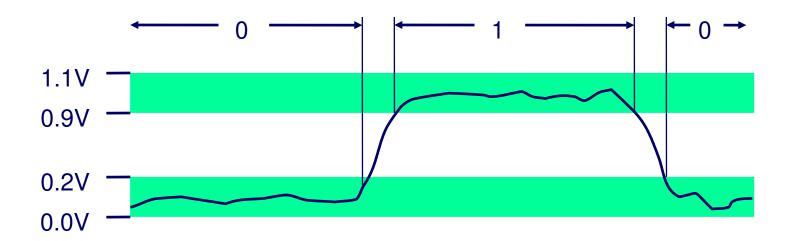
Bits, Bytes, and Integers

Today: Bits, Bytes, and Integers

- Representing information as bits
- Bit-level manipulations
- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, shifting
 - Summary
- Representations in memory, pointers, strings

Everything is bits

- Each bit is 0 or 1
- By encoding/interpreting sets of bits in various ways
 - Computers determine what to do (instructions)
 - ... and represent and manipulate numbers, sets, strings, etc...
- Why bits? Electronic Implementation
 - Easy to store with bistable elements
 - Reliably transmitted on noisy and inaccurate wires



For example, can count in binary

- Base 2 Number Representation
 - Represent 15213₁₀ as 11101101101101₂
 - Represent 1.20₁₀ as 1.0011001100110011[0011]...₂
 - Represent 1.5213 X 10⁴ as 1.1101101101101₂ X 2¹³

Encoding Byte Values

- Byte = 8 bits
 - Binary 000000002 to 1111111112
 - Decimal: 0₁₀ to 255₁₀
 - Hexadecimal 00₁₆ to FF₁₆
 - Base 16 number representation
 - Use characters '0' to '9' and 'A' to 'F'
 - Write FA1D37B₁₆ in C as
 - 0xFA1D37B
 - 0xfa1d37b

Hex Decimal Binary 6

Example Data Representations

C Data Type	Typical 32- bit	Typical 64- bit	x86-64
char	1	1	1
short	2	2	2
int	4	4	4
long	4	8	8
float	4	4	4
double	8	8	8
long double	-	-	10/16
pointer	4	8	8

Today: Bits, Bytes, and Integers

- Representing information as bits
- Bit-level manipulations
- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, shifting
 - Summary
- Representations in memory, pointers, strings

Boolean Algebra

Developed by George Boole in 19th Century

- Algebraic representation of logic
 - Encode "True" as 1 and "False" as 0

And

A&B = 1 when both A=1 and B=1

&	0	1
0	0	0
1	0	1

Not

~A = 1 when A=0

Or

A | B = 1 when either A=1 or B=1

ı	0	1
0	0	1
1	1	1

Exclusive-Or (Xor)

■ A^B = 1 when either A=1 or B=1, but not both

٨	0	1
0	0	1
1	1	0

General Boolean Algebras

- Operate on Bit Vectors
 - Operations applied bitwise

```
      01101001
      01101001

      & 01010101
      | 01010101
      ^ 01010101
      ~ 01010101

      01000001
      01111101
      00111100
      10101010
```

All of the Properties of Boolean Algebra Apply

Example: Representing & Manipulating Sets

Representation

- Width w bit vector represents subsets of {0, ..., w-1}
- $a_i = 1 \text{ if } j \in A$
 - **•** 01101001 { 0, 3, 5, 6 }
 - **•** 76543210
 - **•** 01010101 { 0, 2, 4, 6 }
 - **•** 76543210

Operations

- & Intersection 01000001 { 0, 6 }
- Union
 01111101 { 0, 2, 3, 4, 5, 6 }
- Symmetric difference 00111100 { 2, 3, 4, 5 }
- Complement 10101010 { 1, 3, 5, 7 }

Bit-Level Operations in C

Operations &, |, ~, ^ Available in C

- Apply to any "integral" data type
 - long, int, short, char, unsigned
- View arguments as bit vectors
- Arguments applied bit-wise

Examples (Char data type)

- \sim 0x41 → 0xBE
 - $^{\bullet}$ ~01000001₂ → 10111110₂
- $\sim 0x00 \rightarrow 0xFF$
 - $\sim 00000000_2 \rightarrow 111111111_2$
- 0x69 & 0x55 → 0x41
 - \blacksquare 01101001₂ & 01010101₂ → 01000001₂
- $0x69 \mid 0x55 \rightarrow 0x7D$
 - $^{\bullet}$ 01101001₂ | 01010101₂ → 011111101₂

Contrast: Logic Operations in C

Contrast to Logical Operators

- **4** &&, | |, !
 - View 0 as "False"
 - Anything nonzero as "True"
 - Always return 0 or 1
 - Early termination

Examples (char data type)

- !0x41 → 0x00
- !0x00 \rightarrow 0x01
- \blacksquare !!0x41 → 0x01
- 0x69 && 0x55 → 0x01
- p && *p (avoids null pointer access)

Contrast: Logic Operations in C

- Contrast to Logical Operators
 - **&**&, ||,!
 - View 0 as "F
 - Anythipa nod
 - Alway
 - Early
- Examp
 - !0x41 -
 - !0x00 -
 - !!0x41

Watch out for && vs. & (and || vs. |)... one of the more common oopsies in

C programming

- 0x69 && 0x33 → 0x01
- p && *p (avoids null pointer access)

Shift Operations

- Left Shift: x << y</p>
 - Shift bit-vector x left y positions
 - Throw away extra bits on left
 - Fill with 0's on right
- Right Shift: x >> y
 - Shift bit-vector x right y positions
 - Throw away extra bits on right
 - Logical shift
 - Fill with 0's on left
 - Arithmetic shift
 - Replicate most significant bit on left
- Undefined Behavior
 - Shift amount < 0 or ≥ word size</p>

Argument x	01100010
<< 3	00010000
Log. >> 2	00011000
Arith. >> 2	00011000

Argument x	10100010
<< 3	00010000
Log. >> 2	00101000
Arith. >> 2	11101000

Today: Bits, Bytes, and Integers

- Representing information as bits
- Bit-level manipulations
- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, shifting
 - Summary
- Representations in memory, pointers, strings
- Summary

