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Preface 

In writing this book, my goal is to demonstrate how easy, useful and fun, the 
modeling of physical systems can be. For me, there is nothing that a computer 
can be used for that is more interesting than simulating the behavior of physical 
systems. The term "physical systems" refers to the behavior of physics-based 
models found across many disciplines (e.g., electrical engineering, mechanical 
engineering, chemistry, physics). Such systems can be identified by their use 
of conservation principles (e.g., first law of thelmodynamics and conservation 
of mass). 

In this book I will describe how the Modelica modeling language can be 
used to describe the behavior of physical systems. Modelica can be used for 
a wide range of applications from simple systems with only a few degrees of 
freedom all the way up to complex systems made of large networks of reusable 
components. 

The first part of the book is focused on introducing the reader to the Mod­
elica modeling language. The target audience would be somebody with an 
understanding of basic physics and calculus, an interest in modeling and no 
knowledge of Modelica. The intent is to cover all the basics of the language 
using simple examples and enable the reader to begin writing models in Mod­
elica. 

Each chapter in the first part of the book starts with an overview of the 
important concepts the chapter introduces. Whenever a new term is introduced 
it will appear italicized and a definition for it will be included in the glossary. 
The overview is then followed by a series of examples meant to gradually 
introduce Modelica functionality. I feel that examples are an important part of 
the learning process. I have tried to avoid using contrived examples. In fact, 
many of the examples come from real world problems I have encountered. The 
difficulty with examples is that they do not introduce material in a structured 
way, but rather in a "flowing" way. For this reason, many chapters include 
a "Language Fundamentals" section which attempts to formalize all of the 
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xx INTRODUCTION TO PHYSICAL MODELING WITH MODELICA 

concepts introduced by the examples. Readers may feel free to skip over the 
material in the fundamentals section if they feel comfortable with the features 
presented in that chapter. An important note about the structure of this book is 
that each example introduces new concepts. In other words, do not assume 
that because you understood the first example in a chapter all the remaining 
examples are not worth studying. 

The second part of the book demonstrates how to most effectively use the 
powerful features of the Modelica language. This part is intended for people 
who are already familiar with the basics of the Modelica language, including 
existing users of Modelica and beginners who have completed the first part. 

This book covers nearly all of the features of the Modelica language. How­
ever, much of this material is only required in advanced applications. The 
"core" material required to begin doing meaningful modeling can be found in 
Chapters 1, 2, 3 and 7. Readers may wish to focus their attention on those 
chapters first and then consult the other chapters as they become more proficient. 

Realize that it is not possible to introduce every nuance of the Modelica lan­
guage through examples. Once you have covered the material in this book, 
you will require a definitive reference. The ultimate source of information 
about Modelica is the language specification itself. For this reason, the Model­
ica language specification is included on the companion CD-ROM. While not 
appropriate for learning the language, it is appropriate as a reference on the 
semantics of the language. 

In summary, this book includes material that will have broad appeal and 
will serve both beginners and experienced users trying to get the most out of 
physical system modeling. 

MICHAEL TILLER 
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the first papers to demonstrate the scalability of the Modelica approach. His 
contribution to internal projects at Ford and subsequent publications on that 
work have been essential to their success. 

I would like to close by pointing out all of the open source tools I have used in 
the preparation of this book. I would like to show my appreciation to the authors 
of Grace, xfig, transfig, XEmacs, CVS, TkCVS, WinCVS, Kdvi, Ghostview, 
Ghostscript, TEX, Jb.TEX, AucTeX, MikTeX, Linux, KDE and Gnome. It should 
be pointed out that all the source code listings of Modelica models in this book 
were done with the Jb.TEX listings package by Carsten Heinz. 
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Chapter 1 

INTRODUCTION 

1.1 WHAT IS MODELICA? 
Before diving into the details of modeling using Modelica, let me provide a 

brief description of what Modelica is, why it was developed and what it is used 
for. 

Since the invention of the computer, modeling and simulation have been 
an important part of computing. Initially, modelers were burdened with con­
verting their models into systems of ordinary differential equations (ODEs) 
and then writing code to integrate those differential equations in order to run 
simulations. Eventually, a wide range of integrators were developed as inde­
pendent software units and modelers were able to focus on the formulation of 
differential equations and use "off-the-shelf' integrators for simulation. This 
trend of allowing modelers to focus more on the behavioral description of their 
problems and less on the solution methods has continued ever since. 

In the last three decades, numerous tools have been developed to assist 
modelers in performing simulations. Some of these were general purpose 
simulation tools such as ACSL I , Easy52, SystemBuild3 and Simulink.4 Other 
tools were developed for simulations in specific engineering domains such 
as electrical circuits (e.g., Spice5), multi-body systems (e.g., ADAMS6) or 
chemical processes (e.g., ASPEN Plus7). Each type of tool has its advantages. 

J ACSL is a trademark of The AEgis Technologies Group. Inc. 
2Easy5 is a trademark of The Boeing Company. 
3SystemBuild is a trademark of Wind River Systems, Inc. 
4Simulink is a trademark of The MathWorks. Inc. 
5 Spice is a trademark of the University of California at Berkeley. 
6 ADAMS is a trademark of Mechanical Dynamics, Inc. 
7 ASPEN Plus is a trademark of Aspen Technologies, Inc. 
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4 INTRODUCTION TO PHYSICAL MODELING WITH MODELICA 

For example, general purpose tools do not restrict modelers to a particular 
domain but they may require the modeler to spend some time formulating 
their models for that particular tool. Likewise, tools developed for a specific 
engineering domain have numerical methods and graphical user interfaces 
which are optimal for that particular domain but they restrict the ability of the 
modeler to create mixed-domain models. 

In 1978, Hilding Elmqvist pioneered, as part of his Ph.D. thesis, a new 
approach to modeling physical systems by designing and implementing the 
Dymola modeling language (Elmqvist, 1978). The basic idea behind the Dy­
mola modeling language was to use general equations, objects and connections 
to allow model developers to look at modeling from a physical perspective 
instead of a mathematical one.8 For the Dymola implementation, graph theo­
retical and symbolic algorithms were introduced to transform the model to an 
appropriate form for numerical solvers. An important milestone in the devel­
opment of this approach came in 1988 with the development of the Pantelides 
algorithm for DAE index reduction (Pantelides, 1988). Following Dymola, 
numerous other tools (e.g., Omola, see Mattsson et al., 1993) were developed 
to further explore this new approach to modeling. 

A major problem with all simulation tools has been that models developed 
using one tool could not be used by another. In 1996, Hilding Elmqvist 
initiated an effort to unify the splintered landscape of modeling languages 
by initiating the development of the Modelica modeling language. Similar 
initiatives have been undertaken by various other groups (see Heinkel et al., 
2000 and Fitzpatrick and Miller, 1995) but these efforts have been focused 
primarily on the electrical domain, while Modelica strives to be completely 
domain neutral. 

The basic idea behind Modelica was to create a modeling language that 
could express the behavior of models from a wide range of engineering do­
mains without limiting those models to a particular commercial tool. In other 
words, Modelica is both a modeling language and a model exchange speci­
fication. To accomplish this goal, the developers of previous object-oriented 
modeling languages like Allan, Dymola, NMF, ObjectMath, Omola, SIDOPS+ 
and Smile were brought together with experts from many engineering domains 
to create the specification for the Modelica language based on their wide range 
of experiences? 

Modelica can be used to solve a variety of problems that can be expressed 
in terms of differential-algebraic equations (DAEs) describing the behavior 
of continuous variables. The ability to formulate problems as DAEs rather 
than ODEs reduces the burden on the model developer because less effort is 

SThe physical and mathematical approaches are contrasted in Chapter II. 
9 A detailed history of how the Modelica modeling language was developed is contained in Appendix A. 
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involved in formulating equations. In addition to handling continuous variables, 
Modelica includes features for describing the behavior of discrete variables 
(e.g., digital signals). Often, it is convenient or even necessary to simulate both 
continuous and discrete behavior at the same time. Modelica allows both forms 
of behavior to be described within the same system model or even the same 
component model. 

Modelica is a non-proprietary modeling language and the name is a trade­
mark of the Modelica Association which is responsible for publication of 
the Modelica language specification. At present, Modelica is not an ISO, 
ANSI or IEEE standard. This means that Modelica is presently a "moving 
target" in much the same way as C++ was for about a decade. In the case 
of C++, avoiding the rush to standardize did not prevent people from making 
use of the language and ultimately led to a much better language. Hope­
fully, Modelica will follow a similar path. If a need can be demonstrated 
for functionality not already present in the Modelica language, users can 
work with the Modelica Association to fill functionality gaps. The current 
Modelica specification can be found at the Modelica Association web site: 
http://www . model ica . org. Version 1.4 of the Modelica specification 
is included on the companion CD-ROM. 

If you have ever been involved in large scale modeling projects you proba­
bly recognize that model development is in many ways similar to large scale 
software development. Just like a programming language, the purpose of a 
modeling language is to describe the behavior of small pieces of a larger sys­
tem. A modeling language should encourage reuse of previous work and help 
manage the complexity of systems as they become larger. It should be possible, 
once a reusable set of components has been created, to work at an increasingly 
higher level (i.e., getting away from writing equations at the component level 
and working more on the assembly of a complex system). Ultimately, this 
leads to the ability to build systems using a "top-down" approach rather than a 
"bottom-up" approach. 

All simulation results presented in this book were generated using Dymola 
(Dynamic Modeling Laboratory).l0 An evaluation copy of Dymola is pro­
vided by Dynasim (Elmqvist et aI., 2001) on the companion CD-ROM so that 
readers may gain hands-on experience with using the Modelica language. To 
understand how to simulate Modelica models using Dymola, please read the 
documentation titled "Getting Started with Dymola" which is included with 
the Dymola software. Dymola can also be used to generate models that can be 
imported into Simulink. 

IODymoia is a trademark of Dynasim AB. 
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6 INTRODUCTION TO PHYSICAL MODELING WITH MODELICA 

1.2 WHAT CAN MODELICA BE USED FOR? 
Modelica can be used for many things, including simulation of electrical 

circuits (Clauss et aI., 2000), automotive powertrains (Otter et aI., 2000), power 
system stability (Larsson, 2000), vehicle dynamics (Tiller et aI., 2000) and 
hydraulic systems (Beater, 2000). However, the best way to understand what 
Modelica can be used for is through an example. While most of the chapters in 
the book use relatively simple examples to highlight specific language features, 
we will start by giving a glimpse of "the big picture". 

In this section we will show bits and pieces of a substantial library of 
Modelica models for simulating automobile performance. The library was 
developed for this book to demonstrate how reasonably complex systems can 
be modeled. While the library contains a large number of models, most of 
the models are quite simple. Because these models are relatively simple, they 
will give us only a rough estimate of how particular automobile designs will 
perform. The Modelica models from this section are provided on the companion 
CD-ROM and discussed in greater detail in Chapter 10. 

Figure 1.1. A 0-100 kilometer per hour test. 

Imagine we wish to predict the acceleration performance for a particular 
sports car design. In order to judge the pelformance, we will measure the time 
it takes the vehicle to accelerate from zero to one hundred kilometers per hour. 
Figure 1.1 shows our performance test which includes a sports car and a race 
track. 

Do not be fooled into thinking the model we are simulating is not detailed just 
because the picture looks simple. This is just the top-level view of the problem. 
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Figure 1.2 shows what we find if we look inside our sports car model. Behind 
the scenes, the sports car model includes models of the chassis, transmission 
and engine as well as a shifting strategy that decides when to change gears. 
Behind all of these images are behavioral models (i.e., the images themselves 
are just used to help identify what the models represent). As we shall see, even 
this view of the sports car gives a deceptively simple impression. 

road 

Figure 1.2. Taking a look at what is under the hood. 

The engine model for our sports car is one of many components in Figure 1.2. 
If we open up the engine model we can see each of the four individual cylinders 
(shown in Figure 1.3). Again, the images of engine cylinders are graphics added 
to the models so they can be easily identified as engine cylinders. Behind each 
of these pictures is a detailed schematic of the components used to model an 
individual engine cylinder. 

If we open up one of these cylinders, we find the numerous low-level com­
ponent models shown in Figure 1.4. By zooming in to each of the various 
models shown so far, we have gone from the complete vehicle level (shown 
in Figure 1.1) all the way down to models of individual components such as 
engine valves (shown in Figure 1.4). The ability to construct such hierarchies 
is a central feature of Modelica. In addition, the ability to include graphical 
representations for the models, as we have seen in these figures, is also a feature 
provided by Modelica. 

Each of the graphics shown in Figure 1.4 represents a component involved 
in the function of an individual engine cylinder. We cannot "zoom" into these 
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8 INTRODUCTION TO PHYSICAL MODELING WITH MODELICA 

crankshaft 

Figure 1.3. Looking inside the engine. 

models because they represent the smallest pieces in the system. In a sense, 
they are the "atoms" of our system. It is important to understand that these 
pieces are not magical primitives that just happen to come with the software 
package we used to build this model. In fact, it is at this component level 
that we tum our attention away from all the graphics toward the real subject 
of this book: the Modelica modeling language. Previously, we have seen 
how the Modelica modeling language can be used to describe hierarchies of 
components. At the "atomic" level, it can also be used to describe the behavior 
of each of these components. The remainder of the book will provide all the 
necessary information to build such components and an enormous variety of 
other components in other engineering domains. 

Building models is fun, but ultimately we want to see results from such mod­
els. When we run our simulation, we find that the sports car model presented 
in this section can go from zero to 100 kilometers per hour in 6.88 seconds. 
Figure 1.5 shows several different pieces of information recorded during the 
test. Notice how the transmission gear changes at different vehicle speeds. We 
can also see how the engine speed increases up until the transmission shifts 
and then it drops again. These are just a handful of signals we can extract from 
our simulation. Other useful pieces of information available include manifold 
pressure, trapped mass in the cylinder, traction force on the tires, transmission 
clutch pressures, etc. Studying such information can provide important insights 
during the design process. 

Once we have a model that gives us good results, the next logical step is to 
ask ourselves "what if?". The sports car in our race model includes numerous 
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Figure 1.4. Looking inside an individual engine cylinder. 

design details. For example, we can easily specify the engine geometry, valve 
timing, shift schedule, vehicle weight, tire radius, and so on. By changing these 
values, we can determine the impact each of these parameters has on overall 
system performance. 

Remember, Modelica is a domain-neutral modeling language useful for 
creating models from nearly any engineering domain. The remainder of the 
book shows how models from many other engineeling domains can be created 
using the Modelica modeling language. 
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Figure 1.5. Simulation results from a sample race. 

1.3 MODELING FORMALISMS 
Before we start discussing how to use Modelica to develop models, let us 

take a moment to talk about modeling in general. There are many formalisms 
used for modeling continuous systems. An excellent overview of different 
formalisms is presented in Astrom et aI., 1998. Modelica supports two of the 
common approaches to modeling in engineering. I I The first is called block 
diagram modeling and the other is called acausal modeling.12 In this section 
we will discuss block diagrams and acausal formulations to better understand 
the differences between them. 

1.3.1 Block diagrams 
Using block diagrams, a system is described in terms of quantities that 

are known and quantities that are unknown. A block diagram consists of 
components, called blocks, which use the known quantities to compute the 
unknown quantities. A block diagram of a PI (proportional-integral) controller 
is shown in Figure 1.6. 

II In addition, other formalisms like bond graphs (see Cellier. 1991) and petri nets can also be described in 
Modelica. 
12Acausal modeling is sometimes referred to as first principles modeling. 
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On the left side of Figure 1.6 are the known quantities We (the desired 
speed), and Wm (the actual motor speed as read by the speed sensor). On the 
right side of Figure 1.6, the torque used to control the system is computed. 
In between are the blocks which describe the computations being performed. 
In this example, the difference block takes the desired and sensed speed as 
an input and computes as an output the difference (i.e., the error). One gain 
block then multiplies the speed difference by the gain, Kp. The scaled speed 
difference is passed through another gain block, scaled by -A and integrated. 
We compute the control torque by summing the outputs from the gain blocks. 

This approach to modeling is often used when designing control systems. 
For example, tools such as. Simulink and SystemBuild use this approach. A 
block diagram is a natural way of expressing a control system design. However, 
such diagrams have their limitations as we shall demonstrate in Chapter 11. 

1.3.2 Acausal modeling 
Describing system or component behavior in terms of conservation laws 

is referred to as acausal modeling. With acausal formulations, there is no 
explicit specification of system inputs and outputs. Instead, the constitutive 
equations of components (e.g., Ohm's law for a resistor) are combined with 
conservation equations to determine the overall system of equations to be 
solved. For example, when modeling electrical systems, like the circuit shown 
in Figure 1.7, one can use Kirchhoff's current law (a conservation law), which 
states that the sum of the currents into a particular node (in this case, a, b or 
c) must be zero. The application of conservation laws results, in general, in 
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12 INTRODUCTION TO PHYSICAL MODEUNG WITH MODEUCA 

systems of differential-algebraic equations (DAEs). Dymola and Saber13 are 
two examples of tools that allow acausal formulations. 

L=lOOmH R=15 n 

+ n " --'--g-...... -
1= 
"l 

v 

I 
Figure 1.7. RLC circuit schematic. 

In order to formulate acausal models, it is useful to identify the through 
variables and the across variables for the component being modeled. In 
general, the across variable represents the driving force in the system and 
the through variable represents the flow of some conserved quantity. For an 
electrical system, the voltage is the across variable and the current is the through 
variable. Note that the product of the through variable and the across variable 
typically has the units of power (i.e .• Watts in SI units). Table 1.1 includes 
several examples of through and across variables for different engineering 
domains. 

Domain Through Across 
Electrical Current (A) Voltage W) 
Mechanical (translational) Force (N) Velocity (m/8) 

Mechanical (rotational) Torque (Nm) Angular Velocity (Tad/8) 

Hydraulic Flow Rate (m" / 8) Pressure (N/m") 

Table 1.1. Through and across variables from various domains. 

1.3.3 Further remarks on formalisms 
As we shall demonstrate in Chapter 11, block diagrams are convenient for 

control system modeling and acausal formulations are convenient for physical 

13 Saber is a trademark of Avant! Corporation. 
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system modeling (i.e., plant modeling). Not only does Modelica support both 
of these important types of modeling, but it allows both of them to be used 
together. 

1.4 MODELICA STANDARD LIBRARY 
In addition to defining the specification for the Modelica language, the 

Modelica Association also publishes a standard library of Modelica models. 
This library, called the Modelica Standard Library (or MSL), is available free 
of charge. 14 

The MSL was developed so that users of the Modelica language would 
not have to create their own basic models for the common modeling domains. 
Throughout this book, we start off by developing Modelica models from scratch 
to demonstrate the fundamentals of the language. Then, we point out similar 
models which already exist within the MSL. In this way, we can cover language 
fundamentals and models available in the MSL. 

Keep in mind that the MSL is not a collection of black box models which are 
hard-wired into a tool. Instead, the Modelica representation of all the models 
can be viewed to help understand exactly what behavior is modeled. These 
models are no different than any other Modelica models. It should be noted 
that while the models contained in the MSL are useful, you are not required to 
use them. 

While reading this book, be on the lookout for uses of the MSL. These can 
be easily recognized by looking for names that begin with "Modelica. ". All 
such entities belong to the MSL. For example, the physical type Model ica. -
SIunits. Vol tage is defined in the MSL. You should interpret this name to 
mean "Va 1 t age is a type defined in the S I un its package nested inside the 
Modelica package". The package structure of Modelica libraries (including 
the MSL) is hierarchical and may contain numerous nested packages. Do not 
be surprised to see much longer names like: 

Modelica.Electrical.Analog.Basic.Resistor 

1.5 BASIC VOCABULARY 
The Modelica language specification uses a precise vocabulary for describing 

the elements of the Modelica language. While being rigorous is necessary in a 
formal specification, it is not always good in learning material. For this reason, 
this book uses a simplified vocabulary. In the remaining chapters, the following 
terms are used: 

14As with most things related to Modelica, the MSL can be found at http://www ,modelica. org 
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14 INTRODUCTION TO PHYSICAL MODELING WITH MODELICA 

model A model is a behavioral description. For example, a model of a resistor 
is described by Ohm's law. The model is a description of resistor behavior, 
not the resistor itself. In other words, it is important to separate the idea of a 
resistor model (i.e., V = I *R) from the resistor instances (components with 
different values of resistance, R). If you are familiar with object-oriented 
programming, a model is analogous to a class. 

component A component is an instance of a model. So, for a given model 
(e.g., a resistor model), the actual instances (e.g., the resistors) would be 
components. 

subcomponent A subcomponent is used to refer to components which are 
contained within other components. For example, a resistor might be a sub­
component of another component like an electrical circuit. Furthermore, the 
electrical circuit could be a subcomponent of an appliance. Subcomponents 
are used to form hierarchical models. 

system model A system model is a model which is completely self-contained. 
In other words, it does not have any external connections and it contains the 
same number of equations as unknowns. 

quantity A quantity refers to those entities which have a value (e.g., the 
resistance of a resistor). In Modelica, all values are either real, integer, 
string or boolean. Furthermore, a quantity might be a scalar or an array. 

definition The description of all variables, parameters and equations associ­
ated with a model is called the model definition. 

declaration When a component, parameter, variable or constant is instantiated 
(either in a system model or inside another component), that is called a 
declaration. 

package A package refers to a collection of Modelica models, which are 
meant to be used together. For example, an electrical package would likely 
include definitions of resistor, capacitor and inductor models. 

keyword A keyword is a word, such as mode 1, that has a specific meaning 
in Modelica. As a result, keywords are reserved words and cannot be used 
as names in declarations (e.g., of variables). In the examples, the keywords 
will appear in bold. 

Use the explanations of these terms as a reference to help understand the 
more complicated explanations in this book. The glossary, which stm1s on page 
324, includes these terms and many more used in this book. 
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1.6 SUMMARY 
In summary, the Modelica language is a non-proprietary, domain-neutral 

modeling language that supports several different modeling formalisms. Mod­
elica can be used to model both continuous and discrete behavior and an 
extensive multi-domain library of models known as the Modelica Standard 
Library is available free of charge at http://www . model ica. org. 
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Chapter 2 

DIFFERENTIAL EQUATIONS 

2.1 CONCEPTS 
Modelica is a powerful language for describing the behavior of dynamic 

systems. At the heart of any model are mathematical equations. We begin our 
discussion of Modelica by showing how simple systems of differential equa­
tions can be expressed using Modelica. The expression of differential equations 
is the most basic example of Modelica's capabilities. Subsequent chapters will 
use increasingly complex models to demonstrate how more advanced features 
help model detailed physical systems, manage system complexity and promote 
reuse of models. 

In this chapter, we will demonstrate how to write some simple models 
which include parameters, continuous variables and equations. These examples 
should provide enough information to allow readers to begin creating their 
own simple models. Remember that each of the examples introduces new 
concepts. The final section of this chapter provides a comprehensive review of 
the language features covered in this chapter. 

2.2 DIFFERENTIAL EQUATIONS 
2.2.1 Equations of motion 

Let us consider the motion of a pendulum like the one shown in Figure 2.1. 
From Euler's second law we know that the sum of the torques about a fixed 
point must be equal to zero. There are two torques applied at the pivot point, 
x, in Figure 2.1: 

Tg mgL sin(O) 
mL2jj 

(2.1) 

(2.2) 
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18 INTRODUCTION TO PHYSICAL MODELING WITH MODELICA 

Figure 2.1. A simple pendulum 

where e is the angular position (relative to gravity), L is the length of the 
pendulum, m is the mass of the pendulum, 9 is the acceleration due to Earth's 
gravity, Tg is the torque due to gravity and Ti is the inertial torque. Using the 
fact that the sum of the torques about the pivot point, x, must be zero, we get: 

Tg + Ti = mgL sin(e) + mL2fj = 0 (2.3) 

which we can further reduce to 
.. 9 
e(t) = -L sin(e(t)) (2.4) 

Finally, one simplifying assumption we can make, for the time being, is to 
assume that e is small which means we can approximate sin (e) as just e. In 
this case, our differential equation becomes simply: 

fj(t) = -fe(t) (2.5) 

Let us transform Equation (2.5) into a system of first-order ordinary differential 
equations (ODEs): 

(2.6) 

where w is the angular velocity of the pendulum. Given initial values for wand 
e, Equation (2.6) can be integrated to obtain the behavior of the pendulum as a 
function of time. 
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model SimplePendulum 
parameter Real L=2; 
constant Real g= 9. 81 ; 
Real theta; 
Real omega; 

equation 
der(theta) = omega; 
der(omega) = -(g/L)*theta; 

end SimplePendulum; 

Differential Equations 19 

Example 2.1. Model of a simple pendulum. 

2.2.2 Modelica model 
Example 2.1 shows how we can use Mode1ica to represent the behavior of 

the pendulum in Figure 2.1. We start by using the keyword model followed by 
the name of our model, SimplePendulum. Next, we define the parameters 
and constants that characterize our model as well as the variables which appear 
in our equations. The parameters are quantities which remain constant during a 
simulation but may have different values from one simulation to another (e.g., 
L). The variables in a problem are those quantities which are a function of time 
(e.g., e and w). Lastly, constants are those quantities, like the acceleration due 
to gravity, which are unlikely to change. To complete the model, an equation 
section is created which includes the equations shown in Equation (2.6). 

Note that the parameter quantities in Example 2.1 have the parameter 
keyword in front of them. Likewise, constants are identified by the use of 
the constant keyword. Since the declarations of omega and theta are not 
qualified by parameter or constant, they are assumed to be variables. All 
the quantities we have described are of type Real which means they are real 
numbers (as opposed to integers, for example). 

Examining the equation more closely, we see that Modelica includes a 
built-in operator called der which is used to represent the time delivative 
of a variable. Example 2.1 describes a complete set of first-order ordinary 
differential equations with two equations and two unknowns. Figure 2.2 shows 
the simulated solution of Example 2.1. 

Now let us reconsider the assumption that e ~ sin(e). If we anticipate 
seeing a wide range of motion for our pendulum, we would use the following 
non-linear system of differential equations: 

( W8 ) =(-f~n(e)) (2.7) 

Example 2.2 shows that only a simple change is required to the Modelica model. 
Apmt from changing the model name, the only other change is to use the 
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Figure 2.2. Solution for e(t) given L=2, 0(0) = 0.1 and w(O) = O. 

Modelica. Math. s in function. If we were to plot the linear and non-linear 
models for small displacements (such as shown in Figure 2.2), you would not 
expect to be able to see the difference. However, Figure 2.3 demonstrates 
that for large displacements there is a significant difference between these two 
models. 

model NonlinearPendulum 
Real theta; 
Real omega; 
parameter Real L=2; 
constant Real g=9. 81; 

equation 
der(theta) = omega; 
der(omega) = -(g/L)*Modelica.Math.sin(theta); 

end NonlinearPendulum; 

Example 2.2. Model of a pendulum without linear assumption. 

This simple example provides a good framework to demonstrate the basic 
features of Modelica. 
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Time [sl 

Figure 2.3. Linear and non-linear solutions for 8(t) given L=2, 8(0) = 2.3 and w(O) = O. 

2.3 PHYSICAL TYPES 
Physical modeling involves specifying relationships between various quan­

tities such as voltage, pressure, mass, etc. Modelica includes features which 
allow us to specify physical types (e.g., voltage, pressure, mass) and associate 
them with quantities in our models. To demonstrate how this is done, we will 
build a model of an RLC electrical circuit. An RLC circuit contains a resistor, 
capacitor and inductor and exhibits oscillatory behavior in response to voltage 
disturbances. 

L=IOOmH R=15 Q 

+ 
v 

Figure 2.4. An RLC circuit. 
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2.3.1 Constitutive equations 
Figure 2.4 shows the schematic of an RLC circuit. Before we write our 

Modelica model of this system, we must first write down the equations for 
each of the components in the system. Unlike the previous example, there is 
less manipulation of the fundamental equations. 

First, let us assume that the voltage source, V, jumps from 0 Volts to 1 Volt 
after one second of simulation. We can then write an explicit expression for 
the voltage at node a as follows: 

O~t<l 

t ? 1 

Next, we consider the inductor model. The equation for the current through 
the inductor (from node a to node b) is: 

LdiL=(V,_Vi) 
dt a b 

Likewise, using Ohm's law, the current through the resistor (from node b to 
node c) can be expressed as: 

R· iR = Vb - Vc 

Finally, the current through the capacitor leaving node c and going to ground 
can be expressed as: 

. C dVc zc= -
dt 

By using Kirchhoff's current law, we know that the sum of the currents 
going into each node must be zero. This gives us: 

ZV - ZL 0 

ZL - ZR 0 

ZR - Zc 0 

Putting this all together, we have the following unknowns: 

and the following equations: 

{ ~ O~t<l 

t ? 1 

(2.8) 

(2.9) 

(2.10) 

(2.ll) 
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LdiL 
dt 

(Va - Vb) (2.12) 

R· iR Vb - Ve (2.13) 

~c 
eVe 

dt 
(2.14) 

2V - ~L 0 (2.15) 

~L - ~R 0 (2.16) 

2R - 2C 0 (2.17) 

Note that we could have simplified these equations further. For example, 
from Equations (2.15)-(2.17) we know that the current through all the compo­
nents must be equal to iv. This would have eliminated the need to solve for 
iR, ic and iL altogether. For this example, we use all seven equations and all 
seven unknowns to demonstrate that a priori manipulation of the equations is 
not necessary. Instead, the information given in the model is sufficient for such 
manipulations to be performed automatically by the simulator. 

2.3.2 Modelica model 

model RLC 
parameter Modelica.Slunits.Resistance R=15; 
parameter Modelica.Slunits.Capacitance C=100e-6; 
parameter Modelica.Slunits.lnductance L=100e-3; 

Modelica.Slunits.VoltageV_a; 
Modelica.Slunits.Voltage V_b; 
Modelica.Slunits.Voltage V_c; 
Modelica.Slunits.Current i_V; 
Modelica.Slunits.Current i_R; 
Modelica.Slunits.Current i_C; 
Modelica.Slunits.Current i_L; 

equation 
V a = if time>=l then 1.0 else 0.0; 
L*der(i_L) = (V_a - V_b); 
R*i R = V_b - V_c; 
i C C*der(V_c); 
i V - i L 0; 
i L - i R 0; 
i R - i C 0; 

end RLC; 

Example 2.3. Model for an RLC circuit. 

The Modelica description of the RLC model is shown in Example 2.3 and the 
results of simulating this circuit can be seen in Figure 2.5. The model shown in 
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1.5 

0.5 

o 

Time [sl 

Figure 2.5. Voltage response of model RLC. 

Example 2.3 covers several new topics not seen in the previous example. The 
first difference is the appearance of physical types (Le., Vol tage, Current, 
Resistance, Capacitance and Inductance). As we shall see later, 
these physical types provide important information about the quantities they are 
associated with (e.g., units, limits and default values). These physical types are 
defined in a package called Modelica. SIuni t s. This is why the physical 
types all contain Modelica. SIuni ts in their name. 

In the equation section, we see the first use of the if keyword. The use 
of if in this context is called an if-expression. l For this example, when time 
is less than 1, Va = 0 and once time is greater than I, Va = 1. The variable 
time is used to represent simulation time. 

2.4 DOCUMENTING MODELS 
In this section, we create a model of a hydraulic system and show how 

to include documentation in models. Such documentation not only helps 
the model developer to remember how the model functions, it also helps the 

I An if expression is similar to the ternary operator in C. 
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developer and any new users of the model to understand exactly what each of 
the components and quantities represent. 

T 
HI -r-

1~~~ ............... 1 
Figure 2.6. Two hydraulic tanks filled with liquid. 

Figure 2.6 shows the schematic for a hydraulic system composed of two 
tanks connected by a cylindrical pipe. For this example, we assume that the 
fluid in the tanks is incompressible and each tank has a constant cross-sectional 
area. 

2.4.1 Constitutive equations 
The first step in computing the flow, Q, through the pipe is to know the 

pressure at the bottom of each tank. To determine the pressure we use the 
following equation: 

P=pgH 

where P is the pressure, H is the height of the fluid in the tank, 9 is the 
acceleration due to gravity and p is the density of the liquid. Using this 
relationship, the pressures in the two tanks are determined by the following 
equations: 

(2.18) 

(2.19) 

Now that we know the pressures, we need to compute the volumetric flow 
rate, Q, through the pipe. For laminar flow through a cylindrical pipe, we can 
use the Hagen-Poiseuille relationship (see, e.g., Ogata, 1978): 

1[D4 

Q = (PI - P2) 128liL (2.20) 

where PI is the pressure in the tank on the left, P2 is the pressure in the tank 
on the right, D is the diameter of the pipe connecting the two tanks, Ii is the 
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dynamic viscosity and L is the length ofthe pipe. Note that the sign convention 
for Q is that a positive value indicates flow from the tank on the left to the tank 
on the right. 

Lastly, we need an equation which relates the volumetric flow rate through 
the pipes with the change in fluid height in each tank. Since the fluid flowing 
between the tanks is incompressible, the volume of fluid flowing through the 
pipe must be the same as the volume of fluid exchanged with the tanks. This 
behavior can be expressed by the following equations: 

(2.21) 

(2.22) 

where A 1 is the cross-sectional area of the tank on the left and A2 is the 
cross-sectional area of the tank on the right. 

2r-----,-----,------,-----,-----,------,-----,-----, 

1.5 

2.4.2 

.......... 
......... 

.......... ---

5 10 15 

Time [s] 

Figure 2.7. Solution with initial conditions Hl=O and H2=2 

Modelica model 

20 

Example 2.4 shows the Modelica model that con'esponds to the hydraulic 
system shown in Figure 2.6. Figure 2.7 shows the simulation results for that 
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model TwoTanks "Hydraulic system involving two tanks" 
import Modelica.Slunits; 

II Constants 
constant Real pi=Modelica.Constants.pi; 
constant Real g=Modelica.Constants.g_n; 

II Parameters 
parameter SIunits.Length L=O.I "Pipe length"; 
parameter SIunits . Length D=O. 2 "Pipe diameter"; 
parameter SIunits .Density rho=O. 2 "Fluid density"; 
parameter SIunits.DynamicViscosity mu=2e-3; 
parameter SIunits .Area AI=l. 0 "Area of left tank"; 
parameter SIunits.Area A2=2.O "Area of right tank"; 
parameter SIunits.KinematicViscosity c=(pi*D A 4)/(128*mu*L); 

I I Variables 
SIunits.Pressure PI, P2; 
SIunits.Length HI, H2; 
SIunits.VolumeFlowRate Q; 

equation 
II Pressure equations 
PI rho*HI*g; 
P2 = rho*H2*g; 

II Flow rate 
Q = c* (HI-H2) ; 

II Conservation of mass 
AI*der(HI) = -Q; 
A2*der(H2) = Q; 

end TwoTanks; 

Example 2.4. Hydraulic system of two tanks. 

system assuming the first tank starts at a height of 0 meters and the second tank 
stmis with a height of 2 meters. 

Instead of typing out the Modelica. S1units qualifier before each phys­
ical type as we did in Example 2.3, we instead chose to create an abbreviation, 
S1, using the package keyword. Using this approach we are required to type 
far fewer characters for each physical type name. Think of this as a way to 
create aliases when working with long package names. 

In Example 2.4, we can see the use of descriptive text (contained between 
matching double quotation marks) associated with the model and parameters. 
In addition, this example includes comments which provide additional docu-
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mentation. Whenever the characters "/ /" appear in a Modelica model, the 
remainder of the line is considered a comment. 

The remaining difference between this example and the previous examples in 
this chapter is the use of the physical constants. The MSL contains a collection 
of physical constants which commonly appear in engineering equations. In this 
example, we have made use of Modelica. Cons tan ts. g.11 (representing 
acceleration due to Earth's gravity) and Modelica. Constants. pi. Use 
of physical constants in the MSL serves three purposes. First, the model 
developer does not have to remember the value of the constants. Second, it 
makes sure that the constant is specified to the complete numerical precision 
for the computer it is used on. Third, it avoids the error prone process of typing 
such numbers in manUally. 

2.5 LANGUAGE FUNDAMENTALS 
The purpose of this section is to provide a more comprehensive discussion 

of the language fundamentals demonstrated by the examples in this chapter. 
This section is included for completeness but it is not required. Readers may 
feel free to skip this section entirely if they are comfortable with the material 
presented so far. 

2.5.1 Models 
Models have behavior described by algebraic and/or differential equations. 

Recall our use of the model keyword in Examples 2.1, 2.3 and 2.4. The 
keyword model in Modelica is used to indicate the start of a model definition. 
As we have seen in our examples, the end keyword (followed again by the 
model name) is used to indicate the end of the model. 2 

As seen in Example 2.4, the definition of a model may include descriptive 
text to provide additional information about the model. The textual description 
of a model must be contained within matching double quotation marks and must 
appear directly after the model name. The textual description for constants, 
parameters, variables or any component declarations must appear just prior to 
the " ; " which is used to indicate the end of the declaration. While comments are 
free form text with no particular association to any part of the Modelica source, 
textual descriptions are directly associated with specific declarations. This link 
to specific declarations allows textual descriptions to be used in graphical user 
interfaces or automatically generated documentation. 

In this chapter, we have seen models which contain constants, parameters, 
variables and equations. While there are other things a model may contain, 

2The reason the model name appears t~ice is to help identify possibly mismatched end keywords in nested 
structures. As we will see later. this same technique is also used to align the beginning and end of control 
structures such as if and while. 
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these are the basic elements and should be sufficient for developing simple 
models. 

2.5.2 
2.5.2.1 

Variables, parameters and constants 
Declarations 

As you may have noticed from the examples in this chapter, the declaration 
of every quantity (i.e., variables, parameters and constants) requires a type 
(e.g., Real or Length) followed by a name. Furthermore, each declaration 
may include an equation for that quantity (e.g., "=12") and/or descriptive text 
associated with the quantity. The end of the declaration is indicated by a 
semi-colon. 

2.5.2.2 Types 

In our first example, we used the built-in type Real to represent floating 
point values. Modelica provides three additional built-in types: Integer, 
Boolean and String. 

In addition to the built-in types, it is possible to create derived types. Derived 
types are specializations of the built-in types. For example, the derived type 
Length shown in Example 2.4 is defined in the MSL as follows: 

type Length=Real (quantity="Length", unit="m"); 

Derived types provide more specific information about the quantity. This 
information is useful for documentation purposes (e.g., what physical units 
are associated with a given parameter), unit conversion and in some cases 
even some semantic analysis (e.g., unit checking in expressions). The most 
commonly used derived types in the MSL are compiled in Appendix D. 

2.5.2.3 Variability 

Any declared quantity in Modelica has a specific variability. By default, 
all declared quantities are assumed to change as a function of simulation time. 
However, there are variability qualifiers which can be used to indicate different 
levels of variability. In this chapter, we have introduced two such qualifiers, 
constant and parameter. Both of these qualifiers prevent the value of a 
quantity from changing during a simulation. Despite the fact that both are 
restricted in this way, there are two important differences between constants 
and parameters. First, once defined within a model a constant is not intended to 
be changed. For this reason, the graphical user interface for some tools may not 
allow adjustments to constants (or even display them). In practice, this means 
the only way a constant can be changed is to modify the source code of a model. 
The other-difference between constants and parameters is that the declaration 
of a parameter may include an expression for the value of that parameter but 
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the declaration of a constant must include an expression for the value of that 
constant (for example g in Examples 2.1 and 2.4). 

There are other variability qualifiers but we will discuss those in the context 
of subsequent examples. 

2.5.3 Expressions 
For the most part, expressions in Modelica look similar to expressions in 

other computer languages. In this section, we will cover the basic types of 
expressions used in our examples so far. 

2.5.3.1 Basic expressions 

In Example 2.1, we see our first use of an expression. We compute the 
derivative of omega as - (giL) *theta. In this one expression we use 
the multiplication, division and subtraction operators. Modelica uses the +, 

-, * and I operators to represent addition, subtraction, multiplication and 
division, respectively. Furthermore, the A operator is used to represent raising 
an expression to a power. For example, the expression (x+y) A Z represents 
the sum of x and y raised to the power of z. Use of the A operator can be 
seen in Example 2.4 in determining the c parameter. The precedence of the 
operators C, *, I, +, - ) and the implications of parentheses are the same as in 
algebra. 

As we shall see in Chapter 6, the +, -, * and I operators can also be applied 
to arrays (e.g., vectors and matrices). The + and - operators can be used to add 
or subtract two arrays of the same shape. The * and I operators can be used to 
multiply or divide an array by a scalar. Furthermore, the * operator represents 
the inner product operator when used between two arrays of the appropriate 
shape. 

2.5.3.2 Conditional expressions 

Conditional expressions are expressions which evaluate to either true or 
false. Such expressions use the relational operators "==", "<>", "<", "<=", 

">" and ">=" to represent equality, inequality, less than, less than or equal 
to, greater than and greater than or equal to relationships, respectively (Just 
as with basic expressions, conditional expressions in Modelica are similar to 
conditional expressions in other computer languages). Note that the "==" and 
"<>" operators cannot be applied to Real variables. 

In Example 2.3, we saw how the ">=" operator was used to determine 
when the simulation time had exceeded 1 second. Conditional expressions can 
be combined using the or and and logical operators. In addition, the not 
operator can be used to negate the value of a conditional expression. Finally, 
parentheses can be used to explicitly control the precedence of the operators. 
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2.5.3.3 Function calls 

The Mode 1 i ca. Ma t h package in the MSL includes many useful functions 
(see Appendix F for a complete list). For instance, we saw how the s in function 
was invoked in Example 2.2. In the case where functions require more than one 
argument, the arguments must be separated by commas. Chapter 5 discusses, 
in detail, how to write and invoke functions. 

2.5.3.4 Using if-expressions 

In Example 2.3, we saw how a step voltage could be defined using an 
if-expression. The syntax for an if-expression is: 

if cond_expr then true_expr else false_expr 

where cond_expr is a conditional expression evaluating to either true or 
false. In the case where the conditional expression evaluates to true, the 
if-expression evaluates to true _expr. If the conditional expression evaluates 
to false, the if-expression evaluates to false_expr. Among other things, 
this is a convenient way of representing simple functions and discontinuities. 
Such if-expressions can be used anywhere a normal expression can be used and 
may even be nested one inside another. For example, a step could be expressed 
using if-expressions as follows: 

v = if time<=l then 0 else if time<=2 then 1 else 2; 

2.5.4 Equations 
Each of the models in this chapter contains an equation. It is important to 

recognize that the "=" operator in Modelica does not represent assignment. 
Instead, the "=" operator defines a relationship between several quantities and 
it does not necessarily have to be of the form: 

variable = expression; 

Instead, an equation expresses equality between two expressions and has the 
more general form: 

expressionl = expression2; 

This is important because it means the model developer is not required to 
manipulate equations to get them into assignment form (a task which can be 
surprisingly difficult once complex systems of differential-algebraic equations 
are involved). In fact, the equations specified in the equation can be any 
combination of algebraic and differential equations. For example, consider the 
following set of equations: 

x time; 
x = 4*y; 
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where time is the global simulation time. If Modelica were a procedural 
language like C or FORTRAN, the first statement would assign a value to x 
and the second statement would overwrite the value of x with a new value. This 
is because in those languages the = operator is used to represent assignment. 
In Modelica, the = represents an equality relationship and the : = represents 
the operation of assignment.3 Assignments are not allowed in an equation. 
Instead, they must be placed inside an algori thIn section (discussed in Chapter 
5). 

It is possible that the equations: 

x time; 
x 4.0*y; 

might be rearranged by a simulator into the following set of assignments: 

x .- time; 
y .- x/4.0; 

Note the use of the: = operator. The rearrangement of terms in this way is 
called symbolic manipulation. When you provide equations in Modelica, a 
simulator is free to perform such manipulations. Remember, Modelica is a 
descriptive language which means that the model developer is only responsible 
for providing the equations, not solving them. 

Note that equations can appear outside the equation. Specifically, an 
equation can also appear as part of a declaration. The following code fragment 
demonstrates this: 

model CoolingGlass 
parameter Modelica.SIunits.CoefficientOfHeatTransfer h; 
parameter Modelica.SIunits.SpecificHeatCapacity cp; 
parameter Modelica.SIunits.Mass m; 
Modelica.SIunits.Temperature T; 
Modelica.SIunits.Temperature T_ambient=300+20*time; 

equation 
m*cp*der(T) = -h*(T-T_ambient); 

end CoolingGlass; 

The CoolingGlass model contains two variables and two equations al­
though only one of the equations appears in the equat ion. The other equation 
appears in the declaration of Lambient. The ability to include equations 
in this way can be convenient but also confusing since such equations are not 
easily spotted when glancing at the model. 

'The left hand side of an assignment statement must be a variable. 
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2.5.5 Operators 
In this chapter, we have used the der operator to represent the derivative 

of a variable. In this section we will discuss the der operator and the delay 
operator. 

2.5.5.1 The derivative operator 

In the expression der (x) , the der operator is used to represent the time 
derivative of the variable x. One important restriction is that the der operator 
can only be used on variables, not on expressions. Furthermore, the der 
operator cannot be used recursively. In other words, the following is not a legal 
way to represent the second derivative: 

alpha = der(der(theta)); II Illegal 

In order to represent the second derivative of a variable, the first derivative must 
be assigned to a variable. For example: 

omega der(theta); II First derivative 
alpha = der(omega); II Second derivative 

The simple pendulum model, presented in Example 2.1, shows how this is done 
within a model. 

2.5.5.2 The delay operator 

The delay operator can be invoked with either two or three arguments. The 
first argument of the delay operator is always an expression. The value of 
the delay operator is the value of the expression delayed by some amount of 
time. The amount of time delay is the second argument of the de 1 a y operator. 

If only two arguments are present, then the second argument must be a pa­
rameter expression which means it cannot be a function of time. The following 
is an example of using the delay operator with a fixed delay: 

model FixedDelay 
parameter Modelica.Slunits.Time dt=2; 
Real x, y, Z; 

equation 
der (x) = ... ; 
y - ... , 
z = delay(x+y,dt) ; 

end FixedDelay; 

The response of z would be equal to x(time - dt) + y(time - dt). 
It is possible to use the delay operator to express a vmiable delay as well. 

If a third argument is present it represents the maximum time delay allowed 
and the second argument can then be a time-varying expression. If present, 
the third argument must be a parameter expression and the value of the second 
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argument must always be greater than zero and less than the value of the third 
argument. 

2.5.6 Attributes 
Each declared quantity (e.g., a parameter or constant) has a set of at­

tributes. These attributes can be associated either with the type of the quantity 
or the specific instance of the quantity. For example: 

type Length=Real(start=l.O, 
quantity="Length" , 
unit="m") ; 

Length x(start=2.0); 

In the first statement, the start, quantity and unit attributes are associ­
ated with the type Length. Any declaration of type Length automatically 
inherits the attributes of Length. In the second case, the declaration of x 
overrides the value of the start attribute inherited from type Length. Any 
such adjustment to the attributes in a declaration is called a modification. More 
details on modifications can be found in Chapter 3. We conclude this section 
with a brief list of common attributes. 

2.5.6.1 The "start" attribute 

When declaring a variable, the start value is used to provide a reasonable 
initial guess (see the explanation of the fixed attribute for an important 
exception). This can be useful in problems which involve non-linear systems 
of equations. In such systems, multiple solutions are possible and the start 
attribute can be used to influence which solution is found. 

Each of the built-in types has a start attribute. The default value for 
the start attribute is zero. Note that the value of the start attribute for a 
type is ignored when declaring a constant of that type because each constant 
declaration must provide a value. For example, 

constant Length L=2; 

2.5.6.2 The "fixed" attribute 

The fixed attribute can be used, in conjunction with the start attribute, 
to specify the initial value for a variable at the start of a transient simulation. 
When the fixed attribute is false, which is the default value, the start 
attribute merely indicates an initial guess for variables (e.g., when solving non­
linear equations). However, when the fixed attribute is true the start 
attribute indicates the value the variable must have at the start of the simulation. 
A more complete discussion of how the fixed attribute is used can be found 
in Chapter 13. 
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2.5.6.3 The ''min'' and ''max'' attributes 

The min and max attributes define the minimum and maximum values for a 
given numeric type. These attributes are used to identify when a quantity has an 
unreasonable value. For example, thermodynamic temperatures are measured 
relative to absolute zero, so negative values are non-physical. To indicate this 
in a model, the min attribute would be set to zero. Both Real and Integer 
types have the min and max attributes. 

These attributes are mainly used in model development to prevent the user 
of a model from entering non-physical values for parameters and for letting the 
simulator know when it has found an unreasonable solution.4 

2.5.6.4 The "quantity" attribute 

The quanti ty attribute is a character string which describes the nature of 
a type. In most cases, the string contains the type name. For example: 

type Strain = Real (quantity="Strain") ; 

In other cases involving derived types, the quanti t y attribute of the base 
type (Energy in this case) is inherited, as in: 

type Energy = Real (quantity="Energy") ; 
type PotentialEnergy=Energy; II quantity="Energy" 
type KineticEnergy=Energy; II quantity="Energy" 

All built-in types have the quanti t y attribute. 

2.5.6.5 The "unit" and "displayUnit" attribute 

The uni t attribute serves mainly as documentation for a type. Assigning 
a string to the uni t attribute sets the units for that type. If units are provided 
for a particular type, it is important that all values given for quantities of that 
type be in those units because all equations in the model are written with the 
assumption that values are provided in the specified units. Both Real and 
Integer types have the unit attribute. 

The MSL provides a large collection of types with the proper units defined 
(see Appendix D for a list of the most commonly used types). The Model­
ica specification, which can be found on the companion CD-ROM, contains 
details about the format for strings that represent physical units (e.g., "m/ s" 
for meters per second or ''V'' for voltS).5 

When entering data or displaying results, the values for a given type are 
normally provided in the physical units assigned with the unit attribute. 
However, it is possible to use different units when entering data or displaying 

4The details of what happens if these limits are violated vary from program to program. 
5The Modelica specification defines a syntax for representing units. 
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results by setting the displayUnit attribute to the desired physical unit. 
Only the Real type has the displayUnit attribute. 

If a tool has unit conversion capability, it can do such unit conversions behind 
the scenes. For example, angular position is defined in the MSL as follows: 

type Angle = Real (quantity="Angle", 
unit="rad" , 
displayUnit="deg") ; 

This is because few people think of angles in terms of radians. For entering data 
or displaying results, most people would prefer to see degrees instead of radians 
(or revolutions per minute instead ofradians per second). The displayUnit 
attribute indicates the preferred unit for pre-processing and post-processing. 
The displayUnit only has an effect if the tool you are using supports such 
unit conversion. In any case, the uni t attribute will always indicate what units 
are used inside the models. 

2.5.7 Physical types 
Section 2.5.2.2 described how new, more specialized types can be created 

from the built-in types. Throughout this chapter we have used a variety of 
physical types (e.g., Vol tage, Veloci ty and AngularAcceleration) 
derived in this way. 

The main advantage of these specialized types is that they are better at de­
scribing the nature of a given quantity than the generic type Real. In complex 
models it may be difficult to figure out the physical type of some quantities 
and what the intended units should be. As we have seen in these examples, 
a parameter named L might indicate a quantity of length or inductance. By 
using predefined physical types, the intended usage of a parameter or variable 
is much clearer. Furthermore, a clever analysis tool may check dimensional 
consistency of the units involved in expressions. The use of physical types in 
this way can improve the readability of the code as well. 

2.6 PROBLEMS 
PROBLEM 2.1 Rewrite the model shown in Example 2.1 to use physical types 
and provide descriptive text for the model, variables and parameters. 

PROBLEM 2.2 Write physical type definitionsforfrequency, absolute temper­
ature and mass fraction. What are the units for these? Do they have upper 
and/or lower bounds? 

PROBLEM 2.3 There are many conservation principles we may employ. Is 
the fact that all torques around a point must sum to zero a conservation law? 
If so, explain what is being conserved. 
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PROBLEM 2.4 Run the models shown in Examples 2.1 and 2.2 for a variety 
of initial positions and velocities. In each case, plot omega as a junction 
of theta and compare the linear and non-linear trajectories. What are the 
interesting characteristics of these trajectories? 

PROBLEM 2.5 Write a modelfor a "predator-prey" system using the Lotka­
Volterra system of equations: 

:i; = QXy - (3x 

if ,y - oxy 

where x represents the predator population and y represents the prey popula­
tion. Suggested values for model coefficients are Q = 0.1, (3 = 2, , = 4 and 
o = 0.4. Build a Modelica model for this system and experiment with different 
initial population levels. Visualize the solution by plotting prey population 
versus predator population. 

PROBLEM 2.6 Create a model, similar to the one shown in Example 2.4, 
containing three (or more) tanks connected by pipes. 

PROBLEM 2.7 Write a Modelica expressionfor V_a in Example 2.3 such that: 

Va={! O:St<l 
1:St<2 
2:St<oo 

(2.23) 

PROBLEM 2.8 The longitudinal dynamics of an aircraft can be approximated 
by the following equations (found in Brogan, 1991): 

iJ q (2.24) 

q _w2(Q - 08) (2.25) 
Q 

(2.26) Q = --+q 
T 

where (), q and Q are variables representing pitch, pitch velocity and angle 
of attack while T, wand 8 are flight dynamics parameters and 0 is an input 
representing the elevator angle. Using these equations, create models which 
predict the behavior of the aircraft during different maneuvers (Le., time­
varying elevator positions). Sample values for T, wand 8 are 0.25, 2.5 and 
1.6, respectively. 
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Chapter 3 

BUILDING AND CONNECTING COMPONENTS 

3.1 CONCEPTS 
While equations are an essential part of model development, it quickly 

becomes tedious to write out all the equations for the components in a system. 
In this chapter, we show how to reuse constitutive equations like Ohm's law and 
automatically generate conservation equations for quantities like energy and 
mass. In doing so, it is possible to quickly build up large models of interacting 
components. Once again, examples will demonstrate various language features 
and the section at the end of the chapter will discuss these features in detail. 

3.2 CONNECTORS 
The focus of this chapter will be creating reusable component models and 

then connecting instances of these models together to form complex networks. 
In order to discuss the connection of components, we must first discuss a new 
type of definition called a connector. 

The best physical analogy of a connector is an electrical plug. The advan­
tage of electrical plugs is that when you plug, for example, a television into 
an electrical outlet, you can be sure that each wire in the plug will connect to 
the appropriate wire in the wall. A connector in Modelica serves the same 
purpose by matching up the appropriate variables from connectors on different 
components. 

A connector definition contains variables which describe the interaction 
between components. The following is a sample connector definition: 

connector HydraulicPort 
Modelica.Slunits.Pressure p; 
flow Modelica.Slunits.VolumeFlowRate q; 

end HydraulicPort; 
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3.3 CREATING CONNECTORS AND COMPONENTS 
Let us start by considering a familiar example. Figure 3.1 shows a slight 

variation on the electrical circuit shown in Figure 2.4. Because a new resistor 
was added in Figure 3.1, the behavioral equations are slightly different than 
before. 

L==lOOmH 

+ 
V C==lOOW 

Figure 3.1. Another RLC circuit. 

3.3.1 Equation based approach 
If we were to write a Modelica model for the system in Figure 3.1 the same 

way we did for Figure 2.4, the resulting model might look something like the 
one shown in Example 3.1. 

One problem with the Modelica model in Example 3.1 is that it is getting a 
little difficult to understand what it is a model of, just by looking at the source 
code. In other words, you would have to carefully study the description in 
Example 3.1 to realize it represents the circuit shown in Figure 3.l. 

Another problem is that we are starting to write equations multiple times. 
Ohm's law, for example, appears twice in Example 3.1. While writing Ohm's 
law twice may not seem like much of a burden, writing it 25 times for a 
complex circuit is tedious and the process would be error prone. Furthermore, 
if a mistake is made it must be corrected in 25 places. Likewise, making sure 
the conservation equations are written correctly can also be a tedious and error 
prone task. For these reasons, the preferred way to model the system in Figure 
3.1 is to use a component based approach. 
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model RLC2 
import Modelica.Slunits; 

parameter SIunits.Resistance Rl=15; 
parameter SIunits.Resistance R2=5000; 
parameter SIunits.Capacitance C=100e-6; 
parameter SIunits.lnductance L=100e-3; 

SIunits.Voltage V_a, V_b, V_c; 
SIunits.Current i_V, i_Rl, i_R2, i_C, i_L; 

equation 
V a = if time>=l then 1.0 else 0.0; 
L*der(i_L) = V_a - V_b; 
Rl*i_Rl = V_b - V_c; 
i C = C*der(V_c); 
R2*i_R2 = V_b; 
i_V - i_L = 0; 
i L - i Rl - i R2 0; 
i Rl - i C = 0; 

end RLC2; 

Example 3.1. Another RLC circuit. 

3.3.2 Component based approach 
With a component based approach, we create a single model for each of the 

components we require (i.e .. Vol tageSource, Resistor, Capacitor 
and Inductor). Once these models exist, we can connect instances of them 
together in a vatiety combinations. 

The key to modeling using a component based approach is to think about the 
free body diagram for a component. A free body diagram (borrowing a term 
from mechanical dynamics) is a diagram which describes all state information 
associated with a component and identifies all possible external influences. For 
example, consider the resistor shown in Figure 3.2. We can see that the resistor 
has two voltages associated with it, one at each connection point. In addition, 
there are currents flowing through each of these connection points. 

Figure 3.2. A "free body diagram" of a Resistor. 
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3.3.2.1 ElectricalPin 

Before we can begin writing models for the electrical components, we must 
first identify the appropriate connector for these components. Let us define 
the connector for our electrical system as: 

connector ElectricalPin 
Modelica.Slunits.Voltage v; 
flow Modelica.Slunits.Current i; 

end ElectricalPin; 

This connector identifies the two quantities associated with a single connection 
point l in the free body diagram shown in Figure 3.2. For the ElectricalPin 
connector, v represents the voltage at that connection point and i represents 
the current flowing into the resistor. 

An important thing to note about this connector is the flow qualifier in front 
of the current, i. The flow qualifier identifies quantities that must sum to 
zero, at a connection point. Identifying the appropriate flow variables allows 
a simulator to implicitly generate the conservation equations like those for 
Kirchhoff's current law shown in Equations (2.15)-(2.17). This is the first step 
in making system models easier to build and less error prone. Typically, the 
flow qualifier is applied to time derivatives of conserved quantities (i.e., the 
current, i, is the time derivative of charge, which is a conserved quantity). 

Now that we have defined the connector type, we can move on to the 
component models. 

3.3.2.2 Resistor 

Ohm's law describes the behavior of a resistor, i.e., 

v=iR (3.1) 

Example 3.2 shows how a Modelica model could be written for the re­
sistor shown in Figure 3.2. The"." in quantities like p. v is a way of 
accessing the internal elements of a component. Since p is an instance of an 
ElectricalPin it contains a variable for voltage called v. In this way, the 
quantity p . v represents the voltage associated with pin p. 

It is important when developing component models to use a consistent sign 
convention for the flow quantities. The normal sign convention for Mod­
elica components is defined such that positive flow is into the component. 
Therefore inside the Resistor model, the value of p. i refers to the current 
flowing into the resistor from pin p and the value of n . i refers to the current 

I The black circles in Figure 3.2 are the connection points for the resistor. 
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model Resistor "An electrical resistor" 
import Modelica.Slunits; 

parameter SIunits .Resistance R=300 "Resistance"; 
ElectricalPin p, n; II Naming the connection points 

equation 
R*p.i = p.v - n.v; 
p.i + n.i = O· 

end Resistor; 

Example 3.2. A model for an electrical resistor. 

flowing into the resistor from pin n. From Example 3.2 we can see that a 
positive value for p . i results when p . v is greater than n. v. This is consistent 
with the normal sign convention. Likewise, a positive value for n . i results 
when n . v is greater than p . v. 

In Example 3.2, the current p. i is used to represent the current in Ohm's 
law. This choice between using p . i and n . i is arbitrary. However, if n . i 
had been used in the equation, it would need to be written as: 

R*n.i = n.v - p.v; 

in order to satisfy the sign convention for flow variables (i.e., a positive value 
represents flow into the component). Finally, note that a default value of 300n 
is given for the resistance of the resistor. 

3.3.2.3 Capacitor 

The constitutive equation for the behavior of an ideal capacitor is: 

c dv = i 
dt 

(3.2) 

Once we have written the model for the Resistor, it is easy to imagine 
how a model for a capacitor would be written. Example 3.3 shows just such a 
model. Note that we must continue to use the same sign convention. Looking 
at the model in Example 3.3, one might wonder if it would be possible to write 
the equation for p. i as follows: 

p.i = C*der(p.v-n.v); 

As we pointed out in Section 2.5.5.1, this is not legal because the der operator 
cannot be applied to an expression. In the case of the Capacitor model, we 
handle this by introducing the v variable which represents the voltage difference 
across the capacitor. The default capacitance for this capacitor model is 10-6 F. 
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model Capacitor "An electrical capacitor" 
import Modelica.SIunits; 

parameter SIunits. Capacitance C=le-6 "Capacitance"; 
ElectricalPin p, n; 
SIunits.Voltage V; 

equation 
V = p.v-n.v; 
p.i = C*der(v); 
p.i + n.i = 0; 

end Capacitor; 

Example 3.3. A model for an electrical capacitor. 

3.3.2.4 Inductor 

The constitutive equation for an inductor is: 

v = L di 
dt 

model Inductor "An electrical inductor" 
import Modelica.SIunits; 

parameter SIunits. Inductance L=le-3 "Inductance"; 
ElectricalPin p, n; 

equation 
L*der(p.i) = p.v-n.v; 
p.i + n.i = o· 

end Inductor; 

Example 3.4. A model for an electrical inductor. 

