller model is that it has inputs for
both position, phi, and speed, omega. This controller does not use the speed
information. Instead, the speed is approximated internally by differentiating
the position signal. Nevertheless, there are two reasons for having the speed
input. First, it allows the option of changing the internal implementation of this
controller without requiring any "wiring" changes of the factory level schematic
(see Figure 1004). The other reason to have a speed sensor input is that it would
make it easier to substitute controllers which did actually utilize the speed input
(similar to the approach discussed in Section 4.3).

10.2.4 Complete system
Finally, we bring together all the component models described so far in this

section. The combination of these components (along with the position and
speed sensors) can be seen in Figure lOA. This represents the complete system
including both the controller and plant models.

One interesting thing to note about the plant model in the complete system
is that a mechanical connection exists between the ineltia inside the motor and
another inertia inside the conveyor belt. In order to simulate the response of
such a system, an "effective inertia" must be formulated for the combination
of the two rigidly connected ineltias. When inertias are connected in this way,
it is not generally sufficient to merely add the inertias together. Instead, some
algebraic manipulation is necessary in order to compute the effective inertia.

walter.ponge@terra.com.br

234 INTRODUCTION TO PHYSICAL MODEUNG WITH MODEUCA

pos_error

phi
3 P
s.
Q
;<

!
CD

~
omega n

Desired Response

Figure 10.3. Schematic for the conveyor controller.

Controller Motor

ground

Figure 10.4. Schematic for the factory.

Fortunately, when using Modelica, this work does not have to be done by the
developer of the model, but instead will be done by the tool that analyzes the
system.

If we look at the operation of this factory for 100 seconds of simulation time,
as shown in Figure 10.5, we see that the controller does a good job of moving
the product along the conveyor belt as intended. In Figure 10.6, we can see the
motor voltage required in order to achieve this level of control.

walter.ponge@terra.com.br

Multi-Domain Modeling 235

15r---~----.-----r----.-----.----r---~-----r----~---.

:0
E-

10

c

:~ :s
~

1;1
"3
Oil
C

<C 5

100

Time [51

Figure 10.5. Comparison of desired vs. actual factory behavior.

120 I I I I

100 -

80 -

~ 60 -
" oil
g
'0 40 ->

20 -

0 ~\r" V V V V V V V r \r
-200

I I I I
20 40 60 80 100

Time [s1

Figure 10.6. Motor voltage required.

walter.ponge@terra.com.br

236 INTRODUCTION TO PHYSICAL MODELING WITH MODELICA

10.3 RESIDENTIAL HEATING SYSTEM
10.3.1 Introduction

Another example of a mixed-domain problem is a residential heating sys­
tem. To develop such a model, we utilize components from the rotational and
electrical packages, which can be found in the Modelica. Mechanics. -
Rotational and Modelica. Mechanics. Translational packages
in the MSL. While the majority of our models came from the MSL, a few
models had to be developed from scratch for this particular application. For
example, several of the examples use the Thermal package introduced in
Chapter 6. In the remainder of this section, we will describe how to build such
a system, what models we used from the MSL and what models we needed to
create ourselves.

10.3.2 Indoor temperature
We start by building a model to compute the temperature inside a house. The

model for indoor temperature is interesting because it makes use of all three
fundamental modes of heat transfer: conduction, convection and radiation. We
call this the House model and a schematic of if can be seen in Figure 10.7.

Heat Loss
Through Walls J

I

Tamb·

-~ Solar Heating

Thermal Inertia of the House

Conduction to Ground

Figure 10.7. Schematic for the House model.

First, we must establish the geometry of the House model. Let us assume
that our House has only one floor and the floor area is given by the foot pr in t

walter.ponge@terra.com.br

Multi-Domain Modeling 237

parameter. We assume a default of 250 square meters. In addition, we must
provide the height of the house. For this, we assume a default of 4 meters.
Our last assumption is that the footprint of the House is square. We can
then compute the surface area of the surrounding walls, the roof and the floor
directly from the given parameters. In addition, we can compute the volume of
the house as well from these same parameters.

Once we have established the geometry of the house, we next consider the
thermal inertia of the house. The thermal inertia is the amount we raise the
temperature of the house for every unit of heat we generate from our furnace.
For this, we use the Capaci tance model from the Thermal library which
is similar to the one shown in the Thermal Ca pa cit an ce modelin Example
6.12. This model requires three pieces of information. The first is the volume of
the house, which we already know from our geometry parameters. The second
is the density of the air, p, inside the house, which we assume to be 1.5 kg/m3.

Finally, the specific heat capacity of the air is assumed to be 1000 J/(kg· K).
By using a single capacitance to represent the entire house we are implicitly
assuming that the entire house has a single uniform temperature.

Next, we tum our attention to the roof of the house. We assume that the
primary mode of heat transfer for the roof is radiation. I We assume an effective
temperature at which the house radiates to its environment. This effective
temperature changes from day to night and therefore we have used a signal
block to generate this temperature, which is then used to establish a thermal
boundary condition for the sky. This boundary condition is then attached to the
house through a black body radiation component.

We now tum our attention to the floor of the house. We assume that some
heat is lost via conduction through the floor to the ground. Our default value
for thermal conductivity of the ground is 0.4 W/(m . K). Furthermore, we
assume that the ground temperature 4 meters below the surface is 280K.

Finally, the only mode of heat transfer left is convection. We assume that
this is the dominant mode of heat transfer through the walls of the house. Just
like with the roof model, we need to have an ambient air temperature for the
convection. We assume that the ambient air temperature is provided externally.
The default value for the heat transfer coefficient of the walls was chosen to be
4.33 W/(m2 • K).

In summary, this is a crude thermal model of a house but it demonstrates
how a fairly complex model can be constructed using existing models.

I We make this assumption in the interest of keeping our example simple. It should be noted that this is
probably not a good assumption. Convection would probably be quite significant across the roof as well.

walter.ponge@terra.com.br

238 INTRODUCTION TO PHYSICAL MODELING WITH MODELICA

10.3.3 Furnace
Notice that the schematic of the House model shown in Figure 10.7 includes

only environmental influences. In other words, the only heat transfer is due to
its surroundings; internal influences were neglected. In order to introduce the
influence of an electric furnace, we must build a Furnace model and connect
it to the house. Figure 10.8 shows a schematic of the Furnace used in this
example.

p

~.

~ a
·--·-·---,·--j~···i·<1 ~

;;;-

i

n

Sensor Circuit

R=1e+6

R1
switch_voltage=5

relay

ground

Heating Circuit

Figure 10.8. Schematic for the Furnace model.

The Furnace model contains both a thermal interface and an electrical
interface. The thermal connector connects the furnace to the house so that
the energy generated by the furnace influences the temperature of the house.
The electrical interface, which is composed of the two electrical pins p and n,
is used to tum the furnace on or off. The decision to tum the furnace on or off
comes from the thermostat which we will describe shortly. If the thermostat
closes the circuit by connecting the two electrical pins, p and n, the furnace
will turn on. When the pins are disconnected, the furnace will shut off. We
assume the capacity of the furnace (i.e., the amount of thermal power it can
generate) is provided by the capaci ty parameter. The interesting feature

walter.ponge@terra.com.br

Multi-Domain Modeling 239

of the Furnace model is that even though it is used for generating thermal
energy, it is largely an electrical component.

The furnace is composed of two circuits. One is the sensor circuit which
is connected to the thermostat to indicate whether the furnace should be on or
off. The other circuit is a high-power circuit (i.e., not a circuit you would want
connected to other low-power, wall mounted devices like thermostats). The
bridge between these circuits is a relay. Finally, the high-power circuit contains
the HeaterElement model from the Thermal library to be used as both a
resistor and as a source of thermal energy.

10.3.4 Thermostat

As mentioned earlier, when describing the Furnace model, a thermostat
model is required in order to control the Furnace. Models for two different
types of thermostats will be created. One model is the traditional mechanical
thermostat and the other is a modern digital thermostat. Looking at both types
is interesting because while both are mixed-domain devices, they mix different
sets of domains.

10.3.4.1 ~echandcaltherDnostat

Figure 10.9 shows a schematic of a mechanical thermostat. Traditional
mechanical thermostats are controlled by turning a dial on the outside of the
thermostat to indicate the desired temperature inside the house. In other words,
the user's interaction is mechanical (i.e., they turn something). Internally,
temperature sensitive mechanical components are used and as the outside tem­
perature changes, the internal mechanism moves. This movement is reflected
in the temperature reading given by the thermostat.

In our Mechanical Thermostat model, the point at which the furnace
should be turned on is given as a temperature. Strictly speaking, it should be
given as the angular position of the thermostat dial but this simplification has
been made to avoid the additional complexity of modeling the control mech­
anism. Instead, once the desired temperature is provided via the desired
parameter, an internal calculation is made to determine the rotational angle
which corresponds to that temperature (i.e., the dial setting).

The schematic in Figure 10.9 contains several noteworthy components. First,
there is the temperature sensitive rotational spring. This can be identified by
the fact that it has both rotational and thermal connections. The unstretched
length of the spring changes as a function of temperature. Since the inertia
of the mechanism is small, these slight changes in un stretched length result in
a nearly immediate change in the position of the various components of the
mechanism (at least compared to the time scale of the thermal system).

walter.ponge@terra.com.br

240 INTRODUCTION TO PHYSICAL MODELING WITH MODELICA

thermal Mercury Switch

d=100

rotalion=setting

n

Figure 10.9. Schematic for the Mechanical Thermostat model.

A damper is introduced because the combination of the spring and mecha­
nism inertia introduces high frequency modes in the mechanical system. The
damper acts to damp out these modes.

Finally, the internal mechanism includes a mercury switch. The switch is
used to turn the furnace on or off. When the switch is rotated far enough, the
mercury will move from one end of the switch to the other. An interesting thing
to note about the switch (which is essential for its application in a thermostat)
is that the switch has hysteresis built into it. For example, assume that the
mercury switch turns on when the temperature goes below 300K. When the
switch turns on the mercury moves to one side of the switch and closes the
connection between two wires. However, when the temperature rises above
300K the switch does not turn off. Instead, the temperature must go over some
other threshold (e.g., 305K) before the switch will turn off. This is essential
because if only a single temperature determined the state of the switch there
would be a great deal of chatter (e.g., high frequency changes in switch state).

walter.ponge@terra.com.br

Multi-Domain Modeling 241

10.3.4.2 Digital thermostat

In contrast to the mechanical thermostat, we now consider how to model a
digital thermostat. Interestingly enough, even though the domains and tech­
nologies are different, a number of the same issues are present in both. Figure
10.10 shows a schematic of the Digi tal Thermosta t model.

thermal

thermocouple

ground

n

Figure 10.10. Schematic for the Digi tal Thermostat model.

The DigitalThermostat consists of two components. The first is
a thermocouple which translates temperature differences into voltages. The
thermocouple model found in the Thermal library assumes that the voltage
difference is computed as a polynomial of the form:

n

~v=Lc/r (10.1)
i=O

where ~ V is the voltage drop across the thermocouple, T is the ambient
temperature around the thermocouple and C is a series of coefficients which
are parameters to the thermocouple model.

The other model used in the Digi tal Thermost at model is a digital
controller circuit. It is assumed that the logic of the control strategy has
been encapsulated within this circuit. In our case, the Digi talCircui t

walter.ponge@terra.com.br

242 INTRODUCTION TO PHYSICAL MODEUNG WITH MODEUCA

model which represents the digital controller has a simple algori thm section
which controls the electrical behavior between the furnace control pins, Fp
and Fn, based on the voltage drop across the thermocouple pins, Tp and
Tn. In order for the control system to function, it must translate the voltage
drop across the thermocouple back into a temperature. To do this, it must
have some understanding of the characteristics (i.e., the Ci coefficients) of
the thermocouple. These same coefficients are therefore used as calibration
parameters for the controller.

10.3.4.3 Commonality

There are some interesting parallels between the digital and mechanical
thermostats. First, they both require calibration. The gauge on the outside of
the mechanical thermostat must be calibrated based on the thermal expansion
characteristics of the spring inside the thermostat. Likewise, the control circuit
in the digital thermostat must be programmed with the characteristics of the
thermocouple's response to temperature changes.

It is quite typical in controllers to find some representation of the plant (i.e.,
the physical system) response present inside the controller. In our cases, the
models have been constructed in such a way that the controller's understanding
of the physical response is "perfect" (i.e., it knows exactly what is happening
in the physical system). This is highly unlikely in the real world for at least
two reasons. One reason is that the calibrations are never perfect (e.g., the
coefficients used by the controller have some error). The other reason is that
the mathematical model that the controller uses to represent the physical system
is not perfect either. Studying such errors and what effects they have when
a control system is actually deployed is an important aspect of modeling
physical systems.

The other common aspect of these controllers is the requirement for hystere­
sis. In the mechanical system, the hysteresis is generated by the geometry of
the mercury switch. For the digital system, the hysteresis is introduced by the
control algorithm.

10.3.5 Complete System

Figure 10.11 shows a system which exercises both the digital thelmostat
and the mechanical thermostat. Figure 10.12 shows the simulated temperature
inside and outside the house. The devices have been setup in such a way
that they behave identically so only one indoor temperature is shown. Note
that the frequency with which the furnace is used is greater when the outside
temperature is lower.

walter.ponge@terra.com.br

Multi-Domain Modeling 243

Furnace

Furnace

Figure 10.11. Schematic for the ThermostatSystem model.

Indoor and Outdoor Temperature

~

'" " 290 &
E
~ 285

,'-------------,,,

:: -------------------------------///---/ ----'--,-------------------

Time [sJ

Figure 10.12. Indoor and Outdoor temperature.

walter.ponge@terra.com.br

244 INTRODUCTION TO PHYSICAL MODELING WITH MODELICA

10.4 AUTOMOTIVE LIBRARY
In Chapter 1, we briefly mentioned a library of models developed to evaluate

vehicle performance. In this section, we will explore that library in more detail.

10.4.1 SimpleCar package

Tests

111/ Example I/i
i 1

V '--------'

Ell9ine
~----f
i II Ubr",y

\. M)

Transmission

Examples Interfaces

~ample ~
------/'1 ---11

, I

Library I

Types

I" Library ~
Figure 10.13. Packages nested inside the SimpleCar package.

As we can see in Figure 10.13, the SimpleCar library contains several
nested packages. These will be discussed in detail shortly. The overall structure
of the package follows the conventions which will be laid out in Chapter 12.2

The models contained in this package are relatively simple. As a result, their
predictive capabilities are very limited. However, the package provides many
opportunities for trying out different design ideas, as well as incorporating new
component models.

10.4.2 Engine package
The Engine package contains models related to the function of the engine.

Engine design parameters represented by these models include bore, stroke,
valve diameter, valve timing, etc.

10.4.2.1 Interfaces

Many of the engine component models use the rotational and translational
connectors found in Model iea . Meehan ies. In addition, most components

2For example. the nested Types and Interfaces packages are present.

walter.ponge@terra.com.br

Multi-Domain Modeling 245

also use the Gas 3 connector found in SimpleCar _ Interfaces which is
defined as:

connector Gas "Thermodynamic connector"
Modelica.Slunits.Pressure P "Gas pressure";
Modelica.Slunits.Temperature T "Gas temperature";
flow Modelica.Slunits.MassFlowRate mdot "Mass flow rate";
flow Modelica.Slunits.HeatFlowRate q "Heat flow rate";

end Gas;

This connector, used to represent the state of the air-fuel mixture, is some­
what unusual because, unlike most of our previous connector definitions, it
contains two across and two through vaIiables. The across vaIiables (i.e., the
potentials which drive the dynamics of the system) are pressure and tempera­
ture, P and T, while the through variables are mass flow rate, m_dot, and heat
flow rate, q.

In addition to the Gas connector definition, there are several partial models
representing generic interfaces for engines, transmissions, shift strategies and
chassis. These interfaces are used in conjunction with vehicle models to allow
easy replacement of models for these subsystems with other models satisfying
the same interface requirements.

10.4.2.2 Basic components

Figure 10.14 shows what we find when we open up the SimpleCar. -
Engine. Components library. The following is a list of some of the com­
ponents and a description of the model used:

• TimingBel t: The timing belt is a very simple device. The model for a
timing belt is the same as the model for a gear with a gear ratio of two. The
timing belt is used to rotate the camshaft at exactly half the speed of the
crankshaft.

• ChamberVol ume: DUling the engine cycle, it is necessary to calculate
the volume inside the combustion chamber. The ChamberVolume model
is responsible for this calculation. Engine geometry information is passed
into this model and the chamber volume is an output. In order to compute
the volume, the ChamberVolume must also be connected to the piston
through a translational connector in order to determine the piston position
(used in the calculation of the chamber volume).

• CrankSlider: The crank-slider mechanism in the engine is used to
transform the translational force on the piston into a torque on the crankshaft.

'''Gas'' in this context does not represent gasoline but rather the gaseous state of the mixture.

walter.ponge@terra.com.br

246 INTRODUCTION TO PHYSICAL MODELING WITH MODELICA

! I
I PropertyModel1

I I
• !

OffsetShaft

o CrankSlider

Dynamometer Cam

Ti"'ing~ell

I@j ~ i,0mbustion

co
Reservoir

Figure 10.14. Components of the Engine package.

• Masslesspiston: The piston model is called Masslesspiston be­
cause we neglect the translational inertia of the piston for our analyses. The
piston model itself balances the force due to pressure inside the combustion
chamber with the force applied from a translational connector (presumably
connected to the crank-slider mechanism).

• Control Volume: At the center of the thermodynamic process of an
engine is the control volume inside the combustion chamber. In addition
to applying conservation of mass and energy to the contents of the control
volume, the ideal gas law is also used as a constitutive equation to describe
the relationship between pressure, volume and temperature. The default
gas property model assumes a perfect gas (i.e., U = CuT and h = CpT).

• Combustion: The Combustion model used in our analyses is very sim­
ple. The combustion process is modeled as a release of energy based on the
amount of mass trapped inside the combustion chamber. The instantaneous
heat release, during combustion, is governed by the following equation:

q = Qtotal sin2 (7r_i_-_is_)
if - is

(10.2)

walter.ponge@terra.com.br

Multi-Domain Modeling 247

where t s and t f are the start and end times of the combustion process. These
are determined at the time that the spark plug fires and are based on engine
speed and burn duration in crank angle degrees. Furthermore, Qtotal is
determined using the lower heating value of the mixture, the air-fuel ratio
of the mixture and the total mass trapped in the cylinder.

• Valve: The valve model is used for both intake and exhaust valves. The
flow through the valve is governed by the standard isentropic flow relation­
ship found in textbooks (e.g., Ogata, 1978).

• Cam: The Cam model computes an idealized cam profile that is based on
the maximum lift of the valve and the position of the crankshaft when the
valve is intended to open and close.

• Throttle: The throttle model has the same underlying flow behavior as
the engine valve model except that the throttle flow is controlled based on
throttle angle rather than valve lift.

• Manifold: The manifold model is a simple "filling-and-emptying" model
(i.e., no wave dynamics). The equations for the manifold control volume
are the same as the equations used for the combustion chamber.

• Reservoir: The Reservoir model is used to represent the ambient
conditions (i.e., an infinite reservoir of mass at a specified pressure and
temperature).

• Dynamometer: The Dynamometer model is used to fix the speed of
the engine. Dynamometers are often used in engine testing to determine
the torque output of the engine. The behavior of the dynamometer is best
described as: "The dynamometer generates whatever torque is necessary to
keep the engine rotating at a specific speed."

10.4.2.3 Component assemblies

The Engine package contains more than just components. It also contains
assemblies of those components. The first assembly to point out is the individual
cylinder which is composed of the basic components already described. The
schematic of an individual cylinder can be seen in Figure 10.15.

Just as we used the components described previously to build up the model
of an individual cylinder shown in Figure 10.15, we can use the individual
cylinder models to built up a complete engine. For example, a 4 cylinder
engine model can be seen in Figure 10.16. Each of the cylinders you see in
Figure 10.16 contains the components shown in Figure 10.15.

walter.ponge@terra.com.br

248 INTRODUCTION TO PHYSICAL MODEUNG WITH MODEUCA

··-······--{'d~~····

:: i.

...........H;W~

tiJ ~

Figure 10.15. Looking inside an individual engine cylinder.

, cylilldElr1. .cylindElr;3c:ylil1~er? .. cylinder4

crankshaft

Figure 10.16. Looking inside a 4 cylinder engine.

10.4.3 Transmission package
For the engine component models, we had to develop quite a few new basic

components. For the transmission, we can rely much more on the components

walter.ponge@terra.com.br

Multi-Domain Modeling 249

found in the MSL. As a result, the Transmission package is made up
primarily of assemblies.

The five speed transmission model included in the Transmission pack­
age is very simple. It represents the function of a five speed automatic trans­
mission in concept but is not assembled in the same way as a real automatic
transmission (e.g., the torque converter has been left out and numerous indi­
vidual gears replace a smaller number of planetary gears). A schematic of the
five speed transmission is shown in Figure 10.17. Using several internal equa­
tions, the model describes the simulated response of the underlying hydraulic
subsystem used to actuate the clutches.

engine

Figure 10.17. A simplistic five speed transmission.

10.4.4 Chassis package
The Chassis package contains components used to represent the frame

and suspension of the car. A few very simple components are included (as
shown in Figure 10.18). Just as with the transmission models, the chassis

walter.ponge@terra.com.br

250 INTRODUCTION TO PHYSICAL MODELING WITH MODELICA

components use the connector definitions and several components from the
Modelica. Mechanics package.

GenericCar

Figure 10.18. Contents of the Chassis package.

10.4.5 Vehicle package
In order to do vehicle level simulation (which is by no means the only use of

the models presented in this section), we need to bring together assemblies from
the other packages to form a complete vehicle. The particular combination used
for our sports car example from Chapter 1 is shown in Figure 10.19.

,
Shift_!atagy

"

road

Figure 10.19. Creating a vehicle model.

walter.ponge@terra.com.br

10.4.6
10.4.6.1

Applications
Acceleration application

Multi-Domain Modeling 251

In Chapter 1, we described one possible application of the models presented
in this section. Specifically, we modeled the acceleration of a sports car from
o to 100 kilometers per hour. We used the model shown in Figure 10.19 as the
vehicle model. One challenge in putting together such a model is starting with
the proper initial conditions. Chapter 13 discusses how to specify the initial
conditions for a simulation.

In the case of our acceleration test, the initialization was straightforward.
We assume that the car starts with the transmission disengaged and the engine
running at 1500 RPM.4 At the moment the simulation starts, the transmission
engages and the vehicle begins to accelerate.

We use a when clause to determine the point at which the vehicle has reached
100 kilometers per hour. Inside the when clause we use the terminate ()
function to stop the simulation.