Encoding Integers

Unsigned

$$B2U(X) = \sum_{i=0}^{w-1} x_i \cdot 2^i$$

Two's Complement

$$B2T(X) = -x_{w-1} \cdot 2^{w-1} + \sum_{i=0}^{w-2} x_i \cdot 2^i$$

short int
$$x = 15213$$
;
short int $y = -15213$;

Sign Bit

C short 2 bytes long

	Decimal	Hex	Binary	
X	15213	3B 6D	00111011 01101101	
У	-15213	C4 93	11000100 10010011	

Sign Bit

- For 2's complement, most significant bit indicates sign
 - 0 for nonnegative
 - 1 for negative

Two-complement Encoding Example (Cont

x = 15213: 00111011 01101101 y = -15213: 11000100 10010011

Weight	152	13	-152	213
1	1	1	1	1
2	0	0	1	2
4	1	4	0	0
8	1	8	0	0
16	0	0	1	16
32	1	32 64	0	0
64	1	64	0	0
128	0	0	1	128
256	1	256	0	0
512	1	512	0	0
1024	0	0	1	1024
2048	1	2048	0	0
4096	1	4096	0	0
8192	1	8192	0	0
16384	0	0	1	16384
-32768	0	0	1	-32768
Sum		15213		-15213

Numeric Ranges

Unsigned Values

•
$$UMin$$
 = 0
000...0
• $UMax$ = $2^{w} - 1$
111...1

■ Two's Complement Values

■
$$TMin$$
 = -2^{w-1} 100...0 = $2^{w-1} - 1$ 011...1

Other Values

Minus 1111...1

Values for W = 16

	Decimal	Hex	Binary
UMax	65535	FF FF	11111111 11111111
TMax	32767	7F FF	01111111 11111111
TMin	-32768	80 00	10000000 00000000
-1	-1	FF FF	11111111 11111111
0	0	00 00	00000000 00000000

Values for Different Word Sizes

			W	
	8	16	32	64
UMax	255	65,535	4,294,967,295	18,446,744,073,709,551,615
TMax	127	32,767	2,147,483,647	9,223,372,036,854,775,807
TMin	-128	-32,768	-2,147,483,648	-9,223,372,036,854,775,808

Observations

- \blacksquare | TMin | = TMax + 1
 - Asymmetric range
- UMax = 2 * TMax + 1

C Programming

- #include limits.h>
- Declares constants, e.g.,
 - ULONG_MAX
 - LONG_MAX
 - LONG_MIN
- Values platform specific

Unsigned & Signed Numeric Values

Χ	B2U(<i>X</i>)	B2T(<i>X</i>)
0000	0	0
0001	1	1
0010	2	2
0011	3	3
0100	4	4
0101	5	5
0110	6	6
0111	7	7
1000	8	-8
1001	9	-7
1010	10	-6
1011	11	- 5
1100	12	-4
1101	13	-3
1110	14	-2
1111	15	-1

Equivalence

 Same encodings for nonnegative values

Uniqueness

- Every bit pattern represents unique integer value
- Each representable integer has unique bit encoding

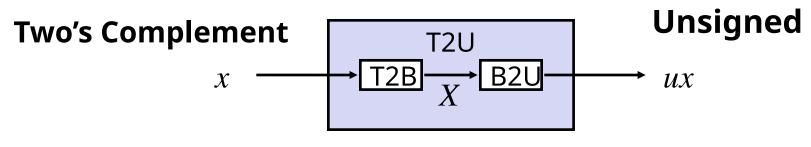
Can Invert Mappings

- U2B(x) = B2U⁻¹(x)
 - Bit pattern for unsigned integer
- T2B(x) = B2T⁻¹(x)
 - Bit pattern for two's comp integer

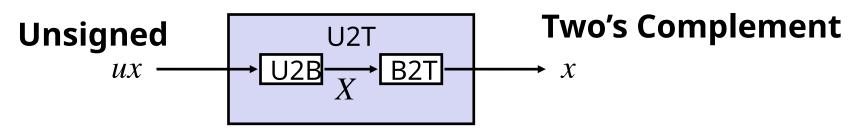
Today: Bits, Bytes, and Integers

- Representing information as bits
- Bit-level manipulations
- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, shifting
 - Summary
- Representations in memory, pointers, strings

Mapping Between Signed & Unsigned



Maintain Same Bit Pattern



Maintain Same Bit Pattern

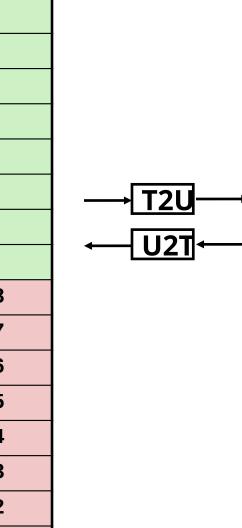
Mappings between unsigned and two's complement numbers:

Keep bit representations and reinterpret

Mapping Signed 🔂 Unsigned

Bits	
0000	
0001	
0010	
0011	
0100	
0101	
0110	
0111	
1000	
1001	
1010	
1011	
1100	
1101	
1110	
1111	

Signed
0
1
2
3
4
5
6
7
-8
-7
-6
-5
-4
-3
-2
-1



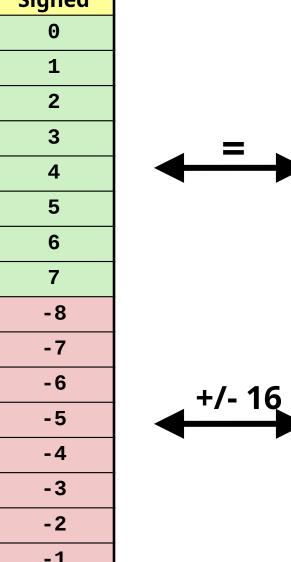
Unsigned	
0	
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	

Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition

Mapping Signed Unsigned___

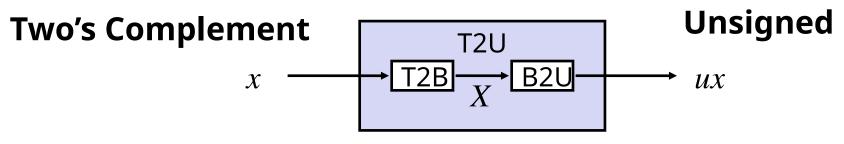
	_
Bits	
0000	
0001	
0010	
0011	
0100	
0101	
0110	
0111	
1000	
1001	
1010	
1011	
1100	
1101	
1110	
1111	