(3.3) 

Example 3.4 shows a Modelica model for an inductor. Again, we take care 
to use the correct sign convention. Can you see the similarity to the Res i s tor 
and Capaci tor model? We will take advantage of the similarities in later 
examples. The default inductance value is 10-3 H. 

3.3.2.5 Step voltage source 

We now need a model for the voltage source shown in Figure 3.1. Example 
3.5 shows how such a model could be written. The Vol tageSource model 
consists of two algebraic equations. The first dictates what the voltage drop is 
across the Vol tageSource from connection point p to n The other equation 
dictates that the current coming in one side of the component must exactly 
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model VoltageSource "A voltage source" 
import Modelica.Slunits; 

parameter SIunits.Voltage vl=O, v2=1; 
parameter SIunits.Time jump_time=l.O; 

ElectricalPin p, n; 
equation 

p.v-n.v = if time>=jump_time then v2 else vl; 
p.i + n.i = 0; 

end VoltageSource; 

Example 3.5. A model for a step voltage. 

balance the current going out the other side. Unlike our previous examples, 
the Vol tageSource model does not contain an explicit equation for the 
current flowing through the device as a function of the voltage drop across it. 
Instead, an explicit equation is provided for the voltage across the device and 
the simulator will be responsible for determining what amount of current is 
necessary to satisfy the voltage equations. 

Note that this is an idealized voltage source model and the discontinuous 
voltage drop might cause trouble in some circuits. For example, if this voltage 
source were connected in parallel to a capacitor the instantaneous jump in 
voltage (due to the step) should trigger an infinite current spike through the 
capacitor. For more realistic systems you might need to create a less idealized 
voltage source. 

By default, the voltage source has an initial voltage drop of zero Volts and 
jumps to a voltage drop of 1 Volt after 1 second. 

3.3.2.6 Ground 

model Ground "Ground" 
ElectricalPin ground; 

equation 
ground. v = 0; 

end Ground; 

Example 3.6. A model for electrical ground. 

The last component model we require to simulate the circuit shown in Figure 
3.1 is Ground. The Ground model is different from all the other electrical 
models presented so far because it only has a single ElectricalPin con­
nector. In addition, there are no parameters associated with a Ground model. 
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The only equation required for the Ground model is to set the voltage at the 
connection point to zero. The Ground <;:omponent model can be seen in Exam­
ple 3.6. The Ground and Vol tageSource are quite similar. The difference 
is that the Ground model constrains the absolute voltage at a connection point 
whereas the Vol tageSource model constrains the relative voltage between 
two connection points. Both models will require the solver to implicitly solve 
for the current through the device. 

3.3.2.7 Circuit model 

model RLC3 "Yet another RLC circuit" 
Resistor Rl(R=lS); 
Resistor R2(R=SOOO); 
Capacitor C(C=lOOe-6); 
Inductor L(L=lOOe-3); 
VoltageSource vs; 
Ground g; 

equation 
connect (vs.n,g.ground) ; 
connect (vs.p,L.p); 
connect (L. n, RI. p) ; 
connect (L.n,R2.p) ; 
connect (Rl.n,C.p) ; 
connect (C.n,g.ground) ; 
connect (R2.n,g.ground) ; 

end RLC3; 

Example 3.7. Another model for our RLC circuit in Figure 3.1. 

Now that we have written our component models, we can bring them all 
together to build a circuit like the one shown in Figure 3.1. Example 3.7 shows 
what the Modelica code for our circuit model looks like. Note in Example 
3.7 that resistors Rl and R2 have different values for their Resistance 
parameter. We can see this because the declarations of these resistors contain a 
modification (i.e .. the assignments contained within parentheses) to change the 
value of the R parameter of each component. Because the declaration of the 
voltage source component, VS, does not specify values for its parameters (i.e., 
there are no modifications), the default values defined inside the component 
models will be used. 

In order to fully understand Example 3.7, some explanation must be provided 
for the connect command. Because the details of the connect command are 
covered in Section 3.6.1, we only present a cursory explanation here. 

The connect command generates equations based on the contents of the 
connectors being connected. Equations are generated by considering the com-
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ponents of each connector with matching names. Normally, the connect 
command generates an equation which sets the matching components equal to 
each other. However, if a component has the flOlJ qualifier (i.e., it is a through 
variable), then an equation is generated which sums the matching components 
to zero. So for our ElectricalPin connector definition, the voltage, v, is 
set equal to all other voltages at the connection point and the sum of all current 
contributions at the connection point is set equal to zero. 

Using these rules, we find that the connect statements in Example 3.7 would 
generate the following equations: 

vS.n.v g.ground.v 
Equality Vs.p.v L.p.v 
equations L.n.v Rl.p.v 
generated for L.n.v R2.p.v (3.4) 

across Rl.n.v C.p.v 
variables. C.n.v g.ground.v 

R2.n.v g.ground.v 

Conservation 0 vs.p.i + L.p.i 
equations 0 L.n.i + Rl.p.i + R2.p.i 
generated 0 Rl.n.i + C.p:i 

(3.5) 

for the flow 0 vs.n.i + R2.n.i + C.n.i + g.ground.i 
variables. 

The order of the arguments to the connect command is not important. As 
a result, the statement: 

connect (a, b) ; 

is equivalent to: 

connect (b, a) ; 

3.3.3 Standard electrical components 
We went to a great deal of trouble to create definitions for the connectors and 

electrical components (e.g., Resistor, Capacitor, etc.) in this section. 
Hopefully this was instructive in showing how to build up such components. 
However, it turns out that all of this has already been done for us. This is 
because the MSL has a library of electrical components like the components 
we created in this section (and many more). 

To demonstrate the usefulness of the MSL, we will reimplement Example 
3.7 using components from the MSL. As Example 3.8 shows, everything we 
need is available within the MSL. The Modelica language features the ability 
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to include graphical information about components (for more details about 
graphical information, see Section 9.2). Because the MSL provides such 
graphical information about each component, schematics like the one shown in 
Figure 3.3 can be easily created directly from the Modelica source code.2 

model RLC4 "An RLC circuit using standard components" 
import Modelica.Electrical.Analog; 

Analog.Basic.Resistor Rl(R=15); 
Analog.Basic.Resistor R2(R=5000); 
Analog.Basic.Capacitor C(C=lOOe-6); 
Analog.Basic.lnductor L(L=lOOe-3); 
Analog.Sources.StepVoltage vs(startTime=l); 
Analog.Basic.Ground g; 

equation 
connect (vs.n,g.p) ; 
connect (vs.p,L.p) ; 
connect (L.n,Rl.p); 
connect (L.n,R2 .p); 
connect(Rl.n,C.p) ; 
connect (C.n,g.p); 
connect (R2.n,g.p) ; 

end RLC4; 

Example 3.8. RLC circuit using MSL. 
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Figure 3.3. Schematic for RLC4 model in Example 3.8. 

2The ability to create slIch schematics requires a tool, slIch as Dymola. which is capable of parsing and 
rendering the graphical information contained in the models. 
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Note how little work was required to build the RLC circuit this time because 
we did not need to write any component models. The MSL contains a large 
number of predefined electrical components. 

3.4 DEFINING A BLOCK 

Gain Block 

Gain Block 

Plant Model 1---------
Summation 

1 't 1 
)---..... ~'J'*'B+'d 

1 ----- ----

Integrator 

Figure 3.4. PI controller with plant model. 

Recall our discussion of the block diagram approach described in Section 
1.3.1. Let us consider how such a system could be constructed in Modelica. 
The block diagram we are interested in modeling is shown in Figure 3.4. This 
system represents the control of a rotational shaft (the plant) by a PI controller. 
The PI controller uses a speed sensor to determine the angular velocity of the 
system and an electric motor as an actuator. The signal We represents the desired 
angular velocity which, for this example, happens to be a sine wave. The signal 
Wm represents the speed sensor reading from the shaft. The combination of the 
gain blocks and the integrator yields a torque signal, r which is applied to the 
plant model. The response of the plant model, given by a transfer function, 
then provides the feedback signal Wm . 

3.4.1 Equation based approach 
If we create a model of the control system shown in Figure 3.4 by simply 

listing all the equations, the resulting Modelica model would look something 
like Example 3.9. With this approach, we will find ourselves rewriting equations 
over and over again. We can avoid this problem by using a component based 
approach. ' 

3.4.2 Component based approach 
Once again, our goal is to create reusable components. This time we will 

develop models which can be used to build the system shown in Figure 3.4 
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model ControlSysteml "A PI Controller with Plant Model" 
import Modelica.SIunits; 

parameter Real Kp=O.4, Ti=1.0; 
parameter SIunits.AngularVelocity wO=1.0; 
parameter SIunits.AngularVelocity A=O.2; 
parameter SIunits.Frequency F=O.3; 
parameter SIunits.MomentOfInertia J=O.8; 
parameter SIunits.DampingCoefficient d=O.l; 

SIunits.AngularVelocity w_c, w_m, delta_w; 
SIunits.Torque tau, i, p; 

equation 
w_c = A*sin(2.0*Modelica.Constants.pi*F*time)+wO; 
delta_w = w_c-w_m; 
der(i) = Kp*delta_w/Ti; 
p = Kp*delta_w; 
tau = i+p; 
J*der(w_m)+d*w_m tau; 

end ControlSysteml; 

Example 3.9. A simple control system. 

as well as any number of other possible configurations. For this example, we 
must introduce the concept of a block. A block is a special kind of model 
where each connector (or its contents) is explicitly marked as either an input 
or output. It is expected that each component will provide equations for its 
outputs written in terms of its inputs. 

3.4.2.1 Connector definitions 

[oonneotor Signal 
Real val; 

end Signal; 

Example 3.10. Connector used for a scalar signal. 

In order to create our component models, we must know what information 
is available from the connectors. In this case, the information shared between 
these models is a single floating point value. For this reason, we define our 
connector as shown in Example 3.10. 
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3.4.2.2 Creating a sinusoidal signal generator 

The natural place to start is with the desired angular velocity signal, We = 
A sin(27rFt). The model for this driving signal is shown in Example 3.11. 

block SinusoidalSignal 
output Signal out_sig; 

parameter Real A=l.O "Amplitude"; 
parameter Real offset=l.O "Offset"; 
parameter Modelica. SIunits. Frequency F=l.O "Frequency"; 

equation 
out_sig.val = offset+ 

A*sin(2.0*Modelica.Constants.pi*F*time) ; 
end SinusoidalSignal; 

Example 3.11. A sinusoidal signal generator. 

3.4.2.3 Summation block 

The model for a Summation block is shown in Example 3.12. Note that this 
model includes two scale factors which allow the inputs to be scaled indepen­
dently (Le., output = scalel * inputl + scale2 * input2) which increases the 
reusability of the model. For example, we can use this to turn our Summa t ion 
block into a difference block by setting one of the scale factors to -1. 

block Summation 
input Signal in_sigl, in sig2; 
output Signal out_sig; 
parameter Real scalel=l.O "Scale factor l"; 
parameter Real scale2=l.O "Scale factor 2"; 

equation 
out_sig.val = scalel*in_sigl.val+scale2*in_sig2.val; 

end Summation; 

Example 3.12. A block which sums two signals. 

3.4.2.4 Integrator block 

Our Integrator model can be seen in Example 3.13. There is no built-in 
integration operator. Instead, integrals are represented in terms of derivatives 
using the der operator. In this case, the integration is expressed as: 

d . 
dt output = mput (3.6) 
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block Integrator 
parameter Real init_val=O; 
input Signal in_sig; 
output Signal out_sig(val(start=init_val)); 

equation 
der(out_sig.val) = in_sig.val; 

end Integrator; 

Example 3.13. An integrator block. 

The initial output value for the integrator is given by the ini Lval parameter 
which is used as the start value (from Section 2.5.6.1) for the output signal. 

3.4.2.5 Transfer function 

Example 3.14 shows a representation of a first order transfer function model. 
The transfer function is characterized by the following mathematical equation: 

1 
y(s) = u(s) 

CIS + C2 

where u (s) represents the input signal and y (s) represents the output signal. 
Note that the equation contains two characteristic parameters, cl and c2. 

block TransferFunction 
input Signal in_sig; 
output Signal out_sig; 
parameter Real c1=O. 8; 
parameter Real c2=O.1; 

equation 
c1*der(out_sig.val)+c2*out_sig.val 

end TransferFunction; 

Example 3.14. A first order transfer function. 

3.4.2.6 Gain block 

The behavior of a gain block is represented by the following equation: 

output = k * input (3.7) 

The Gain block model appears in Example 3.15. Can you spot the similarity 
the Gain block has with the models in Examples 3.13 and 3.14? It is a good 
idea to get in the habit of spotting such similarities for reasons we will explain 
in the next chapter. 
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parameter Real K=l.O "Gain factor"; 
equation 

out_sig.val 
end Gain; 

K*in_sig.val; 

Example 3.15. A multiplier block. 

3.4.2.7 Complete control system 

At this point, we are able to put all these models together into a complete 
system. Example 3.16 shows the model, written in terms of component models, 
for the system shown in Figure 3.4. While Example 3.16 looks more compli­
cated than Example 3.9, component based models are easier to build because 
they can be constmcted graphically. 

model ControlSystem2 "A PI Controller with Plant Model" 
SinusoidalSignal sinsig(A=O.2,F=O.3,offset=1.O); 
Summation diff(scale2=-1.O) , sum; 
Gain KP(K=O.4), KI(K=l.O); 
Integrator integrator; 
TransferFunction motor(cl=O.8,c2=O.1); 

equation 
connect (sinsig.out_sig,diff.in_sigl) ; 
connect(diff.out sig,KP.in_sig); 
connect (KP.out_sig,KI.in_sig) ; 
connect (KP.out_sig, sum.in_sigl) ; 
connect (KI.out_sig,integrator.in_sig) ; 
connect(integrator.out sig,sum.in_sig2); 
connect (sum.out_sig,motor.in_sig) ; 
connect (motor.out_sig,diff.in_sig2) ; 

end ControlSystem2; 

Example 3.16. A component based control system model for the system shown in Figure 3.4. 

3.4.3 Standard block diagram components 
Once again, we have gone to a great deal of trouble to implement a collection 

of models that already exist in the MSL. Remember, the purpose of this chapter 
is to show you how to write models when they are not available. 
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3.4.3.1 Connectors 

Our Signal connector is actually defined using two different connector 
definitions in Modelica. Blocks. This is because there is one connector 
for input and another for output (each with the ability to handle an array of 
signals). The connectors are defined as follows: 

connector InPort "Connector with Real Inputs" 
parameter Integer n=l "Signal Array Dimension"; 
input Real signal [nl "Real Input Signals"; 

end InPort; 

connector OutPort "Connector with Real Outputs" 
parameter Integer n=l "Signal Array Dimension"; 
output Real signal [nl "Real Output Signals"; 

end OutPort; 

These connector definitions can be found in the Modelica. Blocks. -
In t e rf a ce s package which contains all the connectors for the Mode 1 i ca. -
Blocks package. Instead of using: 

input Signal in_sig; 
output Signal out_sig; 

we can now use the following MSL components, respectively: 

Modelica.Blocks.Interfaces.InPort in_sig; 
Modelica.Blocks.Interfaces.OutPort out sig; 

Using the MSL components seems like it would require a great deal more 
typing. However, a graphical tool would typically be used to construct such 
systems and so typing would be replaced by simpler "drag and drop" operations. 
Furthermore, we have already seen examples where the import keyword has 
been used to minimize the amount of typing necessary. 

There are some important differences between the connectors defined in 
the MSL and the one we defined earlier in Example 3.lO. The first is that 
the input qualifier is included inside the definition of the InPort connector 
rather than as a qualifier on each Signal connector. The presence of the 
input qualifier dictates that the InPort connector can only be connected to 
a "mating" connector.3 As a result of having the input qualifier inside, we 
eliminate the possibility of accidentally forgetting to include the qualifier while 
building models. 

The other difference is that the signal carried by the MSL connectors is 
an array whereas our val was a scalar. By default, the size of the signal 
array is 1 (indicated by the n parameter). The fact that signal is an array 

3 Mating connectors are ones with complementary input and output qualifiers 
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is useful because it allows several signals to be "multiplexed" onto the same 
connection. Think of it like an electronic cable with multiple wires inside it 
(e.g., a ribbon cable). More information on using arrays in Modelica can be 
found in Chapter 6. 

3.4.3.2 Other necessary blocks 

Now that we have covered the connectors, let us tum our attention to the other 
blocks required to build our controller. The commanded rotational velocity 
was previously represented using the SinusoidalSignal block. The anal­
ogous block in the MSL is Modelica. Blocks. Sources. Sine which 
has parameters for amplitude, frequency and signal offset. The Modelica. -
Blocks. Sources package contains a number of other useful signal gener­
ators as welL 

The Gain block can be replaced by the Modelica. Blocks. Math. -
Gain model from the MSL. The Modelica. Blocks. Math package con­
tains the blocks which are used for the algebraic manipulation of signals. In fact, 
there are two models which could serve as replacements for Summation. The 
first, Modelica. Blocks. Math. Feedback, is used in feedback loops 
(like the one we have in our example). The other model, Modelica. -
Blocks. Math .Addis more like our original Summation model because it 
allows arbitrary gains to be associated with each of the input signals. 

Finally, we require blocks which express relationships involving the time 
derivatives of signals. These can be found in the Modelica. Blocks. -
Continuous package. One useful block from this package is Modelica. -
Blocks. Continuous. Integrator which can serve as a replacement 
for our previous model (also called Integrator4). Another useful block 
from the same nested package is the Modelica. Blocks. Continuous. -
TransferFunction block which is expressed as: 

b(s) 
y(s) = a(s) u(s) (3.8) 

3.4.3.3 Complete diagram 

Now, we have all the pieces we need to build our controller system using 
components defined in Modelica. Blocks. The result is shown in Figure 
3.5. The complete Modelica code for the diagram shown in Figure 3.5 is shown 
in Example 3.17. 

4There is no potential name conflict here because our previous Integrator was defined globally (i.e., 
not part of a specific package) whereas the Integrator model we have just introduced exists within 
the Modelica. Blocks. Continuous package. The reason there is no name conflict is that the 
Integrator model in Modelica. Blocks. Continuous must be referenced by its fully qualified 
name (i.e., Modelica. Blocks. Continuous. Integrator). 
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sinsig PGain 

PlantModei 

+1 
'-----' 

~(S) 
a(s) 

IntegratorBlock 

Figure 3.5. Control system model using components from Modelica. Blocks. 

model ControlSystem3 
parameter Real Kp=. 4 ; 
parameter Real Ti=l; 
import Blocks=Modelica.Blocks; 
Blocks.Math.Feedback Difference; 
Blocks.Math.Gain PGain(k={Kp}); 
Blocks.Math.Gain TiGain(k={l/Ti}); 
Blocks.Math.Add Summation; 
Blocks.Continuous.lntegrator IntegratorBlock; 
Blocks.Sources.Sine sinsig( 

amplitude={.2}, freqHz={.3}, offset={l}); 
Blocks.Continuous.TransferFunction PlantModel( 

a= { . 8, . l} , b= { 1 } ) ; 
equation 

connect (sinsig.outPort, Difference.inPortl); 
connect (Difference.outPort, PGain.inPort); 
connect (PGain. out Port , Summation.inPortl); 
connect (PGain.outPort, TiGain.inPort); 
connect (TiGain.outPort, IntegratorBlock.inPort); 
connect (IntegratorBlock.outPort, Summatlon.inPort2); 
connect (Summation. outPort , PlantModel.inPort); 
connect (PlantModel.outPort, Difference.inPort2); 

end ControlSystem3; 

Example 3.17. Controller and mechanism. 

3.5 EXISTING ROTATIONAL COMPONENTS 
Let us revisit our simple pendulum model in Section 2.2 and use it to 

introduce the Modelica. Mechanics. Rotational package in the MSL. 
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3.5.1 Connectors 
The connector used in the Modelica. Mechanics. Rotationalli­

brary is called a "flange". There are actually two different flange connectors 
in the MSL. These two connectors are called Flange_a and Flange-.b. 
With the exception of their graphical representations, these two connectors are 
identical. The Modelica definition for Flange_a is shown in Example 3.18. 

connector Flange _a "lD Rotat ional Connector" 
Modelica.Slunits.Angle phi 

"Absolute rotation angle of flange"; 
flow Modelica.Slunits.Torque tau 

"Torque applied to the flange"; 
end Flange_a; 

Example 3.18. One-dimensional rotational connector. 

3.5.2 Special models 
Our original model of a pendulum was described by a combination of gravity 

and inertia. We will represent these behaviors by the model Rota t ional­
Pendulum shown in Example 3.19. The FrictionlessJoint model, 
shown in Example 3.20, will be used to connect the pendulum to a frame of 
reference. 

3.5.2.1 A rotational pendulum model 

Recall from Example 2.2 that the torque on the pendulum due to gravity and 
inertia is: 

T Tg + Ti 

mgL sin(O) + mL2jj (3.9) 

Example 3.19 shows the Modelica code for our RotationalPendulum 
model. We use the connector definition from Example 3.18 along with the 
behavioral equations shown in Equation (3.9). 

Unlike our previous pendulum example, for this model we need to consider 
the "free body diagram" for our pendulum. In other words, we need to consider 
the possibility that some external torque (e.g., due to friction or elasticity) might 
also contribute to the motion of the pendulum. So, we must assume that the 
sum of the torques about the pivot point is equal to Tg + Ti + Text where Text is 
the sum of all external torques. 

There are several differences between the RotationalPendulummodel 
and the simpler model we created in Chapter 2. The first difference is that the 
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model RotationalPendulum 
import Modelica.Slunits; 

Modelica.Mechanics.Rotational.lnterfaces.Flange_a p; 
parameter SIunits.Length L=2.0; 
parameter SIunits.Mass m=l.O; 

protected 
SIunits.AngularVelocity omega; 
SIunits.AngularAcceleration alpha; 
parameter SIunits.MomentOflnertia J=m*L~2; 
constant Real g=Modelica.Constants.g_n; 

equation 
omega = der(p.phi); 
alpha = der(omega); 
m*g*L*Modelica.Math.sin(p.phi)+J*alpha p.tau; 

end RotationalPendulum; 

Example 3.19. A rotational pendulum model. 

Flange_a connector defines the angular position of the pendulum as phi 
but previously we had used theta to represent the same thing. 

The next difference is that in the previous example the pendulum mass, m, 
was not significant because we could cancel it out of each term in the system 
of equations. That was possible because we had the complete set of behavioral 
equations. This time though, we cannot be sure what other terms may be 
involved (via the Text contribution) so we cannot cancel the mass out. 

Finally, recall that the Modelica convention is that the flOTJ quantities on 
a connector are assumed to be positive when they flow into the component 
they belong to. This means that the external torque p. tau would increase the 
momentum. So in the absence of gravity, a p. tau greater than zero should 
imply an alpha greater than zero. We can use this case to verify that we have 
used the correct sign for each term. 

3.5.3 A frictionless pin model 
Previously, we had not considered what relationship our pendulum had with 

its surroundings. The implicit assumption was that the pendulum was connected 
to some fixed point by a frictionless bearing. Example 3.20 shows a model 
which captures the behavior of such a joint. In essence, the joint transmits 
no torque regardless of the relative angular velocity or position between the 
pendulum and its surroundings. 
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model FrictionlessJoint 
Modelica.Mechanics.Rotational.lnterfaces.Flange_a a; 
Modelica.Mechanics.Rotational.lnterfaces.Flange_b b; 

equation 
a. tau = 0; 
b.tau = 0; 

end FrictionlessJoint; 

Example 3.20. A frictionless bearing. 

fixed=O 

Figure 3.6. A single pendulum system. 

3.5.4 A simple rotational system 
The Modelica code in Example 3.21 recreates our example from Chapter 2. 

In addition, Figure 3.6 shows the schematic for this simple system. 

model PendulumSysteml "Simple Pendulum" 
RotationalPendulum pend; 
FrictionlessJoint joint; 
Modelica.Mechanics.Rotational.Fixed fixed; 

equation 
connect (pend.p,joint.a) ; 
connect (joint.b,fixed.flange_b) ; 

end PendulumSysteml; 

Example 3.21. A simple pendulum system. 

The Modelica. Mechanics. Rotational. Fixed model is analo­
gous to the Ground model in Example 3.6 (i.e., it provides a fixed reference 
for other components). 

walter.ponge@terra.com.br



60 INTRODUCTION TO PHYSICAL MODELING WITH MODELICA 

3.5.5 Building more complex systems 

p1 
s1 

p2 
s2 

c=1 c=2 

d1 d2 

d=.1 d=.2 

fixed=O 

Figure 3.7. A system with multiple pendulums. 

One of the great things about having libraries of components is the vast 
number of combinations that are possible. So far, we have only been concerned 
with a single pendulum. but what if we wanted to construct a system with 
mUltiple springs. dampers and pendulums? Figure 3.7 shows just such a 
system. The spring, damper and fixed point models all come from the MSL. 
The code for this system is shown in Example 3.22. 

model PendulumSystem2 "Simple Pendulum" 
RotationalPendulum pl(m=l,p(phi(start=l,fixed=true))); 
Modelica.Mechanics.Rotational.Spring sl(c=l); 
Modelica.Mechanics.Rotational.Damper dl(d=.l); 
RotationalPendulum p2(L=7,m=.7); 
Modelica.Mechanics.Rotational.Spring s2(c=2); 
Modelica.Mechanics.Rotational.Damper d2(d=.2); 
Modelica.Mechanics.Rotational.Fixed fixed; 

equation 
connect (pl.p,sl.flange_a) ; 
connect (pl.p,dl.flange_a) ; 
connect (sl.flange_b,p2.p) ; 
connect (dl.flange_b,p2.p) ; 
connect(p2.p,s2.flange_a) ; 
connect(p2.p,d2.flange_a) ; 
connect (s2.flange_b,fixed.flange_b) ; 
connect(d2.flange_b,fixed.flange_b) ; 

end PendulumSystem2; 

Example 3.22. A system with multiple pendulums. 

Note that the modifications to pendulum pI in Example 3.22 are nested. 
In other words, modifications to pI may include modifications to components 
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inside pI (e.g., p). Such recursive modifications allow modifications to be 
applied to components within a hierarchy. 

3.6 LANGUAGE FUNDAMENTALS 
This chapter has introduced many new ideas. Let us explore all of these new 

constructs in a little more depth. 

3.6.1 Connections 
A connector defines information which is to be shared between compo­

nents. There is no limit on the number of variables which can be declared 
inside a connector. It is even possible to create a connector which contains 
arrays of arbitrary but fixed size like the InPort and Out Port connectors in 
Modelica.Blocks. 

The connect keyword is used within an equation section to "link" con­
nector instances. The connect command always appears in the equation 
section because each connection results in a set of equations being generated. 
Each connector must have exactly the same number of components with exactly 
the same names. Furthermore, components with the same name must be type 
compatible (see Section 2.5.2.2) and flow quantities can only be connected to 
other flow quantities. 

A connect statement includes two arguments. In other words, all connect 
statements should be of the general form: 

connect (a, b) ; 

where a and b are connectors (subject to the constraints mentioned earlier). 
The order of the connectors is not significant so there is no difference between 
the previous connect statement and: 

connect (b, a) ; 

Normally, the effect of using connect is that equations are generated which 
equate each quantity in one connector with its counterpart (with the same name) 
in the other connector. The exception is when quantities have the flow qualifier 
applied to them. Since flow quantities are generally the time derivatives of 
conserved quantities, connecting them together generates an equation which 
sums all the flow quantities to zero (e.g., Kirchhoff's current law). Quite often 
a connection involves multiple components (e.g., connection point b in Figure 
3.1). In these cases, the sum of the flow quantities from all connections is set 
equal to zero. Finally, if a connector is never connected to anything, then any 
flow quantities in that connector are implicitly set to zero.s 

5Intuitively. this makes sense since nothing can flow through a unconnected connector since it would have 
no place to go. 
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As mentioned previously, connectors can have parameters associated with 
them.6 Such parameters are usually used to indicate the size of one or more array 
quantities within the connector. Special consideration is given for parameters 
inside connectors. If a parameter appears inside a connector, the connect 
statement verifies that the corresponding parameters in the two connectors have 
the same value but no equations are generated. In other words, the following 
code would generate an error: 

connector ArrayCon 
parameter Integer n=2; 
Real x[nl; 

end ArrayCon; 

model Mismatch 
ArrayCon a(n=3); 
ArrayCon b(n=4); 

equation 
connect (a,b) ; II Error, a.n not equal to b.n 

end Mismatch; 

In summary, the connect keyword allows us to quickly, safely (i.e., without 
the possibility of human error) and automatically generate equations appropri­
ate for a given connector. 

3.6.2 Qualifiers 
The input qualifier identifies quantities which are intended to be inputs to a 

model. The input qualifier is useful for two different reasons. First, it explains 
the intent to anybody viewing the source of the model (Le., it explicitly states 
that the input quantity should originate from an output somewhere else in the 
system). More importantly, connecting two inputs together, at the same level of 
the hierarchy, is not allowed. In this way, the input qualifier essentially forces 
the quantity to be computed by an external model. Note that Figure 3.4 seems 
to violate this notion that two inputs cannot be connected together because it 
appears that the inputs of the two gain blocks are connected. However, note 
that the implementations in Examples 3.16 and 3.17 show that in fact each of 
the gain block inputs is connected to the output of another block and not to 
another input. 

There is one additional wrinkle in the semantics of the input qualifier. It is 
possible to connect two input connectors together if they are not in the same 
level of the hierarchy. This is necessary in order to allow input signals to be 
propagated into hierarchies (see Section 4.3 for an example of such usage). 

6Recall the discussion in Section 3.4.3 ofthe InPort connector in the Modelica. Blocks package. 
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The output qualifier is the counterpart to the input qualifier. The output 
qualifier indicates that a given quantity is computed by the model in which it 
is contained. Again, the purpose of this qualifier is to express the intent of the 
model developer and to prevent certain kinds of connections (i.e., it is not legal 
to connect together two quantities which both have the output qualifier). 

The flo"lo1 qualifier is useful in systems where conservation principles are 
applied (e.g., electrical or mechanical systems). Any quantity identified as 
a flo"lo1 is summed at each connection point. The flo"lo1 qualifier is generally 
applied to components with a physical type (e.g., Current, Power) that is the 
time derivative of conserved quantities (e.g., charge, energy). By convention, a 
positive value for a flow in a connector represents a flow into the model which 
contains the connector. Note that we follow this convention in all examples. 

As a general rule, qualifiers applied to a connector are effectively propagated 
into every member of the connector. When developing a connector you should 
consider whether you want the qualifier to be applied by the definition: 

connector ConnectorA 
input Real x; 
input Real y; 

end ConnectorA; 

model ModelB 
ConnectorA a; 

end ModelB; 

or at the time of declaration: 

connector ConnectorA 
Real x; 
Real y; 

end ConnectorA; 

model ModelB 
input ConnectorA a; 

end ModelB; 

In both cases, the components a. x and a . yare considered inputs. The 
former case is useful when a connector is meant to be used as either an input 
or output connector. The latter case is useful to force the connector to have 
a specified directionality, either input or output.7 Finally, another reason 
for placing the qualifiers inside the connector would be to create "mating" 
connectors with complementary input and output qualifiers, e.g., 

7Note that the connectors for the Modelica. Blocks package (discussed briefly in Section 3.4.3) place 
the input and output qualifiers inside the connector definition to force them to play either an input or 
output role. 
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3.6.3 

connector Plug 
input Real x; 
output Real y; 

end Plug; 

connector Socket 
output Real x; 
input Real y; 

end Socket; 

Modifications 
When a model is written, default values for parameters are often provided 

by the model itself. As we have shown in Example 3.7, we can override 
these internal defaults when the component is declared. Changes to attributes, 
like the start, min and unit attributes discussed in Section 2.5.6, are also 
considered modifications. 

Modifications can be applied to components throughout a component hier­
archy. For example, consider the following example: 

model Circuit 
Resistor Rl, R2 
Capacitor Cl, C2, C3(C=le-6); 
ElectricalPin p, v; 

equation 

end Circuit; 

model Appliance 
Circuit c(Rl(R=12) ;C2(C=le-3)); 

end Appliance; 

In this case, from the Appl ianee level, we have applied a modification to a 
resistor and capacitor inside the Cireui t component. As can be seen by this 
example, modifications on nested components are made within nested pairs of 
parentheses. 

If we had attempted to modify capacitor C3 from the Appl ianee level, 
we would have overridden the modification included in the Cireui t model. 
As a general rule, modifications in a declaration always override modifications 
lower down in the hierarchy. However, there are many cases not covered by 
this rule. The precise rules about the precedence of modifications can be found 
in the Modelica language specification included on the companion CD-ROM. 

Another example of hierarchical modification can be seen in Example 3.22. 
Instead of parameters, attributes of the phi variable associated with the p pin 
on the RotationalPendul urn were modified. 
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3.6.4 Defining a block 
As mentioned in our control system example, a block is a special case of a 

model where all connectors (or the contents of the connectors) are marked as 
either input or output. Designating something as a block has the potential to 
simplify model processing, increase simulation speed and improve the quality 
of diagnostic messages. 

3.6.5 Finding and using component models 
So far, when we have required physical units (e.g., Voltage), we have 

included the line "import Modelica. SIuni ts;" at the start of our mod­
els. This allows us to use SIuni t s as an alias for the full library path where 
the physical unit information resides. We have to include this path because 
Modelica tools will not automatically search through the hierarchies of models, 
types, etc. to find something they are not familiar with. Here are three things 
you can do to make sure a tool can locate the definition you wish to use: 

• Use the full name: You can use the full name (e.g., Modelica.­
Constants. pi or Modelica. SIuni ts. Pressure) to refer to an 
entity you require within a model. Do not worry for the moment where 
these models are stored (to be discussed later in Chapter 9). 

• Define an alias: For example, if we wish to access the types contained in 
Model ica . SIuni t s package, we can include the line: 

import Modelica.Slunits; 

within our models which creates the SIunits alias. 

• Place models in the same directory: One way to make sure your model 
definitions are found is to store them in the directory you are working in. If 
you place all models in the same directory then there should be no difficulty 
in finding them. While we can do this for our simple examples, there are 
better ways of storing models which will be discussed later in Chapter 12. 

This is a simplified version of the lookup rules. For a complete understanding 
of how such lookups are done, consult Chapter 9 or the language specification 
included on the companion CD-ROM. 

For all of our examples, we assume that the other component models we have 
written are in the same directory as the models which use them. In this way, 
we can use component models like Resistor or TransferFunction 
without having to provide a qualified hierarchical name (e.g., Model ica. -
SIunits. Pressure). 

3.7 SUMMARY 
Component based approaches have the following advantages: 
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1. The constitutive equations for a component need only be written once (i.e., 
within the component model). 

2. Hierarchies of components (possibly many levels deep) can be created and 
such hierarchies are much easier to understand compared to a "flattened" 
representation where all parameters, variables and equations are present in 
a single model. 

3. By using the connect keyword, we can automatically generate multiple 
equations for a single connector. In addition, this is not as error prone as 
writing the equations by hand. 

4. Restrictions can be imposed against connections which do not make sense 
(e.g., connecting two input quantities or mixing flow variables with non­
flow variables). 

In summary, these are the reasons why component based approaches to model 
development are superior to equation based approaches for large problems. 

3.8 PROBLEMS 
PROBLEM 3.1 Use the electrical components developed in this chapter as 
a guide to develop analogous components in other domains. For example, a 
translational system has the following equations: 

F kf:j.x (3.10) 

F 
d 

c dt (f:j.x) (3.11 ) 

F 
d2 x 

(3.12) 
m dt2 

to represent the behavior of springs, dampers and inertias where F represents 
force transmitted by an element, k is the spring stiffness, c is the damping 
coefficient and m is the mass. 

For a given analogous domain, what are the variables associated with the 
connectors in that domain and which components in that domain correspond 
to the resistor, capacitor and inductor components in the electrical domain? 

PROBLEM 3.2 Develop a model for the circuit shown in Example 3.7 using 
the block diagram component models from the Examples in Section 3.4. Assume 
that the input to the system is the voltage at pill a in Figure 3.1 and the output 
we are interested in is the voltage at pin c. You might start by writing down 
all the constitutive and conservation equations and trying to formulate them 
in such a way that each equation can be represented by a block in the block 
diagram. 
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PROBLEM 3.3 Browse the MSL and look at the connector definitions for 
different domains. Are there any common themes? 

PROBLEM 3.4 Implement a non-linear rotational spring with the following 
constitutive equation: 

(3./3) 

where T represents torque, ¢ represents angular position and the subscripts, a 
and b, represent connectors. Once implemented, use the the spring in a system 
that contains components from the MSL. 

PROBLEM 3.5 The power output of a resistor can be found by taking the 
product of the current through the resistor, i, and the voltage across the resistor, 
v. Create a model of a resistor whose resistance is a function of temperature 
T as follows: 

where Tr is the reference temperatures, Ro is the nominal resistance at the 
reference temperature, T is the temperature of the resistor and S is the (lin­
earized) sensitivity of the resistance with respect to temperature. Compute the 
temperature of the resistor using the following energy balance: 

where m is the mass of the resistor, Cp is the specific heat capacity of the 
resistor, h is the convective heat transfer coefficient and Tamb is the ambient 
temperature. Examine how this resistor peiforms in some of our RLC example 
circuits with different parameter values(e.g., does the natural frequency of the 
oscillations change?). Here are some sample values to try: 

Ro R (the normal resistance) 

Tamb 400 

Tr 300 

m 0.01 

Cp 384 

h 0.1 

S 0.01 
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ENABLING REUSE 

4.1 CONCEPTS 

Knowing how to build components is only the first step in an efficient model 
development process. In order to maximize the usefulness of these components 
it is necessary to understand how to make them reusable. The Modelica 
Standard Library is a good example of a reusable collection of components. 

Many of the features in Modelica exist to promote reuse. The object-oriented 
nature of Modelica was specifically introduced to parallel the reuse capabilities 
of languages like Ada and C++. While not necessary, being familiar with such 
languages and the techniques used to promote reuse in those languages will 
help in understanding similar features in Modelica. 

There are several aspects to making models reusable in Modelica. For ex­
ample, creating a set of component models that work together requires the use 
of common connector definitions in order for them to share information with 
each other. In Chapter 3, we showed that connector definitions for several 
domains have already been defined in the MSL. By using the MSL connector 
definitions, we can create new models that are compatible with the rich collec­
tion of existing models. 

Reusability is also achieved by extending existing models. As we will show 
in this chapter, this technique allows common sets of equations, parameters, 
algorithms, etc. to be shared between models. While this chapter introduces 
functionality in the Modelica language to promote reuse, the usefulness of this 
kind of reusability may only become clear after you have attempted to create 
a non-trivial collection of models. As usual, we begin with several examples 
and include a summary of the features which promote reuse in the last section 
of this chapter. 
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An important aspect of physical system modeling is to exploit the reusability 
gained by using acausal modeling formulations. In general, acausal models 
(rather than block diagrams) are easier to reuse because each component model 
can be formulated independently without knowledge ofthe equations or causal­
ity assumptions used in other parts of the system. This is an issue because the 
causality for physical component models changes depending on the context in 
which the model is used. While we do not discuss the details in this chapter, 
this aspect of reusability is discussed in greater detail in Chapter 11. 

One final aspect of reusability worth mentioning is that reusability is affected 
by the quality of model documentation. The better the documentation, the easier 
(and therefore more likely) it will be for others to reuse your models. 

4.2 EXPLOITING COMMONALITY 

In general, having the same code fragment appear multiple times in different 
locations usually leads to problems. This is true in languages such as C++ and 
FORTRAN as well as in Modelica. This redundancy is bad because it makes 
maintenance difficult. For example, if a bug is found in one copy of such a 
code fragment it is difficult to track down all places where that same code may 
have been repeated. In Modelica, such redundancies might include repeated 
equations, repeated parameter or repeated connector definitions. In this section 
we will describe how to avoid such redundancy. 

4.2.1 Identifying commonality 

Let us revisit the models presented in Section 3.3. Looking at Examples 
3.2-3.5, can you see the similarities between these models? As it turns out, 
these models have many things in common. Note that the electrical models 
presented use the voltage drop across them and the current flow through them 
in their constitutive equations. Furthermore, they all have two pins with the 
same names, p and n. In other words, there is a good deal of repetition between 
those models. 

In order to help avoid this repetition, the Model ica. Elect rical . -
Analog package defines (in its nested Interfaces package) a partial 
model called One Port . A One Port component is one which has exactly two 
electrical pins associated with it and therefore only one current path through it. 
Example 4.1 shows the One Port model which represents the common subset 
between the Resistor, Capacitor, Inductor and VoltageSource 
models. An important thing to note about the OnePort model is that its 
definition is qualified with the partial keyword which implies that this model 
is not complete but merely a base on which to build other models. 
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partial model OnePort "Two pinned electrical component" 
Modelica.Slunits.Voltage v "Voltage from pin p to pin n"; 
Modelica.Slunits.Current i "Current entering at pin p"; 
Modelica.Electrical.Analog.lnterfaces.Pin p "Positive"; 
Modelica.Electrical.Analog.lnterfaces.Pin n "Negative"; 

equation 
v p.v - n.v; 
0 = p. i + n.i; 
i = p.i; 

end OnePort; 

Example 4.1. Defining a common base model for one port electrical components. 

4.2.2 Extending from a common definition 
The advantage of defining a partial definition like the one shown in Ex­

ample 4.1 is that we can reuse the different pieces (e.g .. connections, types, 
variables or equations) of the OnePort model when writing models for a 
Resistor orVoltageSource. Example 4.2 shows how compact the def­
inition of the Resistor model becomes by using the OnePort definition. 

model Resistor "An electrical resistor" 
extends Modelica.Electrical.Analog.lnterfaces.OnePort; 
parameter Modelica.Slunits.Resistance R=300 "Resistance"; 

equation 
i*R = v; 

end Resistor; 

Example 4.2. Model for Resistor using OnePort. 

The definition shown in Example 4.2 succinctly describes what a Re sis tor 
is. At a glance we can easily surmise that a Resistor is something which 
shares the same charactelistics as a One Port with an additional parameter R of 
type Resistance and a constitutive relationship between i and v desclibed 
by the equation i * R=v. 

4.3 REUSABLE BUILDING BLOCKS 
So far, we have shown how to create new models by extending existing ones. 

In this section we describe how to create new models by combining several 
existing models (e.g .. to create package definitions containing commonly used 
configurations of existing models). 

walter.ponge@terra.com.br



72 INTRODUCTION TO PHYSICAL MODELING WITH MODELICA 

4.3.1 Building a controller model 
In Section 3.4, we showed a complete system containing a controller and 

plant model. In practice, we would not want to create a new PI controller 
from scratch for each system that needed a PI controller. Instead, we should 
build a PI controller model that we can include in any model that needs one. 
Figure 4.1 shows a PI controller model built using the Modelica. Blocks 
package. Example 4.3 shows the Modelica source code for the controller. Note 
the similarity of Example 4.3 to Example 3.17. 

Models which are built from other models can be visualized in two ways. 
The first way is to look at them as schematic diagrams like the one shown in 
Figure 4.1. 

Summation 

~lY~l------F;::> 
driver 

k={1} 

sensor 

Figure 4.1. The diagram view of PIController. 

The second way is to look at our model from the "outside". This is called the 
icon view and Figure 4.2 shows the PIController from this perspective. 
The icon view hides the internal details of the model and presents only a "black­
box" representation. The input connectors, command and sensor, and the 
output connector, driver, shown in Figure 4.1 represent the external con­
nections of the PIController model. These correspond to the connectors 
visible in Figure 4.2. 

Figure 4.1 shows how a component model (e.g., PIController) can 
be built from other models (e.g., Summation and Gain). Think of the 
subcomponent models as building blocks. Ultimately, this approach makes the 
building and enhancement of complex systems easier. 

Example 4.4 shows how we can use the PIController to create a system 
equivalent to the one presented in Example 3.17. Example 4.4 demonstrates 
how much simpler models become when we encapsulate the details of particular 
components. 
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Figure 4.2. PIController model icon. 

block PIController "A PI Controller" 
parameter Real Kp=l "Proportional Gain"; 
parameter Real Ti=l "Integral Time Constant"; 
import Modelica.Blocks; 

Blocks.Interfaces.InPort command "Command signal"; 
Blocks.Interfaces.InPort sensor "Sensor signal"; 
Blocks.Interfaces.OutPort driver "Driver signal"; 
Blocks.Math.Feedback Difference; 
Blocks.Math.Gain Kl(k={Kp}); 
Blocks.Math.Gain K2(k={1/Ti}); 
Blocks.Math.Add Summation; 
Blocks.Continuous.Integrator IntegratorBlock; 

equation 
connect (command, Difference.inPortl); 
connect (sensor, Difference.inPort2); 
connect (Difference.outPort, Kl.inPort); 
connect (Kl.outPort, Summation.inPortl); 
connect (Kl.outPort, K2.inPort); 
connect (K2.outPort, IntegratorBlock.inPort); 
connect (IntegratorBlock.outPort, Summation.inPort2); 
connect (Summation. outPort , driver); 

end PIController; 

Example 4.3. Source code for the PI controller model in Figure 4.1. 

4.3.2 Propagating information 
When building a new model using a collection of subcomponents it is nec­

essary to propagate connections and parameters down through the hierarchy of 
subcomponents. 
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model PIControllerAndMotor 
import Modelica.Blocks; 

Blocks.Sources.Sine sinsig( 
amplitude={O.2}, freqHz={O.3}, offset={l.O}); 

PIController pic(Kp=O.4); 
Blocks.Continuous.TransferFunction motor(a={O.8,O.1}); 

equation 
connect (sinsig.outPort,pic.command) ; 
connect (pic.driver,motor.inPort) ; 
connect (motor.outPort,pic.sensor) ; 

end PIControllerAndMotor; 

Example 4.4. A PI controller controlling a motor. 

sinsig 

freqHz={.3} 

PI Controller 

Kp=.4 

Ti=1 

motor 

b(s) 

a(s) 

Figure 4.3. PIControllerAndMotor model. 

4.3.2.1 Parameters 

h , , 

i 

The PIController shown in Example 4.3 is characterized by the two 
parameters at the top of the model. These parameters are the proportional gain, 
Kp, and the integral time constant, Ti. We need to propagate these parameters 
to the gain block subcomponents. We do this when we declare the gain blocks. 
Note how, in Example 4.3, Kp and Ti are used to set the gain parameter, k, for 
subcomponents Kl and K2, respectively. 

4.3.2.2 Connections 

Propagating connections is quite straightforward. To establish a connection 
between the external connection of a model and one of its subcomponents, the 
connect command is used to connect two connectors just like it would be for 
any other connection. Previously in Section 3.6.1 we mentioned that two input 
connectors could not be connected using connect unless they were at different 
hierarchical levels. Example 4.3 is an example of why this exception exists. 
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Note the connection between command and Difference. inPortl. Both 
of these connectors are input connectors from the Modelica. Blocks pack­
age but because they are at different hierarchical levels I, this connection is 
allowed. This allows external input signals to be passed down through the 
hierarchy of subcomponents. 

4.3.3 Summary 
When building components from other "building block" components, the 

first step is to determine what the external connections and parameters should 
be. In other words, what should this model look like from the "outside". Next, 
we declare and connect the internal components. Finally, we propagate the 
external parameters and connectors to the subcomponents. 

4.4 ALLOWING REPLACEABLE COMPONENTS 
Example 4.4 in the previous section shows a motor being controlled by one 

specific controller. In this section, our goal is to demonstrate how we can easily 
"plug and play" different kinds of controllers and compare their performance. 
In order for one model to replace another, the two models must be compatible. 
In other words, the new model must have the same connectors and parameters 
as the old model. In the technical vocabulary of Modelica, the new model must 
be a "subtype" of the model it is replacing (see Section 4.8.3 for a complete 
description of the subtype concept). 

4.4.1 The generic controller interface 
One way to ensure that the controller blocks are compatible is to extend them 

from a common partial block. To do this, we need to establish a common 
interface for our controllers. We accomplish this the same way we did in 
Section 4.2. Specifically, we identify the common attributes of a controller and 
create a partial block that all of our controllers can be extended from. 

The inputs to our generic models are a command signal and a sensor signal. 
The model should also have a single output for the driver signal. All these 
signals were present in our PIController model. Now, we consider the 
parameters for our generic controller. We cannot assume that all controllers 
have the same parameters, Kp and Ti, that our PIController has. In 
fact, we cannot make any assumptions about what parameters a controller 
might have. After considering all this, Example 4.5 shows what our generic 
controller model would look like. 

I These connectors are at different hierarchical levels because one connector belongs to the P I Con t ro lIe r 
model directly (i.e .. it is declared within the PIController model) while the other connector belongs to 
the Difference component which is nested inside the PIController. 
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partial block Controller "A generic controller interface" 
import Modelica.Blocks; 

Blocks.Interfaces.InPort command "Command signal"; 
Blocks.Interfaces.InPort sensor "Sensor signal"; 
Blocks. Interfaces .OutPort driver "Driver output signal"; 

end Controller; 

Example 4.5. A generic controller interface. 

4.4.2 Specific controller models 
Let us use the Controller definition in Example 4.5 to create several 

different types of controllers so we can do some comparisons. 

4.4.2.1 Proportional controller 

Example 4.6 shows a proportional gain controller that is defined by extending 
from the Controller model shown in Example 4.5. The equation for a 
proportional gain controller is: 

driver = Kp * e (4.1) 

where Kp is the gain of the controller (represented by the Kp parameter in the 
model) and e is the difference between the commanded and measured response. 
In Example 4.6, we have used two simple equations to express the mathematical 
relationship between the inputs and outputs. This is in contrast to Example 4.3 
where we used the mathematical blocks, such as the Ga in block, found in the 
Modelica. Blocks package. 

block PController "A proporational gain controller" 
extends Controller; 
parameter Real Kp=l "Proportional gain"; 

protected 
Real e "reference error"; 

equation 
e = command. signal [1] - sensor. signal [1] ; 
driver. signal [1] = Kp*e; 

end PController; 

Example 4.6. A proportional gain controller. 

4.4.2.2 Proportional-differential controller 

Example 4.7 shows how an ideal proportional-differential controller can be 
created by extending the Controller interface. Again, we have chosen to 
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write the mathematical relationship, e.g., 

driver = Kp * e + Kd * ~~ 

block PDController "An ideal PD controller" 
extends Controller; 
parameter Real Kp=l "Proportional gain"; 
parameter Real Kd=l "Differential gain"; 

protected 
Real e "reference error"; 

equation 
e = command. signal [1] - sensor. signal [1] ; 
driver. signal [1] = Kp*e + Kd*der(e); 

end PDController; 
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(4.2) 

Example 4.7. An ideal proportional-differential gain controller. 

4.4.2.3 Proportional-integral controller 

Each of the other controllers described in this section extends from the 
Controller model. In this way, they inherit all the components they need. 
Another benefit of extending from the Controller model is that each of the 
other controllers is automatically a sUbtype of the Controller model. 

In the case of the PIController model, we do not have to rewrite the 
model to extend from the pat1ial model Controller. We can continue 
to use the model as it appears in Example 4.3. This is because our exist­
ing PIController can be considered a subtype (i.e., specialization) of 
the Controller model because it contains all of the components of the 
Controller model. While using extends, as we did in Examples 4.6 and 
4.7, is convenient because it automatically includes everything that is needed, 
it is not necessary in order for a model to be considered a subtype. 

4.4.3 Using replaceable components 
Let us create a new version of the model shown in Example 4.4 that allows 

us to replace the controller model. The new model for this system is shown in 
Example 4.8. 

The only difference between Example 4.4 and Example 4.8 is the change of 
the controller declaration from: 

PIController pic(Kp=O.4); 

to: 
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replaceable PIController con(Kp=O.4} extends Controller; 

Think of the new declaration as saying: "Declare a PIContro11er called 
con that can be replaced by any component which is a subtype of Con t ro 11 e r". 
In essence, the extends qualifier at the end of the declaration represents a con­
straint on the model being declared and any models it may be replaced with. 

model ControllerAndMotor 
import Modelica.Blocks; 

Blocks.Sources.Sine sinsig( 
amplitude={O.2}, freqHz={O.3}, offset={l.O}}; 

replaceable PIController con(Kp=O.4} extends Controller; 
Blocks.Continuous.TransferFunction motor(a={O.8,O.1}}; 

equation 
connect (sinsig.outPort, con. command} ; 
connect (con.driver,motor.inPort) ; 
connect (motor. outPort , con. sensor} ; 

end ControllerAndMotor; 

Example 4.8. A system containing a controller and motor. 

N ow, let us create a model which tests all of these controllers side by side. Ex­
ample 4.9 shows a system composed of three instances of our Contro11er­
AndMotor model. Note that the first instance does not make any modification 
and therefore uses the default PIContro11er. The next instance redeclares 
the controller component con, inside the Contro11erAndMotor model, 
to be of type PContro11er. The last instance also redeclares the controller, 
but this time it specifies the controller type to be PDContro11er. Figure 4.4 
shows the results of a side by side comparison between the 3 controller models. 

model CompareControllers "Comparing various controllers" 
ControllerAndMotor pic; 
ControllerAndMotor pc( 

redeclare PController con(Kp=l.l}}; 
ControllerAndMotor pdc( 

redeclare PDController con(Kp=1.1,Kd=.2}}; 
end CompareControllers; 

Example 4.9. A comparison of controllers using redeclare. 
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Figure 4.4. Side by side comparison of controllers. 

Summary 
In this section, we have shown how to design components or systems that 

allow us to easily substitute one model for another. For our example, we used 
this capability to do a side by side comparison of different controller types. 

Another use for this functionality is to substitute models with different levels 
of detail. When designing controllers, the plant models are often linearized 
and expressed in terms of transfer functions (like our motor). However, in 
practice it is useful to replace these simple linear models with detailed models 
which consider non-linear effects (e.g., backlash) and then re-simulate the 
system to compare how different controllers perform in the presence of such 
non-linearities. 

4.5 OTHER REPLACEABLE ENTITIES 
In Section 4.4, we showed how components could be made replaceable. 

Besides making components replaceable, the replaceable keyword can also 
be used to make the types of components replaceable. Instead of just redeclar­
ing one component, this feature allows several components to be redeclared 
simultaneousl y. 
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Before going into the details of how this is done, we must first cover a few 
other features of the Modelica language. Let us revisit Example 3.8. Note that 
the two resistor components in that example are declared as follows: 

Analog.Basic.Resistor Rl(R=lS); 
Analog.Basic.Resistor R2(R=SOOO); 

Imagine we wanted to save ourselves from having to type out the full name of 
the resistor model. To do this, we could define a local model and then declare 
Rl andR2 using our local model as follows: 

model ResModel 
extends Analog.Basic.Resistor; 

end ResModel; 
ResModel Rl(R=lS); 
ResModel R2(R=SOOO); 

We do not appear to have saved ourselves too much typing. However, we can 
accomplish exactly the same thing by using an abbreviated way of extending a 
model called a short definition. Our previous code fragment can be rewritten 
as: 

model ResModel=Analog.Basic.Resistor; 
ResModel Rl(R=lS); 
ResModel R2(R=SOOO); 

In other words, 

model ResModel=Analog.Basic.Resistor; 

is equivalent to 

model ResModel 
extends Analog.Basic.Resistor; 

end ResModel; 

Now, we can use a short definition in conjunction with the replaceable 
qualifier to allow the type of resistor used to be easily redeclared. Example 
4.10, a variation on Example 3.8, shows how a replaceable object type can 
be implemented. The difference is that the RLCS model defines a local model 
called ResModel. This local model is then used when declaring components 
Rl and R2. Figure 4.5 shows which components in the schematic use the 
ResModel definition. Note that the definition of the model Resistor is 
just a short definition with the replaceable qualifier in front of it. 
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model RLC5 "An RLC circuit using standard components" 
import Modelica.Electrical.Analog; 

replaceable model ResModel=Analog.Basic.Resistor; 
ResModel Rl(R=15); 
ResModel R2(R=5000); 
Analog.Basic.Capacitor C(C=lOOe-6) ; 
Analog.Basic.lnductor L(L=lOOe-3); 
Analog.Sources.StepVoltage vs(startTime=l); 
Analog.Basic.Ground g; 

equation 
connect (vs.n,g.p) ; 
connect (vs.p,L.p); 
connect (L.n,Rl.p) ; 
connect(L.n,R2.p) ; 
connect (Rl.n,C.p) ; 
connect (C. n, 9 .p) ; 
connect (R2.n,g.p) ; 

end RLC5; 

Example 4.10. An example of how to redeclare several components. 
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Figure 4.5. Schematic for Example 4.10. 
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The advantage of defining a local model as shown in Example 4.10 is that 
all instances of that model can be redeclared simultaneously. For example, if 
we wanted to create a new version of the circuit shown in Example 4.10 using 
a different resistor model, we would do something like the following: 

model MyRLC=RLC5(redeclare model ResModel=MyResistor); 

This code fragment shows another example of how a Sh0l1 definition can be 
used. In this case, the MyRLC model extends from RLCS but it redeclares 
the ResModel model to be an extension of some other resistor model called 
MyResistor. The result is that components Rl and R2 within the MyRLC 

model will be declared as instances of the MyResistor model. Note that the 
syntax of a redeclaration is the same as a declaration except that it is preceded 
by the keyword redeclare. 

4.6 LIMITING FLEXIBILITY 
The focus of this chapter is how to make components more reusable because 

this translates into greater flexibility and less duplication of effort. For that 
reason, it may seem strange to introduce a section to discuss limiting the 
reusability of a definition. However, there is good reason for this because, in 
addition to being reusable, we also want our models to be robust. 

To understand why flexibility must sometimes be limited, let us consider 
one problem with Example 4.3. Note that the parameter Ti is used to give a 
value to the gain parameter, k, of gain block K2. First, let us consider a typical 
use of the PIController model: 

model ControllerApplicationl 

PIController con(Kp=O.4,Ti=O.2); 
equation 

end ControllerApplicationl; 

Note that the Ti parameter was set to 0.2. This should result in the k parameter 
of gain block K2 being set to 5. New model developers may not immediately 
notice the details of Example 4.3 so they may not realize that the Ti parameter 
gets propagated to the k parameter of one of the gain blocks. As a result, they 
might try to directly set the k parameter themselves as follows: 

model ControllerApplication2 

PIController con(Kp=O.4,K2(k=5)); 
equation 

end ControllerApplication2; 
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The intention of the PIController model developer was that only parame­
ters Kp and T i should be set by users of the model and that parameters inside the 
PIController hierarchy should not be changed. To prevent such changes, 
the declaration of the K2 block within the PIController model should be 
changed to: 

Blocks.Math.Gain K2(final k={l/Ti}); 

The use of the final keyword in this way indicates that no further modifications 
to the parameter k are allowed. Any attempt to do so, like we showed previously 
in Con t ro lApp 1 i cat i on2, will trigger an en-or. 

This kind of limitation can be important when building up configurations of 
existing components. This is because while a new model may be built using 
instances of existing models, it may be desirable for the new model to behave 
like a black box (i.e., not allowing others to get inside and change some of the 
underlying assumptions). The final keyword can be used to disallow such 
changes. 

model Gear 
import Modelica.Mechanics.Rotational; 

Rotational.lnterfaceS.Flange_a flange_a; 
Rotational.lnterfaces.Flange_b flange_b; 
parameter Real gear_ratio=l 

"Gear ratio (flange_a.phi/flange_b.phi) "; 
equation 

flange_a.phi = ratio*flange_b.phi; 
o = ratio*flange_a.tau + flange_b. tau; 

end Gear; 

Example 4.11. A simple gear model. 

Another example of where final might be used is in the development 
of a timing belt model. In an internal combustion engine, the timing belt 
connects the crankshaft to the camshaft. The timing belt is designed so that 
two revolutions of the crankshaft result in one revolution of the camshaft. So 
it appears a timing belt is just a special case of a gear with a gear ratio of two. 
Example 4.11 shows one way of writing a gear model using the Model ica. -
Mechanics. Rota tionallibrary.2 

We can reuse this Gear model to create our TimingBel t model as follows: 

"This is nearly identical to the ideal gear model found in the MSL with the name Modelica.­
Mechanics.Rotational.ldealGear 
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model TimingBelt=Gear(final gear_ratio=2); 

The final keyword prevents any subsequent change in the gear ratio by in­
stantiation or specialization. As a result, the following examples would be 
prohibited: 

model Engine 
TimingBelt belt (gear_ratio=3) ; II Error 
model OddTimingBelt= 

TimingBelt(gear_ratio=2.25); IIError 
end Engine; 

This is because the geaLratio component of TimingBel t was declared 
final. 

4.7 OTHER CONSIDERATIONS 
4.7.1 Parameters 

It is usually undesirable for a model to have numbers appearing directly in 
equations. For example, the SimplePendulum model in Example 2.1 could 
have been written as: 

model SimplePendulum 
Real theta, omega; 

equation 
der(theta) = omega; 
der(omega) = -4.905*theta; 

end SimplePendulum; 

However, this not only hides the fact that 4.905 is really g / L but it also 
prevents the length from being easily changed. Making L a parameter and 
g a constant makes the model easier to understand and easier to reuse (i.e., 
allowing different values of L). 

4.7.2 Generality 
The most reusable models are the ones that make the fewest assumptions. 

Unfortunately, the more general a model, the more abstract and complicated it 
tends to be. 

For example, we could have solved the pendulum dynamics described in 
Equation (2.6) by first developing a general model that described the motion 
of a mass in three-dimensional space. Then, we could have created a sim­
ple pendulum model that extended the general model and included additional 
equations to constrain the motion of the mass to be that of a simple planar 
pendulum. In the case of our SimplePendulum model, it would probably 
be simpler just to create a model directly from Equation (2.6) than to reuse a 
more general existing model by adding constraints. 
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When developing a reusable model try to understand how it will be reused. 
The model should be general enough that it can be used as the basis for several 
other models. At the same time, it must be simple enough that using it as the 
basis for developing other models leads to models that are simple and easy to 
understand. The OnePort model, shown in Example 4.1, is a good example 
because it satisfies both of these criteria. 