10.4.6.2 Dynamometer testing

The vehicle acceleration test is a very nice example because everyone can
relate to it. However, a more common use for models like the ones presented in
this section is actually to evaluate steady-state engine performance or responses
to simple transients by connecting the engine to a dynamometer. Figure 10.20
shows a schematic of such a test.

The purpose of the test is to run the engine according to some speed profile
and determine the torque output of the engine under those conditions. Such
tests simplify the evaluation of the engine by avoiding effects due to the other
sub-systems (e.g., the transmission or chassis).

10.4.7 Concluding remarks
The models in the SimpleCar package were developed as a "modeling

playground" on which people learning the Modelica language could test their
skills. There are endless possibilities for enhancement and modification of this
library. The vehicle models contain numerous replaceable components so
it is easy to make a design modifications. For example, an interested reader
might try building a 6 cylinder engine to complement the 4 cylinder engine
already provided. This 6 cylinder engine could then be used in place of the
existing 4 cylinder engine by redeclaring the engine component in one of the
vehicle models. Section 10.6 provides several modeling exercises related to
the models presented in this section.

4If we had a torque converter in the transmission, we could have assumed that the transmission was engaged
and applied the brake to keep the vehicle from moving initially.

walter.ponge@terra.com.br

252 INTRODUCTION TO PHYSICAL MODEliNG WITH MODEliCA

k={90}

P=101800
T=300

CD
intake

P=101800
T=300

CD
exhaust

Figure 10.20. Top level model for dynamometer testing.

10.5 SUMMARY
In summary, we have presented several examples of how mixed-domain

systems can be built using Modelica. In these cases, most of the models
required were available as part of the MSL. The ability to build complex
systems of both plant and controller models across domains is a powerful tool
when used in conjunction with a "systems engineering" approach.

There are many potential applications for systems like the ones developed in
this chapter. For example, simple plant models can be developed for the purpose
of control system design. At a later stage, the plant models can be refined to
include more detailed characteristics (e.g., additional non-linearities) and used
to verify the controller designs in the context of less idealized plant models.
Another possibility would be to examine the effect of non-ideal sensors and
actuators as we did in Section 7.4. Finally, the robustness of these systems can
be tested by varying the physical characteristics of the plant or the calibration
values used in the controllers to check if the system performance is extremely
sensitive to slight variations in these parameters.

walter.ponge@terra.com.br

Multi-Domain Modeling 253

10.6 PROBLEMS
These problems, more so than the ones included in other chapters, demon­

strate many of the practical tradeoffs made in industrial application of controller
and plant modeling. Only a few of the possible complicating issues have been
included in this section.

PROBLEM 10.1 Replace the gear models in the conveyor belt used in the
electric motor example with non-ideal gears which introduce backlash (e.g., due
to gaps between the gear teeth). What effect does this have on the peiformance
of the control system?

PROBLEM 10.2 Run the factory control example and look at the maximum
voltage required by the controller using the current controller design. Then,
change the model of the voltage source so that the voltage output of the con­
troller is limited to some maximum voltage. Initially, set the maximum voltage
for the controller above the maximum voltage used, and verify that there is no
degradation in the peiformance of the system. Next, slowly lower the maximum
voltage and observe the changes in the peiformance of the control system. Such
saturation effects are quite common in modeling actuator behavior.

PROBLEM 10.3 Evaluate the effects of different circuit designs for the motors.
For example, what is the effect of adding some capacitance to the motor or
including operational amplifiers to provide gain to the input signal?

PROBLEM 10.4 Build a 6 cylinder engine using the 4 cylinder engine in
Figure /0.16 as a guide.

PROBLEM 10.5 The individual cylinder model currently has only a single
intake and single exhaust valve. Create an individual cylinder model with
more valves to try to improve the overall torque output of the engine.

PROBLEM 10.6 Examine the effects of the various design parameters (e.g.,
valve timing and engine geometry) in the acceleration test. The full model
name for the acceleration test is SimpleCar. Examples. Race.

walter.ponge@terra.com.br

Chapter 11

BLOCK DIAGRAMS VS. ACAUSAL MODELING

11.1 OBJECTIVE
In this section, we will discuss, in detail, the differences between the block

diagram and acausal approaches introduced in Section 1.3.
There are several analysis tools available which express system behavior in

terms of block diagrams. Any given block in a block diagram has the following
general form:

x

y

f(t, x, u)

g(t,x,u)

(11.1)

(11.2)

where u represents the input signals, x represents the internal states and y
represents the output signals. When connected together, such blocks are capable
of representing and simulating large systems of differential equations (with the
same general form).

Block diagrams are useful in understanding the mathematical behavior be­
hind dynamic systems. For example, the lacobians of the f and 9 functions
can be used to determine the poles, zeros and overall transfer function for a
linearized system. In addition, block diagrams are particularly well suited for
describing control system structure.

However for describing plant model or physical system behavior, block dia­
gram formulations take more work to create and are less reusable than acausal
models. Modelica can be used for both approaches but an understanding of
which approach is more appropriate will lead to more efficient model devel­
opment. This chapter attempts to demonstrate some of the key differences in
these two approaches.

Throughout this chapter, we will use the mechanical system shown in Figure
11.1 (Bowles et a!., 2001) to demonstrate both block diagrams and acausal

walter.ponge@terra.com.br

256 INTRODUCTION TO PHYSICAL MODELING WITH MODELICA

ground=O - - - - Carrier

planetary
-L .. Ring

ratio= 100/50

Figure l1.l. Grounded planetary gear with two inertias attached.

approaches. We assume idealized behavior for the components. For example,
the behavior of the ine11ias in Figure 11.1 is described by the following equation:

Jw =7 (11.3)

where J is the moment of inertia, w is the angular velocity of the shaft and 7

is the torque applied to the shaft. Furthermore, the planetary gear behavior is
expressed by the following equations:

o

7c + 78 + 7 r

(11.4)

(11.5)

(11.6)

where R is the ratio of ring gear teeth to sun gear teeth, CPr is the angular
position of the ring, CPc is the angular position of the carrier, CPs is the angular
position of the sun, 7 r is the torque on the ring gear, 7c is the torque on the
carrier gear and 78 is the torque on the sun gear.

Even though we have chosen simple behavioral equations, we will show that
the problem is actually more complex than might first appear.

11.2 BLOCK DIAGRAMS
In Section 1.3.1, we first introduced the block diagram approach and showed

a block diagram of a simple control system. The Modelica features needed to

walter.ponge@terra.com.br

Block Diagrams vs. Acausal Modeling 257

develop block diagram components were then presented in Section 3.4. Finally,
Equations (11.1) and (11.2) show the general form for the equations of both an
individual block and a complete block diagram.

The block diagram approach is an elegant way of representing mathematical
behavior because it is simple and easy to understand. In addition, a block
diagram of a system is good for understanding the mathematical structure
of the problem. Mathematical operators such as addition, multiplication and
integration appear explicitly in such diagrams. These systems are more intuitive
to debug because the behavior is explicitly described.

11.2.1 Problem statement
In order to understand some of the drawbacks of the block diagram approach,

let us construct a model of the system shown in Figure 11.1. The first step in
building a block diagram model is identifying what variables are known and
what variables need to be computed.

The fact that this step must be completed first is unfortunate since we would
like to keep whatever model we create for the mechanism shown in Figure 11.1
for reuse in other contexts (i.e., where the set of variables involved is the same,
but what is known or unknown is different). Having to make a priori decisions
about what will be known and what will be unknown before we build the model
limits the reusability of the model because applications will invariably come
along which violate these a priori assumptions.

For the time being, let us assume we wish to apply a torque to the shaft on
the left and as a result determine the position, velocity and acceleration of the
shaft on the right. Figure 11.2 shows a schematic for the mechanism along
with an actuator to define the system level causality.

11.2.2 Problem formulation
At this point, we have established what the behavioral equations are, what

is known and what is to be computed. However, we still have a fair amount
of work ahead of us. While we know the torque being applied on the left side
of the shaft, it is not sufficient to just apply Equation (1l.3) to compute the
acceleration of the driven shaft. In order to compute the motion of the shaft,
we must take into account the effective ine11ia of the overall mechanism.

This highlights the second disadvantage of block diagram formulations.
Namely, some mathematical manipulation is necessary to formulate the prob­
lem (i.e., deriving an equation to calculate (P2 in terms of Tk). The first step is
to understand the effects of grounding the carrier gear. If we assume that ¢c is
zero, the kinematic relationship for the planetary gear, Equation (11.4), can be
reduced to:

o (11.7)

walter.ponge@terra.com.br

258 INTRODUCTION TO PHYSICAL MODELING WITH MODELICA

ground=O

J1

\
\

tauc
/

/

torque_profile ~
lefCshaft rrl--..

IJ········ ···1 ta~
duration={2} ratio=100/50

Figure 11.2. Planetary gear driven by the sun gear.

Now we must consider the equations which describe the behavior of the two
shafts:

Let us eliminate Tr by using Equation (11.5) which leaves us with:

Therefore as it stands, our current system of equations is:

J1W1

hW2

<PI + R<P2

(11.8)

(11.9)

(11.10)

(11.11)

(11.12)

(11.13)

(11.14)

Our next problem is that we have equations involving WI, W2, <PI and <P2. Recall
that what we really want to compute is <P2. If we multiply Equation (11.12) by
R and then add it to Equation (11.13) we are left with the following equations:

hW2 + RJIWI

<PI + R<P2

(11.15)

(11.16)

walter.ponge@terra.com.br

Block Diagrams vs. Acausal Modeling 259

This allows us to get rid of all references to Ts.
Now we would like to take the two remaining equations and use them to

develop an equation for ¢2. In order to solve these equations we must write
an explicit equation for W2 which we can then integrate twice to solve for ¢2.
We are almost finished except that Equation (11.15) still contains a reference
to WI. By differentiating Equation (11.16) twice we can write WI in terms of
W2 which gives us:

(11.17)

From Equation (11.17) we see that the effective inertia, Je , for the system (i.e.,
the ratio of torque over acceleration) is:

(11.18)

Now that we can solve for W2, W2 and ¢2, we can go back and use the
following equations to solve for the reaction torque at ground, T c , the angular
velocity of the driven shaft, WI, and the angular position of the driven shaft, ¢I,
using the following equations:

Tc -(1 + R)Ts (11.19)

WI -RW2 (11.20)

¢l (t) ¢1 (to) + lot WI dt (11.21)

11.2.3 Block diagrams
After formulating the problem, we can construct our block diagram. The

diagram can be seen in Figure 11.3. Another effect commonly observed with
block diagrams is the scattering of parameter values among many components.
There are three fundamental parameters to the mechanism: R, Jl and J2. Note,
in Figure 11.3, how these parameters are used in multiple places. No single
object in Figure 11.3 distinctly represents, for example, the planetary gear.
Instead, the effects of the planetary gears are seen in vi11ually every component.
This scattering of parameters can cause robustness and maintenance problems
because it becomes necessary to ensure that the same value is being used
consistently everywhere the parameter appears.

11.2.4 Initial conditions
Figure 11.3 contains three integrator blocks. As a result, in order to integrate

the system of equations we must know W2(tO), ¢l (to) and ¢2(tO). How do we
determine what the initial conditions for these states should be?

walter.ponge@terra.com.br

260 INTRODUCTION TO PHYSICAL MODELING WITH MODELICA

~"'~>,
1//

phi1

Figure 11.3. Block diagram of planetary gear system.

The simplest case is when W2 (to) and (h (to) are known. In that case, by
differentiating Equation (11.14), we find that:

(11.22)

Let us assume a less convenient (but just as reasonable) case where WI (to)
and (h (to) are known instead. In such a case, we must formulate our initial
conditions in much the same way that we formulated our behavioral equations.
In other words, we must use Equation (11.14) to derive an expression for ¢2 (to) :

¢2 (to) = _ ¢l (to)
R

and we must then differentiate to get an expression for W2 (to):

W2(tO) = _ WI (to)
R

01.23)

(11.24)

The point of these last two cases is that Equation 01.14) was required in
order to find consistent initial conditions.! However, Equation (11.14) is not

I A consistent set of initial conditions is one which satisfies not just the final set of ordinary differen­
tial equations. but also any algebraic constraints (e.g .. Equation (11.14» present in the original problem
statement.

walter.ponge@terra.com.br

Block Diagrams vs. Acausal Modeling 261

present in Figure 11.3. Furthermore, Equation (11.14) cannot even be derived
from Figure 11.3.2 In other words, in building our block diagram we have
"lost" the information contained in Equation (11.14). When a model like the
one shown in Figure 11.3 is passed along to other users it will not be clear to
them that Equation (11.14) must be satisfied.

To some extent, the difficulties with initial conditions in this example are
contrived. It is possible to create a block diagram formulation of this problem
where only two initial conditions must be given and these two initial conditions
always form a consistent set. However, coming up with such a formulation
requires more work to be put into the formulation process. In addition, as
problems become more complex, difficulties related to inconsistent initial
conditions cannot be avoided.

11.2.5 Reuse
Having gone through the exercise of creating the model shown in Figure

11.3, consider for a moment the impact of changing one of our fundamental
assumptions. For example, what if there were a stiff torsional spring between
the carrier and ground rather than a rigid connection? Or, imagine the ring gear
were connected to ground and the carrier were free. Would we be able to reuse
much, if any, of the model we had created in light of such minor changes?

11.2.6 Conclusion
While block diagrams are useful, they have several drawbacks for physical

systems. First, the equations used in a block diagram must be manually
derived from the constitutive and conservation equations. This is not only
a tedious and potentially error prone process, but it can be very difficult when
the system behavior is described by DAEs (differential-algebraic equations).3
In addition, causality assumptions must be made at the component level rather
than the system level which limits the reusability of the component models.
Furthermore, robustness and maintenance issues arise because of parameter
scattering throughout the diagram (i.e., problems can easily occur if consistent
values are not used throughout the diagram). Finally, even once the models
are formulated, the task of determining consistent initial conditions is quite
challenging because the diagram itself may not contain sufficient information
to compute them.

"While we can surmise from Figure 11.3 that W2 = R WI. you might be tempted to infer that (P2 = R <PI.
However. this is not the case because an integration constant is required (i.e .. <P2 = R <PI + C).
3 A mathematical definition for differential-algebraic equations can be found in the glossary.

walter.ponge@terra.com.br

262 INTRODUCTION TO PHYSICAL MODEUNG WITH MODEUCA

11.3 ACAUSAL APPROACH
Building acausal models simply involves dropping the needed components

onto a schematic and connecting them. Starting from a general model, like
the one shown in Figure 11.1, we can further develop the model by adding
additional components (e.g., dampers, sensors or actuators) until we have a
complete system (e.g., Figure 11.2). The important thing to note about the
acausal approach is that we do not need to make any a priori assumptions
(i.e., about what is known and what is unknown) when building our model. In
addition, all of the Oliginal equations are maintained (i.e., no information is
"lost" in the problem formulation) so that computing consistent sets of initial
conditions is still possible.

Another advantage of the acausal approach is that if we decide to make a
slight change in the physical configuration of our model, we do not have to
derive a new problem formulation (i.e., we do not have to determine the set of
steps, like the ones in Section 11.2.2, that get us from what we know to what
we wish to know). This makes the prospect of making configuration changes
to our models less intimidating. For example, imagine we wish to introduce
some torsional stiffness and damping between the carrier of the planetary gear
and the mount point. Such a change would be quite typical of the changes
that are made as a model evolves from an ideal system to a more detailed one.
This change results in the system shown in Figure 11.4. Note that the only
change required is to simply remove the rigid connection and replace it with a
rotational spring and damper.

torque_profile
r-------" torque

l--. ~G-----l![IZ-L
T" , i tau . l .. "" ____ ... _____________ !

duration={2}

ground=O

Figure 11.4. Planetary gear with torsional mount.

Finally, the fact that the models shown in Figures 11.2 and 11.4 resemble
engineering schematics is an advantage in many circumstances. In other words,

walter.ponge@terra.com.br

Block Diagrams vs. Acausal Modeling 263

the components (their icons) and the acausal nature of their connections would
be intuitive to many engineers. Of course, this argument cuts both ways
because the acausal formulation hides the mathematical structure of the problem
which is useful when developing a control system.4 While it is possible to
automatically transform the acausal representation into a block diagram (as we
did previously), it is generally impossible to carry out this process in reverse.

11.4 SUMMARY
As mentioned previously, block diagrams are useful in many situations

and that is why they are supported by the Modelica language and why the
MSL provides a significant collection of block diagram models. However,
it is important to keep in mind some of the drawbacks of the block diagram
approach when developing physical models (Le., plant models). Clearly, both
block diagram and acausal formulations can be used to solve this problem. The
question is not whether such block diagrams can be formulated, but whether
they are the fastest and most efficient way to solve the problem. The key is
to avoid doing things manually (i.e., in a tedious and error prone way) when
they can be done automatically.

While block diagrams contain useful information, there is no reason this
information cannot be extracted automatically from an acausal formulation.
For example, the following canonical form is typically used when analyzing
system dynamics:

x = Ax+Bu
y.= Cx+Du

(11.25)

The A, B, C and D matrices are very useful in computing properties of the sys­
tem (e.g., poles and natural frequencies). Dymola is capable of automatically
generating such matrices by linearizing a Modelica model around a particular
solution. As a result, acausal models can generate much of the same use­
ful information as block diagram models without the previously mentioned
drawbacks.

Modelica provides acausal features for making your physical models as
flexible and reusable as possible. In order to achieve maximum flexibility and
reuse, it must be possible to identify when to use the acausal features. Block
diagrams are preferred for conveying strictly one-way information (e.g., the
speed requested of a controller or the current gear of a transmission). Using
acausal models in such contexts would be awkward and confusing. In cases
where simultaneous equations or conservation principles are used, the acausal
approach makes it easier to create and reuse models.

40f course, it is still possible to extract that information automatically from an acausal formulation.

walter.ponge@terra.com.br

264 INTRODUCTION TO PHYSICAL MODELING WITH MODELICA

Looking closely at these two approaches, the fundamental difference is that
block diagrams are inherently "low-level" formulations containing mathemat­
ical information. They represent the processing of the problem statement into
a specific set of mathematical operations used to solve that particular problem.
On the other hand, the acausal formulation preserves the physical details of
the problem without specifying the process by which the problem should be
solved.

The reason block diagrams are more prevalent is that tools which use block
diagrams are easier to develop. This is because the difficult task of translating
the acausal formulation into the specific mathematical operations is done by
the user. From a user perspective, the ideal situation would be for simulation
tools to perform this translation automatically. The emergence of tools, such as
Dymola, powerful enough to automatically perform these manipulations will
clearly be a benefit to the physical system model developer.

Hopefully, we have demonstrated that there are significant advantages to the
acausal approach when describing the behavior of physical systems. Note that
we have taken a relatively simple example for use in this chapter. Keep in mind
that most of the drawbacks of block diagrams only become more pronounced
as systems become larger and more complex while the acausal approach scales
well with larger and more complex systems.

11.5 PROBLEMS
PROBLEM 11.1 Create an alternative to the block diagram shown in Fig­
ure 11.3 for which it is impossible to provide an inconsistent set of initial
conditions.

PROBLEM 11.2 Build a model for the system shown in Figure 11.4 using both
block diagram and acausal components. How much similarity is there between
the block diagram for 11.1 and 11.4? Compare this to the similarity between
the two acausal models.

PROBLEM 11.3 How do you compute the initial conditions for the integrator
blocks used in the Problem 11.2?

PROBLEM 11.4 Build both a block diagram model and an acausal model for
the system shown in Figure 11.2. Then, reconfigure the acausal model of the
system such that the ring gear is connected to ground instead of the carrier
gear and the torque is applied to the carrier gear instead of the sun gear. Once
this is complete, create a block diagram of the new configuration (either by
using the previous one or creating a new one from scratch). Again, compare
the two block diagram models to each other and the two acausal models to
each other. What are the significant differences? How much reuse was there
between the old configuration and the new configuration?

walter.ponge@terra.com.br

Chapter 12

BUILDING LIBRARIES

12.1 OBJECTIVE

The package concept was introduced into Modelica to help organize defini­
tions of models, connectors, etc. The idea was to allow for collections of related
models to be bundled together. Packages which contain components (e.g., con­
nectors and models) to model a particular domain are called libraries. These
libraries are usually implemented as a single package which contains several
nested (or internal) packages. We will discuss the conventional structure for
these nested packages.

Apart from the structural aspects, a library should also balance reusability
and robustness. Ideally, a package provides users with endless possibilities
for building systems by connecting up the provided components. At the same
time it should be difficult for users to use these components incorrectly. When
something is done incorrectly, it should either be immediately obvious to the
tool (e.g., making an invalid connection) or easily diagnosable (e.g., providing
non-physical parameter values).

In this chapter, we will revisit the Chemi s t ry package presented in Section
6.4 and discuss its structuring in greater detail. You may first wish to go back
and review the material in Section 6.4 before reading further.

12.2 CLASSIFICATION

Before creating a package of reusable components, it is necessary to decide
what the scope of the package will be. For example, the MSL is organized by
engineering discipline (e.g., mechanics, and controls). Within each of these
disciplines, a structure exists which makes it easy for users to locate the parts
they are looking for. For example, within the Modelica. Mechanics pack-

walter.ponge@terra.com.br

266 INTRODUCTION TO PHYSICAL MODELING WITH MODELICA

age there are packages named Translational and Rotational which
neatly divide the components into mutually exclusive sets.

Now, consider what would happen if the Mode 1 i ca . Me cha ni c s package
were instead divided into categories like Automotive, Appliances and
Aerospace. The problem with these categories is that they do not represent
mutually exclusive sets. For example, all of these categories would have uses
for the IdealGear model. Some models (e.g., OneWayClutch) might
be unique to one category but on the whole it would be difficult to locate
models using such a categorization. The source of the problem is attempting
to categorize based on applications which utilize many overlapping models.

To avoid this, choose a "taxonomy" (i.e., a systematic classification scheme)
which results in minimal overlap between any two packages in different
branches of the package hierarchy. Such overlap cannot be entirely avoided
(e.g., where would you place the electronic thermostat model found in Figure
1O.lO?), but it can be minimized.

12.3 STRUCTURE
Once the decision has been made concerning what definitions should be

included within a package, it is necessary to organize those definitions. While
the Modelica language does not place many restrictions on the structure of a
package, there are conventions for how packages should be structured. Ideally,
all packages should have a consistent structure because, if each package had
a completely unique structure, it would be quite disconcelting for the package
users. For this reason, we describe several of the conventional package elements
and their order of appearance in a package.

