I Undergraduate Topics in Computer Scien

Antti Laaksonen

Guide to
Competitive
Programming

Learning and Improving Algorithms
Through Contests

uTiCS @ Springer

Undergraduate Topics in Computer
Science

Series editor

Tan Mackie

Adyvisory Board

Samson Abramsky, University of Oxford, Oxford, UK

Chris Hankin, Imperial College London, London, UK

Dexter C. Kozen, Cornell University, Ithaca, USA

Andrew Pitts, University of Cambridge, Cambridge, UK

Hanne Riis Nielson, Technical University of Denmark, Kongens Lyngby, Denmark
Steven S. Skiena, Stony Brook University, Stony Brook, USA

ITain Stewart, University of Durham, Durham, UK

Undergraduate Topics in Computer Science (UTiCS) delivers high-quality
instructional content for undergraduates studying in all areas of computing and
information science. From core foundational and theoretical material to final-year
topics and applications, UTiCS books take a fresh, concise, and modern approach
and are ideal for self-study or for a one- or two-semester course. The texts are all
authored by established experts in their fields, reviewed by an international advisory
board, and contain numerous examples and problems. Many include fully worked
solutions.

More information about this series at http://www.springer.com/series/7592

Antti Laaksonen

Guide to Competitive
Programming

Learning and Improving Algorithms
Through Contests

@ Springer

Antti Laaksonen
Department of Computer Science
University of Helsinki

Helsinki

Finland

ISSN 1863-7310 ISSN 2197-1781 (electronic)
Undergraduate Topics in Computer Science

ISBN 978-3-319-72546-8 ISBN 978-3-319-72547-5 (eBook)

https://doi.org/10.1007/978-3-319-72547-5

Library of Congress Control Number: 2017960923

© Springer International Publishing AG, part of Springer Nature 2017

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained herein or
for any errors or omissions that may have been made. The publisher remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Printed on acid-free paper
This Springer imprint is published by the registered company is Springer International Publishing AG

part of Springer Nature.
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

The purpose of this book is to give you a comprehensive introduction to modern
competitive programming. It is assumed that you already know the basics of pro-
gramming, but previous background in algorithm design or programming contests
is not necessary. Since the book covers a wide range of topics of various difficulty,
it suits both for beginners and more experienced readers.

Programming contests already have a quite long history. The International
Collegiate Programming Contest for university students was started during the
1970s, and the first International Olympiad in Informatics for secondary school
students was organized in 1989. Both competitions are now established events with
a large number of participants from all around the world.

Today, competitive programming is more popular than ever. The Internet has
played a significant role in this progress. There is now an active online community
of competitive programmers, and many contests are organized every week. At the
same time, the difficulty of contests is increasing. Techniques that only the very best
participants mastered some years ago are now standard tools known by a large
number of people.

Competitive programming has its roots in the scientific study of algorithms.
However, while a computer scientist writes a proof to show that their algorithm
works, a competitive programmer implements their algorithm and submits it to a
contest system. Then, the algorithm is tested using a set of test cases, and if it passes
all of them, it is accepted. This is an essential element in competitive programming,
because it provides a way to automatically get strong evidence that an algorithm
works. In fact, competitive programming has proved to be an excellent way to learn
algorithms, because it encourages to design algorithms that really work, instead of
sketching ideas that may work or not.

Another benefit of competitive programming is that contest problems require
thinking. In particular, there are no spoilers in problem statements. This is actually a
severe problem in many algorithms courses. You are given a nice problem to solve,
but then the last sentence says, for example: “Hint: modify Dijkstra’s algorithm to
solve the problem.” After reading this, there is not much thinking needed, because
you already know how to solve the problem. This never happens in competitive

vi Preface

programming. Instead, you have a full set of tools available, and you have to figure
out yourself which of them to use.

Solving competitive programming problems also improves one’s programming
and debugging skills. Typically, a solution is awarded points only if it correctly
solves all test cases, so a successful competitive programmer has to be able to
implement programs that do not have bugs. This is a valuable skill in software
engineering, and it is not a coincidence that IT companies are interested in people
who have background in competitive programming.

It takes a long time to become a good competitive programmer, but it is also an
opportunity to learn a lot. You can be sure that you will get a good general
understanding of algorithms if you spend time reading the book, solving problems,
and taking part in contests.

If you have any feedback, I would like to hear it! You can always send me a
message to ahslaaks @cs.helsinki.fi.

I am very grateful to a large number of people who have sent me feedback on
draft versions of this book. This feedback has greatly improved the quality of the
book. I especially thank Mikko Ervasti, Janne Junnila, Janne Kokkala, Tuukka
Korhonen, Patric Ostergard, and Roope Salmi for giving detailed feedback on the
manuscript. I also thank Simon Rees and Wayne Wheeler for excellent collabo-
ration when publishing this book with Springer.

Helsinki, Finland Antti Laaksonen
October 2017

Introduction.

1.1 What is Competitive Programming?......................
1.1.1 Programming Contests.
1.1.2 Tips for Practicing.
1.2 About This Book,
1.3 CSESProblem Set..........,
1.4 Other Resources
Programming Techniques.
2.1 Language Features i,
21.1 Inputand Output...............,
2.1.2 Working with Numbers.
2.1.3 Shortening Code
2.2 Recursive Algorithms
2.2.1 Generating Subsets
2.2.2 Generating Permutations
223 Backtracking
2.3 BitManipulation.
23,1 BitOperationS.ouuiiiiieea..
2.3.2 Representing Sets
Efficiency
3.1 Time Complexity,
3.1.1 Calculation Rules
3.1.2 Common Time Complexities.
3.1.3 Estimating Efficiency.
3.1.4 Formal Definitions.
32 Examples
3.2.1 Maximum Subarray Sum.
322 Two Queens Problem
Sorting and Searching.
4.1 Sorting Algorithms
4.1.1 Bubble Sort...........