4.7.3 Documentation 
An important part of reusability is documentation. There are several different 

types of documentation that should be part of any reusable model. First, 
descriptive text can be used when the model and any of its components are 
declared. Refer to Example 2.4 for a demonstration of how this is done. In 
addition, comments (starting with" / /") can be used within the model text to 
explain the origin of equations or logic of algorithms. Finally, we shall see in 
Section 9.2.2 that it is also possible to embed HTML code that describes the 
details behind the model. 

The ability to document models in this way is a deliberate attempt, by the 
designers of the Modelica language, to give model developers every opportunity 
to explain the details of their models. By documenting models in this way, the 
documentation moves with the model which makes it easier to update the 
documentation as the model changes. 

4.8 LANGUAGE FUNDAMENTALS 
4.8.1 Extending a model 

The basic idea behind the extends keyword is that, roughly speaking, it 
allows you to "copy and paste" the contents of one model into another. This is 
useful when many models have the same variables, connectors, equations, etc. 

Through the examples in this chapter, we have shown that once a common 
subset is identified, other models can be specialized from the common subset 
using the extends keyword. Example 4.2 shows how the Resistor model 
was made simpler and easier to understand by deriving it from a base model. 
It is even possible to extend from two or more base models. 

There are several important restrictions to keep in mind when using ext ends. 
The first restriction is that you cannot replace any of the equations in a model 
you are extending. For example, if we define a model A as follows: 

model A 
Real x; 

equation 
x = 5; 

end A; 

and then we extend A to create a new model B1 which looks like this: 
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model Bl 
extends A; 

equation 
x = 3; 

end Bl; 

The definition ofBl above is equivalent to the following definition ofB2 which 
does not utilize extends: 

model B2 
Real x; 

equation 
x = 5; 

x = 3; 
end B2; 

As a result, in both Bl and B2 we end up creating a model with two equations 
which is probably not our intention because this results in a system of two 
equations with only one unknown (i.e., it is over-determined). 

Care should be taken when developing partial models to give derived 
models sufficient flexibility for their equations by including the minimum 
number of equations in the partial model. 

4.8.2 Short definitions 
In Example 4.10, we introduced the idea of a short definition. It is often 

the case that a new model is so similar to something that already exists that its 
definition looks something like: 

model MyRLC 
extends RLC5(Rl(R=12»; 

end MyRLC; 

Note that this model involves a slight modification of an existing model (i.e., 
it does not introduce any new subcomponents). In such cases, it is possible to 
use the slightly less complicated short definition approach. The short definition 
would be: 

model MyRLC=RLC5(Rl(R=12»; 

This second form allows you to essentially replace the extends keyword with 
an equal sign and the end statement with a simple semi-colon; 

We have shown how to create a short definition for a model. A similar ap­
proach can be taken when defining a connector, block or record (described 
in Chapter 5). Note that a type is always defined using a short definition, e.g., 

type Pressure=Real(quantity=IPressure", unit=IN/m A 2"); 
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4.8.3 Concept of subtype 
In Section 4.4, we talked briefly about the notion of a sUbtype relationship. 

Since sUbtypes are important for several features presented in this chapter, a 
more rigorous discussion of the sUbtype concept is included. 

4.8.3.1 Theory 

Imagine two models, A and B. Roughly speaking, model B is a subtype of 
model A if B contains all of the same components (with the same names) as A. 
To illustrate this, consider the following model: 

model BaseModel 
Real x, y; 

end BaseModel; 

Now assume we have another model like this one: 

model DerivedModel 
extends BaseModel; 
Real Z; 

end DerivedModel; 

As was described in Section 4.8.1, this definition of Deri vedModel is equiv­
alent to: 

model DerivedModel 
Real x, y, z; 

end DerivedModel; 

In either case, the Deri vedModel is a subtype of the BaseModel because 
it has all of the components of BaseModel (i.e .• x and y). It does not matter 
that Deri vedModel has more components (i.e .• z) than BaseModel. It also 
does not matter whether the definition of Deri vedModel uses the extends 
keyword or whether it contains its own declarations of x and y, with the 
appropriate types, as long as it has all of the components of BaseModel. 

Subtype relationships are not limited to models. Such relationships apply 
for all definitions in Modelica (e.g .. connector definitions). 

4.8.4 Creating partial definitions 
In Example 4.1, the model definition was preceded by the partial keyword. 

The part ial keyword indicates that while this model can be extended, it cannot 
be instantiated. In other words, the model is a foundation on which to build 
new models, but it is not a proper model by itself (usually because it is missing 
some constitutive equations). The partial keyword, like many features in 
Modelica, not only enforces certain semantics but also documents the intent 
of the original model developer. In other words, if you see a partial model, 
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you know immediately that this is not something you would declare but rather 
something to extend from. 

4.8.5 
4.8.5.1 

Making elements of a model replaceable 
Replaceable subcomponents 

Example 4.8 showed how we can declare a component to be replaceable. 
There are two differences between a normal declaration and a replaceable 
declaration. First, the replaceable declaration is preceded by the replaceable 
keyword. In addition, a replaceable declaration can be followed by an optional 
extends clause which indicates the constraining type of the declaration. The 
constraining type limits what a component can be replaced with, which provides 
some degree of robustness. So in Example 4.8, the extends clause indicates 
that in all cases con must be a subtype of Controller. Of course, if the 
component is never redeclared, its type will be whatever was specified in the 
original declaration. 

4.8.5.2 Using replaceable type definitions 

Replaceable type definitions are really not significantly different than re­
placeable component declarations. The replaceable keyword is placed in 
front of a definition (e.g., a model definition in Example 4.10) and an optional 
extends can be added to the end followed by the constraint type. The only 
difference, when compared to replaceable components, is that a replaceable 
type definition can be used to change the types of numerous components si­
multaneously rather than one at a time. Replaceable type definitions usually 
involve the definition of a local type (i.e., a type which is only used within the 
context of a specific model). 

4.8.6 Making components "final" 
Flexibility sometimes comes at the cost of robustness. The final keyword 

is used to restrict flexibility by disallowing further changes. As was shown 
in Section 4.6, there are times when final can be used to eliminate the 
possibility of inappropriate modification. The final keyword can be placed in 
front of modifications to imply that those modifications cannot be subsequently 
changed. Modifications include the assignment of values to constants and 
parameters and also any redeclarations made using the redeclare keyword 
(as shown in the MyRLC model on page 82). 

4.9 PROBLEMS 
PROBLEM 4.1 Write models for a Capaci tor and an Inductor by ex­
tending the OnePort model shown in Example 4.1. 
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PROBLEM 4.2 The Integrator, TransferFunctionandGainblocks 
(found in Examples 3.13, 3.14 and 3.15, respectively) all have a single input 
and a single output. Create a base model that all of these models can be ex­
tended from (i.e., something analogous to the OnePort model in the previous 
problem). 

PROBLEM 4.3 Create a version of the circuit shown in Example 3.7 (found 
in page 46) that uses the MSL. Furthermore, make the resistor, capacitor and 
inductor replaceable with any component that satisfies the One Port inteiface 
from Example 4.1. What happens if you replace the capacitor with a resistor 
that has very small resistance? Compare the voltage across the inductor in 
both cases. 

PROBLEM 4.4 Create a resistor model like the one described in Problem 3.5 
that is a subtype of the OnePort model in Example 4.1. Redeclare the resistor 
model in the solution to Problem 4.3 as an instance of this new resistor model. 
Then, run a simulation using the new resistor model and compare the results 
to the results obtained using an ideal resistor. 

PROBLEM 4.5 Create a version of the ControllerAndMotor model shown 
in Example 4.8 where the plant model is also replaceable. Use the solution 
from Problem 4.2 as the base model for all plant models. Then, create a 
plant model from the Ro ta t i onal Pendu 1 ummodel shown in Example 3.19 
and use that as the plant. You will need to connect a torque source as input 
and speed sensor as an output (both of which can befound in Modelica. -
Mechanics. Rota tional). 

You will probably want to change the offset value for the signal genera­
tor, sinsig, to zero. In addition, start the pendulum in a non-equilibrium 
state. Then, try clwnging the controller parameters to improve the overall 
pelfonnance. 
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FUNCTIONS 

5.1 CONCEPTS 
While writing equations (i.e., equating two expressions) is sufficient for 

most modeling, there are cases where a procedural or algorithmic approach, 
involving explicit assignment, is necessary. To address this need, Modelica 
includes support for algorithmic functions. While a function in Modelica is 
like a block because all quantities must be explicitly labeled as either input 
or output, it is different from a block or model because it is not connected to 
other components. Instead, it is invoked during the evaluation of expressions. 
Another difference between a function and a block or model is that a 
function is not allowed to have any persistent internal state. As a result, there 
are several restrictions on the statements which can appear within a function 
(e.g., the der operator cannot appear within a function). 

In this chapter, we will describe an alternative to an equation section 
called an algori thm section. The algori thm section is used when procedural 
semantics are required. While a block or model definition can contain any 
number of equation or algorithm sections, a function definition must 
contain exactly one algorithm section which performs all calculations for 
that function. 

In this chapter, we will show several examples of Modelica functions. In 
addition, we will show how to call external subroutinesl (written in languages 
such as C or FORTRAN77) from within a Modelica model. 

I To avoid confusion, the term subroutine will refer to C or FORTRAN77 code and junction will refer to 
Modelica functions. 
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5.2 INTRODUCTION TO FUNCTIONS 
Let us start with a simple function. Imagine we wish to search through an 

array of names for a particular name and find the index of that name in the array. 
The two arguments to the function will be an array of names and the name we 
are looking for. The output will be the index where the name was found or 
an error will occur if the name was not found. Each name is represented as a 
String in Modelica. The input components of the function correspond to 
the arguments of the function when it is invoked and the output component 
corresponds to the value of the function when used in an expression. 

function FindName 
input String names[:); 
input String name_to_find; 
output Integer index; 

protected 
Integer i, len=size(names, 1) ; 

algorithm 
index := -1; 
i : = 1; 

while index==-l and i<=len loop 
if names [i) ==name_to_find then 

index : = i; 
end if; 
i := i+1; 

end while; 
assert (index<>-l, "FindName: failed"); 

end FindName; 

Example 5.1. A function to find a name in an array of names. 

5.2.1 Arrays 
This example is the first to contain the declaration of an array. We do not 

describe arrays in detail until Chapter 6. However, we need to cover a few 
basics in order to explain this example. First, the presence of the" [" and "] " 
characters in the declaration of names indicates that names is an array. In 
the declaration, the size for each dimension of the array appears as a comma 
separated list between the" [" and "] " characters. The use of":" in such a 
declaration indicates that any size for that dimension is allowed. In this case, 
we can determine from the declaration that names is a one-dimensional alTay 
of an unspecified size. We can also see, from the if statement, that the" [" and 
"] " characters are also used in expressions to reference individual elements of 
the array. 
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5.2.2 Robustness 
This funct ion demonstrates several features that promote the development 

of robust functions. For example, note that the declaration of the names 
argument does not include a size for the array. This indicates that this funct ion 
is defined so that it can handle anyone-dimensional array of names. However, 
within the function we must know how many names are in the array. We 
could add an additional argument to the function to allow the size of the array 
to be passed into the function. However, the risk still remains that an incorrect 
size could be passed in. A more robust way to determine the size of the name s 
array is to use the size () function. The size () function will always return 
the correct size of an array. More details on size () and other array related 
functions can be found in Chapter 6. 

Another thing to notice about the FindName function is the use of the 
assert () function. We can use the assert () function to verify certain 
conditions. For example, if the index variable is unchanged after the while 
loop, then we failed to find the name we were looking for. In other words, at 
the end of this function we would like to make sure that the index variable 
has not kept its initial value of -1. We can do this by using the assert () 
function to verify that index is not equal to -1 at this point. If the assertion 
is false (i.e., index is equal to -1), then the message contained in the second 
argument to the assert () function will be displayed to the user and the 
simulation will stop. 

5.2.3 Function contents 
Example 5.1 may be simple, but it introduces many new ideas. First, it 

contains a protected section. Within a function, the protected2 section 
contains declarations for all local variables. The local variables are only visible 
within the function. They are created during each invocation of the function 
and destroyed when the function invocation is completed. Such variables are 
typically used as temporary variables in calculations performed internally to 
the function. 

Note that this function uses the :::: operator. Recall, from Chapter 2 that 
the :::: operator indicates assignment rather than equality. The variable being 
assigned to must appear on the left hand side of the :::: operator. We can see 
that the :::: operator is used extensively in this function. Finally, we see the use 
of a while loop. In this example, we use the while statement to repeatedly 
check whether we have found the string we are looking for. 

2The use of the protected keyword within models will be discussed in Chapter 6. 
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5.2.4 Invoking a function 

model TestFindName 
parameter String names [ :] = {"H20"," C02" , "N2" } ; 
parameter Integer C02=FindName (names, "C02") ; 

end TestFindName; 

Example 5.2. Invoking the FindName function. 

Example 5.2 shows an example of a model which invokes the FindName 
function. Note that the arguments to the function must be passed according to 
the order they were declared in the function definition (i.e., names followed by 
name_to_find). Even though the FindName function is used in Example 
5.2 to initialize a parameter, we have seen previously (e.g., Example 2.2) that 
functions can be used in equations as well. 

5.3 AN INTERPOLATION FUNCTION 
Let us move on to a more complex example. Since it is common to require 

interpolation when modeling, the next example is a function which can perform 
linear interpolation for us. To keep things simple, we restrict this example, 
shown in Example 5.3, to the case of one dimensional linear interpolation. 
Furthermore, an assertion will fail if the value of the independent variable, x, 
is outside the range of values found in x_grid. 

function Piecewise "A piecewise linear interpolation" 
input Real x "Independent variable"; 
input Real x_grid [:] "Independent variable data points"; 
input Real y _grid [:] "Dependent variable data points"; 
output Real y "Interpolated result"; 

protected 
Integer n; 

algorithm 
n := size (x_grid,l) ; 
assert (size (x_grid, 1) ==size (y_grid, 1), "Size mismatch") ; 
assert (x>=x_grid [1] and x<=x_grid [n], "Out of range"); 
for i in 1:n-1 loop 

if x>=x_grid[i] and x<=x_grid[i+1] then 
y := y_grid[i]+(y_grid[i+1]-y_grid[i])* 

((x-x_grid[i] )/(x_grid[i+1]-x_grid[i])); 
end if; 

end for; 
end Piecewise; 

Example 5.3. A piece-wise linear function. 
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5.3.1 Explanation 
Once again, we see the size () function being used to determine the size of 

the input arrays. In addition, we see several uses of the assert () function. 
These assertions make sure that the input arrays, x_grid and y _grid, are 
the same size and that the independent variable, x, is within the range given by 
the x_grid argument. 

Linear interpolation involves finding the location, in the x_grid array, of 
the data points immediately above and below the independent vmiable, x. 
Once these have been located, the output of the function, y, is computed by 
linearly interpolating between the values in the y _grid which correspond to 
the adjacent data points. 

5.3.2 Using for loops 
Another interesting thing about this example is that it contains a for loop. 

The expression 1: n - 1 is actually short hand for a complete array which 
includes elements (1, ... , n - 1). As an argument to for, it provides the 
range of values for the variable i. It should be pointed out that i is a variable 
which is local to the f or loop. This means that it is created at the start of the 
for loop and disappears after the "end for;" statement is reached. For this 
reason, there is no need to declare i as a variable. 

5.3.3 Named arguments 
In Modelica, there are two ways to invoke functions. The first is to pass the 

arguments in the order they are declared in the function definition. This is 
what we did in Example 5.2. Let us test the Piecewise function using the 
alternative way of invoking a function: 

model TestPiecewise 
package SI=Modelica.Slunits; 
parameter SI.Time x_vals[6] = {O, 2, 4, 6, 8, 10}; 
parameter Real y_vals[6] = {O, 0, 4, 16, 36, 64}; 
Real y; 

equation 
y = Piecewise (x=time,x_grid=x_vals,y grid=y vals); 

end TestPiecewise; 

In this case, we have provided an explicit equation for each input argument 
when invoking the funct ion. Invoking functions in this way is legal in 
Modelica so long as an equation is provided for each argument. Figure 5.1 
shows the values for y generated by this code fragment. 

walter.ponge@terra.com.br



96 INTRODUCTION TO PHYSICAL MODEliNG WITH MODEliCA 

60 

50 

40 

30 

20 

10 

o 

Time [s] 

Figure 5.1. Output after simulating TestPiecewise for 10 seconds. 

5.4 MULTIPLE RETURN VALUES 
For our next example, we consider a function which has more than one return 

value. Imagine we need to evaluate a polynomial in x and the derivative of 
that polynomial with respect to x. Given an array containing the coefficients 
of the polynomial, Example 5.4 shows a function which uses a single loop to 
compute both the value of the polynomial and its derivative. 

Once again, we use the size () function to determine the size of the arrays 
being passed in. Using this size information, a for loop can be constructed to 
evaluate the polynomial and its derivative. The following model can be used 
to validate the calculation of the derivative: 

model TestPolyEval 
parameter Real coefs[3] = {2.0, 1.0, 2.0}; 
Real y; 
Real fdy; 
Real dy; 

equation 
(y,fdy) = PolyEval(time,coefs); 
dy = der(y); 

end TestPolyEval; 

We can validate the PolyEval function by comparing fdy and dy. 
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function PolyEval "Evaluate polynomial and derivative" 
input Real x "Independent variable"; 
input Real coef [:] "Coefficients (low to high order)"; 
output Real y "Result of polynomial evaluation"; 
output Real dydx "Deri vati ve of polynomial"; 

protected 
Integer n; 

algorithm 
n := size(coef,l); 
y := coef[n]; 
dydx := 0.0; 
for i in n-l:-l:l loop 

y := y*x + coef[i]; 
dydx := dydx*x + i*coef[i+l]; 

end for; 
end PolyEval; 

Example 5.4. Evaluation of a polynomial and its derivative. 

5.5 PASSING RECORDS AS ARGUMENTS 
For complex functions, passing in large numbers of arguments can become 

cumbersome. In these cases, it is useful to define a record type which can be 
used to group several logically related arguments together.3 Imagine we wish 
to create a function which evaluates the sum of several sine waves, i.e., 

(5.1) 

where each wave has its own amplitude, Ai, frequency, fi and phase shift, (Pi­
Example 5.5 shows how we might write such a function. 

Note that Example 5.5 includes a local record definition. Local definitions 
are useful because they are clearly associated with a specific model or function 
(e.g., ComplexWave). There is no chance that this Data record could 
be confused with another record also named Data because the definition 
is nested within the ComplexWave function and therefore a qualified name 
(i.e., ComplexWave. Data), must be used in any declarations of the Data 
record outside the ComplexWave function. 

5.5.1 Building a record 
The following code fragment gives an idea how the Comp 1 exWa ve function 

in Example 5.5 could be used: 

3 A record in Modelica is similar to a struct in C. 
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function ComplexWave 
record Data 

constant Integer num "Number of waves"; 
Real a [num] "Wave amplitudes"; 
Modelica.SIunits.Frequency f[num] "Wave frequencies"; 
Modelica.SIunits.Angle phase [num] "Wave phase offset"; 

end Data; 

input Real x "Independent variable"; 
input Data d "Wave data"; 
output Real y "Sum of sine waves"; 

protected 
Integer n; 
Real s; 

algorithm 
n := d.num; 
y := 0; 
for i in l:n loop 

s := Modelica.Math.sin( 
2*Modelica.Constants.pi*d.f[i]*x+d.phase[i]) ; 

y .- y + d.a[i]*s; 
end for; 

end ComplexWave; 

Example 5.5. Calculating the sum of a series of sine waves. 

model TestComplexWave 
parameter ComplexWave.Data wdata(num=3, 

a= {l. 3, 2.2, 5.8}, 
f={2.0, 3.0, 7.0}, 
phase={O, Modelica.Constants.pi, O}); 

Real signal; 
equation 

signal = Comp 1 exWave (time,wdata) ; 
end TestComplexWave; 

Remember, because Data is defined within the function ComplexWave, 

we reference that re cord definition using the qualified name Comp 1 exWa ve . -

Data. We then provide the necessary data for each of the waves and in­
voke the function. In this way, we have reduced the number of arguments to 
ComplexWave from four to two. The data provided in this case should cause 
the ComplexWave function to evaluate the following expression: 

y(X) = 1.3sin(47rx) + 2.2sin(67rx + 7r) + 5.8sin(147rx) (5.2) 

Figure 5.2 shows the results of simulating the TestComplexWave model. 
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Figure 5.2. Simulation results for TestComplexWave. 

5.5.2 Variables within a record 
A re cord does not have to be a par ameter as it is in the Te s t Comp 1 exWa ve 

model. In some cases, it may be useful to declare a record which contains 
time varying quantities. The following code fragment shows how this can be 
accomplished. 

model TestComplexWave2 
ComplexWave.Data wdata(num=3); II Not a parameter 
Real signal; 

equation 
wdata.a = {1.3, 2.2, 5.8*Modelica.Math.exp(-.54*time)}; 
wdata. f = {2. 0, 3.0, 7.0}; 
wdata.phase = {o, Modelica.Constants.pi, O}; 
signal = Comp 1 exWave (time,wdata) ; 

end TestComplexWave2; 

For this example, we are using essentially the same data as we did in the 
TestComplexWave model except we allow the last term to diminish with 
time. Mathematically, this should lead to the evaluation of the following 
expression: 

y(X) = 1.3sin(47rx) + 2.2sin(67rx + 7r) + 5.8e-·S4x sin(147rx) (5.3) 
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The results of simulating the TestComplexWave2 model are shown in 
Figure 5.3. The results also include evaluations of the following two equations: 

A(x) 1.3 sin( 47rx) + 2.2 sin(67rx + 7r) + 5.8 sin(147rx) (5.4) 

B(x) 1.3sin(47rx) + 2.2sin{67rx + 7r) (5.5) 

As we would expect, the results show that the value of the signal variable 
initially follows the function A(x) but gradually moves closer to B(x) as the 
contribution of the last term diminishes. 
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Figure 5.3. Simulation results for TestComplexWave2. 

5.6 USING EXTERNAL SUBROUTINES 
We have demonstrated how a variety of functions can be implemented in 

Modelica. While it is easy to write Modelica functions, it is sometimes conve­
nient to call a subroutine written in C or FORTRAN77. In this section we will 
show an example of how this is done. 

5.6.1 External subroutines 
A common requirement for thermodynamic models is to compute prop­

erties (e.g., enthalpy) of a working fluid (e.g., water) for a given pressure 
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and temperature. Imagine we have an existing external C subroutine named 
compute_enthalpy that takes pressure and temperature as an input and 
computes the enthalpy of our working fluid as an output. Rather than rewrite 
such a subroutine as a Modelica function, let us look at how we can call the 
external subroutine directly from a Modelica model. 

In order to use an existing external subroutine, we must first write a "wrapper" 
funct ion in Modelica before we can call the external subroutine. Example 5.6 
shows how we would write a wrapper function for the compute_enthalpy 
subroutine. 

function Enthalpy 
input Modelica.SIunits.Pressure P; 
input Modelica.SIunits.Temp_K T; 
output Modelica.SIunits.Enthalpy h; 

external "C" compute_enthalpy(P,T,h); 
end Enthalpy; 

Example 5.6. A Modelica wrapper function for a C subroutine. 

The subroutine compute_enthalpy used in Example 5.6 should have a 
C function prototype that looks something like: 

void compute_enthalpy(double P, double T, double *h); 

The detail of how the C function prototypes are defined will be covered shortly 
in Section 5.7.8. 

5.6.2 Language specification 
Enthalpy is not the only property we would typically need. In fact, many 

similar properties are often required. Properties of working fluids are often 
tabulated in what are called "steam tables". Example 5.7 shows how we could 
write a function which calls an external subroutine that returns several 
properties at once. In this example, we have assumed the subroutine is written 
in FORTRAN77. 4 The FORTRAN77 code for the calcprops subroutine 
from Example 5.7 would be similar to: 

SUBROUTINE CALCPROPS(PRES, TEMP, H, U, CP, RHO) 
DOUBLE PRECISION PRES, TEMP, H, U, CP, RHO 

END 

4The specification of any language besides C is required because subroutines differ in many ways from 
one language to another. lssues such as argument ordering, pass-by-value vs. pass-by-reference and name 
mangling are a few aspects of subroutines that depend on what language the subroutine was written in. 
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function SteamTable 
input Modelica.Slunits.Pressure P; 
input Modelica.Slunits.Temp_K T; 
output Modelica.Slunits.SpecificEnthalpy h; 
output Modelica.Slunits.SpecificEnergy u; 
output Modelica.Slunits.SpecificHeatCapacity cp; 
output Modelica.Slunits.Density rho; 

external "FORTRAN 77" calcprops(P,T,h,u,cp,rho); 
end SteamTable; 

Example 5.7. A Modelica wrapper function for a FORTRAN77 subroutine. 

5.6.3 Invoking external subroutines 
External subroutines are invoked just like any other Modelica funct ion. In 

order to invoke the function, the simulation tool requires access to the subrou­
tine. Typically, only a compiled version of the subroutine would be required 
and not the source code. How the subroutine is accessed (e.g., compiled or 
linked) is a tool specific issue not covered by the language specification. 

5.7 LANGUAGE FUNDAMENTALS 
5.7.1 Arguments 

As we have seen in this chapter, the arguments to a function are defined by 
the input components in the public section of the function definition. Any 
component preceded by the input qualifier represents a quantity being passed 
into the function. Likewise, any component preceded by the output qualifier 
represents a quantity being returned by the function. All components in the 
public section must be labeled as input or output. 

As we saw in Example 5.5, when the number of arguments stmts getting 
large it is useful to pass information into a function as arecord. This reduces 
the number of arguments (and confusion about argument order). 

5.7.2 Local variables 
Any quantities which are calculated from the input variables, but m·e not 

output variables, are called local variables. As we saw in Example 5.1, 
such variables must be declared in the protected section of the function 
definition. It is important to keep in mind that the values of these local variables 
are not stored between funct ion invocations. In other words, if you assign a 
value to a variable during one invocation of the function, you cannot expect 
it to still have that value at the next invocation. 
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5.7.3 Algorithmic semantics 
The main purpose of a function is to perform algorithmic calculations. 

These calculations often involve looping and conditional statements and appear 
within an algorithm section. 

The most important thing to remember about an algorithm section is that 
it is possible to assign to the same variable multiple times. In each case, the 
new assignment will replace the value from any previous assignments. To 
understand the significance of this; consider the following code fragment: 

algorithm 
x .- y; 
X := z; 

In this case, only the last assignment, x : = Z, is important. This is in contrast 
to an equation section where multiple equality relationships represent multiple 
equations, e.g., 

equation 
x y; 
x = Z; 

Both of these equations are significant and lead to the implication x = y = z. 
There are two ways to tell the difference between assignments and equations. 

First, assignment involves the : = operator while equations use the = operator. 
Second, an assignment must appear within an algorithm section and an 
equation must appear within an equation section. This helps to avoid any 
confusion about whether a statement is an assignment or an equation. 

Essentially, what this all means is that a function in Modelica behaves 
almost exactly like a subroutine in C or FORTRAN77 where variables can be 
assigned and reassigned values. 

5.7.4 Branching 
Examples 5.1 and 5.3 both contain if statements. An if statement can also 

include an else clause as well as several elseif clauses. For example: 

if x>=o then 
y := x; 

else if x<=-3 then 
y := -6; 

else 
y := -2*x; 

end if; 
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5.7.5 Looping in algorithms 
Looping is used to implement algorithms that require iteration (e.g., the y 

and dydx variables used by the PolyEval function in Example 5.4). There 
are two kinds of loops. A while loop is one where operations are performed 
repeatedly while some condition remains satisfied. Generally, a while loop is 
preceded by some initialization statements. The FindName model in Example 
5.1 shows how a while loop can be used. A while statement has the general 
form: 

II initialization (if required) 
while (someCondition) loop 
II do something 

end while; 

After any initialization statements, the statements inside the while loop are 
evaluated repeatedly while the boolean expression someCondi tion remains 
true. 

The f or statement in Modelica is convenient for looping over the contents 
of vectors 5 and is similar to the "foreach" construct in languages such as Perl 
and Tcl. The general form of the for statement is: 

for someVar in some Vector loop 
II do something (presumably involving someVar) 

end for; 

This statement can be interpreted as: "Evaluate the statements inside this loop 
with someVar successively set to each value contained within the vector 
someVector". An important point here is that it is only possible to loop over 
vectors (i.e., one-dimensional arrays). 

In Example 5.5, the expression 1: n evaluates to a vector of all integers 
between 1 and n. In Example 5.4, the expression n - 1 : - 1 : 1 evaluates to a 
vector starting with n - 1 and counting down to 1 by intervals of - 1. This kind 
of vector shorthand is discussed in detail in Section 6.5.2.1. 

5.7.6 Invoking a function 
If a function is invoked by providing each argument in the form of an 

equation (as we saw in TestPiecewise), the arguments may appear in any 
order. If an equation is provided for one argument, then an equation must be 
present for all arguments. On the other hand, if the function invocation does not 
include equations for the arguments but simply a collection of values then the 
order of the components in the function definition determines the required 
order of the arguments in the invocation. 

5Note that the use of for in Modelica is different from C and C++. 
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Now let us examine how to use the return value of the function. If 
a function has a single return value (i.e., a single output variable in its 
definition as in Example 5.3), then it may be used in expressions such as: 

y = x*Piecewise(x=time,x_grid=x_vals,y_grid=y_vals)+ 
z*Piecewise(x=time,x_grid=z_vals,y_grid=y_vals) ; 

On the other hand, if there are multiple return values (as in Example 5.7), the 
funct ion invocation can only be used in an equation or assignment and it must 
form the complete right hand side. Furthermore, the left hand side should be a 
comma separated list of variables enclosed in parentheses. The following is a 
legal example of invoking a function with multiple return values: 

(h, u, cp, rho) = SteamTable(P,T); 

On the other hand, this is not a legal invocation: 

(h, U/m, cp, m/V) = SteamTable(P,T); 

because only variables (i.e., no expressions) may appear on the left hand side. 

5.7.7 Built-in functions 
Modelica provides a collection of built-in functions. In this section, we will 

discuss some of the built-in functions and the remainder will be discussed in 
Chapter 6 because they involve array operations.6 

5.7.7.1 Analysis type 

The analysisType () function is used to give the model a chance to 
customize its behavior to different types of analyses. The anal ys i sType ( ) 
returns a string to indicate the type of analysis currently being performed. The 
possible return values may include, but are not limited to, the ones shown in 
Table 5.1. 

Type Meaning 

"dynamic" Evaluating transient response. 
"static" Determining steady state response. 
" 1 inear" Linear analysis (e.g., analyzing frequency response). 

Table 5.1. Example analysis types. 

6Chapter 7 reviews many of the built-in functions and explains their effects in the context of hybrid behavior. 
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5.7.7.2 Absolute value 

The abs () function takes a single argument, x, and computes the absolute 
value of x. The argument type can be either Real or Integer and the return 
type is the same as the argument type. Mathematically, the function is defined 
as: 

abs(x} = { 

5.7.7.3 Sign 

-x 
x 

x<O 
x~O 

(5.6) 

The sign () function takes a single argument, x, and returns an indication 
whether x is negative or positive. The type of x can be either Real or In teger 
but the return value is always an Integer. The sign () function is defined 
mathematically as: 

sign(x) = { 

5.7.7.4 Square root 

-1 
o 
1 

x<O 
x=O 
x>O 

(5.7) 

The sqrt () function takes a single argument, x, and returns the square 
root of x. The type of x can be either Real or Integer but the return value 
of sqrt () is always a Real. The value of x must be greater than or equal to 
zero or an error will occur. 

5.7.7.5 Ceiling and floor function 

The ceil () function takes a single argument, x, and returns the smallest 
integer not less than x. Likewise, the floor () function takes a single argu­
ment, x, and returns the largest integer not greater than x. An important thing 
to realize about these functions is that while the return value is an integer in the 
mathematical sense, it is not an Integer in the Modelica sense. Instead, the 
argument and return type for both ceil () and floor () is Real. Examples 
of using these functions include: 

5.7.7.6 Truncation 

ceil(3.2} 
floor(3.2} 
ceil( -3.2) 
floor ( -3.2) 

---+ 4.0 
---+ 3.0 
---+ -3.0 

(5.8) 

---+ -4.0 

The integer () function, just like the floor () function, takes a single 
argument, x and returns the largest integer not greater than x. The difference 
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is that while floor () returns a Real, integer () returns an Integer. 
Examples of using the integer () function include: 

5.7.7.7 Division 

integer(3.2) -+ 3 
integer ( -3.2) -+ -4 

(5.9) 

The di v () function takes two arguments, x and y, and returns the algebraic 
quotient of x/y with any fractional part discarded (i.e., truncation toward zero). 
The arguments may be of type Real or Integer. If either of the arguments 
is a Real, the result is a Real otherwise the result is an Integer. Examples 
of using the di v () function include: 

div(3.2,1.2) -+ 2.0 
div( -3.2,1.2) -+ -2.0 
div(3.2, -1.2) -+ -2.0 
div( -3.2, -1.2) -+ 2.0 

(5.10) 
div(7,2) -+ 3 
div( -7,2) -+ -3 
div(7, -2) -+ -3 
div(-7,-2) -+ 3 

5.7.7.8 Remainder 

The rem () function takes two arguments, x and y, and returns the remainder 
discarded by the di v () function. This can be expressed mathematically as: 

rem(x, y) = x - div(x, y) * y (5.11) 

The arguments may be of type Real or Integer. If either of the arguments 
is a Real, the result is a Real otherwise the result is an Integer. Examples 
of using the rem () function include: 

5.7.7.9 Modulo 

rem(3.2,1.2) 
rem( -3.2,1.2) 
rem(3.2, -1.2) 
rem( -3.2, -1.2) 

-+ 0.8 
-+ -0.8 
-+ 0.8 

(5.12) 

-+ -0.8 

The mod () function takes two arguments, x and y, and returns the modulus 
of x and y, i.e., 

mod(x, y) = x - floor(x/y) * y (5.13) 

The arguments may be of type Real or Integer. If either of the arguments 
is a Real, the result is a Real otherwise the result is an Integer. Examples 
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of using the mod () function include: 

5.7.8 

mod(3.2, 1.2) 
mod( -3.2,1.2) 
mod(3.2, - 1.2) 
mod( -3.2, - 1.2) 

External subroutines 

-t 0.8 
-t 0.4 
-t -0.4 
-t -0.8 

(5.14) 

As discussed in Section 5.6, it is often desirable to use existing subroutines 
written in C or FORTRAN77. Let us review the details that were not covered 
by the examples. 

5.7.8.1 Type matching 

Table 5.2 shows the Modelica built-in types and their corresponding C type.7 

This is why the C function prototype for Example 5.6 was: 

void compute_enthalpy(double P, double T, double *h); 

If Example 5.7 were written in C, its function prototype would be: 

void calcprops(double P, double T, double *h, double *u, 
double *cp, double *rho); 

Modelicatype C type (inputs) C type (outputs) 
Real double double * 
Integer int int * 
Boolean int int * 
String const char * N/A (input only) 
Real [dim!,··· ,dimn 1 double * , size_t diml, ... , size_t dimn 

Integer [dim!,···, dimn 1 int * , size_t diml, ... , size_t dimn 
Boolean [dim!, ... ,dimn 1 int * , size_t diml, ... , size_t dimn 

Table 5.2. Modelica types H C types. 

When invoking a C language subroutine, it is possible to pass a record to 
the external subroutine. When passing a record, it is important to keep several 
things in mind. First, when a Modelica record is passed into a C language 
subroutine it appears in the C subroutine as a pointer to a structure. The structure 
definition should include the same components as the Modelica record in the 
same order and using the type mapping shown in Table 5.2. So, the following 
record definition: 

7The C type size_t used in Table 5.2 is defined in header file stddef. h. 
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record RecDef 
Real a[S]; 
Integer b[10]; 
Real c; 

end RecDef; 

would correspond to the following C structure definition: 

struct RecDef 
double a[S]; 
int b [10] ; 
double c; 

} ; 
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Note that Modelica does not support the passing of records containing variable 
sized arrays. If that is an issue, it is better to pass the record as individual 
arguments. 

In addition to the C language, the Modelica language specification also 
provides for the possibility that the external subroutine is written in FOR­
TRAN77. Table 5.3 shows the mapping between Modelica built-in types and 
FORTRAN77 types.s This mapping was used to create the subroutine header 
shown in Section 5.6.2. 

Modelicatype 

Real 
Integer 
Boolean 

FORTRAN77 type 

DOUBLE PRECISION 

INTEGER 
LOGICAL 

Real [dim1, ... , dimn ] DOUBLE PRECISION, INTEGER DIM!, ... , 

INTEGER DIMN 
Integer [dim],"', dimn ] 

Boolean [dim1,"', dimn ] 

INTEGER, INTEGER DIM!, 
LOGICAL, INTEGER DIM!, 

Table 5.3. Modelica types B FORTRAN77 types. 

5.7.8.2 Custom subroutine invocation 

INTEGER DIMN 
INTEGER DIMN 

In our examples, we have seen one way that external subroutines can be 
invoked. In all cases, the language and the order of arguments was specified 
explicitly. It is recommended that external subroutines be invoked in this way 
whenever possible to avoid any potential confusion. 

However, in some circumstances it may be necessary to customize the han­
dling of return values. This case comes about primarily when a C subroutine 

8Note. there is no mapping to FORTRAN77 for the String type in Modelica. 
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already exists that returns its value (in the C sense) rather than assigning to 
a variable which was passed by reference. For example, let us imagine that 
the compute_enthalpy subroutine discussed in Section 5.6 and used in 
Example 5.6 had a prototype which looked like: 

double compute_enthalpy(double P, double T); 

and the return value of the subroutine was the enthalpy. To use this subroutine 
directly, we could substitute the external declaration in Example 5.6 with the 
following declaration: 

external "e" h = compute_enthalpy (P,T) ; 

5.7.8.3 Compiler options 

Simply saying the external subroutines are written in C or FORTRAN77 
does not always provide enough information. For example, FORTRAN77 and 
C compilers sometimes append or prepend a "_" character to subroutine names 
in the compiled object code. It is the responsibility of the simulation tool to 
provide a way to deal with compiler and operating system specific issues like 
these. 

5.7.8.4 Side effects 

Functions should not have side effects (i.e., they must always return the same 
output for a given set of inputs). This is particularly important to keep in mind 
when writing external subroutines because it is easy to inadvertently introduce 
such side effects. These side effects may come from reading from or writing to 
global variables or from the use of third party libraIies which themselves have 
side effects. 

The way to avoid side effects is to make sure that a function's outputs are 
dependent only on the inputs. In other words, do not read from or write to any 
persistent data (e.g., global vaIiables or files). In some cases, it is impractical 
to avoid keeping persistent data but it is still possible to avoid side effects. 
For example it is useful, when optimizing the performance of an external 
subroutine, to introduce some kind of persistent cache. Such approaches are 
fine so long as they continue to satisfy the restIiction that for a given set of 
input values, the output values are always the same (i.e., the cache improves 
performance but does not affect the result). 

5.8 PROBLEMS 
PROBLEM 5.1 Write a function to perform cubic interpolation. III addition 
to the arguments usedfor the Piecewisefunctionfrom Example 5.3, add an 
additional argument that provides the slope of the junction (i.e., ~;) at each 
grid point. Assuming the value of x is defined such that Xk ::; x ::; Xk+l. the 
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value of the function can be interpolated using the following equations: 

e = x -Xk 

Xk+1 - Xk 

a = Yk+1 + (~~) k+1 + 3 [(~~) k + Yk - Yk+1] 

b 

c 

d 

y(x) 

-2 (dY ) - Yk 
dx k 

( dY ) + 3(Yk+1 _ Yk _ (dY ) ) _ (dY ) 
dx k dx k dx k+1 

(~~) k 

(5.15) 

(5.16) 

(5.17) 

(5.18) 

(5.19) 

(5.20) 

where Yi is the value of the function at the ith grid point and (~)i is the slope 
of the function at the ith grid point. 

PROBLEM 5.2 Read Section 14.5 and then create a Modelicafunction that 
computes the Jacobian for the interpolation function in Problem 5.1. To keep 
things simple, assume that the x_grid, y_grid and dydx_grid values are 
all constant. (Hint: You really only need to differentiate Equation (5.20) but 
remember that e = e (x)) 

PROBLEM 5.3 Write a function that takes a vector (i.e., an array of real 
numbers) as an argument and returns the magnitude of the vector. 

PROBLEM 5.4 Write afunction to take the inner product of two vectors. Be 
sure to include assertions that ensure the vectors are the same size. 

PROBLEM 5.5 Write afunctioll that takes the position and masses of two free 
bodies and calculates the gravitational force between them. The gravitational 
force should be returned as a vector. The magnitude of the gravitational force 
is given by the equation: 

p= M I M2G 
r2 

The force vectors are then calculated as: 

iA-+2 = 
p(X2 - xI) 

r 

F2-+I = 
p(XI-X2) 

r 

(5.21) 

(5.22) 

(5.23) 

walter.ponge@terra.com.br



Chapter 6 

USING ARRAYS 

6.1 CONCEPTS 
Although we have covered enough material to build up complex systems, 

there is still quite a bit of important functionality left to cover. In this chapter, 
we focus on arrays and the control structures (i.e., if, for and while) used to 
operate on them. 

First, we focus on the declaration of arrays. Modelica allows us to declare 
arrays of scalars (e.g., an array of floating point numbers) as well as arrays 
of components (e.g., an array of Resistor instances or an array of record 
instances). Arrays of scalars are useful for representing mathematical entities 
like vectors and matrices. l Furthermore, Modelica includes features to support 
writing vector and matrix equations or assignments. Arrays of components are 
most useful when a large or variable number of components are needed. 

As soon as you start using arrays, you quickly recognize the need for control 
structures like for and while. When working with arrays of scalars, control 
structures are useful for looping over the elements of an array. For arrays 
of components, these same control structures can be used to help connect 
components within an array to other models. 

6.2 PLANETARY MOTION: ARRAYS OF 
COMPONENTS 

In this section, we look at simulating the motion of several bodies exerting 
a gravitational force on each other. Figure 6.1 shows a sample configuration of 
bodies. 

I Modelica supports arrays with any number of dimensions. In this chapter. we will focus on vectors (i. e., 
one dimensional arrays). 
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Figure 6.1. Several bodies mutually attracted by gravitational forces. 

6.2.1 Connector 

connector BodyAttachment 
import S1=Modelica.S1units; 
S1.Position x, y, z; II Prevents using vector equations 
flow S1.Force fx, fy, fz; 
S1.Mass m; 

end BodyAttachment; 

Example 6.1. Poorly designed connector definition for use in multiple body problems. 

In order to proceed, we must first decide what our connector definition 
should look like. Each of the objects in our simulation has a mass, position 
and external force associated with it. One possible connector definition for 
these bodies is shown in Example 6.1. However, writing equations for x, y and 
z is tedious since the same equation (i.e., Newton's Law) applies to each of 
them. For that reason, we use vectors to represent position and force as shown 
in Example 6.2. 

Because the forces on each body must sum to zero (in each dimension), the 
Force component of the connector has been declared as a flow variable. 
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connector BodyAttachment 
import Modelica.Slunits; 

SIunits.Position x[3] ; 
flow SIunits.Force f[3]; 
SIunits.Mass m; 

end BodyAttachment; 

Example 6.2. Better connector definition for multiple body problems (using vectors). 

model Body 
import Modelica.Slunits; 
parameter SIunits.Mass M=l.O; 
parameter SIunits.Velocity init_v[3] 
parameter SIunits.Position init_x[3] 

BodyAttachment b; 
protected 

{o,o,o}; 
{O,O,O}; 

SIunits. Position x [3] (start=init_x, fixed=true) ; 
SIunits.Velocity v[3] (start=init_v,fixed=true); 
SIunits.Acceleration a[3]; 

equation 
b.x = x; 
b.m = M; 
v = der (x) ; 
a = der (v) ; 
M*a = b.f; 

end Body; 

Example 6.3. Model for a free body in three dimensional space. 

6.2.2 Bodies in three dimensional space 
To model the behavior of a body floating in three dimensional space subject 

to external forces, we use Newton's law: 

F =ma (6.1) 

where F is the force exerted on the body, m is the mass of the body and a is 
the acceleration ofthe body. Using Newton's Law, creating a model for such a 
body is quite simple as shown in Example 6.3. 

Notice how compactly the equations of motion can be written for these bod­
ies. Equations like v = de r (b. x) are vector equations. In other words, each 
component of v is equated to the derivative of the corresponding component of 
b.x. 
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The purpose of the protected section in models is to declare any quantities 
that are internal to the model. Such protected quantities, like the Veloci ty in 
this case, cannot be accessed by external models. These protected components 
can only be accessed by the model in which they appear or any model which 
extends from it. 

Because the position and velocity of each body are protected, it is not 
possible for other models to directly modify the start attributes of these 
variables. Instead, their initial values are supplied by the public parameters 
iniLx and init_v respectively. Note how these parameters are used in 
modifying the start attribute. This is one way to allow limited access (e.g., 
access for modifying only the start attribute) to protected components. 

6.2.3 Gravitational attraction 
Gravitational attraction between two bodies is computed using the following 

equation: 

F = MI M 2G (6.2) 
r2 

where F is the magnitude of the attracting force, MI is the mass of the first 
body, M2 is the mass of the second body, G is the universal gravitational 
constant and r is the distance between the bodies. This equation only computes 
the magnitude ofthe force. It is then necessary to multiply this force by the unit 
vectors representing the relative positions of each body from the other. This 
leads to the following two equations: 

F(X2 - Xl) 
r 

F(XI - X2) 
r 

(6.3) 

(6.4) 

where iA-+2 is the force exerted on the first body by the second and F2-+1 is 
the force exerted on the second body by the first. This gravitational force is 
computed by the function shown in Example 6.4. Note that the equation for 
on-hodyl in Example 6.4 is a vector equation. 

Just having a function that computes gravitational forces is not sufficient, 
we must have a gravitational attraction model which applies those forces to the 
bodies in our system. Once we have the CalcForce function in Example 
6.4, we can write our gravitational attraction model as shown in Example 6.5. 

Here we see again another parallel to software development. When de­
veloping a large software system, the declaration of a function with such a 
specific purpose and generic name would be frowned upon. The reason is 
that somebody else may have written a function with the same name for use 
with a different model. For example, imagine some day we wish to use a 
model developed by someone else and this model also uses a function called 
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function CalcForce "Calculate Force on bodyl due to body2" 
import Modelica.Slunits; 

input SIunits.Position bodyl[3]; 
input SIunits.Mass MI; 
input SIunits.Position body2[3]; 
input SIunits.Mass M2; 
output SIunits.Force on_body I [3] ; 

protected 
SIunits.Distance r; 
SIunits.Force F; 

algorithm 
r := sqrt«bodyl[I]-body2[1])A2+(bodyl[2]-body2[2])A2+ 

(bodyl[3]-body2[3])A2); 
F .- MI*M2*Modelica.Constants.G/rA2; 
on_body I := F*(body2-bodyl)/r; 

end CalcForce; 

Example 6.4. A function to calculate gravitational force. 

model GravitationalAttraction 
BodyAttachment bl, b2; 

equation 
. bl.f = -CalcForce(bl.x, bl.m, b2.x, b2.m); 

b2.f = -blof; 
end GravitationalAttraction; 

Example 6.5. A gravitational attraction model. 

CalcForce. Let us assume that their CalcForce is different from ours 
(i.e., it performs a different calculation and/or uses a different number of argu­
ments). One of two things is likely to happen. One possibility is that we will 
not realize that they require a function named CalcForce and their model 
will attempt to use our funct ion called Cal cForce. The other possibility is 
that we realize their function is required in which case we have two functions 
named CalcForce, which is not allowed.2 

One way to avoid both of these situations is to declare the function within 
the model that uses it. In such a case, our model would look like the one seen in 
Example 6.6. Notice that we have included the function in a protected sec­
tion so that other models may not make use of this funct ion (except any model 
that extends from the GravitationalAttraction model). The other 

2In Modelica, it is illegal to define two function with the same (fully qualified) name. 
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way to protect against such problems is to give functions very specific names so 
there will be no potential for confusion (e.g., CalcGravi tationalForce). 

model GravitationalAttraction 
BodyAttachment bl, b2; 

protected 
function CalcForce "Calculate Force on bodyl from body2" 

input Modelica.SIunits.Position bodyl[3]; 
input Modelica.SIunits.Mass Ml; 
input Modelica.SIunits.Position body2[3]; 
input Modelica.SIunits.Mass M2; 
output Modelica.SIunits.Force on_body 1 [3] ; 

end CalcForce; 
equation 

bl.f = -CalcForce(bl.x, bl.mass, b2.x, b2.mass); 
b2. f = -bI. f; 

end GravitationalAttraction; 

Example 6.6. Encapsulating the gravitational force calculation 

6.2.4 Simulating several bodies 

model BinarySystem "A binary system" 
Body sun(M=1.98ge+30); 
Body earth(M=5.976e+24, init_v={O, 29.2ge+3, o}, 

init_x={152.1e+9, 0, o}); 
GravitationalAttraction earth_sun; 

equation 
connect (earth_sun.bl,sun.b) ; 
connect (earth_sun.b2,earth.b) ; 

end BinarySystem; 

Example 6.7. Creating a binary system. 

Example 6.7 shows how we might write a model for a binary system (i.e., 
a system containing two bodies). The model includes astronomical data for 
the Earth and the Sun. Example 6.8 shows how easy it is for us to extend the 
BinarySystem to include the Moon as well. Figure 6.2 shows the path of 
the Earth during a simulation of 31.5581 . 106 seconds (approximately 1 year). 
As expected, this results in one orbit of the Earth around the sun. In addition, 
it also shows the Moon's path, exaggerated in the figure by a factor of 20, as it 
orbits the earth dming the same period. 
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Figure 6.2. Simulating the motion of the Earth and the Moon for approximately 1 year. 

model TernarySystem "Earth, Moon & Sun" 
extends BinarySystem; 
Body moon(M=7.34ge+22, 

init_v={0,29290+1020,0}, 
init_x={152484e+6, 0, O}); 

GravitationalAttraction moon_earth; 
GravitationalAttraction moon_sun; 

equation 
connect (moon_earth.bl,moon.b) ; 
connect (moon_earth.b2,earth.b) ; 
connect (moon_sun.bl,moon.b) ; 
connect(moon_sun.b2,sun.b) ; 

end TernarySystem; 

Example 6.8. A system including the Earth. Sun and Moon. 
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6.3 SIMPLE ID HEAT TRANSFER: ARRAYS OF 
VARIABLES 

When performing simulations, a common need is to solve for variables 
which are not only a function of time, but also of location. Now we will use a 
one-dimensional heat transfer problem to demonstrate how arrays can be used 
to simulate such systems. 

6.3.1 Governing equations 
We start by listing the equations needed to solve this problem. These 

equations will then be transformed into Modelica models. 

6.3.1.1 Conservation of energy 

For example, consider the following partial differential equation for heat 
conduction (see, e.g., Fowler, 1997): 

dd r pCpT dV = - r .f. it dS 
t lv' ls (6.5) 

where V is the volume of the domain being considered, S is the boundary 
surface of V, P is the density of the material, Cp is the specific heat capacity 
of the material, T is the temperature at any given point in the domain, .f is the 
heat flux at a given point on the boundary and it is the vector normal to the 
surface S at a given point on the surface. 

Let us assume we are solving this equation in a rod with a uniform cross­
sectional area, A (see Figure 6.3). Integrating the left hand side of Equation 
(6.5) over a section of length L gives us: 

d 1 aTv -d pCpT dV =} ALpcp - a t v t 
(6.6) 

which represents the thermal capacitance of that section assuming the section 
has an effective uniform temperature of Tv. The right hand side of Equation 
(6.5) could represent a variety of different heat transfer mechanisms (i.e., con­
duction, convection or radiation) over all surfaces of the rod. For the moment, 
let us consider only the case of conduction over the surfaces Sl and Sr, in 
Figure 6.3. Using Fourier's law (if = -k%) the contribution of these surfaces 
to the right hand side of Equation (6.5) would be: 

- r .f. it =} Ak aT I ls ax s (6.7) 

where k is the thermal conductivity of the material and fx' I s is the temperature 
gradient normal to the surface S. Assuming these specific surfaces and modes 
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Figure 6.3. Heat transfer in a one-dimensional rod. 

of heat transfer, we can rewrite Equation (6.5) as: 

ALfJCp OTv = Ak OT I _ Ak OT I 
&t ax Sr ax SI 

(6.8) 

6.3.1.2 Spatial discretization 

The next step in deriving the system of equations is to eliminate the spatial 
derivatives (i.e., fx). To do this, we must make some a priori assumptions 
about how the temperature, T, is distributed along the rod in the x-direction. Let 
us assume that from one discrete section of the rod to another the temperature 
varies linearly. If we make this assumption, Equation (6.8) can be rewritten as: 

ALfJCp fJ7i = Ak 'Ii + I -'Ii _ Ak Ti -'Ii-I 
&t XHI - Xi Xi - Xi-I 

(6.9) 

Now we have an equation for the time derivative of the temperature, T, for 
the ith section of the rod written in terms of geometric quantities (Le., A and 
L), material properties (i.e., k, p and Cp) and the temperatures of neighboring 
sections (i.e., 'Ii-I and'Ii+l). 
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6.3.1.3 Simplifications 

At this point, we may be tempted to divide Equation (6.9) by A in order to 
simplify it into an equation like: 

L a~ _k(1i+l-~ _ ~-~-l) pCp -, 
at Xi+l - Xi Xi - xi-l 

(6.10) 

Furthermore, we might wish to assume that the discretization of the rod is 
uniform which would further reduce the equation to: 

~ k (Ti+l - 2~ + Ti-d 
pCp at = ~x2 (6.11) 

In fact, this is a common form of the heat transfer equation. Notice that the 
terms in Equation (6.8) have units of heat flow rate (i.e., the time derivative 
of a conserved quantity). However, in Equation (6.11) the terms have units of 
heat flow rate per unit volume. The problem with Equation (6.11) is that it is 
no longer a conservation equation. To understand this, let us revisit Equation 
(6.8). Let us annotate the equation with information about each term: 

aT 
ALpcp at 
'-----.---' 

thermal capacitance 

aTl Ak ax r 

'---.".----' 
conduction at 5 r 

Ak:11 
'---v----'" 

conduction at 5l 

(6.12) 

Imagine we wish to add a convective heat transfer term to represent heat loss 
over the surface Sp (see Figure 6.3). In that case, we would amend Equation 
(6.12) to include an additional term giving us: 

aT aTl aTI ALpcp-a = Ak -a - Ak -a - Aph (Ti - Too) 
t Xr Xl' v j 

(6.13) 

convection at 5p 

where Too represents the ambient temperature and Ap is the area of surface Sp 
in Figure 6.3. Note that the simplifying assumptions are no longer possible 
with this form of the equation (e.g., we cannot eliminate A from each term). 
Because this equation remains in units of heat flow rate, adding a new mode of 
heat transfer is as simple as adding another term. The same cannot be said of the 
simplified form shown in Equation (6.10. In the next sections we will consider 
the advantages and disadvantages of creating models based on Equation (6.9) 
and Equation (6.11). 

6.3.2 Equation based approach 
Example 6.9 shows a model which uses Equation (6.11) and also includes 

several boundary conditions. The initial temperature of every point is 300K . 
We assume that the temperature of the first node jumps from 300K to lOOOK 

walter.ponge@terra.com.br



Using Arrays 123 

after 1 second and the temperature of the last node is fixed at 300K (these 
conditions are enforced by the last two equations in Example 6.9). For this 
example, the solution reaches steady state after approximately 25 seconds of 
simulation time (as we will see later in Figure 6.8). Example 6.9 uses the 
f i 11 () function (which is described in greater detail in Table 6.1) to create 
the array of initial temperatures. 

Example 6.9 shows an equation based approach to solving partial differential 
equations. In this example, the temperature variables are represented by an 
array and the equations are generated using for loops. Note that we can 
choose how fine the discretization is by changing the value of n independent 
of the geometry of the problem (Le., total length). As mentioned previously, a 
system written in this way lacks the flexibility to add additional modes of heat 
transfer without having to reformulate the fundamental equation (i.e., Equation 
(6.11). 

model HeatTransfer "One Dimensional Heat Transfer" 
import Modelica.SIunits; 

II Configuration parameters 
parameter Integer n=lO "Number of Nodes"; 
parameter SIunits .Density rho=!. 0 "Material Density"; 
parameter SIunits.HeatCapacity c-F=l.O; 
parameter SIunits.ThermalConductivity k=l.O; 
parameter SIunits . Length L=lO. 0 "Domain Length"; 

II Temperature Array 
SIunits.Temp_K T[n] (start=fill(300,n)) "Nodal Temperatures"; 

protected 
II Computed parameters 
parameter SIunits . Length dx=L/n "Distance between nodes"; 

equation 
II Loop over interior nodes 
for i in 2:n-l loop 

rho*c_p*der(T[i]) = k*(T[i+1]-2*T[i]+T[i-1])/dx A 2; 
end for; 

II Boundary Conditions 
T [1] = if time>=l then 1000 else 300; 
T[n] = 300; 

end HeatTransfer; 

Example 6.9. Using arrays of variables to solve Equation (6.11). 
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6.3.3 Component based approach 
In Chapter 3, we saw how to transform a model containing a complete system 

of equations into a collection of reusable models. We will once again demon­
strate how to perform such a transformation but this time using models which 
contain partial differential equations. Using Equation (6.9) as the basis for our 
component based approach, each term in Equation (6.9) will be represented by 
a different model and the terms will be summed automatically when the models 
are connected. 

6.3.3.1 Connector definitions 

connector ThermalNode "Thermal Connector" 
Modelica.Slunits.Temp_K T(start=300); 
flow Modelica.Slunits.HeatFlowRate q; 

end ThermalNode; 

Example 6.10. Connector for heat transfer. 

As usual, we start with the connector definition. We will use a connector with 
temperature as the across variable and heat flow rate as the through variable. 
Example 6.10 shows the connector used for this example. 

6.3.3.2 Thermal conduction 

Now that we have our connector definition, we can begin writing the various 
models required. We start with the heat conduction model which represents 
the right hand side terms in Equation (6.9). Example 6.11 shows how we can 
express thermal conduction as a model independent of other modes of heat 
transfer. 

6.3.3.3 Thermal capacitance 

Next, we need to represent the contribution on the left hand side of Equation 
(6.9). This term represents the thermal capacitance of the rod material for a 
given volume. A model which describes this behavior is shown in Example 
6.12. 

6.3.3.4 Fixed temperature boundary condition 

The last component we need, shown in Example 6.13, is one to represent a 
fixed temperature, or Dirichlet, boundary condition. 
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model ThermalConduction "l-D Conduction Heat Transfer" 
import Modelica.Slunits; 
II Physical parameters 
parameter SIunits.ThermalConductivity k=1.0; 
parameter SIunits.Length L=1.0; 
parameter SIunits.Area A=1.0; 

I I Connectors 
ThermalNode a, b; 

equation 
a.q = A*k*(a.T-b.T)/L; 
b.q = -a.q; 

end ThermalConduction; 

Example 6.11. Thermal conduction. 

model ThermalCapacitance "Capacitance of a rod section" 
ThermalNode p "Midpoint connection"; 
parameter Modelica.Slunits.SpecificHeatCapacity cp; 
parameter Modelica.Slunits.Density rho; 
parameter Modelica.Slunits.Length L; 
parameter Modelica.Slunits.Area A; 

protected 
parameter Modelica.Slunits.Volume V=A*L; 

equation 
II Conservation of energy 
V*cp*rho*der(p.T) = p.q; 

end ThermalCapacitance; 

Example 6.12. Thermal capacitance. 

model FixedTemperature 
Modelica.Blocks.lnterfaces.lnPort T(final n=l); 
ThermalNode d; 

equation 
d.T = T.signal[l]; 

end FixedTemperature; 

Example 6.13. Fixed temperature boundary condition. 

6.3.3.5 Conducting rod 

Now before bringing all the components together, let us look at an example 
of how the spatial aspect of the problem can be bundled up within a single 
component model. We do this by creating a network of lumped components 
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as we have in previous sections.3 Figure 6.4 gives a graphical representation 
of such a one dimensional conducting rod and Example 6.14 contains the 
Modelica source code. Note that the connectors a and b in ConductingRod 
represent the external connection points for the rod. 

Also note that the Conduc t ingRod model enforces the uniform discretiza­
tion of the rod (see Figure 6.4). For example, the model makes sure the length 
in the conduction models (distance from center of one segment to center of an­
other) is consistent with the length of the thermal capacitance models (distance 
from left surface to right surface). 

.. .. .. 

I- dx -I I- dx -I 

Figure 6.4. Schematic for ConductingRod model in Example 6.14. 

6.3.3.6 Sample heat transfer problem 

Now we have all the components we need to represent the same system 
as the one shown in Example 6.9. This time, we have created our system, 
HTProbleml, from reusable components rather than writing the complete 
conservation equation inside a single model as we did in the HeatTransfer 
model from Example 6.9. 

The simulation results from HTProbleml can be seen in Figure 6.5. The 
temperatures at the end of the simulation are plotted in Figure 6.8 as a function 
of longitudinal distance along the rod. Figure 6.8 demonstrates that the steady 
state temperature profile develops into a linear solution which is exactly the 
solution expected for this problem. 

