MAT134 - Álgebra Linear 1 – Lista 3

- 1. Verifique se os subespaços S_1 e S_2 do espaço vetorial V satisfazem $S_1 \subset S_2$, $S_2 \subset S_2$ $S_1 = S_2$ ou nenhuma das acima (nesse caso encontre uma base de $S_1 \cap S_2$).
 - (a) $S_1 = [(1,0,0),(0,1,0)]$ e $S_2 = [(1,1,0),(1,-1,0)]$, quando $V = \mathbb{R}^3$.
 - (b) $S_1 = [\text{sen}2t, \cos 2t, \text{sen}t\cos t]$ e $S_2 = [1, \sin 2t, \cos 2t]$, quando $V = C(\mathbb{R}) = \{f : \mathbb{R} \to \mathbb{R} : f \in \text{continua}\}$.
 - (c) $S_1 = [1, t, t^2, t^3]$ e $S_2 = [1, 1+t, 1-t^2, 1-t-t^2]$, quando $V = P_3(\mathbb{R})$.
- 2. Sejam $v_1, v_2, \ldots, v_n \in V$, onde V é um espaço vetorial. Sejam a_2, \ldots, a_n números reais não nulos. Mostre que se os vetores $v_1, \ldots v_n$ são linearmente independentes então os vetores

$$v_1, v_1 + a_2v_2, v_1 + a_3v_3, \dots, v_n + a_nv_n$$

são linearmente independentes. Você consegue mostrar a recíproca?

- 3. Sejam V um espaço vetorial e $E = \{e_1, e_2, e_3\}$ uma base de V. Seja $v \in V$. O conjunto $A = \{v, v e_1, v e_2, v e_3\}$ é um conjunto de geradores de V? O conjunto A pode ser linearmente independente? Justifique.
- 4. Determine uma base e a dimensão de cada um dos seguintes subespaços vetoriais abaixo:
 - (a) $S = \{(x, y, z, w) \in \mathbb{R}^4 : x y = w \in x 3y + w = 0\}$
 - (b) $S = \{A \in \mathcal{M}_{2 \times 2} : AB = BA\}$ onde B é a matriz

$$B = \left(\begin{array}{cc} 1 & -2 \\ 1 & 3 \end{array}\right)$$

- (c) $S = \{ p \in P_4(\mathbb{R}) : p(1) = p(-1) = 0 \}.$
- (d) $S = \left\{ \begin{pmatrix} 2a & a+2b \\ 0 & a-b \end{pmatrix} \in \mathcal{M}_{2\times 2} : a, b \in \mathbb{R} \right\}.$
- 5. Seja $V = \mathcal{M}_{3\times 3}$ o espaço das matrizes 3×3 com entradas reais e considere

$$S = \{(a_{ij}) \in V : a_{11} + a_{12} + a_{13} = a_{21} + a_{22} + a_{23} = a_{31} + a_{32} + a_{33}\}.$$

- (a) Mostre que S é um subespaço de V.
- (b) Encontre uma base de S e determine dimS.
- (c) Encontre uma base de V que contém a base que você encontrou no item anterior.
- 6. Seja $B = (1, 2 x, x^2 + 1, 1 + x + x^3)$. Verifique que B é uma base de $P_3(\mathbb{R})$. Encontre as coordenadas de x^3 na base B.

7. Seja $V = \mathcal{M}_{2\times 2}$ e considere os seguintes elementos de V:

$$v_1 = \begin{pmatrix} 2 & 1 \\ 0 & 0 \end{pmatrix}, \quad v_2 = \begin{pmatrix} 2 & -1 \\ 0 & 0 \end{pmatrix}, \quad v_3 = \begin{pmatrix} 0 & 0 \\ 1 & 2 \end{pmatrix}, \quad v_4 = \begin{pmatrix} 0 & 0 \\ 1 & -2 \end{pmatrix}.$$

- (a) Mostre que $B = (v_1, v_2, v_3, v_4)$ é uma base de V.
- (b) Determine $m, n, r, s \in \mathbb{R}$ tais que P = A onde

$$P = (m, n, n, m)_B, \quad A = \begin{pmatrix} r & 1 \\ 2 & s \end{pmatrix}$$

8. Considere os polinômios

$$p_1(x) = 1 + 2x + x^3$$
, $p_2(x) = x + x^2 - x^3$, $p_3(x) = a + x + bx^2 + 5x^3$,

onde $a, b \in \mathbb{R}$.