O W W N = =

vii

viii

Contents

4.1.2 Merge SOort . ..o 39

4.13 Sorting Lower Bound 40

4.1.4 Counting SOrtt 41

4.1.5 Sorting in Practice. 41

4.2 Solving Problems by Sorting 43
4.2.1 Sweep Line Algorithms. 44

422 Scheduling Events. 45

423 Tasks and Deadlines 45

43 Binary Search......... 46
43.1 Implementing the Search........................ 47

4.3.2 Finding Optimal Solutions. 48

Data Structures 51
5.1 Dynamic Arraysttt 51
5.1 Vectors .. .oo e 52

5.1.2 Tterators and Ranges 53

5.1.3 Other Structures. 54

52 Set StruCturesttt 55
5.2.1 Sets and Multisets 55

522 MapS. .o 57

5.2.3 Priority Queues 58

5.2.4 Policy-Based Sets 59

5.3 EXperiments 60
5.3.1 Set Versus Sorting. 60

532 Map Versus AITay. ovvi e 61

5.3.3 Priority Queue Versus Multiset 62
Dynamic Programming., 63
6.1 Basic Concepts.ttt 63
6.1.1 When Greedy Fails 63

6.1.2 Finding an Optimal Solution. 64

6.1.3 Counting Solutionscuiuieinn... 67

6.2 Further Examples 68
6.2.1 Longest Increasing Subsequence 69

622 PathsinaGrid L 70

6.2.3 Knapsack Problems. 71

6.2.4 From Permutations to Subsets. 72

6.2.5 Counting Tilings 74
Graph Algorithms. 77
7.1 Basics of Graphs. 78
7.1.1 Graph Terminology 78

7.1.2 Graph Representation 80

7.2 Graph Traversal 83

7.2.1 Depth-First Search. 83

Contents ix
7.2.2 Breadth-First Search 85

7.23 Applications 86

7.3 Shortest Paths. 87
7.3.1 Bellman-Ford Algorithm. 88

7.3.2 Dijkstra’s Algorithm 89

7.3.3 Floyd—Warshall Algorithm 92

7.4 Directed Acyclic Graphs. 94
7.4.1 Topological Sorting. 94

7.4.2 Dynamic Programming 96

7.5 Successor Graphs 97
7.5.1 Finding Successorsiiiiiii... 98

7.5.2 CycleDetection. 99

7.6 Minimum Spanning Trees. 100
7.6.1 Kruskal’s Algorithm 101

7.6.2 Union-Find Structure. 103

7.6.3 Prim’s Algorithm. 106

8 Algorithm Design Topics. 107
8.1 Bit-Parallel Algorithms. 107
8.1.1 Hamming Distances. 107

8.1.2 Counting Subgrids. 108

8.1.3 Reachability in Graphs 110

8.2 Amortized Analysis 111
8.2.1 Two Pointers Method 111

8.2.2 Nearest Smaller Elements 113

8.2.3 Sliding Window Minimum 114

8.3 Finding Minimum Values. 115
83.1 Ternary Search 115

8.3.2 Convex Functions 116

8.3.3 Minimizing Sums 117

9 RangeQueries. 119
9.1 Queries on StatiC ATTays.ot vii e 119
9.1.1 Sum Queries 120

9.1.2 Minimum QUeriesttt 121

9.2 Tree StruCtures oottt 122
9.2.1 Binary Indexed Trees 122

9.22 Segment Trees.ot 125

9.2.3 Additional Techniques. 128

10 Tree Algorithms 131
10.1 Basic Techniques 131
10.1.1 Tree Traversal 132

10.1.2 Calculating Diameters 134

10.1.3 All Longest Paths 135

11

12

Contents

10.2 Tree Queries. 137
10.2.1 Finding Ancestors, 137
10.2.2 Subtrees and Paths. 138
10.2.3 Lowest Common Ancestors. 140
10.2.4 Merging Data Structures 142
10.3 Advanced Techniques. i, 144
10.3.1 Centroid Decomposition 144
10.3.2 Heavy-Light Decomposition 145
Mathematics. 147
11.1 Number Theory 147
11.1.1 Primes and Factors 148
11.1.2 Sieve of Eratosthenes 150
11.1.3 Euclid’s Algorithm 151
11.1.4 Modular Exponentiation 153
11.1.5 Euler’s Theorem 153
11.1.6 Solving Equations 155
11.2 Combinatorics. 156
11.2.1 Binomial Coefficients 157
11.2.2 Catalan Numbers. 159
11.2.3 Inclusion-Exclusion. 161
11.2.4 Burnside’s Lemma. 163
11.2.5 Cayley’s Formula 164
11.3 MALIICES . . . oo e e e 164
11.3.1 Matrix Operationsouuueinennen... 165
11.3.2 Linear Recurrences 167
11.3.3 Graphs and Matricesc...o.... 169
11.3.4 Gaussian Elimination. 170
11.4 Probability 173
11.4.1 Working with Events. 174
1142 Random Variables............................. 175
1143 MarkovChains 178
11.4.4 Randomized Algorithms 179
11.5 Game Theoryt 181
11.5.1 Game States 181
1152 NimGame. 182
11.5.3 Sprague-Grundy Theorem. 184
Advanced Graph Algorithms 189
12.1 Strong Connectivityouiuiuiiueen... 189
12.1.1 Kosaraju’s Algorithm 190
12.1.2 2SAT Problem. 192
12.2 Complete Paths. 193

12.2.1 Eulerian Paths 194

Contents Xi

13

14

15

12.2.2 Hamiltonian Paths 195
1223 Applications 196
12.3 Maximum Flows. 198
12.3.1 Ford-Fulkerson Algorithm. 199
1232 Disjoint Paths L 202
12.3.3 Maximum Matchings. 203
1234 Path Covers.......... 205
12.4 Depth-First Search Trees 207
12.4.1 Biconnectivityo, 207
12.4.2 Eulerian Subgraphs 209
GeOMeLTYo 211
13.1 Geometric Techniques 211
13.1.1 Complex Numbers. 211
13.1.2 Pointsand Lines 213
13.1.3 Polygon Area 216
13.1.4 Distance Functions 218
13.2 Sweep Line Algorithms 220
13.2.1 Intersection Points................... 220
13.2.2 Closest Pair Problem. 221
13.23 Convex Hull Problem 224
String Algorithms 225
14.1 Basic TOPICS. . . .o v vt 225
14.1.1 Trie Structure 226
14.1.2 Dynamic Programming 227
142 String Hashing 228
14.2.1 Polynomial Hashing 228
1422 Applications 229
14.2.3 Collisions and Parameters 230
143 Z-Algorithm 231
14.3.1 Constructing the Z-Array. 232
14.3.2 Applications, 233
14.4 Suffix Arrays 234
14.4.1 Prefix Doubling Method 235
14.42 Finding Patterns. 236
1443 LCP Arrays.ottt 236
Additional Topics 239
15.1 Square Root Techniques. 239
15.1.1 Data Structuresouiiieieo.. 240
15.1.2 Subalgorithms 241
15.1.3 Integer Partitions. 243

15.1.4 Mo’s Algorithm. 244

Xii Contents
15.2 Segment Trees Revisited. 245
15.2.1 Lazy Propagation. 246

15.2.2 Dynamic Treescoiiiinininennon.. 249

15.2.3 Data Structures in Nodes. 251

15.2.4 Two-Dimensional Trees. 253

153 Treaps. . oo oot e 253
15.3.1 Splitting and Merging 253

153.2 Implementation 255

15.3.3 Additional Techniques. 257

15.4 Dynamic Programming Optimization 258
15.4.1 Convex Hull Trick. 258

15.4.2 Divide and Conquer Optimization. 260

15.4.3 Knuth’s Optimization 261

155 Miscellaneous. 262
155.1 Meetinthe Middle 263

15.5.2 Counting Subsets. 263

15.5.3 Parallel Binary Search.......................... 265

15.5.4 Dynamic Connectivity. 266

Appendix A: Mathematical Background. 269
References 277
Index 279

Introduction

This chapter shows what competitive programming is about, outlines the contents of
the book, and discusses additional learning resources.

Section 1.1 goes through the elements of competitive programming, introduces
a selection of popular programming contests, and gives advice on how to practice
competitive programming.

Section 1.2 discusses the goals and topics of this book, and briefly describes the
contents of each chapter.

Section 1.3 presents the CSES Problem Set, which contains a collection of practice
problems. Solving the problems while reading the book is a good way to learn
competitive programming.

Section 1.4 discusses other books related to competitive programming and the
design of algorithms.

1.1 What is Competitive Programming?

Competitive programming combines two topics: the design of algorithms and the
implementation of algorithms.

Design of Algorithms The core of competitive programming is about inventing
efficient algorithms that solve well-defined computational problems. The design of
algorithms requires problem solving and mathematical skills. Often a solution to a
problem is a combination of well-known methods and new insights.

Mathematics plays an important role in competitive programming. Actually, there
are no clear boundaries between algorithm design and mathematics. This book has
been written so that not much background in mathematics is needed. The appendix
of the book reviews some mathematical concepts that are used throughout the book,

© Springer International Publishing AG, part of Springer Nature 2017 1
A. Laaksonen, Guide to Competitive Programming, Undergraduate
Topics in Computer Science, https://doi.org/10.1007/978-3-319-72547-5_1

2 1 Introduction

such as sets, logic, and functions, and the appendix can be used as a reference when
reading the book.

Implementation of Algorithms In competitive programming, the solutions to prob-
lems are evaluated by testing an implemented algorithm using a set of test cases.
Thus, after coming up with an algorithm that solves the problem, the next step is to
correctly implement it, which requires good programming skills. Competitive pro-
gramming greatly differs from traditional software engineering: programs are short
(usually at most some hundreds of lines), they should be written quickly, and it is
not needed to maintain them after the contest.

At the moment, the most popular programming languages used in contests are
C++, Python, and Java. For example, in Google Code Jam 2017, among the best
3,000 participants, 79% used C++, 16% used Python, and 8% used Java. Many
people regard C++ as the best choice for a competitive programmer. The benefits of
using C++ are that it is a very efficient language and its standard library contains a
large collection of data structures and algorithms.

All example programs in this book are written in C++, and the standard library’s
data structures and algorithms are often used. The programs follow the C++11 stan-
dard, which can be used in most contests nowadays. If you cannot program in C++
yet, now is a good time to start learning.

1.1.1 Programming Contests

101 The International Olympiad in Informatics is an annual programming contest for
secondary school students. Each country is allowed to send a team of four students
to the contest. There are usually about 300 participants from 80 countries.

The IOI consists of two five-hour long contests. In both contests, the participants
are asked to solve three difficult programming tasks. The tasks are divided into
subtasks, each of which has an assigned score. While the contestants are divided into
teams, they compete as individuals.

Participants for the IOI are selected through national contests. Before the 101,

many regional contests are organized, such as the Baltic Olympiad in Informatics
(BOI), the Central European Olympiad in Informatics (CEOI), and the Asia-Pacific
Informatics Olympiad (APIO).
ICPC The International Collegiate Programming Contest is an annual programming
contest for university students. Each team in the contest consists of three students,
and unlike in the I1OI, the students work together; there is only one computer available
for each team.

The ICPC consists of several stages, and finally the best teams are invited to the
World Finals. While there are tens of thousands of participants in the contest, there
are only a small number! of final slots available, so even advancing to the finals is a
great achievement.

I'The exact number of final slots varies from year to year; in 2017, there were 133 final slots.