The results from Example 6.9 (i.e., HeatTransfer) and Example 6.15 
(i.e., HTProbleml) are identical. While the HTProbleml model is more 
compact and readable, some people prefer the approach taken in the Hea t­
Transfer model because the partial differential equation is shown explicitly. 

3The term lumped refers to models where the spatial aspect of the problem is not considered. The term 
distributed is used when the spatial aspect is explicitly described. In this sense. Example 6.14 encapsulates 
a distributed model inside a lumped model. 
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parameter SIunits . Length L=l.O "Total length"; 
parameter SIunits .Area A=l.O "Cross-sectional area"; 
parameter SIunits.SpecificHeatCapacity cp=l.O; 
parameter SIunits.Density rho=l.O; 
parameter SIunits.ThermalConductivity k=l.O; 
parameter Integer n=lO "Number of sections"; 

ThermalNode a, b; II External connections 
protected 

parameter SIunits.Length dx=L/n; 
ThermalCapacitance cap[nl (L=dx,A=A,rho=rho,cp=cp); 
ThermalConduction c_cond[n-1] (L=dx,A=A,k=k); 
ThermalConduction l_cond(L=dx/2,A=A,k=k); 
ThermalConduction r_cond(L=dx/2,A=A,k=k); 

equation 
for i in 1:n-1 loop 

connect (c_cond[il .a,cap[i] .p); 
connect (c_cond[i] .b,cap[i+1] .p); 

end for; 
connect (a, l_cond.a) ; 
connect (l_cond.b,cap [1] .p); 
connect (b,r_cond.b) ; 
connect (r_cond.a,cap [nl .p); 

end ConductingRod; 

Example 6.14. A rod which conducts heat. 

model HTProblem1 "Conducting rod with boundary conditions" 
Modelica.Blocks.Sources.Constant Tl(k={300.0}); 
Modelica.Blocks.Sources.Step Tr(height={700.0}, 

offset={300.0}, startTime={lO.O}); 
FixedTemperature left, right; 
ConductingRod rod(n=lO,L=lO.O,k=l.O,cp=l.O,rho=l.O); 

equation 
connect (Tl.outPort,left.T) ; 
connect (Tr.outPort,right.T) ; 
connect (left.d, rod.a); 
connect (right.d, rod.b); 

end HTProblem1; 

Example 6.15. Heat transfer in a conducting rod with boundary conditions. 
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Figure 6.5. Solution for HTProbleml model in Example 6.15. 

6.3.3.7 Conducting rod with convection 

Now, let us model the system described by Equation (6.l3). In other words, 
we wish to add a thermal convection term. Example 6.16 shows a model for 
representing thermal convection. 

f- dx -t f- dx -t f- dx -t f- dx -t 

Figure 6.6. Schematic for ConductingRodWi thConvection shown in Example 6.17. 

Next, Example 6.17 shows how we can extend the Conduct ingRod model 
in Example 6.14 to include thermal convection by adding a few components 
and connections. Note the difference between the diagram for Conduct ing­
RodWithConvection shown in Figure 6.6 and the original diagram for 
ConductingRod shown previously in Figure 6.4. 
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model Thermal Convect ion "l-D Convective Heat Transfer" 
II Physical parameters 
import Modelica.Slunits; 
parameter SIunits.CoefficientOfHeatTransfer h=l.O; 
parameter SIunits.Area A=1.0; 

II Connectors 
ThermalNode a, b; 

equation 
a.q = A*h*{a.T-b.T}; 
b.q = -A*h*{a.T-b.T}; 

end ThermalConvection; 

Example 6.16. A model of thennal convection. 

model ConductingRodWithConvection 
import Modelica.Slunits; 
extends ConductingRod; 

parameter SIunits . Length perimeter=l. 0; 
parameter SIunits.CoefficientOfHeatTransfer h=1.0; 
ThermalNode ambient; 

protected 
- parameter SIunits.Area As=perimeter*dx; 

ThermalConvection conv[nl {h=h,A=As}; 
equation 

for i in l:n loop 
connect {cap [il .p, conv [il . a} ; 
connect {ambient, conv [il .b}; 

end for; 
end ConductingRodWithConvection; 

Example 6.17. Addition of the convection effect. 

6.3.3.8 Another sample heat transfer problem 

By adding a convective heat transfer contribution to Example 6.15 we arrive 
at the model shown in Example 6.18. Figure 6.7 shows simulation results 
for Example 6.18. If we compare the results in Figures 6.5 and 6.7, we 
can see two distinct features resulting from the convection. The first is that 
the temperatures shown in Figure 6.7 start rising immediately because of the 
convective heat transfer. Another effeCt, due to convection, is that the steady 
state temperatures are not evenly spaced as they were in Figure 6.5. 

Another interesting comparison between Examples 6.15 and 6.18 is shown 
in Figure 6.8. The figure contains a comparison between the steady state 
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model HTProblem2 "Variation on HTProbleml" 
Modelica.Blocks.Sources.Constant Tl(k={300.0}); 
Modelica.Blocks.Sources.Constant Tinf(k={600.0}); 
Modelica.Blocks.Sources.Step Tr(height={700.0}, 

offset={300.0}, startTime={lO.O}); 
FixedTemperature left, right, wall; 
ConductingRodWithConvection rod(n=lO,L=lO.O, 

k=1.O,cp=1.O,rho=1.O,h=O.3) ; 
equation 

connect (TI.outPort,left.T) ; 
connect (Tr.outPort,right.T) ; 
connect (Tinf.outPort,wall.T) ; 
connect (left.d, rod.a); 
connect (right.d, rod.b); 
connect (wall.d, rod.ambient); 

end HTProblem2; 

Example 6.18. Heat transfer problem involving conduction and convection. 
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Figure 6.7. Simulation results for HTProblem2 model shown in Example 6.18. 

temperature distributions of these two examples. The solution involving only 
conduction develops into a linear profile which is also the analytical solu­
tion. The solution with conduction and convection is clearly influenced by the 
ambient temperature of 600K. 
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Figure 6.S. Comparison of steady-state solutions to HTProbleml. 

Standard heat transfer components 
While the MSL does not currently contain definitions to support heat transfer 

modeling, a library of heat transfer component definitions, called Thermal, 
is included on the companion CD-ROM. Furthermore, a thermal library will 
eventually be incorporated into the MSL and it is likely such a library will have 
the same basic components and connector definitions as those found in the 
Thermal library. 

Example 6.19 shows how the ConductingRod model from Example 6.14 
would look if we had used the components in the Thermal package. As we 
shall see in Section 10.3, the Thermal package contains additional models, 
beyond the ones shown in Example 6.19, which provide connections between 
the thermal domain and other domains like the electrical and mechanical do­
mains. 

6.3.5 Summary 
We started by showing how we can quickly express a particular partial 

differential equation in Modelica. Then, we saw how, with a little more 
work, we could create a collection of reusable component models. With these 
reusable component models we can pose and solve a wide variety of heat 
transfer problems with different heat transfer pathways, modes and boundary 
conditions. 
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model ConductingRod_Thermal 
import Thermal.BasiclD; 
import Modelica.SIunits; 

parameter SIuni ts. Length L=l.O "Total length"; 
parameter SIunits . Area A=l.O "Cross-sectional area"; 
parameter SIunits.SpecificHeatCapacity cp=l.O; 
parameter SIunits.Density rho=l.O; 
parameter SIunits.ThermalConductivity k=l.O; 
parameter Integer n=lO "Number of sections"; 

Thermal.Interfaces.Node a, b; 
protected 

parameter SIunits.Length dx=L/n; 
BasiclD.Capacitance cap[n] (V=dx*A,rho=rho,cp=cp); 
BasiclD.Conduction c_cond[n-l] (L=dx,A=A,k=k); 
BasiclD.Conduction 1_cond(L=dx/2,A=A,k=k); 
BasiclD.Conduction r_cond(L=dx/2,A=A,k=k); 

equation 
for i in l:n-l loop 

connect (c_cond[i] .a,cap[i] .n); 
connect (c_cond[i] .b,cap[i+l] .n); 

end for; 
connect (a, l_cond.a) ; 
connect (l_cond.b, cap [1] .n); 
connect (b,r_cond.b) ; 
connect (r_cond.a, cap [n] .n); 

end ConductingRod_Thermal; 

Example 6.19. A conducting rod using the Thermal library. 

6.4 USING ARRAYS WITH CHEMICAL SYSTEMS 
6.4.1 Background 

Simulations of chemical systems are usually concerned with the reaction and 
transport of chemical constituents. These constituents do not move through the 
system on their own. Instead, they are generally found in mixtures with other 
chemicals. 

In this section, we first discuss how general chemical systems can be rep­
resented in Modelica. To do this, we will build a basic collection of general 
chemical models. Then, we will create a specific chemical system to test these 
basic models. 

Before we start introducing models it is necessary to cover some basic 
notation. When a constituent is surrounded by square brackets (e.g., [AD that 
quantity is the concentration of that constituent measured in moles per cubic 

walter.ponge@terra.com.br



Using Arrays l33 

meter. Furthermore, this chapter contains several chemical equations, e.g., : 

A+Y -+ 
kay 

X+P (6.14) 

The constituents on the left hand side of the equation are called the reactants 
and the constituents on the right hand side are called the products. The reaction 
coefficient, in this case kay, appears below the arrow and is used to compute 
the rate of the reaction (as we shall see shortly). 

The model we have chosen to use as our example is called the "Oregona­
tor".4 The Oregonator is a simplified model of the Field-Koros-Noyes (FKN) 
mechanism (see Earley, 1998) which is a chemical model of the Belousov­
Zhabotinskii reaction (described in detail in Fowler, 1997). 

The Oregonator model is represented by the following reactions: 

A+Y -+ X+P (6.15) 
kay 

X+Y -+ 2P (6.16) 
k xy 

A+X -+ 2X+2Z (6.17) 
k ax 

2X -+ A+P (6.18) 
k2x 

B+Z -+ (1/2)fY (6.19) 
kbz 

where A, P, X, Y and Z represent Br03, HOBr, HBr02, Br- and Ce4+ 
respectively, B represents oxidizable organic species and f represents the extent 
to which organic species participate which, in tum, regulates the regeneration 
of Y. Figure 6.9 shows how the Oregonator system could be visualized. 

6.4.2 Chemical reactions 
The Oregonator model is very simple and we could write out the differential 

equations in just a few lines of Modelica. On the other hand, a better investment 
of our time would be to build a collection of reusable Modelica models to 
represent chemical systems in general. Once such a collection exists, with 
a minimal amount of Modelica code we can create models for an enormous 
variety of chemical systems rather than just one. 

4The model is called the Oregonator because it was developed at the University of Oregon. 
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Reaction Reaction 

X+Y->2P 

[A),[B),[P),[X),[Y),[Z) 

Reaction Reaction 
Reaction 

B+Z-> (.5f)Y A+X->2X+2Z 
2X->A+P 

Figure 6.9. Visualization of the Oregonator reaction. 

6.4.3 Mathematical form 
Many chemical system models are represented as ordinary differential equa­

tions of the form: 
[e] = g([e]) (6.20) 

where [e] is a vector that represents the concentration of the different con­
stituents. As an example, after a tedious set of transformations the Oregonator 
system of equations can be written as: 

[X] 

[Y] 

[Z] 

-kxy[X][Y] - 2k2x[X][Y] + kay [A][Y] 

-kxy[X][Y]- kay[A][Y] + (f /2)kbz[B][Z] 

2[A][X] - kbz[B][Z] 

(6.21) 

(6.22) 

(6.23) 

assuming [A] and [B] are fixed. The equation for [P] is usually neglected since 
it is a product but not a reactant and therefore does not influence the trajectories 
of [X], [Y] and [Z]. 

The difficulty with this form is that all the reactions are combined on the 
right hand side of the equation. It is not possible to pick out details of specific 
reactions or to understand some of the fundamental assumptions that went into 
the formulation of the differential equations. As a consequence, in order to 
make adjustments (e.g., adding another reaction) it is necessary to work back­
ward from these equations to Equations (6.15)-(6.19), make any adjustments 
and then re-derive a new set of mathematical equations. 

In contrast, the models we will develop in this section map directly to 
Equations (6.15)-(6.19) and no further derivation will be necessary. In other 
words, the natural representation of chemical reactions can be used. This allows 
much greater flexibility in modifying the system of reactions. Furthermore, it 
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will allow us to isolate the effects of individual reactions and avoid the tedious 
task of performing the state space transformation. 

6.4.4 Basic chemical models 
In this section, we will develop a library of models and place them in a 

package called Chemi s t ry. The following packages will be nested inside 
the Chemistry package: 

• Types: Contains any definitions that are specific to the Chemistry 
package. 

• Interfaces: Contains connector definitions and any partial model 
definitions. 

• Funct ions: Contains funct ion definitions specific to the Chemi s try 
package. 

• Basic: Contains basic models used for chemical models. 

6.4.4.1 Connector definition 
Normally, we would begin by creating a connector definition. However, 

in this case we must first define a molar flow rate type as follows: 

package Chemistry 
package Types 

type MolarFlowRate=Real(guantity=IMolarFlowRate", 
unit="mol/s") ; 

end Types; 

end Chemistry; 

Now that we have defined MolarFlowRate we can define the connector. 
For the chemical systems presented in this chapter, we represent the availability 
of constituents using concentrations (Le., number of moles per cubic meter). 
The concentration of a particular constituent is an intensive property of the 
mixture. It is quite common and convenient to measure the potentials (i.e., 
the across variables) in a system using intensive properties. For example, in 
thermodynamic systems pressure and temperature (both of which are intensive) 
are frequently used as the potentials. 

On the other hand, in order for a connect statement to generate proper 
conservation equations, the flow variables must be the time derivative of an 
extensive property (an issue we touched on briefly in Section 6.3.1.3 as well). 
For example, in thermodynamic systems the flow variables are typically mass 
flow rate and heat flow rate which are the time derivatives of mass and energy, 
respectively. Applying this same modeling principle (of extensive flows) to our 
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chemical system results in the flow variables being measured as molar flow 
rates (i.e., number of moles per second).5 

Taking these considerations into account, we will use the following connectol 
definition for all of our chemical models: 

package Chemistry 

package Interfaces 
connector Mixture "A chemical mixture" 

parameter Integer nspecies; 
Modelica.SIunits.Concentration c[nspecies]; 
flow Chemistry.Types.MolarFlowRate r[nspecies]; 

end Mixture; 
end Interfaces; 

end Chemistry; 

This connector is used for interactions involving chemical mixtures. The 
concentrations, c, will have units mol 1m3 and the flow rates will be in moll s. 
This means that any model which attaches to such a connector will have 
access to the concentrations of each of the constituents at that connection point 
and will have the ability to absorb or emit chemicals (e.g., due to chemical 
reactions). Note that this model (and all the others in this section) will require 
knowledge of how many chemical species are present. It is assumed that if 
there are nspecies number of species, then each species will have a unique 
identifying number between 1 and nspecies which will be used as an index 
into the various arrays in the models. 

One thing to note about the nested Types and Interfaces packages 
inside the Chemistry package is that they are used by other nested packages. 
The lookup rules in Modelica (described in detail in Chapter 9) allow other 
nested packages to refer to the components of the Types and Interfaces 
using names such as Interfaces. Mixture. Such usage can be seen in 
several of the following code fragments. 

6.4.4.2 Chemical control volume 

The first thing we require is a place to keep our chemicals. For this, we 
define the following Vol ume model: 

package Chemistry 

)While this combination of intensive potentials and extensive flows is quite common in thennodynamic 
systems. it is important to note that this is an unusual convention for chemical systems. The typical 
convention used in chemical systems is 10 measure the potential in moles and the reaction rates in moles per 
second or to measure the potential in moles per cubic meter and the reaction rates in moles per cubic meter 
per second (see Barton. 2(00). 
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package Basic 
model Volume "Volume containing a chemical mixture" 

import SI=Modelica.SIunits; 
parameter Integer nspecies; 
parameter SI.Volume v=.OOl; 
parameter SI.AmountOfSubstance i_moles[nspeciesl= 

fill (l,nspecies) ; 
Interfaces.Mixture p(nspecies=nspecies); 

protected 
SI.AmountOfSubstance moles [nspeciesl (start=i_moles); 

equation 
der(moles) = p.r; 
p.c = moles/v; 

end Volume; 

end Basic; 
end Chemistry; 

The total volume is represented by the parameter v. Internally, the Volume 
models uses the variable moles to keep track of the total number of moles of 
each constituent present in the control volume. The change in the total number 
of moles of each constituent is computed from the flow through the connector. 

In some cases, we will wish to hold the concentration of a particular con­
stituent constant. In this case, we require a model which can add or remove 
the number of moles necessary to keep the concentration fixed. The following 
model describes the required behavior: 

package Chemistry 

package Basic 

model Stationary "Stationary concentration" 
parameter Integer nspecies; 
parameter Integer stat species; 
parameter Modelica.SIunits.Concentration c; 
Interfaces.Mixture p(nspecies=nspecies); 

protected 
Types.MolarFlowRate r; 

equation 
p.c[stat_speciesl = c; 
for i in l:nspecies loop 

p.r[il = if i==stat_species then r else 0.0; 
end for; 

end Stationary; 

end Basic; 
end Chemistry; 
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The variable r in this model represents the flow necessary to keep the con­
centration of a particular constituent (identified by the stat-species index) 
constant at a value of c. 

6.4.4.3 Chemical reactions 

Finally, let us look at how to model reactions which are the primary source 
of dynamics in a chemical system. Reactions are the result of different kinds of 
molecules bumping into each other. When these collisions occur, the elements 
sometimes rearrange themselves into new molecules. The frequency of such 
transformations is dependent on the availability of the reactants (the initial 
molecules) and their kinetic energy. 

Assume we have a reaction of the form: 

aA+bB +cC -t 
k products (6.24) 

where a molecules of A react with b molecules of Band c molecules of C. 
In this section, we present a simple chemical reaction model. To keep 

things simple, we have ignored the temperature dependency of the reaction 
coefficient, k, and we make the simplifying assumption that we can compute 
the order of the reaction based on the stoichiometry (a reasonable assumption 
if the concentrations of the reactants are low, see Pauling, 1988). Based on 
these assumptions, we can use the following simple equation to compute the 
rate of the reaction, r: 

(6.25) 

Typically, the units of k are such that r will have units of moles per cubic meter 
per second. The value for r calculated from Equation (6.25) will always be 
negative. As a result of our connector definition, it is necessary to compute 
the molar flow rate of each constituent. We do this by multiplying the reaction 
rate, r, by the volume in which the reaction is occurring and the number of 
molecules of the reactant participating in the reaction. As a result, the rate at 
which molecules of A are converted into products is expressed as: 

dA 
- =arV 
dt 

(6.26) 

where a is the number of A molecules participating in the reaction and V is the 
volume in which the reaction is taking place. For products, we use the same 
equation but the sign of the equation is changed since products are produced 
by reactions (remember, r is negative). 

For each reaction we can write a vector equation that relates the reaction rate 
to the rate of change in the number of moles of each constituent. For example, 
consider the following reaction: 

A+X 2X+2Z (6.27) 
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This reaction is particularly interesting because X appears on both sides of the 
reaction (i.e., as both a reactant and a product). The rate for this reaction would 
be computed as: 

7' = -kax[A][X] (6.28) 

Vectorizing Equation (6.26) gives us the following equation for the total change 
in the number of moles of each constituent: 

A 
B 

d P 
iii7'V (6.29) 

dt X 
Y 
Z 

where iii is computed based on the number of molecules of each constituent 
participating as reactant and product. For the reaction shown in Equation 
(6.27), iii is computed as follows: 

mA 1 0 1 
mB 0 0 0 

iii = 
mp 0 0 0 

(6.30) 
mx 1 2 -1 
my 0 0 0 
mz 0 2 -2 

'---.,.---' '---.,.---' 

reactants products 

Note the sign convention used. Since iii represents the number of moles 
consumed in the reaction, the reactant contributions are positive while the 
product contributions are negative. 

We use the CalcMultiplier function to compute iii from Equation 
(6.29). As we have seen, when iii is multiplied by the reaction rate, computed 
by the CalcReactionRate function, the result is the rate of change in 
the number of moles for each constituent within the control volume. This 
formulation results in the following reaction model: 

package Chemistry 

package Basic 

partial model Reaction 
parameter Modelica.SIunits.Volume v=O.OOl; 
parameter Integer nspecies; 
Interfaces.Mixture p(nspecies=nspecies); 
parameter Real k "Reaction coefficient"; 
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parameter Integer reactants[:,2]; 
parameter Integer products [: ,2] ; 

protected 
Types.MolarFlowRate reaction_rate "Reaction rate"; 
parameter Real mult[nspecies]= 

Chemistry. Functions. CalcMultiplier (nspecies, 
reactants, products}; 

equation 
reaction rate 

Chemistry.Functions.CalcReactionRate(nspecies, 
k, p.c, reactants}; 

p.r = mult*reaction_rate*v; 
end Reaction; 

end Basic; 
end Chemistry; 

The Reaction model contains several interesting constructions. First, 
the public parameters reactants and products are both two dimensional 
arrays with the number of rows unspecified (indicated by the' :') and the 
number of columns fixed at 2. Each row of the reactants and products 
arrays represents a constituent (either a reactant or a product, respectively) in 
a reaction. The first column is the number of moles of that constituent present 
in the reaction and the second column is the unique index for that constituent.6 

Internally, the model declares a protected parameter named mul t which 
represents the level to which each constituent participates in the reaction (i.e., 
m, the result of the CalcMul tiplier function call). This pm1icipationisjust 
the balance of the number of moles of a particular constituent present as a reac­
tant minus the number of moles present as a product. An interesting thing to note 
about the mult parameter is that since the arguments to CalcMultiplier 
are parameters7 , it is sufficient to call CalcMultiplier only once at the 
start of the simulation. 

Finally, the function to calculate the reaction rate, CalcReactionRa te, 
is invoked continuously during the simulation. This function computes the 
reaction rate based on the concentrations of the reactants and the reaction 
coefficient, k. 

The CalcMultiplier and CalcReactionRate are defined as fol­
lows: 

package Chemistry 

package Functions 

6The examples that follow should help make this concept of a unique index clearer. 
7This is a requirement in this case. since a parameter, which is fixed in time, cannot be computed from 
quantities that are time-varying. In other words, since mul t is a parameter (i.e., it does not vary with time), 
it must be computed from quantities which do not vary with time. 
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function CalcReactionRate 
input Integer nspecies "Number of species"; 
input Real k "Reaction coefficient"; 
input Real c[nspecies] "Species concentrations"; 
input Integer reactants [:,2] "Reactant information"; 
output Real rate "Reaction rate"; 

algorithm 
/ / Compute rate=k* [A] A a * [B) Ab • .• 

rate = k; 
for i in l:size(reactants,l) loop 

rate := rate*c[reactants[i,2]] Areactants[i,l] ; 
end for; 
assert (rate>=-le-12, 

"Error: chemical reaction moving backward"); 
end CalcReactionRate; 
function CalcMultiplier 

input Integer nspecies "Number of species"; 
input Integer reactants [:,2] "Reactant information"; 
input Integer products [:,2] "Product information"; 
output Real m[nspecies] "Multiplier"; 

algorithm 
m := zeros (nspecies) ; 
m [reactants [:,2]] : = reactants [:,1] ; 
m [products [: ,2]] . - m [products [:,2]] -products [:,1] ; 

end CalcMultiplier; 
end Functions; 

end Chemistry; 

6.4.5 The Oregonator model 
In order to understand how the Chemistry package should be used, we 

include an example which models the reactions in Equations (6.15)-(6.19). For 
this we will develop a separate package, called Oregona tor, that contains 
all the details of the Oregonator model. We start by identifying the constituents 
as follows: 

package Oregonator 
constant Integer A=l "Br03 (-) " ; 
constant Integer 
constant Integer 
constant Integer 
constant Integer 
constant Integer 
constant Integer 

end Oregonator; 

B=2 "Organic Species"; 
P=3 "HOBr"; 
X=4 "HBr02"; 
Y=5 "Br(-)"; 
Z=6 "Ce4+"; 
nspecies=6; 
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Next, we must create models for each of the reactions. Rather than include 
each of these models, we will include only one. It is trivial to see how the other 
reactions would be defined. As an example, the reaction which transforms [A] 
and [Y] into [X] and [P] is defined as: 

package Oregonator 

package Reactions 
model R AY 

parameter Reak k_AY=l.O; 
extends Chemistry.Basic.Reaction(k=k_AY, 

reactants={{l,A}, {l,Y}}, 
products= { {I, X}, {I, p} }) ; 

end R_AY; 

end Reactions; 
end Oregonator; 

Now that we have all the building blocks, the complete system can be 
constructed as follows: 

package Oregonator 

model ChemicalSystem 
Chemistry.Basic.Volume v(nspecies=nspecies,v=l, 

moles(start=fill(l,nspecies))) ; 
Reactions.R AY r_ay(nspecies=nspecies); 
Reactions.R XY r_xy(nspecies=nspecies) ; 
Reactions.R AX r_ax(nspecies=nspecies); 
Reactions.R xx r_xx(nspecies=nspecies); 
Reactions.R_BZ r_bz(nspecies=nspecies); 
Chemistry. Basic. S-tationary c_A (stat_species=A, 

nspecies=nspecies, c=l.O); 
Chemistry.Basic.Stationary c_B(stat_species=B, 

nspecies=nspecies, c=l.O); 
equation 

connect (v.p,r_ay.p) ; 
connect (v.p,r_xy.p) ; 
connect (v.p,r_ax.p) ; 
connect (v.p,r_xx.p) ; 
connect (v.p,r_bz.p) ; 
connect (v.p,c_A.p) ; 
connect (v.p,c_B.p) ; 

end ChemicalSystem; 
end Oregonator; 

The results from simulating Oregona tor. ChernicalSys tern are shown 
in Figure 6.10. The results show several oscillations. Each oscillation is 
characterized by an initial rise in both [Z] and [X]. A rise in [Y] is initially 
prevented because of the abundance of [X] which reacts with [Y] to produce 
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[Pl. Once the production of [X] becomes limited, [Y] rises. This production of 
[Y] causes a decline in [Z]. Eventually, enough [X] is produced to consume the 
remaining [Y] and the cycle begins again. 

2,+05 ..-------.---r-----.----,---,--,----r-----,..-------.--,-----r-, 

l.5e+05 

50000 : 

: .: 

Time [s] 

Figure 6.10. Oscillatory response from the Oregonator reaction. 

6.5 LANGUAGE FUNDAMENTALS 
6.5.1 Information hiding 

In this chapter we have shown several uses of the protected keyword. If 
you have parameters or variables which you wish to hide from users of your 
model you can place them in a protected section. The obvious question is 
then, "Why would I want to hide things"? 

The first reason is that internals of the model (e.g., parameters and variables) 
contained within a protected section cannot be referenced externally. This 
allows the model developer the freedom to change some of the implementation 
details at some later time without fear of "breaking" any existing models that 
relied on the original model. 

The second reason is that it is not necessary for users of the model to be aware 
of all of the internal details. By hiding the details of the model, the interface of 
the model (the publicly accessible pOltion) is simplified. This makes the model 
simpler and easier for others to use. 

The drawback of making declarations protected is that external modifica­
tions are not possible. For example, consider a model with an internal variable 
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whose solution is determined by a differential equation. The start attribute 
for the internal variable cannot be modified externally (i.e., modifications can 
only be made by the model that contains the variable or by a derived model, 
as we saw in the Body model in Example 6.3). This can make it difficult 
to control the initial state of the entire system since that variable cannot be 
modified. Of course, putting the variable in a protected section is still a good 
idea if a change in implementation (e.g., one that would eliminate the variable) 
is likely, since it prevents users of the model from relying on the presence of 
that variable. 

6.5.2 Arrays 
As shown in this chapter, arrays in Modelica can be useful in solving many 

kinds of problems. In addition to creating arrays of variables (as in Section 
6.3.2), it is possible to declare arrays of connectors and subcomponents as well 
(as shown in Section 6.3.3). In this section we will review the functionality 
presented in this chapter and present additional details not covered by the 
examples. 

6.5.2.1 Arrays of scalars 

Arrays of scalars are the simplest example of array usage in Modelica. For 
example, declaring an array, x, of 5 Real variables is done as follows: 

Real x [5] ; 

In some cases we might wish to allow a parameter to govern the size of the 
array. In that case we would do something like: 

parameter Integer x_size=5; 
Real x [x_size] ; 

In yet other cases, we might wish to leave the size of the array unspecified and 
let an initializer determine the size. In that case the array declaration would 
look something like: 

model Beam 
parameter Real x [ : ] ; 

end Beam; 

Later, when an instance of a Beam is declared we can initialize x by writing: 

Beam b (x= {O. 2, 0.77, O.92}); 

Within the Beam model, if we wish to know how big the x array is, after the 
initialization, we can use the si ze () function as follows: 
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model Beam 
parameter Real x [ : 1 ; 

equation 
for i in l:size(x,l) loop 

end for; 
end Beam; 
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The first argument to the size () is the array we are interested in and the 
second argument indicates which dimension we are interested in. In this case, 
x only has one dimension. 

Arrays can be initialized in several ways, as the following code fragment 
shows: 

parameter Real x[51={O.I,O.3,O.5,O.7,O.9}; 
parameter Real y [: 1 =X; 
parameter Real z [ : 1 =0.1: 0 . 2: 0.9; 
parameter Integer evens [ : 1 =2: 2: 10; 

Array x is initialized directly from an explicit array. The size of y is left 
unspecified in the declaration but then the initialization establishes the size as 
5 because the values are copied from x. 

In the case of z, the array is constructed by starting with the number .1 and 
incrementing by .2 until the value exceeds .9 which means that z will have the 
same values as y and x. The array construction syntax also works in the same 
way with integers, as can be seen in the initialization of evens which creates 
the array {2 I 4 I 6 I 8 I 10 }. In fact, this is the most common form of such 
constructions and is often used in conjunction with for loops. If no increment 
value is given (i.e., there are only two numbers given with a semicolon in 
between), it is assumed that the increment is 1 for both Integer and Real 
cases. 

An important point to make regarding array expressions is that there is no 
difference between: 

x = {I, 2, 3, 4, 5} 

and 

x = 1:5 

Likewise, there is no difference between: 

for i in {I, 2, 3, 4, 5} loop 

end for; 

and 
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for i in 1:5 loop 

end for; 

Because the loop is performed over the elements of an array, loops can be 
constructed over non-contiguous or non-sequential indices, for example: 

for i in {1, 3, 2, 5, 4, 7, 9, 8, 6} loop 

end for; 

6.5.2.2 Arrays and attributes 

Although we have discussed how to declare and initialize an array of scalars, 
there is still the issue of how to initialize array attributes. For example, we can 
declare an array as: 

Real x[5] ; 

But, what if we would like to set the start attribute for each of these five 
elements? Just as x is an array, the start attribute is also an array.s Therefore, 
the start attribute could be initialized as follows: 

Real x[5] (start={O.1,O.2,O.3,O.4,O.S}l; 

6.5.2.3 Arrays of components 

As we have seen in several examples, the Modelica syntax allows us to 
declare arrays of components. Such arrays can be useful because they provide 
increased flexibility for applying constitutive equations to a large number of 
variables. In all of the examples shown with arrays of components, each 
component in the array was initialized using the same parameter value. This 
is often the case and easily accomplished. However, there are cases where 
it is useful to initialize each component in the array with a unique parameter 
value. Unfortunately, the Modelica language specification does not completely 
specify how this can be accomplished? 

6.5.2.4 Multi-dimensional arrays 

Most of the examples contain arrays with only a single dimension. Such 
arrays are used primarily to represent mathematical vectors. Arrays with 
more than a single dimension (e.g., representing matrices) are also possible. 
The Reaction model in Section 6.4.4 demonstrated how to create multi-

8These are the semantics in version 1.4 of the Modelica language semantics. However, there are some 
problems with this syntax and newer versions of the semantics may be slightly different. 
9It is currently an issue being discussed by the Modelica Association. 
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dimensional arrays in Modelica. When declaring multi-dimensional arrays, 
each dimension of the array must be separated by a comma. For example: 

Real x[5,2,7,8,12); 

While most models use either 1, 2, or 3 dimensional arrays, there is no limit 
imposed by the Modelica language on the dimensionality of arrays. 

In some cases, a type may define the dimensionality of an array. For 
example: 

type Point=Real[3); 

In such cases, an array of that type such as 

Point particles [12) ; 

creates an array with the same shape (i.e., number of rows and columns) as: 

Real particles[12,3); 

Another issue with multi-dimensional arrays is initialization. To initialize a 
multi-dimensional array from a set ofliteral values, an array ofthe appropriate 
shape must be constructed. For example, 

Real x[2,3) = {{1,2,3},{4,5,6}}; 

Note that the first index represents the "outer" array (i.e., the rows of a two 
dimensional array) and the second index represents the "inner" array (i.e., the 
columns of a two dimensional array). In this way, a three-dimensional array 
could be initialized as follows: 

Real y [2,3,4) = {{ {1, 2,3,4} , {5, 6,7,8} , {9, 10,11,12} }. 
{ {12 , 11, 10, 9} , { 8 , 7, 6, 5} , { 4, 3, 2 , 1} } } ; 

As mentioned previously, arrays can be constructed by choosing an interval 
and an increment value. So, the following two initializations are equivalent: 

Real x [2 , 3) { {1, 2, 3} , { 4, 5, 6} } ; 

Real z [2,3) = {1: 3 , 4 : 6} ; 

6.5.3 Looping and equations 
In this chapter, we have seen how looping can be used to generate sets of 

equations. We discussed looping earlier in Section 5.7.5 but the focus then 
was on algorithms. In this section, we will focus on the special implications of 
using for within an equation section as opposed to an algorithm section. 
While for loops can be convenient in an equation section, they are not always 
necessary. For instance, as we can see in Example 6.3, it is not necessary to 
write explicit loops because implicit ones are generated when working with 
arrays. 
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The important thing to remember about looping in an equation section is 
that the statements contained within the loop are equations, not assignments. 
For example, the following code fragments have quite different meanings: 

equation 
var = 0; 
for i in 1:4 loop 

var = var*x+i; 
end loop; 

algorithm 
var := 0 
for i in 1:4 loop 

var := var*x+i; 
end loop; 

When the for loop appears in an equation section, the following 5 equations 
are generated: 

equation 
var 0; 
var var*x+1; 
var var*x+2; 
var var*x+3; 
var var*x+4; 

Note that these equations are not linearly independent (i.e., they are singular). 
On the other hand, when the for loop occurs within an algorithm section it 
generates the following assignments: 

algorithm 
var .- 0; 
var .- var*x+1; 
var .- var*x+2; 
var .- var*x+3; 
var .- var*x+4; 

the net effect of these assignments is equivalent to: 

algorithm 
var := 5+x*(4+x*(3+x*(2+x*1))); 

The fact that this assignment was carried out in five separate steps is no different 
than if it had been carried out in one. 

6.5.4 
6.5.4.1 

Advanced array manipulation features 
MATLAB compatibility 

Although the examples in this chapter have focused on basic array manipu­
lation techniques, Modelica also includes many advanced array manipulation 
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features. Modelica shares many of the same features and, in general, the same 
syntax for array manipulation as MATLAB. 10 

6.5.4.2 Array construction and concatenation 

For example, matrices can be created using the same syntax that is used in 
MATLAB, i.e., 

Real x[2,3] = [1,2,3;4,5,6]; 

The fact that the expressions are contained between the" [" and "] " characters 
indicates that this is a matrix construction. Within such matrix construction 
expressions, a " , " indicates the construction is proceeding to the next column 
(i.e., the second dimension) and the" i" indicates the construction is proceeding 
to the next row. In this way, matrices can be constructed by concatenating 
matrices, vectors and scalars. 

6.5.4.3 Array subsets 

We saw in the CalcMultiplier function, defined in Section 6.4.4.3, the 
following array shorthand: 

m [products [: ,2]] : = m [products [: ,2]] -products [:,1] ; 

If the dimensions of each array at the location of the" : " are equal, then such 
equations represent relationships between subsets of matrices. For example, 
this equation could have been written more explicitly as: 

for i in l:size(products, 1) loop 
m[products[i,2]] .- m[products[i,2]] -products [i,l] ; 

end for; 

Similar types of equations can be written that specify specific elements. For 
example, the following is also equivalent to the previous two code fragments: 

n = size(products,l); 
m[products[1:n,2]] := m[products[1:n,2]] -products [l:n,l] ; 

Remember that "1: n" expands to a vector containing every integer value 
between 1 and n, inclusively. 

6.5.4.4 Vectorizing of functions 

The semantics of Modelica are designed so that it is not necessary to create 
special vectorized forms of functions. Instead, the normal form of the function 
can still be used. For example: 

IOMATLAB is a registered trademark of The MathWorks, Inc. 
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sqrt ( { 1 , 2, 3}); 

is equivalent to: 

{sqrt (1), sqrt (2), sqrt (3)}; 

In this way, even though sqrt () was defined to take a scalar argument, it can 
be applied element-wise to an array. 

The general rule for taking advantage of this functionality is that the dimen­
sionality of one or more of the arguments to a function can be given additional 
dimensions. However, all arguments that are given additional dimensions must 
have the same size in each additional dimension. For example, the following 
is legal: 

mod ({ 10 , 2 0 , 3 0 } , { 4 , 5 , 6 } ) ; 

and yields: 

{ mod ( 1 0 , 4), mod ( 2 0 , 5), mod ( 3 0 , 6) } ; 

Furthermore, this is also legal: 

mod ({ 1 0 , 2 0 , 3 0 } , 4) ; 

because only one argument was expanded and it is equivalent to: 

{mod(10,4), mod(20,4), mod(30,4)}; 

On the other hand, this is not legal: 

mod ({ 10, 20, 30 } , { 4, 5}) ; 

because the additional dimensions are not the same size. 

6.5.4.5 Mathematical operators 

The mathematical operators such as "+" and "*" are frequently used with 
scalars, but can also be used with arrays. For example, the "+" and "-" 
operators can be used to add and subtract arrays that have the same size in each 
dimension. Furthermore, the "*" can be used with arrays in several ways. 

The simplest example of using the "*" with arrays is the combination of 
multiplying a scalar by an array. Each element of the resulting array is equal 
to the product of the scalar and the corresponding element in the array being 
multiplied. Another example would be to use the "*" to take the inner product 
of two vectors of the same size. In other words. the following code fragment: 

Real u[5], v[5]; 

Real s; 

equation 
s = u*v; 
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is equivalent to: 

Real u[5], v[5]; 
Real s; 

algorithm 
s : = 0; 

for i in l:size(u,l) loop 
s = s + u [i] *v [i] ; 

end for; 
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More complex examples are also possible. For example, the "*" can be used 
to represent the product of any two arrays as long as the sizes are mathematically 
compatible. For example, the following shorthand: 

Real A[5,7], u[5], v[7]; 
equation 

u = A*v; 

is equivalent to: 

Real A[5,7], u[5], v[7]; 
algorithm 

for i in 1:5 loop 
uri] := 0; 
for j in 1:7 loop 

uri] = uri] + A[i,j] *v[j]; 
end for; 

end for; 

Another example is that the following: 

Real A [5,7], u [5], v [7] ; 
equation 

v = u*A; 

is equivalent to: 

RealA[5,7], u[5], v[7]; 
algorithm 

for j in 1:7 loop 
v[j] := 0; 
for i in 1:5 loop 

v[j] = v[j] + u[i]*A[i,j]; 
end for; 

end for; 

Taking the matrix product of two matrices is also possible, as in: 

Real A[5,3], B[3,7]; 
Real C [5, 7] ; 

equation 
C = A*B; 
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which is equivalent to: 

Real A[5,3], B[3,7]; 

Real C[5,7]; 
algorithm 

C := fill(O,5,7); 

for i in l:size(A,l) loop 
for j in 1:size(B,2) loop 

for k in 1:size(A,2) loop 
C[i,j] = C[i,j] + A[i,k]*B[k,j]; 

end for; 
end for; 

end for; 

One final trick that can be very useful (e.g., in fonnulating transfer functions) 
is to compute an array containing: 

{ x, x, x, ... , :t: x } 

We can do this with the following code fragment: 

Real x; 
Real dx[5]; 

equation 
x = Modelica.Math.Sin(time); 
dx [1] = der (x) ; 

dx [2 : 5] = der (dx [1 : 4] ) ; 

(6.31) 

In this way, we can construct a vector, dx, such that dx [i] represents the ith 

derivative of x. 

6.5.5 Built-in functions for arrays 
Table 6.1 contains several of the built -in functions for manipulating arrays 

in Modelica. Full details of these functions (and others not described) can be 
found in the Modelica language specification. 

6.6 PROBLEMS 
PROBLEM 6.1 Extend the BinarySystem model so that the total energy 
and momentum of the system is computed and make sure that it remains constant 
throughout the simulation. 

PROBLEM 6.2 Using the material presented in Section 6.2, create a model of 
the solar system using the information provided in Table 6.2. 

PROBLEM 6.3 Create a model to solve the hyperbolic PDE: 

d2u d2u 
dt2 = C dx 2 

(6.32) 
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Function name Purpose 

cross (x, y) Returns the cross product of the x and y vectors. 
The size of both vectors must be 3. 

diagonal (v) Generates a square matrix with the elements ofv on 
the diagonal. 

fill (s, nl, n2, ... ) Generates an array of size nlxn2 x ... and fills it with the 
value s. 

identity (n) Returns an nxn identity matrix. 

linspace (xl, x2, n) Linearly interpolate n evenly spaced points along 
a line between xl and x2 

matrix (A) Similar to vector (A) except the size of two 
dimensions must be greater than 1. 

max (A) Returns the largest element of A. 

min (A) Returns the smallest element of A. 

ndims (A) Returns the number of dimensions A has. 

ones (n) Generates an array oflength n and fills it with the value 1.0. 

outerProduct (vl, v2) Returns the outer product of vl and v2. 

product (A) Returns the product of all elements of A. 

scalar (A) Assuming size (A, i) ==1 for 1 ~ i ~ ndims (A), 
scalar (A) returns the single element of A. 

size (A) Returns a vector containing the size for each dimension of A. 

size (A, i) Returns the size of dimension i in array A. 

skew (x) Returns the 3x3 skew matrix for x where size (x, 1) ==3. 

sum (A) Returns the sum of all elements of A. 

symmetric (A) Returns a matrix where the upper triangular elements of 
A are copied to the lower triangular portion. 

transpose (A) Permutes the first two dimensions of A. 

vector (A) If A is a scalar, vector (A) returns a vector with A as the 
only element. If A is an array, it must have only one 
dimension with a size greater than 1 and that dimension is 
extracted as a vector. 

zeros (n) Generates an array of length n and fills it with the value 0.0. 

Table 6.1. Built-in functions for arrays in Modelica. 
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Object Mass (kg) Distance from Sun (m) Tangential Velocity (m/ s) Radius (m) 

Sun 1.989.1030 0 0 1.39 . 109 

Mercury 3.303.1023 69.82.109 38.03.103 4.879.106 

Venus 4.869.1024 108.92.109 34.79.103 12.10· 106 

Earth 5.976 . 1024 152.10.109 29.29.103 12.74.106 

Mars 6.421. 1023 249.2 . 109 21.87· 103 6.780.106 

Jupiter 1.900 . 1027 816.4 . 109 12.42 . 10.3 139.8.106 

Saturn 5.688 . 1026 1.510 . 1012 9.11 . 10:3 116.4 . 106 

Uranus 8.686 . 1025 3.001 . 1012 6.49.10.3 50.72.106 

Neptune 1.024 . 1026 4.555 . 1012 5.38·10.3 49.24.106 

Pluto 1.270 . 1022 7.358 . 1012 3.58.103 2.390.106 

Table 6.2. Solar system data. 

You may choose to use the following spatial approximation: 

Ui+l - 2Ui + ui-l 

~x2 
(6.33) 

PROBLEM 6.4 Create a model for a "collision force" model between two 
bodies such that when they are in contact (i.e., the total distance between the 
centers of the bodies is less than the sum of their radii) they generate a repelling 
force as follows: 

(6.34) 

where c is a large "stiffness" coefficient, r is the distance between the centers 
of the bodies, rl is the radius of body J and r2 is the radius of body 2. 

Next, create a "pool table" model with several billiard balls on it. Only 
one ball should have an initial velocity. Position the balls so that at least two 
collisions take place. Using Dymola, you can declare a Spherefor each body 
so that the collisions can be animated (see Example 9.2 for an example). 
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Chapter 7 

HYBRID MODELS 

7.1 CONCEPTS 
Up to this point, we have been discussing systems of equations involving 

continuous variables. In this chapter, we will discuss hybrid system behav­
ior. Hybrid behavior involves not just continuous variables and equations, but 
also piecewise continuous variables with discontinuities and discrete variables 
which have values that are piecewise constant with respect to time (e.g., an 
Integer or Boolean). This chapter presents Modelica functionality used 
to describe such hybrid behavior. 

7.2 MODELING DIGITAL CIRCUITS 
Hybrid models are a combination of both continuous and discrete behavior. 

Before mixing the two, let us introduce a few examples which highlight discrete 
behavior by itself. Digital circuits are an excellent example of systems which 
can be simulated using discrete behavior exclusively. Imagine we wish to 
construct a model with three inputs and two outputs which behaves according 
to the "truth table" shown in Table 7.1. 

i1 i2 i3 01 02 
false false false true false 
true false false true false 
false true false true true 
true true false true false 
false false true true false 
true false true false false 
false true true true true 
true true true true false 

Table 7.1. Discrete behavior truth table. 
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7.2.1 Connectors 
For this section, we will rely on connectors from the Model ica. Blocks. -

Interfaces package. The two connectors we are interested in using are the 
BooleanInPort and the BooleanOutPort. The definitions for these 
connectors are essentially: 

connector BooleanInPort "Boolean Input Port" 
parameter Integer n=1 "Signal vector size"; 
input Boolean signal [nJ "Signal values"; 

end BooleanInPort; 

connector BooleanOutPort "Boolean Output Port" 
parameter Integer n=1 "Signal vector size"; 
output Boolean signal [nJ "Signal values"; 

end BooleanOutPort; 

These connectors can be used to represent the logical values of the inputs and 
outputs in a digital circuit. 

The signals carried by these connectors are Boolean. Boolean and 
Integer quantities have discrete values (i.e., they cannot change continu­
ously as a function of time). Because their values are discrete, they jump 
instantaneously from one value to another. 

7.2.2 Components 
The behavioral description in Table 7.1 can be represented using the follow­

ing boolean equations: 

01 = (il AND i3) OR i2 

02 il AND i2 

0.1) 
(7.2) 

One way to model such a system would be to write a model which directly 
implemented these equations, e.g., 

block LogicEquation 
Modelica.Blocks.Interfaces.BooleanInPort il(n=I); 
Modelica.Blocks.Interfaces.BooleanInPort i2(n=I); 
Modelica.Blocks.Interfaces.BooleanInPort i3(n=I); 
Modelica.Blocks.Interfaces.BooleanOutPort 01 (n=l) ; 
Modelica.Blocks.Interfaces.BooleanOutPort 02(n=I); 

equation 
ol.signal = not (il.signal and i3.signal) or i2.signal; 
02. signal = not il. si.gnal and i2. signal; 

end LogicEquation; 

As we have seen previously, creating a model based on the specific equations 
for a problem results in a model without much reusability. 
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Just as we have done before, we want to make a library of reusable compo­
nents so we can build a variety of logic circuits. For this example, we need 
an And model, an Or model and a Not model. These models are shown in 
Examples 7.1-7.3 respectively. 

block And 
Modelica.Blocks.lnterfaces.BooleanlnPort inPortl(n=l); 
Modelica.Blocks.lnterfaces.BooleanlnPort inPort2(n=1); 
Modelica.Blocks.lnterfaces.BooleanOutPort out Port (n=l) ; 

equation 
outPort.signal = inPortl.signal and inPort2.signal; 

end And; 

Example 7.1. Model of an ··and" gate. 

block Or 
Modelica.Blocks.lnterfaces.BooleanlnPort inPortl(n=l); 
Modelica.Blocks.lnterfaces.BooleanlnPort inPort2(n=1); 
Modelica.Blocks.lnterfaces.BooleanOutPort outPort(n=l); 

equation 
outPort.signal = inPortl.signal or inPort2.signal; 

end Or; 

Example 7.2. Model of an "or" gate. 

block Not 
Modelica.Blocks.lnterfaces.BooleanlnPort inPort(n=l); 
Modelica.Blocks.lnterfaces.BooleanOutPort outPort(n=l); 

equation 
outPort.signal = not inPort.signal; 

end Not; 

Example 7.3. Model of a "not'" gate. 

7.2.3 Simple logic circuit 
Example 7.4 shows a model which should behave according to Table 7.1. 

The period of each input signal is such that all possible combinations of inputs 
are generated every 8 seconds of simulation time. Note that our input signals 
are generated using the boolean signal generator models from the MSL. 

It might be easier to understand Example 7.4 by looking at a diagram of its 
components and connections as shown in Figure 7.1. The results of running 
this simulation can be seen in Figure 7.2. 
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Figure 7-1. Diagram for LogicCircui t model in Example 7.4. 
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Figure 7.2. Output signals from LogicCircui t model shown in Example 7.4. 
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model LogicCircuit 
import BS=Modelica.Blocks.Sources; 

BS.BooleanPulse il(width={50},period={2}); 
BS.BooleanPulse i2(width={50},period={4}); 
BS.BooleanPulse i3(width={50},period={8}); 
And andl, and2; 
Or orl; 
Not notl, not2; 
Boolean 01, 02; 

equation 
II 01 
connect (il.outPort,andl.inPortl) ; 
connect (i3.outPort,andl. inPort2) ; 
connect (andl. out Port , notl. inPort) ; 
connect (notl.outPort,orl. inPortl) ; 
connect (i2.outPort,orl. inPort2) ; 
01 = orl.outPort.signal[I]; 
II 02 
connect (il.outPort,not2.inPort) ; 
connect (not2.outPort,and2. inPortl) ; 
connect (i2.outPort,and2.inPort2) ; 
02 = and2.outPort.signal[I]; 

end LogicCircuit; 
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Example 7.4. Model of a circuit to test And, Or and Not. 

7.2.4 Mixing discrete and analog behavior 
In our previous circuit, signals propagated through the circuit instantly. 

Now, let us consider a case which introduces lag (e.g., due to capacitance in 
the circuit) in the response of the components. To model this, we use the Lag 
block shown in Example 7.5. The parameters to this model are c, the time 
constant of the response, and threshold, the analog threshold between true 
and false. The output of the Lag element depends on whether the continuous 
response of the Lag element is above or below the value of threshold. 

This is an example of a hybrid model because it mixes analog and discrete 
behavior. Example 7.6 shows a circuit similar to the one shown in Example 7.4 
except that it includes lag in the output of all of the components. A diagram 
of Example 7.6 is shown in Figure 7.3. Finally, the results of simulating the 
model with different values for c can be seen in Figures 7.4 and 7.5. 
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block Lag 
parameter Real c=l "lag time constant"; 
parameter Real threshold=. 7 "logical threshold"; 
Modelica.Blocks.lnterfaces.BooleanlnPort inPort(n=l); 
Modelica.Blocks.lnterfaces.BooleanOutPort outPort(n=l); 

protected 
Real state "Continuous state of the wire"; 

equation 
c*der(state) = if inPort.signal[l] then I-state else -state; 
outPort.signal[l] = state>=threshold; 

end Lag; 

Example 7.5. Modeling lag in a digital signal. 

model LogicCircuitWithLag 
parameter Real c=l "lag time constant"; 
model Pulse=Modelica.Blocks.Sources.BooleanPulse; 
Pulse il(period={2}); 
Pulse i2(period={4}); 
Pulse i3(period={8}); 
And andl, and2; 
Or orl; 
Not notl, not2; 
Boolean 01, 02; 
Lag andl_lag(c=c), and2 lag(c=c), orl_lag(c=c), 

not I_lag (c=c) , not2_lag(c=c); 
equation 

connect (il.outPort,andl.inPortl) ; 
connect (i3.outPort,andl.inPort2) ; 
connect (andl.outPort, andl_lag. inPort) ; 
connect (andl_lag.outPort,notl.inPort) ; 
connect (notl.outPort,notl_lag.inPort) ; 
connect (notl_lag.outPort,orl.inPortl) ; 
connect (i2.outPort,orl.inPort2) ; 
connect(orl.outPort,orl lag.inPort); 
01 = orl_lag.outPort.signal[l]; 
connect (il.outPort,not2. inPort) ; 
connect (not2.outPort, not2_lag. inPort) ; 
connect (not2_lag . out Port , and2 .inPortl) ; 
connect (i2.outPort,and2.inPort2) ; 
connect (and2.outPort,and2_lag.inPort) ; 
02 = and2_lag.outPort.signal[1]; 

end LogicCircuitWithLag; 

Example 7.6. Introducing lag into our logic response. 
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02 

Figure 7.3. Diagram for LogicCircui tWithLag model shown in Example 7.6. 
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7.3 BOUNCING BALL 
Another typical example of hybrid behavior is a bouncing ball. Using 

Newton's Law, we know that the equation for a falling object is: 

ma = -mg (7.3) 

where m is the mass of the object, a is the acceleration of the object and g is the 
acceleration due to Earth's gravity. These equations are continuous in nature. 
However, what do we do when the ball actually strikes a surface? There are at 
least two ways to approach this problem. 

The first is to treat the system as completely continuous by using a non-linear 
spring to model the collision. When the ball comes in contact with a surface, 
Equation (7.3) is changed to: 

ma = -mg - c * (h - r) - d * v (7.4) 

where c is the compliance of the ball, h is the height of the ball's center, r is the 
radius of the ball, d is the damping coefficient of the ball and v is the velocity 
of the ball. 

An example of this approach can be seen in Example 7.7 which shows 
a model with only continuous variables and equations. While this model is 
completely valid, it does have one drawback. It requires a numerical solver to 
resolve the collision of the ball and the surface. So, for some finite time, during 
the collision, the solver will be presented with a stiff problem. 

model BouncingBalll 
import Modelica.Slunits; 

parameter SIunits.Mass m=l.O "Mass of the ball"; 
parameter Real c (final unit="N/m") =le+4 "Compliance"; 
parameter Real d(final unit="N/(m.s)")=20 "Damping"; 
parameter SIunits.Radius r=0.02 "Radius of the ball"; 

SIunits.Height h(start=5.0) "Height of the ball center"; 
SIunits.Velocity v "Velocity of the ball"; 
SIunits.Acceleration a "Acceleration of the ball"; 
SIunits.Force f "Force on the ball"; 

equation 
v = der (h) ; 
a = der (v) ; 
m*a = f-m*Modelica.Constants.g_n; 
f if h<=r then -c*(h-r)-d*v else 0.0; 

end BouncingBalll; 

Example 7.7. A ··continuous" bouncing ball. 
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The second approach, shown in Example 7.8, is to treat the collision as 
an instantaneous event. Instead of providing a spring constant and damping 
coefficient, this model requires a coefficient of restitution which is defined as: 

Vafter 
Cr = ----

Vbefore 
0.5) 

where Vafter is the velocity of the ball after the collision and Vbefore is the 
velocity of the ball before the collision. 

model BouncingBal12 
import Modelica.Slunits; 

parameter SIunits.Mass m=l.O "Mass of the ball"; 
parameter Real c_r=. 725 "Coef. of restitution"; 
parameter SIunits.Radius r=O.02 "Radius of the ball"; 

SIunits.Height h(start=5.0) "Height of the ball center"; 
SIunits.Velocity v "Velocity of the ball"; 
SIunits.Acceleration a "Acceleration of the ball"; 

equation 
v = der (h) ; 
a = der (v) ; 
m*a = -m*Modelica.Constants.g_n; 
when h<=r then 

reinit(v,-c_r*pre(v)) ; 
end when; 

end BouncingBall2; 

Example 7.8. A "discrete" bouncing ball. 

Using the second approach, the BouncingBal12 model avoids the nu­
metical stiffness present in Example 7.7. Instead of including equations to 
resolve the contact with the surface, the BouncingBal12 model makes an 
instantaneous change to the velocity, based on the coefficient of restitution, at 
the moment of contact. This approach may allow the simulation to run faster 
since it will not have to solve the stiff equations associated with the collision. 
There is a subtle drawback to this model which is not easily demonstrated by 
this example but which is described along with the backlash examples found 
in Section 8.3. The results from simulating the BouncingBal12 model are 
shown in Figure 7.6. 

A practical issue for both of these models is what happens over long periods 
of time. Mathematically, we can show that the ball stops bouncing in some 
finite time but bounces an infinite number of times in that interval. Such a 
system is called a Zeno system. For numerical reasons, it eventually becomes 
impossible to resolve the motion of the ball. This is because the velocities and 
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Figure 7.6. Behavior of model BouncingBal12. 

positions become very small. At some point, we must decide that the ball is no 
longer bouncing. If we do not do this, large amounts of computational time will 
be wasted trying to resolve the tiny (and increasingly frequent) collisions. On 
top of that, numerical errors may result in the ball "falling" below the surface 
it is bouncing on because we can no longer detect the collisions. 

Example 7.9 shows a modified version of the discrete model which rec­
ognizes when the ball has essentially stopped bouncing. The difficulties in 
such models occur because as the height of each successive bounce becomes 
smaller and smaller, it is possible for the condition h<=r to remain true (i.e., 
the ball is still in contact with the surface) while v again becomes negative (i.e., 
the ball begins settling back into the surface before contact with the surface 
was broken). For this reason, we wish to distinguish between the case where 
impact becomes true by itself and when the combination of impact and 
v < = 0 becomes true. The first case represents a real impact while the second 
case indicates that the ball has begun falling again before leaving the surface. 

This example highlights several of the more sophisticated features in hybrid 
modeling. First, the conditional expression for the when clause is a vector. 
When a vector of conditions is provided to a when clause, the when clause is 
activated at the instant any of the conditions becomes true. It is important to 
note that: 
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model BouncingBal13 
import Modelica.Slunits; 

parameter SIunits .Mass m "Mass of the ball"; 
parameter Real c r "Coefficient of restitution"; 
parameter SIunits.Radius r=le-3 "Radius of the ball"; 

SIunits.Height h(start=5.0) "Height of the ball center"; 
SIunits.Velocity v "Velocity of the ball"; 
SIunits.Acceleration a "Acceleration of the ball"; 
Boolean bouncing(start=true) 

"Is the ball to still be bouncing?"; 
Boolean impact "Indicates when impact occurs"; 

equation 
v = der (h) ; 
a = der (v) ; 
m*a = if bouncing then -m*Modelica.Constants.g_n else 0; 

algorithm 
impact := h<=r; 
when {impact, impact and v<=O} then 

if edge(impact) then 
bouncing := pre (v) <=0; 
reinit(v,-c_r*pre(v)) ; 

else 
reinit(v,O.O) ; 
bouncing .- false; 

end if; 
end when; 

end BouncingBal13; 

Example 7.9. Another "discrete" bouncing ball. 

when {impact, impact and v<=O} then 
II ... 

end when; 

is equivalent to: 

when impact then 
II ... 

end when; 
when impact and v<=O then 
II ... 

end when; 

In other words, each component in the vector of conditional expressions can be 
treated as if it were in a separate when clause. It is important to point out that 
the vector form of the when clause is not equivalent to: 
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when impact or (impact and v<=O) then 
II ... 

end when; 

The important thing to remember is that the vector form of a when clause 
is activated if any of the individual conditional expressions inside the vector 
become true. In the case where the or operator is used, the when clause 
will not be activated in response to one condition becoming true if the other 
condition is already true since the value of the entire expression would not 
change in such a case. 

The other feature introduced in this example is the use of the edge ( ) 
function inside the when clause to determine which of the conditions in the 
vector of conditional expressions triggered the activation of the when clause. 
The edge () function can take a Boolean variable as an argument and is 
defined as follows: 

edge (b) = b and not pre (b) ; 

In other words, "is b true now and was it not true before this when clause 
was activated?" In the case of the BouncingBal13 model, we can use the 
edge () function to determine if impact just occurred or whether we are in the 
middle of an ongoing collision. 

7.4 SENSOR MODELING 
7.4.1 Introduction 

While there are numerous textbooks on control theory, their emphasis is gen­
erally on the mathematical theory behind control system design (e.g., Brogan, 
1991) as opposed to some of the practical issues faced when deploying control 
systems. Oftentimes, the plant models are assumed to be linear and the sensors 
and actuators are assumed to be ideal. From a teaching perspective, this is 
desirable because it keeps the focus on the theory of control system design. 

In this section, we will examine the effects of using non-ideal sensors by 
developing several non-ideal sensor models and comparing their performance 
against the benchmark system shown in Figure 7.7. As we shall see, the 
behavioral description of non-ideal sensors demonstrates many of the hybrid 
modeling features in Modelica. 

The controller for the system in Figure 7.7 is a simple PI controller. In 
all variations of the system presented in this section, the plant model will be 
linear and the actuator will be ideal. The controller performs quite nicely with 
ideal sensor and actuator models but can easily be driven unstable by non-ideal 
sensor models. The non-ideal sensor models presented in this section were 
not implemented simply to torture the existing control system but rather to 
represent more realistic control system applications. The non-ideal models 
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ref controller 
actuator inertia 

period={1} T={.1} 

ground=O 

Figure 7.7. Our sensor benchmark system. 

lre quite reasonable and based on common methods for measuring system 
:esponse. 

Since the emphasis of this book is on physical modeling, we have tried 
to present more realistic physical models. In addition to the response of the 
physical system, it is also important to accurately capture effects of sensors 
and actuators. In this section, we will examine the effects of placing non-ideal 
sensor models into our benchmark system using closed-loop control. 