Signed
0
1
2
3
4
5
6
7
-8
-7
- 6
-5
-4
-3
-2
-1

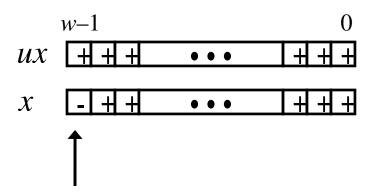


Unsigned
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

Relation between Signed & Unsigned



Maintain Same Bit Pattern



Large negative weight

becomes

Large positive weight

Conversion Visualized

2's Comp. → Unsigned **UMax Ordering Inversion** UMax – 1 Negative → Big Positive TMax + 1Unsigned **TMax TMax** Range 2's Complement Range

Signed vs. Unsigned in C

Constants

- By default are considered to be signed integers
- Unsigned if have "U" as suffix0U, 4294967259U

Casting

Explicit casting between signed & unsigned same as U2T and T2U int tx, ty;

```
unsigned ux, uy;
tx = (int) ux;
uy = (unsigned) ty;
```

Implicit casting also occurs via assignments and procedure calls

```
tx = ux;
uy = ty;
```

Casting Surprises Expression Evaluation

- If there is a mix of unsigned and signed in single expression, signed values implicitly cast to unsigned
- Including comparison operations <, >, ==, <=, >=

Examples for W = 32**: TMIN = -2,147,483,648** , **TMAX = 2,147,483,647**

■ Constant ₁	Constant ₂	Relation	Evaluation
0	0U	==	unsigned
-1	0	<	signed
-1	0U	>	unsigned
2147483647	-2147483647-1	>	signed
2147483647U	-2147483647-1	<	unsigned
-1	-2	>	signed
(unsigned)-1	-2	>	signed
2147483647	2147483648U	>	unsigned
2147483647	(int) 2147483648U	>	signed

Summary Casting Signed Unsigned: Basic Rules

- Bit pattern is maintained
- But reinterpreted
- Can have unexpected effects: adding or subtracting 2^w
- Expression containing signed and unsigned int
 - int is cast to unsigned!!

Today: Bits, Bytes, and Integers

- Representing information as bits
- Bit-level manipulations
- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, shifting
 - Summary
- Representations in memory, pointers, strings

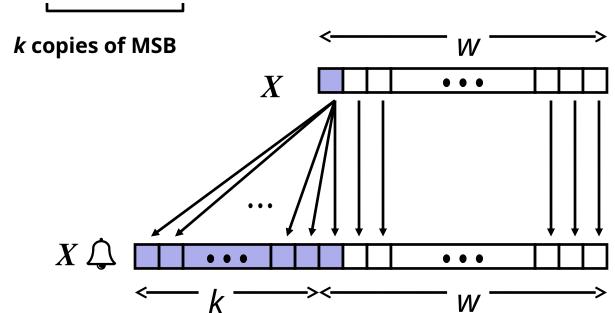
Sign Extension

Task:

- Given w-bit signed integer x
- Convert it to w+k-bit integer with same value

Rule:

- Make k copies of sign bit:
- $X' = X_{w-1}, ..., X_{w-1}, X_{w-1}, X_{w-2}, ..., X_0$



Sign Extension Example

```
short int x = 15213;
int        ix = (int) x;
short int y = -15213;
int        iy = (int) y;
```

	Decimal	Hex	Binary
X	15213	3B 6D	00111011 01101101
ix	15213	00 00 3B 6D	00000000 00000000 00111011 01101101
у	-15213	C4 93	11000100 10010011
iy	-15213	FF FF C4 93	1111111 1111111 11000100 10010011

- Converting from smaller to larger integer data type
- C automatically performs sign extension

Summary: Expanding, Truncating: Basic Rules

- Expanding (e.g., short int to int)
 - Unsigned: zeros added
 - Signed: sign extension
 - Both yield expected result
- Truncating (e.g., unsigned to unsigned short)
 - Unsigned/signed: bits are truncated
 - Result reinterpreted
 - Unsigned: mod operation
 - Signed: similar to mod
 - For small numbers yields expected behavior

Today: Bits, Bytes, and Integers

- Representing information as bits
- Bit-level manipulations
- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, shifting
- Representations in memory, pointers, strings
- Summary

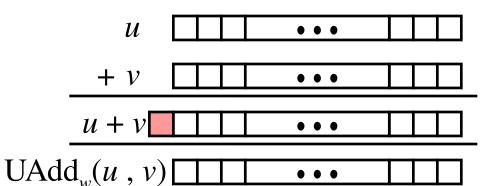
Unsigned Addition

Operands: w bits

True Sum: w+1 bits

Discard Carry: w

bits



- Standard Addition Function
 - Ignores carry output
- Implements Modular Arithmetic

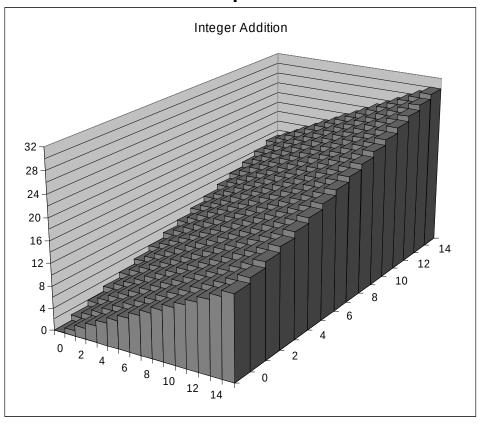
$$s = UAdd_w(u, v) = u + v \mod 2^w$$

Visualizing (Mathematical) Integer Addition

Integer Addition

- 4-bit integers u, v
- Compute true sum $Add_4(u, v)$
- Values increase linearly with u and v
- Forms planar surface