1.1 What is Competitive Programming? 3

Ineach ICPC contest, the teams have five hours of time to solve about ten algorithm

problems. A solution to a problem is accepted only if it solves all test cases efficiently.
During the contest, competitors may view the results of other teams, but for the last
hour the scoreboard is frozen and it is not possible to see the results of the last
submissions.
Online Contests There are also many online contests that are open for everybody.
At the moment, the most active contest site is Codeforces, which organizes contests
about weekly. Other popular contest sites include AtCoder, CodeChef, CS Academy,
HackerRank, and Topcoder.

Some companies organize online contests with onsite finals. Examples of such
contests are Facebook Hacker Cup, Google Code Jam, and Yandex.Algorithm. Of
course, companies also use those contests for recruiting: performing well in a contest
is a good way to prove one’s skills in programming.

1.1.2 Tips for Practicing

Learning competitive programming requires a great amount of work. However, there
are many ways to practice, and some of them are better than others.

When solving problems, one should keep in mind that the number of solved
problems is not so important that the quality of the problems. It is tempting to select
problems that look nice and easy and solve them, and skip problems that look hard
and tedious. However, the way to really improve one’s skills is to focus on the latter
type of problems.

Another important observation is that most programming contest problems can
be solved using simple and short algorithms, but the difficult part is to invent the
algorithm. Competitive programming is not about learning complex and obscure
algorithms by heart, but rather about learning problem solving and ways to approach
difficult problems using simple tools.

Finally, some people despise the implementation of algorithms: it is fun to design
algorithms but boring to implement them. However, the ability to quickly and cor-
rectly implement algorithms is an important asset, and this skill can be practiced. It
is a bad idea to spend most of the contest time for writing code and finding bugs,
instead of thinking of how to solve problems.

1.2 About This Book

The IOI Syllabus [15] regulates the topics that may appear at the International
Olympiad in Informatics, and the syllabus has been a starting point when select-
ing topics for this book. However, the book also discusses some advanced topics that
are (as of 2017) excluded from the IOI but may appear in other contests. Examples
of such topics are maximum flows, nim theory, and suffix arrays.

4 1 Introduction

While many competitive programming topics are discussed in standard algorithms
textbooks, there are also differences. For example, many textbooks focus on imple-
menting sorting algorithms and fundamental data structures from scratch, but this
knowledge is not very relevant in competitive programming, because standard li-
brary functionality can be used. Then, there are topics that are well known in the
competitive programming community but rarely discussed in textbooks. An example
of such a topic is the segment tree data structure that can be used to solve a large
number of problems that would otherwise require tricky algorithms.

One of the purposes of this book has been to document competitive programming
techniques that are usually only discussed in online forums and blog posts. When-
ever possible, scientific references have been given for methods that are specific to
competitive programming. However, this has not often been possible, because many
techniques are now part of competitive programming folklore and nobody knows
who has originally discovered them.

The structure of the book is as follows:

e Chapter 2 reviews features of the C++ programming language, and then discusses
recursive algorithms and bit manipulation.

e Chapter 3 focuses on efficiency: how to create algorithms that can quickly process
large data sets.

e Chapter 4 discusses sorting algorithms and binary search, focusing on their ap-
plications in algorithm design.

e Chapter 5 goes through a selection of data structures of the C++ standard library,
such as vectors, sets, and maps.

e Chapter 6 introduces an algorithm design technique called dynamic programming,
and presents examples of problems that can be solved using it.

e Chapter 7 discusses elementary graph algorithms, such as finding shortest paths
and minimum spanning trees.

e Chapter 8 deals with some advanced algorithm design topics, such as bit-
parallelism and amortized analysis.

e Chapter 9 focuses on efficiently processing array range queries, such as calculating
sums of values and determining minimum values.

e Chapter 10 presents specialized algorithms for trees, including methods for
processing tree queries.

e Chapter 11 discusses mathematical topics that are relevant in competitive pro-
gramming.

e Chapter 12 presents advanced graph techniques, such as strongly connected com-
ponents and maximum flows.

e Chapter 13 focuses on geometric algorithms and presents techniques using which
geometric problems can be solved conveniently.

e Chapter 14 deals with string techniques, such as string hashing, the Z-algorithm,
and using suffix arrays.

e Chapter 15 discusses a selection of more advanced topics, such as square root
algorithms and dynamic programming optimization.

http://dx.doi.org/10.1007/978-3-319-72547-5_2
http://dx.doi.org/10.1007/978-3-319-72547-5_3
http://dx.doi.org/10.1007/978-3-319-72547-5_4
http://dx.doi.org/10.1007/978-3-319-72547-5_5
http://dx.doi.org/10.1007/978-3-319-72547-5_6
http://dx.doi.org/10.1007/978-3-319-72547-5_7
http://dx.doi.org/10.1007/978-3-319-72547-5_8
http://dx.doi.org/10.1007/978-3-319-72547-5_9
http://dx.doi.org/10.1007/978-3-319-72547-5_10
http://dx.doi.org/10.1007/978-3-319-72547-5_11
http://dx.doi.org/10.1007/978-3-319-72547-5_12
http://dx.doi.org/10.1007/978-3-319-72547-5_13
http://dx.doi.org/10.1007/978-3-319-72547-5_14
http://dx.doi.org/10.1007/978-3-319-72547-5_15

1.3 CSES Problem Set 5

1.3 CSES Problem Set

The CSES Problem Set provides a collection of problems that can be used to practice
competitive programming. The problems have been arranged in order of difficulty,
and all techniques needed for solving the problems are discussed in this book. The
problem set is available at the following address:

https://cses.fi/problemset/

Let us see how to solve the first problem in the problem set, called Weird Algorithm.
The problem statement is as follows:

Consider an algorithm that takes as input a positive integer n. If n is even, the algorithm
divides it by two, and if n is odd, the algorithm multiplies it by three and adds one. The
algorithm repeats this, until n is one. For example, the sequence for n = 3 is as follows:

310-5—->16->8—>4—->2—>1

Your task is to simulate the execution of the algorithm for a given value of n.
Input
The only input line contains an integer 7.
Output
Print a line that contains all values of n during the algorithm.
Constraints
o 1<n<10°
Example
Input:
3
Output:
310516 8 4 21
This problem is connected to the famous Collatz conjecture which states that the
above algorithm terminates for every value of n. However, nobody has been able to
prove it. In this problem, however, we know that the initial value of n will be at most
one million, which makes the problem much easier to solve.
This problem is a simple simulation problem, which does not require much think-
ing. Here is a possible way to solve the problem in C++:

https://cses.fi/problemset/

6 1 Introduction

#include <iostream>

using namespace std;

int main() {

int n;

cin >> n;

while (true) ({
cout << n << " ";
if (n == 1) break;
if (n%2 == 0) n /= 2;
else n = n*3+1;

}

cout << "\n";

}

The code first reads in the input number n, and then simulates the algorithm and
prints the value of n after each step. It is easy to test that the algorithm correctly
handles the example case n = 3 given in the problem statement.

Now is time to submit the code to CSES. Then the code will be compiled and
tested using a set of test cases. For each test case, CSES will tell us whether our code
passed it or not, and we can also examine the input, the expected output, and the
output produced by our code.

After testing our code, CSES gives the following report:

test verdict

time (s)

#1 ACCEPTED 0.06/1.00
#2 ACCEPTED 0.06/1.00
#3 ACCEPTED 0.07/1.00
#4 ACCEPTED 0.06/1.00
#5 ACCEPTED 0.06/1.00
#6 TIME LIMIT EXCEEDED -/1.00

#7 TIME LIMIT EXCEEDED -/1.00

#3 WRONG ANSWER 0.07/1.00
#9 TIME LIMIT EXCEEDED -/1.00

#10 ACCEPTED 0.06/1.00

This means that our code passed some of the test cases (ACCEPTED), was some-
times too slow (TIME LIMIT EXCEEDED), and also produced an incorrect output
(WRONG ANSWER). This is quite surprising!

The first test case that fails has n = 138367. If we test our code locally using this
input, it turns out that the code is indeed slow. In fact, it never terminates.

The reason why our code fails is that n can become quite large during the simula-
tion. In particular, it can become larger than the upper limit of an int variable. To

1.3 CSES Problem Set 7

fix the problem, it suffices to change our code so that the type of n is long long.
Then we will get the desired result:

test verdict time (s)

#1 ACCEPTED 0.05/1.00
#2 ACCEPTED 0.06/1.00
#3 ACCEPTED 0.07/1.00
#4 ACCEPTED 0.06/1.00
#5 ACCEPTED 0.06/1.00
#6 ACCEPTED 0.05/1.00
#7 ACCEPTED 0.06/1.00
#8 ACCEPTED 0.05/1.00
#9 ACCEPTED 0.07/1.00
#10 ACCEPTED 0.06/1.00

As this example shows, even very simple algorithms may contain subtle bugs.
Competitive programming teaches how to write algorithms that really work.