7.4.2 Ideal case 
As shown in Figure 7.7, a reference signal is fed to our controller to indicate 

the desired speed of the system. The controller compares the desired speed to 
the current speed measurement from the sensor and, based on the difference, 
determines what torque is required from the actuator. For this case, an ideal 
sensor model is used to generate a baseline for comparison. 

One other nice thing about this benchmark system is that it helps to reinforce 
some of the features discussed in Chapter 4. For example, all the sensor 
models discussed in this section will be derived from the MSL rotational library 
definition of an AbsoluteSensor shown below: 

partial model AbsoluteSensor 
package Rotational=Modelica.Mechanics.Rotational; 
Rotational.lnterfaces.Flange_a flange_a; 
Modelica.Blocks.lnterfaces.OutPort outPort(final n=l); 

end AbsoluteSensor; 

By using this partial model in conjunction with the replaceable and 
redeclare keywords, we will see shortly that we can easily generate variations 
on the baseline system shown in Figure 7.7 and modeled by Example 7.10. 
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model SensorBenchmark 
import Modelica.Mechanics.Rotational; 
import Modelica.Blocks; 

Rotational.Inertia inertia(J=O.8); 
Rotational.Fixed ground; 
Rotational.Damper damper (d=O.2) ; 
Rotational.Torque actuator; 
replaceable Rotational.Sensors.SpeedSensor sensor extends 

Rotational. Interfaces.AbsoluteSensor; 
Blocks.Continuous.PI controller(k={lOO}, T={O.l}); 
Blocks.Math.Feedback feedback; 
Blocks.Sources.Trapezoid ref(offset={SO}, rising={O.2}, 

width={O.2S}, falling={O.2}, amplitude={SO}); 
equation 

connect (ground.flange_b, damper. flange_b) ; 
connect (damper. flange_a, inertia. flange_b) ; 
connect (actuator.flange_b, inertia. flange_a) ; 
connect (sensor. flange_a, inertia. flange_a) ; 
connect (controller.outPort, actuator.inPort); 
connect (feedback. outPort , controller.inPort); 
connect (sensor.outPort, feedback.inPort2); 
connect (ref.outPort, feedback.inPortl); 

end SensorBenchmark; 

! 
Q 
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.;: 

Example 7.10. Source code for our sensor benchmark system. 
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Figure 7.8. Perfonnance of low (k=lO) and high (k=lOOj gain controllers with ideal sensors. 
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Figure 7.8 shows an example of the performance of our idealized system. 
The figure includes three curves. The first is the reference signal for the 
response we are trying to achieve. The next is the response with a low gain 
(k = 10) PI controller. Finally, the performance of a high gain (k = 100) 
controller is shown. As you can see, the high gain controller has no difficulty 
controlling the system response to closely follow the reference signal. 

7.4.3 
7.4.3.1 

Sample and hold sensor 
Behavioral description 

model SampleHoldSensor 
import Modelica.Mechanics.Rotational; 

extends Rotational. Interfaces.AbsoluteSensor; 
Modelica.Slunits.AngularVelocity W; 
parameter Modelica.Slunits.Time sample_interval=O.l; 

equation 
w = der(flange_a.phi); 
flange_a. tau = 0; 

algorithm 
when sample (O,sample_interval) then 

outPort.signal[l] .- w; 
end when; 

end SampleHoldSensor; 

Example 7.11. Sensor that samples speed measurements. 

The first variation on our sensor benchmark will be to utilize a sample and 
hold (i.e., zero-order hold) sensor. The only difference between this sensor 
model and the ideal one is that it does not provide continuous updating of 
shaft speed. Instead, at regular intervals, it outputs the system speed and holds 
that reading until the next sampling interval. As a result, the output of the 
sensor is a piecewise constant signal. Example 7.11 contains the source for the 
SampleHoldSensor model. 

Something to notice about Example 7.11 is the use of the when clause. This 
when clause is used to update the value of the output signal every time the 
system speed is sampled. The assignment: 

outPort . signal [1] : = W; 

is only performed at the instant the sampling occurs. The interval between 
samples is given by the sample_interval parameter. The sample ( ) 
function is a built-in function used to generate sampling events. The first 
argument to sample () is the time at which it should generate the first sample 
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event and the second argument is the time interval between subsequent sample 
events. 

7.4.3.2 Simulation results 

To create a simulation using the SampleHoldSensor shown in Example 
7.11 all we need to do is redeclare the sensor model from our benchmark 
case. As described in Chapter 4, this is done as follows: 

model SamplingCasel 
extends SensorBenchmark(redeclare 

SampleHoldSensor sensor(sample_interval=O.Ol)); 
end SamplingCasel; 

In other words, we create a new model, SamplingCasel, which extends 
our previous model, SensorBenchmark, while redeclaring the sensor 
component. This saves us from having to copy and paste the model shown in 
Figure 7.10 with the only difference being the type of sensor model.! 

°O~·------L-----O~.-5----~------~----~------!~.5------~----~2 

Time [sl 

Figure 7.9. Comparison of SampleHoldSensor with ideal case. 

1 This kind of copying and pasting is bad because it leads to redundancy which becomes a significant 
maintenance problem. 
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Figure 7.9 shows a comparison between the SampleHoldSensor model 
and the ideal case. Two different values for the sampl e _in t erval parameter 
are shown. 

7.4.3.3 Limitations 

The problem with the SampleHoldSensor model is that we must care­
fully choose the sample_interval parameter. For Figure 7.9, the values 
of 0.01 and 0.015 were chosen because they represent a small fraction of 
the time constant used in the PI controller. However, the upper bound on 
the sample_interval parameter for this problem is approximately 0.015 
(shown at the bottom of Figure 7.9). Any sampling interval significantly larger 
than 0.015 will drive the controller unstable during the initial transients. What 
we can learn from Figure 7.9 is that this type of sensor performs acceptably for 
small errors between the reference and actual speed but large errors will drive 
the system unstable. 

7.4.4 
7.4.4.1 

Quantization 
Behavioral description 

In addition to sampling data at a specific frequency, data acquisition systems 
frequently digitize the sensor readings. In these cases, the resolution of the 
readings is affected by the number of bits used in the digital representation of 
the signal. This effect is called quantization. 

Example 7.12 shows a behavioral description of the QuantizedSensor 
model. The parameters of this model are the number of bits used in the output 
signal, bits, the sampling interval, sample_interval, and the minimum 
and maximum values for the output reading. min and max respectively. In­
ternally, the model uses an Integer, called level, with a value between 
o and 2bits to indicate the digital value. The value of 1 eve 1 is then scaled 
appropriately for output. 

Finally, the actual output signal is scaled based on the number of bits and 
the range of measured values. If the measured signal falls outside the range of 
the sensor, the sensor returns either the minimum or maximum value. 
7.4.4.2 Simulation results 

Once again, we can easily generate a model that uses the Quantized­
Sensor by writing a few lines of Modelica code, e.g., 

model QuantizedCase1=SensorBenchmark( 
redeclare QuantizedSensor sensor (sample_interval=O. 01, 

bits=8) ) ; 

Simulation results using the QuantizedSensorare shown in Figure 7.10. 
Since we already know, from Figure 7.9 what the effect of different sampling 
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model QuantizedSensor 
import Modelica.SIunits; 
import Modelica.Mechanics.Rotational; 
extends Rotational.Interfaces.AbsoluteSensor; 

parameter Integer bits=4; 
parameter SIunits.Time sample_interval=0.02; 
parameter SIunits.AngularVelocity min=-150; 
parameter SIunits.AngularVelocity max=150; 
SIunits.AngularVelocity w; 

protected 
parameter Real delta=(max-min)/2 A bits; 
Integer level; 

equation 
w = der(flange_a.phi) ; 
flange_a.tau = 0; 

algorithm 
when sample(O,sample_interval) then 

level := integer((w-min)/delta); 
end when; 
if level<O then 

outPort.signal[l] .- min; 
elseif level>=2 A bits then 

outPort.signal[l] := max; 
else 

outPort.signal[l] .- level*delta+min; 
end if; 

end QuantizedSensor; 

Example 7.12. Measurement with quantization. 

intervals can be, Figure 7.10 includes a comparison for different values of the 
bits parameter. 

7.4.4.3 Limitations 

In addition to the limits generally associated with a sample and hold sensor, 
as we saw in Example 7.11, the QuantizedSensor is also limited by the 
number of bits used in sampling and the allowed range of measurements. Not 
having enough bits results in coarse output and can drive the controller unstable 
by creating large swings in the sensed values. The range of measurements 
must be large enough to bound the actual sensed values but not so large as to 
contribute to coarseness of the output signal. 
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Figure 7.10. Comparison of QuantizedSensor with ideal case. 

7.4.5 Period measurement sensor 
Another way of sensing rotational velocity is to instrument a system with a 

sensor (e.g., an optical encoder) which reports complete revolutions (or some 
integer fraction of a complete revolution) and then inferring the velocity from 
those measurements. By timing the interval between these reports, the rota­
tional speed of the system can be estimated. Example 7.13 shows a model of 
such a sensor. 

7.4.5.1 Behavioral description 

The first thing to notice about the PeriodSensor model is the use of the 
discrete keyword. This keyword is used to indicate that the variables (i.e., 
upper and lower) are not continuous variables. The discrete qualifier 
indicates that these values are piecewise constant with respect to simulation 
time. The discrete keyword is not required but it does have the advantage 
that any Real variable labeled as discrete must be assigned within a when 
clause in an algori thIn section. This allows any changes that treat the variable 
as continuous to be detected. 

The uppe r and lowe r variables represent the point, forward and backward, 
at which the next interval signal is triggered. Mechanically, this triggering 
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model PeriodSensor 
import Modelica.Mechanics.Rotational; 

extends Rotational.Interfaces.AbsoluteSensor; 
parameter Integer divisions=4; 

protected 
parameter Modelica.SIunits.Angle trigger_interval= 

2*Modelica.Constants.pi/divisions; 
discrete Modelica.SIunits.Angle upper, lower; 
Modelica.SIunits.Time last_time; 

equation 
flange_a.tau = 0; 

algorithm 
when initial() or flange_a.phi>=upper 

or flange_a.phi<=lower then 
upper := flange_a.phi+trigger_interval; 
lower := flange_a.phi-trigger_interval; 
last_time := time; 
outPort.signal[l] := if initial() then 0.0 

else trigger_interval/(time-pre(last_time)); 
end when; 

end PeriodSensor; 

Example 7.13. Interval encoding measurement. 

usually corresponds to the location of an optical or magnetic sensor mounted 
on the rotating body. In our model, once that location has been reached, the 
upper and lower limits are changed to correspond to the next location.2 

This example includes the use of the initial () function. This function 
returns a value of true only at the instant the simulation starts. As we can 
see in Example 7.13, the initial () function can be used in conditional 
expressions for when and if clauses. Because we have no data at the start of 
the simulation, we use the ini t ial () function to set the initial output from 
the sensor to zero. 

The logic in the PeriodSensor model is more complicated than the sensor 
models presented so far. This model demonstrates how the logical operators 
(e.g., or) can be used in conjunction with a when clause. As a result, if any of 
the three conditional expressions becomes hue, the body of the when clause is 
executed. 

"For the sake of keeping the PeriodSensor model simple, it is assumed that the rotation sensed by the 
sensor will be in one direction for the duration of the simulation. This is a reasonable assumption for this 
type of sensor since it would not give accurate readings for the case where the rotational speed oscillated 
between forward and backward motion (unless a more complicated encoding scheme were used). 
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The output signal is updated depending on which of the conditions leads to 
the execution of the when clause. For initialization, the output signal is set to 
zero. In the case of motion, the rotational speed is estimated by dividing the 
sensor spacing by the time between reports. 

To calculate the approximate speed, we must know the time between the last 
position report and the current position report. The time of the current report 
is represented by the global simulator variable time. At the time of each 
report, we also record the current time in a variable called last_time. The 
problem we face within the when clause is that we wish to use last_time in 
a calculation and then update its value. To make sure we do not accidentally 
use the updated value of last_time, we use the pre operator to obtain the 
previous value for lasLtime (i.e., the value before the current when clause 
was triggered). 

7.4.5.2 Simulation results 

Simulation results for the PeriodSensor model are shown in Figure 7.11. 
The divisions parameter ofthe PeriodSensor model is used to indicate 
how many positions are reported over a single rotation of the sensor. Figure 
7.11 compares the control system behavior using an ideal sensor as well as a 
PeriodSensor with 8 and 16 divisions. 
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Figure 7.11. Comparison of PeriodSensor with ideal case. 
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7.4.5.3 Limitations 

The PeriodSensor model has several limitations. First, it is incapable 
of distinguishing between forward and backward motion. For this reason, 
it would be completely inappropriate for measuring rotational speeds which 
oscillate around zero. It could also produce incorrect results when used to 
measure systems where the rotational speed came close to zero because of the 
possibility that the actual speed might cross zero. 

Another limitation of the PeriodSensor is the resolution of the measure­
ment. This is dictated largely by the number of locations (i.e., divisions 
in the model) reported during a single revolution. The higher the speed, the 
fewer locations required. In other words, the divisions parameter must be 
chosen based on the range of speeds being measured. This effect is visible in 
Figure 7.11 which shows that the combination of low speeds and few divisions 
can lead to poor performance. 

7.4.6 Counter sensor 

The last model we will discuss, the Count ingSensor , is similar to the 
PeriodSensor. It operates on the same principle by relying on position 
sensors to indicate when critical locations have been crossed. The differ­
ence between the CountingSensor and the PeriodSensor is that the 
CountingSensor counts the number of these intervals crossed in a given 
period of time to estimate speed. This can be important when large speeds 
are being measured because the measuring equipment may not have time to 
compute the speed at every report. Furthermore, the time intervals between 
reports become very small and this can lead to numerical scaling issues. 

7.4.6.1 Behavioral description 

Even though the physical principles are the same between the Period­
Sensor and the CountingSensor, the approach taken in the Counting­
Sensor is slightly different. As we can see in Example 7.14, the variables 
upper and lower used in PeriodSensor for reporting locations are not 
present. Instead, a continuous sinusoidal signal is generated by the motion of 
the system and when this sinusoidal signal crosses zero from below (i.e., with 
a positive slope) a counter is incremented. The number of times such crossings 
will occur in a given rotation of the system is indicated by the division 
parameter. 

At the sampling interval specified by the sample_interval parameter, 
the tally is cleared and the tally of reports from the previous cycle, obtained 
using the pre operator, is used to determine the speed of the sensor. Note that 
the initial () function is used in this case to initialize the count variable. 
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model CountingSensor 
import Modelica.Mechanics.Rotational; 

extends Rotational.Interfaces.AbsoluteSensor; 
parameter Integer divisions=4; 
parameter Modelica.SIunits.Time sample_interval=O.l; 

protected 
constant Real pi=Modelica.Constants.pi; 
parameter Modelica.SIunits.Angle trigger_interval= 

2*pi/divisions; 
Integer count; 
Real s; 

equation 
flange_a.tau = 0; 
s = Modelica.Math. sin (flange_a.phi*divisions) ; 

algorithm 
when initial() then 

count := 0; 
end when; 
when s>=O then 

count := pre (count) +1; 
end when; 
when sample (sample_interval,sample_interval) then 

count := 0; 
outPort. signal [1] : = 

(pre(count)+l)*trigger_interval/sample_interval; 
end when; 

end CountingSensor; 

Example 7.14. An interval counting approach. 

Remember that the statements inside the when clauses are only evaluated for 
the instant the conditional expressions are true. 
7.4.6.2 Simulation results 

Figure 7.12 shows a comparison between the performance of our benchmark 
system using a CountingSensor and an ideal sensor. It should be noted 
that the gain on the PI controller had to be reduced in order for the control to 
be stable. As a result, even with an ideal sensor this system does not follow the 
reference signal as closely as in previous comparisons. Results are presented 
for different values of the sample_interval parameter. 

7.4.6.3 Limitations 

The CountingSensor has essentially the same limitations as the Period­
Sensor (i.e .. good for one directional, high speed measurement). However, it 
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Figure 7.12. Comparison of CountingSensor with ideal case. 

also suffers from some of the problems that the QuantizedSensor model 
has as well (i.e., coarse signal output). 

7.4.7 Summary of sensor modeling 
This section has demonstrated several different features of the Modelica lan­

guage related to hybrid modeling. In addition, we discussed sensor modeling 
which is an important aspect of physical system modeling. For example, such 
sensor modeling could be used to determine the effects of a sensor failure. 
Along the way, we presented several interesting examples which demonstrate 
how sensor characteristics must be carefully chosen to be compatible with the 
control system design. 

7.5 LANGUAGE FUNDAMENTALS 
7.5.1 Algorithms in models 

In this chapter, we have seen several models that contain an algorithm 
section. It is important to understand that statements within an algorithm 
(or equation) section that do not appear within a when or if clause can be 
evaluated at any time by the simulator. On the other hand, statements inside 
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a when clause are evaluated only when the conditional expression in the when 
clause becomes true (this will be discussed in greater detail shortly). 

7.5.2 Discrete variables 
In Section 2.5.2.3 we mentioned that parameters, constants and variables 

all have a different variability. Recall that parameters and constants have 
a value which is held constant for the duration of a simulation while Real 
variables have the potential to change continuously. Integer and Boolean 
variables have piecewise constant solutions which means they have values that 
are constant most of the time but occasionally jump discontinuously to new 
values. 

In some cases, it is useful to have Real variables that have piecewise 
constant solutions. Applying the discrete qualifier to the declaration of a 
Real variable ensures that the variable will be piecewise constant because the 
value of such a variable can only be modified by an assignment statement within 
a when clause. The discrete qualifier is provided to help model developers 
ensure that a variable is piecewise constant, but it is not required (i.e., for all 
Real variables assigned within when clauses). The following code fragment 
demonstrates different uses of the discrete keyword: 

model DifferentUses 
discrete Real x, y; 
Real Z; 

algorithm 
when initial () then 

x := 0; II ok, within when clause 
end when; 
when time>=1 then 

x := 1; II ok, within when clause 
end when; 
y := if time>=1 then 1 else 0; II error, outside of when 
Z := if time>=1 then 1 else 0; II ok, not discrete 

end DifferentUses; 

Because x is assigned within a when clause it will always have a piecewise 
constant solution. Even though the assignment to y would appear to give the 
same solution as x, it will generate an error. This is because an if expression 
can contain time varying expressions (even though it does not in this case). The 
assignment to z is acceptable because it was not declared as discrete. 

The discrete keyword can also be applied to a connector or record. In 
such a case, all Real variable declarations nested inside the connector or 
record declaration will be considered discrete. 
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7.5.3 Reacting to changing conditions 
The when clause is generally used to either reinitialize a continuous variable 

using the reinit operator or to change the value of a discrete variable. A 
when clause may appear in either an algorithm section or in an equation 
section. If possible, it is preferable to place the when clause in an equation 
section for efficiency reasons. However, in some cases (e.g., when two different 
when clauses within the same model modify the same discrete variable) it may 
be necessary to put the when clause in an algorithm section. 

The statements inside a when clause are applied only at the instant in time at 
which the conditional expression (which follows the when keyword) becomes 
true. The when keyword differs from the if keyword because the statements 
inside an if clause continue to be applied as long as the conditional expression 
remains true. Furthermore, if the conditional expression in a when clause is a 
vector, then the when clause is activated if any of the conditions becomes true 
regardless of the value of the others. 

When multiple when clauses within the same algorithm section of a model 
assign to the same discrete variables, the order of when clauses is important. 
For example, consider the case where we are developing a controller for a boat 
with two pumps. Assume we only have enough power to run one pump at a 
time. Imagine one pump is a bilge pump which keeps the boat from filling 
with water and the other pump is for a shower. Clearly, the bilge pump is more 
important. So, our controller may contain the following when statements: 

model PumpController 
parameter Modelica.Slunits.Height h_crit; 
parameter Modelica.Slunits.Pressure p_crit; 
Modelica.Slunits.Height water_height; 
Modelica.Slunits.Pressure shower_pressure; 
Boolean shower_pump (start=false) , bilge-pump(start=false}; 

algorithm 
when not bilge_pump and shower_pressure<=p_crit then 

shower-pump := true; 
end when; 
when water_height>=h_crit then 

shower_pump := false; 
bilge_pump := true; 

end when; 
end PumpController; 

The order of the when statements is imp011ant. Within an algorithm section, 
the last when clause is the last one evaluated. The ordering of the when clauses 
in this way was intentional. Consider the case where the bilge pump was not 
on and the shower pressure dropped below the critical level while at the same 
time the water height rose above the critical level. In such a case, it would be 
as if the statements in the when clause appeared in the following order: 
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shower-pump := true; II From the first when clause 
shower-pump := false; II From the second when clause 
bilge_pump := true; 

In other words, the bilge pump would take precedence. Note that the shower 
pump came on and then was turned off immediately in this case. To prevent 
this, we might use an elsewhen clause to make sure that the actions taken were 
mutually exclusive, e.g., 

algorithm 
when water_height>=h_crit then 

shower-pump := false; 
bilge-pump := true; 

elsewhen not bilge-pump and shower_pressure<=p_crit then 
shower_pump .- true; 

end when; 

In this case, the shower pump can only be turned on when the water height is 
below the critical level. Note how the use of the elsewhen construct allows us 
to reorder the conditions so the most important condition comes first. 

One final note about when clauses. It is important to understand that the 
following when clause: 

when not bilge_pump and shower_pressure<=p_crit then 
shower-pump .- true; 

end when; 

is not the same as: 

when shower-pressure<=p_crit then 
if not bilge_pump then 

shower-pump .- true; 
end if; 

end when; 

To understand the difference, consider the following scenario. Imagine the 
shower pressure drops below p_crit but the bilge pump is on. Then at some 
later time the bilge pump turns off while the shower pressure is still below 
p_crit. In the first case, the shower pump will come on as soon as the bilge 
pump turns off because the conditional expression will only become true at that 
instant. In the second case, the shower pump will not come on because the 
when clause was evaluated when the shower pressure became critical. Because 
the bilge pump was on, the opportunity to turn the shower pump on was lost 
because of the way the logic was written. 

This PumpController example was written to be simple. However, 
writing such logic for controllers can be tricky. It is possible to use the 
basic hybrid language features in Modelica to write high level controller logic 
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representations (e.g., petri nets). Oftentimes, such high-level representations 
may be a better choice than low level ~hen statements. 

7.5.4 
7.5.4.1 

Built-in functions and operators in hybrid systems 
Reinitializing a variable 

The reini t operator is used to make a discontinuous change in the value of 
a continuous variable. The reinit operator can only be applied to variables 
that have had the der operator applied to them. 

The effect of the reini t operator is to stop simulation time, make a change 
to the value of one or more continuous variables and then resume simulation. 
It is effectively like statting a new initial value problem. It is important to 
recognize the implication a re ini t might have on the algebraic equations as 
well as the differential equations in a system. A more detailed discussion of 
these implications can be found in Chapter 13. 

7.5.4.2 Values prior to events 

For the PeriodSensor and CountingSensor models (shown in Ex­
amples 7.13 and 7.14), we used the pre operator to access the previous value 
for a discrete variable at the instant it changed. Whenever a variable changes 
value discontinuously, the pre operator can be used to find the previous value at 
the instant of the discontinuity. The pre operator can be used with continuous 
variables, but only within a ~hen clause. Mathematically, the previous value is 
defined as the left limit of the variable at the time the discontinuity occurs (e.g .. 
the time the ~hen clause is activated). At the start of the simulation, the pre 
operator returns the value of its argument (i.e .. pre (x) =x). 

7.5.4.3 Masking events 

Conditional expressions in Modelica have an interesting property. If a con­
ditional expression changes value during a simulation, it forces the underlying 
solver to stop at the point the transition occurs. This is done because discon­
tinuities in the continuous system of equations generally occur as a result of 
such changes in conditional expressions. For numerical reasons, it is best to 
stop the integration at that point and restatt so that the discontinuity does not 
occur in the middle of an integration step. 

Most of the time, this rule makes sense. However, in some cases it is 
undesirable for such interruptions to occur. In general, such interruptions are 
not necessary when the model developer knows for certain that no discontinuity 
actually occurs. Such interruptions can be avoided by using the noEvent 
operator to indicate that no discontinuity occurs as a result of the conditional 
expression. By avoiding the interruption, some computation effort is saved 
both in determining exactly when the conditional expression changes value and 

walter.ponge@terra.com.br



Hybrid Models 183 

in computing the extra time step. Another reason to use the no Event operator 
is to enforce interpretation of the conditional expression. To understand why 
this might be necessary, consider the case of a tank of liquid which empties 
according to the following equation: 

~; = { -~ x>O 
x~O 

(7.6) 

where x is the height of liquid in the tank. One way to write a model for such 

a tank would be: 

model EmptyingTankl 
Real x; 

equation 
der (x) ~ if x>O then - (x A 

• 5) else 0.0; 
end EmptyingTankl; 

It appears, at first glance, that there is no danger that an attempt will be made 
to take the square root of x when x is negative. The conditional expression 
x > 0 would seem to protect against this. However, this is not the case. To 
understand why, consider the following equivalent model: 

model EmptyingTank2 
Real x; 
Boolean cond; 

equation 
cond = x>O; 
der (x) ~ if cond then - (x A .5) else 0.0; 

end EmptyingTank2; 

If a simulation starts with a positive value for x, then cond will be true. 
As long as cond is true, - y'X will be evaluated. Remember that conditional 
expressions cause the simulator to try and identify the time at which the condi­
tional expression changes value. As a result, the value of cond is not evaluated 
constantly. Instead, the simulator looks for the point at which x dips below 
zero. It is only once that point has been identified that the value of cond is 
changed to false. In the meantime, while searching for that point, negative 
values of x will be considered and used in evaluating any expressions. In 
summary, the simulator cannot know for sure that x is less than zero until it 
sees a negative value for x and then it is too late because it has used that value 
as the argument to a square root operation. 

The remedy for this situation is to place the noEvent operator around 
the conditional expression. However, some continuous expressions can also 
trigger events (e.g., the built-in abs () function), so it is best to place the entire 
expression within the noEvent as follows: 
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model EmptyingTank3 
Real x; 

equation 
der(x) = noEvent(if x>O then _(x A .5) else 0.0); 

end EmptyingTank3; 

The noEvent operator suppresses events from being generated by the expres­
sion it is applied to. This avoids the problem of taking the square root of a 
negative number because the simulator tests the condition x > 0 during every 
evaluation of the right hand side of the equation rather than waiting to identify 
when the condition changes. The drawback is that if a discontinuity did occur, 
some numerical error would be introduced. 

It should be noted that there are a few restrictions on the use of the noEvent 
operator. First, the conditional expression of a when clause cannot be qualified 
by the noEvent operator. In addition, the noEvent operator cannot be used 
in Boolean, Integer or String equations. 

As a final note, there have been proposals within the Modelica Association to 
revise the noEvent operator. As of the writing of this book, none of these 
proposals have been accepted. For the near term, it should continue to function 
as described here. However, if you run into difficulties you might want to make 
sure the semantics have not been revised. 

7.5.4.4 Detecting changes 

Two more useful functions are the edge () and change () functions. 
These functions are designed to indicate when variables change their val­
ues. The edge () function can only be used with a Boolean variable 
and the change () function can only be used on Boolean, Integer and 
String variables. Each function has an equivalent conditional expression. 
The edge () function is defined as: 

edge (x) = x and not pre (x) ; 

In other words, edge () is true at the instant that the argument, x, has just 
become true (i.e., x is true and was not previously true). The change () 
function is defined as: 

change (x) = x < > pre (x) ; 

In other words, change () is true at the instant that x has a different value 
than it previously had. 

7.5.4.5 Generating events at regular intervals 

The sample () function is a built-in function that takes two arguments. 
The first argument is the time at which sampling begins. The second argument 
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is how frequently sampling occurs once it begins. Both arguments are of type 
Modelica. SIuni ts. Time (i.e., seconds). 

The sample () function returns the value false except at the instant when 
sampling begins (i.e., the first argument) and after every sampling interval (i.e., 
the second argument). The true value only occurs for an instant. 

7.5.4.6 Identifying the start and end of analysis 

Two more built-in functions which can be used for hybrid models are the 
initial () and terminal () functions. The initial () function be­
comes true only for an instant just as a simulation starts. It can be useful 
for setting initial conditions for both continuous and discrete variables (see 
Chapter 13 for more details). Likewise, the terminal () function becomes 
true for an instant at the end of a successful simulation. One example of how 
the terminal () might be used would be to call an external function which 
writes out final simulation results to a file. 

7.5.4.7 Terminating a simulation 

Finally, we come to the terminate () function. This function is used to 
indicate that it is no longer useful to continue a simulation. The termina te () 
function takes a single argument, s, of type String. This argument represents 
the message that will be displayed to explain the termination of the simulation. 

The main reason to terminate a simulation is because the simulation has 
already evaluated what is of interest and so therefore further simulation would 
not yield anything useful. For example, if we wish to simulate a thermal system 
response up until the point where the temperature of the system stops changing, 
we could use terminate as follows: 

Modelica.Slunits.Temperature T; 

algorithm 
when abs(der(T) )<le-3 then 

terminate ("Temperature at steady-state"); 
end when; 

As a result, when the rate of temperature change drops below 10-3 ~, the 
simulation will be terminated. 

The terminate () function is usually used to indicate the end of a suc­
cessful simulation. If you wish to terminate a simulation because something 
has gone wrong with the simulation (e.g., the value of a variable is outside the 
valid range) then the assert () function should be used. 
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7.5.4.8 Special considerations for other functions 

Special consideration must be given for some of the built-in functions in 
Modelica. For example, the following code fragment: 

x := if y<O then -y else y; 

could also be written, using the built-in abs ( ) , as follows: 

x := abs (y) ; 

Since there is an implicit conditional expression within the definition of abs ( ) , 
it has the same effect (i.e., stopping the integration when y crosses zero) as the 
conditional expression it replaces. In order to avoid such interruptions, the 
noEvent operator can be used just as it is with other expressions, e.g., 

x := noEvent(abs(y)); 

The functions abs () , ceil () , di v () , floor () , integer () , mod () , 
rem () and sign () may cause an interruption in the integration process 
due to discontinuities. These discontinuities occur because the return value 
of the function (or one of its derivatives) is not continuous with respect to 
its arguments. For example, the use of the integer () function in the 
QuantizedSensor model from Example 7.12 will trigger an interruption 
every time the level variable changes. 

7.5.5 Well posed problems 
In algebra class, we first learn that in order to solve a system of equations 

we must have exactly as many variables as equations. The same holds true for 
Modelica models. However, for Modelica we need the number of variables to 
be equal to the number of equations plus the number of assignments. There are 
some important caveats to this rule. First, all equations and assignments within 
when clauses are counted. Furthermore, all assignments to the same variable 
within a single algorithm section count as a single assignment. 

7.6 PROBLEMS 
PROBLEM 7.1 In practice, simulations are primarily used to perform "What 
If?" analyses. Re-run the LogicCircui twi thLag model for different 
values of the lag parameter c. Look at the effect it has not only on the time 
delay in the circuit, but also on the accuracy of the output signals. These 
models can be found on the companion CD-ROM. 

PROBLEM 7.2 The lag discussed in Section 7.2.4 is caused by capacitance 
in the wires, delaying the rise of the voltage. Assume that a true value 
corresponds to 5 Volts and a false value corresponds to 0 Volts. Create a lag 
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model using two resistors and a capacitor as shown in Figure 7.13. Compare 
the results with those shown in Figures 7.4 and 7.5. 

b 

C=lOO fJF 

Figure 7.13. Circuit to model inertial delay. 

PROBLEM 7.3 Run the benchmarking cases from Section 7.4, but this time 
lower the reference speed amplitude and/or offset values. What does this do to 
the peljormance of the various controllers? 

PROBLEM 7.4 The different kinds of sensor models developed in this section 
were always connected directly to the mechanical system. Create blocks for the 
four different types of sensor models that take the actual velocity as an input and 
output the velocity indicated by the sensor. Using these blocks, you can "daisy­
chain" effects. For example, you could read the actual velocity using an ideal 
sensor and then feed that signal into a Peri odSensor block. Then, you could 
feed the output from the PeriodSensor block into a QuantizedSensor 
and look at what the overall effect is on the velocity signal. 

PROBLEM 7.5 Create a sensor model that introduces a delay in the feedback 
loop. Put that in the benchmark case and study the effects for different delay 
values. 

PROBLEM 7.6 As we discussed in Section 7.4, in addition to modeling the 
plant, modeling of sensors and actuators is important. Many of the sensor 
models presented in that section can cause the system to become unstable. To 
further demonstrate real-world situations, develop an actuator model which 
saturates at some predetermined level (i.e., a torque source that can only 
produce specified minimum and maximum values regardless of the commanded 
value). In which cases does this mitigate the instabilities due to non-ideal 
sensors and in which cases does it make things worse? 
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PROBLEM 7.7 Create a model of a block that numerically computes the 
derivative of its input. To do this, you must sample the input signal at reg­
ular intervals and compute a finite difference approximation for the signal, 
e.g., : 

du u(t) - u(t - ~t) 

dt ~t 
(7.7) 
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Chapter 8 

EXPLORING NONLINEAR BEHAVIOR 

8.1 CONCEPTS 
The point at which modeling gets particularly interesting is when model 

behavior becomes increasingly nonlinear. It is no coincidence that this is the 
point where simulation tools start having trouble. Nonlinear behavior is hard to 
avoid in real world models. The examples in this chapter will introduce some 
of the approaches used to describe nonlinear behavior. 

8.2 AN IDEAL DIODE 
We begin our examples with an ideal electrical diode. This example intro­

duces a useful parameterization technique in modeling non-linear systems. 

8.2.1 Mathematical background 
In order to understand the parameterization technique, we must first examine 

the problem that makes this technique necessary. Consider the following ideal 
diode equations: 

i = 0 when v ~ 0 
v = 0 when i ~ 0 

(8.1) 

In order to get a better understanding of how an ideal diode behaves, consider 
the graphical representation of Equation (8.1) shown in Figure 8.1. The thick 
line represents possible states of the diode. What makes such behavior difficult 
to model is that the current cannot be written in terms of the voltage and the 
voltage cannot be written in terms of the current. In mathematical terms, the 
current is not a proper function of the voltage and the voltage is not a proper 
function of the current. 
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I 

s>o 

--~~----~------~----~ V 

s<o ~s=o 
Figure 8.1. Current-voltage characteristics of an ideal diode. 

This leads us to the technique which allows us to work around the issue (see 
Otter et aI., 1999). Specifically, we must express the behavior parametrically 
in terms of another variable. Let us call this parametric variable s. The 
variable s must be chosen such that the current and the voltage can both be 
written explicitly in terms of s. In this way, the state of the diode becomes a 
continuous function of s. One way to perform this mapping is to consider s 
to be the distance along the curve shown in Figure 8.1, starting at the origin. 
Mathematically, we can then write voltage and current in terms of 8 as follows: 

v = { ~ 

i = { ~ 

8<0 
82:0 

8<0 
82:0 

(8.2) 

(8.3) 

Once again, a graphical representation is sometimes easier to understand. Fig­
ure 8.2 shows the voltage and current plotted with respect to 8. 

8.2.2 Model description 
Now we must translate Equations (8.2) and (8.3) into Modelica code. It 

turns out that by reusing the One Port pattial model from Example 4.1, we 
can write this model in a few lines as shown in Example 8.1. 

Note that our IdealDiode model contains two internal variables, s and 
open. The s variable is our parametric variable used as the independent 
variable in Figure 8.2. The variable open represents which patt of the curve 
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Parameter Variable: s 

Figure 8.2. Current-voltage characteristics of an ideal diode plotted parametrically. 

we are on in Figure 8.1. If open is true, then s represents the voltage drop 
across the diode (the horizontal line in Figure 8.1). On the other hand if open is 
false, then s represents the current flow through the diode (the vertical line in 
Figure 8.1). As a result, a change in open represents a fundamental behavioral 
change in the model (additional details about these kinds of behavioral changes 
can be found later in Section 8.6.2). 

model IdealDiode "An Ideal Diode" 
extends Modelica.Electrical.Analog.Interfaces.OnePort; 

protected 
Real s "Parametric independent variable"; 
Boolean open; 

equation 
open = s<=O; 
v = if open then s else 0; 
i = if open then 0 else s; 

end IdealDiode; 

Example 8.1. An ideal diode model. 

8.2.3 Sample circuit 
Figure 8.3 shows the schematic of an alternating current (AC) to direct 

current (DC) power supply. After the AC voltage has been stepped down using 
a transformer, the diode is used to rectify the resulting AC signal and the ripples 

walter.ponge@terra.com.br



192 INTRODUCTION TO PHYSICAL MODELING WITH MODELICA 

that result from this rectification are damped out by a resistor and capacitor. 
A switch is used to connect the load to the power supply. Figure 8.4 shows 
the results of simulating this system for one second. The top plot shows the 
supplied voltage, Vsupply, the middle plot is the voltage across the load, Vioad, 

and the bottom plot shows the state of the switch. 
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Figure 8.3. Schematic of an ACIDC power supply. 
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Figure 8.4. Voltage response of an ACIDC power supply. 

One thing to note about the circuit in Figure 8.3 is the fact that a small 
resistance, Rshort was placed in series with the diode. This was done because 
simulation tools often have difficulty modeling ideal components. For example, 
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if the resistor in Figure 8.3 is left out, the resulting system of DAEs will have a 
variable index (for details see Mattsson and Soderlind, 1993). For this reason, 
the ideal diode model in the MSL has a resistance built into the model. 

8.3 BACKLASH 
A common nonlinearity introduced when building mechanical models is the 

representation of backlash. Backlash can occur in both rotational and trans­
lational systems and can be an important effect for many types of mechanical 
models. We will describe two approaches to handling the backlash problem 
and discuss the advantages and disadvantages of both approaches. 

8.3.1 Non-linear spring approach 
The first approach to consider is called the "non-linear spring approach". 

This approach involves implementing a spring with a force-displacement curve 
like the one shown in Figure 8.5. 

Angular Displacement [rad] 

Figure B.5. Force-displacement characteristics for a backlash. 

The basic idea behind this approach is to implement a "spring" that exerts 
no force until sufficient angular displacement occurs such that there is no more 
backlash in the system. At that point, the spring becomes stiff (corresponding 
to the collision of two rigid bodies) and the two rigid bodies "bounce" away 
from each other. These collisions will rarely be modeled as perfectly elastic 
and therefore a damping term is usually added as well. The equation for the 
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force between the two colliding bodies is: 

¢ <-~ 
A. < Q 
'I' - 2 

¢ 
(8.4) 

where ¢ is the angular displacement across the backlash component, b is the 
amount of backlash, c is the spring constant and d is the damping coefficient. 
Example 8.2 shows a model for such behavior. 

model SpringBacklash 
import Modelica.Mechanics.Rotational; 
extends Rotational.lnterfaces.Compliant; 
parameter Modelica.Slunits.Angle b=0.05 "Backlash amount"; 
parameter Real c=le+5 "Spring stiffness"; 
parameter Real d=O "Damping coefficient"; 

protected 
Modelica.Slunits.AngularVelocity w_rel; 

equation 
w_rel = der(phi_rel); 
if phi_rel<=-b/2 then 

tau = c*(phi_rel+b/2)+d*w_rel; 
elseif phi_rel>=b/2 then 

tau c*(phi_rel-b/2)+d*w_rel; 
else 

tau 0; 
end if; 

end SpringBacklash; 

Example 8.2. Non-linear spring backlash model. 

The drawback of this approach is that the system of equations becomes 
very "stiff" when contact is made. This is not desirable for several reasons. 
First, the system of equations can become difficult and time consuming to 
solve. Second, prolonged contact will result in a persistent, high-frequency 
vibrational response. Ultimately, this mode may be damped out but it could 
cause robustness problems with the model. Finally, it is not necessarily easy 
to know exactly what the compliance and damping properties of the colliding 
materials are. In those cases, it becomes difficult to correctly capture the 
dynamics. 

8.3.2 Coefficient of restitution approach 
The coefficient of restitution approach, modeled in Example 8.3, avoids the 

problems with the stiff spring. The idea behind the BacklashCOR model is to 
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model BacklashCOR 
import Modelica.Mechanics.Rotational; 
extends Rotational.1nterfaces.Compliant; 
parameter Modelica.S1units.Angle b=0.05; 
parameter Modelica.S1units.1nertia 11=1, 12=1; 
parameter Real K=l "Coefficient of Restitution"; 

protected 
Mode1ica.S1units.AngularVelocity w1, w2; 
Modelica.S1units.AngularAcceleration a1, a2; 

equation 
w1 der(flange_a.phi); 
w2 der(flange_b.phi); 
a1 der (w1) ; 
a2 der (w2) ; 
tau = 0; 

algorithm 
when phi_rel>=b/2 or phi_rel<=-b/2 then 

reinit (w1, ((11-K*12) *pre (w1) +12* (l+K) *pre (w2)) / (11+12)) ; 
reinit(w2, ((12-K*11)*pre(w2)+11*(l+K)*pre(w1) )/(11+12)); 

end when; 
end BacklashCOR; 

Example 8.3. Coefficient of restitution backlash model. 

recognize the point at which the collision occurs, compute how much momen­
tum will be lost (determined by the coefficient of restitution) and recompute 
the velocity of the two colliding bodies as follows: 

(11 - K12)Wl + h(l + K)W2 

h+h 
(h - K11 )W2 + h (1 + K)Wl 

h+h 

(8.5) 

(8.6) 

where W represents rotational velocity, 1 represents rotational inertia and K is 
the coefficient of restitution. This adjustment to the angular velocity is done 
in a single step by using the reini t operator (i.e., the simulator does not 
attempt to resolve the dynamics of the collision) so the numerical issues are 
avoided. Prolonged contact of the two bodies can still be a problem but this 
can be overcome (as we previously showed with the bouncing ball model in 
Example 7.9). 

The problem with the coefficient of restitution model is that it requires 
knowledge of the effective inertia of each body. This is not something a 
single model can know because it is possible that additional inertias are rigidly 
connected to the backlash model. These rigid connections change the effective 
inertia of the bodies and make the internal momentum calculation incorrect. 
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Even worse is the case where multiple inertias are connected by multiple 
backlashes because the effective inertia of the assembly changes depending on 
the current state of each backlash. This places a burden on the user of the model 
to make sure the correct values for the effective inertia are somehow provided 
to the model. 

Another interesting thing to note about the BacklashCOR model is the 
fact that the reinit operator can only be applied to a variable which has had 
the der operator applied to it. The variables al and a2 are dummy variables 
introduced so that reinit could be applied to wI and w2.1 Finally, the 
pre operator was used (see Section 7.5.4.2 for further details) to reference the 
angular velocities prior to the collision. 

8.3.3 Comparison 
Let us do a quick comparison of both of these approaches. Figure 8.6 shows 

the schematic of one test case where there are two inertias and both are directly 
connected to the backlash model. We will refer to this as the "two inertia" case. 
For the next case, an additional inertia was added. This new inertia is rigidly 
connected (through an ideal gear with a gear ratio of 1) to one of the previous 
inertias. We will call this the "three inertia" case. The values of the inertias 
were adjusted so that these two cases (i.e., the two and three inertia cases) are 
physically identical. In other words, the effective inertia on both sides of the 
backlash is the same in both cases. 

signal [§J.. , torque 

A ...... ~ "G-----IEZZ ... ·····V tau L-_--' 

J=1 

11 backlash=1.e5 12 

freqHz={1} b=O 

Figure 8.6. Backlash schematic with two inertias. 

signal ~ 
.•.. torque 11 backlash=1.e5 12 ~ i 13 liVf ~~ ,.; ... =----
freqHz={1} J=1 b=O J=3 gear= 1 J=1 

Figure 8.7. Backlash schematic with three inertias. 

I In fact. the current semantics of re-initialization are being examined to see if there is a way to avoid the 
necessity of adding such dummy variables. 
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The problem for our BacklashCOR model is that it needs to know the 
effective inertia at both of its connection points, not just the value of the inertia 
directly connected to it. For the "3 inertia" case, we have deliberately chosen 
to include only the value of the inertia directly connected to the backlash and 
not the inertia contribution across the gear. This is an easy mistake to make 
because it is not necessarily obvious to somebody building such a schematic 
that the effective inertia is required or how to calculate it. This is because that 
calculation depends on the equations contained within the various components. 
In summary, even though we have made this error intentionally, it is the kind 
of error that is made easily by accident. 

0.06 r-------,-----,----.,-------,-----,----,.----, 

phi2 (2 inertias+spring) 
phi2 (2 inertias+cor) 
phi2 (3 inertias+spring) 
phi2 (3 inertias+cor) 

-0.02 l-__ --'-___ ...l..... ___ L-__ --'-___ ...l..... ___ L-__ .......J 

o 0.2 0.4 0.6 

0.2,----.---,----..-----.---,----,.----, 
';;;' 

~ 0.15 
.!::, 

o ·13 0.1 

~ 
> 0.05 
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~ 

-0.050L-----'----...l.....---L----0.L.4-----'-----:-oL.6------' 

Figure 8.8. Comparison of the two backlash models for the cases shown in Figures 8.6 and 
8.7. 

The top plot in Figure 8.8 shows the angular position of the second inertia, 
12, for both the "two inertia" and "three inertia" cases using both backlash 
models. As we can see from this plot, all the models give the correct answer 
except for the coefficient of restitution model using three inertias. This demon­
strates that the coefficient of restitution model is less robust than the non-linear 
spring approach because it requires the user to carefully make sure that the 
data given to the backlash model (i.e., the effective inertia on both sides of the 
backlash) is consistent with the physical characteristics of the schematic. Such 
situation are always troublesome and should be avoided. 
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The bottom plot in Figure 8.8 shows the angular velocity of the first inertia, 
I 1, using both backlash models in the "two inertia" case. This plot demon­
strates an interesting property of the different solution methods. The dashed 
line indicates the coefficient of restitution model for the "two inertia" case. 
Note the abrupt changes in the velocity. These jumps are the result of using the 
reinit operator. 

Let us focus on the first collision. Note how both solutions at the bottom 
of Figure 8.8 are identical up until the first collision occurs. The coefficient 
of restitution model jumps immediately to a new value when the collision 
occurs. The non-linear spring model takes a finite amount of time to resolve 
the collision. The difference in the models leads to a delay for the non-linear 
spring model. This delay accumulates at each collision. 

The amount of the delay is related to the stiffness of the spring. This 
means that if you choose the stiffness value arbitrarily, you will get an arbitrary 
delay. This highlights one of the drawbacks of the non-linear spring approach. 
Specifically, the method requires you to treat the colliding bodies as "very 
stiff". The problem is "how stiff is very stiff?". As we have seen, the value 
chosen for the stiffness will make some difference in the solution so it should 
be chosen carefully. The other drawback of the approach is that, in general, 
the stiffer you make the spring, the longer it will take the simulation tool to 
simulate the collision. 

8.3.4 Summary and future directions 

As pointed out in our discussion of backlash models, the non-linear spring ap­
proach has the disadvantage that it can lead to inefficient numerical simulations. 
In addition, it may not be easy to measure the compliance and damping factors 
for the materials involved. On the other hand, the reinit approach avoids 
those problems but will not work correctly if one of the inertias connected to 
the backlash model is rigidly connected to another inertia. If stiff connections 
are substituted for rigid connections, then undesirable high frequency modes 
will appear. 

As a result, the best approach currently available for modeling backlash is 
to use the non-linear spring approach because it is general enough to handle all 
cases and it is robust. However, there is a proposal currently being formulated 
for an extension to the Modelica modeling language which would introduce 
the ability to model collisions using impulses. This would provide a general, 
robust and computationally efficient approach to modeling backlashes and 
several other phenomena. If you are interested in effects like backlash, check 
with the Modelica Association to find out when such impulse handling is likely 
to be available and whether it will be suitable for you. 
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8.4 THERMAL PROPERTIES 
8.4.1 Background 

In Section 6.3, we described how a simple heat transfer system can be 
modeled in Modelica. In this section, we will show how to introduce non­
linear thermal properties into a heat transfer model. 

By applying conservation of energy to a control volume we arrive at the 
following equation: 

dd f. pu(T)dV=- f f·nds 
t i" is 

(8.7) 

where u(T) represents the specific internal energy of the material within the 
volume V. If we assume that the density and temperature do not vary over the 
volume then we can simplify Equation (8.7) to: 

V p du(T) = _ f f. n dS (8.8) 
dt is 

2.5e+06 
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Figure 8.9. Plot of u(T) from Equation (8.9). 

Note that Equation (8.8) does not specify relationship between u and T. 
Such relationships are often non-linear and present some interesting modeling 
challenges. In order to explore this possibility, let us assume the following 
relationship between specific internal energy and temperature: 

{ 
900T 

u(T) = 90000T - 89100000 
900T - 891000 

200::; T < 1000 
1000::; T ::; 1010 
1010 < T ::; 2000 

(8.9) 
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Figure 8.9 shows a plot of u as a function of T. Since cp(T) is defined as the 
derivative of specific internal energy, u, with respect to temperature, we find 
that ep for our non-linear material, based on Equation (8.9), would be: 

{ 
900 

ep(T) = 9000 
900 

200::; T < 1000 
1000::; T ::; 11 00 
1100 < T ::; 2000 

(8.10) 

One important thing to note about the material properties shown in Equations 
(8.9) and (8.10) is that they are limited to the temperature range 200K to 
2000K. 

8.4.2 Creating a thermal property model 
Creating a property model involves encapsulating Equation (8.9) into a 

Modelica model. Since different materials have different specific internal 
energy relationships, Example 8,4 shows how we can define a partial model 
to capture the essence of what a property model consists of. 

partial model ThermalPropertyModel 
Modelica.Slunits.Temperature T; 
Modelica.Slunits.SpecificlnternalEnergy u; 

end ThermalPropertyModel; 

Example 8.4. A general thermal property model interface. 

Example 8.5 shows how we can capture the specific internal energy relation­
ship in Equation (8.9). Note that Example 8.5 uses the assert () function to 
verify that the property model is used in a valid region. If the simulated solution 
ever fails to satisfy the conditional expression inside the assert () function 
invocation, an error occurs and the message provided in the assert () func­
tion invocation will be given as an explanation. The ability to impose such 
restrictions and present a meaningful message when they are violated is impor­
tant in creating robust simulations. 

In addition, notice that start values have been provided for both u and T 
in Example 8.5. This is always a good idea when building non-linear models. 
Remember, the start attribute is just a guess about what a reasonable value 
might be (i.e .. it provides the simulator a good initial guess). 

A subtle property of Example 8,4 is that it is not represented as a block. In 
other words, we have not identified the temperature and specific internal energy 
as either inputs or outputs of the model. This allows the model to be used either 
as an explicit equation for u as a function of T or as an implicit equation for T 
as a function of u. 
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model SimplePropertyModel 
parameter Modelica.Slunits.Temperature Tl=lOOO; 
parameter Modelica.Slunits.Temperature Tu=llOO; 
parameter Modelica.Slunits.SpecificHeatCapacity cp_s=900; 
parameter Modelica.Slunits.SpecificHeatCapacity cp_m=9000; 
parameter Modelica.Slunits.SpecificHeatCapacity cp_l=900; 
extends ThermalPropertyModel(u(start=cp_s*300»; 

equation 
assert(T>=200 and T<=2000, "T out of range"); 
if T<=Tl then 

u = cp_s*T; 
elseif T<=Tu then 

u = cp_m*(T-Tl)+Tl*cp_s; 
else 

u = cp_l*(T-Tu)+cp_m*(Tu-Tl)+Tl*cp_s; 
end if; 

end SimplePropertyModel; 

Example 8.5. A specific thennal property model. 

8.4.3 Modeling non-linear thermal capacitance 
Example 8.5 defines our material property behavior but now we must use 

it within the context of a non-linear capacitance model. Example 8.6 shows 
a non-linear version of the thermal capacitance model found in the Thermal 
package. 

model ThermalCapacitanceNL "Non-linear rod section" 
Thermal.lnterfaces.Node n; 
parameter Modelica.Slunits.Density rho; 
parameter Modelica.Slunits.Volume V; 
replaceable ThermalPropertyModel props (T=n.T) ; 

equation 
II Conservation of energy 
V*rho*der(props.u) = n.q; 

end ThermalCapacitanceNL; 

Example 8.6. A non-linear thennal capacitance model. 

There are several interesting things to point out about the declaration of the 
property model. First, the declaration is replaceable which allows us to use 
a wide variety of property models with this capacitance model. 

Secondly, note that the modification T=n. T has been applied to the props 
component. This modification represents an equation just as if we had added 
the line 
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props.T = n.T; 

to the equation section of the model. It is often useful to specify equations in 
this way because the implications of the equation appear close to the compo­
nent they modify. The disadvantage of including an equation in a component 
declaration is that it is easy to forget about such equations because they do not 
appear explicitly in an equation section. 

8.4.4 Simulating solidification 
Now we wish to combine the specific material property relationship defined 

in Example 8.5 with the general non-linear thermal capacitance model shown in 
Example 8.6. The material property relationship defined in Example 8.5 is in­
teresting because the steep region (i.e., between lOOOK and nOOK) represents 
the transition from a solid state to a liquid state. 

model SolidifyingRod 
import Thermal.BasiclD; 
import BCs=Thermal.BoundaryConditions; 
import Modelica.SIunits; 
parameter SIunits. Length L=O. 3 "Total length"; 
parameter SIunits .Area A=4. 0 "Cross-sectional area"; 
parameter SIunits.Density rho=5.0; 
parameter SIunits.ThermalConductivity k=O.5; 
parameter SIunits.CoefficientOfHeatTransfer h=lO; 
parameter Integer nsections=30 "# of sections"; 
parameter SIunits.Length sec_L=L!nsections; 
/ / Components 

ThermalCapacitanceNL .cap[nsections] (V=sec_L*A,rho=rho, 
redeclare SimplePropertyModel props(Tu=lOlO,cp_m=90000)); 

BCs.FixedTemperature Tr(T=1800); 
BasiclD.Conduction c_cond[nsections-l] (L=sec_L,A=A,k=k); 
BasiclD.Convection r_conv(A=A,h=h) ; 

equation 
for i in l:nsections-l loop 

connect (c_cond[i] .a,cap[i] .n); 
connect (c_cond [i] .b, cap [i+l] .n) ; 

end for; 
connect (Tr.n,r_conv.b) ; 
connect (r_conv.a, cap [nsections] .n); 

end SolidifyingRod; 

Example 8.7. A rod changing from solid to liquid. 

Example 8.7 is similar to the HTProbleml model from Example 6.15 with 
a few important differences. First, the thermal capacitance model shown in 
Example 8.6 is used for the segments of the rod. In addition, the model uses the 
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models contained in the Thermal package. Finally, the boundary conditions 
for this problem have changed. The left end is now adiabatic (i.e., no heat 
transfer) and the right end has a convective boundary condition attached to it. 

The results of running the simulation are shown in Figure 8.10. The plot 
shows a series of temperature curves as a function of longitudinal distance 
along the rod for various times during the solidification. The discontinuity in 
the slope of the temperature curve between 1000K and 1100K is an artifact 
of the non-linear property relationship. The classic reference for this type of 
problem is (Stefan, 1891). 

g 
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Nonlinear Model (after 300 seconds) 
Nonlinear Model (after 600 seconds) 
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Figure 8.10. Temperature distributions in Sol idi fyingRod for linear and nonlinear prop­
erty models. 

8.5 HODGKIN-HUXLEY NERVE CELL MODELS 
One of the most interesting non-linear models I have seen is the Hodgkin­

Huxley model (see Hodgkin and Huxley, 1952). This model, used for simulat­
ing the electrical activity of nerve cells, was the basis for awarding Hodgkin and 
Huxley the Nobel Prize in 1963. We will only present a cursory explanation 
of the behavior of this model. A more detailed explanation can be found in ( 
Bower and Beeman, 1994). 
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8.5.1 Background 
The basic idea in this model is that molecules of sodium and potassium move 

across the membrane of a nerve cell. Because these molecules are ionized, they 
carry with them an electric charge. As a result, the motion of these molecules 
results in an electrical current through the membrane of the cell which then 
causes a change in the voltage difference across the membrane. The motion of 
the sodium and potassium ions is governed by ion channels in the membrane 
wall. The activation level of the ion channels is represented by a real number 
between 0 (completely closed) and 1 (completely open). Rather than having 
a fixed conductance, the conductance of the ion channels is determined by a 
differential equation which depends on the voltage drop across the membrane 
and the activation level of the ion channel. 

8.5.2 Circuit model 

9 

Figure 8.11. Nerve cell segment schematic. 

Figure 8.11 shows an electrical schematic of a nerve cell. The purpose of 
the model is to predict the changes in voltage across the membrane of the nerve 
cell in response to the injection of a pulse of current. The non-linear behavior 
of the ion channels in the nerve cell along with the time scale variation in the 
response of each type of ion channel causes fluctuations in the voltage across 
the cell membrane. 

Figure 8.12 shows the voltage, current and channel activation levels as a 
function of time for the schematic shown in Figure 8.11. Note how the voltage 
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spikes in response to the injected current and then recovers after the current 
excitation has stopped. 

A complete model for the circuit shown in Figure 8.11 is included on the 
companion CD-ROM. However, to give a sample of the types of equations 
used, we will include some discussion of the sodium channel model. The con­
ductance, G, of the sodium channel is determined by the following equations: 

E+Va b 
(8.11) ah 0.07e- 20 

bh 
-E+Vbb 

(l+e 10 )-1 (8.12) 

E+Vam (8.13) am E+Vam 
10(1 - e- 10 ) 

bm 
E+Vhm 

4e- 18 (8.14) 

h 1000 (ah(l - h) - hbh) (8.15) 

m 1000 (am(1- m) - mbm ) (8.16) 

G m 3hAGNa (8.17) 

where m and h are internal activation levels, A is the membrane area and G Na 
is the maximum conductance of the sodium channel. 

Using these equations, we can implement the sodium channel model in 
Modelica as follows: 

model SodiumChannel "Hodgkin-Huxley Sodium Channel" 
extends Modelica.Electrical.Analog.lnterfaces.OnePort; 
parameter SIunits.Area membrane area; 

protected 
constant HodgkinHuxley.MilliVoltage V_am=40, V_bm=65; 
constant HodgkinHuxley.MilliVoltage V_ah=65, V_bh=35; 
Real m_prob "Probability of activation of channel"; 
Real h_prob "Probability of inactivation of channel"; 
SIunits.DecayConstant a_m, b_m; 
SIunits.DecayConstant a_h, b_h; 
SIunits.Conductance G; 
HodgkinHuxley.MilliVoltage E=1000*v; 
parameter SIunits.Conductance g_max=membrane_area*G_Na; 

equation 
G = m_probA3*h-Frob*g_max; 
i = G*(v - E_Na); 
der(m_prob) = 1000* (a_m*(1 - m_prob) - b_m*m-Frob); 
am = (.l*(E + V_am))/ 

(1 - Modelica.Math.exp(-(E + V_am)/10)); 
b_m = 4*Modelica.Math.exp(-(E + V_bm)/18); 
der(h_prob) = 1000* (a_h*(1 - h-Frob) - b_h*h-Frob); 
a_h = .07*Modelica.Math.exp(-(E + V_ah)/20); 
b_h = 1/(1 + Modelica.Math.exp(-(E + V_bh)/10)); 

end SodiumChannel; 
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To put the complexity of this model in perspective, compare it to the resistor 
model shown Example 3.2. 
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Figure 8.12. Dynamic response of the nerve cell. 

8.6 LANGUAGE FUNDAMENTALS 
Nonlinear models are often required for practical engineering analysis. 

Therefore, it is important to be able to represent such nonlinearities and have 
tools available which are capable of simulating highly nonlinear systems. Let 
us summarize some of the important aspects of the Modelica language that 
support the creation of nonlinear models. 

8.6.1 Parametric formulation 
Example 8.1 used a technique that parameterizes non-linearities in terms 

of an intermediate variable. This technique is quite useful when you have 
relationships between through and across variables that cannot be expressed 
using a simple functional relationship. 

We saw (e.g .• in the IdealDiode model) how an if statement or if 
expression can be used to construct functions which compute the through and 
across variables for different regimes of behavior. It is important when using 
parametric formulations to make sure that the through and across variables can 
be expressed as continuous functions of the intermediate variable. 
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8.6.2 Behavioral changes 
As we have seen (e.g., in the IdealDiode model from Example 8.1 and 

the SimplePropertyModel model from Example 8.5), the presence of 
either an if expression or an if statement can introduce behavioral changes in 
a model. 

The most obvious effect is that the model containing an if statement or if 
expression has two different modes of behavior. It is important that these two 
modes provide a continuous description of behavior. For example, the specific 
internal energy, u, shown in Example 8.5 is a continuous function of T even 
though it contains an if statement. Without this continuity, there would likely 
be numerical problems. 

The more subtle effect, introduced by the presence of conditional expres­
sions, is the generation of events as described previously in Section 7.5.4.3. Let 
us consider the IdealDiode model in Example 8.1. Note that a Boolean 
variable was introduced to represent the state of the diode. This allowed the 
model to be expressed with only a single conditional expression. If, instead, 
we had written the model as: 

model IdealDiode "An Ideal Diode" 
extends Modelica.Electrical.Analog.Interface8.0nePort; 

protected 
Real 8 "Parametric independent variable"; 

equation 
v = if 8<0 then 8 else 0; 
i = if 8<0 then 0 else 8' 

end IdealDiode; 

we might have run into some difficulty. The reason is that then we would have 
two conditional expressions. We can tell by looking at these expressions that 
they are identical. However for numetical reasons, we cannot be sure that a 
given tool will recognize this. 

If these two conditional expressions are treated independently, we have no 
way to make sure that the behavioral changes triggered by the conditional 
expressions will happen at the same time. In other words, the simulator may 
determine that the conditional expression used to compute v becomes true 
slightly before (or after) the conditional expression used to compute i. This 
could lead to difficulties when solving a problem. The open variable in the 
IdealDiode model was introduced to synchronize the behavior change of 
both v and i. 