$Add_4(u, v)$

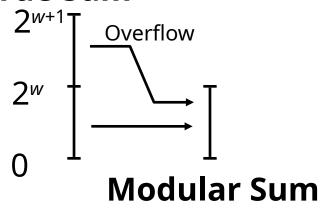


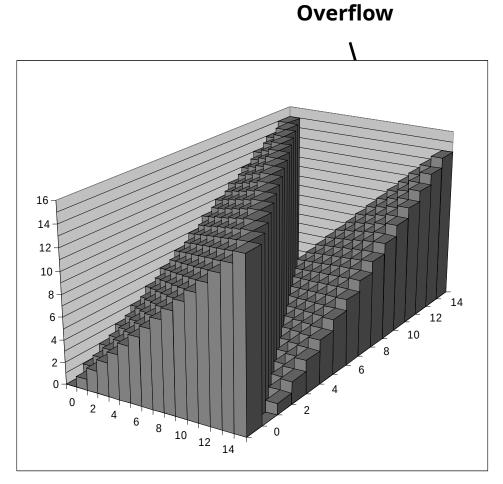
Visualizing Unsigned Addition

Wraps Around

- If true sum $\geq 2^{w}$
- At most once

True Sum





Two's Complement Addition

TAdd and UAdd have Identical Bit-Level Behavior

Signed vs. unsigned addition in C:

```
int s, t, u, v;
s = (int) ((unsigned) u + (unsigned) v);
t = u + v
```

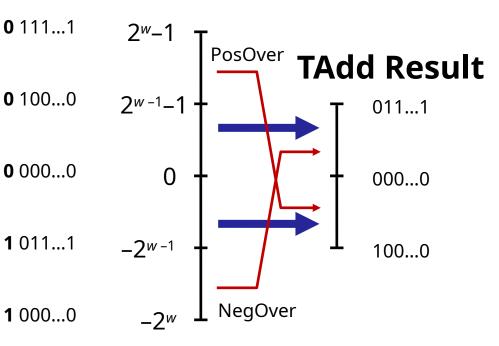
Will give s == t

TAdd Overflow

Functionality

- True sum requires w+1 bits
- Drop off MSB
- Treat remaining bits as 2's comp. integer

True Sum



Visualizing 2's Complement Addition

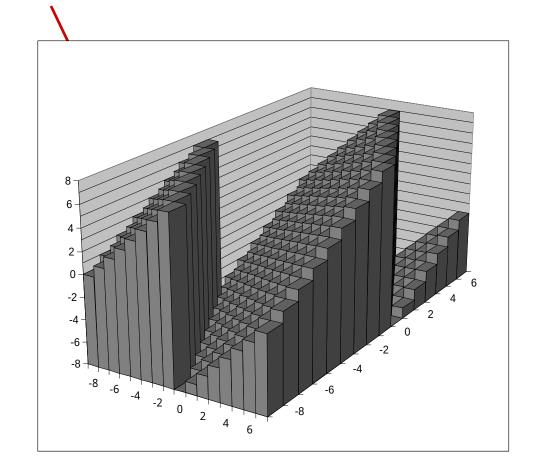
NegOver

Values

- 4-bit two's comp.
- Range from -8 to +7

Wraps Around

- If sum 2^{w-1}
 - Becomes negative
 - At most once
- If sum $< -2^{w-1}$
 - Becomes positive
 - At most once



C: signed vs. unsigned overflow

C language only specifies overflow for unsigned variables!

Signed Overflow in C is undefined behavior!

 Historic reasons: Some C implementations used one's complement representation.

```
/* This may be optimized to return 0 */
int detect_overflow_s(int x)
{
    return x+1 < x;
}
int detect_overflow_u(unsigned x)
{
    return x+1 < x;
}
int main()
{
    if(detect_overflow_s(0x7fffffff))
        printf("Signed overflow detected\n");
    if(detect_overflow_u(0xfffffff))
        printf("Unsigned overflow detected\n");
    return 0;
}</pre>
```

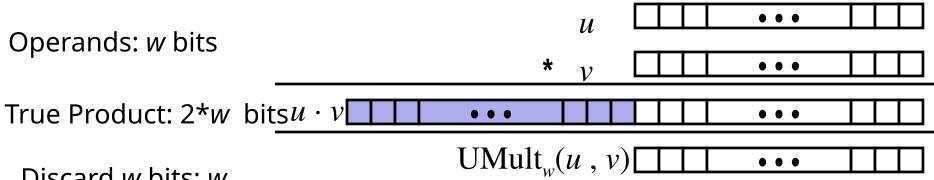
On gcc 12 with -Og prints only

Unsigned overlfow detected

Multiplication

- Goal: Computing Product of w-bit numbers x, y
 - Either signed or unsigned
- But, exact results can be bigger than w bits
 - Unsigned: up to 2w bits
 - Result range: $0 \le x * y \le (2^w 1)^2 = 2^{2w} 2^{w+1} + 1$
 - Two's complement min (negative): Up to 2w-1 bits
 - Result range: $x * y \ge (-2^{w-1})*(2^{w-1}-1) = -2^{2w-2} + 2^{w-1}$
 - Two's complement max (positive): Up to 2w bits, but only for $(TMin_w)^2$
 - Result range: $x * y \le (-2^{w-1})^2 = 2^{2w-2}$
- So, maintaining exact results...
 - would need to keep expanding word size with each product computed
 - is done in software, if needed
 - e.g., by "arbitrary precision" arithmetic packages

Unsigned Multiplication in C



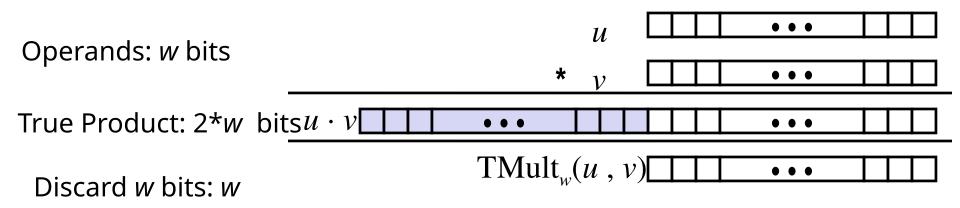
Discard w bits: w

bits

- Standard Multiplication Function
 - Ignores high order w bits
- Implements Modular Arithmetic