Before we describe the conventional nested packages, we should point
out that the MSL includes several partial package definitions that pro­
vide basic icons for different types of packages. Typically, a new package
(e.g., Chemistry) should extend from the Library2 definition found in
Modelica. Icons. Any nested packages should extend from the Library
definition also found in Modelica. Icons. The Library2 graphics leave
room for custornization (i.e., additional graphical annotations) while the graph­
ics for Library are more generic, with less room for customization.

12.3.1 Types
In the case of the Chemi s t ry package, we included a nested package that

contained all the types that were specific to the chemistry package, i.e.,

package Chemistry
extends Modelica.lcons.Library2;
package Types

extends Modelica.lcons.Library;
type MolarFlowRate=Real(unit=lmol/sec",

walter.ponge@terra.com.br

quantity="MolarFlowRate") ;
end Types;

end Chemi s t ry ;

Building Libraries 267

The MolarFlowRate type is defined within the Chemistry package be­
cause it is needed but it does not exist in the SIunits package in the MSL.
The Types package might also contain record definitions used within the
package. It is entirely possible that a package will be written that does not
require additional type or record definitions beyond those already available
in other packages such as the MSL. In such cases, a nested Types package is
not required.

12.3.2 Interfaces
Every package usually includes some interface definitions which are used

throughout the package. For the most part, such definitions are either connectors
or partial models (e.g., OnePort, see Example 4.1).

Such definitions should be included in a nested package called Inter­
faces. Because these definitions are so important and so widely used within
the package, the Interfaces package usually appears at, or near, the top
of a package. For the Chemistry package, the Interfaces package is
defined as:

package Chemistry

package Interfaces
extends Modelica.Icons.Library;
connector Mixture "A chemical mixture"

parameter Integer nspecies;
Modelica.SIunits.Concentration c[nspecies];
flow Types.MolarFlowRate r[nspecies];

end Mixture;
end Interfaces;

end Chemistry;

Note the use of the MolarFlowRate type defined previously in the Types
package.

Some descriptive text following the declarations in the Interfaces pack­
age will help users to better understand any connector definitions. An important
thing to remember when developing a package is to follow the Modelica sign
conventions regarding flOlJ variables in connectors (i.e., positive flow is into
the component).

Although the Chemistry package does not contain any partial defi­
nitions, such definitions are quite common (see Appendix C some partial

walter.ponge@terra.com.br

268 INTRODUCTION TO PHYSICAL MODELING WITH MODELICA

definitions found in the MSL). See Section 12.5.1 for a discussion on the
advantages and disadvantages of partial definitions.

12.3.3 Functions
The Functions package is similar to the Types package. If there are

package specific funct ion definitions that are used throughout the package
or potentially useful outside the context of the package, it is helpful to collect
them in the Functions package. However, it is quite possible that no such
functions exist for a given package, and in such a case the Funct ions package
is not necessary.

For the Chemistry package, the CalcRate and CalcMul tiplier
functions are defined in the Functions package. These functions represent
some of the fundamental constitutive relationships for chemistry. Because
they could potentially be used by multiple models (in a more fully developed
Chemistry package), they are kept in the Functions package rather than
nested inside the models that currently use them (e.g., the Reaction model).
The structure of the Chemistry. Funct ions package is:

package Chemistry

package Functions
extends Modelica.lcons.Library;
function CalcRate '" end CalcRate;
function CalcMultiplier ... end CalcMultiplier;

end Functions;
end Chemistry;

12.3.4 Sensors
For packages which contain definitions related to physical systems, a nested

package of sensor models is typically provided. At a minimum, these sensors
should be capable of outputting a signal that corresponds to the measured value
for either a through or across variable for that system. Typically, at least
three different sensors are included. One sensor type is called an "absolute
sensor" and it outputs the absolute value for an across variable at a point (e.g.,
the temperature at a point). Another type of sensor is a "relative sensor"
which measures the difference between across variables at two different points
(e.g., the temperature difference between two points). Finally, a "flow sensor"
measures the through variable between two points (e.g., the heat flow through
one path). The sensors for the across variables are generally connected in
parallel while the "flow sensor" is generally connected in series with the flow
path. To see an example of such sensors, look at the models in Modelica. -
Mechanics.Rotational.Sensors.

walter.ponge@terra.com.br

Building Libraries 269

12.3.5 Examples
To help users understand how models should be connected, it is helpful to

include a collection of runnable examples. For any package without examples,
users will invariably misunderstand some aspect of the package. The result is
that if a package is distributed to several users, there will be questions, mistakes
or misunderstandings that occur among many of the users. In some cases, these
may be due to bad model design but often the issues are fundamental to the
package and require a certain understanding on the part of the user that is
not obvious from the current structure or documentation of the package. It
is precisely these issues which should be addressed by a nested Examples
package.

The Chemi s t ry package is somewhat unusual in that it contains no spe­
cific reaction models. This means that it is impossible to create an example
without first identifying all participating species and reactions. Therefore, it
is difficult to include simple examples. However, one possibility would be
to nest the Oregonator package (also described in Section 6.4) inside the
Chemistry. Examples package to serve as a demonstration of how the
Chemi s t ry package can be used.

All of the packages in the MSL contain Examp 1 e s packages and examining
those packages will be useful in understanding how to create an Examples
package that will clearly demonstrate the use of a package. In addition,
the MSL contains a special partial model called Modelica. Icons. -
Example that example models can be derived from. This provides them an
icon that makes the model easily recognizable as an example.

It is a good idea to apply the encapsulated qualifier (see Section 9.1.1.3)
to any of the models (or nested packages) contained within the Examples
package. This will allow new users of the package to copy the examples out of
the package hierarchy to create stand-alone models. These models can then be
easily modified and studied further.

12.3.6 Tests
As a developer, it is important to maintain a suite of test cases to validate the

definitions in the package. Such a suite should ideally test every component
model and subsystem defined within the package. While test cases are gen­
erally ones which should work, it is sometimes useful to intentionally include
examples which should not work. In this way, a test suite may be designed to
validate not only the package, but also the tool with which the package is used
(e.g., to make sure it is capable of properly diagnosing common mistakes).

While test cases are important, they should probably not be distributed as part
of the package. Instead, they should be kept in a separate package because
users may be confused by the test cases. This is especially true when tests

walter.ponge@terra.com.br

270 INTRODUCTION TO PHYSICAL MODEUNG WITH MODEUCA

are included which are intended to fail. While users might glean some useful
information from the test cases (i.e., the test cases may show more sophisticated
examples of usage than the Examples package) test cases are typically not
acceptable substitutes for illustrative examples.

12.3.7 Package specific structure
So far, we have described nested packages that commonly appear in a

package. However, most packages will also have several nested packages
which are specific to the engineering domain or organization of that particular
package.

For example, the Chemi s t ry package contains a nested package called
Basic which in turn contains the following definitions:

package Chemistry

package Basic
extends Modelica.Icons.Library2;
partial model Reaction ... end Reaction;
model Reservoir ... end Reservoir;
model Stationary end Stationary;
model Volume ... end Volume;

end Basic;
end Chemistry;

These models provide the basic models for chemical systems. While these
models are not sufficient for representing all chemical systems, at least one of
these models is typically present in every chemical system.

The Modelica . Electr ical . Analog package is a good example of
a package with considerable package specific content. The current version is
organized as follows:

package Modelica

package Electrical

package Analog
package Interfaces ... end Interfaces;
paCkage Basic end Basic;
package Ideal ... end Ideal;
package Lines ... end Lines;
package Semiconductors ... end Semiconductors;
paCkage Sensors end Sensors;
package Sources ... end Sources;

end Analog;
end Electrical;

end Modelica;

walter.ponge@terra.com.br

Building Libraries 271

Note that in addition to the typical Interfaces and Sensors packages,
there are several other domain specific packages (e.g., Semiconductors).

12.3.8 Canonical form of a package
The discussions in the previous sections on conventions for nested packages

can be summarized by the following canonical form for a new package:

package NewPackageName
extends Modelica.Icons.Library2;
package Types

extends Modelica.Icons.Library;

end Types;
package Interfaces

extends Modelica.Icons.Library;

end Interfaces;
package Functions

extends Modelica.Icons.Library;

end Functions;

II Package specific structure

package Examples
extends Modelica.Icons.Library;

end Examples;
end NewPackageName;

Such conventions are important primarily to the user of the package. The
usability of a given package is greatly influenced by how organized and doc­
umented it is. The ability to quickly view the Interfaces package, to
browse the connectors and see what kinds of information they contain or to
view the Examples package to see how the components in the package can
be combined, helps users get a feel for how the package should be used.

12.4 DOCUMENTATION
Documentation was discussed previously in Sections 2.4 and 9.2.2. The

importance of documentation, particularly when developing a package, cannot
be overstated. As Figure 9.4 shows, the documentation added by the developer
can be nicely formatted by the tool before it is seen by the end user.

It is advisable to provide some kind of documentation for each model.
Ideally, a sufficient explanation of the model should be provided in HTML as
a documentation annotation (see Section 9.2.2). Also, it is useful to provide

walter.ponge@terra.com.br

272 INTRODUCTION TO PHYSICAL MODELING WITH MODELICA

additional documentation annotations for each package to give an overview of
that package and its contents.

Once again, the MSL is an excellent example to work from. The documenta­
tion for the MSL is automatically generated from the Modelica source code and
the embedded documentation annotations. The documentation is generated in
such a way that hyperlinks are included to allow jumping between related def­
initions. For example, if you look at the definition for a component model you
will find hyperlinks to the connector definitions. In addition, the graphical
annotations can be used to generate graphical images that are also included in
the generated documentation.

12.5 MAXIMIZING REUSABILITY
Now, let us tum our attention to making packages as reusable as possible. The

whole idea behind making a package in the first place is to develop component
models which can be used across different systems, projects and users. Included
in this section are several ideas on how to maximize reusability that should be
kept in mind when developing a package.

The general rule when developing a package is to try and see beyond the
applications you are familiar with and consider applications that other projects
or users might have.

12.5.1 Including partial definitions
Something to keep in mind when developing a package is that users may find

the definitions in the package useful but incomplete for their purposes. In such
cases, a user might wish to create a component which extends from yours.
By anticipating such usage, you will make your package more reusable.

For example, theModelica. Mechanics. Rotational. Interfaces
package contains the following definition for a Compi iant component I :

partial model Compliant
Modelica.Slunits.Angle phi_reI;
Modelica.Slunits.Torque tau;
Interfaces.Flange_a flange_a;
Interfaces.Flange_b flange_b;

equation
phi_reI = flange_b.phi - flange_a.phi;
flange_b. tau tau;
flange_a.tau = -tau;

end Compliant;

ITbe definitions for Flange_a and Flange..b are accessible since Compliant is also in the
Modelica. Mechanics. Rotational. Interfaces package.

walter.ponge@terra.com.br

Building Libraries 273

The Compliant definition is comparable to the OnePort definition shown
in Example 4.1. This partial definition allows us to easily write models for
springs and dampers in much the same way that the OnePort definition allows
us to easily create models for resistors and capacitors (i.e., by simply adding
the necessary constitutive equation).

While the use of the extends keyword can help in minimizing redundancy
across components, it can also lead to confusing models. Remember that any
use of extends results in the complete component definition being distributed
across the package hierarchy. This can make it difficult to form a complete pic­
ture of the derived component. For example, consider the following definitions:

partial model TwoRotationalConnections
import Modelica.Mechanics.Rotational.lnterfaces;
Interfaces.Flange_a flange_a;
Interfaces.Flange_a flange_b;

end TwoRotationalConnections;

partial model RotationalComponent
extends TwoRotationalConnections;
Modelica.Slunits.Angle phi_reI (start=O) ;
Modelica.Slunits.Torque tau;

equation
phi_reI = flange_b.phi - flange_a.phi;
flange_b.tau = tau;
flange_a. tau = -tau;

end RotationalComponent;

partial model GenericSpring
extends RotationalComponent;
Real c;

equation
tau = c*phi reI;

end GenericSpring;

model NonLinearSpring
extends GenericSpring;
parameter Real a, b;

equation
c = a*phi_rel+b;

end NonLinearSpring;

While partial definitions are good for promoting reuse, finely fragmented
partial models like those above can be hard to understand.

The purpose of most partial definitions is to define an interface. The
interface of a component is usually composed of parameter and connector
declarations. In many cases, it is useful to introduce some variables and equa­
tions in the partial definition. For example, the voltage, v, in the OnePort

walter.ponge@terra.com.br

274 INTRODUCTION TO PHYSICAL MODELING WITH MODELICA

model was introduced to represent the voltage drop across the component. Note
that an equation for v was also included. In most cases, it is recommended
that an equation be included for any variable declared in a partial definition.
Anytime a variable is left "dangling" (i.e., without an equation) it should be
well documented what that variable represents and that it requires an equation.

The point is that all use of extends creates some additional complexity in a
package because it fragments the complete definition. However, an understand­
ing of how this complexity is generated will help in choosing the frequency
and context of extends usage such that complexity is kept manageable.

12.5.2 Making components replaceable
Recall from our discussion in Chapter 4 how the replaceable keyword can

be used when building components (e.g., Example 4.8). This same approach
can be employed when building packages. The most common application
of the replaceable keyword involves type and model instantiation. How­
ever, keep in mind that the replaceable keyword can be used with record,
block, function and even package instantiation. When a component is made
reusable, it is a good idea to add a type constraint clause to the declaration (as
discussed in Section 4.8.5.2). The constraining type should be a partial
definition from the Interfaces package.

12.5.3 Package granularity
While building a package, make sure to clearly define the level of detail

you expect users of the package to work at. For example, a library of basic
hydraulic components is useful for developers of hydraulic circuits but con­
structing complete hydraulic systems from these basic components might be
quite time consuming. For this reason, the creator of such a package may be
tempted to include several complex hydraulic subsystems like pressure regula­
tor systems or hydrostatic transmissions. By doing so, the organization of the
package may suffer because the level of detail changes across the package.

The issue, in a nutshell, is deciding whether the package should be a set
of primitive models or a set of composite models. If both types of models
are being developed, there are at least two possibilities. First, you can try to
organize the package to clearly delineate between the primitive models and
the composite models. The second approach is to create two separate packages,
one for the primitive models and one that uses the primitive models to provide
the composite models.

12.6 MAXIMIZING ROBUSTNESS
When developing a package it is important to anticipate, as much as possi­

ble, all the different uses a model developer may have for the definitions you

walter.ponge@terra.com.br

Building Libraries 275

are providing. Such uses can be broken down into three broad categories. First,
the model developer may use the definitions as they were intended to be used.
For a well tested package, all the definitions should function properly (i.e., no
obvious bugs) if they are used as intended. Second, the model developer may
use the definitions incorrectly (e.g., using non-physical values for parameters).
These uses should be detected and result in a reasonable diagnostic message
(how this is done will be discussed shortly). Finally, there may be uses that
were not anticipated (not all possibilities can be anticipated). As they are un­
covered, they should either be made to work correctly or provide diagnostic
information as to why they are not allowed.

12.6.1 Using assertions and limits
If you look in the Modelica. SIuni ts package you will find the follow­

ing definition for Resistance:

type Resistance = Real (final quantity="Resistance",
final unit="Ohm", min=O);

Note the use of the min attribute. This is an example of setting a limit on a
physical type to prevent misuse. A resistance of less than zero is not physically
meaningful and using the min attribute in this way prevents the situation from
occurring and therefore avoids getting results that may be confusing.

The min attribute is just one way of preventing non-physical values. In more
general cases, it is not sufficient to identify a simple limit. Instead, a conditional
expression is used to determine whether a value is physical. For example, it
may also be necessary to identify when the amount of power dissipated by a
resistor exceeds some critical value. In such a case, the following assertion
could be added to the resistor model:

assert (i*v<le+6, "Maximum power exceeded");

Including such an assel1ion will generate a diagnostic message when the resistor
is used in an improper way (e.g., in a circuit where the component would fail).
Additional examples using assert () can be found in Section 8.4.

12.6.2 Finalizing choices
The ability to apply modifications to components and their subcomponents is

an important feature of Modelica. However, such flexibility should be curtailed
if it is not appropriate. For example, consider the following sensor definition
found in the Modelica. Mechanics. Rotational package:

partial model AbsoluteSensor
Modelica.Mechanics.Rotational.lnterfaces.Flange_a flange_a;
Modelica.Blocks.lnterfaces.OutPort out Port (final n=l);

end AbsoluteSensor;

walter.ponge@terra.com.br

276 INTRODUCTION TO PHYSICAL MODEliNG WITH MODEliCA

Since this sensor is only designed to output a single velocity signal, the size
of the output port, outPort, has been permanently fixed to one. This is
done using the final qualifier on a modification. Using the final qualifier
(as described in more detail in Section 4.6) disallows further, in this case
nonsensical, modifications.

12.6.3 Reducing the potential for modeling errors

The final class of robustness issues are commonly called "modeling errors".
These cases are difficult to prevent because they depend on how the models are
used.

For example, many simple models (e.g .. resistors, springs) behave the same
way regardless of their orientation (i.e., it does not matter how you connect
them because they are non-directional). However, a diode is an example of a
component which is sensitive to orientation. If the diode model is not clearly
marked (either by the connector names or the graphical annotations) it is easy
for a user to incorrectly place it into a schematic. Such an error cannot be
detected because it requires an understanding of what the modeler intended.

Other examples might include the misuse of idealized components. For
example, connecting a step voltage to a capacitor could cause simulation prob­
lems because the derivative of the voltage, used in the constitutive equation of
the capacitor, would be infinite when the step occurs. This is another example
of something that is difficult to prevent.

Because such situations cannot be automatically diagnosed (by either the
tool or the use of assertions), proper documentation is about the only way such
situations can potentially be avoided.

12.7 STORAGE OF MODELICA SOURCE CODE

When we include all of the behavioral descriptions, graphical annotations
and documentation, the Modelica code for the Chemi s t ry package could
become quite long if contained within a single file. In order to avoid very large
files, the Chemi s try package can be split into smaller files while maintaining
the same hierarchical structure. There are several benefits to using multiple
files. First, if a single file is used and a component within that package is
required, then the entire file must be read and parsed by the analysis tool.
On the other hand, if the components are kept in separate files, only the file
containing the required component definitions must be read and parsed. For
large packages, this can be very convenient because it will speed up the process
of reading and parsing definitions. A second reason for using multiple files is
to make the system more manageable. With separate files it is easier to rename,
move or edit the files individually without having to restructure a larger file.

walter.ponge@terra.com.br

Building Libraries 277

To create a single package which spans multiple files, certain conventions
must be followed. The fundamental idea behind the multiple file approach is
to use a directory structure on the computer file system (e.g., the hard drive) to
represent the structure ofthe package. The key is that any package, nested or
otherwise, may be represented by a single file or as a directory. If a directory
is used to represent the package, that directory must contain a file called
"package.rno" that contains only the package definition. The other definitions
contained within that package must be placed in individual files with the same
name as the entity they contain, followed by the suffix" . mo". Furthermore, all
" . mo" files must contain a wi thin statement on the first line indicating where,
in the package hierarchy, subsequent definitions should be placed.2

At first these rules seem a bit confusing, so let us look at how the Chemi s t ry
package might be represented using multiple files. One possible directory struc­
ture is shown in Figure 12.1. The directories are shown in bold. Note that each
directory represents a package in. our original structure. However, not all
packages are represented as directoties. For Figure 12.1, we have arbitrarily
chosen to have the Functions and Basic nested packages represented as di­
rectories, but the Interfaces, Types and Sensors packages represented
as individual files.

Chemistry package.mo

Interfaces.rno

Types.rno

Sensors.mo

Functions

~ package.rno

t CalcRate.rno

CalcMultiplier.rno

Basic

package.rno

Reaction.rno

Reservoir.rno

Stationary.rno

Volurne.rno

Figure 12.1. Possible file and directory structure for the Chemistry package.

"While this information is redundant. it can quickly identify misplaced files.

walter.ponge@terra.com.br

278 INTRODUCTION TO PHYSICAL MODEliNG WITH MODEliCA

For packages represented as directories, note that the directory contains a
"package.mo" file. As an example, the "package.mo" file in the Functions
directory looks like:

within Chemistry;
package Functions

extends Modelica.lcons.Library2;
end Functions;

Remember, no definitions appear in the "package.mo" file. Instead, all defini­
tions in a package represented as a directory exist in individual files within that
directory (see Figure 12.1).

In cases where a package is represented by a file, the file includes the package
hierarchy starting from that package. As a result, the "Types.mo" file looks
like:

within Chemistry;
package Types

extends Modelica.lcons.Library2;
type MolarFlowRate=Real(quantity="MolarFlowRate",

unit="mol/sec") ;
end Types;

It is not necessary that all top-level packages exist in the same directory.
For example, the MSL is generally kept at one place on the hard drive, while
other packages are kept somewhere else. In addition to searching the current
working directory and the directory where the MSL is kept, Modelica tools also
search the directories given in the MODELICAPATH environment variable.3

This environment variable lists all of the directories that will be searched for
Modelica definitions. Each directory is typically separated by a semicolon.

12.8 CONCLUSION
This chapter should provide you with some useful information on how to

get started building reusable Modelica libraries. If you wish to see further
examples you should study the MSL. In addition, there are a number of other
free Modelica packages available. A list of such packages can be found at the
Modelica web site (http://www . model ica. org).

3How you set this environment variable is specific to the operating system you are using.

walter.ponge@terra.com.br

Chapter 13

INITIAL CONDITIONS

13.1 OBJECTIVE
Before we can run a transient analysis, we must find the appropriate set of

initial conditions for the variables. The most important requirement of initial
conditions is that they do not contradict any of the equations in the models.
Beyond that, they should make physical sense and represent an appropriate
(usually quiescent) state for the system. This chapter will describe techniques
for finding the initial conditions that are appropriate for a given simulatio~.i.