It seems obvious that two identical conditional expressions should be treated 
as a single conditional expression. However, it is not always so easy to recog­
nize equivalent conditional expressions because they may be mathematically 
equivalent but they are not necessarily numerically equivalent. For example, 
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the following conditional expressions are all mathematically equivalent but it 
is easy to see why a tool may not recognize that they are: 

s < 0; 
5*s < 0; 
-s > 0; 
not s >: 0; 

4000+s < 4000; 
s~3 < 0; 

Another way to make sure that behavior changes are synchronized is to use 
an if statement. For example, the IdealDiode model in Example 8.1 could 
have been written as: 

model IdealDiode "An Ideal Diode" 
extends Modelica.Electrical.Analog.Interfaces.OnePort; 

protected 
Real s "Parametric independent variable"; 

equation 
if ( s < 0) then 

v = s· 
i = 0; 

else 
v 0; 
i = s; 

end if; 
end IdealDiode; 

This approach also results in a single conditional expression which triggers 
only a single event. 

It should be pointed out that both if statements and if expressions in an 
equation section must include an else clause. In addition, all possible 
branches of an if statement in an equation section must contain the same 
number of equations. As mentioned previously in Chapter 5, an if statement 
can also include several elseif clauses. 

8.6.3 Discontinuities 
The reinit operator is used to make a discontinuous change in the value 

of a variable providing that variable has had the der operator applied to it. This 
operator allows us to model discontinuities as we did in the BacklashCOR 
model shown in Example 8.3. The first argument to the reini t operator 
is the variable whose value should change and the second argument is the 
value it should change to. The reinit operator can only be used within a 
when clause because it is meant to represent an abrupt change. In other words, 
re ini t is fundamentally different from an assignment or an equation because 
it represents an abrupt change in value rather than a continuous change. When 

walter.ponge@terra.com.br



Exploring Nonlinear Behavior 209 

the new value is a function of the previous value, the pre operator can be used 
to refer to the previous value. 

In the future, it is expected that additional features will be added to the 
Modelica language that will allow the description of physical collisions more 
directly. These will make the behavioral descriptions in such models easier to 
express and will address some of the robustness issues with the BacklashCOR 
model described in Section 8.3.2. 

8.6.4 Implicit equations 
Nonlinear models often contain implicit equations. An implicit equation is 

an equation where the unknowns are not solved for directly. For example, the 
equation 

(8.18) 

cannot be solved directly for T because there is no closed form solution to such 
a general polynomial equation. Such an equation must be solved implicitly. 
As we saw in Section 8.4, we had a system with the following equations: 

du 
Vp-=q 

dt 

{ 
900T 

u(T) = 90000T - 89100000 
900T - 891000 

200::; T < 1000 
1000::; T ::; 1010 
1010 < T ::; 2000 

(8.19) 

(8.20) 

Clearly, it is not easy to rearrange-this system of equations to yield an equation 
for T directly. Instead, Equation (8.19) would typically be used to solve for u 
and then T would be solved implicitly using Equation (8.20). 

As we have seen in this chapter, such systems of equations are easy to 
pose in Modelica. While such systems are slightly more complicated to solve, 
the burden of solving these equations falls on the tool and not on the model 
developer. While other approaches (e.g., block diagrams) may discourage the 
use of such expressions, they should not be a problem for any tool which uses 
Modelica because the ability of tools to solve such systems is a necessity. 

8.6.5 Idealizations 
One thing to keep in mind when trying to model nonlinear systems like the 

ones presented in this chapter, is that idealizations can sometimes make the task 
easier and sometimes make it harder depending on the situation. For example, 
we saw in Figure 8.4 that the resistance of the ideal diode had to be included to 
simulate that problem. In the case of the backlash models presented in Section 
8.3, the idealized model (i.e., the coefficient of restitution model) also had 
difficulties with multiple rigidly connected inertias. 
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Often, some understanding of the implications of such idealizations is re­
quired when building models (in Modelica or any other modeling language). 
With perfectly ideal models, it is often necessary to introduce some additional 
effect which is more physically reasonable (e.g., the resistance in the diode 
model). This can often help mitigate numerical difficulties. 

8.7 PROBLEMS 
PROBLEM 8.1 A Zener diode behaves like a regular diode (i.e., it does not 
allow current flow for negative voltage drops across it) except when the voltage 
drop supported by the diode goes below a critical negative voltage, called the 
breakdown voltage. When this happens, the diode again allows current flow. 
Figure 8.13 shows the behavior of a Zener diode in the iv-plane. Develop a 
parametric formulation of this behavior and create a Modelica model. Then, 
test the model by placing a sinusoidal voltage across the diode whose amplitude 
exceeds the breakdown voltage. When building such a model, keep in mind the 
issues mentioned in Section 8.6.5. 

Breakdown 
Voltage 

j 

. 
I 

v 

Figure 8.13. Current-voltage characteristics of an ideal Zener diode. 

PROBLEM 8.2 Create some additional property models which extend the 
ThermalPropertyModel shown in Example 8.4 and use them in con­
junction with the SolidifyingRod model. 
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PROBLEM 8.3 Create a Modelica model to solve the following equations: 

x 

x 

(8.21) 

(8.22) 

where t is time. Note that because the first equation already provides an 
equation for x in terms of quantities which are already known, the second 
equation becomes an implicit equation for y in terms of x. 

When you simulated this problem, what solution do you get for y? How 
many different analytical solutions are there and which one did you find when 
ran a simulation? How could you control the choice of which solution is used? 

PROBLEM 8.4 Write a model to simulate the Lorentz-Lorenz equation:2 

x 

iJ = 

z 

a(y - x) 

px - y - xz 

xy - j3z 

(8.23) 

(8.24) 

(8.25) 

Parameters values to try are a = 10, j3 = 2.6667 and p = 28. Try several 
initial values for x, y and z. Visualize the result by plotting any variable as a 
function of the other two. 

lf you are using Dymola, include the following declaration: 

Sphere p(x=x, y=y, z=z, R=O.Ol); 

and you can visualize the dynamics in three dimensions using the animation 
feature in Dymola. 

2 As an interesting aside. this same equation was derived independently by Hendrik Lorentz and Ludwig 
Valentin Lorenz in 1880. 
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Chapter 9 

MISCELLANEOUS· 

The previous chapters focused on demonstrating language features which 
allow robust and reusable models to be written. In this chapter, we will cover 
a few "loose ends" which should be discussed for completeness but are not 
required in order to begin using Modelica. 

9.1 LOOKUP RULES 
Writing and maintaining large collections of models requires the use of 

packages and other organizational features of Modelica. In this section, we 
will explain the lookup rules used in conjunction with those features. Before we 
start, it is important to understand the difference between a package hierarchy 
and an instance hierarchy. 

Package hierarchies, like the Chemistry package developed in Section 
6.4.4, are collections of Modelica definitions. In other words, they are the 
definitions of records, connectors, etc. not actual instances. For example, the 
following is a package hierarchy: 

package A 
model X 

end X; 

model Y 

record R II <- Definition of R 
Real c; 

end R; 
R r; 

end Y; 
end A; 

II <- Instantiation of R 
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In this case, the name A. X refers to the definition of the model named 
X nested inside the package named A. Even though this is called a package 
hierarchy, not everything in it has to be a package. For example, the name 
A. Y . R refers to the record definition nested inside the model named Y which 
is nested inside the package named A. 

In addition to package hierarchies, we also have instance hierarchies which 
appear once a definition has been declared. For example, using the previous 
package hierarchy example, consider the following model definitions: 

model M 
A.Y y; 

equation 
der (y. r. c) 

end M; 

In this case, the only definition is the definition of M. However, within the defi­
nition, we reference a variable called y. r . c. This is the variable c contained 
within the record instance r inside the component y. In this case, we are 
using the" ." operator to traverse the instance hierarchy (i.e., the hierarchy of 
instantiated components). 

One important thing to note is that const ant declarations are also considered 
definitions. In other words, a constant declaration exists in both the package 
hierarchy and the instance hierarchy. 

When you see a collection of names separated by the "." operator in 
Modelica (e.g., a. b. c), it is impossible to tell whether the names represent a 
definition (i.e., A. Y . R in our package hierarchy example) or an instance (i.e., 
y. r. c in our instance hierarchy example). Simply being aware of the source 
of the confusion will help somewhat. In addition, some people choose to adopt 
a policy of starting definition names with a capital letter and instance names 
with a lowercase letter. This allows definitions and instances to be more easily 
distinguished. 

9.1.1 Static scoping 
Given an existing package hierarchy, it is important to understand how to 

access Modelica definitions that might be contained within the hierarchy. This 
problem can be broken into two distinct pieces. In this section we will discuss 
how to access definitions from within a given package hierarchy. The other 
issue, discussed later in Chapter 12, is how that package (possibly spanning 
multiple files) can be stored on the computer. 

Every Modelica definition exists somewhere in the package hierarchy. All 
the different packages, taken together, are like the branches of a tree. For 
example, all the definitions in the MSL exist in the Modelica hierarchy. Any 
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definition that is not explicitly placed in a package hierarchy must be contained 
at the root of all the different hierarchies. 

In order to understand how the lookup rules work, consider the following 
fragment of Modelica code: 

package Pneumatic 
package Interfaces 

connector Port 

end Port; 
end Interfaces; 
model Valve; 

end Valve; 
model Pump 

end Pump; 
end Pneuma tic; 

model PneumaticModell 

end PneumaticModell; 

This code fragment would result in the package hierarchy shown in Figure 
9.1. 

(root) 

9.1.1.1 

Pneumatic L Interfaces 

cvalve 

Pump 

PneumaticModel1 

Figure 9.1. Sample package hierarchy. 

Normal search behavior 

Port 

Suppose, within the Valve and Pump models, we wish to use the definition 
for the Port connector found in the Interfaces package. To do this, we 
must have a way of referring to the Port definition. The lookup rule used in 
this case could be paraphrased as: 

To find a definition, first the site of the declaration is searched. If this fails, we move up 
the package hierarchy toward the root of the hierarchy, searching at each level as we go 
until the root is reached. If the definition cannot be found from any of these levels, the 
search fails. 
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Using this rule, let us examine several ways we might go about referencing 
the Port connector definition. First, we could use a name that includes each 
package that the Port definition is nested inside of, i.e., 

package Pneumatic 

model Valve 
Pneumatic.Interfaces.Port pI, p2; 

end Valve; 
end Pneumatic; 

For this case, the search consists oflooking for the Pneumatic package and 
then, once that is found, looking inside it for the definition of the Interfaces 
package, and if that succeeds, finally inside that for the Port definition. In 
other words, the search is always for the outermost definition. So, we start 
at our current location in the hierarchy (i.e., within the Valve model) and 
search for a definition for Pneumatic. Since it cannot be found at the 
current position, we must then look in the next higher level of the hierarchy 
(i.e., the Pneumatic package itself). There is no definition for Pneumatic 
within the Pneumatic package so finally we arrive at the root. At the root, 
we find the definition for Pneuma tic and it in turn contains the definitions 
for Interfaces and Port that we are seeking. I In this case, the search 
succeeds. 

Now, let us consider another case. We could also write our model in this 
way: 

package Pneumatic 

model Valve 
Interfaces.Port pI, p2; 

end Valve; 
end Pneumatic; 

Now, we are looking for the definition of something called Interfaces and 
we expect to find the definition of something called Port inside that. Starting 
at the Valve model, we find no definition for Interfaces. So, we move to 
the Pneumatic package which does contain a definition for Interfaces 
that in turn contains a definition for Port. So again, the search succeeds. 

Once the definition of the first component in a composite name is found, if 
the subsequent components in the name cannot be located inside the definition 
of the first component, the search fails. In other words, the search will not 

I A name that includes every package name from the root down to the definition itself is called a fully 
qualified name. 
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continue up the hierarchy to find yet another definition for the first component 
in the name that might contain the necessary subcomponent definitions. For 
example, imagine we are searching for the definition of Interfaces. Port. 
During our search we find a package called Interfaces. So, we check to 
see if a definition for Port can be found inside. If not, the search fails. The 
search does not continue looking for an alternate definition of Interfaces, 
farther along the hierarchy, that does contain a definition for Port. 

9.1.1.2 Searching other locations 

The normal search pattern is to search up the package hierarchy until the 
root of the package hierarchy is reached and if the definition is not found, then 
the search fails. There is a way to cause the search to look in other packages 
as well. For these cases, we use the import keyword. Recall from previous 
sections how we used import to shorten the names of physical types, e.g., 

model Resistor 
import Modelica.S1units; 
parameter S1units.Resistance R; 

end Resistor; 

An important restriction on import statements is that the name of the definition 
being imported must be a fully qualified name (i.e., the name of the definition 
relative to the top of the package hierarchy). Furthermore, the definition being 
imported must be defined within a package. 

If the search comes across an import statement in any of the packages it 
is searching, the imported package is searched as if its definition appeared at 
the location of the import statement. Sometimes, the name of the imported 
definition might be the same as a another definition higher up in the package 
hierarchy. In order to avoid confusion about which one should be searched, the 
import command allows a different name to be used for the imported package, 
e.g., 

model Resistor 
import S1=Modelica.S1units; 
parameter S1.Resistance R; 

end Resistor; 

The use of import is not limited to packages either. An import statement 
can be used for other types of definitions. For example, this is also possible: 

model Resistor 
import Modelica.S1units.Resistance; 
parameter Resistance R; 

end Resistor; 
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Finally, import is only relevant for searching, which means it does not 
actually change the package hierarchy in which it appears. To illustrate this, 
consider the following example: 

package MyElectrical 
model Resistor=Modelica.Electrical.Analog.Basic.Resistor; 
import Modelica.Electrical.Analog.Basic.Capacitor; 

end MyElectrical; 

model MyCircui t 
MyElectrical.Resistor R; II Legal 
MyElectrical.Capacitor C; II Illegal, no such definition 

end MyCircuit; 

In this example, the use of the import statement is only useful to definitions 
contained within the MyElectrical package and does not result in new 
definitions being added to the MyElectrical package hierarchy. 

9.1.1.3 Limiting searches 

So far, we have described how the search proceeds up the package hierarchy. 
Normally, the search continues up to the root of the package hierarchy. How­
ever, in some cases we may not wish to allow definitions to be used beyond a 
certain point in the hierarchy. For example, we may wish to define a package 
or model that can be easily relocated in the package hierarchy. To understand 
why, consider the following example: 

package TestProblems "A collection of tests" 
constant Real g=Modelica.Constants.g_n; 
model Pendulum 

parameter Real L=2; 
Real theta, omega; 

equation 
der(theta) = omega; 
der(omega) = -(g/L)*theta; 

end Pendulum; 

end TestProblems; 

The difficulty here is that the Pendulum model requires the gravitational 
constant, g, defined in its package hierarchy (remember, constants can be 
accessed through both a package hierarchy or an instance hierarchy). In order 
to be able to move this model outside of the TestProblems package, we 
would need to define g within the Pendulum model. 

In this case, it is easy to see that we will have problems if we try to move the 
Pendul urn model. In more complex cases, these kinds of issues are difficult to 
identify. For this reason, the Modelica language includes the encapsulated 
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qualifier. The effect of the encapsulated qualifier is to stop the search from 
going beyond the boundary ofthe encapsulated definition. If we rewrite our 
Pendul urn example as follows: 

package TestProblems "A collection of tests" 
constant Real g=Modelica.Constants.g_n; 
encapsulated model Pendulum 

parameter Real L=2; 
Real theta, omega; 

equation 
der(theta) = omega; 
der(omega) = -(g/L)*theta; II Error, no definition for 9 

end Pendulum; 

end TestProblems; 

The search for g will fail because the search cannot go beyond the enc apsul at ed 
model. By using the encapsulated qualifier, we can identify any current dan­
gling references and prevent introducing any in the future. 

The encapsulated keyword only prevents the search from proceeding up 
the package hierarchy. It does not limit the use of import statements in any 
way. So, to make our Pendulum model independent of the TestProblems 
package, we should write it as follows: 

package TestProblems "A collection of tests" 
constant Real g=Modelica.Constants.g_n; 
encapsulated model Pendulum 

import Modelica; 
constant Real g=Modelica.Constants.g_n; 
parameter Real L=2; 
Real theta, omega; 

equation 
der(theta) = omega; 
der(omega) = -(g/L)*theta; 

end Pendulum; 

end TestProblems; 

9.1.1.4 Making a definition local 

Rather than searching up through the hierarchy as we have been doing, there 
are several ways to make a definition local so we do not need to search through 
the hierarchy for it. A simple example of this would be: 

package Pneumatic 

model Valve 
connector Port=Interfaces.Port; 
Port pI, p2; 
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end Valve; 
end Pneumatic; 

What we have done is create a new definition locally (i.e., within the Valve 
model itself) and used that definition. 

As another example, let us consider the Pump model. Because the pump 
involves both pneumatic and rotational connections, it might be written as 
follows: 

package Pneumatic 

model Pump 
Pneumatic.lnterfaces.Port pI, p2; 
Modelica.Mechanics.Rotational.lnterfaces.Flange_a fa; 

end Pump; 
end Pneumatic; 

Note that in this case the fully qualified names have been used. Let us try to 
shorten some of the names. One way would be to create local definitions as in: 

package Pneumatic 

model Pump 
connector Port=Interfaces.Port; 
package Rotational=Modelica.Mechanics.Rotational; 
Port pI, p2; 
Rotational.lnterfaces.Flange_a fa; 

end Pump; 
end Pneumatic; 

Note that in one case, we made a local definition of a connector and in the 
other case we made a local definition of a package. The drawback to this 
approach is that it creates new definitions that must be parsed and interpreted. 
For example, the local package definition recreates the entire Modelica. -
Mechanics. Rotat ional hierarchy inside this single model. If this is 
done in several models, the time required to parse and interpret such a large 
and complex package hierarchy becomes a factor. If these local definitions are 
not likely to be used by other models, modified or redeclared in the future, the 
definitions should be imported as follows: 

package Pneumatic 

model Pump 
import Pneumatic. Interfaces.Port; 
import Modelica.Mechanics.Rotational; 
Port pI, p2; 
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end Pump; 
end Pneumatic; 

which avoids cluttering the package hierarchy. 

9.1.1.5 Conclusion 
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These are just several examples of how to access definitions and components 
that exist outside the current model. A detailed discussion of the lookup 
semantics can be found in the language specification on the companion CD­
ROM. The examples in this section demonstrate most of the common methods 
of accessing definitions. 

9.1.2 Dynamic scoping 
As we saw in the previous section, static scoping is used to access definitions 

from within the package hierarchy. In contrast, dynamic scoping involves 
searching the instance hierarchy rather than the package hierarchy. Dynamic 
scoping can be used to refer to declarations and definitions since both are 
contained within the instance hierarchy. 

In Section 4.3 .2, we described how to propagate information through a hierar­
chy of components. Such propagation is used to promote reuse of components. 
In some cases, the methods described in Section 4.3.2 are not sufficient. In 
this section, we will describe how to use dynamic scoping to automatically 
establish connections between declared components and their surroundings. 

9.1.2.1 Particles and fields 

To understand what dynamic scoping is and why it is useful, let us consider 
the case of simulating small particles in a gravitational field. In this case, each 
particle needs to know the gravitational acceleration at the particle's current 
location. The most convenient way to express such information is by using a 
function. For simulations in three dimensional space, the function should 
be a SUbtype of the GravityField function shown in Example 9.1. 

partial function GravityField 
input Modelica.Slunits.Position x[3] ; 
output Modelica.Slunits.Acceleration g[3] ; 

end GravityField; 

Example 9.1. Using a function to describe a gravity field. 
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If each particle is assumed to be so small that it has no influence on other 
particles in the system, then the motion of the particle can be expressed as: 

a = g(x) 

where a is the acceleration of the particle, x is the current location of the particle 
and 9 is the gravitational acceleration. 

The issue in this example is that the particle model needs information about 
the gravitational field it is moving in (i.e., any relationship between position, x, 
and gravitational acceleration, g). In other words, the particle requires infor­
mation about its environment in order to describe its behavior. This situation is 
not unique to gravitational examples. Environmental information can also be 
important in other situations such as thermal or electrical systems. 

The difficulty in creating Modelica models that require such environmental 
information is that it is not possible to connect a particle declaration to a 
function. In such cases, we can use the inner and outer keywords to 
indicate that dynamic scoping should be used. With dynamic scoping, the 
particle can lookup information about its environment (i.e., the component 
hierarchy in which the particle has been declared). 

model Particle 
parameter Modelica.Slunits.Position x_init[3]; 
parameter Modelica.Slunits.Velocity v_init[3]; 

protected 
outer function gravity=GravityField; 
Modelica.Slunits.Position x[3) (start=x_init); 
Modelica.Slunits.Velocity v[3) (start=v_init); 
Modelica.Slunits.Acceleration a(3); 
Sphere p(x=x[l) ,y=x(2) ,z=x(3) ,R=O.Ol); II Dymola specific 

equation 
v der (x) ; 
a = der (v) ; 
a = gravi ty (x) ; 

end Particle; 

Example 9.2. A particle model that uses dynamic scoping. 

To see how this is done, let us look at the Particle model shown in 
Example 9.2. The variables x, v and a in Example 9.2 represent the position, 
velocity and acceleration of the particle, respectively. The declaration of the 
Sphere model is a Dymola specific enhancement that will allow a 3D anima­
tion of the particle. If you are working with another simulator that does not 
support animation in this way, simply comment out the Sphere declaration. 

The gravitational field is represented by the function named gravi ty 
which is an extension ofthe GravityField function shown in Example 9.1. 
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Note that the GravityField is only a partial definition. In this case, the 
use of the Gravi tyField function establishes a minimum requirement for 
the gravity function. 

What is new in this example is the use of the outer keyword. When the 
outer keyword is placed in front of a declaration or definition it means that 
whatever is being declared or defined does not really exist within that model. 
Instead, the declaration or definition should match a similar declaration or 
definition in the instance hierarchy. In the case of the Particle model, the 
gr a vi t y function needed by the Pa rt i c 1 e model must be found somewhere 
within the enclosing models (i.e., the models that contain the Particle 
declarati ons ). 

9.1.2.2 Orbiting particles 

Trying to describe exactly how dynamic scoping works is difficult without 
looking at a concrete example. So, let us now try to construct a complete model. 
First, we must define the gravitational field to be used. Example 9.3 shows 
the gravitational field created by two masses located at (0,0,0) and (0,1,0), 
respectively. 

function TwoBodyField 
extends GravityField; 

protected 
Modelica.Slunits.Position bl[3], b2[3]; 
Modelica.Slunits.Distance nl[3], n2[3]; 

algorithm 
bl . - {O, 0, O} ; 

b2 . - {O, 1 , 0 } ; 
nl .- -(x-bl}!sqrt((x-bl}*(x-bl}); 
n2 .- -(x-b2}!sqrt((x-b2}*(x-b2}); 
9 := nl!((x-bl}*(x-bl}}+n2!((x-b2}*(x-b2}}; 

end TwoBodyField; 

Example 9.3. Gravitational acceleration generated by two bodies. 

Imagine we wish to model three particles moving within the gravitational 
field described in Example 9.3. Setting up such a problem requires two steps. 
First, we must declare the three particles and their initial positions and ve­
locities. Second, we must provide a gravity function that these particles 
can use. In other words, we must provide the gravity function that each 
of these particles requires but does not contain. It is not sufficient to simply 
create a function called gravi t y for this purpose. We must also qualify 
the declaration of the gravity function with the inner keyword so that it 
"matches" with the outer declaration inside the Particle definition. The 
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resulting model is shown in Example 9.4. As noted previously, the Sphere 
declarations are Dymola specific enhancements that can be commented out if 
Dymola is not being used. 

model ParticleField 
inner function gravity=TwoBodyField; 
Sphere bl(x=O,y=O,z=O,R=O.05); II Dymola specific 
Sphere b2(x=O,y=1,z=O,R=O.05); II Dymola specific 
Particle pl(x_init={2,-2,O},v_init={O.7,O,O}); 
Particle p2(x_init={O,O.5,O},v_init={-1,-1,O}); 
Particle p3(x_init={O.5,2,O},v_init={-1,-O.5,O}); 

end ParticleField; 

Example 9.4. Particles orbiting two bodies in interesting ways . 

- • " .g 
":;:; 
0 
"- • >- 0 

-I 

-2~--_73--~--~--~--~_~1 ---L---o~--~--7-~ 

X Position [m 1 

Figure 9.2. Trace of p3 in Example 9.4. 

9.1.2.3 Philosophy of dynamic scoping 

The general idea behind inner and outer is to allow components to locate 
information contained higher up in the instance hierarchy. In our example, 
the ParticleField model contained the gravity function and several 
instances of the Particle model. Each Particle was able to use the 
gravity function defined in ParticleField. In other words, the sub­
components (i.e., the particles) were able to locate the necessary information 
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(i.e., about the gravitational field) higher up in the instance hierarchy (i.e., in 
the ParticleField model). 

One way to think about the inner and outer keywords is as a statement 
of implicit requirements. When you see outer in front of a declaration think 
of that as a requirement (i.e., the Part ic 1 e model requires a function called 
gravity that is a subtype of GravityField). In a similar way, the inner 
qualifier indicates that this declaration provides something that might be re­
quired from subcomponents. The type of the outer declaration must be a 
sUbtype of the type used in the inner declaration in order for them to match. 
Furthermore, the outer declaration is not allowed to have any modifications 
applied to it. 

9.1.2.4 Use of dynamic scoping 

Dynamic scoping can be used with any declaration. For example, you might 
wish to create an electrical circuit that has an outer declaration for an electrical 
connector which represents the electrical ground of its environment (i.e., by 
placing the outer qualifier in front of the declaration of the Ground compo­
nent, g, in the RLC3 model shown in Example 3.7). In this way, the circuit 
could implicitly be connected to the electrical ground of its environment (as­
suming there was a corresponding inner declaration somewhere in its instance 
hierarchy). Another example is having an outer declaration for parameters so 
that they are automatically available from the environment. However, both of 
these examples can also be written using the methods in Section 4.3.2. 

The issue is whether the association is explicit, as it is using the methods in 
Section 4.3.2, or whether it should be implicit as it is with dynamic scoping. 
Implicit associations are nice because they can eliminate the task of propagating 
connections and parameters through complex hierarchies. The danger with such 
implicit associations is that it is not obvious what is being associated when 
looking at models for the first time. Furthermore, they may create difficulties 
when trying to debug and validate models. Such considerations should be kept 
in mind when choosing between the implicit and explicit approaches. 

9.2 ANNOTATIONS 
After going through the preceding chapters you might wonder where all 

the nice graphical schematics came from and what relation they have to the 
models themselves. The answer is that the graphical layout of a model and 
the graphical appearance of the components is achieved using the annotation 
keyword. 

Annotations are used to provide additional information about the model that 
is not related to the behavior of the model during analysis. Annotations 
are typically used to embed documentation and graphical information inside 
a model. Annotations were not shown in the previous examples or discussed 
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earlier because they do not affect behavior and because they are generally 
inserted and interpreted by the analysis tool. A model developer rarely sees the 
textual representation of the annotations. 

There are two possible locations for an annotation. The first location is 
following a declaration. In this case, the annotation will appear near the end of 
the declaration. The other location is within the body of a definition without 
association to any internal components. 

Because the focus of this book is on modeling and because annotations are 
usually inserted and interpreted by simulation tools, we will present explana­
tions for only a few of the different annotations. For more information on this 
subject, consult the Modelica language specification. 

9.2.1 Graphical annotations 

model PendulumSystem1 "Simple Pendulum" 
annotation ( 

Coordsys( 
extent=[-100, -100; 100, 100), 
grid=[2, 2), 
component=[20, 20)), 

Window (x=O. 13, y=0.13, width=0.6, height=0.6), 
Icon (Rectangle (extent= [-100, 100; 100, -100), 

style (color=O, fillColor=8)), 
Text (extent= [-74, 54; 76, -14), 

string="Double Pendulum", style(color=O)))); 
RotationalPendulum pend 

annotation (extent=.[ -100, -40; 0, 60)); 
FrictionlessPin pin annotation (extent=[-20, -10; 20, 30)); 
Modelica.Mechanics.Rotational.Fixed fixed 

annotation (extent=[40, -10; 80, 30)); 
equation 

connect (pend.p, pin.a) annotation (points=[-50, 10; -20, 10)); 
connect (pin.b, fixed. flange_b) 

annotation (points=[20, 10; 60, 10)); 
end PendulumSystem1; 

Example 9.5. A Modelica model with annotations. 

The first annotation in Example 9.5 is a description of how the Pen­
dulumSysteml model should be represented graphically. In other words, it 
contains information about what drawing primitives should be used to construct 
the external representation for PendulumSysteml (i.e., an "icon" view like 
the one shown in Figure 4.2). This information applies to the definition and 
therefore it is associated with all instances. 
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The other annotations in Example 9.5 are used to construct the diagram view 
for the system. These annotations describe the placement of components and 
connections. These annotations are then used to generate the diagram shown 
in Figure 9.3. Note that the extent annotations associated with components 
only provide a "bounding box" in which to draw the graphical icon of the 
components. The location of the icon is specific to each declaration but the 
actual description of what the icon is composed of is contained within the 
definitions of the component models themselves (as in the case of the first 
annotation in Example 9.5 described earlier). 

fixed=O 

Figure 9.3. Schematic for pendulum system. 

9.2.2 Documentation 
Apart from descriptive text like that shown in the TwoTanks model from 

Example 2.4, there is one other method for documenting Modelica models. A 
specific annotation exists to allow developers to embed HTML descriptions in 
their models. Example 9.6 shows an alternative form of Example 2.4 where 
such annotations are used.2 

Figure 9.4, generated using Dymola, shows a rendering of the HTML source 
code generated as documentation. Note how the descriptive text and the anno­
tations have been merged. Also note the units and default values for parameters 
are also included. The point is that Modelica models contain a great deal of in­
formation (particularly if documentation annotations have been included) and 
this allows Modelica tools to automatically generate excellent HTML docu­
mentation for individual models or even generate documentation for complete 
libraries of components. 

2The text of the model has been removed for brevity. 
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model TwoTanks "Hydraulic system involving two tanks" 

II Parameters 
parameter 81.Length L=O.1 "Pipe length"; 

annotation 
Documentation (info="<HTML> 

This component represents two tanks connected by a 
pipe. The constitutive relationship of the pipe is 
the Hagen-Poiseuille relationship: 

Q = (P1-P2) * (pi*D A 4) / (128*mu*L) ... </HTML>") ) 
equation 

end TwoTanks; 

Example 9.6. Using annotations for documentation 

TwoTanks 

Hydraulic system involving two tank.; 

Information 

This componenl represents two tanks {;onnected by a pipe. The constitutive relationship of the pipe is the 
Hagen-Poiseuille relationship: 

Q::;: (PI-P2)*(pi*D"4)/( 128*mu~'Ll 

This component was originally dt'veloped to demonstrate how to include descriptive text in models. 
Subsequently, it was reused as an example of how to embed HThlL documel1latioll in models. 

Parameters 

Name Default Description 

L 0.1 Pipe length [ml 

D 0.2 Pipe diameter [m] 

rho 0.2 Ruid density [kg/mJ] 

IllU 2e-:\ [Pa.s] 

AI 1.0 Area of left tank (m2] 

Ac 2.0 Area of right tank [m2] 

(pi*D"4)/( 12S·I'mu*LJ [m2/s1 

Modelica definition 

model TwoTanks "Hydraulic system involving two tanks" 

end TwoTanks; 

HTML-doClfll1CllIatiofl gCI/('/"clf('d bv D\'I1lO/a 5,"1111 No)' 5 07:57:23 2000. 

Figure 9.4. Dymola rendering of HTML documentation for the TwoTanks model shown in 
Example 9.6. 
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Chapter 10 

MULTI-DOMAIN MODELING 

10.1 CONCEPTS 

This chapter presents several multi-domain system models. Multi-domain 
models are characterized by the fact that they have components belonging to 
different engineering domains. In this chaptel~ we will see models from the 
mechanical (both rotational and translational), electrical and thermodynamic 
domains. In addition, many of the examples contain block diagrams for some 
subsystems (e.g., for control systems). 

Unlike the examples in previous chapters which illustrated specific language 
features, the purpose of this chapter is to examine what can be done when we 
combine Modelica language features. Because the models presented in this 
chapter are so large, the complete Modelica models are not presented in the 
text of the book. In place of the Modelica source code, schematics are used 
to illustrate the structure of the models. The Modelica source code for these 
models can be found on the companion CD-ROM. 

10.2 CONVEYOR SYSTEM 

The example presented in this section was inspired by a previously published 
example (Elmqvist et aI., 1998) which nicely illustrates the Modelica modeling 
language. The model is composed of a control system and a plant model. The 
plant model contains electrical and mechanical components. Although the plant 
model for the conveyor system is more detailed than the ControlSysteml, 
ControlSystem2 and ControlSystem3 models found in Examples 3.9, 
3.16 and 3.17, the architecture is very similar. 
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10.2.1 Mechanical load 
The plant model is composed of electrical and mechanical components. We 

start by looking at the mechanical load. In this example, the mechanical load 
represents the force required to move a "product" along a conveyor belt in a 
factory. As shown in Figure 10.1, the schematic of the mechanical load includes 
a gear, an inertia, damping, the motion of the belt and the mass of the product. 
All the models shown in the schematic are linear (i.e., no backlashes or other 
non-linearities). 

axle 

ground=O 

Figure 10.1. Schematic for the conveyor belt system. 

10.2.2 Electric motor 
The other part of the plant model consists of the electric motor used to 

drive the conveyor belt. The motor model, shown in Figure 10.2, consists of 
a resistor, inductor, electro-magnetic torque source, and inertia. Clearly, more 
complicated models for electric motors may be more realistic than the one 
shown here. Any model with the same interface as this one (i.e., two electrical 
pins, p and n, and a rotational pin, driver) could be easily dropped in as a 
replacement for this one. 

10.2.3 Control system 
Figure 10.3 shows a schematic of the control system used to control the 

motor and conveyor belt. The desired response for this controller would move 
the product along the conveyor belt from station to station in the factory. The 
product would then pause at each station for some amount of time in order for 
operations to be performed on the product. This desired response is fed to the 
PD controller which calculates the voltage to be supplied to the motor. 

Again, several idealizations have been made. For example, the voltage 
source which supplies power to the motor is an ideal voltage source capable of 
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L1 
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Ideal Motor 

driver 

n 

Figure 10.2. Schematic for the electric motor. 

delivering as much current as required. Also, the required voltage computed 
by the control system does not contain any quantization error which might be 
present as a result of digital to analog conversions. These are just two examples 
of details that may have an effect on the performance of the system but could 
be modeled within the controller itself (i.e., without having to change any of 
the other models). 

One last point to mention about the controller model is that it has inputs for 
both position, phi, and speed, omega. This controller does not use the speed 
information. Instead, the speed is approximated internally by differentiating 
the position signal. Nevertheless, there are two reasons for having the speed 
input. First, it allows the option of changing the internal implementation of this 
controller without requiring any "wiring" changes of the factory level schematic 
(see Figure 1004). The other reason to have a speed sensor input is that it would 
make it easier to substitute controllers which did actually utilize the speed input 
(similar to the approach discussed in Section 4.3). 

10.2.4 Complete system 
Finally, we bring together all the component models described so far in this 

section. The combination of these components (along with the position and 
speed sensors) can be seen in Figure lOA. This represents the complete system 
including both the controller and plant models. 

One interesting thing to note about the plant model in the complete system 
is that a mechanical connection exists between the ineltia inside the motor and 
another inertia inside the conveyor belt. In order to simulate the response of 
such a system, an "effective inertia" must be formulated for the combination 
of the two rigidly connected ineltias. When inertias are connected in this way, 
it is not generally sufficient to merely add the inertias together. Instead, some 
algebraic manipulation is necessary in order to compute the effective inertia. 
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Figure 10.3. Schematic for the conveyor controller. 

Controller Motor 

ground 

Figure 10.4. Schematic for the factory. 

Fortunately, when using Modelica, this work does not have to be done by the 
developer of the model, but instead will be done by the tool that analyzes the 
system. 

If we look at the operation of this factory for 100 seconds of simulation time, 
as shown in Figure 10.5, we see that the controller does a good job of moving 
the product along the conveyor belt as intended. In Figure 10.6, we can see the 
motor voltage required in order to achieve this level of control. 
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Figure 10.5. Comparison of desired vs. actual factory behavior. 
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Figure 10.6. Motor voltage required. 
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10.3 RESIDENTIAL HEATING SYSTEM 
10.3.1 Introduction 

Another example of a mixed-domain problem is a residential heating sys­
tem. To develop such a model, we utilize components from the rotational and 
electrical packages, which can be found in the Modelica. Mechanics. -
Rotational and Modelica. Mechanics. Translational packages 
in the MSL. While the majority of our models came from the MSL, a few 
models had to be developed from scratch for this particular application. For 
example, several of the examples use the Thermal package introduced in 
Chapter 6. In the remainder of this section, we will describe how to build such 
a system, what models we used from the MSL and what models we needed to 
create ourselves. 

10.3.2 Indoor temperature 
We start by building a model to compute the temperature inside a house. The 

model for indoor temperature is interesting because it makes use of all three 
fundamental modes of heat transfer: conduction, convection and radiation. We 
call this the House model and a schematic of if can be seen in Figure 10.7. 

Heat Loss 
Through Walls J 

I 

Tamb· 

-~ Solar Heating 

Thermal Inertia of the House 

Conduction to Ground 

Figure 10.7. Schematic for the House model. 

First, we must establish the geometry of the House model. Let us assume 
that our House has only one floor and the floor area is given by the foot pr in t 
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parameter. We assume a default of 250 square meters. In addition, we must 
provide the height of the house. For this, we assume a default of 4 meters. 
Our last assumption is that the footprint of the House is square. We can 
then compute the surface area of the surrounding walls, the roof and the floor 
directly from the given parameters. In addition, we can compute the volume of 
the house as well from these same parameters. 

Once we have established the geometry of the house, we next consider the 
thermal inertia of the house. The thermal inertia is the amount we raise the 
temperature of the house for every unit of heat we generate from our furnace. 
For this, we use the Capaci tance model from the Thermal library which 
is similar to the one shown in the Thermal Ca pa cit an ce modelin Example 
6.12. This model requires three pieces of information. The first is the volume of 
the house, which we already know from our geometry parameters. The second 
is the density of the air, p, inside the house, which we assume to be 1.5 kg/m3. 

Finally, the specific heat capacity of the air is assumed to be 1000 J/(kg· K). 
By using a single capacitance to represent the entire house we are implicitly 
assuming that the entire house has a single uniform temperature. 

Next, we tum our attention to the roof of the house. We assume that the 
primary mode of heat transfer for the roof is radiation. I We assume an effective 
temperature at which the house radiates to its environment. This effective 
temperature changes from day to night and therefore we have used a signal 
block to generate this temperature, which is then used to establish a thermal 
boundary condition for the sky. This boundary condition is then attached to the 
house through a black body radiation component. 

We now tum our attention to the floor of the house. We assume that some 
heat is lost via conduction through the floor to the ground. Our default value 
for thermal conductivity of the ground is 0.4 W/(m . K). Furthermore, we 
assume that the ground temperature 4 meters below the surface is 280K. 

Finally, the only mode of heat transfer left is convection. We assume that 
this is the dominant mode of heat transfer through the walls of the house. Just 
like with the roof model, we need to have an ambient air temperature for the 
convection. We assume that the ambient air temperature is provided externally. 
The default value for the heat transfer coefficient of the walls was chosen to be 
4.33 W/(m2 • K). 

In summary, this is a crude thermal model of a house but it demonstrates 
how a fairly complex model can be constructed using existing models. 

I We make this assumption in the interest of keeping our example simple. It should be noted that this is 
probably not a good assumption. Convection would probably be quite significant across the roof as well. 
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10.3.3 Furnace 
Notice that the schematic of the House model shown in Figure 10.7 includes 

only environmental influences. In other words, the only heat transfer is due to 
its surroundings; internal influences were neglected. In order to introduce the 
influence of an electric furnace, we must build a Furnace model and connect 
it to the house. Figure 10.8 shows a schematic of the Furnace used in this 
example. 
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Sensor Circuit 

R=1e+6 

R1 
switch_voltage=5 

relay 

ground 

Heating Circuit 

Figure 10.8. Schematic for the Furnace model. 

The Furnace model contains both a thermal interface and an electrical 
interface. The thermal connector connects the furnace to the house so that 
the energy generated by the furnace influences the temperature of the house. 
The electrical interface, which is composed of the two electrical pins p and n, 
is used to tum the furnace on or off. The decision to tum the furnace on or off 
comes from the thermostat which we will describe shortly. If the thermostat 
closes the circuit by connecting the two electrical pins, p and n, the furnace 
will turn on. When the pins are disconnected, the furnace will shut off. We 
assume the capacity of the furnace (i.e., the amount of thermal power it can 
generate) is provided by the capaci ty parameter. The interesting feature 
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of the Furnace model is that even though it is used for generating thermal 
energy, it is largely an electrical component. 

The furnace is composed of two circuits. One is the sensor circuit which 
is connected to the thermostat to indicate whether the furnace should be on or 
off. The other circuit is a high-power circuit (i.e., not a circuit you would want 
connected to other low-power, wall mounted devices like thermostats). The 
bridge between these circuits is a relay. Finally, the high-power circuit contains 
the HeaterElement model from the Thermal library to be used as both a 
resistor and as a source of thermal energy. 

10.3.4 Thermostat 

As mentioned earlier, when describing the Furnace model, a thermostat 
model is required in order to control the Furnace. Models for two different 
types of thermostats will be created. One model is the traditional mechanical 
thermostat and the other is a modern digital thermostat. Looking at both types 
is interesting because while both are mixed-domain devices, they mix different 
sets of domains. 

10.3.4.1 ~echandcaltherDnostat 

Figure 10.9 shows a schematic of a mechanical thermostat. Traditional 
mechanical thermostats are controlled by turning a dial on the outside of the 
thermostat to indicate the desired temperature inside the house. In other words, 
the user's interaction is mechanical (i.e., they turn something). Internally, 
temperature sensitive mechanical components are used and as the outside tem­
perature changes, the internal mechanism moves. This movement is reflected 
in the temperature reading given by the thermostat. 

In our Mechanical Thermostat model, the point at which the furnace 
should be turned on is given as a temperature. Strictly speaking, it should be 
given as the angular position of the thermostat dial but this simplification has 
been made to avoid the additional complexity of modeling the control mech­
anism. Instead, once the desired temperature is provided via the desired 
parameter, an internal calculation is made to determine the rotational angle 
which corresponds to that temperature (i.e., the dial setting). 

The schematic in Figure 10.9 contains several noteworthy components. First, 
there is the temperature sensitive rotational spring. This can be identified by 
the fact that it has both rotational and thermal connections. The unstretched 
length of the spring changes as a function of temperature. Since the inertia 
of the mechanism is small, these slight changes in un stretched length result in 
a nearly immediate change in the position of the various components of the 
mechanism (at least compared to the time scale of the thermal system). 
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Figure 10.9. Schematic for the Mechanical Thermostat model. 

A damper is introduced because the combination of the spring and mecha­
nism inertia introduces high frequency modes in the mechanical system. The 
damper acts to damp out these modes. 

Finally, the internal mechanism includes a mercury switch. The switch is 
used to turn the furnace on or off. When the switch is rotated far enough, the 
mercury will move from one end of the switch to the other. An interesting thing 
to note about the switch (which is essential for its application in a thermostat) 
is that the switch has hysteresis built into it. For example, assume that the 
mercury switch turns on when the temperature goes below 300K. When the 
switch turns on the mercury moves to one side of the switch and closes the 
connection between two wires. However, when the temperature rises above 
300K the switch does not turn off. Instead, the temperature must go over some 
other threshold (e.g., 305K) before the switch will turn off. This is essential 
because if only a single temperature determined the state of the switch there 
would be a great deal of chatter (e.g., high frequency changes in switch state). 
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10.3.4.2 Digital thermostat 

In contrast to the mechanical thermostat, we now consider how to model a 
digital thermostat. Interestingly enough, even though the domains and tech­
nologies are different, a number of the same issues are present in both. Figure 
10.10 shows a schematic of the Digi tal Thermosta t model. 

thermal 

thermocouple 

ground 

n 

Figure 10.10. Schematic for the Digi tal Thermostat model. 

The DigitalThermostat consists of two components. The first is 
a thermocouple which translates temperature differences into voltages. The 
thermocouple model found in the Thermal library assumes that the voltage 
difference is computed as a polynomial of the form: 

n 

~v=Lc/r (10.1) 
i=O 

where ~ V is the voltage drop across the thermocouple, T is the ambient 
temperature around the thermocouple and C is a series of coefficients which 
are parameters to the thermocouple model. 

The other model used in the Digi tal Thermost at model is a digital 
controller circuit. It is assumed that the logic of the control strategy has 
been encapsulated within this circuit. In our case, the Digi talCircui t 
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model which represents the digital controller has a simple algori thm section 
which controls the electrical behavior between the furnace control pins, Fp 
and Fn, based on the voltage drop across the thermocouple pins, Tp and 
Tn. In order for the control system to function, it must translate the voltage 
drop across the thermocouple back into a temperature. To do this, it must 
have some understanding of the characteristics (i.e., the Ci coefficients) of 
the thermocouple. These same coefficients are therefore used as calibration 
parameters for the controller. 

10.3.4.3 Commonality 

There are some interesting parallels between the digital and mechanical 
thermostats. First, they both require calibration. The gauge on the outside of 
the mechanical thermostat must be calibrated based on the thermal expansion 
characteristics of the spring inside the thermostat. Likewise, the control circuit 
in the digital thermostat must be programmed with the characteristics of the 
thermocouple's response to temperature changes. 

It is quite typical in controllers to find some representation of the plant (i.e., 
the physical system) response present inside the controller. In our cases, the 
models have been constructed in such a way that the controller's understanding 
of the physical response is "perfect" (i.e., it knows exactly what is happening 
in the physical system). This is highly unlikely in the real world for at least 
two reasons. One reason is that the calibrations are never perfect (e.g., the 
coefficients used by the controller have some error). The other reason is that 
the mathematical model that the controller uses to represent the physical system 
is not perfect either. Studying such errors and what effects they have when 
a control system is actually deployed is an important aspect of modeling 
physical systems. 

The other common aspect of these controllers is the requirement for hystere­
sis. In the mechanical system, the hysteresis is generated by the geometry of 
the mercury switch. For the digital system, the hysteresis is introduced by the 
control algorithm. 

10.3.5 Complete System 

Figure 10.11 shows a system which exercises both the digital thelmostat 
and the mechanical thermostat. Figure 10.12 shows the simulated temperature 
inside and outside the house. The devices have been setup in such a way 
that they behave identically so only one indoor temperature is shown. Note 
that the frequency with which the furnace is used is greater when the outside 
temperature is lower. 
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Figure 10.11. Schematic for the ThermostatSystem model. 
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Figure 10.12. Indoor and Outdoor temperature. 
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10.4 AUTOMOTIVE LIBRARY 
In Chapter 1, we briefly mentioned a library of models developed to evaluate 

vehicle performance. In this section, we will explore that library in more detail. 

10.4.1 SimpleCar package 

Tests 

111/ Example I/i 
i 1 

V '--------' 

Ell9ine 
~----f 
i II Ubr",y 

\. M) 

Transmission 

Examples Interfaces 

~ample ~ 
------/'1 ---11 

, I 

Library I 

Types 

I" Library ~ 
Figure 10.13. Packages nested inside the SimpleCar package. 

As we can see in Figure 10.13, the SimpleCar library contains several 
nested packages. These will be discussed in detail shortly. The overall structure 
of the package follows the conventions which will be laid out in Chapter 12.2 

The models contained in this package are relatively simple. As a result, their 
predictive capabilities are very limited. However, the package provides many 
opportunities for trying out different design ideas, as well as incorporating new 
component models. 

10.4.2 Engine package 
The Engine package contains models related to the function of the engine. 

Engine design parameters represented by these models include bore, stroke, 
valve diameter, valve timing, etc. 

10.4.2.1 Interfaces 

Many of the engine component models use the rotational and translational 
connectors found in Model iea . Meehan ies. In addition, most components 

2For example. the nested Types and Interfaces packages are present. 
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also use the Gas 3 connector found in SimpleCar _ Interfaces which is 
defined as: 

connector Gas "Thermodynamic connector" 
Modelica.Slunits.Pressure P "Gas pressure"; 
Modelica.Slunits.Temperature T "Gas temperature"; 
flow Modelica.Slunits.MassFlowRate mdot "Mass flow rate"; 
flow Modelica.Slunits.HeatFlowRate q "Heat flow rate"; 

end Gas; 

This connector, used to represent the state of the air-fuel mixture, is some­
what unusual because, unlike most of our previous connector definitions, it 
contains two across and two through vaIiables. The across vaIiables (i.e., the 
potentials which drive the dynamics of the system) are pressure and tempera­
ture, P and T, while the through variables are mass flow rate, m_dot, and heat 
flow rate, q. 

In addition to the Gas connector definition, there are several partial models 
representing generic interfaces for engines, transmissions, shift strategies and 
chassis. These interfaces are used in conjunction with vehicle models to allow 
easy replacement of models for these subsystems with other models satisfying 
the same interface requirements. 

10.4.2.2 Basic components 

Figure 10.14 shows what we find when we open up the SimpleCar. -
Engine. Components library. The following is a list of some of the com­
ponents and a description of the model used: 

• TimingBel t: The timing belt is a very simple device. The model for a 
timing belt is the same as the model for a gear with a gear ratio of two. The 
timing belt is used to rotate the camshaft at exactly half the speed of the 
crankshaft. 

• ChamberVol ume: DUling the engine cycle, it is necessary to calculate 
the volume inside the combustion chamber. The ChamberVolume model 
is responsible for this calculation. Engine geometry information is passed 
into this model and the chamber volume is an output. In order to compute 
the volume, the ChamberVolume must also be connected to the piston 
through a translational connector in order to determine the piston position 
(used in the calculation of the chamber volume). 

• CrankSlider: The crank-slider mechanism in the engine is used to 
transform the translational force on the piston into a torque on the crankshaft. 

'''Gas'' in this context does not represent gasoline but rather the gaseous state of the mixture. 
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Figure 10.14. Components of the Engine package. 

• Masslesspiston: The piston model is called Masslesspiston be­
cause we neglect the translational inertia of the piston for our analyses. The 
piston model itself balances the force due to pressure inside the combustion 
chamber with the force applied from a translational connector (presumably 
connected to the crank-slider mechanism). 

• Control Volume: At the center of the thermodynamic process of an 
engine is the control volume inside the combustion chamber. In addition 
to applying conservation of mass and energy to the contents of the control 
volume, the ideal gas law is also used as a constitutive equation to describe 
the relationship between pressure, volume and temperature. The default 
gas property model assumes a perfect gas (i.e., U = CuT and h = CpT). 

• Combustion: The Combustion model used in our analyses is very sim­
ple. The combustion process is modeled as a release of energy based on the 
amount of mass trapped inside the combustion chamber. The instantaneous 
heat release, during combustion, is governed by the following equation: 

q = Qtotal sin2 (7r_i_-_is_) 
if - is 

(10.2) 
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where t s and t f are the start and end times of the combustion process. These 
are determined at the time that the spark plug fires and are based on engine 
speed and burn duration in crank angle degrees. Furthermore, Qtotal is 
determined using the lower heating value of the mixture, the air-fuel ratio 
of the mixture and the total mass trapped in the cylinder. 

• Valve: The valve model is used for both intake and exhaust valves. The 
flow through the valve is governed by the standard isentropic flow relation­
ship found in textbooks (e.g., Ogata, 1978). 

• Cam: The Cam model computes an idealized cam profile that is based on 
the maximum lift of the valve and the position of the crankshaft when the 
valve is intended to open and close. 

• Throttle: The throttle model has the same underlying flow behavior as 
the engine valve model except that the throttle flow is controlled based on 
throttle angle rather than valve lift. 

• Manifold: The manifold model is a simple "filling-and-emptying" model 
(i.e., no wave dynamics). The equations for the manifold control volume 
are the same as the equations used for the combustion chamber. 

• Reservoir: The Reservoir model is used to represent the ambient 
conditions (i.e., an infinite reservoir of mass at a specified pressure and 
temperature ). 

• Dynamometer: The Dynamometer model is used to fix the speed of 
the engine. Dynamometers are often used in engine testing to determine 
the torque output of the engine. The behavior of the dynamometer is best 
described as: "The dynamometer generates whatever torque is necessary to 
keep the engine rotating at a specific speed." 

10.4.2.3 Component assemblies 

The Engine package contains more than just components. It also contains 
assemblies of those components. The first assembly to point out is the individual 
cylinder which is composed of the basic components already described. The 
schematic of an individual cylinder can be seen in Figure 10.15. 

Just as we used the components described previously to build up the model 
of an individual cylinder shown in Figure 10.15, we can use the individual 
cylinder models to built up a complete engine. For example, a 4 cylinder 
engine model can be seen in Figure 10.16. Each of the cylinders you see in 
Figure 10.16 contains the components shown in Figure 10.15. 
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Figure 10.15. Looking inside an individual engine cylinder. 
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Figure 10.16. Looking inside a 4 cylinder engine. 

10.4.3 Transmission package 
For the engine component models, we had to develop quite a few new basic 

components. For the transmission, we can rely much more on the components 
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found in the MSL. As a result, the Transmission package is made up 
primarily of assemblies. 

The five speed transmission model included in the Transmission pack­
age is very simple. It represents the function of a five speed automatic trans­
mission in concept but is not assembled in the same way as a real automatic 
transmission (e.g., the torque converter has been left out and numerous indi­
vidual gears replace a smaller number of planetary gears). A schematic of the 
five speed transmission is shown in Figure 10.17. Using several internal equa­
tions, the model describes the simulated response of the underlying hydraulic 
subsystem used to actuate the clutches. 

engine 

Figure 10.17. A simplistic five speed transmission. 

10.4.4 Chassis package 
The Chassis package contains components used to represent the frame 

and suspension of the car. A few very simple components are included (as 
shown in Figure 10.18). Just as with the transmission models, the chassis 
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components use the connector definitions and several components from the 
Modelica. Mechanics package. 

GenericCar 

Figure 10.18. Contents of the Chassis package. 

10.4.5 Vehicle package 
In order to do vehicle level simulation (which is by no means the only use of 

the models presented in this section), we need to bring together assemblies from 
the other packages to form a complete vehicle. The particular combination used 
for our sports car example from Chapter 1 is shown in Figure 10.19. 
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Figure 10.19. Creating a vehicle model. 
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Acceleration application 
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In Chapter 1, we described one possible application of the models presented 
in this section. Specifically, we modeled the acceleration of a sports car from 
o to 100 kilometers per hour. We used the model shown in Figure 10.19 as the 
vehicle model. One challenge in putting together such a model is starting with 
the proper initial conditions. Chapter 13 discusses how to specify the initial 
conditions for a simulation. 

In the case of our acceleration test, the initialization was straightforward. 
We assume that the car starts with the transmission disengaged and the engine 
running at 1500 RPM.4 At the moment the simulation starts, the transmission 
engages and the vehicle begins to accelerate. 

We use a when clause to determine the point at which the vehicle has reached 
100 kilometers per hour. Inside the when clause we use the terminate () 
function to stop the simulation. 

10.4.6.2 Dynamometer testing 

The vehicle acceleration test is a very nice example because everyone can 
relate to it. However, a more common use for models like the ones presented in 
this section is actually to evaluate steady-state engine performance or responses 
to simple transients by connecting the engine to a dynamometer. Figure 10.20 
shows a schematic of such a test. 

The purpose of the test is to run the engine according to some speed profile 
and determine the torque output of the engine under those conditions. Such 
tests simplify the evaluation of the engine by avoiding effects due to the other 
sub-systems (e.g., the transmission or chassis). 

10.4.7 Concluding remarks 
The models in the SimpleCar package were developed as a "modeling 

playground" on which people learning the Modelica language could test their 
skills. There are endless possibilities for enhancement and modification of this 
library. The vehicle models contain numerous replaceable components so 
it is easy to make a design modifications. For example, an interested reader 
might try building a 6 cylinder engine to complement the 4 cylinder engine 
already provided. This 6 cylinder engine could then be used in place of the 
existing 4 cylinder engine by redeclaring the engine component in one of the 
vehicle models. Section 10.6 provides several modeling exercises related to 
the models presented in this section. 

4If we had a torque converter in the transmission, we could have assumed that the transmission was engaged 
and applied the brake to keep the vehicle from moving initially. 
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Figure 10.20. Top level model for dynamometer testing. 

10.5 SUMMARY 
In summary, we have presented several examples of how mixed-domain 

systems can be built using Modelica. In these cases, most of the models 
required were available as part of the MSL. The ability to build complex 
systems of both plant and controller models across domains is a powerful tool 
when used in conjunction with a "systems engineering" approach. 

There are many potential applications for systems like the ones developed in 
this chapter. For example, simple plant models can be developed for the purpose 
of control system design. At a later stage, the plant models can be refined to 
include more detailed characteristics (e.g., additional non-linearities) and used 
to verify the controller designs in the context of less idealized plant models. 
Another possibility would be to examine the effect of non-ideal sensors and 
actuators as we did in Section 7.4. Finally, the robustness of these systems can 
be tested by varying the physical characteristics of the plant or the calibration 
values used in the controllers to check if the system performance is extremely 
sensitive to slight variations in these parameters. 
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10.6 PROBLEMS 
These problems, more so than the ones included in other chapters, demon­

strate many of the practical tradeoffs made in industrial application of controller 
and plant modeling. Only a few of the possible complicating issues have been 
included in this section. 

PROBLEM 10.1 Replace the gear models in the conveyor belt used in the 
electric motor example with non-ideal gears which introduce backlash (e.g., due 
to gaps between the gear teeth). What effect does this have on the peiformance 
of the control system? 

PROBLEM 10.2 Run the factory control example and look at the maximum 
voltage required by the controller using the current controller design. Then, 
change the model of the voltage source so that the voltage output of the con­
troller is limited to some maximum voltage. Initially, set the maximum voltage 
for the controller above the maximum voltage used, and verify that there is no 
degradation in the peiformance of the system. Next, slowly lower the maximum 
voltage and observe the changes in the peiformance of the control system. Such 
saturation effects are quite common in modeling actuator behavior. 

PROBLEM 10.3 Evaluate the effects of different circuit designs for the motors. 
For example, what is the effect of adding some capacitance to the motor or 
including operational amplifiers to provide gain to the input signal? 

PROBLEM 10.4 Build a 6 cylinder engine using the 4 cylinder engine in 
Figure /0.16 as a guide. 

PROBLEM 10.5 The individual cylinder model currently has only a single 
intake and single exhaust valve. Create an individual cylinder model with 
more valves to try to improve the overall torque output of the engine. 

PROBLEM 10.6 Examine the effects of the various design parameters (e.g., 
valve timing and engine geometry) in the acceleration test. The full model 
name for the acceleration test is SimpleCar. Examples. Race. 
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Chapter 11 

BLOCK DIAGRAMS VS. ACAUSAL MODELING 

11.1 OBJECTIVE 
In this section, we will discuss, in detail, the differences between the block 

diagram and acausal approaches introduced in Section 1.3. 
There are several analysis tools available which express system behavior in 

terms of block diagrams. Any given block in a block diagram has the following 
general form: 

x 

y 

f(t, x, u) 

g(t,x,u) 

(11.1) 

(11.2) 

where u represents the input signals, x represents the internal states and y 
represents the output signals. When connected together, such blocks are capable 
of representing and simulating large systems of differential equations (with the 
same general form). 

Block diagrams are useful in understanding the mathematical behavior be­
hind dynamic systems. For example, the lacobians of the f and 9 functions 
can be used to determine the poles, zeros and overall transfer function for a 
linearized system. In addition, block diagrams are particularly well suited for 
describing control system structure. 

However for describing plant model or physical system behavior, block dia­
gram formulations take more work to create and are less reusable than acausal 
models. Modelica can be used for both approaches but an understanding of 
which approach is more appropriate will lead to more efficient model devel­
opment. This chapter attempts to demonstrate some of the key differences in 
these two approaches. 

Throughout this chapter, we will use the mechanical system shown in Figure 
11.1 (Bowles et a!., 2001) to demonstrate both block diagrams and acausal 
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Figure l1.l. Grounded planetary gear with two inertias attached. 

approaches. We assume idealized behavior for the components. For example, 
the behavior of the ine11ias in Figure 11.1 is described by the following equation: 

Jw =7 (11.3) 

where J is the moment of inertia, w is the angular velocity of the shaft and 7 

is the torque applied to the shaft. Furthermore, the planetary gear behavior is 
expressed by the following equations: 

o 

7c + 78 + 7 r 

(11.4) 

(11.5) 

(11.6) 

where R is the ratio of ring gear teeth to sun gear teeth, CPr is the angular 
position of the ring, CPc is the angular position of the carrier, CPs is the angular 
position of the sun, 7 r is the torque on the ring gear, 7c is the torque on the 
carrier gear and 78 is the torque on the sun gear. 

Even though we have chosen simple behavioral equations, we will show that 
the problem is actually more complex than might first appear. 

11.2 BLOCK DIAGRAMS 
In Section 1.3.1, we first introduced the block diagram approach and showed 

a block diagram of a simple control system. The Modelica features needed to 
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develop block diagram components were then presented in Section 3.4. Finally, 
Equations (11.1) and (11.2) show the general form for the equations of both an 
individual block and a complete block diagram. 