 $UMult_{w}(u, v) = u \cdot v \mod 2^{w}$

Signed Multiplication in C



Standard Multiplication Function

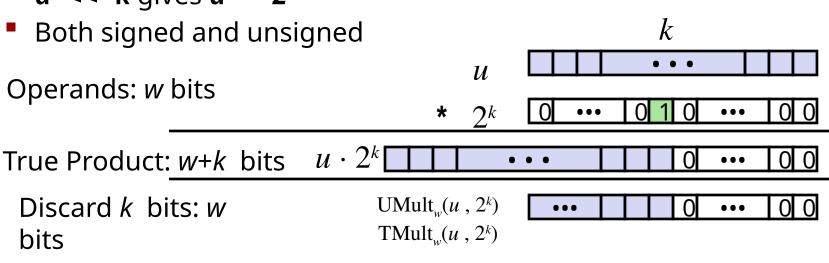
bits

- Ignores high order w bits
- Some of which are different for signed vs. unsigned multiplication
- Lower bits are the same

Power-of-2 Multiply with Shift

Operation

- u << k gives u * 2^k



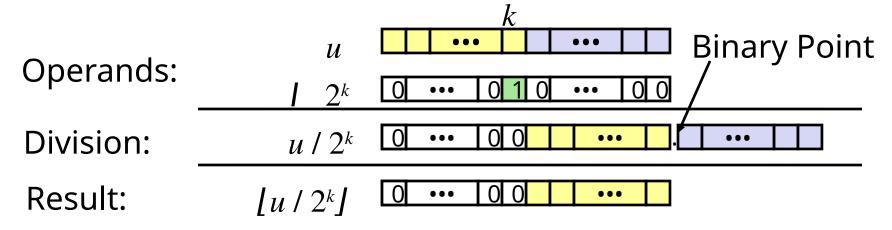
Examples

- u << 3</p>
- (u << 5) (u << 3) == u * 24
- Most machines shift and add faster than multiply
 - Compiler generates this code automatically

Unsigned Power-of-2 Divide with Shift

Quotient of Unsigned by Power of 2

- $u \gg k$ gives $[u / 2^k]$
- Uses logical shift



	Division	Computed	Hex	Binary
X	15213	15213	3B 6D	00111011 01101101
x >> 1	7606.5	7606	1D B6	00011101 10110110
x >> 4	950.8125	950	03 B6	00000011 10110110
x >> 8	59.4257813	59	00 3B	00000000 00111011

Today: Bits, Bytes, and Integers

- Representing information as bits
- Bit-level manipulations
- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, shifting
 - Summary
- Representations in memory, pointers, strings

Arithmetic: Basic Rules

Addition:

- Unsigned/signed: Normal addition followed by truncate, same operation on bit level
- Unsigned: addition mod 2^w
 - Mathematical addition + possible subtraction of 2^w
- Signed: modified addition mod 2^w (result in proper range)
 - Mathematical addition + possible addition or subtraction of 2^w

Multiplication:

- Unsigned/signed: Normal multiplication followed by truncate, same operation on bit level
- Unsigned: multiplication mod 2^w
- Signed: modified multiplication mod 2^w (result in proper range)

Why Should I Use Unsigned?

- Don't use without understanding implications
 - Easy to make mistakes

```
unsigned i;
for (i = cnt-2; i >= 0; i--)
a[i] += a[i+1];
```

Can be very subtle

```
#define DELTA sizeof(int)
int i;
for (i = CNT; i-DELTA >= 0; i-= DELTA)
```

Counting Down with Unsigned

Proper way to use unsigned as loop index

```
unsigned i;
for (i = cnt-2; i < cnt; i--)
  a[i] += a[i+1];
```

- See Robert Seacord, Secure Coding in C and C++
 - C Standard guarantees that unsigned addition will behave like modular arithmetic
 - 0 1 **U**Max

Even better

```
size_t i;
for (i = cnt-2; i < cnt; i--)
  a[i] += a[i+1];</pre>
```

- Data type size_t defined as unsigned value with length = word size
- Code will work even if cnt = UMax
- What if cnt is signed and < 0?</p>

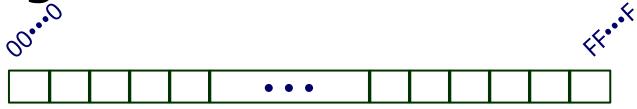
Why Should I Use Unsigned? (cont.)

- Do Use When Performing Modular Arithmetic
 - Multiprecision arithmetic
- Do Use When Using Bits to Represent Sets
 - Logical right shift, no sign extension

Today: Bits, Bytes, and Integers

- Representing information as bits
- Bit-level manipulations
- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, shifting
 - Summary
- Representations in memory, pointers, strings

Byte-Oriented Memory Organization



Programs refer to data by address

- Conceptually, envision it as a very large array of bytes
 - In reality, it's not, but can think of it that way
- An address is like an index into that array
 - and, a pointer variable stores an address

Note: system provides private address spaces to each "process"

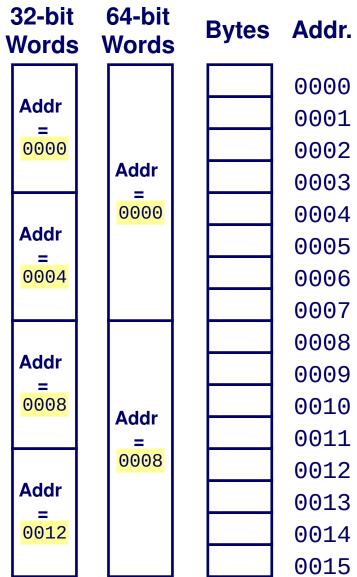
- Think of a process as a program being executed
- So, a program can clobber its own data, but not that of others

Machine Words

- Any given computer has a "Word Size"
 - Nominal size of integer-valued data
 - and of addresses
 - Until recently, most machines used 32 bits (4 bytes) as word size
 - Limits addresses to 4GB (2³² bytes)
 - Increasingly, machines have 64-bit word size
 - Potentially, could have 18 EB (exabytes) of addressable memory
 - That's 18.4 X 10¹⁸
 - Machines still support multiple data formats
 - Fractions or multiples of word size
 - Always integral number of bytes

Word-Oriented Memory Organization

- Addresses Specify Byte Locations
 - Address of first byte in word
 - Addresses of successive words differ by 4 (32-bit) or 8 (64-bit)



Example Data Representations

C Data Type	Typical 32- bit	Typical 64- bit	x86-64	
char	1	1	1	
short	2	2	2	
int	4	4	4	
long	4	8	8	
float	4	4	4	
double	8	8	8	
long double	-	_	10/16	
pointer	4	8	8	