13.2 MATHEMATICAL FORMULATION
In order to better understand the process used to formulate initial conditions,

we will examine several simple problems and examine how their variables
are initialized. Simple problems are used to help illustrate the difficulties of
finding initial conditions. In fact, these examples are nearly trivial and are not
representative of even the most basic systems that result from connecting just a
few components. Hopefully, these examples will provide some insights about
how tools perform these same operations on much larger and more complex
problems. 1

Imagine we have constructed a model which results in the following system
of equations:

x

x

3y

-2x

(13.1)

(13.2)

I To get an appreciation for how difficult it is to find initial conditions for complex problems. see Pantelides.
1988 or Mattsson and Soderlind. 1993.

walter.ponge@terra.com.br

280 INTRODUCTION TO PHYSICAL MODEUNG WITH MODEUCA

Once a simulation has begun, solving such a system is straightforward since
for a given value of x, which at any given time during transient simulation
will always be known, we can determine y and x. However, at the start of a
simulation these three quantities are unknown. As a result, we are left with the
following system of equations for our initial conditions:

x(to)

x(to)

3y(to)

-2x(to)

(13.3)

(13.4)

The problem of finding initial conditions for such a system essentially boils
down to the problem of adding additional equations until we have as many
equations as we have unknown quantities. An important caveat regarding this
statement is that the resulting system of equations must lead to a non-singular
system of equations.2 For example, adding an additional equation so that we
have the following three equations:

x(to)

x (to)

x(to)

3y(to)

-2x(to)

2

(13.5)

(13.6)

(13.7)

results in a non-singular system of equations that, when solved, yields the
following initial conditions:

x(to)

y(to)

x (to)

2
2

3
-4

(13.8)

(13.9)

(13.10)

However, if instead, we add a "linearly dependent" equation (Le., one that is
linearly dependent on another equation in the system) such as:

x(to) = -6y

then the resulting system of equations:

x(to)

x(to)
x(to)

3y(to)

-2x(to)

-6y(to)

(13.11)

(13.12)

(13.13)

(13.14)

is singular and a unique solution cannot be found. As another example, consider
the following system:

x = 3y (13.15)

1 A non-singular system of equations is one for which a unique solution can be found.

walter.ponge@terra.com.br

Initial Conditions 281

x

i
-2x
-z

For initialization purposes, these equations are transformed into:

x(to)
x(to)
i(to)

= 3y(to)
-2x(to)
-z(to)

Now we have three equations and five unknowns, namely:

{x(to), y(to), z(to), x(to), i(to)}

(13.16)

(13.17)

(13.18)

(13.19)

(13.20)

(13.21)

As a result, we must provide two additional equations. However, not all com­
binations will work. Let us look more carefully at the mathematical structure
to understand what the restrictions are. First, because there is an algebraic
constraint between x and y, we cannot provide independent initial values for
both x and y. In other words, the following is a singular system of equations:

x(to) = 3y(to) (13.22)

x(to) -2x(to) (13.23)

i(to) = -z(to) (13.24)

x(to) = 2 (13.25)

y(to) = 12 (13.26)

Second, because there is a differential equation for z, we must provide an
equation which leads to an initial value for z. As a result, we could provide
additional equations for {x(to), z(to)} or {y(to), z(to)} but as we have shown,
it is not sufficient to provide additional equations for {x (to), Y (to) }.

Now, let us discuss the topic of initial values for derivatives. Let us consider
our original system of equations:

x 3y
x = -2x

(13.27)

(13.28)

Again, this leads to the following system of equations involving the initial
values:

x(to)
x(to)

3y(to)
-2x(to)

(13.29)

(13.30)

In addition to providing initial values for variables (e.g., x(to), y(to), it is
also useful to provide initial values for derivatives as well. For example, it is

walter.ponge@terra.com.br

282 INTRODUCTION TO PHYSICAL MODELING WITH MODELICA

common to set all derivative values to zero when choosing initial conditions.
The idea behind such an assumption is that the transient analysis should start
from a state of rest. If all the derivatives in the system are zero, that means that
no change in the variables will occur until some external influence disturbs it.
For this system, that would lead to the following non-singular system:

x(to)

x(tO)

x(tO)

3y(to)

-2x(to)

o

(13.31)

(13.32)

(13.33)

Unfortunately, it is not currently possible to specify initial values for derivatives
in the Modelica source code (i.e .. inside the model definitions). However, some
tools do support this activity through their graphical user interface.

These are simple examples and it is easy to analyze their structure to un­
derstand why some combinations of equations are valid and others are not. In
general though, complex problems cannot be analyzed in this way. Instead, the
tool will generally present some choice of variables for which initial values can
be provided (i.e .. entered by the user). It is possible that pm1icular choices will
not be available for the reasons discussed here.

The purpose of this chapter is to help demonstrate that a consistent set of
initial conditions must be found before a transient simulation can be performed.
As a result, some sets of initial conditions may not be allowed or may lead to
numerical problems (e.g., singular systems of equations).

13.3 USING ATTRIBUTES
One way to control the initialization of the system variables is to use the

start attribute in conjunction with the fixed attribute. All Real variables
have these attributes. If the fixed attribute is set to t rue for a variable, it has
the effect of adding an equation to the existing set of equations used to solve
for the initial conditions. That additional equation will equate the variable with
the value ofthe start attribute for that variable. To understand this better, let
us look at an example. Consider the following Modelica model:

model FirstOrderSystem
Real x, y;

equation
x = 3*y;
der (x) = -2*x;

end FirstOrderSystem;

This results in the same system of equations discussed in Section l3.2:

x

X

3y
-2x

(13.34)

(13.35)

walter.ponge@terra.com.br

Initial Conditions 283

These equations are then transformed into the following system for initializa­
tion:

x(to)
x(to)

3y(to)
-2x(to)

So far, this is identical to the process described in Section 13.2.

(13.36)

(13.37)

By default, the start attribute has a value of zero and the fixed attribute
has a value of false. However, if we modify our model as follows:

model FirstOrderSystem
Real x(start=2,fixed=true), y;

equation
x = 3*y;
der (x) = -2*x;

end FirstOrderSystem;

we get the same system of equations for transient analysis but when these equa­
tions are transformed into the equations used to solve for the initial conditions
an additional equation, x(to) = 2, will be added, resulting in the following
system:

x(to)
x(to)
x(to)

3y(to)
-2x(to)
2

(13.38)

(13.39)

(13.40)

In this way, the start and fixed attributes can be used to provide addi­
tional equations for the initialization of the system. However, this approach
only allows additional equations involving variables to be included (i.e., this
approach could not be used to add the equation for a derivative, x(to) = 0).
Even if the fixed attribute is set to false, a tool may choose to introduce
extra equations, as needed, in which case the start attribute may still be used
in the equations.

While it is easy to see how such attributes can be used to introduce additional
equations into a fully assembled system, it is less obvious how they should be
used within individual components. It is important not to overuse the fixed
attribute because this can lead to over-constrained systems of equations with no
solution. A good "rule of thumb" to follow is to only set the fixed attribute
to be t rue for variables that are internal to a component model and that have
had the der operator applied to them.

13.4 START OF SIMULATION
Another way the initial values can be set is with the ini t ial () func­

tion. For example, we could initialize our FirstOrderSystem described
previously using the following method:

walter.ponge@terra.com.br

284 INTRODUCTION TO PHYSICAL MODELING WITH MODELICA

model FirstOrderSystem
Real x, y;

equation
x = 3*y;
der (x) = -2*x;

algorithm
when initial() then

reinit(x, 2);
end when;

end FirstOrderSystem;

For most new users of Modelica, this will probably seem like the most natural
way to initialize a problem because it is more procedural. However, this is not
a good initialization method. The problem is that the ini t ial () function
only becomes t rue the instant after the simulation starts. However, before the
analysis can start, it still needs to have a consistent set of initial conditions. As
a result, two sets of initial conditions will be used. The first set will be solved
for at t = to using the methods described in Sections 13.2 and 13.3, while the
next set will be solved for at time t = to + E (i.e., just after the simulation
starts) based on the contents of any when clauses triggered by the ini tial ()
function.

In addition to being confusing, this method of initialization (i.e., using
reini t) is limited to the variables that have had the der operator applied to
them (see Chapter 7). In other words, in this case while x can be initialized
in this way the variable y cannot. The use of the initial () function is
best reserved for the initialization of discrete variables since all discrete
variables can be initialized in this way (not just some) and their values are
always assigned within when clauses. Several examples of such usage can be
found in Chapter 7.

13.5 INITIALIZATION BASED ON ANALYSIS TYPE
The final way of controlling the initialization of a system of equations is

to use the analysisType () function.3 As described in Section 5.7.7.1,
this function allows different equations to be used depending on the type of
analysis being performed. A special analysis type, represented by the literal
Modelica string "s tat i c " , is returned when the initial conditions are being
determined. Revisiting our FirstOrderSystem model, we might choose
to rewrite the model as follows:

model FirstOrderSystem
Real x, y;

equation

3Currently. no simulation tools implement the analysisType () function but it should become available
in time.

walter.ponge@terra.com.br

x = 3*y;
if analysisType () =="static" then

x = 2;
else

der (x) = -2*x;
end if;

end FirstOrderSystem;

Initial Conditions 285

By posing our model this way, different sets of equations will be generated
depending on whether we are interested in transient analysis (i.e., solving
differential equations) or finding initial conditions. For example, by using the
analysisType () function the following set of equations will be generated
for finding initial conditions:

x(to)
x(to)

3y(to)
2

Solving this system leads to the following initial conditions:

x(to)

y(to)

2
2

3

However, for transient analysis the usual system, i.e.,

x

x

3y
-2x

(13.41)

(13.42)

(13.43)

(13.44)

(13.45)

(13.46)

will be generated, but the initial values, x (to) and y (to), found in the" s tat i c "
analysis case will be used at the start of the transient analysis.

One advantage that the analysisType () approach has over the start
and fixed attribute approach is that a wider range of equations are possible.
For example, the following is another possible way to write the FirstOrder­
System model using an equation involving x:

model FirstOrderSystem
Real x, y;

equation
x = 3*y;
if analysisType () ==" static" then

4*x-6*y = 4;
else

der (x) = -2*x;
end if;

end FirstOrderSystem;

Ultimately, this leads to the same initial conditions (i.e., x = 2, y = 2/3), but
the added power of being able to pose simultaneous systems of equations can
be useful in some circumstances.

walter.ponge@terra.com.br

286 INTRODUCTION TO PHYSICAL MODELING WITH MODELICA

13.6 CONCLUSION
The following is a quick summary of how to use these various initialization

techniques. The start and fixed attributes should be used to initialize
internal variables within a component that have had the der operator applied
to them, but not variables appearing in connectors. The ini t ial () function
should be used in conjunction with a when clause to initialize the values of
discrete variables. Finally, the analysisType () function is useful in the
same way that the start and fixed attributes are useful, except that a wider
variety of expressions can be used instead of fixed values.

Ultimately, all of these techniques will generally lead to systems of equa­
tions that are still under-constrained which means additional equations will be
required. In such cases, there are at least two possibilities. First, the tool
being used will probably have some sophisticated capabilities for setting up
and modifying the calculation of the initial conditions. Such facilities can be
used to add the final few equations required or to try different combinations
of equations. Furthermore, modifications of the start and fixed attributes
can be made to add additional equations. Since initial conditions are typically
specified at the system level, modifications to the start and fixed attributes
for individual variables should be made from the system model using recur­
sive modifications. If the system is still under-constrained, be aware that tools
are likely to pick variables, as needed, and introduce equations setting those
variables equal to the value of their start attribute (even if fixed=false).

walter.ponge@terra.com.br

Chapter 14

EFFICIENCY

14.1 OBJECTIVE
Once models have been developed and validated, it is natural to try and speed

up the simulation of these models. In this chapter, we will describe techniques
which can be used to reduce the simulation time of Modelica models. The goal
will be to improve simulation time without having to sacrifice the clarity of the
model description.

14.2 USE EQUATIONS
Because people are comfortable with assignment semantics, beginners often

write models that look like:

model ModelUsingAssignment
parameter Real b, c, d;
Real x, y, z;

algorithm
x .- b*b+c/2-(d*b-d*c)A. 5 ;
y := (b+c)*xA2/(xA3+1);
z := a*yA 2 +b*y+c;

end ModelUsingAssignment;

In some cases, an algorithm is used because the model was rewritten from
a C or FORTRAN subroutine and the model developer wanted to preserve the
spirit of the original subroutine. In other cases, an algorithm is used be­
cause the model developer does not trust tools to pelform symbolic (algebraic)
manipulation on such relations. I

I The semantics of algori thm sections prohibit tools from performing symbolic manipulation.

walter.ponge@terra.com.br

288 INTRODUCTION TO PHYSICAL MODEliNG WITH MODEliCA

Using an algori thIn section when an equat ion section would be sufficient
is bad for several reasons. First, the use of algori thIn sections makes sym­
bolic differentiation difficult for analysis tools. This is because a variable can
be assigned to multiple times using the : = operator and it still only counts as
a single assignment which complicates the task of deriving symbolic deriva­
tives. This may prevent tools from computing analytical Jacobians used in the
integration process, which forces the Jacobians to be computed numerically (a
considerably more expensive task).

A second reason to avoid algori thIn sections in favor of equation sections
is to allow an analysis tool to perform symbolic manipulation on the system of
equations. Such manipulations can lead to significant performance increases
and every effort should be made to allow such manipulations.

14.3 AVOID UNNECESSARY EVENTS
As mentioned in Chapter 7, any time a conditional expression changes value

during a simulation, an event will be generated if the expression is not contained
within the noEvent operator. Most of the time, these events are necessary but
in some cases you can avoid them. For example, the following expression:

der(x) = if y<O then 0 else yA2;

will generate an event (i.e., stop the integrator and restart) at the point where y
crosses zero. However, because the expression is continuous there is no need to
actually have an event at that point. Using the noEvent operator (see Section
7.5.4.3), we can avoid such an event. The expression would then be written as:

der(x) noEvent(if y<O then 0 else yA2);

14.4 TIME SCALES
One factor that often results in slow simulations is when systems contain

dynamics with substantially different time scales and these dynamics are cou­
pled. This effect is called stiffness. For example, stiffness is quite common in
chemical systems because different chemical reactions, involving the same set
of reactants, usually occur at dramatically different rates. This kind of stiffness
is hard to avoid.

An example of stiffness that can often be avoided is shown in Figure 14.l.
At the top of Figure 14.1, you can see a collection of inertias which are rigidly
connected while at the bottom we see the same inertias but with stiff springs and
dampers between them. The difference between these two systems is that the
bottom one has very high frequency oscillating modes because of the springs
while the top one does not.

walter.ponge@terra.com.br

Efficiency 289

Figure 14.2 compares the two systems shown in Figure 14.1. The top plot
compares the angular velocity of shaft 3, 13, for both cases while the bottom
plot compares the simulation times. Note the high frequency oscillations in the
angular velocity for the system connected by springs. The solver must work
harder in order to resolve these oscillations. We can see the evidence of this
when we compare the CPU time taken to solve each of the problems. Note that
the system of rigidly connected inertias was solved in less than half the time of
the one connected by springs.

driver lNl to,"'" 11 12 13

Jl[~tau
period~{'}

J=1 J=10 J=1

driver

I][~ ~:'"'"
11 c1=1e+5 12 c2=1e+5 13

period~{'} d~'O d~'O

Figure 14.1. Comparison between a non-stiff (top) and stiff (bottom) system.

Another factor that increases the CPU time needed for simulation is the
presence of fluctuating time scales in the model. When this happens, the
simulation solver must compensate for the change in time scales, and this will
result in worse performance. Examples 7.7 and 8.2 are typical of models which
will exhibit this problem. This is because they have non-linearities which
dramatically change the time scale of the dynamic response. From a physical
perspective, this is because both examples involve a collision and the simulation
solver must resolve the details of the collision. This means the time steps have
to be refined (i.e., made smaller) around the collision event. Ultimately, this
leads to more integration steps and longer simulation time.

14.5 PROVIDING JACOBIANS FOR FUNCTIONS
In order to simulate a model described in Modelica, it is often necessary to

differentiate certain expressions. For example, consider the following model:

model JacobianExample
Real x, y;

equation
der (y) = 2. 0 ;
Y = f (x);

end JacobianExample;

walter.ponge@terra.com.br

290 INTRODUCTION TO PHYSICAL MODELING WITH MODELICA

0.05,-------.------___,_------,--------,
C/O

~ 0.04
»
''5 0.D3
o
v
> 0.02
a
"5
~ 0.01
«

Connected by springs
Rigidly connected

": ::

°O~-----~-----~------~-----~
0.5

0.3~-,__-._-._-~-_.-___,_-_,--r_-,__-._-_r_-~

C/O

0.2
<U

E
E=
~
Q.. 0.1 u

0.5 1.5 2 2.5 3

Time [sl

Figure 14.2. Comparison of simulation time and results for the systems in Figure 14.1.

Based on the first equation, it is obvious that the solution for y(t) is

y(t) = Yo + 2t (14.1)

The question then remains, what is the solution for x(t)? The difficulty is
that we are left with the implicit equation y(t) = f(x(t)). This is called an
implicit equation because it does not allow us to calculate x(t) explicitly. In
other words, without knowing anything about the function f, we cannot write
an equation of the form:

x(t) = ... (14.2)

Instead, to solve for x, we must use an implicit method like Newton-Raphson
iteration. Such methods need to be able to evaluate the partial derivatives of
the function, f, with respect to its arguments. This matrix of partial derivatives
is called a Jacobian.

Most of the time, the lacobians are easy to compute because all the mathe­
matical operations involved are expressed in Modelica. This allows a tool to
symbolically differentiate the function with respect to its arguments. However,
in some cases the tool may not be able to derive a symbolic Jacobian for an
algori thm or the function may be a wrapper for an external subroutine written
in C or FORTRAN (as described in Section 5.7.8).

walter.ponge@terra.com.br

Efficiency 291

When a Jacobian is required but a tool is not able to derive a symbolic
Jacobian, one of two things happens. One possibility is that the tool will
compute the Jacobian numerically. This is done by evaluating the function with
different argument values and then approximating a derivative from the results.
This method has the drawback that it is both slow and not very accurate. The
other possibility is that the developer of the function also writes a companion
function that is accurate and inexpensive to evaluate. To prevent a tool from
computing the Jacobian numerically2, an annotation can be used to indicate
an analytical Jacobian is available. To demonstrate how this is done, consider
the following function:

This function can be written in Modelica as follows:

function f

input Real x;

output Real y;
algorithm

y := 2*XA5+4*XA4-XA3+.5*XA2+x-6*XA.5;
end f;

(14.3)

If we differentiate both sides of the equation, we get the following equation:

dy = dx (10x4 + 16x3 - 3x2 + X + 1 - .]x) (14.4)

In other words, we can evaluate the incremental change in y, dy, that results
from an incremental change in x, dx, for a particular value of the input argument
x.

The rule for determining the order of the arguments to the Jacobian function
is straightforward. First, all the input arguments to the original function are
included. Then, a d-argument is included for all Real input arguments to the
original function. Finally, additional d-arguments are included for each of the
Real output arguments.

Using the rules above, we can construct the Jacobian function, LJac, for
our original function, f, as follows:

function f Jac
input Real x;

input Real dx;

output Real dy;
algorithm

dy := dx*(lO*x A4+16*xA3-3*xA2+x+1-3*xA-.5);
end f_Jac;

2 Assuming the tool was not able to compute an analytical Jacobian directly from the Modelica description.

walter.ponge@terra.com.br

292 INTRODUCTION TO PHYSICAL MODELING WITH MODELICA

Now that we have both of these functions, we need to have a way to indicate
that the Jacobian of function f is computed by the function LJac. To do this,
we must make a slight modification to our original function, f, as follows:

function f
input Real x;
output Real y;
annotation (derivative=f_Jac) ; II f_Jac provides the Jacobian

algorithm
y ._ 2*XA5+4*XA4-XA3+.5*XA2+x-6*XA.5;

end f;

It is possible to provide higher order derivatives for functions as well. 3

Details on how to do this can be found in the Modelica language specification.

14.6 CHOOSING THE PROPER INTEGRATION
ROUTINE

Another important factor in simulation performance is the choice of which
solver to used. Different solvers perform differently on different types of
problems. For example, explicit solvers work well for systems with a narrow
range of time scales. On the other hand, implicit solvers work well for problems
that have mixed time scales like the ones described in Section 14.4.

A wide range of solvers should be tested for a given model to find out which
one works best. With enough understanding of the underlying equations, it is
possible to make a good educated guess about which solver will perform best.

14.7 TOLERANCES
Related to the issue of whIch solver to choose is the issue of what tolerances

to use. Most integrators allow tolerances to be provided to guide them in making
choices about how accurate the simulation results need to be. Tolerances can
be given in different ways depending on the tool being used. For most tools,
a single tolerance is used to characterize the allowable error in a simulation.
The more accuracy needed by the user, the tighter (smaller) the tolerance. In
some cases, it may be possible to specify or influence the tolerance used for
particular variables.

Ultimately, it is up to the analyst to decide what tolerances are appropriate.
For some applications, for example, it may be reasonable to sacrifice some
accuracy by loosening tolerances to make sure the simulation will run quickly.
For other types of analysis, where accuracy is impOliant, it might be necessary
to tighten tolerances to get a proper result.

3Such higher order derivatives may be required as a result of index reduction.

walter.ponge@terra.com.br

Efficiency 293

Normally, experimenting with tolerances will help to find an optimal toler­
ance value where tightening the tolerances does not significantly change the
result. In other words, it is possible to find the loosest possible tolerances that
yield essentially the same result as would be achieved with tighter tolerances
without having to incur the performance penalty of tighter tolerances.

Keep in mind that, if the simulation results (i.e., the time varying solution
trajectOlies) are very sensitive to the choice of tolerances, then such results
should be carefully scrutinized. It is always a good idea to verify that the choice
of tolerance is reasonable by tightening the tolerances until no further significant
change in the results is observed. If the results do change significantly with the
tolerance value, the results are probably dubious at best. If successively tighter
tolerances do not eventually lead to a repeatable solution, then you should bring
the results to the attention of your tool vendor because this is a very undesirable
situation. Together, you should be able to determine whether this is a tool issue
or a modeling issue.

14.8 VARIABLE ELIMINATION
One common technique traditionally used for improving simulation time,

particularly for models written in C or FORTRAN, is to eliminate as many
variables as possible. For example, suppose we expand the contribution from
the One Port model (see Example 4.1) to get the following model:

model Resistor "An electrical resistor"
import Modelica.Electrical;
import Modelica.Slunits;
extends Electrical.Analog.lnterfaces.OnePort;
parameter SIunits .Resistance R=300 "Resistance";

equation
i*R = V;

end Resistor;

is equivalent to:

model Resistor
import Modelica.Slunits;
import Modelica.Electrical;
SIunits.Voltage V "Voltage from pin p to n";
SIunits.Current i "Current entering at pin p";
Electrical.Analog.lnterfaces.Pin p "Positive";
Electrical.Analog.lnterfaces.Pin n "Negative";
parameter SIunits .Resistance R=300 "Resistance";

equation
v p.v - n.v;
o = p.i + n.i;
i = p.i;
i*R = v;

end Resistor;

walter.ponge@terra.com.br

294 INTRODUCTION TO PHYSICAL MODELING WITH MODELICA

The intermediate variables i and v were introduced by the OnePort model to
make it easier to read the constitutive equations in models for components like
resistors and capacitors. Model developers might be tempted to create their
own resistor model as follows:

model Resistor "An electrical resistor"
import SI=Modelica.Slunits;
parameter SI.Resistance R=300 "Resistance";
Modelica.Electrical.Analog.lnterfaces.Pin p, n;

equation
R*p.i = p.v-n.v;
p.i + n.i = 0;

end Resistor;

The reasoning behind such a simplification is that it gets rid of a few variables
(i.e., v and i). Of course, by doing this they do not take advantage of the com­
monality with the OnePort model, which also means that their Resistor
model is now slightly more difficult to read and understand than it was before.