- (a) Mostre que p_1, p_2 são linearmente independentes.
- (b) Mostre que p_1, p_3 são linearmente independentes para todo $a, b \in \mathbb{R}$.
- (c) Existe algum valor de $a, b \in \mathbb{R}$ tal que $p_2(x), p_3(x)$ são linearmente dependentes?
- (d) Determine todos os valores de $a,b\in\mathbb{R}$ tais que a dimensão do espaço gerado por p_1,p_2 e p_3 seja 2.
- 9. Considere os seguintes subespaços vetoriais de $V = \mathcal{M}_{3\times 3}$:

$$S_1 = \{ A \in V : A = A^t \}, \quad S_2 = \{ A \in V : \text{tr}A = 0 \},$$

onde A^t denota a matriz transposta de A e trA é o traço de A (a soma dos elementos da diagonal principal de A.

- (a) Mostre que S_1 e S_2 são subespaços de V.
- (b) Determine uma base e a dimensão de S_1 .
- (c) Determine uma base e a dimensão de S_2 .
- (d) Determine uma base e a dimensão de $S_1 \cap S_2$.
- (e) Complete a base de $S_1 \cap S_2$ encontrada acima para uma base de V.
- 10. Considere os seguintes subespaços vetoriais de $V = \mathcal{M}_{3\times 3}$:

$$S_1 = \{ A \in V : A = A^t \}, \quad S_2 = \{ A \in V : A = -A^t \},$$

onde A^t denota a matriz transposta de A.

- (a) Determine uma base e a dimensão de S_1 .
- (b) Determine uma base e a dimensão de S_2 .
- (c) Mostre que $S_1 \cap S_2 = \{0\}$.

(d) Mostre que qualquer matriz 3×3 pode ser escrita de maneira única como uma soma de uma matriz simétrica e uma anti-simétrica (ou seja, $A = A_1 + A_2$ onde $A_1 \in S_1$ e $A_2 \in S_2$).

DICA: Construa uma base B de V onde os primeiros elementos formam uma base de S_1 e os últimos formam uma base de S_2 . Explique como isso resolve o problema.

(e) Escreva a matriz

$$\left(\begin{array}{ccc}
2 & 1 & -1 \\
1 & 1 & -1 \\
0 & -2 & 3
\end{array}\right)$$

como uma soma de uma matriz em S_1 e uma em S_2 .

11. Seja $V = \operatorname{Lin}(\mathbb{R}^3, \mathbb{R}^3)$ o espaço vetorial das transformações lineares de \mathbb{R}^3 em \mathbb{R}^3 . Denote por $\langle \cdot, \cdot \rangle$ o produto interno Euclidiano de \mathbb{R}^3 , i.e.,

$$\langle (x_1, x_2, x_3), (y_1, y_2, y_3) \rangle = \sum_{i=1}^{3} x_i y_i.$$

Considere os seguintes subconjuntos de V:

$$S_1 = \{T \in V : \langle T(u), v \rangle = \langle u, T(v) \rangle \text{ para todo } u, v \in \mathbb{R}^3 \}$$

$$S_2 = \{ T \in V : \langle T(u), v \rangle = -\langle u, T(v) \rangle \text{ para todo } u, v \in \mathbb{R}^3 \}.$$

- (a) Mostre que S_1 e S_2 são subespaços vetoriais de V.
- (b) Mostre que $V = S_1 \oplus S_2$.
- (c) Encontre uma decomposição da transformação linear $T:\mathbb{R}^3 \to \mathbb{R}^3$ abaixo

$$T(x, y, z) = (2x + y - z, x + y - z, -2y + 3z),$$

ou seja, encontre $T_1 \in S_1$ e $T_2 \in S_2$ tais que $T = T_1 + T_2$.

(**Dica:** Mostre que a função

$$\psi: \operatorname{Lin}(\mathbb{R}^3, \mathbb{R}^3) \to \mathcal{M}_{3\times 3}$$

que associa a cada $T:\mathbb{R}^3 \to \mathbb{R}^3$ a matriz que tem como entrada (i,j)o número

$$T_{ij} = \langle T(e_i), e_j \rangle$$

é um isomorfismo linear e use o exercício 12. Aqui e_i denota o i-ésimo vetor da base canônica de \mathbb{R}^3 .)

12. Considere os seguintes subespaços de $P_3(\mathbb{R})$

$$S_1 = \{ p(t) \in P_3(\mathbb{R}) : 2p(0) = p(-1) = p(1) \}$$

$$S_2 = [t^3 + t - 1, t^2 - t - 1, t^3 + t^2 - 2],$$

$$S_3 = \{ p(t) \in P_3(\mathbb{R}) : p'''(t) = 0 \}.$$

Seja

$$W = S_1 + (S_2 \cap S_3).$$

- (a) Encontre uma base e a dimensão de W.
- (b) Determine todos os valores de $a \in \mathbb{R}$ para os quais