Byte Ordering

- So, how are the bytes within a multi-byte word ordered in memory?
- Conventions
 - Big Endian: Sun, PPC Mac, Internet
 - Least significant byte has highest address
 - Little Endian: x86, ARM processors running Android, iOS, and Windows
 - Least significant byte has lowest address

Byte Ordering Example

Example

- Variable x has 4-byte value of 0x01234567
- Address given by &x is 0x100

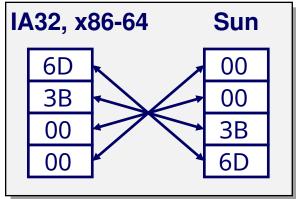
Big Endian		0x100	0x101	0x102	0x103		
			01	23	45	67	
Little Endian		0x100	0x101	0x102	0x103		
			67	45	23	01	

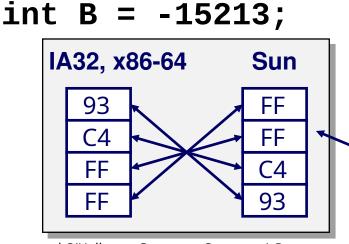
Representing Intege Binary: 0011 1011 0110 1101

Decimal: 15213

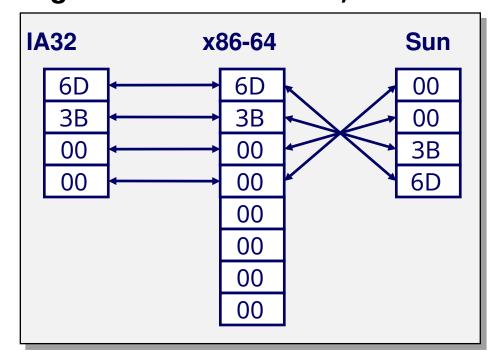
Hex: 3 B 6 D

int A = 15213;





long int C = 15213;



Two's complement representation

Examining Data Representations

Code to Print Byte Representation of Data

Casting pointer to unsigned char * allows treatment as a

byte array

```
typedef unsigned char *pointer;

void show_bytes(pointer start, size_t len){
    size_t i;
    for (i = 0; i < len; i++)
        printf("%p\t0x%.2x\n",start+i, start[i]);
    printf("\n");
}</pre>
```

Printf directives:

%p: Print pointer

%x: Print Hexadecimal

show_bytes Execution Example

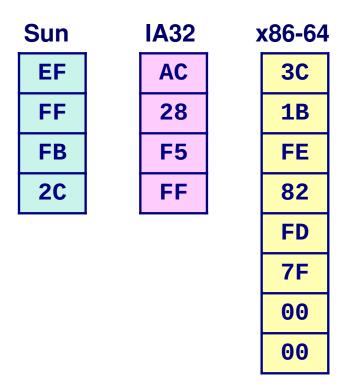
```
int a = 15213;
printf("int a = 15213;\n");
show_bytes((pointer) &a, sizeof(int));
```

Result (Linux x86-64):

```
int a = 15213;
0x7fffb7f71dbc 6d
0x7fffb7f71dbd 3b
0x7fffb7f71dbe 00
0x7fffb7f71dbf 00
```

Representing Pointers

```
int B = -15213;
int *P = &B;
```



Different compilers & machines assign different locations to objects

Representing Strings

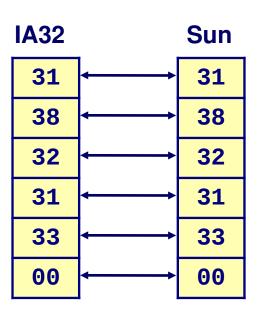
char S[6] = "18213";

Strings in C

- Represented by array of characters
- Each character encoded in ASCII format
 - Standard 7-bit encoding of character set
 - Character "0" has code 0x30
 - Digit i has code 0x30+i
- String should be null-terminated
 - Final character = 0

Compatibility

Byte ordering not an issue



Integer C Puzzles

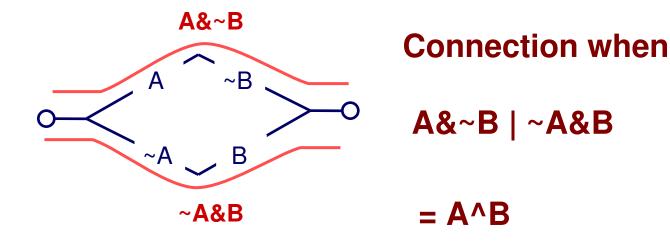
Initialization

```
\rightarrow ((x*2) < 0)
• X < 0
• ux >= 0
• X & 7 == 7
                       \rightarrow (x << 30) < 0
• ux > -1
x > y
                       \rightarrow -x < -y
* x * x >= 0
• x > 0 \&\& y > 0 \rightarrow x + y > 0
• X >= 0
                       \rightarrow -x <= 0
• X <= 0
                       \rightarrow -x >= 0
(x|-x)>>31 == -1
• ux >> 3 == ux/8
x >> 3 == x/8
  x & (x-1) != 0
```

Bonus extras

Application of Boolean Algebra

- Applied to Digital Systems by Claude Shannon
 - 1937 MIT Master's Thesis
 - Reason about networks of relay switches
 - Encode closed switch as 1, open switch as 0



Binary Number Property

Claim

$$1 + 1 + 2 + 4 + 8 + \dots + 2^{w-1} = 2^{w}$$
$$1 + \sum_{i=0}^{w-1} 2^{i} = 2^{w}$$

- \blacksquare w = 0:
 - $1 = 2^0$
- Assume true for w-1:

Code Security Example

```
/* Kernel memory region holding user-accessible data */
#define KSIZE 1024
char kbuf[KSIZE];

/* Copy at most maxlen bytes from kernel region to user buffer */
int copy_from_kernel(void *user_dest, int maxlen) {
    /* Byte count len is minimum of buffer size and maxlen */
    int len = KSIZE < maxlen ? KSIZE : maxlen;
    memcpy(user_dest, kbuf, len);
    return len;
}</pre>
```

- Similar to code found in FreeBSD's implementation of getpeername
- There are legions of smart people trying to find vulnerabilities in programs