As it turns out, such simplifications are unlikely to reduce simulation time.
This is because the Modelica language has been built with the idea that analysis
tools will parse Modelica models and make such simplifications as part of the
analysis process. In other words, such simplifications are almost trivial for a tool
to make when it has access to the complete Modelica behavioral model. Unlike
simulation tools that rely on C or FORTRAN subroutines to describe model
behavior, a Modelica tool is generally aware of all mathematical operations and
what variables are involved, so it is able to make such simplifications.

For this reason, it is best to focus on some of the other issues raised in this
chapter and only resort to variable elimination if there is strong evidence to
suggest that it actually has an effect on simulation performance.

14.9 CONCLUSION
Improving the performance of simulations is an art and this chapter only

provides a few hints on ways to improve performance. Despite the fact that
this discussion has only covered a few of the basic ideas, these ideas should be
useful in reducing simulation times. Most of the other optimizations that are
possible must be done by the creators of the tools, because they are directly
related to the solution methods, rather than the way the models are expressed.

walter.ponge@terra.com.br

Appendix A
History of Modelica

Since the definition of CSSL in 1967 (Strauss et ai., 1967), most modeling
languages have essentially been block oriented with inputs and outputs and the
mathematical models have been defined as assignment statements for auxiliary
variables and derivatives. Physical equations thus needed to be transformed to
a form suitable for calculations. The only aid in transforming the equations to
an algorithm for calculating derivatives was automatic sorting of the equations.

Among the recent research results in modeling and simulation, two signifi­
cant concepts have been identified:

• Object oriented modeling languages demonstrate how object oriented con­
cepts can be successfully employed to support hierarchical structuring, reuse
and evolution of large and complex models independent from the application
domain and specialized graphical formalisms.

• Acausal modeling demonstrates that the traditional simulation abstraction
- the input/output block - can be generalized by relaxing the causality
constraints (i.e., by not committing ports to an 'input' or' output' role early)
and that this generalization enables both more simple models and more
efficient simulation while retaining the capability to include submodels
with fixed input/output roles.

The following is a list of several modeling languages that have explored
these concepts in detail:

• Dymola

I Portions of this history are reprinted. with the permission of the Modelica Association. from the Modelica
Specification and Modelica Rationale.

walter.ponge@terra.com.br

296 INTRODUCTION TO PHYSICAL MODELING WITH MODELICA

Dymola, as introduced already in 1978 (Elmqvist, 1978), is based on equa­
tions for acausal modeling, model types for reuse and submodel invocation
for hierarchical modeling. The Dymola translator utilizes graph theoreti­
cal methods for causality assignment, for sorting and for finding minimal
systems of simultaneous equations. Computer algebra is used for solving
for the unknowns and to make simplifications of the equations. Constructs
for hybrid modeling, including instantaneous equations, was introduced in
1993 (Elmqvist et aI., 1993). Crossing functions for efficient handling of
state events are automatically generated. A graphical editor is used to build
icons and to make model compositions (Elmqvist et aI., 2001). Major ap­
plication areas include multi-body systems, drive-trains, power electronics
and thermal systems .

• Omola2

Omola (Andersson, 1994 and Mattsson et aI., 1993) is an object-oriented
and equation based modeling language. Models can be decomposed hier­
archically with well-defined interfaces that describe interaction. All model
components are represented as classes. Inheritance and specialization sup­
port easy modification. Omola supports behavioral descriptions in terms
of differential-algebraic equations (DAE), ordinary differential equations
(ODE) and difference equations. The primitives for describing discrete
events allow implementation of high level descriptions as Petri nets and
Grafcet. An interactive environment called OmSim supports modeling and
simulation: graphical model editor, consistency analysis, symbolic analy­
sis and manipulation to simplify the problem before numerical simulation,
ODE and DAE solvers and interactive plotting. Applications of Omola and
OmSim include chemical process systems, power generations and power
networks.

• NMF (The Neutral Model Format)3

NMF (Sahlin et aI., 1996) is a language in the Dymola and Omola tradition
and was first proposed as a standard to the building and energy systems
simulation community in 1989. The language is formally controlled by a
committee within ASHRAE (Am. Soc. for Heating, Refrigerating and Air­
Conditioning Engineers). Several independently developed NMF tools and
model libraries exist, and valuable lessons on language standardization and
development of reusable model libraries have been learned. Salient features
of NMF are: good support for model documentation, dynamical vector and
parameter dimensions (e.g., a model can calculate required spatial resolution

"http://www.control.lth.se/cace/omsim.html
3http://urd.ce.kth.se/

walter.ponge@terra.com.br

Appendix A: History of Modelica 297

for PDE) and full support for calls to foreign models (e.g., legacy or binary
Fortran or C models) including foreign model event signals .

• ObjectMath (Object Oriented Mathematical Modeling Language)4

ObjectMath (Fritzson et aI., 1995) is a high-level programming environ­
ment and modeling language designed as an extension to Mathematica.
The language integrates object-oriented constructs such as classes, and
single and multiple inheritance with computer algebra features from Math­
ematica. Both equations and assignment statements are included, as well
as functions, control structures, and symbolic operations from standard
Mathematica. Other features are parameterized classes, hierarchical com­
position and dynamic array dimension sizes for multi-dimensional arrays.
The environment provides a class browser for the combined inheritance and
composition graph and supports generation of efficient code in C++ or For­
tran90. The user can influence the symbolic transformation of equations or
expressions by manually specifying symbolic transformation rules, which
also gives an opportunity to control the quality of generated code. The
main application area so far has been in mechanical systems modeling and
analysis.

• U .L.M. - Allan

The goal of ALLAN (Pottier, 1983 and Jeandel et aI., 1997) is to free en­
gineers from computer science and numerical aspects, and to work towards
capitalization and reuse of models. This means acausal and hierarchical
modeling. A graphical representation of the model is associated to the tex­
tual representation and can be enhanced by a graphical editor. A graphical
interface is used for hierarchical model assembly. The discrete actions at
the interrupts in continuous behavior are managed by events. Automatons
(synchronous or asynchronous) are available on events. FORTRAN or C
code can be incorporated in the models. Two translators toward the NEP­
TUNIX and ADASSL (modified DASSLRT) solvers are available. Main
application domains are energy systems, car electrical circuits, geology and
naval design. The language U.L.M. has been designed in 1993 with the same
features as the ALLAN language in a somewhat different implementation
(Jeandel et aI., 1996). It is a model exchange language linked to ALLAN.
All aspects of modeling are covered by the textual language. There is an
emphasis on the separation of the model structure and the model numer­
ical data for reuse purposes. It also has an interesting feature on model
validation capitalization.

4http://www.ida.liu.se/labs/pelab/omath!

walter.ponge@terra.com.br

298 INTRODUCTION TO PHYSICAL MODELING WITH MODELICA

• SIOOPS+5

SIOOPS+ supports nonlinear multidimensional bond-graph and block-diagram
models, which can contain continuous-time parts and discrete-time parts (
Breunese and Broenink, 1997). The language has facilities for automated
modeling support like polymorphic modeling (separation of the interface
and the internal description), multiple representations (component graphs,
physical concepts like bond graphs or ideal physical models and (acausal)
equations or assignment statements), and support for reusability (e.g., doc­
umentation fields, physical types). Currently, SIOOPS+ is mainly used in
the field of mechatronics and (neural) control. It is the model description
language of the package 20-SIM (Broenink, 1997).6 SIOOPS+ is the third
generation of SlOOPS which started as a model description language for
single-dimensional bond-graph and block-diagram models .

• Smile7

Smile is an object-oriented and equation-based modeling and simulation
environment. The object-Oliented and imperative features of Smile's model
description language are very similar to Objective-C. Equations may ei­
ther be specified symbolically or as procedures; external modules can be
integrated. Smile also has a dedicated experiment description language.
The system consists of translators for the above-mentioned languages, a
simulation engine offering several numeric solvers, and components for
interactive experimenting, visualization, and optimization. Smile's main
application domain traditionally has been the simulation of solar energy
equipment and power plants (Tummescheit and Pitz-Paal, 1997), but thanks
to its object-oriented modeling features it is applicable to other classes of
complex systems as well. An extension of Smile to support Modelica is
planned (Ernst et aI., 1997).

While these languages all demonstrated important new ideas, they also frag­
mented the the market for modeling languages. In 1996, Hilding Elmqvist
initiated an effort to unify the concepts of these approaches into a single lan­
guage. Having started as an action within ESPRIT project Simulation in Europe
Basic Research Working Group (SiE- WG) and then operating as Technical Com­
mittee 1 within Eurosim and Technical Chapter on Modelica within Society
for Computer Simulation International, a working group made up of simu­
lation tool builders, users from different application domains, and computer
scientists has made an attempt to unify the concepts and introduce a common

5http://www.rt.el.utwente.nlJproj!modsim/modsim.htm
6http://www.rt.el.utwente.nI/20sim
7 http://www.first.gmd.de/smile/smileO .html

walter.ponge@terra.com.br

Appendix A: History of Modelica 299

modeling language. This language, called Modelica, is intended for modeling
within many application domains (for example: electrical circuits, multi-body
systems, drive trains, hydraulics, thermodynamical systems and chemical sys­
tems) and possibly using several formalisms (for example: ODE, DAE, bond
graphs, finite state automata and Petri nets). Tools which might be general pur­
pose or specialized to certain formalism andlor domain will store the models in
the Modelica format in order to allow exchange of models between tools and
between users. Much of the Modelica syntax will be hidden from the end-user
because, in most cases, a graphical user interface will be used to build models
by selecting icons for model components, using dialogue boxes for parameter
entry and connecting components graphically.

The work started in the continuous time domain since there is a common
mathematical framework in the form of differential-algebraic equations (DAE)
and there are several existing modeling languages based on similar ideas. There
is also significant experience of using these languages in various applications.
It thus seems to be appropriate to collect all knowledge and experience and
design a new unified modeling language or neutral format for model rep­
resentation. The short range goal was to design a modeling language for
differential-algebraic equation systems with some discrete event features to
handle discontinuities and sampled systems. The design should be extendible
in order that the goal can be expanded to design a multi-formalism, multi­
domain, general-purpose modeling language.

The Modelica Association was formed in Feb. 5, 2000 and is now responsible
for the design of the Modelica language. After 24 three-day meetings, Modelica
1.4 was released December 15, 2000.

A.I CONTRIBUTORS TO THE MODELICA
LANGUAGE

Bernhard Bachmann, Fachhochschule Bielefeld, Germany
Fabrice Boudaud, Gaz de France, France
Peter Bunus, MathCore, Linkoping, Sweden
Jan Broenink, University of Twente, The Netherlands
Dag Bruck, Dynasim, Lund, Sweden
Hilding Elmqvist, Dynasim, Lund, Sweden
Vadim Engelson, Linkoping University, Sweden
Thilo Ernst, GMD-FIRST, Berlin, Germany
Jorge Ferreira, University of Aveiro, Portugal
Riidiger Franke, ABB Corporate Research Center, Heidelberg, Germany
Peter Fritzson, Linkoping University, Linkoping, Sweden
Pavel Grozman, Equa, Stockholm, Sweden
Johan Gunnarsson, MathCore, Linkoping, Sweden
Alexandre 1eandel, Gaz de France, France

walter.ponge@terra.com.br

300 INTRODUCTION TO PHYSICAL MODELING WITH MODELICA

Mats Jirstrand, MathCore, Linkoping, Sweden
Kaj Juslin, VTT, Finland
David Kagedal, Linkoping University, Sweden
Clemens Klein-Robbenhaar, Germany
Matthias Klose, Technical University of Berlin, Germany
Pontus Lidman, MathCore, Linkoping, Sweden
Nathalie Loubere, Gaz de France, France
Sven Erik Mattsson, Dynasim, Lund, Sweden
Pieter Mosterman, German Aerospace Center, Oberpfaffenhofen, Germany
Henrik Nilsson, Linkoping University, Sweden
Hans Olsson, Dynasim, Lund, Sweden
Martin Otter, German Aerospace Center, Oberpfaffenhofen, Germany
Tommy Persson, Linkoping University, Sweden
Per Sahlin, Equa Simulation Technology Group, Stockholm, Sweden
Levon Saldamli, Linkoping University, Sweden
Andre Schneider, Fraunhofer Institute, Dresden, Germany
Michael Tiller, Ford Motor Company, Detroit, United States of America
Hube11us Tummescheit, Lund Institute of Technology, Sweden
Hans Venghaluwe, University of Gent, Belgium Hans-Jiirg Wiesmann, ABB
Corporate Research Ltd., Baden, Switzerland

A.2 CONTRIBUTORS TO THE MODELICA
STANDARD LIBRARY

Peter Beater, University of Paderbom, Germany
Christoph ClauB, Fraunhofer Institute, Dresden, Germany
Martin Otter, German Aerospace Center, Oberpfaffenhofen, Germany
Andre Schneider, Fraunhofer Institute, Dresden, Germany
Hube11us Tummescheit, Lund Institute of Technology, Sweden

walter.ponge@terra.com.br

AppendixB
Modelica Syntax

This chapter includes the grammar for version 1.4 of the Modelica language.
This grammar depends on the following lexical definitions:

IDENT = NONDIGIT { DIGIT I NONDIGIT
NONDIGIT = "_" I letters "a" to "z"

I letters "A" to "Z"
STRING = """ { S-CHAR IS-ESCAPE} """
S-CHAR = any member of the source character set

except double-quote """ & backslash "\,,
S-ESCAPE = " \ '" I ,,\,," I ,,\?" I "\\,, I "\a"

I "\b" I "\f" I "\n" I "\r" I ,,\t" I "\v"
DIGIT = 0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 I 8 I 9
UNSIGNED_INTEGER = DIGIT { DIGIT }
UNSIGNED NUMBER = UNSIGNED INTEGER - -

[" " [UNSIGNED_INTEGER 1 1
[(e IE) ["+" I "-" 1 UNSIGNED_INTEGER

The grammar definition is as follows:

stored_definition
wi thin [name 1 ";" 1

{ [final 1 class_definition ";"

class definition
[encapsulated [partial 1

(class I model I record I block I connector
I type I package I function

IDENT class_specifier

class specifier
string_comment composition end IDENT
"=" name [array_subscripts 1
[class_modification 1 comment

walter.ponge@terra.com.br

302 INTRODUCTION TO PHYSICAL MODEliNG WITH MODEliCA

composition
element_list

public element_list I protected element_list
equation_clause I algorithm_clause }
external [language_specification 1

[external_function_call 1 ";"
[annotation decl ";" 1 1

language_specification
: STRING

external function call - -
[component_reference "=" 1

IDENT "(" [expression { "," expression } 1 ")"

element list
: { element "; "

element
import_clause
extends clause

annotation decl

[final 1 [inner I outer 1

" .11 ,

((class_definition I component_clause)
I replaceable

(class_definition I component_clause
[constraining_clause 1)

import_clause
import (IDENT "=" name I name ["." "*"1)
comment

extends_clause
: extends name [class_modification

constraining_clause
: extends clause

component_clause
type-prefix type_specifier
[array_subscripts 1 component_list

type_prefix
[flow 1 [discrete I parameter I constant 1
[input I output

type_specifier
: name

component list

walter.ponge@terra.com.br

Appendix B: Modelica Syntax 303

component_declaration
{ "," component_declaration

component declaration
: declaration comment

declaration
: IDENT [array_subscripts [modification 1

modification
class modification
"=" expression
":=" expression

class modification

"=" expression

"(,, { argument_list} ")"

argument_list
: argument {

argument

" " , argument }

element modification
I element_redeclaration

element modification
[final 1 component_reference modification
string_comment

element redeclaration
redeclare

class definition I component_clausel)
replaceable
(class_definition I component_clausel
[constraining_clause 1)

component_clausel
type_prefix type_specifier
component_declaration

equation_clause
: equation { equation "." annotation decl

algorithm_clause

". " ,

: algori thIn { algori thIn II. " , annotation decl "; "

equation
(simple_expression "=" expression
I conditional_equation_e
I for clause e
I connect clause

walter.ponge@terra.com.br

304 INTRODUCTION TO PHYSICAL MODELING WITH MODELICA

when clause e
assert clause) comment

algorithm
(component reference

(":=" expression I function_call)
"(" expression_list ")" ":="
component_reference function_call
condit ional_equat ion_a
for clause a
while clause
when clause a
assert clause) comment

conditional_equation_e
if expression then { equation ";" }
{ elseif expression then { equation
[else { equation ";" } 1

". " ,

end if

condit ional_equat ion_a
if expression then { algorithm ";" }
{ elseif expression then { algorithm
[else { algorithm ";" } 1

end if

for clause e
for IDENT in expression loop
{ equation ";" }
end for

for clause a
for IDENT in expression loop
{ algorithm ";" }
end for

while clause
while expression loop
{ algorithm ";" }
end while

when clause e
when expression then
{ equation ";" }
end when

when clause a
when expression then
{ algorithm ";" }
{ elsewhen expression then

". " ,

} }

} }

walter.ponge@terra.com.br

Appendix B: Modelica Syntax 305

{ algorithm
end when

connect clause

". " , } }

connect "(" connector ref
connector ref "I"

connector ref

II 11 ,

IDENT [array_subscripts 1
["." IDENT [array_subscripts

assert clause
assert "(" expression "," STRING { "+" STRING } "I"

I terminate "(" STRING { " +" STRING } "I"

expression
simple_expression

I if expression then expression else expression

simple_expression
logical_expression
[":" logical_expression

[":" logical_expression 1 1

logical_expression
: logical_term { or logical_term }

logical_term
: logical_factor { and logical_factor }

logical_factor
[not 1 relation

relation
arithmetic_expression
[rel_op arithmetic_expression

: "<" "<=11 ,,>/1 ">=" "=="

arithmetic_expression
[add_op 1 term { add_op term }

: "+" "_II

term
: factor { mul_op factor }

mul_op

"<>11

walter.ponge@terra.com.br

306 INTRODUCTION TO PHYSICAL MODELING WITH MODELICA

"*" I 11/11

factor
: primary ["A" primary

primary
UNSIGNED NUMBER
STRING
false
true
component reference [function_call]
"(" expression_list ,,)"
"[" expression_list { ";" expression_list} "]"
"{,, expression_list "},,

name
: IDENT ["." name

component_reference
IDENT [array_subscripts]
["." component_reference]

function call
: "(" function_arguments ")"

function_arguments
expression_list

I named_arguments

named_arguments
[named _ argumen t

named_argument

II " , named_argument }]

: IDENT ":" expression

expression_list
: expression { II " ,

array_subscripts
"[" subscript

subscript
": "

I expression

comment
: string_comment

string_comment

expression

" II , subscript} "]"

annotation decl

[STRING { "+" STRING }]

walter.ponge@terra.com.br

Appendix B: Modelica Syntax 307

annotation decl
: annotation class modification

walter.ponge@terra.com.br

Appendix C
Modelica Standard Library: Connectors

C.I ELECTRICAL (ANALOG)

within Modelica.Electrical.Analog.lnterfaces;

connector PositivePin
Modelica.Slunits.Voltage v "Potential at the pin";
flow Modelica.Slunits.Current i

"Current flowing into the pin";
end PositivePin;

connector NegativePin
Modelica.Slunits.Voltage v "Potential at the pin";
flow Modelica.Slunits.Current i

"Current flowing into the pin";
end NegativePin;

partial model One Port "Component with two electrical pins"
SIunits.Voltage v "Voltage drop between the two pins";
SIunits.Current i "Current flowing from pin p->n";
Interfaces.PositivePin p;
Interfaces.NegativePin n;

equation
v p.v - n.v;
o = p.i + n.i;
i = p.i;

end One Port ;

partial model TwoPort "Component with two electrical ports"
SIunits.Voltage vI "Voltage drop over the left port";
SIunits.Voltage v2 "Voltage drop over the right port";
SIunits.Current il "Current flowing from pl->nl";
SIunits.Current i2 "Current flowing from p2->n2";

walter.ponge@terra.com.br

310 INTRODUCTION TO PHYSICAL MODEUNG WITH MODEUCA

Interfaces.PositivePin pI
Interfaces.NegativePin nl
Interfaces.PositivePin p2
Interfaces.NegativePin n2

equation
vI = pl.v - nl.v;
v2 = p2.v - n2.v;
o = pl. i + nl. i ;
o = p2.i + n2.i;
il = pl. i;
i2 = p2.i;

end TwoPort;

C.2 BLOCK DIAGRAMS

"Positive
"Negative
"Positive
"Negative

within Modelica.Blocks.Interfaces;

pin of
pin of
pin of
pin of

the
the
the
the

left port";
left port";
right port";
right port";

connector InPort "Connector with Real inputs"
parameter Integer n=l "Dimension of signal vector";
replaceable type Signal Type = Real "type of signal";
input SignalType signal [n] "Real input signals";

end InPort;

connector Out Port "Connector with Real outputs"
parameter Integer n=l "Dimension of signal vector";
replaceable type Signal Type = Real "type of signal";
output Signal Type signal [n] "Real output signals";

end OutPort;

connector BooleanInPort "Connector with Boolean inputs"
parameter Integer n~l "Dimension of signal vector";
input Boolean signal [n] "Boolean input signals";

end BooleanInPort;

connector BooleanOutPort "Connector with Boolean outputs"
parameter Integer n=l "Dimension of signal vector";
output Boolean signal [n] "Boolean output signals";

end BooleanOutPort;

partial block SO "Single Output continuous control block"
OutPort out Port (final n=l) "Output signal connector";

protected
Real y=outPort.signal[l];

end SO;

partial block MO "Multiple Output continuous control block"
parameter Integer nout (min=l) = 1 "Number of outputs";
OutPort out Port (final n=nout) "Output signals connector";

protected
Real y[nout]=outPort.signal;

walter.ponge@terra.com.br

Appendix C: Modelica Standard Library: Connectors 311

end MO;

partial block SISO "Single Input Single Output block"
InPort inPort (final n=l) "Input signal connector";
Out Port out Port (final n=l) "Output signal connector";

protected
Real u=inPort.signal[l);
Real y=outPort.signal[l);

end SISO;

partial block SI2S0 "2 Single Input!l Single Output block"
InPort inPortl (final n=l) "Input signal 1 connector";
InPort inPort2 (final n=l) "Input signal 2 connector";
OutPort out Port (final n=l) "Output signal connector";

protected
Real ul=inPort1.signal[l) "Input signal 1";
Real u2=inPort2.signal[l) "Input signal 2";
Real y=outPort.signal[l) "Output signal";

end SI2S0;

partial block MISO "Multiple Input Single Output block"
parameter Integer nin=l "Number of inputs";
InPort inPort (final n=nin) "Input signals connector";
OutPort out Port (final n=l) "Output signal connector";

protected
Real u [:) =inPort. signal "Input signals";
Real y=outPort.signal[l) "Output signal";

end MISO;

partial block MIMO "Multiple Input Multiple Output block"
parameter Integer nin=l "Number of inputs";
parameter Integer nout=l "Number of outputs";
InPort inPort (final n=nin) "Input signals connector";
OutPort out Port (final n=nout) "Output signals connector";

protected
Real u [:) =inPort. signal "Input signals";
Real y [:) =outPort . signal "Output signals";

end MIMO;

partial block BooleanSISO "Boolean SISO block"
BooleanInPort inPort (final n=l) "Input signal connector";
BooleanOutPort outPort (final n=l) "Output signal connector";

protected
Boolean u=inPort.signal[l);
Boolean y=outPort.signal[l);

end BooleanSISO;

partial block BooleanSignalSource "Boolean source block"
parameter Integer nout (min=l) 1 "# of Boolean outputs";
BooleanOutPort out Port (final n=nout) "Output connector";

walter.ponge@terra.com.br

312 INTRODUCTION TO PHYSICAL MODELING WITH MODELICA

end BooleanSignalSource;