1.4 Other Resources

Besides this book, there are already several other books on competitive programming.
Skiena’s and Revilla’s Programming Challenges [28] is a pioneering book in the field
published in 2003. A more recent book is Competitive Programming 3 [14] by Halim
and Halim. Both the above books are intended for readers with no background in
competitive programming.

Looking for a Challenge? [7] is an advanced book, which present a collection of
difficult problems from Polish programming contests. The most interesting feature
of the book is that it provides detailed analyses of how to solve the problems. The
book is intended for experienced competitive programmers.

Of course, general algorithms books are also good reads for competitive program-
mers. The most comprehensive of them is Introduction to Algorithms [6] written by
Cormen, Leiserson, Rivest, and Stein, also called the CLRS. This book is a good re-
source if you want to check all details concerning an algorithm and how to rigorously
prove that it is correct.

Kleinberg’s and Tardos’s Algorithm Design [19] focuses on algorithm design tech-
niques, and thoroughly discusses the divide and conquer method, greedy algorithms,
dynamic programming, and maximum flow algorithms. Skiena’s The Algorithm De-
sign Manual [27] is a more practical book which includes a large catalogue of
computational problems and describes ways how to solve them.

Programming Techniques

This chapter presents some of the features of the C++ programming language that
are useful in competitive programming, and gives examples of how to use recursion
and bit operations in programming.

Section 2.1 discusses a selection of topics related to C++, including input and
output methods, working with numbers, and how to shorten code.

Section 2.2 focuses on recursive algorithms. First we will learn an elegant way
to generate all subsets and permutations of a set using recursion. After this, we will
use backtracking to count the number of ways to place n non-attacking queens on
an n x n chessboard.

Section 2.3 discusses the basics of bit operations and shows how to use them to
represent subsets of sets.

2.1 Language Features

A typical C++ code template for competitive programming looks like this:

#include <bits/stdc++.h>
using namespace std;
int main() {

// solution comes here

}

The #include line at the beginning of the code is a feature of the g++ compiler
that allows us to include the entire standard library. Thus, it is not needed to separately

© Springer International Publishing AG, part of Springer Nature 2017 9
A. Laaksonen, Guide to Competitive Programming, Undergraduate
Topics in Computer Science, https://doi.org/10.1007/978-3-319-72547-5_2

10 2 Programming Techniques

include libraries such as iostream, vector, and algorithm, but rather they
are available automatically.

The us ing line declares that the classes and functions of the standard library can
be used directly in the code. Without the using line we would have to write, for
example, std: : cout, but now it suffices to write cout.

The code can be compiled using the following command:

g++ -std=c++11 -02 -Wall test.cpp -o test

This command produces a binary file test from the source code test . cpp. The
compiler follows the C++11 standard (-std=c++11), optimizes the code (-02),
and shows warnings about possible errors (-Wall).

2.1.1 Input and Output

In most contests, standard streams are used for reading input and writing output. In
C++, the standard streams are cin for input and cout for output. Also C functions,
such as scanf and printf, can be used.

The input for the program usually consists of numbers and strings separated with
spaces and newlines. They can be read from the cin stream as follows:

int a, b;
string x;
cin >> a >> b >> x;

This kind of code always works, assuming that there is at least one space or
newline between each element in the input. For example, the above code can read
both the following inputs:

123 456 monkey

123 456
monkey

The cout stream is used for output as follows:

int a = 123, b = 456;
string x = "monkey";
cout << a << " " << b << " " << X << "\n";

Input and output is sometimes a bottleneck in the program. The following lines
at the beginning of the code make input and output more efficient:

2.1 Language Features 1

ios::sync_with_stdio(0);
cin.tie(0);

Note that the newline " \n" works faster than end1, because endl always causes
a flush operation.

The C functions scanf and printf are an alternative to the C++ standard
streams. They are usually slightly faster, but also more difficult to use. The following
code reads two integers from the input:

int a, b;
scanf ("%$d %d", &a, &b);

The following code prints two integers:

int a = 123, b = 456;
printf ("%$d $d\n", a, b);

Sometimes the program should read a whole input line, possibly containing spaces.
This can be accomplished by using the get1ine function:

string s;
getline(cin, s);

If the amount of data is unknown, the following loop is useful:

while (cin >> x) {
// code
}

This loop reads elements from the input one after another, until there is no more
data available in the input.

In some contest systems, files are used for input and output. An easy solution for
this is to write the code as usual using standard streams, but add the following lines
to the beginning of the code:

freopen ("input.txt", "r", stdin);
freopen ("output.txt", "w", stdout);

After this, the program reads the input from the file “input.txt” and writes the
output to the file “output.txt”.

12 2 Programming Techniques

2.1.2 Working with Numbers

Integers The most used integer type in competitive programming is int, which is
a 32-bit type! with a value range of —23! ... 23! — 1 (about —2 - 10”...2-10%). If
the type int is not enough, the 64-bit type long long can be used. It has a value
range of —2%3 ... 2%3 — [(about —9 - 10'8 ... 9. 108).

The following code defines a 1ong long variable:

long long x = 123456789123456789LL;

The suffix LL means that the type of the number is long long.
A common mistake when using the type 1long long is that the type int is still
used somewhere in the code. For example, the following code contains a subtle error:

int a = 123456789;
long long b = a*a;
cout << b << "\n"; // -1757895751

Even though the variable bisof type 1ong long, both numbers in the expression
a*a are of type int, and the result is also of type int. Because of this, the variable
b will have a wrong result. The problem can be solved by changing the type of a to
long long or by changing the expression to (long long)a*a.

Usually contest problems are set so that the type 1long long is enough. Still, it
is good to know that the g++ compiler also provides a 128-bit type __int128_t
with a value range of —2!27 ... 2127 — [(about —1038 ... 10%%). However, this type
is not available in all contest systems.

Modular Arithmetic Sometimes, the answer to a problem is a very large number,
but it is enough to output it “modulo m”, i.e., the remainder when the answer is
divided by m (e.g., “modulo 10° 4 77). The idea is that even if the actual answer is
very large, it suffices to use the types int and long long.

We denote by x mod m the remainder when x is divided by m. For example,
17 mod 5 = 2, because 17 = 3 - 5 4+ 2. An important property of remainders is that
the following formulas hold:

(a + b) mod m = (a mod m + b mod m) mod m
(a — b) mod m = (a mod m — b mod m) mod m
(a -b) mod m = (a mod m - b mod m) mod m

Thus, we can take the remainder after every operation, and the numbers will never
become too large.

n fact, the C++ standard does not exactly specify the sizes of the number types, and the bounds
depend on the compiler and platform. The sizes given in this section are those you will very likely
see when using modern systems.

2.1 Language Features 13

For example, the following code calculates n!, the factorial of n, modulo m:

long long x = 1;

for (int 1 = 1; 1 <= n; 1i++) {
X = (x*1)%m;

}

cout << X << "\n";

Usually we want the remainder to always be betweenO . . . m — 1. However, in C++
and other languages, the remainder of a negative number is either zero or negative.
An easy way to make sure there are no negative remainders is to first calculate the
remainder as usual and then add m if the result is negative:

if (x < 0) x += m;

However, this is only needed when there are subtractions in the code, and the
remainder may become negative.

Floating Point Numbers In most competitive programming problems, it suffices
to use integers, but sometimes floating point numbers are needed. The most useful
floating point types in C++ are the 64-bit double and, as an extension in the g++
compiler, the 80-bit long double. In most cases, double is enough, but long
double is more accurate.

The required precision of the answer is usually given in the problem statement.
An easy way to output the answer is to use the print f function and give the number
of decimal places in the formatting string. For example, the following code prints
the value of x with 9 decimal places:

printf("%$.9f\n", x);

A difficulty when using floating point numbers is that some numbers cannot be
represented accurately as floating point numbers, and there will be rounding errors.
For example, in the following code, the value of x is slightly smaller than 1, while
the correct value would be 1.

double x = 0.3*3+0.1;
printf ("%.20f\n", x); // 0.99999999999999988898

It is risky to compare floating point numbers with the == operator, because it is
possible that the values should be equal but they are not because of precision errors.
A better way to compare floating point numbers is to assume that two numbers are
equal if the difference between them is less than &, where ¢ is a small number. For
example, in the following code ¢ = 107°:

14 2 Programming Techniques

if (abs(a-b) < 1le-9) {
// a and b are equal
}

Note that while floating point numbers are inaccurate, integers up to a certain
limit can still be represented accurately. For example, using double, it is possible
to accurately represent all integers whose absolute value is at most 233,

2.1.3 Shortening Code

Type Names The command typedef can be used to give a short name to a data
type. For example, the name 1long long is long, so we can define a short name
11 as follows:

typedef long long 11;

After this, the code

long long a = 123456789;
long long b = 987654321;
cout << a*b << "\n";

can be shortened as follows:

11 a = 123456789;
11 b = 987654321;
cout << a*b << "\n";

The command typedef can also be used with more complex types. For example,
the following code gives the name vi for a vector of integers, and the name pi for
a pair that contains two integers.

typedef vector<int> vi;
typedef pair<int,int> pi;

Macros Another way to shorten code is to define macros. A macro specifies that
certain strings in the code will be changed before the compilation. In C++, macros
are defined using the #define keyword.