The block diagram approach is an elegant way of representing mathematical 
behavior because it is simple and easy to understand. In addition, a block 
diagram of a system is good for understanding the mathematical structure 
of the problem. Mathematical operators such as addition, multiplication and 
integration appear explicitly in such diagrams. These systems are more intuitive 
to debug because the behavior is explicitly described. 

11.2.1 Problem statement 
In order to understand some of the drawbacks of the block diagram approach, 

let us construct a model of the system shown in Figure 11.1. The first step in 
building a block diagram model is identifying what variables are known and 
what variables need to be computed. 

The fact that this step must be completed first is unfortunate since we would 
like to keep whatever model we create for the mechanism shown in Figure 11.1 
for reuse in other contexts (i.e., where the set of variables involved is the same, 
but what is known or unknown is different). Having to make a priori decisions 
about what will be known and what will be unknown before we build the model 
limits the reusability of the model because applications will invariably come 
along which violate these a priori assumptions. 

For the time being, let us assume we wish to apply a torque to the shaft on 
the left and as a result determine the position, velocity and acceleration of the 
shaft on the right. Figure 11.2 shows a schematic for the mechanism along 
with an actuator to define the system level causality. 

11.2.2 Problem formulation 
At this point, we have established what the behavioral equations are, what 

is known and what is to be computed. However, we still have a fair amount 
of work ahead of us. While we know the torque being applied on the left side 
of the shaft, it is not sufficient to just apply Equation (1l.3) to compute the 
acceleration of the driven shaft. In order to compute the motion of the shaft, 
we must take into account the effective ine11ia of the overall mechanism. 

This highlights the second disadvantage of block diagram formulations. 
Namely, some mathematical manipulation is necessary to formulate the prob­
lem (i.e., deriving an equation to calculate (P2 in terms of Tk). The first step is 
to understand the effects of grounding the carrier gear. If we assume that ¢c is 
zero, the kinematic relationship for the planetary gear, Equation (11.4), can be 
reduced to: 

o (11.7) 
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Figure 11.2. Planetary gear driven by the sun gear. 

Now we must consider the equations which describe the behavior of the two 
shafts: 

Let us eliminate Tr by using Equation (11.5) which leaves us with: 

Therefore as it stands, our current system of equations is: 

J1W1 

hW2 

<PI + R<P2 

(11.8) 

(11.9) 

(11.10) 

(11.11) 

(11.12) 

(11.13) 

(11.14) 

Our next problem is that we have equations involving WI, W2, <PI and <P2. Recall 
that what we really want to compute is <P2. If we multiply Equation (11.12) by 
R and then add it to Equation (11.13) we are left with the following equations: 

hW2 + RJIWI 

<PI + R<P2 

(11.15) 

(11.16) 
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This allows us to get rid of all references to Ts. 
Now we would like to take the two remaining equations and use them to 

develop an equation for ¢2. In order to solve these equations we must write 
an explicit equation for W2 which we can then integrate twice to solve for ¢2. 
We are almost finished except that Equation (11.15) still contains a reference 
to WI. By differentiating Equation (11.16) twice we can write WI in terms of 
W2 which gives us: 

(11.17) 

From Equation (11.17) we see that the effective inertia, Je , for the system (i.e., 
the ratio of torque over acceleration) is: 

(11.18) 

Now that we can solve for W2, W2 and ¢2, we can go back and use the 
following equations to solve for the reaction torque at ground, T c , the angular 
velocity of the driven shaft, WI, and the angular position of the driven shaft, ¢I, 
using the following equations: 

Tc -(1 + R)Ts (11.19) 

WI -RW2 (11.20) 

¢l (t) ¢1 (to) + lot WI dt (11.21) 

11.2.3 Block diagrams 
After formulating the problem, we can construct our block diagram. The 

diagram can be seen in Figure 11.3. Another effect commonly observed with 
block diagrams is the scattering of parameter values among many components. 
There are three fundamental parameters to the mechanism: R, Jl and J2. Note, 
in Figure 11.3, how these parameters are used in multiple places. No single 
object in Figure 11.3 distinctly represents, for example, the planetary gear. 
Instead, the effects of the planetary gears are seen in vi11ually every component. 
This scattering of parameters can cause robustness and maintenance problems 
because it becomes necessary to ensure that the same value is being used 
consistently everywhere the parameter appears. 

11.2.4 Initial conditions 
Figure 11.3 contains three integrator blocks. As a result, in order to integrate 

the system of equations we must know W2(tO), ¢l (to) and ¢2(tO). How do we 
determine what the initial conditions for these states should be? 
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Figure 11.3. Block diagram of planetary gear system. 

The simplest case is when W2 (to) and (h (to) are known. In that case, by 
differentiating Equation (11.14), we find that: 

(11.22) 

Let us assume a less convenient (but just as reasonable) case where WI (to) 
and (h (to) are known instead. In such a case, we must formulate our initial 
conditions in much the same way that we formulated our behavioral equations. 
In other words, we must use Equation ( 11.14) to derive an expression for ¢2 (to) : 

¢2 (to) = _ ¢l (to) 
R 

and we must then differentiate to get an expression for W2 (to): 

W2(tO) = _ WI (to) 
R 

01.23) 

(11.24) 

The point of these last two cases is that Equation 01.14) was required in 
order to find consistent initial conditions.! However, Equation (11.14) is not 

I A consistent set of initial conditions is one which satisfies not just the final set of ordinary differen­
tial equations. but also any algebraic constraints (e.g .. Equation (11.14» present in the original problem 
statement. 
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present in Figure 11.3. Furthermore, Equation (11.14) cannot even be derived 
from Figure 11.3.2 In other words, in building our block diagram we have 
"lost" the information contained in Equation (11.14). When a model like the 
one shown in Figure 11.3 is passed along to other users it will not be clear to 
them that Equation (11.14) must be satisfied. 

To some extent, the difficulties with initial conditions in this example are 
contrived. It is possible to create a block diagram formulation of this problem 
where only two initial conditions must be given and these two initial conditions 
always form a consistent set. However, coming up with such a formulation 
requires more work to be put into the formulation process. In addition, as 
problems become more complex, difficulties related to inconsistent initial 
conditions cannot be avoided. 

11.2.5 Reuse 
Having gone through the exercise of creating the model shown in Figure 

11.3, consider for a moment the impact of changing one of our fundamental 
assumptions. For example, what if there were a stiff torsional spring between 
the carrier and ground rather than a rigid connection? Or, imagine the ring gear 
were connected to ground and the carrier were free. Would we be able to reuse 
much, if any, of the model we had created in light of such minor changes? 

11.2.6 Conclusion 
While block diagrams are useful, they have several drawbacks for physical 

systems. First, the equations used in a block diagram must be manually 
derived from the constitutive and conservation equations. This is not only 
a tedious and potentially error prone process, but it can be very difficult when 
the system behavior is described by DAEs (differential-algebraic equations).3 
In addition, causality assumptions must be made at the component level rather 
than the system level which limits the reusability of the component models. 
Furthermore, robustness and maintenance issues arise because of parameter 
scattering throughout the diagram (i.e., problems can easily occur if consistent 
values are not used throughout the diagram). Finally, even once the models 
are formulated, the task of determining consistent initial conditions is quite 
challenging because the diagram itself may not contain sufficient information 
to compute them. 

"While we can surmise from Figure 11.3 that W2 = R WI. you might be tempted to infer that (P2 = R <PI. 
However. this is not the case because an integration constant is required (i.e .. <P2 = R <PI + C ). 
3 A mathematical definition for differential-algebraic equations can be found in the glossary. 
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11.3 ACAUSAL APPROACH 
Building acausal models simply involves dropping the needed components 

onto a schematic and connecting them. Starting from a general model, like 
the one shown in Figure 11.1, we can further develop the model by adding 
additional components (e.g., dampers, sensors or actuators) until we have a 
complete system (e.g., Figure 11.2). The important thing to note about the 
acausal approach is that we do not need to make any a priori assumptions 
(i.e., about what is known and what is unknown) when building our model. In 
addition, all of the Oliginal equations are maintained (i.e., no information is 
"lost" in the problem formulation) so that computing consistent sets of initial 
conditions is still possible. 

Another advantage of the acausal approach is that if we decide to make a 
slight change in the physical configuration of our model, we do not have to 
derive a new problem formulation (i.e., we do not have to determine the set of 
steps, like the ones in Section 11.2.2, that get us from what we know to what 
we wish to know). This makes the prospect of making configuration changes 
to our models less intimidating. For example, imagine we wish to introduce 
some torsional stiffness and damping between the carrier of the planetary gear 
and the mount point. Such a change would be quite typical of the changes 
that are made as a model evolves from an ideal system to a more detailed one. 
This change results in the system shown in Figure 11.4. Note that the only 
change required is to simply remove the rigid connection and replace it with a 
rotational spring and damper. 

torque_profile 
r-------" torque 

l--. ~G-----l![IZ-L 
T" , i tau . l .. "" ____ ... _____________ ! 

duration={2} 

ground=O 

Figure 11.4. Planetary gear with torsional mount. 

Finally, the fact that the models shown in Figures 11.2 and 11.4 resemble 
engineering schematics is an advantage in many circumstances. In other words, 
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the components (their icons) and the acausal nature of their connections would 
be intuitive to many engineers. Of course, this argument cuts both ways 
because the acausal formulation hides the mathematical structure of the problem 
which is useful when developing a control system.4 While it is possible to 
automatically transform the acausal representation into a block diagram (as we 
did previously), it is generally impossible to carry out this process in reverse. 

11.4 SUMMARY 
As mentioned previously, block diagrams are useful in many situations 

and that is why they are supported by the Modelica language and why the 
MSL provides a significant collection of block diagram models. However, 
it is important to keep in mind some of the drawbacks of the block diagram 
approach when developing physical models (Le., plant models). Clearly, both 
block diagram and acausal formulations can be used to solve this problem. The 
question is not whether such block diagrams can be formulated, but whether 
they are the fastest and most efficient way to solve the problem. The key is 
to avoid doing things manually (i.e., in a tedious and error prone way) when 
they can be done automatically. 

While block diagrams contain useful information, there is no reason this 
information cannot be extracted automatically from an acausal formulation. 
For example, the following canonical form is typically used when analyzing 
system dynamics: 

x = Ax+Bu 
y.= Cx+Du 

(11.25) 

The A, B, C and D matrices are very useful in computing properties of the sys­
tem (e.g., poles and natural frequencies). Dymola is capable of automatically 
generating such matrices by linearizing a Modelica model around a particular 
solution. As a result, acausal models can generate much of the same use­
ful information as block diagram models without the previously mentioned 
drawbacks. 

Modelica provides acausal features for making your physical models as 
flexible and reusable as possible. In order to achieve maximum flexibility and 
reuse, it must be possible to identify when to use the acausal features. Block 
diagrams are preferred for conveying strictly one-way information (e.g., the 
speed requested of a controller or the current gear of a transmission). Using 
acausal models in such contexts would be awkward and confusing. In cases 
where simultaneous equations or conservation principles are used, the acausal 
approach makes it easier to create and reuse models. 

40f course, it is still possible to extract that information automatically from an acausal formulation. 
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Looking closely at these two approaches, the fundamental difference is that 
block diagrams are inherently "low-level" formulations containing mathemat­
ical information. They represent the processing of the problem statement into 
a specific set of mathematical operations used to solve that particular problem. 
On the other hand, the acausal formulation preserves the physical details of 
the problem without specifying the process by which the problem should be 
solved. 

The reason block diagrams are more prevalent is that tools which use block 
diagrams are easier to develop. This is because the difficult task of translating 
the acausal formulation into the specific mathematical operations is done by 
the user. From a user perspective, the ideal situation would be for simulation 
tools to perform this translation automatically. The emergence of tools, such as 
Dymola, powerful enough to automatically perform these manipulations will 
clearly be a benefit to the physical system model developer. 

Hopefully, we have demonstrated that there are significant advantages to the 
acausal approach when describing the behavior of physical systems. Note that 
we have taken a relatively simple example for use in this chapter. Keep in mind 
that most of the drawbacks of block diagrams only become more pronounced 
as systems become larger and more complex while the acausal approach scales 
well with larger and more complex systems. 

11.5 PROBLEMS 
PROBLEM 11.1 Create an alternative to the block diagram shown in Fig­
ure 11.3 for which it is impossible to provide an inconsistent set of initial 
conditions. 

PROBLEM 11.2 Build a model for the system shown in Figure 11.4 using both 
block diagram and acausal components. How much similarity is there between 
the block diagram for 11.1 and 11.4? Compare this to the similarity between 
the two acausal models. 

PROBLEM 11.3 How do you compute the initial conditions for the integrator 
blocks used in the Problem 11.2? 

PROBLEM 11.4 Build both a block diagram model and an acausal model for 
the system shown in Figure 11.2. Then, reconfigure the acausal model of the 
system such that the ring gear is connected to ground instead of the carrier 
gear and the torque is applied to the carrier gear instead of the sun gear. Once 
this is complete, create a block diagram of the new configuration (either by 
using the previous one or creating a new one from scratch). Again, compare 
the two block diagram models to each other and the two acausal models to 
each other. What are the significant differences? How much reuse was there 
between the old configuration and the new configuration? 
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BUILDING LIBRARIES 

12.1 OBJECTIVE 

The package concept was introduced into Modelica to help organize defini­
tions of models, connectors, etc. The idea was to allow for collections of related 
models to be bundled together. Packages which contain components (e.g., con­
nectors and models) to model a particular domain are called libraries. These 
libraries are usually implemented as a single package which contains several 
nested (or internal) packages. We will discuss the conventional structure for 
these nested packages. 

Apart from the structural aspects, a library should also balance reusability 
and robustness. Ideally, a package provides users with endless possibilities 
for building systems by connecting up the provided components. At the same 
time it should be difficult for users to use these components incorrectly. When 
something is done incorrectly, it should either be immediately obvious to the 
tool (e.g., making an invalid connection) or easily diagnosable (e.g., providing 
non-physical parameter values). 

In this chapter, we will revisit the Chemi s t ry package presented in Section 
6.4 and discuss its structuring in greater detail. You may first wish to go back 
and review the material in Section 6.4 before reading further. 

12.2 CLASSIFICATION 

Before creating a package of reusable components, it is necessary to decide 
what the scope of the package will be. For example, the MSL is organized by 
engineering discipline (e.g., mechanics, and controls). Within each of these 
disciplines, a structure exists which makes it easy for users to locate the parts 
they are looking for. For example, within the Modelica. Mechanics pack-
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age there are packages named Translational and Rotational which 
neatly divide the components into mutually exclusive sets. 

Now, consider what would happen if the Mode 1 i ca . Me cha ni c s package 
were instead divided into categories like Automotive, Appliances and 
Aerospace. The problem with these categories is that they do not represent 
mutually exclusive sets. For example, all of these categories would have uses 
for the IdealGear model. Some models (e.g., OneWayClutch) might 
be unique to one category but on the whole it would be difficult to locate 
models using such a categorization. The source of the problem is attempting 
to categorize based on applications which utilize many overlapping models. 

To avoid this, choose a "taxonomy" (i.e., a systematic classification scheme) 
which results in minimal overlap between any two packages in different 
branches of the package hierarchy. Such overlap cannot be entirely avoided 
(e.g., where would you place the electronic thermostat model found in Figure 
1O.lO?), but it can be minimized. 

12.3 STRUCTURE 
Once the decision has been made concerning what definitions should be 

included within a package, it is necessary to organize those definitions. While 
the Modelica language does not place many restrictions on the structure of a 
package, there are conventions for how packages should be structured. Ideally, 
all packages should have a consistent structure because, if each package had 
a completely unique structure, it would be quite disconcelting for the package 
users. For this reason, we describe several of the conventional package elements 
and their order of appearance in a package. 

Before we describe the conventional nested packages, we should point 
out that the MSL includes several partial package definitions that pro­
vide basic icons for different types of packages. Typically, a new package 
(e.g., Chemistry) should extend from the Library2 definition found in 
Modelica. Icons. Any nested packages should extend from the Library 
definition also found in Modelica. Icons. The Library2 graphics leave 
room for custornization (i.e., additional graphical annotations) while the graph­
ics for Library are more generic, with less room for customization. 

12.3.1 Types 
In the case of the Chemi s t ry package, we included a nested package that 

contained all the types that were specific to the chemistry package, i.e., 

package Chemistry 
extends Modelica.lcons.Library2; 
package Types 

extends Modelica.lcons.Library; 
type MolarFlowRate=Real(unit=lmol/sec", 
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quantity="MolarFlowRate") ; 
end Types; 

end Chemi s t ry ; 
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The MolarFlowRate type is defined within the Chemistry package be­
cause it is needed but it does not exist in the SIunits package in the MSL. 
The Types package might also contain record definitions used within the 
package. It is entirely possible that a package will be written that does not 
require additional type or record definitions beyond those already available 
in other packages such as the MSL. In such cases, a nested Types package is 
not required. 

12.3.2 Interfaces 
Every package usually includes some interface definitions which are used 

throughout the package. For the most part, such definitions are either connectors 
or partial models (e.g., OnePort, see Example 4.1). 

Such definitions should be included in a nested package called Inter­
faces. Because these definitions are so important and so widely used within 
the package, the Interfaces package usually appears at, or near, the top 
of a package. For the Chemistry package, the Interfaces package is 
defined as: 

package Chemistry 

package Interfaces 
extends Modelica.Icons.Library; 
connector Mixture "A chemical mixture" 

parameter Integer nspecies; 
Modelica.SIunits.Concentration c[nspecies]; 
flow Types.MolarFlowRate r[nspecies]; 

end Mixture; 
end Interfaces; 

end Chemistry; 

Note the use of the MolarFlowRate type defined previously in the Types 
package. 

Some descriptive text following the declarations in the Interfaces pack­
age will help users to better understand any connector definitions. An important 
thing to remember when developing a package is to follow the Modelica sign 
conventions regarding flOlJ variables in connectors (i.e., positive flow is into 
the component). 

Although the Chemistry package does not contain any partial defi­
nitions, such definitions are quite common (see Appendix C some partial 
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definitions found in the MSL). See Section 12.5.1 for a discussion on the 
advantages and disadvantages of partial definitions. 

12.3.3 Functions 
The Functions package is similar to the Types package. If there are 

package specific funct ion definitions that are used throughout the package 
or potentially useful outside the context of the package, it is helpful to collect 
them in the Functions package. However, it is quite possible that no such 
functions exist for a given package, and in such a case the Funct ions package 
is not necessary. 

For the Chemistry package, the CalcRate and CalcMul tiplier 
functions are defined in the Functions package. These functions represent 
some of the fundamental constitutive relationships for chemistry. Because 
they could potentially be used by multiple models (in a more fully developed 
Chemistry package), they are kept in the Functions package rather than 
nested inside the models that currently use them (e.g., the Reaction model). 
The structure of the Chemistry. Funct ions package is: 

package Chemistry 

package Functions 
extends Modelica.lcons.Library; 
function CalcRate '" end CalcRate; 
function CalcMultiplier ... end CalcMultiplier; 

end Functions; 
end Chemistry; 

12.3.4 Sensors 
For packages which contain definitions related to physical systems, a nested 

package of sensor models is typically provided. At a minimum, these sensors 
should be capable of outputting a signal that corresponds to the measured value 
for either a through or across variable for that system. Typically, at least 
three different sensors are included. One sensor type is called an "absolute 
sensor" and it outputs the absolute value for an across variable at a point (e.g., 
the temperature at a point). Another type of sensor is a "relative sensor" 
which measures the difference between across variables at two different points 
(e.g., the temperature difference between two points). Finally, a "flow sensor" 
measures the through variable between two points (e.g., the heat flow through 
one path). The sensors for the across variables are generally connected in 
parallel while the "flow sensor" is generally connected in series with the flow 
path. To see an example of such sensors, look at the models in Modelica. -
Mechanics.Rotational.Sensors. 
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12.3.5 Examples 
To help users understand how models should be connected, it is helpful to 

include a collection of runnable examples. For any package without examples, 
users will invariably misunderstand some aspect of the package. The result is 
that if a package is distributed to several users, there will be questions, mistakes 
or misunderstandings that occur among many of the users. In some cases, these 
may be due to bad model design but often the issues are fundamental to the 
package and require a certain understanding on the part of the user that is 
not obvious from the current structure or documentation of the package. It 
is precisely these issues which should be addressed by a nested Examples 
package. 

The Chemi s t ry package is somewhat unusual in that it contains no spe­
cific reaction models. This means that it is impossible to create an example 
without first identifying all participating species and reactions. Therefore, it 
is difficult to include simple examples. However, one possibility would be 
to nest the Oregonator package (also described in Section 6.4) inside the 
Chemistry. Examples package to serve as a demonstration of how the 
Chemi s t ry package can be used. 

All of the packages in the MSL contain Examp 1 e s packages and examining 
those packages will be useful in understanding how to create an Examples 
package that will clearly demonstrate the use of a package. In addition, 
the MSL contains a special partial model called Modelica. Icons. -
Example that example models can be derived from. This provides them an 
icon that makes the model easily recognizable as an example. 

It is a good idea to apply the encapsulated qualifier (see Section 9.1.1.3) 
to any of the models (or nested packages) contained within the Examples 
package. This will allow new users of the package to copy the examples out of 
the package hierarchy to create stand-alone models. These models can then be 
easily modified and studied further. 

12.3.6 Tests 
As a developer, it is important to maintain a suite of test cases to validate the 

definitions in the package. Such a suite should ideally test every component 
model and subsystem defined within the package. While test cases are gen­
erally ones which should work, it is sometimes useful to intentionally include 
examples which should not work. In this way, a test suite may be designed to 
validate not only the package, but also the tool with which the package is used 
(e.g., to make sure it is capable of properly diagnosing common mistakes). 

While test cases are important, they should probably not be distributed as part 
of the package. Instead, they should be kept in a separate package because 
users may be confused by the test cases. This is especially true when tests 
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are included which are intended to fail. While users might glean some useful 
information from the test cases (i.e., the test cases may show more sophisticated 
examples of usage than the Examples package) test cases are typically not 
acceptable substitutes for illustrative examples. 

12.3.7 Package specific structure 
So far, we have described nested packages that commonly appear in a 

package. However, most packages will also have several nested packages 
which are specific to the engineering domain or organization of that particular 
package. 

For example, the Chemi s t ry package contains a nested package called 
Basic which in turn contains the following definitions: 

package Chemistry 

package Basic 
extends Modelica.Icons.Library2; 
partial model Reaction ... end Reaction; 
model Reservoir ... end Reservoir; 
model Stationary end Stationary; 
model Volume ... end Volume; 

end Basic; 
end Chemistry; 

These models provide the basic models for chemical systems. While these 
models are not sufficient for representing all chemical systems, at least one of 
these models is typically present in every chemical system. 

The Modelica . Electr ical . Analog package is a good example of 
a package with considerable package specific content. The current version is 
organized as follows: 

package Modelica 

package Electrical 

package Analog 
package Interfaces ... end Interfaces; 
paCkage Basic end Basic; 
package Ideal ... end Ideal; 
package Lines ... end Lines; 
package Semiconductors ... end Semiconductors; 
paCkage Sensors end Sensors; 
package Sources ... end Sources; 

end Analog; 
end Electrical; 

end Modelica; 
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Note that in addition to the typical Interfaces and Sensors packages, 
there are several other domain specific packages (e.g., Semiconductors). 

12.3.8 Canonical form of a package 
The discussions in the previous sections on conventions for nested packages 

can be summarized by the following canonical form for a new package: 

package NewPackageName 
extends Modelica.Icons.Library2; 
package Types 

extends Modelica.Icons.Library; 

end Types; 
package Interfaces 

extends Modelica.Icons.Library; 

end Interfaces; 
package Functions 

extends Modelica.Icons.Library; 

end Functions; 

II Package specific structure 

package Examples 
extends Modelica.Icons.Library; 

end Examples; 
end NewPackageName; 

Such conventions are important primarily to the user of the package. The 
usability of a given package is greatly influenced by how organized and doc­
umented it is. The ability to quickly view the Interfaces package, to 
browse the connectors and see what kinds of information they contain or to 
view the Examples package to see how the components in the package can 
be combined, helps users get a feel for how the package should be used. 

12.4 DOCUMENTATION 
Documentation was discussed previously in Sections 2.4 and 9.2.2. The 

importance of documentation, particularly when developing a package, cannot 
be overstated. As Figure 9.4 shows, the documentation added by the developer 
can be nicely formatted by the tool before it is seen by the end user. 

It is advisable to provide some kind of documentation for each model. 
Ideally, a sufficient explanation of the model should be provided in HTML as 
a documentation annotation (see Section 9.2.2). Also, it is useful to provide 
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additional documentation annotations for each package to give an overview of 
that package and its contents. 

Once again, the MSL is an excellent example to work from. The documenta­
tion for the MSL is automatically generated from the Modelica source code and 
the embedded documentation annotations. The documentation is generated in 
such a way that hyperlinks are included to allow jumping between related def­
initions. For example, if you look at the definition for a component model you 
will find hyperlinks to the connector definitions. In addition, the graphical 
annotations can be used to generate graphical images that are also included in 
the generated documentation. 

12.5 MAXIMIZING REUSABILITY 
Now, let us tum our attention to making packages as reusable as possible. The 

whole idea behind making a package in the first place is to develop component 
models which can be used across different systems, projects and users. Included 
in this section are several ideas on how to maximize reusability that should be 
kept in mind when developing a package. 

The general rule when developing a package is to try and see beyond the 
applications you are familiar with and consider applications that other projects 
or users might have. 

12.5.1 Including partial definitions 
Something to keep in mind when developing a package is that users may find 

the definitions in the package useful but incomplete for their purposes. In such 
cases, a user might wish to create a component which extends from yours. 
By anticipating such usage, you will make your package more reusable. 

For example, theModelica. Mechanics. Rotational. Interfaces 
package contains the following definition for a Compi iant component I : 

partial model Compliant 
Modelica.Slunits.Angle phi_reI; 
Modelica.Slunits.Torque tau; 
Interfaces.Flange_a flange_a; 
Interfaces.Flange_b flange_b; 

equation 
phi_reI = flange_b.phi - flange_a.phi; 
flange_b. tau tau; 
flange_a.tau = -tau; 

end Compliant; 

ITbe definitions for Flange_a and Flange..b are accessible since Compliant is also in the 
Modelica. Mechanics. Rotational. Interfaces package. 
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The Compliant definition is comparable to the OnePort definition shown 
in Example 4.1. This partial definition allows us to easily write models for 
springs and dampers in much the same way that the OnePort definition allows 
us to easily create models for resistors and capacitors (i.e., by simply adding 
the necessary constitutive equation). 

While the use of the extends keyword can help in minimizing redundancy 
across components, it can also lead to confusing models. Remember that any 
use of extends results in the complete component definition being distributed 
across the package hierarchy. This can make it difficult to form a complete pic­
ture of the derived component. For example, consider the following definitions: 

partial model TwoRotationalConnections 
import Modelica.Mechanics.Rotational.lnterfaces; 
Interfaces.Flange_a flange_a; 
Interfaces.Flange_a flange_b; 

end TwoRotationalConnections; 

partial model RotationalComponent 
extends TwoRotationalConnections; 
Modelica.Slunits.Angle phi_reI (start=O) ; 
Modelica.Slunits.Torque tau; 

equation 
phi_reI = flange_b.phi - flange_a.phi; 
flange_b.tau = tau; 
flange_a. tau = -tau; 

end RotationalComponent; 

partial model GenericSpring 
extends RotationalComponent; 
Real c; 

equation 
tau = c*phi reI; 

end GenericSpring; 

model NonLinearSpring 
extends GenericSpring; 
parameter Real a, b; 

equation 
c = a*phi_rel+b; 

end NonLinearSpring; 

While partial definitions are good for promoting reuse, finely fragmented 
partial models like those above can be hard to understand. 

The purpose of most partial definitions is to define an interface. The 
interface of a component is usually composed of parameter and connector 
declarations. In many cases, it is useful to introduce some variables and equa­
tions in the partial definition. For example, the voltage, v, in the OnePort 
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model was introduced to represent the voltage drop across the component. Note 
that an equation for v was also included. In most cases, it is recommended 
that an equation be included for any variable declared in a partial definition. 
Anytime a variable is left "dangling" (i.e., without an equation) it should be 
well documented what that variable represents and that it requires an equation. 

The point is that all use of extends creates some additional complexity in a 
package because it fragments the complete definition. However, an understand­
ing of how this complexity is generated will help in choosing the frequency 
and context of extends usage such that complexity is kept manageable. 

12.5.2 Making components replaceable 
Recall from our discussion in Chapter 4 how the replaceable keyword can 

be used when building components (e.g., Example 4.8). This same approach 
can be employed when building packages. The most common application 
of the replaceable keyword involves type and model instantiation. How­
ever, keep in mind that the replaceable keyword can be used with record, 
block, function and even package instantiation. When a component is made 
reusable, it is a good idea to add a type constraint clause to the declaration (as 
discussed in Section 4.8.5.2). The constraining type should be a partial 
definition from the Interfaces package. 

12.5.3 Package granularity 
While building a package, make sure to clearly define the level of detail 

you expect users of the package to work at. For example, a library of basic 
hydraulic components is useful for developers of hydraulic circuits but con­
structing complete hydraulic systems from these basic components might be 
quite time consuming. For this reason, the creator of such a package may be 
tempted to include several complex hydraulic subsystems like pressure regula­
tor systems or hydrostatic transmissions. By doing so, the organization of the 
package may suffer because the level of detail changes across the package. 

The issue, in a nutshell, is deciding whether the package should be a set 
of primitive models or a set of composite models. If both types of models 
are being developed, there are at least two possibilities. First, you can try to 
organize the package to clearly delineate between the primitive models and 
the composite models. The second approach is to create two separate packages, 
one for the primitive models and one that uses the primitive models to provide 
the composite models. 

12.6 MAXIMIZING ROBUSTNESS 
When developing a package it is important to anticipate, as much as possi­

ble, all the different uses a model developer may have for the definitions you 
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are providing. Such uses can be broken down into three broad categories. First, 
the model developer may use the definitions as they were intended to be used. 
For a well tested package, all the definitions should function properly (i.e., no 
obvious bugs) if they are used as intended. Second, the model developer may 
use the definitions incorrectly (e.g., using non-physical values for parameters). 
These uses should be detected and result in a reasonable diagnostic message 
(how this is done will be discussed shortly). Finally, there may be uses that 
were not anticipated (not all possibilities can be anticipated). As they are un­
covered, they should either be made to work correctly or provide diagnostic 
information as to why they are not allowed. 

12.6.1 Using assertions and limits 
If you look in the Modelica. SIuni ts package you will find the follow­

ing definition for Resistance: 

type Resistance = Real (final quantity="Resistance", 
final unit="Ohm", min=O); 

Note the use of the min attribute. This is an example of setting a limit on a 
physical type to prevent misuse. A resistance of less than zero is not physically 
meaningful and using the min attribute in this way prevents the situation from 
occurring and therefore avoids getting results that may be confusing. 

The min attribute is just one way of preventing non-physical values. In more 
general cases, it is not sufficient to identify a simple limit. Instead, a conditional 
expression is used to determine whether a value is physical. For example, it 
may also be necessary to identify when the amount of power dissipated by a 
resistor exceeds some critical value. In such a case, the following assertion 
could be added to the resistor model: 

assert (i*v<le+6, "Maximum power exceeded"); 

Including such an assel1ion will generate a diagnostic message when the resistor 
is used in an improper way (e.g., in a circuit where the component would fail). 
Additional examples using assert () can be found in Section 8.4. 

12.6.2 Finalizing choices 
The ability to apply modifications to components and their subcomponents is 

an important feature of Modelica. However, such flexibility should be curtailed 
if it is not appropriate. For example, consider the following sensor definition 
found in the Modelica. Mechanics. Rotational package: 

partial model AbsoluteSensor 
Modelica.Mechanics.Rotational.lnterfaces.Flange_a flange_a; 
Modelica.Blocks.lnterfaces.OutPort out Port (final n=l); 

end AbsoluteSensor; 
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Since this sensor is only designed to output a single velocity signal, the size 
of the output port, outPort, has been permanently fixed to one. This is 
done using the final qualifier on a modification. Using the final qualifier 
(as described in more detail in Section 4.6) disallows further, in this case 
nonsensical, modifications. 

12.6.3 Reducing the potential for modeling errors 

The final class of robustness issues are commonly called "modeling errors". 
These cases are difficult to prevent because they depend on how the models are 
used. 

For example, many simple models (e.g .. resistors, springs) behave the same 
way regardless of their orientation (i.e., it does not matter how you connect 
them because they are non-directional). However, a diode is an example of a 
component which is sensitive to orientation. If the diode model is not clearly 
marked (either by the connector names or the graphical annotations) it is easy 
for a user to incorrectly place it into a schematic. Such an error cannot be 
detected because it requires an understanding of what the modeler intended. 

Other examples might include the misuse of idealized components. For 
example, connecting a step voltage to a capacitor could cause simulation prob­
lems because the derivative of the voltage, used in the constitutive equation of 
the capacitor, would be infinite when the step occurs. This is another example 
of something that is difficult to prevent. 

Because such situations cannot be automatically diagnosed (by either the 
tool or the use of assertions), proper documentation is about the only way such 
situations can potentially be avoided. 

12.7 STORAGE OF MODELICA SOURCE CODE 

When we include all of the behavioral descriptions, graphical annotations 
and documentation, the Modelica code for the Chemi s t ry package could 
become quite long if contained within a single file. In order to avoid very large 
files, the Chemi s try package can be split into smaller files while maintaining 
the same hierarchical structure. There are several benefits to using multiple 
files. First, if a single file is used and a component within that package is 
required, then the entire file must be read and parsed by the analysis tool. 
On the other hand, if the components are kept in separate files, only the file 
containing the required component definitions must be read and parsed. For 
large packages, this can be very convenient because it will speed up the process 
of reading and parsing definitions. A second reason for using multiple files is 
to make the system more manageable. With separate files it is easier to rename, 
move or edit the files individually without having to restructure a larger file. 
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To create a single package which spans multiple files, certain conventions 
must be followed. The fundamental idea behind the multiple file approach is 
to use a directory structure on the computer file system (e.g., the hard drive) to 
represent the structure ofthe package. The key is that any package, nested or 
otherwise, may be represented by a single file or as a directory. If a directory 
is used to represent the package, that directory must contain a file called 
"package.rno" that contains only the package definition. The other definitions 
contained within that package must be placed in individual files with the same 
name as the entity they contain, followed by the suffix" . mo". Furthermore, all 
" . mo" files must contain a wi thin statement on the first line indicating where, 
in the package hierarchy, subsequent definitions should be placed.2 

At first these rules seem a bit confusing, so let us look at how the Chemi s t ry 
package might be represented using multiple files. One possible directory struc­
ture is shown in Figure 12.1. The directories are shown in bold. Note that each 
directory represents a package in. our original structure. However, not all 
packages are represented as directoties. For Figure 12.1, we have arbitrarily 
chosen to have the Functions and Basic nested packages represented as di­
rectories, but the Interfaces, Types and Sensors packages represented 
as individual files. 

Chemistry package.mo 

Interfaces.rno 

Types.rno 

Sensors.mo 

Functions 

~ package.rno 

t CalcRate.rno 

CalcMultiplier.rno 

Basic 

package.rno 

Reaction.rno 

Reservoir.rno 

Stationary.rno 

Volurne.rno 

Figure 12.1. Possible file and directory structure for the Chemistry package. 

"While this information is redundant. it can quickly identify misplaced files. 
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For packages represented as directories, note that the directory contains a 
"package.mo" file. As an example, the "package.mo" file in the Functions 
directory looks like: 

within Chemistry; 
package Functions 

extends Modelica.lcons.Library2; 
end Functions; 

Remember, no definitions appear in the "package.mo" file. Instead, all defini­
tions in a package represented as a directory exist in individual files within that 
directory (see Figure 12.1). 

In cases where a package is represented by a file, the file includes the package 
hierarchy starting from that package. As a result, the "Types.mo" file looks 
like: 

within Chemistry; 
package Types 

extends Modelica.lcons.Library2; 
type MolarFlowRate=Real(quantity="MolarFlowRate", 

unit="mol/sec") ; 
end Types; 

It is not necessary that all top-level packages exist in the same directory. 
For example, the MSL is generally kept at one place on the hard drive, while 
other packages are kept somewhere else. In addition to searching the current 
working directory and the directory where the MSL is kept, Modelica tools also 
search the directories given in the MODELICAPATH environment variable.3 

This environment variable lists all of the directories that will be searched for 
Modelica definitions. Each directory is typically separated by a semicolon. 

12.8 CONCLUSION 
This chapter should provide you with some useful information on how to 

get started building reusable Modelica libraries. If you wish to see further 
examples you should study the MSL. In addition, there are a number of other 
free Modelica packages available. A list of such packages can be found at the 
Modelica web site (http://www . model ica. org). 

3How you set this environment variable is specific to the operating system you are using. 

walter.ponge@terra.com.br



Chapter 13 

INITIAL CONDITIONS 

13.1 OBJECTIVE 
Before we can run a transient analysis, we must find the appropriate set of 

initial conditions for the variables. The most important requirement of initial 
conditions is that they do not contradict any of the equations in the models. 
Beyond that, they should make physical sense and represent an appropriate 
(usually quiescent) state for the system. This chapter will describe techniques 
for finding the initial conditions that are appropriate for a given simulatio~.i. 

13.2 MATHEMATICAL FORMULATION 
In order to better understand the process used to formulate initial conditions, 

we will examine several simple problems and examine how their variables 
are initialized. Simple problems are used to help illustrate the difficulties of 
finding initial conditions. In fact, these examples are nearly trivial and are not 
representative of even the most basic systems that result from connecting just a 
few components. Hopefully, these examples will provide some insights about 
how tools perform these same operations on much larger and more complex 
problems. 1 

Imagine we have constructed a model which results in the following system 
of equations: 

x 

x 

3y 

-2x 

(13.1) 

(13.2) 

I To get an appreciation for how difficult it is to find initial conditions for complex problems. see Pantelides. 
1988 or Mattsson and Soderlind. 1993. 
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Once a simulation has begun, solving such a system is straightforward since 
for a given value of x, which at any given time during transient simulation 
will always be known, we can determine y and x. However, at the start of a 
simulation these three quantities are unknown. As a result, we are left with the 
following system of equations for our initial conditions: 

x(to) 

x( to) 

3y(to) 

-2x(to) 

(13.3) 

(13.4) 

The problem of finding initial conditions for such a system essentially boils 
down to the problem of adding additional equations until we have as many 
equations as we have unknown quantities. An important caveat regarding this 
statement is that the resulting system of equations must lead to a non-singular 
system of equations.2 For example, adding an additional equation so that we 
have the following three equations: 

x(to) 

x (to) 

x(to) 

3y(to) 

-2x(to) 

2 

(13.5) 

(13.6) 

(13.7) 

results in a non-singular system of equations that, when solved, yields the 
following initial conditions: 

x(to) 

y(to) 

x (to) 

2 
2 

3 
-4 

(13.8) 

(13.9) 

(13.10) 

However, if instead, we add a "linearly dependent" equation (Le., one that is 
linearly dependent on another equation in the system) such as: 

x(to) = -6y 

then the resulting system of equations: 

x(to) 

x( to) 
x( to) 

3y(to) 

-2x(to) 

-6y(to) 

(13.11) 

(13.12) 

(13.13) 

(13.14) 

is singular and a unique solution cannot be found. As another example, consider 
the following system: 

x = 3y (13.15) 

1 A non-singular system of equations is one for which a unique solution can be found. 
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x 

i 
-2x 
-z 

For initialization purposes, these equations are transformed into: 

x(to) 
x(to) 
i(to) 

= 3y(to) 
-2x(to) 
-z(to) 

Now we have three equations and five unknowns, namely: 

{x(to), y(to), z(to), x(to), i(to)} 

(13.16) 

(13.17) 

(13.18) 

(13.19) 

(13.20) 

(13.21) 

As a result, we must provide two additional equations. However, not all com­
binations will work. Let us look more carefully at the mathematical structure 
to understand what the restrictions are. First, because there is an algebraic 
constraint between x and y, we cannot provide independent initial values for 
both x and y. In other words, the following is a singular system of equations: 

x(to) = 3y(to) (13.22) 

x(to) -2x(to) (13.23) 

i(to) = -z(to) (13.24) 

x(to) = 2 (13.25) 

y(to) = 12 (13.26) 

Second, because there is a differential equation for z, we must provide an 
equation which leads to an initial value for z. As a result, we could provide 
additional equations for {x(to), z(to)} or {y(to), z(to)} but as we have shown, 
it is not sufficient to provide additional equations for {x (to), Y (to) }. 

Now, let us discuss the topic of initial values for derivatives. Let us consider 
our original system of equations: 

x 3y 
x = -2x 

(13.27) 

(13.28) 

Again, this leads to the following system of equations involving the initial 
values: 

x(to) 
x(to) 

3y(to) 
-2x(to) 

(13.29) 

(13.30) 

In addition to providing initial values for variables (e.g., x(to), y(to), it is 
also useful to provide initial values for derivatives as well. For example, it is 
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common to set all derivative values to zero when choosing initial conditions. 
The idea behind such an assumption is that the transient analysis should start 
from a state of rest. If all the derivatives in the system are zero, that means that 
no change in the variables will occur until some external influence disturbs it. 
For this system, that would lead to the following non-singular system: 

x(to) 

x(tO) 

x(tO) 

3y(to) 

-2x(to) 

o 

(13.31) 

(13.32) 

(13.33) 

Unfortunately, it is not currently possible to specify initial values for derivatives 
in the Modelica source code (i.e .. inside the model definitions). However, some 
tools do support this activity through their graphical user interface. 

These are simple examples and it is easy to analyze their structure to un­
derstand why some combinations of equations are valid and others are not. In 
general though, complex problems cannot be analyzed in this way. Instead, the 
tool will generally present some choice of variables for which initial values can 
be provided (i.e .. entered by the user). It is possible that pm1icular choices will 
not be available for the reasons discussed here. 

The purpose of this chapter is to help demonstrate that a consistent set of 
initial conditions must be found before a transient simulation can be performed. 
As a result, some sets of initial conditions may not be allowed or may lead to 
numerical problems (e.g., singular systems of equations). 

13.3 USING ATTRIBUTES 
One way to control the initialization of the system variables is to use the 

start attribute in conjunction with the fixed attribute. All Real variables 
have these attributes. If the fixed attribute is set to t rue for a variable, it has 
the effect of adding an equation to the existing set of equations used to solve 
for the initial conditions. That additional equation will equate the variable with 
the value ofthe start attribute for that variable. To understand this better, let 
us look at an example. Consider the following Modelica model: 

model FirstOrderSystem 
Real x, y; 

equation 
x = 3*y; 
der (x) = -2*x; 

end FirstOrderSystem; 

This results in the same system of equations discussed in Section l3.2: 

x 

X 

3y 
-2x 

(13.34) 

(13.35) 
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These equations are then transformed into the following system for initializa­
tion: 

x(to) 
x(to) 

3y( to) 
-2x(to) 

So far, this is identical to the process described in Section 13.2. 

(13.36) 

(13.37) 

By default, the start attribute has a value of zero and the fixed attribute 
has a value of false. However, if we modify our model as follows: 

model FirstOrderSystem 
Real x(start=2,fixed=true), y; 

equation 
x = 3*y; 
der (x) = -2*x; 

end FirstOrderSystem; 

we get the same system of equations for transient analysis but when these equa­
tions are transformed into the equations used to solve for the initial conditions 
an additional equation, x(to) = 2, will be added, resulting in the following 
system: 

x(to) 
x(to) 
x(to) 

3y(to) 
-2x(to) 
2 

(13.38) 

(13.39) 

(13.40) 

In this way, the start and fixed attributes can be used to provide addi­
tional equations for the initialization of the system. However, this approach 
only allows additional equations involving variables to be included (i.e., this 
approach could not be used to add the equation for a derivative, x(to) = 0 ). 
Even if the fixed attribute is set to false, a tool may choose to introduce 
extra equations, as needed, in which case the start attribute may still be used 
in the equations. 

While it is easy to see how such attributes can be used to introduce additional 
equations into a fully assembled system, it is less obvious how they should be 
used within individual components. It is important not to overuse the fixed 
attribute because this can lead to over-constrained systems of equations with no 
solution. A good "rule of thumb" to follow is to only set the fixed attribute 
to be t rue for variables that are internal to a component model and that have 
had the der operator applied to them. 

13.4 START OF SIMULATION 
Another way the initial values can be set is with the ini t ial () func­

tion. For example, we could initialize our FirstOrderSystem described 
previously using the following method: 
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model FirstOrderSystem 
Real x, y; 

equation 
x = 3*y; 
der (x) = -2*x; 

algorithm 
when initial() then 

reinit(x, 2); 
end when; 

end FirstOrderSystem; 

For most new users of Modelica, this will probably seem like the most natural 
way to initialize a problem because it is more procedural. However, this is not 
a good initialization method. The problem is that the ini t ial () function 
only becomes t rue the instant after the simulation starts. However, before the 
analysis can start, it still needs to have a consistent set of initial conditions. As 
a result, two sets of initial conditions will be used. The first set will be solved 
for at t = to using the methods described in Sections 13.2 and 13.3, while the 
next set will be solved for at time t = to + E (i.e., just after the simulation 
starts) based on the contents of any when clauses triggered by the ini tial () 
function. 

In addition to being confusing, this method of initialization (i.e., using 
reini t) is limited to the variables that have had the der operator applied to 
them (see Chapter 7). In other words, in this case while x can be initialized 
in this way the variable y cannot. The use of the initial () function is 
best reserved for the initialization of discrete variables since all discrete 
variables can be initialized in this way (not just some) and their values are 
always assigned within when clauses. Several examples of such usage can be 
found in Chapter 7. 

13.5 INITIALIZATION BASED ON ANALYSIS TYPE 
The final way of controlling the initialization of a system of equations is 

to use the analysisType () function.3 As described in Section 5.7.7.1, 
this function allows different equations to be used depending on the type of 
analysis being performed. A special analysis type, represented by the literal 
Modelica string "s tat i c " , is returned when the initial conditions are being 
determined. Revisiting our FirstOrderSystem model, we might choose 
to rewrite the model as follows: 

model FirstOrderSystem 
Real x, y; 

equation 

3Currently. no simulation tools implement the analysisType () function but it should become available 
in time. 
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x = 3*y; 
if analysisType () =="static" then 

x = 2; 
else 

der (x) = -2*x; 
end if; 

end FirstOrderSystem; 
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By posing our model this way, different sets of equations will be generated 
depending on whether we are interested in transient analysis (i.e., solving 
differential equations) or finding initial conditions. For example, by using the 
analysisType () function the following set of equations will be generated 
for finding initial conditions: 

x(to) 
x(to) 

3y(to) 
2 

Solving this system leads to the following initial conditions: 

x(to) 

y(to) 

2 
2 

3 

However, for transient analysis the usual system, i.e., 

x 

x 

3y 
-2x 

(13.41) 

(13.42) 

(13.43) 

(13.44) 

(13.45) 

(13.46) 

will be generated, but the initial values, x (to) and y (to), found in the" s tat i c " 
analysis case will be used at the start of the transient analysis. 

One advantage that the analysisType () approach has over the start 
and fixed attribute approach is that a wider range of equations are possible. 
For example, the following is another possible way to write the FirstOrder­
System model using an equation involving x: 

model FirstOrderSystem 
Real x, y; 

equation 
x = 3*y; 
if analysisType ( ) ==" static" then 

4*x-6*y = 4; 
else 

der (x) = -2*x; 
end if; 

end FirstOrderSystem; 

Ultimately, this leads to the same initial conditions (i.e., x = 2, y = 2/3 ), but 
the added power of being able to pose simultaneous systems of equations can 
be useful in some circumstances. 
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13.6 CONCLUSION 
The following is a quick summary of how to use these various initialization 

techniques. The start and fixed attributes should be used to initialize 
internal variables within a component that have had the der operator applied 
to them, but not variables appearing in connectors. The ini t ial () function 
should be used in conjunction with a when clause to initialize the values of 
discrete variables. Finally, the analysisType () function is useful in the 
same way that the start and fixed attributes are useful, except that a wider 
variety of expressions can be used instead of fixed values. 

Ultimately, all of these techniques will generally lead to systems of equa­
tions that are still under-constrained which means additional equations will be 
required. In such cases, there are at least two possibilities. First, the tool 
being used will probably have some sophisticated capabilities for setting up 
and modifying the calculation of the initial conditions. Such facilities can be 
used to add the final few equations required or to try different combinations 
of equations. Furthermore, modifications of the start and fixed attributes 
can be made to add additional equations. Since initial conditions are typically 
specified at the system level, modifications to the start and fixed attributes 
for individual variables should be made from the system model using recur­
sive modifications. If the system is still under-constrained, be aware that tools 
are likely to pick variables, as needed, and introduce equations setting those 
variables equal to the value of their start attribute (even if fixed=false). 
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Chapter 14 

EFFICIENCY 

14.1 OBJECTIVE 
Once models have been developed and validated, it is natural to try and speed 

up the simulation of these models. In this chapter, we will describe techniques 
which can be used to reduce the simulation time of Modelica models. The goal 
will be to improve simulation time without having to sacrifice the clarity of the 
model description. 

14.2 USE EQUATIONS 
Because people are comfortable with assignment semantics, beginners often 

write models that look like: 

model ModelUsingAssignment 
parameter Real b, c, d; 
Real x, y, z; 

algorithm 
x .- b*b+c/2-(d*b-d*c)A. 5 ; 
y := (b+c)*xA2/(xA3+1); 
z := a*yA 2 +b*y+c; 

end ModelUsingAssignment; 

In some cases, an algorithm is used because the model was rewritten from 
a C or FORTRAN subroutine and the model developer wanted to preserve the 
spirit of the original subroutine. In other cases, an algorithm is used be­
cause the model developer does not trust tools to pelform symbolic (algebraic) 
manipulation on such relations. I 

I The semantics of algori thm sections prohibit tools from performing symbolic manipulation. 
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Using an algori thIn section when an equat ion section would be sufficient 
is bad for several reasons. First, the use of algori thIn sections makes sym­
bolic differentiation difficult for analysis tools. This is because a variable can 
be assigned to multiple times using the : = operator and it still only counts as 
a single assignment which complicates the task of deriving symbolic deriva­
tives. This may prevent tools from computing analytical Jacobians used in the 
integration process, which forces the Jacobians to be computed numerically (a 
considerably more expensive task). 

A second reason to avoid algori thIn sections in favor of equation sections 
is to allow an analysis tool to perform symbolic manipulation on the system of 
equations. Such manipulations can lead to significant performance increases 
and every effort should be made to allow such manipulations. 

14.3 AVOID UNNECESSARY EVENTS 
As mentioned in Chapter 7, any time a conditional expression changes value 

during a simulation, an event will be generated if the expression is not contained 
within the noEvent operator. Most of the time, these events are necessary but 
in some cases you can avoid them. For example, the following expression: 

der(x) = if y<O then 0 else yA2; 

will generate an event (i.e., stop the integrator and restart) at the point where y 
crosses zero. However, because the expression is continuous there is no need to 
actually have an event at that point. Using the noEvent operator (see Section 
7.5.4.3), we can avoid such an event. The expression would then be written as: 

der(x) noEvent(if y<O then 0 else yA2); 

14.4 TIME SCALES 
One factor that often results in slow simulations is when systems contain 

dynamics with substantially different time scales and these dynamics are cou­
pled. This effect is called stiffness. For example, stiffness is quite common in 
chemical systems because different chemical reactions, involving the same set 
of reactants, usually occur at dramatically different rates. This kind of stiffness 
is hard to avoid. 

An example of stiffness that can often be avoided is shown in Figure 14.l. 
At the top of Figure 14.1, you can see a collection of inertias which are rigidly 
connected while at the bottom we see the same inertias but with stiff springs and 
dampers between them. The difference between these two systems is that the 
bottom one has very high frequency oscillating modes because of the springs 
while the top one does not. 

walter.ponge@terra.com.br



Efficiency 289 

Figure 14.2 compares the two systems shown in Figure 14.1. The top plot 
compares the angular velocity of shaft 3, 13, for both cases while the bottom 
plot compares the simulation times. Note the high frequency oscillations in the 
angular velocity for the system connected by springs. The solver must work 
harder in order to resolve these oscillations. We can see the evidence of this 
when we compare the CPU time taken to solve each of the problems. Note that 
the system of rigidly connected inertias was solved in less than half the time of 
the one connected by springs. 

driver lNl to,"'" 11 12 13 

Jl[~tau 
period~{'} 

J=1 J=10 J=1 

driver 

I][~ ~:'"'" 
11 c1=1e+5 12 c2=1e+5 13 

period~{'} d~'O d~'O 

Figure 14.1. Comparison between a non-stiff (top) and stiff (bottom) system. 

Another factor that increases the CPU time needed for simulation is the 
presence of fluctuating time scales in the model. When this happens, the 
simulation solver must compensate for the change in time scales, and this will 
result in worse performance. Examples 7.7 and 8.2 are typical of models which 
will exhibit this problem. This is because they have non-linearities which 
dramatically change the time scale of the dynamic response. From a physical 
perspective, this is because both examples involve a collision and the simulation 
solver must resolve the details of the collision. This means the time steps have 
to be refined (i.e., made smaller) around the collision event. Ultimately, this 
leads to more integration steps and longer simulation time. 

14.5 PROVIDING JACOBIANS FOR FUNCTIONS 
In order to simulate a model described in Modelica, it is often necessary to 

differentiate certain expressions. For example, consider the following model: 

model JacobianExample 
Real x, y; 

equation 
der (y) = 2. 0 ; 
Y = f (x); 

end JacobianExample; 
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Figure 14.2. Comparison of simulation time and results for the systems in Figure 14.1. 

Based on the first equation, it is obvious that the solution for y(t) is 

y(t) = Yo + 2t (14.1) 

The question then remains, what is the solution for x(t)? The difficulty is 
that we are left with the implicit equation y(t) = f(x(t)). This is called an 
implicit equation because it does not allow us to calculate x(t) explicitly. In 
other words, without knowing anything about the function f, we cannot write 
an equation of the form: 

x(t) = ... (14.2) 

Instead, to solve for x, we must use an implicit method like Newton-Raphson 
iteration. Such methods need to be able to evaluate the partial derivatives of 
the function, f, with respect to its arguments. This matrix of partial derivatives 
is called a Jacobian. 

Most of the time, the lacobians are easy to compute because all the mathe­
matical operations involved are expressed in Modelica. This allows a tool to 
symbolically differentiate the function with respect to its arguments. However, 
in some cases the tool may not be able to derive a symbolic Jacobian for an 
algori thm or the function may be a wrapper for an external subroutine written 
in C or FORTRAN (as described in Section 5.7.8). 
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When a Jacobian is required but a tool is not able to derive a symbolic 
Jacobian, one of two things happens. One possibility is that the tool will 
compute the Jacobian numerically. This is done by evaluating the function with 
different argument values and then approximating a derivative from the results. 
This method has the drawback that it is both slow and not very accurate. The 
other possibility is that the developer of the function also writes a companion 
function that is accurate and inexpensive to evaluate. To prevent a tool from 
computing the Jacobian numerically2, an annotation can be used to indicate 
an analytical Jacobian is available. To demonstrate how this is done, consider 
the following function: 

This function can be written in Modelica as follows: 

function f 

input Real x; 

output Real y; 
algorithm 

y := 2*XA5+4*XA4-XA3+.5*XA2+x-6*XA.5; 
end f; 

(14.3) 

If we differentiate both sides of the equation, we get the following equation: 

dy = dx (10x4 + 16x3 - 3x2 + X + 1 - .]x) (14.4) 

In other words, we can evaluate the incremental change in y, dy, that results 
from an incremental change in x, dx, for a particular value of the input argument 
x. 

The rule for determining the order of the arguments to the Jacobian function 
is straightforward. First, all the input arguments to the original function are 
included. Then, a d-argument is included for all Real input arguments to the 
original function. Finally, additional d-arguments are included for each of the 
Real output arguments. 

Using the rules above, we can construct the Jacobian function, LJac, for 
our original function, f, as follows: 

function f Jac 
input Real x; 

input Real dx; 

output Real dy; 
algorithm 

dy := dx*(lO*x A4+16*xA3-3*xA2+x+1-3*xA-.5); 
end f_Jac; 

2 Assuming the tool was not able to compute an analytical Jacobian directly from the Modelica description. 
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Now that we have both of these functions, we need to have a way to indicate 
that the Jacobian of function f is computed by the function LJac. To do this, 
we must make a slight modification to our original function, f, as follows: 

function f 
input Real x; 
output Real y; 
annotation (derivative=f_Jac) ; II f_Jac provides the Jacobian 

algorithm 
y ._ 2*XA5+4*XA4-XA3+.5*XA2+x-6*XA.5; 

end f; 

It is possible to provide higher order derivatives for functions as well. 3 

Details on how to do this can be found in the Modelica language specification. 

14.6 CHOOSING THE PROPER INTEGRATION 
ROUTINE 

Another important factor in simulation performance is the choice of which 
solver to used. Different solvers perform differently on different types of 
problems. For example, explicit solvers work well for systems with a narrow 
range of time scales. On the other hand, implicit solvers work well for problems 
that have mixed time scales like the ones described in Section 14.4. 

A wide range of solvers should be tested for a given model to find out which 
one works best. With enough understanding of the underlying equations, it is 
possible to make a good educated guess about which solver will perform best. 

14.7 TOLERANCES 
Related to the issue of whIch solver to choose is the issue of what tolerances 

to use. Most integrators allow tolerances to be provided to guide them in making 
choices about how accurate the simulation results need to be. Tolerances can 
be given in different ways depending on the tool being used. For most tools, 
a single tolerance is used to characterize the allowable error in a simulation. 
The more accuracy needed by the user, the tighter (smaller) the tolerance. In 
some cases, it may be possible to specify or influence the tolerance used for 
particular variables. 

Ultimately, it is up to the analyst to decide what tolerances are appropriate. 
For some applications, for example, it may be reasonable to sacrifice some 
accuracy by loosening tolerances to make sure the simulation will run quickly. 
For other types of analysis, where accuracy is impOliant, it might be necessary 
to tighten tolerances to get a proper result. 

3Such higher order derivatives may be required as a result of index reduction. 

walter.ponge@terra.com.br



Efficiency 293 

Normally, experimenting with tolerances will help to find an optimal toler­
ance value where tightening the tolerances does not significantly change the 
result. In other words, it is possible to find the loosest possible tolerances that 
yield essentially the same result as would be achieved with tighter tolerances 
without having to incur the performance penalty of tighter tolerances. 

Keep in mind that, if the simulation results (i.e., the time varying solution 
trajectOlies) are very sensitive to the choice of tolerances, then such results 
should be carefully scrutinized. It is always a good idea to verify that the choice 
of tolerance is reasonable by tightening the tolerances until no further significant 
change in the results is observed. If the results do change significantly with the 
tolerance value, the results are probably dubious at best. If successively tighter 
tolerances do not eventually lead to a repeatable solution, then you should bring 
the results to the attention of your tool vendor because this is a very undesirable 
situation. Together, you should be able to determine whether this is a tool issue 
or a modeling issue. 

14.8 VARIABLE ELIMINATION 
One common technique traditionally used for improving simulation time, 

particularly for models written in C or FORTRAN, is to eliminate as many 
variables as possible. For example, suppose we expand the contribution from 
the One Port model (see Example 4.1) to get the following model: 

model Resistor "An electrical resistor" 
import Modelica.Electrical; 
import Modelica.Slunits; 
extends Electrical.Analog.lnterfaces.OnePort; 
parameter SIunits .Resistance R=300 "Resistance"; 

equation 
i*R = V; 

end Resistor; 

is equivalent to: 

model Resistor 
import Modelica.Slunits; 
import Modelica.Electrical; 
SIunits.Voltage V "Voltage from pin p to n"; 
SIunits.Current i "Current entering at pin p"; 
Electrical.Analog.lnterfaces.Pin p "Positive"; 
Electrical.Analog.lnterfaces.Pin n "Negative"; 
parameter SIunits .Resistance R=300 "Resistance"; 

equation 
v p.v - n.v; 
o = p.i + n.i; 
i = p.i; 
i*R = v; 

end Resistor; 
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The intermediate variables i and v were introduced by the OnePort model to 
make it easier to read the constitutive equations in models for components like 
resistors and capacitors. Model developers might be tempted to create their 
own resistor model as follows: 

model Resistor "An electrical resistor" 
import SI=Modelica.Slunits; 
parameter SI.Resistance R=300 "Resistance"; 
Modelica.Electrical.Analog.lnterfaces.Pin p, n; 

equation 
R*p.i = p.v-n.v; 
p.i + n.i = 0; 

end Resistor; 

The reasoning behind such a simplification is that it gets rid of a few variables 
(i.e., v and i). Of course, by doing this they do not take advantage of the com­
monality with the OnePort model, which also means that their Resistor 
model is now slightly more difficult to read and understand than it was before. 

As it turns out, such simplifications are unlikely to reduce simulation time. 
This is because the Modelica language has been built with the idea that analysis 
tools will parse Modelica models and make such simplifications as part of the 
analysis process. In other words, such simplifications are almost trivial for a tool 
to make when it has access to the complete Modelica behavioral model. Unlike 
simulation tools that rely on C or FORTRAN subroutines to describe model 
behavior, a Modelica tool is generally aware of all mathematical operations and 
what variables are involved, so it is able to make such simplifications. 

For this reason, it is best to focus on some of the other issues raised in this 
chapter and only resort to variable elimination if there is strong evidence to 
suggest that it actually has an effect on simulation performance. 