C.3 TRANSLATIONAL MOTION
within Modelica.Mechanics.Translational.Interfaces;

connector Flange _ a
Modelica.SIunits.Position s "absolute flange position";
flow Modelica.SIunits.Force f "cut force in flange";

end Flange_a;

connector Flange b
Modelica.SIunits.Position s "absolute flange position";
flow Modelica.SIunits.Force f "cut force in flange";

end Flange_b;

partial model Rigid "Rigid translational component"
SIunits.Position s "position of component center";
parameter SIunits.Length L=O "length of component";
Translational.Interfaces.Flange_a flange_a;
Translational.Interfaces.Flange_b flange_b;

equation
flange_a.s
flange_b.s

end Rigid;

s - L/2;
s + L/2;

partial model Compliant "Compliant translational component"
Translational.Interfaces.Flange_a flange_a;
Translational.Interfaces.Flange_b flange_b;
SIunits.Distance s_rel "relative distance";
flow SIunits.Force f "force between flanges";

equation
s_rel = flange_b.s - flange_a.s;
flange_b.f = f;
flange_a.f = -f;

end Compliant;

partial model AbsoluteSensor "Absolute sensor"
Translational.Interfaces.Flange_a flange_a;
Modelica.Blocks.Interfaces.OutPort out Port (final n=l);

end AbsoluteSensor;

partial model RelativeSensor "Relative sensor"
Translational.Interfaces.Flange_a flange_a;
Translational.Interfaces.Flange_b flange_b;
Modelica.Blocks.Interfaces.OutPort out Port (final n=l);

end RelativeSensor;

C.4 ROTATIONAL MOTION
within Modelica.Mechanics.Rotational.Interfaces;

walter.ponge@terra.com.br

Appendix C: Modelica Standard Library: Connectors 313

connector Flange_a
Modelica.Slunits.Angle phi "absolute rotation";
flow Modelica.Slunits.Torque tau "cut torque in flange";

end Flange _a;

connector Flange_b
Modelica.Slunits.Angle phi "absolute rotation";
flow Modelica.Slunits.Torque tau "cut torque in flange";

end Flange_b;

partial model Rigid "Rigid rotational component"
SIunits.Angle phi "Absolute rotation angle"
Interfaces.Flange_a flange_a;
Interfaces.Flange_b flange_b;

equation
flange_a.phi
flange _b. phi

end Rigid;

phi;
phi;

partial model Compliant "Compliant rotational component"
SIunits.Angle phi_reI (start=O) "Relative rotation angle";
SIunits.Torque tau "Torque between flanges";
Interfaces.Flange_a flange_a;
Interfaces.Flange_b flange_b;

equation
phi_reI = flange_b.phi - flange_a. phi;
flange_b. tau tau;
flange_a. tau = -tau;

end Compliant;

partial model AbsoluteSensor "Absolute sensor"
Interfaces.Flange_a flange_a;
Modelica.Blocks.lnterfaces.OutPort outPort(final n=l);

end AbsoluteSensor;

model RelativeSensor "Relative sensor"
Interfaces.Flange_a flange_a;
Interfaces.Flange_b flange_b;
Modelica.Blocks.lnterfaces.OutPort outPort(final n=l);

end RelativeSensor;

walter.ponge@terra.com.br

AppendixD
Modelica Standard Library: Common Units

D.I TIME AND SPACE
wi thin Mode I i ca ;

package SIuni ts
type Angle = Real (final quantity= "Angle " , final unit="rad",

displayUnit="deg") ;
type SolidAngle = Real (final quantity="SolidAngle",

final unit="sr");
type Length = Real (final quantity="Length", final unit="m");
type Position = Length;
type Radius = Distance;
type Diameter = Distance;
type Area = Real (final quantity="Area", final unit="m2");
type Volume = Real (final quantity= "Volume " ,

final uni t= "m3") ;
type Time = Real (final quantity="Time", final unit="s");
type AngularVelocity = Real (final unit="rad/s",

final quantitY="AngularVelocity",
displayUnit="rev/min") ;

type AngularAcceleration = Real (final unit="rad/s2",
final quantity="AngularAcceleration");

type Velocity = Real (final quantity="Velocity",
final uni t= "m/ s") ;

type Acceleration = Real (final quantity="Acceleration",
final unit="m/s2");

end SIunits;

D.2 PERIODIC PHENOMENON
within Modelica;

walter.ponge@terra.com.br

316 INTRODUCTION TO PHYSICAL MODEUNG WITH MODEUCA

package SIunits

type Period = Real (final quantity="Time", final unit="s") ;
type Frequency = Real (final quantity="Frequency",

final unit="Hz");
type AngularFrequency = Real (final unit="s-l",

final quantity="AngularFrequency");
type AmplitudeLevelDifference = Real (final unit="dB",

final quantity="AmplitudeLevelDifference");
type PowerLevelDifference = Real (final unit="dB",

final quantity="PowerLevelDifference");

end SIunits;

D.3 MECHANICS

within Modelica;

package SIunits

type Mass = Real (final quantity="Mass",
final unit="kg", min=O);

type Density = Real (final quantity="Density",
final unit="kg/m3", displayUnit="g/cm3", min=O);

type Momentum = Real (final quantity="Momentum",
final unit="kg.m/s");

type AngularMomentum = Real (final quantity="AngularMomentum",
final unit="kg.m2/s");

type MomentOfInertia = Real(final quantity="MomentOfInertia",
final unit="kg.m2");

type Inertia = MomentOfInertia;
type Force = Real (final quantity="Force", final unit="N") ;
type Torque = Real (final quantity="Torque",

final unit="N.m");
type Pressure = Real (final quantity="Pressure",

final unit="Pa", displayUnit="bar");
type AbsolutePressure = Pressure (min=O);
type Stress = Real (final unit="Pa");
type Strain = Real (final quantity="Strain", final unit="l");
type ModulusOfElasticity = Stress;
type CoefficientOfFriction = Real (final unit="l",

final quantity="CoefficientOfFriction");
type DynamicViscosity = Real (final unit="Pa. s",

final quantity="DynamicViscosity", min=O);
type KinematicViscosity = Real (final unit="m2/s",

final quantity="KinematicViscosity", min=O);
type Work = Real (final quantity="Work", final unit="J");
type Energy = Real (final quantity="Energy", final unit="J");
type PotentialEnergy = Energy;
type KineticEnergy = Energy;

walter.ponge@terra.com.br

Appendix D: Modelica Standard Library: Common Units 317

type Power = Real (final quantity="Power", final unit="W");
type Efficiency = Real (final quantitY="Efficiency",

final uni t=" 1", min=O);
type MassFlowRate = Real (final quantity= "MassFlowRate " ,

final unit="kg/s");
type VolumeFlowRate = Real (final quantity= "VolumeFlowRate " ,

final unit="m3/s");

end SIunits;

D.4 THERMODYNAMICS

within Modelica;

package SIuni ts

type ThermodynamicTemperature = Real (final unit="K",
final quantity="ThermodynamicTemperature" ,
displayUnit="degC") ;

type Temperature = ThermodynamicTemperature;
type CelsiusTemperature = Real (final unit="degC",

final quantity="CelsiusTemperature");
type Heat = Real (final quantity="Energy", final unit="J");
type HeatFlowRate = Real (final quantity="Power",

final unit="W");
type ThermalConductivity = Real (final unit="W/ (m.K)",

final quantity="ThermalConductivity");
type CoefficientOfHeatTransfer = Real (final unit="W/ (m2 .K)",

final quantity="CoefficientOfHeatTransfer");
type ThermalResistance -= Real (final unit="K/W",

final quantity="ThermalResistance");
type ThermalConductance = Real (final unit="W/K",

final quantity="ThermalConductance");
type ThermalDiffusivity = Real (final unit="m2/s",

final quantity="ThermalDiffusivity");
type HeatCapacity = Real (final unit="J/K",

final quantity= "HeatCapacity") ;
type SpecificHeatCapacity = Real (final unit="J/ (kg.K)",

final quantity="SpecificHeatCapacity");
type RatioOfSpecificHeatCapacities = Real (final unit="l",

final quantity="RatioOfSpecificHeatCapacities");
type Entropy = Real (final quantity="Entropy" ,

final unit="J/K");
type SpecificEntropy = Real (final unit="J/ (kg.K)",

final quantity="SpecificEntropy");
type InternalEnergy = Heat;
type Enthalpy = Heat;
type SpecificEnergy = Real (final unit="J/kg",

final quantity="SpecificEnergy");
type SpecificInternalEnergy = SpecificEnergy;

walter.ponge@terra.com.br

318 INTRODUCTION TO PHYSICAL MODEliNG WITH MODEliCA

type SpecificEnthalpy = SpecificEnergy;

end SIunits;

D.S ELECTRICITY
within Modelica;

package SIunits

type ElectricCurrent = Real (final unit="A",
final quantity="ElectricCurrent");

type Current = ElectricCurrent;
type ElectricCharge = Real (final unit="C",

final quantity="ElectricCharge");
type Charge = ElectricCharge;
type ElectricPotential = Real (final unit="V",

final quantity="ElectricPotential II) ;
type Voltage = ElectricPotential;
type PotentialDifference = ElectricPotential;
type ElectromotiveForce = ElectricPotential;
type Capacitance = Real (final unit="F", min=O,

final quantity="Capacitance");
type Inductance = Real (final uni t= "H", min=O,

final quantity="Inductance");
type Resistance = Real (final unit="Ohm", min=O,

final quantity="Resistance");
type Resistivity = Real (final quantity="Resistivity",

final unit="Ohm. mil) ;
type Conductivity = Real(final quantity="Conductivity",

final unit="S/m");
type Impedance = Resistance;
type Conductance = Real (final unit="S", min=O,

final quantity="Conductance");

end SIunits;

D.6 PHYSICAL CHEMISTRY
within Modelica;

package SIunits

type AmountOfSubstance = Real (final uni t= "mol ", min=O,
final quantity="AmountOfSubstance");

type MolarMass = Real (final quantity="MolarMassII ,
final unit="kg/mol");

type MolarVolume = Real (final quantity="MolarVolume",
final unit="m3/mol");

type Concentration = Real (final quantity="Concentration",
final unit="mol/m3");

walter.ponge@terra.com.br

Appendix D: Modelica Standard Library: Common Units 319

type MassFraction = Real (final quantity="MassFraction",
final unit="l");

type MoleFraction = Real (final quantity="MoleFraction",
final uni t = " 1") ;

type ChemicalPotential = Real (final unit="J/mol",
final quantity="ChemicalPotential");

type PartialPressure = Real (final unit="Pa", min=O,
displayUnit="bar", final quantity="Pressure");

type ActivityCoefficient = Real (final unit="l",
final quantity="ActivityCoefficient");

type StoichiometricNumber = Real (final unit="l",
final quantity="StoichiometricNumber");

end SIunits;

walter.ponge@terra.com.br

AppendixE
Modelica Standard Library: Constants

wi thin Mode 1 i ca ;

package Constants
II Mathematical constants
constant Real e=Modelica.Math.exp(1.0);
constant Real pi=2*Modelica.Math.asin(1.0);

II Machine dependent constants
constant Real eps=l.e-15

"Biggest number such that 1.0 + EPS = 1.0";
constant Real small=l.e-60 "Smallest Real number";
constant Real inf=l. e+60 "Biggest Real number";
constant Integer Integer_inf=2147483647

"Biggest Integer number";

II Constants of nature
constant Modelica.SIunits.Velocity c=299792458

"Speed of light inside a vacuum";
constant Modelica.SIunits.Acceleration g_n=9.80665

"Standard acceleration of gravity on earth";
constant Real G(final unit="m3/(kg.s2)") = 6.673e-11

"Newtonian constant of gravitation";
constant Real h(final unit="J. s") 6. 62606876e-34

"Planck constant";
constant Real k (final unit="J/K") = l. 3806503e-23

"Boltzmann constant";
constant Real R(final unit="J/(mol.K)") = 8.314472

"Molar gas constant";
constant Real sigma(final unit="W/(m2.K4)") = 5.670400e-8

"Stefan-Boltzmann constant";
constant Real N_A(final unit="l/mol") = 6.0221419ge23

"Avogadro Constant";

walter.ponge@terra.com.br

322 INTRODUCTION TO PHYSICAL MODELING WITH MODELICA

constant Real mue ° (final unit="N/A2") = 4*pi*l.e-7
"Magnetic Constant";

constant Real epsilon_O (final unit="F/m") = 1/ (mue_O*c*c)
"Electric Constant";

constant Modelica.Slunits.CelsiusTemperature T zero=-273.15
"Absolute zero temperature";

end Constants;

walter.ponge@terra.com.br

AppendixF
Modelica Standard Library: Math Functions

F.1 GEOMETRIC FUNCTIONS
• Sine: y = Modelica. Math. sin (u) i

• Cosine: y = Modelica. Math. cos (u) i

. ..J- (2m-l)*7r
• Tangent:y = Model~ca.Math.tan(u)iwhereuT 2 .

F.2 INVERSE GEOMETRIC FUNCTIONS
• Inverse sine: y = Modelica. Math. asin (u) i where -1 ~ u ~ 1.

• Inverse cosine: y = Modelica.Math.acos (u) i where-1 ~ u ~ 1.

• Inverse tangent: y = Modelica.Math.atan(u) i

• Four quadrant inverse tangent: y = Mode 1 i ca. Ma t h . at an2 (u, v) i

F.3 HYPERBOLIC GEOMETRIC FUNCTIONS
• Hyperbolic sine: y = Modelica. Math. sinh (u) i

• Hyperbolic cosine: y = Modelica. Math. cosh (u) i

• Hyperbolic tangent: y = Modelica. Math. tanh (u) i

F.4 EXPONENTIAL FUNCTIONS
• Exponential, base e: y = Modelica.Math.exp (u) ;

• Natural logarithm: y = Modelica.Math.log(u) i whereu > 0

• Base 10 logarithm: y = Modelica.Math.loglO (u); whereu > 0

walter.ponge@terra.com.br

324 INTRODUCTION TO PHYSICAL MODELING WITH MODELICA

GLOSSARY
acausal An approach to modeling where no assumptions are made about

causality when developing component models. This leads to be reusability
of the developed models because they contain fewer assumptions about the
context of their use.

attributes An attribute is associated with quantities such as parameters and
variables. Attributes provide additional information about that quantity
such as upper and lower bounds or physical units.

across variables Variables which represent the "driving force" across a com­
ponent (see Section 1.3.2 for more details).

algebraic loop An algebraic loop is a coupled, simultaneous system of equa­
tions. As a result, unlike a conventional block diagram it is not possible to
solve such a system one variable at a time.

black box A model for which the implementation details are hidden.

block diagram Block diagrams are used to explicitly describe the set of math­
ematical operations that must be performed in order to compute a set of
unknowns (outputs) from a set ofknowns (inputs). Furthermore, the blocks
in such a diagram may have their own internal states as well (e.g., an
integrator block).

blocks Components with clearly defined inputs and outputs used to create
block diagrams.

causality Causality is the cause and effect relationship between components
in a complete physical system. In general, it is not possible to determine
the causality of individual components. For example, does the voltage drop
across a resistor result from a current going through the resistor or is it the
current that results from a voltage drop? It is only once a complete system
of components has been constructed that the causality can be determined.

coefficient of restitution A measure of how much momentum is conserved in
an inelastic collision.

component A component is an instance of a model. So, for a given model
(e.g .. a resistor model), the actual instances (e.g .• the resistors) would be
components. In object-oriented programming, a component is analogous
to an object.

conservation equations see conservation law

conservation laws Conservation laws state that the amount of some quantity
(e.g .. energy or mass) does not change over time. This quantity is often

walter.ponge@terra.com.br

Glossary 325

called a conserved quantity. Conservation laws are used to derive conserva­
tion equations which explicitly state that the time derivative ofthe conserved
quantity is zero.

conservative system A system in which some quantity (e.g., energy or mass)
is conserved.

constitutive equations Relationships between the potentials (i.e., across vari­
ables) in a system and the flow of conserved quantities (i.e., through vari­
ables). Examples include Hook's law, Ohm's law, Fourier's law, Newton's
law, etc.

control systems Control systems use information from sensors to determine
how actuators should be used to achieve a desired response from a dynamic
system.

control volume A control volume is the thermodynamic equivalent of a free
body diagram in mechanics. A control volume contains energy and mass
(generally in liquid or gaseous form). Any change in mass or energy must
be due to some external influence (e.g., work, flow).

DAE see differential-algebraic equations

declaration When a component is instantiated (either in a system or inside
another component), that is called a component declaration.

definition The description of all variables, parameters and equations associ­
ated with a model is called the model definition.

derived types A type which is created by specializing one of the intrinsic
types (i.e., Real, Integer, String and Boolean).

diagram view The view of a model from the "inside". This view reveals all
internal subcomponents and connections.

differential-algebraic equations Systems of equations that involve both dif­
ferential and algebraic equations. Such systems have the general mathe­
matical form f(x, x, t) = O.

discrete variables Variables with values that are piecewise constant with re­
spect to time.

domain neutral Something is domain neutral if it does not exhibit a bias
toward a specific engineering domain.

encapsulation The ability to hide the details of a component. Ideally, an
understanding of these details should not be necessary. In this way, the

walter.ponge@terra.com.br

326 INTRODUCTION TO PHYSICAL MODELING WITH MODELICA

amount of detail which must be understood in order to comprehend a com­
plete system is reduced.

event Something which occurs instantaneously at a specific time or when a
specific condition occurs.

extensive property An extensive property is a material property which is
related to the amount of mass present. Energy is an extensive property
because if you remove half the mass in a homogeneous mixture, you will also
remove half the energy. For most extensive properties there are associated
intensive properties (e.g., specific internal energy). see intensive property

explicit equation An equation where all the solution variables andior their
derivatives can be solved explicitly (i.e., they are the only term on the left
hand side of an equation). An example of an explicit equation is x = f(x, t).
see implicit equation

first principles Modeling approach based on using conservation laws (see

Kirchhoff's current law).

flow variables see through variables

free body diagram A diagram which shows all state information (e.g., orien­
tation, position) for a given component and all possible external influences
(e.g., torques, forces).

Kirchhoff's current law The sum of all cunent at a point must be zero.

hybrid system A system involving both continuous and discrete behavior.

icon view This view of a model from the "outside". This view attempts to
hide the internal details and present a "black-box" representation which
only includes the external connections of the model.

implicit equation An equation in which the solution variable does not appear
by itself on the left hand side of an equation (e.g., f (T) = 0). see explicit
equation

initial value problem A mathematical problem which is solved by starting
from a set of initial conditions and then integrating a system of differential
equations.

intensive property An intensive property is a material property that is normal­
ized to the amount of material. For example, temperature and concentration
are both intensive properties. If you take mixture of uniform temperature or
concentration and you remove half the mixture the remaining mixture will

walter.ponge@terra.com.br

Glossary 327

continue to have the same temperature and concentration. see extensive
property

interface Generally, the interface of an object consists of all object details
visible externally. In Modelica, this would usually include parameters and
connectors. Recognizing that several model types have common interfaces
leads to the development of partial models like the one shown in Example
4.1.

instance When a declaration involving a model or type is made, an instance is
created. This instance has its own set of parameters and attributes separate
from otherinstances ofthe same model or type. In other words, Res i s tor
is a model and Rl could be specific instance of a Resistor with its own
value for resistance.

left limit The limit of any time varying value when approached from "the left"
(i.e., values of time lower than the time at which the limit is being taken).

local variable A variable which is only visible to the entity to which it belongs.
For example, a local variable in a function is only visible to that function.

model A model is a behavioral description. For example, a model of a resistor
is described by Ohm's law. The model is a description of resistor behavior
not the resistor itself. In other words, it is important to separate the idea of a
resistor model (i.e., V = I *R) from the resistorinstances (components with
different values of resistance, R). If you are familiar with object-oriented
programming, a model is analogous to a class.

model developer A person who is responsible for creating models. For large
simulation projects the model developer, model user and end user may be
different people.

modification Modifications are used to override the defaults in a declaration.
Modifications typically involve overriding values for attributes of a type or
instance.

network A collection of components connected together. Often, energy flows
between components in networks according to the constitutive equations of
the components.

node In networks, nodes are the points at which components are connected.
The large black circles in Figure 3.1 are nodes in that particular network.

package A package refers to a collection of Modelica models, which are
meant to be used together. For example, an electrical package would likely
include definitions of resistor, capacitor and inductor models.

walter.ponge@terra.com.br

328 INTRODUCTION TO PHYSICAL MODELING WITH MODELICA

package hierarchy A diagram showing what is contained within a package.
In object-oriented terminology, this is a diagram showing the "has-a" rela­
tionships. see inheritance hierarchy

parameter expression An expression which does not change with time.

partial differential equation An equation which contains derivatives with re­
spect to spatial dimensions and possibly (although not always) derivatives
with respect to time.