For example, we can define the following macros:

#define F first
#define S second
#define PB push_back
#define MP make_pair

2.1 Language Features

15

After this, the code

v.push_back (make_pair(yl,x1));
v.push_back (make_pair(y2,x2));
int d = v[i].first+v[i].second;

can be shortened as follows:

v.PB(MP(yl,x1));
v.PB(MP(y2,x2));
int d = v[i].F+vI[i].S;

A macro can also have parameters, which makes it possible to shorten loops and
other structures. For example, we can define the following macro:

#define REP(i,a,b) for (int i = a; 1 <= b; 1++)
After this, the code
for (int 1 = 1; 1 <= n; 1i++) {

search (i) ;

}

can be shortened as follows:

REP(1i,1,n) {
search (i) ;

}

2.2 Recursive Algorithms

Recursion often provides an elegant way to implement an algorithm. In this section,
we discuss recursive algorithms that systematically go through candidate solutions to
a problem. First, we focus on generating subsets and permutations and then discuss

the more general backtracking technique.

2.2.1 Generating Subsets

Our first application of recursion is generating all subsets of a set of n elements. For
example, the subsets of {1, 2, 3} are @, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3},and {1, 2, 3}.
The following recursive function search can be used to generate the subsets. The

function maintains a vector

16 2 Programming Techniques

vector<int> subset;

that will contain the elements of each subset. The search begins when the function
is called with parameter 1.

void search(int k) {

if (k == n+1) {
// process subset

} else {
// include k in the subset
subset.push_back (k) ;
search (k+1) ;
subset.pop_back () ;
// don’t include k in the subset
search (k+1) ;

}

When the function search is called with parameter k, it decides whether to
include the element k in the subset or not, and in both cases, then calls itself with
parameter k + 1. Then, if k = n + 1, the function notices that all elements have been
processed and a subset has been generated.

Figure 2.1 illustrates the generation of subsets when n = 3. At each function call,
either the upper branch (k is included in the subset) or the lower branch (k is not
included in the subset) is chosen.

2.2.2 Generating Permutations

Next we consider the problem of generating all permutations of a set of n elements.
For example, the permutations of {1, 2, 3} are (1, 2, 3), (1, 3,2), (2,1, 3), (2,3, 1),
(3,1,2), and (3, 2, 1). Again, we can use recursion to perform the search. The fol-
lowing function search maintains a vector

Fig.2.1 The recursion tree {1,2,3}
when generating the subsets search(3)<
of the set {1, 2, 3} cearcn(2) {1,2}
(1,3}
search(3)<
{1}

search(1)

{2,3}
search(3)< 2

search(3)< ;%}

search(2)

2.2 Recursive Algorithms 17

‘vector<int> permutation;

that will contain each permutation, and an array

‘bool chosen[n+1]; ‘

which indicates for each element if it has been included in the permutation. The
search begins when the function is called without parameters.

void search() {
if (permutation.size() == n) {
// process permutation
} else {
for (int i = 1; i <= n; i++) {
if (chosen[i]) continue;
chosen[i] = true;
permutation.push_back (i) ;
search () ;
chosen[i] = false;
permutation.pop_back() ;

}

Each function call appends a new element to permutation and records that it
has been included in chosen. If the size of permutation equals the size of the
set, a permutation has been generated.

Note that the C++ standard library also has the function next_permutation
that can be used to generate permutations. The function is given a permutation, and
it produces the next permutation in lexicographic order. The following code goes
through the permutations of {1, 2, ..., n}:

for (int 1 = 1; 1 <= n; 1i++) {
permutation.push_back (i) ;
}
do {
// process permutation
} while (next_permutation (permutation.begin(),
permutation.end())) ;

18 2 Programming Techniques

2.2.3 Backtracking

A backtracking algorithm begins with an empty solution and extends the solution
step by step. The search recursively goes through all different ways how a solution
can be constructed.

As an example, consider the problem of calculating the number of ways n queens
can be placed on an n x n chessboard so that no two queens attack each other. For
example, Fig.2.2 shows the two possible solutions for n = 4.

The problem can be solved using backtracking by placing queens on the board
row by row. More precisely, exactly one queen will be placed on each row so that no
queen attacks any of the queens placed before. A solution has been found when all
n queens have been placed on the board.

For example, Fig.2.3 shows some partial solutions generated by the backtracking
algorithm when n = 4. At the bottom level, the three first configurations are illegal,
because the queens attack each other. However, the fourth configuration is valid, and
it can be extended to a complete solution by placing two more queens on the board.
There is only one way to place the two remaining queens.

w w

Fig.2.2 The possible ways to place 4 queens on a 4 x 4 chessboard

w w w w
w w w w
w w w w
illegal illegal illegal valid

Fig.2.3 Partial solutions to the queen problem using backtracking

2.2 Recursive Algorithms 19

The algorithm can be implemented as follows:

void search(int y) {
if (y == n) {
count++;
return;
}

for (int x 0; x < n; x++) {

if (col[x] || diagl[x+y] || diag2[x-y+n-1]) continue;
col[x] = diaglix+y] = diag2[x-y+n-1] = 1;

search (y+1) ;

col[x] = diagl[x+y] = diag2[x-y+n-1] = 0;

}

The search begins by calling search (0). The size of the board is n, and the
code calculates the number of solutions to count. The code assumes that the rows
and columns of the board are numbered from 0 to n — 1. When search is called
with parameter y, it places a queen on row y and then calls itself with parameter
y+ 1. Then, if y = n, a solution has been found, and the value of count is increased
by one.

The array col keeps track of the columns that contain a queen, and the arrays
diagl and diag2 keep track of the diagonals. It is not allowed to add another
queen to a column or diagonal that already contains a queen. For example, Fig.2.4
shows the numbering of columns and diagonals of the 4 x 4 board.

The above backtracking algorithm tells us that there are 92 ways to place 8 queens
on the 8 x 8 board. When n increases, the search quickly becomes slow, because
the number of solutions grows exponentially. For example, it takes already about a
minute on a modern computer to calculate that there are 14772512 ways to place 16
queens on the 16 x 16 board.

In fact, nobody knows an efficient way to count the number of queen combinations
for larger values of n. Currently, the largest value of n for which the result is known is
27: there are 234907967154122528 combinations in this case. This was discovered
in 2016 by a group of researchers who used a cluster of computers to calculate the
result [25].

Fig.2.4 Numbering of the
arrays when counting the
combinations on the 4 x 4
board

[l el Nell Nl
[
[SS 2NN NS T BN S T IS \S]
W | W[W | W
W= O
Srlw| | —
(N B S E N)
DN || B~ | W
O = || W
—_— N W
N W[~ |W
Wik ||

col diagl diag2

20 2 Programming Techniques

2.3 Bit Manipulation

In programming, an n-bit integer is internally stored as a binary number that consists
of n bits. For example, the C++ type int is a 32-bit type, which means that every
int number consists of 32 bits. For example, the bit representation of the int
number 43 is

00000000000000000000000000101011.

The bits in the representation are indexed from right to left. To convert a bit repre-
sentation by . . . bpb1 by into a number, the formula

b2k + o 4 by2% + by 2" + b2°.
can be used. For example,
1-22+1-224+1.2V+1.29=43.

The bit representation of a number is either signed or unsigned. Usually a signed
representation is used, which means that both negative and positive numbers can be
represented. A signed variable of n bits can contain any integer between —2"~! and
2"=! _ 1. For example, the int type in C++ is a signed type, so an int variable
can contain any integer between —23! and 23! — 1.

The first bit in a signed representation is the sign of the number (0 for nonnegative
numbers and 1 for negative numbers), and the remaining n — 1 bits contain the
magnitude of the number. Two’s complement is used, which means that the opposite
number of a number is calculated by first inverting all the bits in the number and
then increasing the number by one. For example, the bit representation of the int
number —43 is

I1111111111111111111111111010101.