Typical Usage

```
/* Kernel memory region holding user-accessible data */
#define KSIZE 1024
char kbuf[KSIZE];

/* Copy at most maxlen bytes from kernel region to user buffer */
int copy_from_kernel(void *user_dest, int maxlen) {
    /* Byte count len is minimum of buffer size and maxlen */
    int len = KSIZE < maxlen ? KSIZE : maxlen;
    memcpy(user_dest, kbuf, len);
    return len;
}</pre>
```

```
#define MSIZE 528

void getstuff() {
    char mybuf[MSIZE];
    copy_from_kernel(mybuf, MSIZE);
    printf("%s\n", mybuf);
}
```

Malicious Usage

```
/* Kernel memory region holding user-accessible data */
#define KSIZE 1024
char kbuf[KSIZE];

/* Copy at most maxlen bytes from kernel region to user buffer */
int copy_from_kernel(void *user_dest, int maxlen) {
    /* Byte count len is minimum of buffer size and maxlen */
    int len = KSIZE < maxlen ? KSIZE : maxlen;
    memcpy(user_dest, kbuf, len);
    return len;
}

/* Declaration of library function memcpy */
    void *memcpy(void *dest, void *src, size_t n);</pre>
```

```
#define MSIZE 528

void getstuff() {
    char mybuf[MSIZE];
    copy_from_kernel(mybuf, -MSIZE);
    . . .
}
```

Mathematical Properties

Modular Addition Forms an Abelian Group

Closed under addition

$$0 \# UAdd_{w}(u, v) \# 2^{w} -1$$

Commutative

$$UAdd_{w}(u, v) = UAdd_{w}(v, u)$$

Associative

$$UAdd_{w}(t, UAdd_{w}(u, v)) = UAdd_{w}(UAdd_{w}(t, u), v)$$

• 0 is additive identity

$$UAdd_{w}(u, 0) = u$$

Every element has additive inverse

Let
$$UComp_w(u) = 2^w - u$$

 $UAdd_w(u, UComp_w(u)) = 0$

Mathematical Properties of TAdd

Isomorphic Group to unsigneds with UAdd

- $TAdd_w(u, v) = U2T(UAdd_w(T2U(u), T2U(v)))$
 - Since both have identical bit patterns

Two's Complement Under TAdd Forms a Group

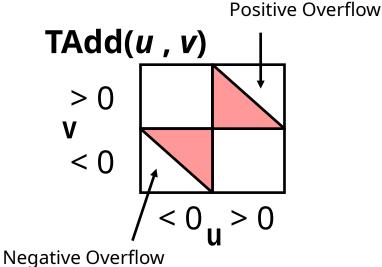
- Closed, Commutative, Associative, 0 is additive identity
- Every element has additive inverse

$$TComp_w(u) = \begin{cases} -u & u \neq TMin_w \\ TMin_w & u = TMin_w \end{cases}$$

Characterizing TAdd

Functionality

- True sum requires w+1 bits
- Drop off MSB
- Treat remaining bits as 2's comp. integer



 $TAdd_{w}(u,v) = \begin{cases} u+v+2^{w} & u+v < TMin_{w} \text{ (NegOver)} \\ u+v & TMin_{w} \le u+v \le TMax_{w} \\ u+v-2^{w} & TMax_{w} < u+v \text{ (PosOver)} \end{cases}$

Negation: Complement & Increment

Claim: Following Holds for 2's Complement

$$~x + 1 == -x$$

Complement

Observation: ~x + x == 1111...111 == -1

Complete Proof?

Complement & Increment Examples x = 15213

	Decimal	Hex	Binary
X	15213	3B 6D	00111011 01101101
~X	-15214	C4 92	11000100 10010010
~x+1	-15213	C4 93	11000100 10010011
У	-15213	C4 93	11000100 10010011

$$x = 0$$

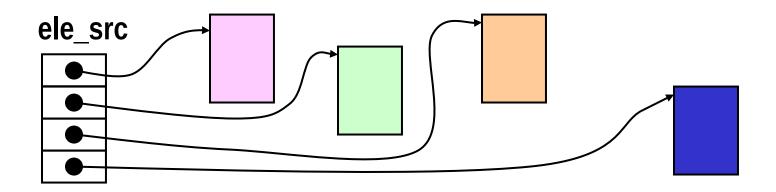
	Decimal	Hex	Binary
0	0	00 00	00000000 00000000
~0	-1	FF FF	11111111 11111111
~0+1	0	00 00	00000000 00000000

Code Security Example #2

SUN XDR library

Widely used library for transferring data between machines

```
void* copy_elements(void *ele_src[], int ele_cnt, size_t ele_size);
```



malloc(ele_cnt * ele_size)

XDR Code

```
void* copy_elements(void *ele_src[], int ele_cnt, size_t ele_size) {
     * Allocate buffer for ele_cnt objects, each of ele_size bytes
     * and copy from locations designated by ele_src
     */
    void *result = malloc(ele_cnt * ele_size);
    if (result == NULL)
       /* malloc failed */
       return NULL;
    void *next = result;
    int i;
    for (i = 0; i < ele_cnt; i++) {
        /* Copy object i to destination */
        memcpy(next, ele_src[i], ele_size);
       /* Move pointer to next memory region */
       next += ele_size;
    return result;
```

XDR Vulnerability

malloc(ele_cnt * ele_size)

- What if:
 - ele_cnt = $2^{20} + 1$
 - **ele_size** = 4096 = 2¹²
 - Allocation = ??
- How can I make this function secure?