PDE see partial differential equation

plant model A plant model is the model of the physical system (and its asso­
ciated dynamic response) for which a controller is designed. Sensors and
actuators usually define the boundary between the controller and the plant.

physical modeling This type of modeling is characterized by a first principles
approach to formulating behavioral equations. Physical modeling refers to
what control system engineers call "plant modeling".

physical types Physical types give detailed information about the physical
significance of quantities. For example, the voltage in a circuit is usually
represented by the Vol tage type contained in the Modelica. Sruni ts
package. In this way, additional information (e.g., units or limits) can be
associated with that quantity. In this way, variables are treated as more than
just numbers with a value.

quantity A quantity refers to those entities which have a value (e.g., the
resistance of a resistor). In Modelica, all values are either real, integer,
string or boolean. Furthermore, a quantity might have different levels of
variability (i.e., variables, parameters or constants) and it might be a scalar
or an array.

schematic A schematic is a graphical representation of a system containing
individual components and their connections two each other.

semantics The semantics of the Modelica language define what the intent of
a syntactical construct is. In essence, the semantics of the language are the
"meaning" that gets associated with keywords, operators and so on.

short definition A definition which is so similar to an existing definition that
it can be defined in terms of modifications on the existing definition.

side effects A function is said to have side effects if it store information to be
used during subsequent invocations. Externally, such side effects cause the
function to return different results even though the same inputs are passed
in.

walter.ponge@terra.com.br

Glossary 329

solver The software responsible for solving the system of hybrid DABs which
result from a Modelica model.

state space form An equation system is said to be in state space form when it
is represented as:

x Ax+Bu
y Cx+Du

stiffness A property of systems with coupling between fast dynamics and slow
dynamics. This property can have a large impact on performance and effects
some solvers more than others.

subcomponent A subcomponent is used to refer to components which are
contained within other components. For example, a resistor might be a sub­
component of another component like an electrical circuit. Furthermore, the
electrical circuit could be a subcomponent of an appliance. Subcomponents
are used to form hierarchical models. In object-oriented programming, a
subcomponent would be a member object.

symbolic manipulation Using algebra to rearrange equations into a form that
is easier to solve or results in more efficient simulation.

system model A system model is a model which is completely self-contained.
In other words, it does not have any external connections and it represents
a complete model.

through variables Variables which represent quantities flowing through a
component (see Section 1.3.2 for more details).

type Modelica is a strongly typed language. Every entity in Modelica has
a type. Each quantity has a type indicating whether it is a floating point,
integer or boolean. Each component has a type indicating what model it is
an instance of.

variability The variability of a quantity is an indication how free that quantity
is to change (see Section 2.5.2.3).

variability qualifier A qualifier that restricts how a variable may change. The
variability qualifiers in Modelicaare constant, parameter and discrete.

walter.ponge@terra.com.br

References

Andersson, M. (1994). Object-Oriented Modeling and Simulation of Hybrid
Systems. PhD thesis, Lund Institute of Technology, Department of Automatic
Control, Lund, Sweden. ISRN LUTFD2ffFRT-I043-SE.

Astrom, K. 1., Elmqvist, H., and Mattsson, S. E. (1998). Evolution of continuous­
time modeling and simulation. In The 12th European Simulation Multicon­
ference.

Barton, A. (2000). Introductory chemical kinetics notes.
http://wwwscience.murdoch.edu.au/teaching/m237/m237notes0 I.html.

Beater, P. (2000). Modeling and digital simulation of hydraulic systems in
design and engineering education using Modelica and HyLib. In Proceedings
of the 2000 Modelica Workshop.

Bower, 1. M. and Beeman, D. (1994). The Book of GENESIS: Exploring Real­
istic Neural Models with the GEneral NEural SImulation System. Springer­
Verlag.

Bowles, P., Tiller, M., Elmqvist, H., Briick, D., Mattsson, S. E., Moller, A.,
Olsson, H., and Otter, M. (2001). Feasibility of detailed vehicle modeling.
In Proceedings of the 2001 SAE Congress and Exposition.

Breunese, A. P. 1. and Broenink, 1. F. (1997). Modeling mechatronic systems
using the SIDOPS+ language. In Proceedings of ICBGM'97, 3rd Interna­
tional Conference on Bond Graph Modeling and Simulation, volume 19 of
Simulation Series, pages 301-306, Phoenix, Arizona. SCS Publishing. ISBN
1-56555-050-1.

Broenink, 1. F. (1997). Modeling, simulation and analysis with 20-sim. Journal
A, (Benelux quarterly journal on automatic control), 38(3).

Brogan, W. L. (1991). Modern Control Theory. Prentice Hall, third edition
edition.

Cellier, F. E. (1991). Continuous System Modeling. Spring Verlag.

walter.ponge@terra.com.br

332 INTRODUCTION TO PHYSICAL MODELING WITH MODELICA

Clauss, C., Schneider, A, Leitner, T., and Schwarz, P. (2000). Modelling of
electrical circuits with Modelica. In Proceedings of the 2000 Modelica Work­
shop.

Earley, J. E. (1998). An introductory course in modeling dynamic chemical and
ecological systems. http://www.georgetown.edu/earleyjlch42.html.

Elmqvist, H. (1978). A Structured Model Language for Large Continuous
Systems. PhD thesis, Lund Institute of Technology, Sweden, Department of
Automatic Control.

Elmqvist, H., Bruck, D., Mattsson, S. E., Olsson, H., and Otter, M. (2001).
Dymola - Dynamic Modeling Language - User's Manual. Dynasim AB,
Research Park !deon, SE-223 70 Lund, Sweden. http://www.Dynasim.se.

Elmqvist, H., Cellier, E E., and Otter, M. (1993). Object-oriented modeling
of hybrid systems. In In Proceedings of European Simulation Symposium,
ESS'93. The Society of Computer Simulation.

Elmqvist, H., Mattsson, S. E., and Otter, M. (1998). Modelica - an international
effort to design an object-oriented modeling language. In Proceedings of the
1998 Summer Computer Simulation Conference.

Ernst, T., Jrumichen, S., and Klose, M. (1997). The architecture of the smile/m
simulation environment. In Proceedings of the 15th IMACS World Congress
on Scientific Computation, Modelling and Applied Mathematics, volume 6,
pages 653-658.

Fitzpatrick, D. and Miller, I. (1995). Analog Behavioral Modeling With The
Verilog-A Language. Kluwer Academic Publishers.

Fowler, A C. (1997). Mathematical Models in the Applied Sciences. Cambridge
University Press.

Fritzson, P., Viklund, L., Fritzson, D., and Herber, J. (1995). High-level math­
ematical modeling and programming. IEEE Software.

Heinkel, U., Padeffke, M., Hass, W., Buerner, T., Glauert, W., Wahl, M., Braisz,
H., Gentner, T., and Grassman, A (2000). The VHDL Reference: A Practi­
cal Guide to Computer-Aided Integrated Circuit Design (including VHDL­
AMS). Jon Wiley and Sons.

Hodgkin, A L. and Huxley, A E (1952). A quantitative description of mem­
brane current and its application to conduction and excitation in nerve.
loumal of Physiology, 117:500-544.

Jeandel, A, Boudaud, E, and Lariviere, E. (1997). ALLAN. Gaz de France,
France, simulation release 3.1 description edition.

Jeandel, A., Boudaud, E, Ravier, P., and Buhsing, A (1996). U.L.M: Un
Langage de Modelisation, a modelling language. In In Proceedings of the
CESA '96 IMACS Multiconference. IMACS. Lilli, France.

Larsson, M: (2000). Objectstab - a Modelica library for power system stability
studies. In Proceedings of the 2000 Modelica Workshop.

walter.ponge@terra.com.br

References 333

Mattsson, S. E., Andersson, M., and Astrom, K. J. (1993). Object-oriented
modelling and simulation. In CAD for Control Systems, chapter 2, pages
31-69. Marcel Dekker, New York.

Mattsson, S. E. and Soderlind, G. (1993). Index reduction in differential­
algebraic equations using dummy derivatives. SIAM Journal of Scientific
Computing, 14:677-692.

Ogata, K. (1978). System Dynamics. Prentice-Hall.
Otter, M., Dempsey, M., and Schlegel, C. (2000). Package PowerTrain. a Mod­

elica library for modeling and simulation of vehicle power trains. In Pro­
ceedings of the 2000 Modelica Workshop.

Otter, M., Elmqvist, H., and Mattsson, S. E. (1999). Hybrid modeling in mod­
elica based on synchronous data flow principles. In IEEE Symposium on
Computer-Aided Control System Design.

Pantelides, C. D. (1988). The consistent initialization of differential-algebraic
systems. SIAM Journal of Scientific and Statistical Computing, 9:2B 231.

Pauling, L. (1988). General Chemistry. Dover, Mineola, NY.
Pottier, M. (1983). Extensions et applications envisageables des procedures

comp1ementaires etablies pour acceder au progicie1 ASTEC 3 : ALLAN 6.
Technical report, Gaz de France, France. Technical report M.D6 no. 4034.

Sahlin, P., Bring, A., and Sowell, E. F. (1996). The neutral model format for
building simulation, version 3.02. Technical report, The Royal Institute of
Technology, Stockhom, Sweden.

Stefan, J. (1891). Ueber die theorie der eisbildung, insbesondere iiber die eis­
bildung im polarmeere. Ann. Phys. Chem., 42:269-286.

Strauss, J. C., Augustin, D. c., Fineberg, M. S., Johnson, B. B., Linebarger,
R. N., and Sanson, F. H. (1967). The sci continuous system simulation
language. Simulation.

Tiller, M., Bowles, P., Elmqvist, H., Briick, D., Mattsson, S. E., Moller, A.,
Olsson, H., and Otter, M. (2000). Detailed vehicle powertrain modeling in
modeling. In Proceedings of the 2000 Modelica Workshop.

Tummescheit, H. and Pitz-Paal, R. (1997). Simulation of a solar thermal central
receiver power plant. In Proceedings of the 15th IMACS World Congress
on Scientific Computation, Modelling and Applied Mathematics, volume 6,
pages 671-676.

walter.ponge@terra.com.br

About the Author

Dr. Michael Tiller is a Technical Specialist in the Ford Research Laboratory
at Ford Motor Company. He is also a member of the Modelica Association.
Dr. Tiller received his Ph.D. from the Department of Mechanical and Industrial
Engineering at the University of Illinois, Urbana-Champaign. His Ph.D. work
focused on developing reusable simulation software for sensitivity analysis
with applications to solidification processing.

walter.ponge@terra.com.br

Index

7r.28
*,30.150.151
+.30.150
-.30.150
.,214
/,30
/ /,28
:=,32,93,103.288
<,30
<=,30
<>.30
=,31.32. 103
==.30
>,30
>=.30

A,
abs function, 106. 106. 183, 186
absolute value, 106, 186
acausaL 10

definition. 324
acausal modeling, II
access operator, 42
acos function. 323
across variables, 11.

definition, 324
algebraic loop. 285

definition, 324
algorithm. 32. 91. 103, 103, 147. 148. 173.

178,180,186,242,287.288.290
evaluation of, 178

aliases, 27, 65
analysis type. 105
analysisType function. 105. 105.284-286
and. 30
annotation, 225, 225. 226. 227. 291
annotations

documentation. 227
graphical. 72. 226

arguments, see function, arguments
arrays

concatenation, 149
construction, 144, 149
in connectors, 114, 132
mathematical operators, 150
MA1LAB notation, 148
multi-dimensional, 146
of attributes, 146
of chemical species, 132
of components, 124, 146
of scalars, 144
of strings, 92
of variables, 120
size, 93, 95, 96
subsets, 149
useful functions. 152

asin function. 323
assert function. 93, 93, 95, 185, 2()(), 275
assignment, 31. 32, 91, 93. 103, 147, 148, 186,

287
atan function. 323
atan2 function, 323
attributes, 34, 34

B,

definition, 324
displayUnit, 35, 36
fixed. 34, 34,282. 283,285, 286
max, 35, 35
min, 35,35,64.275
of arrays, 146
of protected components. 116
quantity, 34, 35, 35
start, 34. 34, 52, 64, 116. 144, 146,

2()(), 282, 283,285. 286
unit, 34. 35.35.36,64

backlash. 79,163,193-196,198,208.209,232.
253.289

walter.ponge@terra.com.br

338 INTRODUCTION TO PHYSICAL MODELING WITH MODELICA

Belousov-Zhabotinskii reaction, 133
black box, 13

definition, 324
block,49, 50, 65, 75,86,91,200,274
block diagram. 10

definition, 324
block diagrams, 10, 255

reusability, 69
blocks, 11

creating, 49
definition, 324

bond graphs, 10
Boolean, 29, 155, 156, 166, 179, 184, 207,

325
built-in

c,
functions, 105, 152
types, 29

C functions, see function, external
capacitor, 22, 23, 43, 88, 191
causality, 70

definition, 324
CD-ROM, xx, 5, 6, 35, 64, 65, 186, 205, 221,

231
ceil function, 106, 106, 186
change function, 184, 184
chemical reactions, 133
chemical systems, 132
chemistry, 132
coefficient of restitution, 163, 194

definition, 324
comments, 28
conunonality, 70
component, ~

definition, 324
conditional expressions, 30
connect, 46, 47,61,61, 62,66, 74,135,222
connector, 39, 42, 47, 50, 54, 57, 58, 61,

61, 62, 67, 69, 86, 87, 114, 131.
135-138,179,220,245,272,273

creating, 40
conservation equations, 11

definition, 324
conservation laws, II

definition, 325
constant, 19,29,29,34,84,214,329

special considerations, 214
constants, 19, 29, 29
constitutive equations, 11

definition, 325
control systems, 12, 71

definition, 325
control volume, 137

definition, 325
cos function, 323

cosh function, 323
cross function, 152

D,
DAE, see differential-algebraic equation
declaration, 29

definition, 325
definition, 28

definition, 325
delay, 33, 33
der, 19,33, 33,43,51,91, 182, 196,208,283,

284,286
with expressions, 43

derivatives, see de r
derived types, 29

creating, 29
definition, 325

descriptive text, 27, 28
diagonal function, 152
diagram view, 72

definition, 325
differential-algebraic equations, 4,12,193,261

definition, 325
differentiation, see de r
digital circuits, 155
digital signals, 155
discrete, 173, 179, 179,284,329
discrete variables, 155

definition, 325
displayUnit attribute, 35, 36
distributed, 126
di v function, 107, 107, 186
documentation, 24, 27, 28, 70, 85
domain neutral, 4, 9

definition, 325
Dymola,~, 12,222,224, 263, 264
dynamic scoping, 22 I. 224, 225

E,
edge function, 166, 184, 184
electrical circuits, 3, 21, 23
else, 103, 103,208
elseif, 103, 103,208
elsewhen, 181. ill
encapsulated, 218, 218, 219, 269
encapSUlation, 218

definition, 326
end, 28, 28, 86
eqUality, 32
equation, 19,24,31. 31, 32, 61. 91,103,147,

148, 178, 180,202,208,288
evaluation of. 178

equations, 28, 3 I. 31
algebraic, 31
differentiaL 4,17-19,31
differential-algebraic, 4, 31

walter.ponge@terra.com.br

implicit, 31, 200
Euler's second law, 17
event, 163, 182. 183,207,288

definition. 326
examples

automotive. 6, 244
chemical systems, 132
chemistry, 132
control systems, 71, 82
electrical, 22
hydraulic, 25, 26
pendulum, 17
planar motion, 17, 18,20

exp function, 323
explicit equation, 22,44,95, 189,200,259,290

definition, 326
expressions, 30. 31

conditional, 30
derivatives of, 43
function calls, 31
if expressions, 11
ternary, 11

extends, 77, 78. 85, 85. 86-88. 116, 117,272-
274

extensive property, 135
definition, 326

external, 101, 110, 110
external functions. see function, external
external subroutines, see function, external

F,
false. 30. 30, 31, 159. 183, 185, 186,283,286
Field-Karas-Noyes mechanism, 133
fill function, 123, 152
final,82.83,84,88.276
first principles, 10

definition, 326
fixed attribute, 34, 34, 282. 283, 285, 286
floor function. 106, 106. 107, 186
flow, 42, 42, 47, 58, 61, 63, 66, 114. 135, 136,

267
flow variables. 43. 47

definition, 326
for, 95,95. 96. 104. 113, 123. 145, 147. 148
FORTRAN subroutines. see function, exter­

nal
free body diagram, 41

definition, 326
fully qualified name, 217
function, 91, 91, 92-95, 98, 101-105, 116.

117,135,221,222,268,274
arguments, 95
external. 100, 102
invoking, 94, 95, 102, 104
named arguments, 95

functions

Index 339

abs, 106, 106, 183, 186
acos, 323
analysisType, 105, 105.284-286
asin, 323
assert.93,93,95,185.200,275
atan, 323
atan2, 323
ceil. 106, 106, 186
change, 184. 184
cos, 323
cosh, 323
creating, 92
cross, 152
diagonal, 152
di v, 107, 107. 186
edge, 166, 184. 184
expo 323
fill, 123, 152
floor, 106, 106, 107, 186
identity, 152
initial, 174, 176, 185, 185,283.284,

286
integer. 106. 106, 107, 186
linspace. 152
log, 323
10g10, 323
matrix. 152
max. 152
min, 152
mod, 107, 107. 108, 186
ndims, 152
ones, 152
outerProduct. 152
product, 152
rem, 107, 107, 186
sample, 169. 184, 184, 185
scalar, 152
sign, 106, 106. 186
sin, 323
sinh, 323
size.93,95.96. 144. 145, 152
skew, 152
sqrt. 106. 106. 150
sum. 152
symmetric, 152
tan. 323
tanh. 323
terminal. 185, 185
terminate, 185, 185,251
transpose, 152
vector. 152
vectorizing. 149
zeros, 152

G.
gravity. 18, 25, 28
ground,45

walter.ponge@terra.com.br

340 INTRODUCTION TO PHYSICAL MODEliNG WITH MODEliCA

H.
Hagen-PoiseuiJle relationship. 25
hierarchical

connections. 74
propagation. 73

Hodgkin-Huxley. 203
hybrid system, 155

definition. 326
hydraulics. 25. 26

I.
icon view. 72

definition. 326
icons. 72
identi ty function. 152
if. 24.24. 92. 103.113.174.178-180.206-208

expression. 207. 208
statement. 103.207.208

implicit equation. 31. 200. 209. 211. 290
definition. 326

import. 54. 217. 217. 218. 219
incompressible flow. 25
inductor. 22. 23
information hiding. 143
inheritance. 69
initial function. 174. 176. 185. 185. 283.

284.286
initial value problem. 182

definition. 326
inner. 222. 223. 223. 224. 225
inner product. 30
input. 50. 54. 62. 62. 63. 65. 66. 74. 91. 92.

95. 102.291
input signals. 54
instance. 39

definition. 327
instance hierarchy. 213
Integer. 29. 35.106,107.145.155.156.171.

179,184.325
integer function. 106. 106. 107. 186
integration. 51
intensive property. 135

definition. 327
interface, 75. 76. 89. 143. 200. 232. 245. 267.

273.296
definition. 327

interpolation. 94. III

J.
Jacobian. 288. 289

K.
KCL.61

keyword
algorithm. 32. 91.103. 103. 147. 148.

173. 178. 180. 186.242.287.288.
290

annotation, 225. 225. 226, 227. 291
block, 49. 50. 65, 75,86.91,200,274
connect. 46. 47. 61. 61, 62. 66, 74. 135.

222
connector, 39. 42. 47. 50. 54. 57. 58,

61, 61, 62. 67. 69,86.87.114. 131.
135-138.179.220.245.272.273

constant. 19. 29. 29. 34. 84.214.329
discrete, 173, 179. 179.284.329
else. 103. 103.208
elseif. 103. 103.208
elsewhen. 181, ill
encapsulated. 218. 218. 219. 269
end. 28. 28. 86
equation. 19. 24. 31. 31. 32. 61.91.

103. 147. 148. 178. 180,202.208.
288

extends. 77. 78. 85. 85. 86-88. 116.
117,272-274

external. 101, 110. 110
false, 30. 30. 31. 159. 183. 185. 186,

283.286
final. 82. 83. 84.88, 276
flow. 42. 42. 47, 58. 61. 63. 66. 114.135,

136.267
for, 95. 95.96, 104. 113. 123. 145. 147.

148
function. 91. 91. 92-95, 98. 101-105.

116,117.135.221.222,268.274
if. 24. 24. 92. 103. 113, 174. 178-180.

206-208
import. 54. 217, 217. 218.219
inner, 222. 223, 223,224.225
input. 50. 54, 62. 62. 63, 65. 66. 74, 91.

92.95. 102.291
model. 19.28. 28.50.65.80.82,86-88,

91.167,214,218,269.274.282
outer. 222.223. 223. 224. 225
output, 50, 54, 62. 62, 63. 65, 91. 92.

102. 105,291
package. 13. 24, 27. 70. 71. 135. 141.

203,214.215.217. 218. 220. 244.
265.265.266-269.271.272.274-
277

parameter, 19.29. 29. 34,62.84.99.
137.140.144.273,329

partial. 70. 70. 71, 75.86,87. 87,135.
167.200.223.266-269.273.274

protected. 93, 93.102, 116. 117. 140.
143. 144

public. 102
record. 86. 97. 97. 98. 99. 102. 108.

113.179.214.267.274

walter.ponge@terra.com.br

redeclare, 78, 82. 82, 88.167,170
replaceable, 77, 79, 80, 88, 167,201,

251,274
true, 30, 30, 31, 104. 159, 166. 184-186
type. 86. 86, 147.267.274
when. 164-166. 169. 173-175, 177-180.

180, 181. 182, 184. 186, 208, 251.
284.286

while. 93. 104. 104, 113
within. 277, 277

Kirchhoff's current law.ll. 22. 61, 326
definition. 326

L.
languages

Ada. 69
C.l00
C++, 69. 70
Perl, 104
Tel. 104

left limit. 182
definition. 327

linspace function, 152
local type definitions. 80, 82. 88. 97
local variables. 93. 93

definition. 327
log function. 323
10g10 function. 323
looping, 93. 95
lumped, 125

M.
MA1LAB, 5, 148, 149
matrices

concatenation. 149
construction. 149
MA1LAB notation. 148

matrix function. 152
max attribute. 35, 35
max function. 152
min attribute. 35. 35. 64. 275
min function. 152
mod function, 107. 107. 108. 186
model. 17

definition. 327
model. D. 28. 28. 50. 65. 80. 82. 86-88. 91.

167.214,218.269,274.282
partial. 70. 75
creating. 28

model developer. 24. 31, 62, 82. 85. 143. 179.
182.209.274

definition. 327
Modelica

Association. i. 5
Standard Library. 13. 20. 24. 27-29. 31,

35. 36. 47-49. 53-57. 59-63. 65.

Index 341

67.69,70.72,75.76.83. 89, 131,
156, 157. 167, 185. 193. 214, 220.
236.244.249.250.252.263.265-
270.272,275.278.328

Web Site. 13
Modelica

Blocks. 54-56. 61-63. 72. 75. 76
Continuous. 55
Continuous. Integrator, 55
Continuous.TransferFunction,

55
Interfaces. 54.156
Interfaces. InPort.54
Interfaces.OutPort.54
Math. 55
Ma th . Add. 55
Ma th. Feedback. 55
Ma th . Gain. 55
Sources, 55
Sources. Sine, 55

Constants
pi. 28. 65

Electrical
Analog. 70.270

Icons. 266
Example. 269

Math. 31
sin. 20

Mechanics. 244. 250. 265. 266
Rotational. 56. 57. 83. 220. 236.