In an unsigned representation, only nonnegative numbers can be used, but the
upper bound for the values is larger. An unsigned variable of » bits can contain any
integer between 0 and 2" — 1. For example, in C++, an unsigned int variable
can contain any integer between 0 and 232 — 1.

There is a connection between the representations: a signed number —x equals
an unsigned number 2" — x. For example, the following code shows that the signed
number x = —43 equals the unsigned number y = 232 — 43:

int x = -43;

unsigned int y = x;

cout << x << "\n"; // -43

cout << y << "\n"; // 4294967253

If a number is larger than the upper bound of the bit representation, the number
will overflow. In a signed representation, the next number after 2" ~! — 1 is —2"~1,

2.3 Bit Manipulation 21

and in an unsigned representation, the next number after 2" — 1 is 0. For example,
consider the following code:

int x = 2147483647

cout << x << "\n"; // 2147483647
X++;

cout << x << "\n"; // -2147483648

Initially, the value of x is 23! — 1. This is the largest value that can be stored in
an int variable, so the next number after 23! — 1 is —231.

2.3.1 BitOperations

And Operation The and operation x & y produces a number that has one bits in
positions where both x and y have one bits. For example, 22 & 26 = 18, because

10110 (22)
& 11010 (26)
= 10010 (18) .

Using the and operation, we can check if a number x is even because x & 1 =0
if x is even, and x & 1 = 1 if x is odd. More generally, x is divisible by 2* exactly
whenx & 2K — 1) = 0.

Or Operation The or operation x | y produces a number that has one bits in positions
where at least one of x and y have one bits. For example, 22 | 26 = 30, because

10110 (22)
| 11010 (26)
— 11110 (30) .

Xor Operation The xor operation x * y produces a number that has one bits in
positions where exactly one of x and y have one bits. For example, 22 * 26 = 12,
because

10110 (22)
~ 11010 (26)
= 01100 (12) .

Not Operation The not operation ~x produces a number where all the bits of x have
been inverted. The formula “x = —x — 1 holds, for example, “29 = —30. The result
of the not operation at the bit level depends on the length of the bit representation,

22 2 Programming Techniques

because the operation inverts all bits. For example, if the numbers are 32-bit int
numbers, the result is as follows:

x =29 00000000000000000000000000011101
"x=-30 11111111111111111111111111100010

Bit Shifts The left bit shift x << k appends k zero bits to the number, and the right bit
shift x >> k removes the k last bits from the number. For example, 14 << 2 = 56,
because 14 and 56 correspond to 1110 and 111000. Similarly, 49 >> 3 = 6, because
49 and 6 correspond to 110001 and 110. Note thatx << k corresponds to multiplying
x by 2%, and x >> k corresponds to dividing x by 2% rounded down to an integer.

Bit Masks A bit mask of the form 1 << k has a one bit in position &, and all other
bits are zero, so we can use such masks to access single bits of numbers. In particular,
the kth bit of a number is one exactly when x & (1 << k) is not zero. The following
code prints the bit representation of an int number x:

for (int k = 31; k >= 0; k--) {
if (x&(1<<k)) cout << "1";
else cout << "0";

}

Itis also possible to modify single bits of numbers using similar ideas. The formula
x | (1 << k) sets the kth bit of x to one, the formula x & ~(1 << k) sets the kth bit
of x to zero, and the formula x " (1 << k) inverts the kth bit of x. Then, the formula
x & (x — 1) sets the last one bit of x to zero, and the formula x & —x sets all the one
bits to zero, except for the last one bit. The formula x | (x — 1) inverts all the bits
after the last one bit. Finally, a positive number x is a power of two exactly when x
&x—1)=0.

One pitfall when using bit masks is that 1<<k is always an int bit mask. An
easy way to create a long long bit mask is 1LL<<k.

Additional Functions The g++ compiler also provides the following functions for
counting bits:

e _ builtin_clz(x): the number of zeros at the beginning of the bit represen-
tation

e _ builtin_ctz(x): the number of zeros at the end of the bit representation

e _ builtin_popcount(x): the number of ones in the bit representation

e _ builtin_parity(x): the parity (even or odd) of the number of ones in the
bit representation

The functions can be used as follows:

2.3 Bit Manipulation 23

int x = 5328; // 00000000000000000001010011010000
cout << _ builtin_clz(x) << "\n"; // 19

cout << __builtin_ctz(x) << "\n"; // 4

cout << _ builtin_popcount(x) << "\n"; // 5

cout << __builtin_parity(x) << "\n"; // 1

Note that the above functions only support int numbers, but there are also Long
long versions of the functions available with the suffix 11.

2.3.2 Representing Sets

Every subset of a set {0, 1,2,...,n — 1} can be represented as an n bit integer
whose one bits indicate which elements belong to the subset. This is an efficient way
to represent sets, because every element requires only one bit of memory, and set
operations can be implemented as bit operations.

For example, since int is a 32-bit type, an int number can represent any subset
of the set {0, 1, 2, ..., 31}. The bit representation of the set {1, 3, 4, 8} is

00000000000000000000000100011010,

which corresponds to the number 28 + 2% 423 4 21 =282,

The following code declares an int variable x that can contain a subset of
{0,1,2,...,31}. After this, the code adds the elements 1, 3, 4, and 8 to the set
and prints the size of the set.

int x = 0;

x |= (1<<1);

x |= (1<<3);

x |= (1l<<4);

x |= (1<<8);

cout << _ _builtin_popcount(x) << "\n"; // 4

Then, the following code prints all elements that belong to the set:

for (int 1 = 0; 1 < 32; i++) {

if (x&(1l<<i)) cout << i << " ";
}
// output: 1 3 4 8

Set Operations Table 2.1 shows how set operations can be implemented as bit
operations. For example, the following code first constructs the sets x = {1, 3, 4, 8}
and y = {3, 6, 8, 9} and then constructs the set z = x Uy = {1, 3,4, 6, 8,9}:

24

2 Programming Techniques

Table 2.1 Implementing set operations as bit operations

Operation Set syntax Bit syntax
Intersection anb a&b
Union aUb alb
Complement a “a
Difference a\b a & (Cb)

int x = (1l<<1)|(1<<3)]| (1<<4) | (1<<8)

int y = (1<<3)|(1<<6)]| (1<<8) | (1<<9)

int z = x|y;

cout << _ _builtin_popcount(z) << "\n"; // 6

The following code goes through the subsets of {0, 1, ...

,n—1}:

for (int b = 0; b < (l<<n);

// process subset b

b++) {

}

Then, the following code goes through the subsets with exactly k elements:

(int b = 0; b < (l<<n); b++)
if (__builtin_popcount (b)
// process subset b

for

{
k) {

}

1

inally, the following code goes through the subsets of a set x:

int b =
do {

// process subset b
} while (b=(b-x)&x);

0;

C++ Bitsets The C++ standard library also provides the bitset structure, which

corresponds to an array whose each value is either O or 1.

code creates a bitset of 10 elements:

For example, the following

2.3 Bit Manipulation

25

bitset<10> s;

s[1] = 1;
s3] = 1;
s[4] = 1;
s[7] = 1;

cout << s[4] << "\n"; // 1
cout << s[5] << "\n"; // 0

The function count returns the number of one bits in the bitset:

cout << s.count() << "\n"; // 4

Also bit operations can be directly used to manipulate bitsets:

bitset<1l0> a, b;
/S

bitset<10> c¢
bitset<10> 4 =
bitset<1l0> e = a"b;

[l
(VRN
— R
R

Efficiency

The efficiency of algorithms plays a central role in competitive programming. In this
chapter, we learn tools that make it easier to design efficient algorithms.

Section 3.1 introduces the concept of time complexity, which allows us to estimate
running times of algorithms without implementing them. The time complexity of an
algorithm shows how quickly its running time increases when the size of the input
Zrows.

Section 3.2 presents two example problems which can be solved in many ways.
In both problems, we can easily design a slow brute force solution, but it turns out
that we can also create much more efficient algorithms.

3.1 Time Complexity

The time complexity of an algorithm estimates how much time the algorithm will use
for a given input. By calculating the time complexity, we can often find out whether
the algorithm is fast enough for solving a problem—without implementing it.

A time complexity is denoted O(: - -) where the three dots represent some func-
tion. Usually, the variable n denotes the input size. For example, if the input is an
array of numbers, n will be the size of the array, and if the input is a string, n will be
the length of the string.

3.1.1 Calculation Rules

If a code consists of single commands, its time complexity is O(1). For example,
the time complexity of the following code is O(1).