Compiled Multiplication Code

C Function

```
long mul12(long x)
{
   return x*12;
}
```

Compiled Arithmetic Operations

```
leaq (%rax,%rax,2), %rax
salq $2, %rax
```

Explanation

```
t <- x+x*2
return t << 2;
```

C compiler automatically generates shift/add code when multiplying by constant

Compiled Unsigned Division Code

C Function

```
unsigned long udiv8
      (unsigned long x)
{
   return x/8;
}
```

Compiled Arithmetic Operations

```
shrq $3, %rax
```

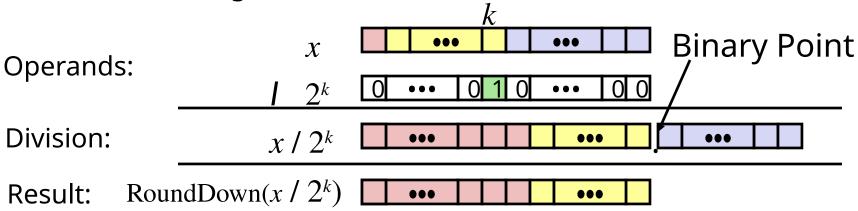
Explanation

```
# Logical shift
return x >> 3;
```

- Uses logical shift for unsigned
- For Java Users
 - Logical shift written as >>>

Signed Power-of-2 Divide with Shift

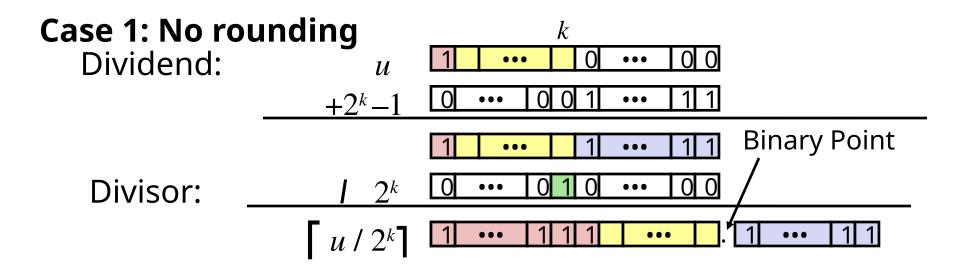
- Quotient of Signed by Power of 2
 - $x \gg k$ gives $[x / 2^k]$
 - Uses arithmetic shift
 - Rounds wrong direction when u < 0</p>



	Division	Computed	Hex	Binary
У	-15213	-15213	C4 93	11000100 10010011
y >> 1	-7606.5	-7607	E2 49	1 1100010 01001001
y >> 4	-950.8125	-951	FC 49	1111 1100 01001001
y >> 8	-59.4257813	-60	FF C4	1111111 11000100

Correct Power-of-2 Divide

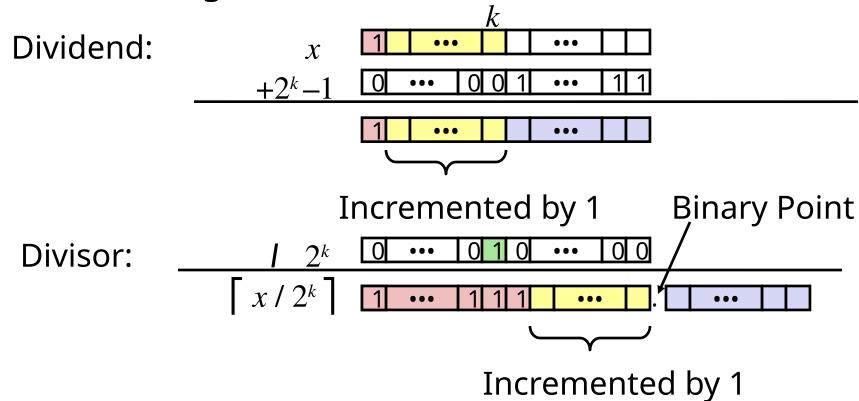
- Quotient of Negative Number by Power of 2
 - Want $[x / 2^k]$ (Round Toward 0)
 - Compute as $\lfloor (x+2^k-1)/2^k \rfloor$
 - In C: (x + (1<<k)-1) >> k
 - Biases dividend toward 0



Biasing has no effect

Correct Power-of-2 Divide (Cont.)

Case 2: Rounding



Biasing adds 1 to final result

Compiled Signed Division Code

C Function

```
long idiv8(long x)
{
  return x/8;
}
```

Compiled Arithmetic Operations

```
testq %rax, %rax
js L4
L3:
sarq $3, %rax
ret
L4:
addq $7, %rax
jmp L3
```

Explanation

```
if x < 0
    x += 7;
# Arithmetic shift
return x >> 3;
```

- Uses arithmetic shift for int
- For Java Users
 - Arith. shift written as >>

Arithmetic: Basic Rules

Unsigned ints, 2's complement ints are isomorphic rings: isomorphism = casting

Left shift

- Unsigned/signed: multiplication by 2^k
- Always logical shift

Right shift

- Unsigned: logical shift, div (division + round to zero) by 2^k
- Signed: arithmetic shift
 - Positive numbers: div (division + round to zero) by 2^k
 - Negative numbers: div (division + round away from zero) by 2^k
 Use biasing to fix

Properties of Unsigned Arithmetic

- Unsigned Multiplication with Addition Forms Commutative Ring
 - Addition is commutative group
 - Closed under multiplication $0 \le UMult_{w}(u, v) \le 2^{w} 1$
 - Multiplication Commutative $UMult_{w}(u, v) = UMult_{w}(v, u)$
 - Multiplication is Associative
 UMult_w(t, UMult_w(u, v)) = UMult_w(UMult_w(t, u), v)
 - 1 is multiplicative identity $UMult_{\omega}(u, 1) = u$
 - Multiplication distributes over addtion $UMult_{w}(t, UAdd_{w}(u, v)) = UAdd_{w}(UMult_{w}(t, u), UMult_{w}(t, v))$

Properties of Two's Comp. Arithmetic

Isomorphic Algebras

- Unsigned multiplication and addition
 - Truncating to w bits
- Two's complement multiplication and addition
 - Truncating to w bits

Both Form Rings

Isomorphic to ring of integers mod 2^w

Comparison to (Mathematical) Integer Arithmetic

- Both are rings
- Integers obey ordering properties, e.g.,

$$U > 0 \qquad \rightarrow \qquad u + v > v$$

$$u > 0, v > 0 \qquad \rightarrow \qquad u \cdot v > 0$$

These properties are not obeyed by two's comp. arithmetic

```
TMax + 1 == TMin
15213 * 30426 == -10030 (16-bit words)
```

Reading Byte-Reversed Listings

Disassembly

- Text representation of binary machine code
- Generated by program that reads the machine code

Example Fragment

Address	Instruction Code	Assembly Rendition
8048365:	5b	pop %ebx
8048366:	81 c3 ab 12 00 00	add \$0x12ab,%ebx
804836c:	83 bb 28 00 00 00 00	cmpl

Deciphering Numbers

- Value:
- Pad to 32 bits:
- Split into bytes:
- Reverse:

0x12ab 0x000012ab 00 00 12 ab

ab 12 00 00