14.9 CONCLUSION 
Improving the performance of simulations is an art and this chapter only 

provides a few hints on ways to improve performance. Despite the fact that 
this discussion has only covered a few of the basic ideas, these ideas should be 
useful in reducing simulation times. Most of the other optimizations that are 
possible must be done by the creators of the tools, because they are directly 
related to the solution methods, rather than the way the models are expressed. 
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Appendix A 
History of Modelica 

Since the definition of CSSL in 1967 (Strauss et ai., 1967), most modeling 
languages have essentially been block oriented with inputs and outputs and the 
mathematical models have been defined as assignment statements for auxiliary 
variables and derivatives. Physical equations thus needed to be transformed to 
a form suitable for calculations. The only aid in transforming the equations to 
an algorithm for calculating derivatives was automatic sorting of the equations. 

Among the recent research results in modeling and simulation, two signifi­
cant concepts have been identified: 

• Object oriented modeling languages demonstrate how object oriented con­
cepts can be successfully employed to support hierarchical structuring, reuse 
and evolution of large and complex models independent from the application 
domain and specialized graphical formalisms. 

• Acausal modeling demonstrates that the traditional simulation abstraction 
- the input/output block - can be generalized by relaxing the causality 
constraints (i.e., by not committing ports to an 'input' or' output' role early) 
and that this generalization enables both more simple models and more 
efficient simulation while retaining the capability to include submodels 
with fixed input/output roles. 

The following is a list of several modeling languages that have explored 
these concepts in detail: 

• Dymola 

I Portions of this history are reprinted. with the permission of the Modelica Association. from the Modelica 
Specification and Modelica Rationale. 
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Dymola, as introduced already in 1978 (Elmqvist, 1978), is based on equa­
tions for acausal modeling, model types for reuse and submodel invocation 
for hierarchical modeling. The Dymola translator utilizes graph theoreti­
cal methods for causality assignment, for sorting and for finding minimal 
systems of simultaneous equations. Computer algebra is used for solving 
for the unknowns and to make simplifications of the equations. Constructs 
for hybrid modeling, including instantaneous equations, was introduced in 
1993 (Elmqvist et aI., 1993). Crossing functions for efficient handling of 
state events are automatically generated. A graphical editor is used to build 
icons and to make model compositions (Elmqvist et aI., 2001). Major ap­
plication areas include multi-body systems, drive-trains, power electronics 
and thermal systems . 

• Omola2 

Omola (Andersson, 1994 and Mattsson et aI., 1993) is an object-oriented 
and equation based modeling language. Models can be decomposed hier­
archically with well-defined interfaces that describe interaction. All model 
components are represented as classes. Inheritance and specialization sup­
port easy modification. Omola supports behavioral descriptions in terms 
of differential-algebraic equations (DAE), ordinary differential equations 
(ODE) and difference equations. The primitives for describing discrete 
events allow implementation of high level descriptions as Petri nets and 
Grafcet. An interactive environment called OmSim supports modeling and 
simulation: graphical model editor, consistency analysis, symbolic analy­
sis and manipulation to simplify the problem before numerical simulation, 
ODE and DAE solvers and interactive plotting. Applications of Omola and 
OmSim include chemical process systems, power generations and power 
networks. 

• NMF (The Neutral Model Format)3 

NMF (Sahlin et aI., 1996) is a language in the Dymola and Omola tradition 
and was first proposed as a standard to the building and energy systems 
simulation community in 1989. The language is formally controlled by a 
committee within ASHRAE (Am. Soc. for Heating, Refrigerating and Air­
Conditioning Engineers). Several independently developed NMF tools and 
model libraries exist, and valuable lessons on language standardization and 
development of reusable model libraries have been learned. Salient features 
of NMF are: good support for model documentation, dynamical vector and 
parameter dimensions (e.g., a model can calculate required spatial resolution 

"http://www.control.lth.se/cace/omsim.html 
3http://urd.ce.kth.se/ 
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for PDE) and full support for calls to foreign models (e.g., legacy or binary 
Fortran or C models) including foreign model event signals . 

• ObjectMath (Object Oriented Mathematical Modeling Language)4 

ObjectMath (Fritzson et aI., 1995) is a high-level programming environ­
ment and modeling language designed as an extension to Mathematica. 
The language integrates object-oriented constructs such as classes, and 
single and multiple inheritance with computer algebra features from Math­
ematica. Both equations and assignment statements are included, as well 
as functions, control structures, and symbolic operations from standard 
Mathematica. Other features are parameterized classes, hierarchical com­
position and dynamic array dimension sizes for multi-dimensional arrays. 
The environment provides a class browser for the combined inheritance and 
composition graph and supports generation of efficient code in C++ or For­
tran90. The user can influence the symbolic transformation of equations or 
expressions by manually specifying symbolic transformation rules, which 
also gives an opportunity to control the quality of generated code. The 
main application area so far has been in mechanical systems modeling and 
analysis. 

• U .L.M. - Allan 

The goal of ALLAN (Pottier, 1983 and Jeandel et aI., 1997) is to free en­
gineers from computer science and numerical aspects, and to work towards 
capitalization and reuse of models. This means acausal and hierarchical 
modeling. A graphical representation of the model is associated to the tex­
tual representation and can be enhanced by a graphical editor. A graphical 
interface is used for hierarchical model assembly. The discrete actions at 
the interrupts in continuous behavior are managed by events. Automatons 
(synchronous or asynchronous) are available on events. FORTRAN or C 
code can be incorporated in the models. Two translators toward the NEP­
TUNIX and ADASSL (modified DASSLRT) solvers are available. Main 
application domains are energy systems, car electrical circuits, geology and 
naval design. The language U.L.M. has been designed in 1993 with the same 
features as the ALLAN language in a somewhat different implementation 
(Jeandel et aI., 1996). It is a model exchange language linked to ALLAN. 
All aspects of modeling are covered by the textual language. There is an 
emphasis on the separation of the model structure and the model numer­
ical data for reuse purposes. It also has an interesting feature on model 
validation capitalization. 

4http://www.ida.liu.se/labs/pelab/omath! 
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• SIOOPS+5 

SIOOPS+ supports nonlinear multidimensional bond-graph and block-diagram 
models, which can contain continuous-time parts and discrete-time parts ( 
Breunese and Broenink, 1997). The language has facilities for automated 
modeling support like polymorphic modeling (separation of the interface 
and the internal description), multiple representations (component graphs, 
physical concepts like bond graphs or ideal physical models and (acausal) 
equations or assignment statements), and support for reusability (e.g., doc­
umentation fields, physical types). Currently, SIOOPS+ is mainly used in 
the field of mechatronics and (neural) control. It is the model description 
language of the package 20-SIM (Broenink, 1997).6 SIOOPS+ is the third 
generation of SlOOPS which started as a model description language for 
single-dimensional bond-graph and block-diagram models . 

• Smile7 

Smile is an object-oriented and equation-based modeling and simulation 
environment. The object-Oliented and imperative features of Smile's model 
description language are very similar to Objective-C. Equations may ei­
ther be specified symbolically or as procedures; external modules can be 
integrated. Smile also has a dedicated experiment description language. 
The system consists of translators for the above-mentioned languages, a 
simulation engine offering several numeric solvers, and components for 
interactive experimenting, visualization, and optimization. Smile's main 
application domain traditionally has been the simulation of solar energy 
equipment and power plants (Tummescheit and Pitz-Paal, 1997), but thanks 
to its object-oriented modeling features it is applicable to other classes of 
complex systems as well. An extension of Smile to support Modelica is 
planned (Ernst et aI., 1997). 

While these languages all demonstrated important new ideas, they also frag­
mented the the market for modeling languages. In 1996, Hilding Elmqvist 
initiated an effort to unify the concepts of these approaches into a single lan­
guage. Having started as an action within ESPRIT project Simulation in Europe 
Basic Research Working Group (SiE- WG) and then operating as Technical Com­
mittee 1 within Eurosim and Technical Chapter on Modelica within Society 
for Computer Simulation International, a working group made up of simu­
lation tool builders, users from different application domains, and computer 
scientists has made an attempt to unify the concepts and introduce a common 

5http://www.rt.el.utwente.nlJproj!modsim/modsim.htm 
6http://www.rt.el.utwente.nI/20sim 
7 http://www.first.gmd.de/smile/smileO .html 
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modeling language. This language, called Modelica, is intended for modeling 
within many application domains (for example: electrical circuits, multi-body 
systems, drive trains, hydraulics, thermodynamical systems and chemical sys­
tems) and possibly using several formalisms (for example: ODE, DAE, bond 
graphs, finite state automata and Petri nets). Tools which might be general pur­
pose or specialized to certain formalism andlor domain will store the models in 
the Modelica format in order to allow exchange of models between tools and 
between users. Much of the Modelica syntax will be hidden from the end-user 
because, in most cases, a graphical user interface will be used to build models 
by selecting icons for model components, using dialogue boxes for parameter 
entry and connecting components graphically. 

The work started in the continuous time domain since there is a common 
mathematical framework in the form of differential-algebraic equations (DAE) 
and there are several existing modeling languages based on similar ideas. There 
is also significant experience of using these languages in various applications. 
It thus seems to be appropriate to collect all knowledge and experience and 
design a new unified modeling language or neutral format for model rep­
resentation. The short range goal was to design a modeling language for 
differential-algebraic equation systems with some discrete event features to 
handle discontinuities and sampled systems. The design should be extendible 
in order that the goal can be expanded to design a multi-formalism, multi­
domain, general-purpose modeling language. 

The Modelica Association was formed in Feb. 5, 2000 and is now responsible 
for the design of the Modelica language. After 24 three-day meetings, Modelica 
1.4 was released December 15, 2000. 

A.I CONTRIBUTORS TO THE MODELICA 
LANGUAGE 

Bernhard Bachmann, Fachhochschule Bielefeld, Germany 
Fabrice Boudaud, Gaz de France, France 
Peter Bunus, MathCore, Linkoping, Sweden 
Jan Broenink, University of Twente, The Netherlands 
Dag Bruck, Dynasim, Lund, Sweden 
Hilding Elmqvist, Dynasim, Lund, Sweden 
Vadim Engelson, Linkoping University, Sweden 
Thilo Ernst, GMD-FIRST, Berlin, Germany 
Jorge Ferreira, University of Aveiro, Portugal 
Riidiger Franke, ABB Corporate Research Center, Heidelberg, Germany 
Peter Fritzson, Linkoping University, Linkoping, Sweden 
Pavel Grozman, Equa, Stockholm, Sweden 
Johan Gunnarsson, MathCore, Linkoping, Sweden 
Alexandre 1eandel, Gaz de France, France 

walter.ponge@terra.com.br



300 INTRODUCTION TO PHYSICAL MODELING WITH MODELICA 

Mats Jirstrand, MathCore, Linkoping, Sweden 
Kaj Juslin, VTT, Finland 
David Kagedal, Linkoping University, Sweden 
Clemens Klein-Robbenhaar, Germany 
Matthias Klose, Technical University of Berlin, Germany 
Pontus Lidman, MathCore, Linkoping, Sweden 
Nathalie Loubere, Gaz de France, France 
Sven Erik Mattsson, Dynasim, Lund, Sweden 
Pieter Mosterman, German Aerospace Center, Oberpfaffenhofen, Germany 
Henrik Nilsson, Linkoping University, Sweden 
Hans Olsson, Dynasim, Lund, Sweden 
Martin Otter, German Aerospace Center, Oberpfaffenhofen, Germany 
Tommy Persson, Linkoping University, Sweden 
Per Sahlin, Equa Simulation Technology Group, Stockholm, Sweden 
Levon Saldamli, Linkoping University, Sweden 
Andre Schneider, Fraunhofer Institute, Dresden, Germany 
Michael Tiller, Ford Motor Company, Detroit, United States of America 
Hube11us Tummescheit, Lund Institute of Technology, Sweden 
Hans Venghaluwe, University of Gent, Belgium Hans-Jiirg Wiesmann, ABB 
Corporate Research Ltd., Baden, Switzerland 

A.2 CONTRIBUTORS TO THE MODELICA 
STANDARD LIBRARY 

Peter Beater, University of Paderbom, Germany 
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Modelica Syntax 

This chapter includes the grammar for version 1.4 of the Modelica language. 
This grammar depends on the following lexical definitions: 

IDENT = NONDIGIT { DIGIT I NONDIGIT 
NONDIGIT = "_" I letters "a" to "z" 

I letters "A" to "Z" 
STRING = """ { S-CHAR IS-ESCAPE} """ 
S-CHAR = any member of the source character set 

except double-quote """ & backslash "\,, 
S-ESCAPE = " \ '" I ,,\,," I ,,\?" I "\\,, I "\a" 

I "\b" I "\f" I "\n" I "\r" I ,,\t" I "\v" 
DIGIT = 0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 I 8 I 9 
UNSIGNED_INTEGER = DIGIT { DIGIT } 
UNSIGNED NUMBER = UNSIGNED INTEGER - -

[ " " [UNSIGNED_INTEGER 1 1 
[ ( e IE) [ "+" I "-" 1 UNSIGNED_INTEGER 

The grammar definition is as follows: 

stored_definition 
wi thin [ name 1 ";" 1 

{ [final 1 class_definition ";" 

class definition 
[encapsulated [partial 1 

( class I model I record I block I connector 
I type I package I function 

IDENT class_specifier 

class specifier 
string_comment composition end IDENT 
"=" name [ array_subscripts 1 
[ class_modification 1 comment 
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composition 
element_list 

public element_list I protected element_list 
equation_clause I algorithm_clause } 
external [ language_specification 1 

[ external_function_call 1 ";" 
[ annotation decl ";" 1 1 

language_specification 
: STRING 

external function call - -
[ component_reference "=" 1 

IDENT "(" [ expression { "," expression } 1 ")" 

element list 
: { element "; " 

element 
import_clause 
extends clause 

annotation decl 

[ final 1 [inner I outer 1 

" .11 , 

( ( class_definition I component_clause ) 
I replaceable 

( class_definition I component_clause 
[ constraining_clause 1 ) 

import_clause 
import ( IDENT "=" name I name ["." "*"1 ) 
comment 

extends_clause 
: extends name [ class_modification 

constraining_clause 
: extends clause 

component_clause 
type-prefix type_specifier 
[ array_subscripts 1 component_list 

type_prefix 
[ flow 1 [discrete I parameter I constant 1 
[ input I output 

type_specifier 
: name 

component list 
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component_declaration 
{ "," component_declaration 

component declaration 
: declaration comment 

declaration 
: IDENT [ array_subscripts [ modification 1 

modification 
class modification 
"=" expression 
":=" expression 

class modification 

"=" expression 

"(,, { argument_list} ")" 

argument_list 
: argument { 

argument 

" " , argument } 

element modification 
I element_redeclaration 

element modification 
[ final 1 component_reference modification 
string_comment 

element redeclaration 
redeclare 

class definition I component_clausel ) 
replaceable 
( class_definition I component_clausel 
[ constraining_clause 1 ) 

component_clausel 
type_prefix type_specifier 
component_declaration 

equation_clause 
: equation { equation "." annotation decl 

algorithm_clause 

". " , 

: algori thIn { algori thIn II. " , annotation decl "; " 

equation 
( simple_expression "=" expression 
I conditional_equation_e 
I for clause e 
I connect clause 
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when clause e 
assert clause ) comment 

algorithm 
( component reference 

( ":=" expression I function_call) 
"(" expression_list ")" ":=" 
component_reference function_call 
condit ional_equat ion_a 
for clause a 
while clause 
when clause a 
assert clause ) comment 

conditional_equation_e 
if expression then { equation ";" } 
{ elseif expression then { equation 
[ else { equation ";" } 1 

". " , 

end if 

condit ional_equat ion_a 
if expression then { algorithm ";" } 
{ elseif expression then { algorithm 
[ else { algorithm ";" } 1 

end if 

for clause e 
for IDENT in expression loop 
{ equation ";" } 
end for 

for clause a 
for IDENT in expression loop 
{ algorithm ";" } 
end for 

while clause 
while expression loop 
{ algorithm ";" } 
end while 

when clause e 
when expression then 
{ equation ";" } 
end when 

when clause a 
when expression then 
{ algorithm ";" } 
{ elsewhen expression then 

". " , 

} } 

} } 
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{ algorithm 
end when 

connect clause 

". " , } } 

connect "(" connector ref 
connector ref "I" 

connector ref 

II 11 , 

IDENT [ array_subscripts 1 
[ "." IDENT [ array_subscripts 

assert clause 
assert "(" expression "," STRING { "+" STRING } "I" 

I terminate "(" STRING { " +" STRING } "I" 

expression 
simple_expression 

I if expression then expression else expression 

simple_expression 
logical_expression 
[ ":" logical_expression 

[ ":" logical_expression 1 1 

logical_expression 
: logical_term { or logical_term } 

logical_term 
: logical_factor { and logical_factor } 

logical_factor 
[ not 1 relation 

relation 
arithmetic_expression 
[ rel_op arithmetic_expression 

: "<" "<=11 ,,>/1 ">=" "==" 

arithmetic_expression 
[ add_op 1 term { add_op term } 

: "+" "_II 

term 
: factor { mul_op factor } 

mul_op 

"<>11 
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"*" I 11/11 

factor 
: primary [ "A" primary 

primary 
UNSIGNED NUMBER 
STRING 
false 
true 
component reference [ function_call ] 
"(" expression_list ,,)" 
"[" expression_list { ";" expression_list} "]" 
"{,, expression_list "},, 

name 
: IDENT [ "." name 

component_reference 
IDENT [ array_subscripts] 
[ "." component_reference] 

function call 
: "(" function_arguments ")" 

function_arguments 
expression_list 

I named_arguments 

named_arguments 
[named _ argumen t 

named_argument 

II " , named_argument }] 

: IDENT ":" expression 

expression_list 
: expression { II " , 

array_subscripts 
"[" subscript 

subscript 
": " 

I expression 

comment 
: string_comment 

string_comment 

expression 

" II , subscript} "]" 

annotation decl 

[ STRING { "+" STRING } ] 
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annotation decl 
: annotation class modification 
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Modelica Standard Library: Connectors 

C.I ELECTRICAL (ANALOG) 

within Modelica.Electrical.Analog.lnterfaces; 

connector PositivePin 
Modelica.Slunits.Voltage v "Potential at the pin"; 
flow Modelica.Slunits.Current i 

"Current flowing into the pin"; 
end PositivePin; 

connector NegativePin 
Modelica.Slunits.Voltage v "Potential at the pin"; 
flow Modelica.Slunits.Current i 

"Current flowing into the pin"; 
end NegativePin; 

partial model One Port "Component with two electrical pins" 
SIunits.Voltage v "Voltage drop between the two pins"; 
SIunits.Current i "Current flowing from pin p->n"; 
Interfaces.PositivePin p; 
Interfaces.NegativePin n; 

equation 
v p.v - n.v; 
o = p.i + n.i; 
i = p.i; 

end One Port ; 

partial model TwoPort "Component with two electrical ports" 
SIunits.Voltage vI "Voltage drop over the left port"; 
SIunits.Voltage v2 "Voltage drop over the right port"; 
SIunits.Current il "Current flowing from pl->nl"; 
SIunits.Current i2 "Current flowing from p2->n2"; 
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Interfaces.PositivePin pI 
Interfaces.NegativePin nl 
Interfaces.PositivePin p2 
Interfaces.NegativePin n2 

equation 
vI = pl.v - nl.v; 
v2 = p2.v - n2.v; 
o = pl. i + nl. i ; 
o = p2.i + n2.i; 
il = pl. i; 
i2 = p2.i; 

end TwoPort; 

C.2 BLOCK DIAGRAMS 

"Positive 
"Negative 
"Positive 
"Negative 

within Modelica.Blocks.Interfaces; 

pin of 
pin of 
pin of 
pin of 

the 
the 
the 
the 

left port"; 
left port"; 
right port"; 
right port"; 

connector InPort "Connector with Real inputs" 
parameter Integer n=l "Dimension of signal vector"; 
replaceable type Signal Type = Real "type of signal"; 
input SignalType signal [n] "Real input signals"; 

end InPort; 

connector Out Port "Connector with Real outputs" 
parameter Integer n=l "Dimension of signal vector"; 
replaceable type Signal Type = Real "type of signal"; 
output Signal Type signal [n] "Real output signals"; 

end OutPort; 

connector BooleanInPort "Connector with Boolean inputs" 
parameter Integer n~l "Dimension of signal vector"; 
input Boolean signal [n] "Boolean input signals"; 

end BooleanInPort; 

connector BooleanOutPort "Connector with Boolean outputs" 
parameter Integer n=l "Dimension of signal vector"; 
output Boolean signal [n] "Boolean output signals"; 

end BooleanOutPort; 

partial block SO "Single Output continuous control block" 
OutPort out Port (final n=l) "Output signal connector"; 

protected 
Real y=outPort.signal[l]; 

end SO; 

partial block MO "Multiple Output continuous control block" 
parameter Integer nout (min=l) = 1 "Number of outputs"; 
OutPort out Port (final n=nout) "Output signals connector"; 

protected 
Real y[nout]=outPort.signal; 
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end MO; 

partial block SISO "Single Input Single Output block" 
InPort inPort (final n=l) "Input signal connector"; 
Out Port out Port (final n=l) "Output signal connector"; 

protected 
Real u=inPort.signal[l); 
Real y=outPort.signal[l); 

end SISO; 

partial block SI2S0 "2 Single Input!l Single Output block" 
InPort inPortl (final n=l) "Input signal 1 connector"; 
InPort inPort2 (final n=l) "Input signal 2 connector"; 
OutPort out Port (final n=l) "Output signal connector"; 

protected 
Real ul=inPort1.signal[l) "Input signal 1"; 
Real u2=inPort2.signal[l) "Input signal 2"; 
Real y=outPort.signal[l) "Output signal"; 

end SI2S0; 

partial block MISO "Multiple Input Single Output block" 
parameter Integer nin=l "Number of inputs"; 
InPort inPort (final n=nin) "Input signals connector"; 
OutPort out Port (final n=l) "Output signal connector"; 

protected 
Real u [ :) =inPort. signal "Input signals"; 
Real y=outPort.signal[l) "Output signal"; 

end MISO; 

partial block MIMO "Multiple Input Multiple Output block" 
parameter Integer nin=l "Number of inputs"; 
parameter Integer nout=l "Number of outputs"; 
InPort inPort (final n=nin) "Input signals connector"; 
OutPort out Port (final n=nout) "Output signals connector"; 

protected 
Real u [:) =inPort. signal "Input signals"; 
Real y [ :) =outPort . signal "Output signals"; 

end MIMO; 

partial block BooleanSISO "Boolean SISO block" 
BooleanInPort inPort (final n=l) "Input signal connector"; 
BooleanOutPort outPort (final n=l) "Output signal connector"; 

protected 
Boolean u=inPort.signal[l); 
Boolean y=outPort.signal[l); 

end BooleanSISO; 

partial block BooleanSignalSource "Boolean source block" 
parameter Integer nout (min=l) 1 "# of Boolean outputs"; 
BooleanOutPort out Port (final n=nout) "Output connector"; 
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end BooleanSignalSource; 

C.3 TRANSLATIONAL MOTION 
within Modelica.Mechanics.Translational.Interfaces; 

connector Flange _ a 
Modelica.SIunits.Position s "absolute flange position"; 
flow Modelica.SIunits.Force f "cut force in flange"; 

end Flange_a; 

connector Flange b 
Modelica.SIunits.Position s "absolute flange position"; 
flow Modelica.SIunits.Force f "cut force in flange"; 

end Flange_b; 

partial model Rigid "Rigid translational component" 
SIunits.Position s "position of component center"; 
parameter SIunits.Length L=O "length of component"; 
Translational.Interfaces.Flange_a flange_a; 
Translational.Interfaces.Flange_b flange_b; 

equation 
flange_a.s 
flange_b.s 

end Rigid; 

s - L/2; 
s + L/2; 

partial model Compliant "Compliant translational component" 
Translational.Interfaces.Flange_a flange_a; 
Translational.Interfaces.Flange_b flange_b; 
SIunits.Distance s_rel "relative distance"; 
flow SIunits.Force f "force between flanges"; 

equation 
s_rel = flange_b.s - flange_a.s; 
flange_b.f = f; 
flange_a.f = -f; 

end Compliant; 

partial model AbsoluteSensor "Absolute sensor" 
Translational.Interfaces.Flange_a flange_a; 
Modelica.Blocks.Interfaces.OutPort out Port (final n=l); 

end AbsoluteSensor; 

partial model RelativeSensor "Relative sensor" 
Translational.Interfaces.Flange_a flange_a; 
Translational.Interfaces.Flange_b flange_b; 
Modelica.Blocks.Interfaces.OutPort out Port (final n=l); 

end RelativeSensor; 

C.4 ROTATIONAL MOTION 
within Modelica.Mechanics.Rotational.Interfaces; 
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connector Flange_a 
Modelica.Slunits.Angle phi "absolute rotation"; 
flow Modelica.Slunits.Torque tau "cut torque in flange"; 

end Flange _a; 

connector Flange_b 
Modelica.Slunits.Angle phi "absolute rotation"; 
flow Modelica.Slunits.Torque tau "cut torque in flange"; 

end Flange_b; 

partial model Rigid "Rigid rotational component" 
SIunits.Angle phi "Absolute rotation angle" 
Interfaces.Flange_a flange_a; 
Interfaces.Flange_b flange_b; 

equation 
flange_a.phi 
flange _b. phi 

end Rigid; 

phi; 
phi; 

partial model Compliant "Compliant rotational component" 
SIunits.Angle phi_reI (start=O) "Relative rotation angle"; 
SIunits.Torque tau "Torque between flanges"; 
Interfaces.Flange_a flange_a; 
Interfaces.Flange_b flange_b; 

equation 
phi_reI = flange_b.phi - flange_a. phi; 
flange_b. tau tau; 
flange_a. tau = -tau; 

end Compliant; 

partial model AbsoluteSensor "Absolute sensor" 
Interfaces.Flange_a flange_a; 
Modelica.Blocks.lnterfaces.OutPort outPort(final n=l); 

end AbsoluteSensor; 

model RelativeSensor "Relative sensor" 
Interfaces.Flange_a flange_a; 
Interfaces.Flange_b flange_b; 
Modelica.Blocks.lnterfaces.OutPort outPort(final n=l); 

end RelativeSensor; 
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Modelica Standard Library: Common Units 

D.I TIME AND SPACE 
wi thin Mode I i ca ; 

package SIuni ts 
type Angle = Real (final quantity= "Angle " , final unit="rad", 

displayUnit="deg") ; 
type SolidAngle = Real (final quantity="SolidAngle", 

final unit="sr"); 
type Length = Real (final quantity="Length", final unit="m"); 
type Position = Length; 
type Radius = Distance; 
type Diameter = Distance; 
type Area = Real (final quantity="Area", final unit="m2"); 
type Volume = Real (final quantity= "Volume " , 

final uni t= "m3" ) ; 
type Time = Real (final quantity="Time", final unit="s"); 
type AngularVelocity = Real (final unit="rad/s", 

final quantitY="AngularVelocity", 
displayUnit="rev/min") ; 

type AngularAcceleration = Real (final unit="rad/s2", 
final quantity="AngularAcceleration"); 

type Velocity = Real (final quantity="Velocity", 
final uni t= "m/ s") ; 

type Acceleration = Real (final quantity="Acceleration", 
final unit="m/s2"); 

end SIunits; 

D.2 PERIODIC PHENOMENON 
within Modelica; 
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package SIunits 

type Period = Real (final quantity="Time", final unit="s") ; 
type Frequency = Real (final quantity="Frequency", 

final unit="Hz"); 
type AngularFrequency = Real (final unit="s-l", 

final quantity="AngularFrequency"); 
type AmplitudeLevelDifference = Real (final unit="dB", 

final quantity="AmplitudeLevelDifference"); 
type PowerLevelDifference = Real (final unit="dB", 

final quantity="PowerLevelDifference"); 

end SIunits; 

D.3 MECHANICS 

within Modelica; 

package SIunits 

type Mass = Real (final quantity="Mass", 
final unit="kg", min=O); 

type Density = Real (final quantity="Density", 
final unit="kg/m3", displayUnit="g/cm3", min=O); 

type Momentum = Real (final quantity="Momentum", 
final unit="kg.m/s"); 

type AngularMomentum = Real (final quantity="AngularMomentum", 
final unit="kg.m2/s"); 

type MomentOfInertia = Real(final quantity="MomentOfInertia", 
final unit="kg.m2"); 

type Inertia = MomentOfInertia; 
type Force = Real (final quantity="Force", final unit="N") ; 
type Torque = Real (final quantity="Torque", 

final unit="N.m"); 
type Pressure = Real (final quantity="Pressure", 

final unit="Pa", displayUnit="bar"); 
type AbsolutePressure = Pressure (min=O); 
type Stress = Real (final unit="Pa"); 
type Strain = Real (final quantity="Strain", final unit="l"); 
type ModulusOfElasticity = Stress; 
type CoefficientOfFriction = Real (final unit="l", 

final quantity="CoefficientOfFriction"); 
type DynamicViscosity = Real (final unit="Pa. s", 

final quantity="DynamicViscosity", min=O); 
type KinematicViscosity = Real (final unit="m2/s", 

final quantity="KinematicViscosity", min=O); 
type Work = Real (final quantity="Work", final unit="J"); 
type Energy = Real (final quantity="Energy", final unit="J"); 
type PotentialEnergy = Energy; 
type KineticEnergy = Energy; 
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type Power = Real (final quantity="Power", final unit="W"); 
type Efficiency = Real (final quantitY="Efficiency", 

final uni t=" 1", min=O); 
type MassFlowRate = Real (final quantity= "MassFlowRate " , 

final unit="kg/s"); 
type VolumeFlowRate = Real (final quantity= "VolumeFlowRate " , 

final unit="m3/s"); 

end SIunits; 

D.4 THERMODYNAMICS 

within Modelica; 

package SIuni ts 

type ThermodynamicTemperature = Real (final unit="K", 
final quantity="ThermodynamicTemperature" , 
displayUnit="degC") ; 

type Temperature = ThermodynamicTemperature; 
type CelsiusTemperature = Real (final unit="degC", 

final quantity="CelsiusTemperature"); 
type Heat = Real (final quantity="Energy", final unit="J"); 
type HeatFlowRate = Real (final quantity="Power", 

final unit="W"); 
type ThermalConductivity = Real (final unit="W/ (m.K)", 

final quantity="ThermalConductivity"); 
type CoefficientOfHeatTransfer = Real (final unit="W/ (m2 .K)", 

final quantity="CoefficientOfHeatTransfer"); 
type ThermalResistance -= Real (final unit="K/W", 

final quantity="ThermalResistance"); 
type ThermalConductance = Real (final unit="W/K", 

final quantity="ThermalConductance"); 
type ThermalDiffusivity = Real (final unit="m2/s", 

final quantity="ThermalDiffusivity"); 
type HeatCapacity = Real (final unit="J/K", 

final quantity= "HeatCapacity") ; 
type SpecificHeatCapacity = Real (final unit="J/ (kg.K)", 

final quantity="SpecificHeatCapacity"); 
type RatioOfSpecificHeatCapacities = Real (final unit="l", 

final quantity="RatioOfSpecificHeatCapacities"); 
type Entropy = Real (final quantity="Entropy" , 

final unit="J/K"); 
type SpecificEntropy = Real (final unit="J/ (kg.K)", 

final quantity="SpecificEntropy"); 
type InternalEnergy = Heat; 
type Enthalpy = Heat; 
type SpecificEnergy = Real (final unit="J/kg", 

final quantity="SpecificEnergy"); 
type SpecificInternalEnergy = SpecificEnergy; 
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type SpecificEnthalpy = SpecificEnergy; 

end SIunits; 

D.S ELECTRICITY 
within Modelica; 

package SIunits 

type ElectricCurrent = Real (final unit="A", 
final quantity="ElectricCurrent"); 

type Current = ElectricCurrent; 
type ElectricCharge = Real (final unit="C", 

final quantity="ElectricCharge"); 
type Charge = ElectricCharge; 
type ElectricPotential = Real (final unit="V", 

final quantity="ElectricPotential II) ; 
type Voltage = ElectricPotential; 
type PotentialDifference = ElectricPotential; 
type ElectromotiveForce = ElectricPotential; 
type Capacitance = Real (final unit="F", min=O, 

final quantity="Capacitance"); 
type Inductance = Real (final uni t= "H", min=O, 

final quantity="Inductance"); 
type Resistance = Real (final unit="Ohm", min=O, 

final quantity="Resistance"); 
type Resistivity = Real (final quantity="Resistivity", 

final unit="Ohm. mil) ; 
type Conductivity = Real(final quantity="Conductivity", 

final unit="S/m"); 
type Impedance = Resistance; 
type Conductance = Real (final unit="S", min=O, 

final quantity="Conductance"); 

end SIunits; 

D.6 PHYSICAL CHEMISTRY 
within Modelica; 

package SIunits 

type AmountOfSubstance = Real (final uni t= "mol ", min=O, 
final quantity="AmountOfSubstance"); 

type MolarMass = Real (final quantity="MolarMassII , 
final unit="kg/mol"); 

type MolarVolume = Real (final quantity="MolarVolume", 
final unit="m3/mol"); 

type Concentration = Real (final quantity="Concentration", 
final unit="mol/m3"); 
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type MassFraction = Real (final quantity="MassFraction", 
final unit="l"); 

type MoleFraction = Real (final quantity="MoleFraction", 
final uni t = " 1") ; 

type ChemicalPotential = Real (final unit="J/mol", 
final quantity="ChemicalPotential"); 

type PartialPressure = Real (final unit="Pa", min=O, 
displayUnit="bar", final quantity="Pressure"); 

type ActivityCoefficient = Real (final unit="l", 
final quantity="ActivityCoefficient"); 

type StoichiometricNumber = Real (final unit="l", 
final quantity="StoichiometricNumber"); 

end SIunits; 
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AppendixE 
Modelica Standard Library: Constants 

wi thin Mode 1 i ca ; 

package Constants 
II Mathematical constants 
constant Real e=Modelica.Math.exp(1.0); 
constant Real pi=2*Modelica.Math.asin(1.0); 

II Machine dependent constants 
constant Real eps=l.e-15 

"Biggest number such that 1.0 + EPS = 1.0"; 
constant Real small=l.e-60 "Smallest Real number"; 
constant Real inf=l. e+60 "Biggest Real number"; 
constant Integer Integer_inf=2147483647 

"Biggest Integer number"; 

II Constants of nature 
constant Modelica.SIunits.Velocity c=299792458 

"Speed of light inside a vacuum"; 
constant Modelica.SIunits.Acceleration g_n=9.80665 

"Standard acceleration of gravity on earth"; 
constant Real G(final unit="m3/(kg.s2)") = 6.673e-11 

"Newtonian constant of gravitation"; 
constant Real h(final unit="J. s") 6. 62606876e-34 

"Planck constant"; 
constant Real k (final unit="J/K") = l. 3806503e-23 

"Boltzmann constant"; 
constant Real R(final unit="J/(mol.K)") = 8.314472 

"Molar gas constant"; 
constant Real sigma(final unit="W/(m2.K4)") = 5.670400e-8 

"Stefan-Boltzmann constant"; 
constant Real N_A(final unit="l/mol") = 6.0221419ge23 

"Avogadro Constant"; 
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constant Real mue ° (final unit="N/A2") = 4*pi*l.e-7 
"Magnetic Constant"; 

constant Real epsilon_O (final unit="F/m") = 1/ (mue_O*c*c) 
"Electric Constant"; 

constant Modelica.Slunits.CelsiusTemperature T zero=-273.15 
"Absolute zero temperature"; 

end Constants; 
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AppendixF 
Modelica Standard Library: Math Functions 

F.1 GEOMETRIC FUNCTIONS 
• Sine: y = Modelica. Math. sin (u) i 

• Cosine: y = Modelica. Math. cos (u) i 

. ..J- (2m-l)*7r 
• Tangent:y = Model~ca.Math.tan(u)iwhereuT 2 . 

F.2 INVERSE GEOMETRIC FUNCTIONS 
• Inverse sine: y = Modelica. Math. asin (u) i where -1 ~ u ~ 1. 

• Inverse cosine: y = Modelica.Math.acos (u) i where-1 ~ u ~ 1. 

• Inverse tangent: y = Modelica.Math.atan(u) i 

• Four quadrant inverse tangent: y = Mode 1 i ca. Ma t h . at an2 (u, v) i 

F.3 HYPERBOLIC GEOMETRIC FUNCTIONS 
• Hyperbolic sine: y = Modelica. Math. sinh (u) i 

• Hyperbolic cosine: y = Modelica. Math. cosh (u) i 

• Hyperbolic tangent: y = Modelica. Math. tanh (u) i 

F.4 EXPONENTIAL FUNCTIONS 
• Exponential, base e: y = Modelica.Math.exp (u) ; 

• Natural logarithm: y = Modelica.Math.log(u) i whereu > 0 

• Base 10 logarithm: y = Modelica.Math.loglO (u); whereu > 0 
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GLOSSARY 
acausal An approach to modeling where no assumptions are made about 

causality when developing component models. This leads to be reusability 
of the developed models because they contain fewer assumptions about the 
context of their use. 

attributes An attribute is associated with quantities such as parameters and 
variables. Attributes provide additional information about that quantity 
such as upper and lower bounds or physical units. 

across variables Variables which represent the "driving force" across a com­
ponent (see Section 1.3.2 for more details). 

algebraic loop An algebraic loop is a coupled, simultaneous system of equa­
tions. As a result, unlike a conventional block diagram it is not possible to 
solve such a system one variable at a time. 

black box A model for which the implementation details are hidden. 

block diagram Block diagrams are used to explicitly describe the set of math­
ematical operations that must be performed in order to compute a set of 
unknowns (outputs) from a set ofknowns (inputs). Furthermore, the blocks 
in such a diagram may have their own internal states as well (e.g., an 
integrator block). 

blocks Components with clearly defined inputs and outputs used to create 
block diagrams. 

causality Causality is the cause and effect relationship between components 
in a complete physical system. In general, it is not possible to determine 
the causality of individual components. For example, does the voltage drop 
across a resistor result from a current going through the resistor or is it the 
current that results from a voltage drop? It is only once a complete system 
of components has been constructed that the causality can be determined. 

coefficient of restitution A measure of how much momentum is conserved in 
an inelastic collision. 

component A component is an instance of a model. So, for a given model 
(e.g .. a resistor model), the actual instances (e.g .• the resistors) would be 
components. In object-oriented programming, a component is analogous 
to an object. 

conservation equations see conservation law 

conservation laws Conservation laws state that the amount of some quantity 
(e.g .. energy or mass) does not change over time. This quantity is often 
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called a conserved quantity. Conservation laws are used to derive conserva­
tion equations which explicitly state that the time derivative ofthe conserved 
quantity is zero. 

conservative system A system in which some quantity (e.g., energy or mass) 
is conserved. 

constitutive equations Relationships between the potentials (i.e., across vari­
ables) in a system and the flow of conserved quantities (i.e., through vari­
ables). Examples include Hook's law, Ohm's law, Fourier's law, Newton's 
law, etc. 

control systems Control systems use information from sensors to determine 
how actuators should be used to achieve a desired response from a dynamic 
system. 

control volume A control volume is the thermodynamic equivalent of a free 
body diagram in mechanics. A control volume contains energy and mass 
(generally in liquid or gaseous form). Any change in mass or energy must 
be due to some external influence (e.g., work, flow). 

DAE see differential-algebraic equations 

declaration When a component is instantiated (either in a system or inside 
another component), that is called a component declaration. 

definition The description of all variables, parameters and equations associ­
ated with a model is called the model definition. 

derived types A type which is created by specializing one of the intrinsic 
types (i.e., Real, Integer, String and Boolean). 

diagram view The view of a model from the "inside". This view reveals all 
internal subcomponents and connections. 

differential-algebraic equations Systems of equations that involve both dif­
ferential and algebraic equations. Such systems have the general mathe­
matical form f(x, x, t) = O. 

discrete variables Variables with values that are piecewise constant with re­
spect to time. 

domain neutral Something is domain neutral if it does not exhibit a bias 
toward a specific engineering domain. 

encapsulation The ability to hide the details of a component. Ideally, an 
understanding of these details should not be necessary. In this way, the 
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amount of detail which must be understood in order to comprehend a com­
plete system is reduced. 

event Something which occurs instantaneously at a specific time or when a 
specific condition occurs. 

extensive property An extensive property is a material property which is 
related to the amount of mass present. Energy is an extensive property 
because if you remove half the mass in a homogeneous mixture, you will also 
remove half the energy. For most extensive properties there are associated 
intensive properties (e.g., specific internal energy). see intensive property 

explicit equation An equation where all the solution variables andior their 
derivatives can be solved explicitly (i.e., they are the only term on the left 
hand side of an equation). An example of an explicit equation is x = f(x, t). 
see implicit equation 

first principles Modeling approach based on using conservation laws (see 

Kirchhoff's current law). 

flow variables see through variables 

free body diagram A diagram which shows all state information (e.g., orien­
tation, position) for a given component and all possible external influences 
(e.g., torques, forces). 

Kirchhoff's current law The sum of all cunent at a point must be zero. 

hybrid system A system involving both continuous and discrete behavior. 

icon view This view of a model from the "outside". This view attempts to 
hide the internal details and present a "black-box" representation which 
only includes the external connections of the model. 

implicit equation An equation in which the solution variable does not appear 
by itself on the left hand side of an equation (e.g., f (T) = 0). see explicit 
equation 

initial value problem A mathematical problem which is solved by starting 
from a set of initial conditions and then integrating a system of differential 
equations. 

intensive property An intensive property is a material property that is normal­
ized to the amount of material. For example, temperature and concentration 
are both intensive properties. If you take mixture of uniform temperature or 
concentration and you remove half the mixture the remaining mixture will 
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continue to have the same temperature and concentration. see extensive 
property 

interface Generally, the interface of an object consists of all object details 
visible externally. In Modelica, this would usually include parameters and 
connectors. Recognizing that several model types have common interfaces 
leads to the development of partial models like the one shown in Example 
4.1. 

instance When a declaration involving a model or type is made, an instance is 
created. This instance has its own set of parameters and attributes separate 
from otherinstances ofthe same model or type. In other words, Res i s tor 
is a model and Rl could be specific instance of a Resistor with its own 
value for resistance. 

left limit The limit of any time varying value when approached from "the left" 
(i.e., values of time lower than the time at which the limit is being taken). 

local variable A variable which is only visible to the entity to which it belongs. 
For example, a local variable in a function is only visible to that function. 

model A model is a behavioral description. For example, a model of a resistor 
is described by Ohm's law. The model is a description of resistor behavior 
not the resistor itself. In other words, it is important to separate the idea of a 
resistor model (i.e., V = I *R) from the resistorinstances (components with 
different values of resistance, R). If you are familiar with object-oriented 
programming, a model is analogous to a class. 

model developer A person who is responsible for creating models. For large 
simulation projects the model developer, model user and end user may be 
different people. 

modification Modifications are used to override the defaults in a declaration. 
Modifications typically involve overriding values for attributes of a type or 
instance. 

network A collection of components connected together. Often, energy flows 
between components in networks according to the constitutive equations of 
the components. 

node In networks, nodes are the points at which components are connected. 
The large black circles in Figure 3.1 are nodes in that particular network. 

package A package refers to a collection of Modelica models, which are 
meant to be used together. For example, an electrical package would likely 
include definitions of resistor, capacitor and inductor models. 
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package hierarchy A diagram showing what is contained within a package. 
In object-oriented terminology, this is a diagram showing the "has-a" rela­
tionships. see inheritance hierarchy 

parameter expression An expression which does not change with time. 

partial differential equation An equation which contains derivatives with re­
spect to spatial dimensions and possibly (although not always) derivatives 
with respect to time. 

PDE see partial differential equation 

plant model A plant model is the model of the physical system (and its asso­
ciated dynamic response) for which a controller is designed. Sensors and 
actuators usually define the boundary between the controller and the plant. 

physical modeling This type of modeling is characterized by a first principles 
approach to formulating behavioral equations. Physical modeling refers to 
what control system engineers call "plant modeling". 

physical types Physical types give detailed information about the physical 
significance of quantities. For example, the voltage in a circuit is usually 
represented by the Vol tage type contained in the Modelica. Sruni ts 
package. In this way, additional information (e.g., units or limits) can be 
associated with that quantity. In this way, variables are treated as more than 
just numbers with a value. 

quantity A quantity refers to those entities which have a value (e.g., the 
resistance of a resistor). In Modelica, all values are either real, integer, 
string or boolean. Furthermore, a quantity might have different levels of 
variability (i.e., variables, parameters or constants) and it might be a scalar 
or an array. 

schematic A schematic is a graphical representation of a system containing 
individual components and their connections two each other. 

semantics The semantics of the Modelica language define what the intent of 
a syntactical construct is. In essence, the semantics of the language are the 
"meaning" that gets associated with keywords, operators and so on. 

short definition A definition which is so similar to an existing definition that 
it can be defined in terms of modifications on the existing definition. 

side effects A function is said to have side effects if it store information to be 
used during subsequent invocations. Externally, such side effects cause the 
function to return different results even though the same inputs are passed 
in. 
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solver The software responsible for solving the system of hybrid DABs which 
result from a Modelica model. 

state space form An equation system is said to be in state space form when it 
is represented as: 

x Ax+Bu 
y Cx+Du 

stiffness A property of systems with coupling between fast dynamics and slow 
dynamics. This property can have a large impact on performance and effects 
some solvers more than others. 

subcomponent A subcomponent is used to refer to components which are 
contained within other components. For example, a resistor might be a sub­
component of another component like an electrical circuit. Furthermore, the 
electrical circuit could be a subcomponent of an appliance. Subcomponents 
are used to form hierarchical models. In object-oriented programming, a 
subcomponent would be a member object. 

symbolic manipulation Using algebra to rearrange equations into a form that 
is easier to solve or results in more efficient simulation. 

system model A system model is a model which is completely self-contained. 
In other words, it does not have any external connections and it represents 
a complete model. 

through variables Variables which represent quantities flowing through a 
component (see Section 1.3.2 for more details). 

type Modelica is a strongly typed language. Every entity in Modelica has 
a type. Each quantity has a type indicating whether it is a floating point, 
integer or boolean. Each component has a type indicating what model it is 
an instance of. 

variability The variability of a quantity is an indication how free that quantity 
is to change (see Section 2.5.2.3). 

variability qualifier A qualifier that restricts how a variable may change. The 
variability qualifiers in Modelicaare constant, parameter and discrete. 
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electrical, 22 
hydraulic, 25, 26 
pendulum, 17 
planar motion, 17, 18,20 

exp function, 323 
explicit equation, 22,44,95, 189,200,259,290 

definition, 326 
expressions, 30. 31 

conditional, 30 
derivatives of, 43 
function calls, 31 
if expressions, 11 
ternary, 11 

extends, 77, 78. 85, 85. 86-88. 116, 117,272-
274 

extensive property, 135 
definition, 326 

external, 101, 110, 110 
external functions. see function, external 
external subroutines, see function, external 

F, 
false. 30. 30, 31, 159. 183, 185, 186,283,286 
Field-Karas-Noyes mechanism, 133 
fill function, 123, 152 
final,82.83,84,88.276 
first principles, 10 

definition, 326 
fixed attribute, 34, 34, 282. 283, 285, 286 
floor function. 106, 106. 107, 186 
flow, 42, 42, 47, 58, 61, 63, 66, 114. 135, 136, 

267 
flow variables. 43. 47 

definition, 326 
for, 95,95. 96. 104. 113, 123. 145, 147. 148 
FORTRAN subroutines. see function, exter­

nal 
free body diagram, 41 

definition, 326 
fully qualified name, 217 
function, 91, 91, 92-95, 98, 101-105, 116. 

117,135,221,222,268,274 
arguments, 95 
external. 100, 102 
invoking, 94, 95, 102, 104 
named arguments, 95 

functions 

Index 339 

abs, 106, 106, 183, 186 
acos, 323 
analysisType, 105, 105.284-286 
asin, 323 
assert.93,93,95,185.200,275 
atan, 323 
atan2, 323 
ceil. 106, 106, 186 
change, 184. 184 
cos, 323 
cosh, 323 
creating, 92 
cross, 152 
diagonal, 152 
di v, 107, 107. 186 
edge, 166, 184. 184 
expo 323 
fill, 123, 152 
floor, 106, 106, 107, 186 
identity, 152 
initial, 174, 176, 185, 185,283.284, 

286 
integer. 106. 106, 107, 186 
linspace. 152 
log, 323 
10g10, 323 
matrix. 152 
max. 152 
min, 152 
mod, 107, 107. 108, 186 
ndims, 152 
ones, 152 
outerProduct. 152 
product, 152 
rem, 107, 107, 186 
sample, 169. 184, 184, 185 
scalar, 152 
sign, 106, 106. 186 
sin, 323 
sinh, 323 
size.93,95.96. 144. 145, 152 
skew, 152 
sqrt. 106. 106. 150 
sum. 152 
symmetric, 152 
tan. 323 
tanh. 323 
terminal. 185, 185 
terminate, 185, 185,251 
transpose, 152 
vector. 152 
vectorizing. 149 
zeros, 152 

G. 
gravity. 18, 25, 28 
ground,45 
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H. 
Hagen-PoiseuiJle relationship. 25 
hierarchical 

connections. 74 
propagation. 73 

Hodgkin-Huxley. 203 
hybrid system, 155 

definition. 326 
hydraulics. 25. 26 

I. 
icon view. 72 

definition. 326 
icons. 72 
identi ty function. 152 
if. 24.24. 92. 103.113.174.178-180.206-208 

expression. 207. 208 
statement. 103.207.208 

implicit equation. 31. 200. 209. 211. 290 
definition. 326 

import. 54. 217. 217. 218. 219 
incompressible flow. 25 
inductor. 22. 23 
information hiding. 143 
inheritance. 69 
initial function. 174. 176. 185. 185. 283. 

284.286 
initial value problem. 182 

definition. 326 
inner. 222. 223. 223. 224. 225 
inner product. 30 
input. 50. 54. 62. 62. 63. 65. 66. 74. 91. 92. 

95. 102.291 
input signals. 54 
instance. 39 

definition. 327 
instance hierarchy. 213 
Integer. 29. 35.106,107.145.155.156.171. 

179,184.325 
integer function. 106. 106. 107. 186 
integration. 51 
intensive property. 135 

definition. 327 
interface, 75. 76. 89. 143. 200. 232. 245. 267. 

273.296 
definition. 327 

interpolation. 94. III 

J. 
Jacobian. 288. 289 

K. 
KCL.61 

keyword 
algorithm. 32. 91.103. 103. 147. 148. 

173. 178. 180. 186.242.287.288. 
290 

annotation, 225. 225. 226, 227. 291 
block, 49. 50. 65, 75,86.91,200,274 
connect. 46. 47. 61. 61, 62. 66, 74. 135. 

222 
connector, 39. 42. 47. 50. 54. 57. 58, 

61, 61, 62. 67. 69,86.87.114. 131. 
135-138.179.220.245.272.273 

constant. 19. 29. 29. 34. 84.214.329 
discrete, 173, 179. 179.284.329 
else. 103. 103.208 
elseif. 103. 103.208 
elsewhen. 181, ill 
encapsulated. 218. 218. 219. 269 
end. 28. 28. 86 
equation. 19. 24. 31. 31. 32. 61.91. 

103. 147. 148. 178. 180,202.208. 
288 

extends. 77. 78. 85. 85. 86-88. 116. 
117,272-274 

external. 101, 110. 110 
false, 30. 30. 31. 159. 183. 185. 186, 

283.286 
final. 82. 83. 84.88, 276 
flow. 42. 42. 47, 58. 61. 63. 66. 114.135, 

136.267 
for, 95. 95.96, 104. 113. 123. 145. 147. 

148 
function. 91. 91. 92-95, 98. 101-105. 

116,117.135.221.222,268.274 
if. 24. 24. 92. 103. 113, 174. 178-180. 

206-208 
import. 54. 217, 217. 218.219 
inner, 222. 223, 223,224.225 
input. 50. 54, 62. 62. 63, 65. 66. 74, 91. 

92.95. 102.291 
model. 19.28. 28.50.65.80.82,86-88, 

91.167,214,218,269.274.282 
outer. 222.223. 223. 224. 225 
output, 50, 54, 62. 62, 63. 65, 91. 92. 

102. 105,291 
package. 13. 24, 27. 70. 71. 135. 141. 

203,214.215.217. 218. 220. 244. 
265.265.266-269.271.272.274-
277 

parameter, 19.29. 29. 34,62.84.99. 
137.140.144.273,329 

partial. 70. 70. 71, 75.86,87. 87,135. 
167.200.223.266-269.273.274 

protected. 93, 93.102, 116. 117. 140. 
143. 144 

public. 102 
record. 86. 97. 97. 98. 99. 102. 108. 

113.179.214.267.274 
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redeclare, 78, 82. 82, 88.167,170 
replaceable, 77, 79, 80, 88, 167,201, 

251,274 
true, 30, 30, 31, 104. 159, 166. 184-186 
type. 86. 86, 147.267.274 
when. 164-166. 169. 173-175, 177-180. 

180, 181. 182, 184. 186, 208, 251. 
284.286 

while. 93. 104. 104, 113 
within. 277, 277 

Kirchhoff's current law.ll. 22. 61, 326 
definition. 326 

L. 
languages 

Ada. 69 
C.l00 
C++, 69. 70 
Perl, 104 
Tel. 104 

left limit. 182 
definition. 327 

linspace function, 152 
local type definitions. 80, 82. 88. 97 
local variables. 93. 93 

definition. 327 
log function. 323 
10g10 function. 323 
looping, 93. 95 
lumped, 125 

M. 
MA1LAB, 5, 148, 149 
matrices 

concatenation. 149 
construction. 149 
MA1LAB notation. 148 

matrix function. 152 
max attribute. 35, 35 
max function. 152 
min attribute. 35. 35. 64. 275 
min function. 152 
mod function, 107. 107. 108. 186 
model. 17 

definition. 327 
model. D. 28. 28. 50. 65. 80. 82. 86-88. 91. 

167.214,218.269,274.282 
partial. 70. 75 
creating. 28 

model developer. 24. 31, 62, 82. 85. 143. 179. 
182.209.274 

definition. 327 
Modelica 

Association. i. 5 
Standard Library. 13. 20. 24. 27-29. 31, 

35. 36. 47-49. 53-57. 59-63. 65. 

Index 341 

67.69,70.72,75.76.83. 89, 131, 
156, 157. 167, 185. 193. 214, 220. 
236.244.249.250.252.263.265-
270.272,275.278.328 

Web Site. 13 
Modelica 

Blocks. 54-56. 61-63. 72. 75. 76 
Continuous. 55 
Continuous. Integrator, 55 
Continuous.TransferFunction, 

55 
Interfaces. 54.156 
Interfaces. InPort.54 
Interfaces.OutPort.54 
Math. 55 
Ma th . Add. 55 
Ma th. Feedback. 55 
Ma th . Gain. 55 
Sources, 55 
Sources. Sine, 55 

Constants 
pi. 28. 65 

Electrical 
Analog. 70.270 

Icons. 266 
Example. 269 

Math. 31 
sin. 20 

Mechanics. 244. 250. 265. 266 
Rotational. 56. 57. 83. 220. 236. 

275 
Rotational. Fixed. 59 
Rotational. IdealGear.83 
Rotational. Interfaces. 272 
Rotational. Sensors. 268 
Translational. 236 

Mechanics.Rotational,89 
SIunits, 24. 27.65. 275,328 

Pressure. 65 
Time. 185 
Voltage. 13 

modification. 34. 46 
definition. 327 

modifications. 34. 61, 64 
recursive. 61 

modulo. 107. 186 
MSL. see Modelica Standard Library 

N. 
named arguments. see function. arguments 
ndims function. 152 
nested packages. 135.213 
nested if expressions. 31 
network. 39 

definition. 327 
Nobel Prize. 203 
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342 INTRODUCTION TO PHYSICAL MODELING WITH MODELICA 

node, II, 22, 122 
definition, 327 

noEvent, 182-184, 186,288 
not, 30 

0, 
Ohm's law, 22 
one s function, 152 
operators 

*.30.150,151 
+,30,150 
-,30,150 
.,42 
,,214 
/,30 
/ /,28 
:=,32,93,103,288 
<,30 
<=,30 
<>.30 
=.31. 32, 103 
==.30 
>,30 
>=,30 
and,30 
delay, 33, 33 
der, 19,33, 33,43.51,91. 182, 196.208. 

283,284,286 
derivative. 19 
exponentiation, 30 
integration, 51 
noEvent. 182-184. 186,288 
not, 30 
or, 30. 166, 174 
pre. 175, 176, 182, 196,209 
precedence, 30 
reinit, 180. 182, 195, 196. 198. 208. 

284 
relational. 30 
ternary, 24 

or. 30, 166. 174 
ordinary differential equations, 4, 17-19 
Oregonator, 133 
outer, 222, 223, 223.224. 225 
outerProduct function, 152 
output, 50, 54, 62, 62, 63, 65, 91. 92, 102, 

105,291 
output signals, 54 

P. 
package. 13. 24, 27. 70, 71. 135. 141. 203, 

214. 215. 217, 218. 220. 244, 265. 
265.266-269,271.272.274-277 

creating. 265 
definition. 327 

package hierarchy, 213 
definition, 328 

parameter, 19, 29. 29, 34, 62, 84, 99, 137, 
140.144,273,329 

parameter expression, 33 
definition, 328 

parameters, 19, 28. 29, 29 
partial, 70, 70, 71, 75, 86, 87, 87,135, 167, 

200,223,266-269,273,274 
model, 70, 75 

partial differential equation, 120 
definition. 328 

PDE 
definition, 328 

pendulum, 17, 18,20 
petri nets, 10 
physical constants, 28 
physical modeling, xix, xx, 4, 12, 167,242,255, 

261,264 
definition, 328 

physical types, 21, 23, 24, 36 
definition, 328 

Pi. 28 
plant model, 49, 72, 89, 166, 231-233. 252, 255 

definition, 328 
plant modeling, 12,253 
pre, 175, 176, 182, 196,209 
product function, 152 
protected, 93, 93, 102, 116, 117, 140, 143, 

144 
in functions. 93 
in models, 143 

public, 102 

Q. 
quantity, 29. 34, 35 

definition. 328 
quantity attribute, 34, 35. 35 

R, 
Real, 19, 29, 30. 35, 36, 106, 107, 144, 145. 

173, 179. 282. 291. 325 
equality, 30 
inequality, 30 

record, 86, 97, 97. 98, 99,102,108,113,179, 
214.267,274 

creating. 97 
redeclare. 78, 82. 82, 88.167,170 
reinit. 180. 182. 195, 196. 198,208,284 
rem function. 107. 107, 186 
replaceable 

components. 75, 77, 88 
definitions, 79, 88 
types. 79, 88 

replaceable, 77.79,80.88. 167,201,251. 
274 
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resistor, 22, 23 
reusability, 69 

being general, 84 
limiting, 82 
through documentation, 85 
using parameters, 84 

reuse, 69, 199 
RLC circuit, 23 

s, 
Saber, 12 
sample function, 169, 184, 184, 185 
scalar function, 152 
scalars, 144, 328 
schematic, 7, 22, 25, 48, 59, 72, 80, 191, 196, 

197,204,225,231-233,236,238, 
239, 241, 247, 249, 251, 257, 262, 
276 

definition, 328 
second derivative, 33 
semantics, xx, 29, 62, 88, 91, 103, 149,221,287 

definition, 328 
short definition, 80, 86 

definition, 328 
side effects. l!Q 

definition, 328 
sign conventions, 42 
sign function. 106, 106, 186 
simulation time, 24 
Simulink. 3, 11 

using Modelica with. 5 
sin function. 323 
sinh function, 323 
size function, 93. 95, 96, 144. 145, 152 
skew function, 152 
solver. 46. 162, 182,289,292 

definition. 329 
Spice. 3 
sqrt function, 106. 106. 150 
start attribute, 34. 34. 52. 64. 116, 144, 146, 

200.282.283.285.286 
state space form. 135.255. 263 

definition. 329 
static scoping. 214 
stiff. 162 
stiffness. 288 

definition. 329 
String. 29. 92. 109, 184. 185.325 
subcomponent. 325 

definition. 329 
subcomponents, see hierarchical 
subtype. 87. 87 
sum function. 152 
symbolic manipulation. 4. 32. 287. 288. 290, 

296-298 
definition. 329 

symmetric function. 152 
system model 

definition. 329 
SystemBuild. 3, 11 

T, 
tan function, 323 
tanh function, 323 

Index 343 

terminal function, 185, 185 
terminate function, 185, 185,251 
through variables. 12 

definition, 329 
time, 24 
tolerances, 292 
transpose function, 152 
true. 30, 30, 31,104,159,166,184-186 
type, 19,21,29,75,79 

definition, 329 
type. 86. 86, 147.267.274 
types 

U, 

Boolean, 29. 155, 156, 166. 179. 184, 
207,325 

built-in. 29 
derived. 29 
Integer, 29, 35. 106, 107. 145. 155, 

156,171, 179. 184,325 
physical, 24. 36 
Real, 19,29, 30. 35. 36. 106, 107. 144. 

145.173,179.282,291, 325 
String. 29, 92. 109. 184. 185,325 

unit attribute, 34, 35. 35. 36. 64 
unit conversion. 29. 36 
units, 29 

v. 
variability. 29. 179. 179 

definition, 329 
variable. 29 
variables. 19. 28. 29. 29 
vector function, 152 
vectors, 114. 121. 134. 146, 148. 149 

as arguments to functions. 149 
in expressions. 30 
inner product of. 30 
of equations. 30 

voltage. 22 

W. 
when. 164-166. 169. 173-175. 177-180. 180. 

181. 182. 184. 186.208,251, 284. 
286 

while. 93. 104. 104. 113 
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within, 277, 277 z, 
zeros function, 152 
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