© Springer International Publishing AG, part of Springer Nature 2017 27
A. Laaksonen, Guide to Competitive Programming, Undergraduate
Topics in Computer Science, https://doi.org/10.1007/978-3-319-72547-5_3

28 3 Efficiency

at+;
b++;
c = a+b;

The time complexity of a loop estimates the number of times the code inside the
loop is executed. For example, the time complexity of the following code is O (n),
because the code inside the loop is executed n times. We assume that “. . .” denotes
a code whose time complexity is O(1).

for (int 1 = 1; 1 <= n; i++) {

}

Then, the time complexity of the following code is O (n?):

for (int i = 1; 1 <= n; i++) {
for (int j = 1; j <= n; Jj++) {

}

In general, if there are k nested loops and each loop goes through n values, the
time complexity is O (n%).

A time complexity does not tell us the exact number of times the code inside a
loop is executed, because it only shows the order of growth and ignores the constant
factors. In the following examples, the code inside the loop is executed 3n, n + 5,
and [n/2] times, but the time complexity of each code is O (n).

for (int 1 = 1; i <= 3*n; 1i++) {
}
for (int 1 = 1; i <= n+5; 1i++) {
}
for (int 1 = 1; 1 <= n; 1 += 2) {
}

As another example, the time complexity of the following code is O (n2), because
the code inside the loop is executed 1 +2 + ... 4+n = %(n2 + n) times.

3.1 Time Complexity 29

for (int 1 = 1; i <= n; 1i++) {
for (int j = 1; j <= 1i; Jj++) {

}

If an algorithm consists of consecutive phases, the total time complexity is the
largest time complexity of a single phase. The reason for this is that the slowest
phase is the bottleneck of the algorithm. For example, the following code consists
of three phases with time complexities O (n), 0 (n?), and O (n). Thus, the total time
complexity is O (n?).

for (int 1 = 1; 1 <= n; i++) {

}

for (int i = 1; 1 <= n; i++) {
for (int j = 1; j <= n; Jj++) {
}

}

for (int i = 1; 1 <= n; i++) {

}

Sometimes the time complexity depends on several factors, and the time com-
plexity formula contains several variables. For example, the time complexity of the
following code is O (nm):

for (int 1 = 1; i <= n; i++) {
for (int j = 1; j <= m; Jj++) {

}

The time complexity of a recursive function depends on the number of times the
function is called and the time complexity of a single call. The total time complexity
is the product of these values. For example, consider the following function:

void f(int n) {
if (n == 1) return;
f(n-1);

}

The call £(n) causes n function calls, and the time complexity of each call is
O (1), so the total time complexity is O (n).
As another example, consider the following function:

30 3 Efficiency

void g(int n) {
if (n == 1) return;
g(n-1);
g(n-1);

}

What happens when the function is called with a parameter n? First, there are two
calls with parameter n — 1, then four calls with parameter n — 2, then eight calls with
parameter n — 3, and so on. In general, there will be 2% calls with parameter n — k
where k =0, 1, ..., n — 1. Thus, the time complexity is

1_}_2_}.4_{_...4_2”*1:2”—1:0(2”).

3.1.2 Common Time Complexities
The following list contains common time complexities of algorithms:

O(1) The running time of a constant-time algorithm does not depend on the input
size. A typical constant-time algorithm is a direct formula that calculates the
answer.

O(logn) A logarithmic algorithm often halves the input size at each step. The
running time of such an algorithm is logarithmic, because log, n equals the number
of times n must be divided by 2 to get 1. Note that the base of the logarithm is not
shown in the time complexity.

O(/n) A square root algorithm is slower than O (log n) but faster than O (n). A
special property of square roots is that \/n = n/./n, so n elements can be divided
into O (y/n) blocks of O(4/n) elements.

O(n) A linear algorithm goes through the input a constant number of times. This
is often the best possible time complexity, because it is usually necessary to access
each input element at least once before reporting the answer.

O(nlogn) This time complexity often indicates that the algorithm sorts the input,
because the time complexity of efficient sorting algorithms is O (n log). Another
possibility is that the algorithm uses a data structure where each operation takes
O (logn) time.

O(n?*) A quadratic algorithm often contains two nested loops. It is possible to go
through all pairs of the input elements in O (n?) time.

O(n®) A cubic algorithm often contains three nested loops. It is possible to go
through all triplets of the input elements in O (n>) time.

O(2") This time complexity often indicates that the algorithm iterates through all
subsets of the input elements. For example, the subsets of {1, 2, 3} are ¢, {1}, {2},
{3}, {1, 2}, {1, 3}, {2, 3}, and {1, 2, 3}.

O(n!) This time complexity often indicates that the algorithm iterates through all
permutations of the input elements. For example, the permutations of {1, 2, 3} are
(1,2,3),(1,3,2),(2,1,3), (2,3,1), (3, 1,2),and (3, 2, 1).

3.1 Time Complexity 31

An algorithm is polynomial if its time complexity is at most O (n¥) where k is a
constant. All the above time complexities except O (2") and O (n!) are polynomial. In
practice, the constant k is usually small, and therefore a polynomial time complexity
roughly means that the algorithm can process large inputs.

Most algorithms in this book are polynomial. Still, there are many important
problems for which no polynomial algorithm is known, i.e., nobody knows how to
solve them efficiently. NP-hard problems are an important set of problems, for which
no polynomial algorithm is known.

3.1.3 Estimating Efficiency

By calculating the time complexity of an algorithm, it is possible to check, before
implementing the algorithm, that it is efficient enough for solving a problem. The
starting point for estimations is the fact that a modern computer can perform some
hundreds of millions of simple operations in a second.

For example, assume that the time limit for a problem is one second and the
input size is n = 10°. If the time complexity is O(n?), the algorithm will perform
about (105)2 = 1010 operations. This should take at least some tens of seconds, so
the algorithm seems to be too slow for solving the problem. However, if the time
complexity is O (n log n), there will be only about 10° log 103 ~ 1.6-10° operations,
and the algorithm will surely fit the time limit.

On the other hand, given the input size, we can try to guess the required time
complexity of the algorithm that solves the problem. Table 3.1 contains some useful
estimates assuming a time limit of one second.

For example, if the input size is n = 10°, it is probably expected that the time
complexity of the algorithm is O (n) or O (nlogn). This information makes it easier
to design the algorithm, because it rules out approaches that would yield an algorithm
with a worse time complexity.

Still, it is important to remember that a time complexity is only an estimate of
efficiency, because it hides the constant factors. For example, an algorithm that runs
in O(n) time may perform n/2 or 5n operations, which has an important effect on
the actual running time of the algorithm.

Table 3.1 Estimating time complexity from input size

Input size Expected time complexity
n <10 O(n!)

n <20 o2

n <500 on?)

n < 5000 0(n?)

n < 10° O(nlogn) or O(n)

n is large O(1) or O(logn)

32 3 Efficiency

3.1.4 Formal Definitions

What does it exactly mean that an algorithm works in O(f(n)) time? It means
that there are constants ¢ and ng such that the algorithm performs at most cf (n)
operations for all inputs where n > ng. Thus, the O notation gives an upper bound
for the running time of the algorithm for sufficiently large inputs.

For example, it is technically correct to say that the time complexity of the fol-
lowing algorithm is O (n?).

for (int 1 = 1; 1 <= n; i++) {

}

However, a better bound is O(n), and it would be very misleading to give the
bound O (n?), because everybody actually assumes that the O notation is used to
give an accurate estimate of the time complexity.

There are also two other common notations. The §2 notation gives a lower bound
for the running time of an algorithm. The time complexity of an algorithmis 2 (f (n)),
if there are constants ¢ and ng such that the algorithm performs at least cf (n)
operations for all inputs where n > ng. Finally, the ® notation gives an exact bound:
the time complexity of an algorithm is ® (f (n)) if it is both O (f(n)) and £2(f (n)).
For example, since the time complexity of the above algorithm is both O(n) and
£2(n), it is also @ (n).

We can use the above notations in many situations, not only for referring to time
complexities of algorithms. For example, we might say that an array contains O (n)
values, or that an algorithm consists of O (logn) rounds.

3.2 Examples

In this section we discuss two algorithm design problems that can be solved in several
different ways. We start with simple brute force algorithms, and then create more
efficient solutions by using various algorithm design ideas.

3.2.1 Maximum Subarray Sum

Given an array of n numbers, our first task is to calculate the maximum subarray sum,
i.e., the largest possible sum of a sequence of consecutive values in the array. The
problem is interesting when there may be negative values in the array. For example,
Fig. 3.1 shows an array and its maximum-sum subarray.