$$p(t) = at^3 - t^2 + \frac{a^2}{2}t + 2a \in W.$$

- 13. Seja $T:V\to W$ uma aplicação linear e sejam w_1,w_2,\ldots,w_n vetores linearmente independentes de W. Mostre que se v_1,v_2,\ldots,v_n são vetores de V tais que $T(v_i)=w_i$, então v_1,v_2,\ldots,v_n são linearmente independentes. A recíproca é verdadeira? Ou seja, é verdade que se v_1,v_2,\ldots,v_n são linearmente independentes então $T(v_1),T(v_2),\ldots,T(v_n)$ são linearmente independentes? Prove ou dê um contra exemplo.
- 14. Seja $T:V\to W$ uma aplicação linear injetora. Mostre que se $v_1,\ldots,v_n\in V$ são linearmente independentes então $T(v_1),\ldots,T(v_n)\in W$ são linearmente independentes.
- 15. Sejam V e W espaços vetoriais tais que $\dim V > \dim W$. Mostre que se $T: V \to W$ é uma transformação linear então $N(T) \neq \{0\}$.
- 16. Sejam V e W espaços vetoriais tais que $\dim V < \dim W$. Mostre que se $T: V \to W$ é uma transformação linear então $\operatorname{Im}(T) \neq W$.
- 17. Sejam $F: V \to W$ e $G: W \to U$ aplicações lineares. Mostre que:
 - (a) $\dim(\operatorname{Im}(G \circ F)) \leq \dim(\operatorname{Im}G)$.
 - (b) $\dim(\operatorname{Im}(G \circ F)) \leq \dim(\operatorname{Im} F)$.
- 18. Seja V o espaço das funções de \mathbb{R} em \mathbb{R} que admitem derivadas de todas as ordens.
 - (a) Seja $D:V\to V$ a transformação D(f)=f' que associa a cada função a sua derivada. Mostre que D é uma aplicação linear.
 - (b) Mostre que o núcleo de D é o subespaço das funções constantes (que é isomorfo a \mathbb{R})
 - (c) Seja $D^2 = D \circ D : V \to V$ a transformação que associa a cada função a sua segunda derivada. Mostre que o núcleo de D^2 é o subespaço das funções da forma $N(D^2) = \{f(x) = ax + b : a, b \in \mathbb{R}\}.$

- (d) Determine o núcleo da transformação $D^n:V\to V$ que associa a cada função a sua n-ésima derivada.
- 19. Dado um subespaço vetorial $S \subseteq \mathbb{R}^n$, definimos o seu complemento ortogonal como sendo

$$S^{\perp} = \{ u \in \mathbb{R}^n : \angle u, v \} = 0 \text{ para todo } v \in S \},$$

onde,

$$\langle \cdot, \cdot \rangle : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}, \quad \langle (x_1, \dots, x_n), (y_1, \dots, y_n) \rangle = \sum_{i=1}^n x_i y_i.$$

Mostre que S^{\perp} é um subespaço vetorial de \mathbb{R}^n . Mostre que $\mathbb{R}^n = S \oplus S^{\perp}$.

- 20. Seja $A \in \mathcal{M}_{m \times n}$ uma matriz com m linhas e n colunas. Denote por $u_1, \ldots u_m \in \mathbb{R}^n$ os vetores formados pelas linhas de A e por $v_1, \ldots v_n \in \mathbb{R}^m$ os vetores formados pelas colunas de A. Seja $T_A : \mathbb{R}^n \to \mathbb{R}^m$ a transformação linear determinada pela matriz A, i.e., $T_A(X) = A \cdot X$ onde pensamos em vetores de R^n (respectivamente R^m) como matrizes com uma coluna e n linhas (respectivamente m linhas). Mostre que
 - (a) $Im(T_A) = [v_1, \dots, v_n].$
 - (b) $N(T_A)^{\perp} = [u_1, \dots u_m].$
 - (c) A quantidade de linhas linearmente independentes de A é igual a quantidade de colunas linearmente independentes de A.
- 21. Seja $V = P_3(\mathbb{R})$ e considere a seguinte função:

$$\langle , \rangle : V \times V \to \mathbb{R}, \quad \langle p(t), q(t) \rangle = \int_0^1 p(t)q(t)dt.$$

- (a) Mostre que $<\ ,\ >$ é um produto interno.
- (b) Encontre uma base ortonormal de (V, <, >).
- (c) Seja $S = \{p(t) \in V : p(1) = p(-1) = 0\}$. Determine uma base de S^{\perp} .
- (d) Determine a projeção ortogonal de $p(t) = 1 + 2t + 3t^2 + 4t^3$ em S.

[DICA: Para demonstrar o item (c) utilize o teorema do núcleo e da imagem que diz o seguinte: Se $T: \mathbb{R}^n \to \mathbb{R}^m$ é uma aplicação linear então $\dim(N(T)) + \dim(Im(T)) = n$.]