275
Rotational. Fixed. 59
Rotational. IdealGear.83
Rotational. Interfaces. 272
Rotational. Sensors. 268
Translational. 236

Mechanics.Rotational,89
SIunits, 24. 27.65. 275,328

Pressure. 65
Time. 185
Voltage. 13

modification. 34. 46
definition. 327

modifications. 34. 61, 64
recursive. 61

modulo. 107. 186
MSL. see Modelica Standard Library

N.
named arguments. see function. arguments
ndims function. 152
nested packages. 135.213
nested if expressions. 31
network. 39

definition. 327
Nobel Prize. 203

walter.ponge@terra.com.br

342 INTRODUCTION TO PHYSICAL MODELING WITH MODELICA

node, II, 22, 122
definition, 327

noEvent, 182-184, 186,288
not, 30

0,
Ohm's law, 22
one s function, 152
operators

*.30.150,151
+,30,150
-,30,150
.,42
,,214
/,30
/ /,28
:=,32,93,103,288
<,30
<=,30
<>.30
=.31. 32, 103
==.30
>,30
>=,30
and,30
delay, 33, 33
der, 19,33, 33,43.51,91. 182, 196.208.

283,284,286
derivative. 19
exponentiation, 30
integration, 51
noEvent. 182-184. 186,288
not, 30
or, 30. 166, 174
pre. 175, 176, 182, 196,209
precedence, 30
reinit, 180. 182, 195, 196. 198. 208.

284
relational. 30
ternary, 24

or. 30, 166. 174
ordinary differential equations, 4, 17-19
Oregonator, 133
outer, 222, 223, 223.224. 225
outerProduct function, 152
output, 50, 54, 62, 62, 63, 65, 91. 92, 102,

105,291
output signals, 54

P.
package. 13. 24, 27. 70, 71. 135. 141. 203,

214. 215. 217, 218. 220. 244, 265.
265.266-269,271.272.274-277

creating. 265
definition. 327

package hierarchy, 213
definition, 328

parameter, 19, 29. 29, 34, 62, 84, 99, 137,
140.144,273,329

parameter expression, 33
definition, 328

parameters, 19, 28. 29, 29
partial, 70, 70, 71, 75, 86, 87, 87,135, 167,

200,223,266-269,273,274
model, 70, 75

partial differential equation, 120
definition. 328

PDE
definition, 328

pendulum, 17, 18,20
petri nets, 10
physical constants, 28
physical modeling, xix, xx, 4, 12, 167,242,255,

261,264
definition, 328

physical types, 21, 23, 24, 36
definition, 328

Pi. 28
plant model, 49, 72, 89, 166, 231-233. 252, 255

definition, 328
plant modeling, 12,253
pre, 175, 176, 182, 196,209
product function, 152
protected, 93, 93, 102, 116, 117, 140, 143,

144
in functions. 93
in models, 143

public, 102

Q.
quantity, 29. 34, 35

definition. 328
quantity attribute, 34, 35. 35

R,
Real, 19, 29, 30. 35, 36, 106, 107, 144, 145.

173, 179. 282. 291. 325
equality, 30
inequality, 30

record, 86, 97, 97. 98, 99,102,108,113,179,
214.267,274

creating. 97
redeclare. 78, 82. 82, 88.167,170
reinit. 180. 182. 195, 196. 198,208,284
rem function. 107. 107, 186
replaceable

components. 75, 77, 88
definitions, 79, 88
types. 79, 88

replaceable, 77.79,80.88. 167,201,251.
274

walter.ponge@terra.com.br

resistor, 22, 23
reusability, 69

being general, 84
limiting, 82
through documentation, 85
using parameters, 84

reuse, 69, 199
RLC circuit, 23

s,
Saber, 12
sample function, 169, 184, 184, 185
scalar function, 152
scalars, 144, 328
schematic, 7, 22, 25, 48, 59, 72, 80, 191, 196,

197,204,225,231-233,236,238,
239, 241, 247, 249, 251, 257, 262,
276

definition, 328
second derivative, 33
semantics, xx, 29, 62, 88, 91, 103, 149,221,287

definition, 328
short definition, 80, 86

definition, 328
side effects. l!Q

definition, 328
sign conventions, 42
sign function. 106, 106, 186
simulation time, 24
Simulink. 3, 11

using Modelica with. 5
sin function. 323
sinh function, 323
size function, 93. 95, 96, 144. 145, 152
skew function, 152
solver. 46. 162, 182,289,292

definition. 329
Spice. 3
sqrt function, 106. 106. 150
start attribute, 34. 34. 52. 64. 116, 144, 146,

200.282.283.285.286
state space form. 135.255. 263

definition. 329
static scoping. 214
stiff. 162
stiffness. 288

definition. 329
String. 29. 92. 109, 184. 185.325
subcomponent. 325

definition. 329
subcomponents, see hierarchical
subtype. 87. 87
sum function. 152
symbolic manipulation. 4. 32. 287. 288. 290,

296-298
definition. 329

symmetric function. 152
system model

definition. 329
SystemBuild. 3, 11

T,
tan function, 323
tanh function, 323

Index 343

terminal function, 185, 185
terminate function, 185, 185,251
through variables. 12

definition, 329
time, 24
tolerances, 292
transpose function, 152
true. 30, 30, 31,104,159,166,184-186
type, 19,21,29,75,79

definition, 329
type. 86. 86, 147.267.274
types

U,

Boolean, 29. 155, 156, 166. 179. 184,
207,325

built-in. 29
derived. 29
Integer, 29, 35. 106, 107. 145. 155,

156,171, 179. 184,325
physical, 24. 36
Real, 19,29, 30. 35. 36. 106, 107. 144.

145.173,179.282,291, 325
String. 29, 92. 109. 184. 185,325

unit attribute, 34, 35. 35. 36. 64
unit conversion. 29. 36
units, 29

v.
variability. 29. 179. 179

definition, 329
variable. 29
variables. 19. 28. 29. 29
vector function, 152
vectors, 114. 121. 134. 146, 148. 149

as arguments to functions. 149
in expressions. 30
inner product of. 30
of equations. 30

voltage. 22

W.
when. 164-166. 169. 173-175. 177-180. 180.

181. 182. 184. 186.208,251, 284.
286

while. 93. 104. 104. 113

walter.ponge@terra.com.br

344 INTRODUCTION TO PHYSICAL MODELING WITH MODELICA

within, 277, 277 z,
zeros function, 152

walter.ponge@terra.com.br

<<

 /ASCII85EncodePages false

 /AllowTransparency false

 /AutoPositionEPSFiles true

 /AutoRotatePages /None

 /Binding /Left

 /CalGrayProfile (Gray Gamma 2.2)

 /CalRGBProfile (sRGB IEC61966-2.1)

 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)

 /sRGBProfile (sRGB IEC61966-2.1)

 /CannotEmbedFontPolicy /Error

 /CompatibilityLevel 1.3

 /CompressObjects /Off

 /CompressPages true

 /ConvertImagesToIndexed true

 /PassThroughJPEGImages true

 /CreateJobTicket false

 /DefaultRenderingIntent /Perceptual

 /DetectBlends true

 /DetectCurves 0.1000

 /ColorConversionStrategy /sRGB

 /DoThumbnails true

 /EmbedAllFonts true

 /EmbedOpenType false

 /ParseICCProfilesInComments true

 /EmbedJobOptions true

 /DSCReportingLevel 0

 /EmitDSCWarnings false

 /EndPage -1

 /ImageMemory 1048576

 /LockDistillerParams true

 /MaxSubsetPct 100

 /Optimize true

 /OPM 1

 /ParseDSCComments true

 /ParseDSCCommentsForDocInfo true

 /PreserveCopyPage true

 /PreserveDICMYKValues true

 /PreserveEPSInfo true

 /PreserveFlatness true

 /PreserveHalftoneInfo false

 /PreserveOPIComments false

 /PreserveOverprintSettings true

 /StartPage 1

 /SubsetFonts false

 /TransferFunctionInfo /Apply

 /UCRandBGInfo /Preserve

 /UsePrologue false

 /ColorSettingsFile ()

 /AlwaysEmbed [true

]

 /NeverEmbed [true

]

 /AntiAliasColorImages false

 /CropColorImages true

 /ColorImageMinResolution 150

 /ColorImageMinResolutionPolicy /OK

 /DownsampleColorImages true

 /ColorImageDownsampleType /Bicubic

 /ColorImageResolution 150

 /ColorImageDepth -1

 /ColorImageMinDownsampleDepth 1

 /ColorImageDownsampleThreshold 1.50000

 /EncodeColorImages true

 /ColorImageFilter /DCTEncode

 /AutoFilterColorImages true

 /ColorImageAutoFilterStrategy /JPEG

 /ColorACSImageDict <<

 /QFactor 0.40

 /HSamples [1 1 1 1] /VSamples [1 1 1 1]

 >>

 /ColorImageDict <<

 /QFactor 0.76

 /HSamples [2 1 1 2] /VSamples [2 1 1 2]

 >>

 /JPEG2000ColorACSImageDict <<

 /TileWidth 256

 /TileHeight 256

 /Quality 15

 >>

 /JPEG2000ColorImageDict <<

 /TileWidth 256

 /TileHeight 256

 /Quality 15

 >>

 /AntiAliasGrayImages false

 /CropGrayImages true

 /GrayImageMinResolution 150

 /GrayImageMinResolutionPolicy /OK

 /DownsampleGrayImages true

 /GrayImageDownsampleType /Bicubic

 /GrayImageResolution 150

 /GrayImageDepth -1

 /GrayImageMinDownsampleDepth 2

 /GrayImageDownsampleThreshold 1.50000

 /EncodeGrayImages true

 /GrayImageFilter /DCTEncode

 /AutoFilterGrayImages true

 /GrayImageAutoFilterStrategy /JPEG

 /GrayACSImageDict <<

 /QFactor 0.40

 /HSamples [1 1 1 1] /VSamples [1 1 1 1]

 >>

 /GrayImageDict <<

 /QFactor 0.76

 /HSamples [2 1 1 2] /VSamples [2 1 1 2]

 >>

 /JPEG2000GrayACSImageDict <<

 /TileWidth 256

 /TileHeight 256

 /Quality 15

 >>

 /JPEG2000GrayImageDict <<

 /TileWidth 256

 /TileHeight 256

 /Quality 15

 >>

 /AntiAliasMonoImages false

 /CropMonoImages true

 /MonoImageMinResolution 1200

 /MonoImageMinResolutionPolicy /OK

 /DownsampleMonoImages true

 /MonoImageDownsampleType /Bicubic

 /MonoImageResolution 600

 /MonoImageDepth -1

 /MonoImageDownsampleThreshold 1.50000

 /EncodeMonoImages true

 /MonoImageFilter /CCITTFaxEncode

 /MonoImageDict <<

 /K -1

 >>

 /AllowPSXObjects false

 /CheckCompliance [

 /None

]

 /PDFX1aCheck false

 /PDFX3Check false

 /PDFXCompliantPDFOnly false

 /PDFXNoTrimBoxError true

 /PDFXTrimBoxToMediaBoxOffset [

 0.00000

 0.00000

 0.00000

 0.00000

]

 /PDFXSetBleedBoxToMediaBox true

 /PDFXBleedBoxToTrimBoxOffset [

 0.00000

 0.00000

 0.00000

 0.00000

]

 /PDFXOutputIntentProfile (None)

 /PDFXOutputConditionIdentifier ()

 /PDFXOutputCondition ()

 /PDFXRegistryName ()

 /PDFXTrapped /False

 /CreateJDFFile false

 /Description <<

 /ARA <FEFF0633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F006200650020005000440046002006450646062706330628062900200644063906310636002006480637062806270639062900200648062B06270626064200200627064406230639064506270644002E00200020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644062A064A0020062A0645002006250646063406270626064706270020062806270633062A062E062F062706450020004100630072006F00620061007400200648002000410064006F00620065002000520065006100640065007200200036002E00300020064806450627002006280639062F0647002E>

 /BGR <FEFF04180437043F043E043B043704320430043904420435002004420435043704380020043D0430044104420440043E0439043A0438002C00200437043000200434043000200441044A0437043404300432043004420435002000410064006F00620065002000500044004600200434043E043A0443043C0435043D04420438002C0020043F043E04340445043E0434044F044904380020043704300020043D04300434043504360434043D043E00200440043004370433043B0435043604340430043D0435002004380020043F04350447043004420430043D04350020043D04300020043104380437043D0435044100200434043E043A0443043C0435043D04420438002E00200421044A04370434043004340435043D043804420435002000500044004600200434043E043A0443043C0435043D044204380020043C043E0433043004420020043404300020044104350020043E0442043204300440044F0442002004410020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E0030002004380020043F043E002D043D043E043204380020043204350440044104380438002E>

 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>

 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>

 /CZE <FEFF0054006f0074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006b0065002000730070006f006c00650068006c0069007600e9006d0075002000700072006f0068006c00ed017e0065006e00ed002000610020007400690073006b00750020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e0074007900200050004400460020006c007a00650020006f007400650076015900ed007400200076002000610070006c0069006b0061006300ed006300680020004100630072006f006200610074002000610020004100630072006f006200610074002000520065006100640065007200200036002e0030002000610020006e006f0076011b006a016100ed00630068002e>

 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200036002e00300020006f00670020006e0079006500720065002e>

 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200036002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>

 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200036002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>

 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e400740074006500690064002c0020006500740020006c0075007500610020005000440046002d0064006f006b0075006d0065006e00740065002c0020006d0069007300200073006f00620069007600610064002000e4007200690064006f006b0075006d0065006e00740069006400650020007500730061006c006400750073007600e400e4007200730065006b0073002000760061006100740061006d006900730065006b00730020006a00610020007000720069006e00740069006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e0074006500200073006100610062002000610076006100640061002000760061006900640020004100630072006f0062006100740020006a0061002000410064006f00620065002000520065006100640065007200200036002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e>

 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200036002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>

 /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003BA03B103C403AC03BB03BB03B703BB03B1002003B303B903B1002003B103BE03B903CC03C003B903C303C403B7002003C003C103BF03B203BF03BB03AE002003BA03B103B9002003B503BA03C403CD03C003C903C303B7002003B503C003B103B303B303B503BB03BC03B103C403B903BA03CE03BD002003B503B303B303C103AC03C603C903BD002E0020002003A403B1002003AD03B303B303C103B103C603B10020005000440046002003C003BF03C5002003B803B1002003B403B703BC03B903BF03C503C103B303B703B803BF03CD03BD002003B103BD03BF03AF03B303BF03C503BD002003BC03B50020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200036002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B503C2002003B503BA03B403CC03C303B503B903C2002E>

 /HEB <FEFF05D405E905EA05DE05E905D5002005D105E705D105D905E205D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05EA05D005D905DE05D905DD002005DC05EA05E605D505D205D4002005D505DC05D405D305E405E105D4002005D005DE05D905E005D505EA002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E0020002005E005D905EA05DF002005DC05E405EA05D505D7002005E705D505D105E605D90020005000440046002005D1002D0020004100630072006F006200610074002005D505D1002D002000410064006F006200650020005200650061006400650072002005DE05D205E805E105D400200036002E0030002005D505DE05E205DC05D4002E>

 /HRV <FEFF004F0076006500200070006F0073007400610076006B00650020006B006F00720069007300740069007400650020006B0061006B006F0020006200690073007400650020007300740076006F00720069006C0069002000410064006F00620065002000500044004600200064006F006B0075006D0065006E007400650020006B006F006A00690020007300750020007000720069006B006C00610064006E00690020007A006100200070006F0075007A00640061006E00200070007200650067006C006500640020006900200069007300700069007300200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E006100740061002E0020005300740076006F00720065006E0069002000500044004600200064006F006B0075006D0065006E007400690020006D006F006700750020007300650020006F00740076006F007200690074006900200075002000700072006F006700720061006D0069006D00610020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200036002E0030002000690020006E006F00760069006A0069006D0020007600650072007A0069006A0061006D0061002E>

 /HUN <FEFF0045007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002000fc007a006c00650074006900200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d00650067006a0065006c0065006e00ed007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200061006c006b0061006c006d00610073002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b006100740020006b00e90073007a00ed0074006800650074002e002000200041007a002000ed006700790020006c00e90074007200650068006f007a006f007400740020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200036002c0030002d0073002000e900730020006b00e9007301510062006200690020007600650072007a006900f3006900760061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>

 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)

 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200036002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>

 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>

 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d0069002000730075006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c002000740069006e006b0061006d0075007300200076006500720073006c006f00200064006f006b0075006d0065006e00740061006d00730020006b006f006b0079006200690161006b006100690020007000650072017e0069016b007201170074006900200069007200200073007000610075007300640069006e00740069002e002000530075006b00750072007400750073002000500044004600200064006f006b0075006d0065006e007400750073002000670061006c0069006d006100200061007400690064006100720079007400690020007300750020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200036002e00300020006200650069002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>

 /LVI <FEFF004c006900650074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020007000690065006d01130072006f00740069002000640072006f01610061006900200075007a01460113006d0075006d006100200064006f006b0075006d0065006e0074007500200073006b00610074012b01610061006e0061006900200075006e0020006400720075006b010101610061006e00610069002e00200049007a0076006500690064006f0074006f0073002000500044004600200064006f006b0075006d0065006e00740075007300200076006100720020006100740076011300720074002c00200069007a006d0061006e0074006f006a006f0074002000700072006f006700720061006d006d00750020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200036002e003000200076006100690020006a00610075006e0101006b0075002000760065007200730069006a0075002e>

 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)

 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200036002e003000200065006c006c00650072002e>

 /POL <FEFF004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e>

 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200036002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>

 /RUM <FEFF005500740069006C0069007A00610163006900200061006300650073007400650020007300650074010300720069002000700065006E007400720075002000610020006300720065006100200064006F00630075006D0065006E00740065002000410064006F006200650020005000440046002000610064006500630076006100740065002000700065006E007400720075002000760069007A00750061006C0069007A006100720065002000640065002000EE006E00630072006500640065007200650020015F0069002000700065006E00740072007500200069006D007000720069006D006100720065006100200064006F00630075006D0065006E00740065006C006F007200200064006500200061006600610063006500720069002E00200044006F00630075006D0065006E00740065006C00650020005000440046002000630072006500610074006500200070006F00740020006600690020006400650073006300680069007300650020006300750020004100630072006F0062006100740020015F0069002000410064006F00620065002000520065006100640065007200200036002E003000200073006100750020007600650072007300690075006E006900200075006C0074006500720069006F006100720065002E>

 /RUS <FEFF04180441043F043E043B044C043704430439044204350020044D044204380020043F043004400430043C043504420440044B0020043F0440043800200441043E043704340430043D0438043800200434043E043A0443043C0435043D0442043E0432002000410064006F006200650020005000440046002C0020043F043E04340445043E0434044F04490438044500200434043B044F0020043D0430043404350436043D043E0433043E0020043F0440043E0441043C043E044204400430002004380020043F043504470430044204380020043104380437043D04350441002D0434043E043A0443043C0435043D0442043E0432002E00200421043E043704340430043D043D044B043500200434043E043A0443043C0435043D0442044B00200050004400460020043C043E0436043D043E0020043E0442043A0440044B0442044C002C002004380441043F043E043B044C04370443044F0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E00300020043B04380431043E00200438044500200431043E043B043504350020043F043E04370434043D043804350020043204350440044104380438002E>

 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200073006c00fa017e006900610020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f007600200076006f00200066006f0072006d00e100740065002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300fa002000760068006f0064006e00e90020006e0061002000730070006f013e00610068006c0069007600e90020007a006f006200720061007a006f00760061006e006900650020006100200074006c0061010d0020006f006200630068006f0064006e00fd0063006800200064006f006b0075006d0065006e0074006f0076002e002000200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e0074007900200076006f00200066006f0072006d00e10074006500200050004400460020006a00650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d00650020004100630072006f0062006100740020006100200076002000700072006f006700720061006d0065002000410064006f006200650020005200650061006400650072002c0020007600650072007a0069006900200036002e003000200061006c00650062006f0020006e006f007601610065006a002e>

 /SLV <FEFF005400650020006E006100730074006100760069007400760065002000750070006F0072006100620069007400650020007A00610020007500730074007600610072006A0061006E006A006500200064006F006B0075006D0065006E0074006F0076002000410064006F006200650020005000440046002C0020007000720069006D00650072006E006900680020007A00610020007A0061006E00650073006C006A006900760020006F0067006C0065006400200069006E0020007400690073006B0061006E006A006500200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E0074006F0076002E0020005500730074007600610072006A0065006E006500200064006F006B0075006D0065006E0074006500200050004400460020006A00650020006D006F0067006F010D00650020006F00640070007200650074006900200073002000700072006F006700720061006D006F006D00610020004100630072006F00620061007400200069006E002000410064006F00620065002000520065006100640065007200200036002E003000200074006500720020006E006F00760065006A01610069006D0069002E>

 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200036002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>

 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200036002e00300020006f00630068002000730065006e006100720065002e>

 /TUR <FEFF0130015f006c006500200069006c00670069006c0069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900e70069006d006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069006e0065002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e0020004f006c0075015f0074007500720075006c0061006e002000500044004600200064006f007300790061006c0061007201310020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200036002e003000200076006500200073006f006e00720061006b00690020007300fc007200fc006d006c0065007200690079006c00650020006100e70131006c006100620069006c00690072002e>

 /UKR <FEFF04120438043A043E0440043804410442043E043204430439044204350020044604560020043F043004400430043C043504420440043800200434043B044F0020044104420432043E04400435043D043D044F00200434043E043A0443043C0435043D044204560432002000410064006F006200650020005000440046002C0020043F044004380437043D043004470435043D0438044500200434043B044F0020043D0430043404560439043D043E0433043E0020043F0435044004350433043B044F04340443002004560020043404400443043A0443002004340456043B043E04320438044500200434043E043A0443043C0435043D044204560432002E0020042104420432043E04400435043D04560020005000440046002D0434043E043A0443043C0435043D044204380020043C043E0436043D04300020043204560434043A04400438043204300442043800200437043000200434043E043F043E043C043E0433043E044E0020043F0440043E043304400430043C04380020004100630072006F00620061007400200456002000410064006F00620065002000520065006100640065007200200036002E00300020044204300020043F04560437043D04560448043804450020043204350440044104560439002E>

 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200039002000280039002e0033002e00310029002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>

 >>

>> setdistillerparams

<<

 /HWResolution [2400 2400]

 /PageSize [595.276 841.890]

>> setpagedevice