3.2 Examples 33

Fig.3.1 The maximum-sum ’_1‘2‘ 4‘_3‘5‘ 2‘_5‘2‘
subarray of this array is
[2,4,—-3,5,2], whose sum
is 10

O (n®) Time Solution A straightforward way to solve the problem is to go through
all possible subarrays, calculate the sum of values in each subarray and maintain the
maximum sum. The following code implements this algorithm:

int best = 0;
for (int a = 0; a < n; a++) {
for (int b = a; b < n; b++) {
int sum = 0;
for (int k = a; k <= b; k++) {
sum += arraylk];
}
best = max(best, sum) ;
}
}
cout << best << "\n";

The variables a and b fix the first and last index of the subarray, and the sum of
values is calculated to the variable sum. The variable best contains the maximum
sum found during the search. The time complexity of the algorithm is O (n?), because
it consists of three nested loops that go through the input.

O (n?) Time Solution It is easy to make the algorithm more efficient by removing
one loop from it. This is possible by calculating the sum at the same time when the
right end of the subarray moves. The result is the following code:

int best = 0;
for (int a = 0; a < n; a++) {
int sum = 0;
for (int b = a; b < n; b++) {
sum += arrayl[bl;
best = max(best, sum) ;
}
}

cout << best << "\n";

After this change, the time complexity is O (n?).

O (n) Time Solution It turns out that it is possible to solve the problem in O (n) time,
which means that just one loop is enough. The idea is to calculate, for each array
position, the maximum sum of a subarray that ends at that position. After this, the
answer to the problem is the maximum of those sums.

34 3 Efficiency

Consider the subproblem of finding the maximum-sum subarray that ends at posi-
tion k. There are two possibilities:

1. The subarray only contains the element at position k.
2. The subarray consists of a subarray that ends at position k — 1, followed by the
element at position k.

In the latter case, since we want to find a subarray with maximum sum, the subarray
that ends at position k — 1 should also have the maximum sum. Thus, we can solve
the problem efficiently by calculating the maximum subarray sum for each ending
position from left to right.

The following code implements the algorithm:

int best =
for (int k 0; k < n; k++) {
sum = max (
best = max

}

cout << best << "\n";

The algorithm only contains one loop that goes through the input, so the time
complexity is O(n). This is also the best possible time complexity, because any
algorithm for the problem has to examine all array elements at least once.

Efficiency Comparison How efficient are the above algorithms in practice? Table 3.2
shows the running times of the above algorithms for different values of » on a modern
computer. In each test, the input was generated randomly, and the time needed for
reading the input was not measured.

The comparison shows that all algorithms work quickly when the input size is
small, but larger inputs bring out remarkable differences in the running times. The
O (n?) algorithm becomes slow when n = 10*, and the O (n?) algorithm becomes
slow when n = 10°. Only the O(n) algorithm is able to process even the largest
inputs instantly.

Table 3.2 Comparing running times of the maximum subarray sum algorithms

Array size n o®3) (s) 0#?) (s) 0(n) (s)
102 0.0 0.0 0.0
103 0.1 0.0 0.0
10* >10.0 0.1 0.0
10° >10.0 5.3 0.0
100 >10.0 >10.0 0.0
107 >10.0 >10.0 0.0

3.2 Examples 35

3.2.2 Two Queens Problem

Given an n x n chessboard, our next problem is to count the number of ways we can
place rwo queens on the board in such a way that they do not attack each other. For
example, as Fig.3.2 shows, there are eight ways to place two queens on the 3 x 3
board. Let ¢(n) denote the number of valid combinations for an n x n board. For
example, g (3) = 8, and Table 3.3 shows the values of g(n) for 1 <n < 10.

To start with, a simple way to solve the problem is to go through all possible ways
to place two queens on the board and count the combinations where the queens do
not attack each other. Such an algorithm works in O (n*) time, because there are n2
ways to choose the position of the first queen, and for each such position, there are
n? — 1 ways to choose the position of the second queen.

Since the number of combinations grows fast, an algorithm that counts combina-
tions one by one will certainly be too slow for processing larger values of n. Thus, to
create an efficient algorithm, we need to find a way to count combinations in groups.
One useful observation is that it is quite easy to calculate the number of squares that
a single queen attacks (Fig.3.3). First, it always attacks n — 1 squares horizontally
and n — 1 squares vertically. Then, for both diagonals, it attacks d — 1 squares where
d is the number of squares on the diagonal. Using this information, we can calculate

Fig.3.2 All possible ways w w w w
to place two non-attacking
queens on the 3 x 3 L
chessboard w w w
w w
W W w
w W w
Tablg 3.3 First values of the Board size n Number of ways g (n)
function ¢ (n): the number of
ways to place two 1 0
non-attacking queens on an 2 0
n x n chessboard 3 8
4 44
5 140
6 340
7 700
8 1288
9 2184
10 3480

36 3 Efficiency

Fig.3.3 The queen attacks

* * &
all squares marked with “*”
on the board W k|
* * *
* *

Fig.3.4 Possible positions
for queens on the last row
and column

in O(1) time the number of squares where the other queen can be placed, which
yields an O (n?) time algorithm.

Another way to approach the problem is to try to formulate a recursive function
that counts the number of combinations. The question is: if we know the value of
q(n), how can we use it to calculate the value of g(n + 1)?

To get arecursive solution, we may focus on the last row and last column of the n x
n board (Fig.3.4). First, if there are no queens on the last row or column, the number
of combinations is simply g (n — 1). Then, there are 2n — 1 positions for a queen on
the last row or column. It attacks 3(n — 1) squares, so there are n®> — 3(n — 1) — 1
positions for the other queen. Finally, there are (n — 1)(n — 2) combinations where
both queens are on the last row or column. Since we counted those combinations
twice, we have to remove this number from the result. By combining all this, we get
a recursive formula

gm) =qn—1)+Qn—1)n*=3n—1)—1)—(n—1)(n—2)
=qgn—1+2(n—1)>%n-2),

which provides an O (n) solution to the problem.
Finally, it turns out that there is also a closed-form formula

4503 32 g

n
Im=75-5+t5 -3

which can be proved using induction and the recursive formula. Using this formula,
we can solve the problem in O(1) time.

Sorting and Searching

Many efficient algorithms are based on sorting the input data, because sorting often
makes solving the problem easier. This chapter discusses the theory and practice of
sorting as an algorithm design tool.

Section4.1 first discusses three important sorting algorithms: bubble sort, merge
sort, and counting sort. After this, we will learn how to use the sorting algorithm
available in the C++ standard library.

Section4.2 shows how sorting can be used as a subroutine to create efficient
algorithms. For example, to quickly determine if all array elements are unique, we
can first sort the array and then simply check all pairs of consecutive elements.

Section 4.3 presents the binary search algorithm, which is another important build-
ing block of efficient algorithms.

4.1 Sorting Algorithms

The basic problem in sorting is as follows: Given an array that contains n elements,
sort the elements in increasing order. For example, Fig.4.1 shows an array before
and after sorting.

In this section we will go through some fundamental sorting algorithms and exam-
ine their properties. It is easy to design an O (n?) time sorting algorithm, but there
are also more efficient algorithms. After discussing the theory of sorting, we will
focus on using sorting in practice in C++.

© Springer International Publishing AG, part of Springer Nature 2017 37
A. Laaksonen, Guide to Competitive Programming, Undergraduate
Topics in Computer Science, https://doi.org/10.1007/978-3-319-72547-5_4

38 4 Sorting and Searching

Fig.4.1 An array before and

after sorting original array ’ ! ‘ 3 ‘ 8 ‘ 2 ‘ 0 ‘ 2 ‘ > ‘ 6 ‘

soredarray [1[2[2[3]5[6]8]9]

Fig.4.2 The first round of
bubble sort

A\
HEIEIDECEID
"\
HEEDBERN
A\

4.1.1 Bubble Sort

Bubble sort is a simple sorting algorithm that works in O (n?) time. The algorithm
consists of n rounds, and on each round, it iterates through the elements of the array.
Whenever two consecutive elements are found that are in wrong order, the algorithm
swaps them. The algorithm can be implemented as follows:

for (int 1 = 0; 1 < n; 1i++) {
for (int j = 0; j < n-1; j++) {
if (arrayl[j] > array[j+1]) {

swap (array[j],array[j+1]);

}

After the first round of bubble sort, the largest element will be in the correct
position, and more generally, after k rounds, the k largest elements will be in the
correct positions. Thus, after n rounds, the whole array will be sorted.

For example, Fig.4.2 shows the first round of swaps when bubble sort is used to
sort an array.

Bubble sort is an example of a sorting algorithm that always swaps consecutive
elements in the array. It turns out that the time complexity of such an algorithm
is always at least O (n?), because in the worst case, O (n?) swaps are required for
sorting the array.

4.1 Sorting Algorithms 39

Fig.4.3 This array has three 01 2 3 4 5 6 7
inversions: (3, 4), (3, 5), and ’ 1 ‘ 5 ‘ 5 ‘ 6 ‘ 3 ‘ 5 ‘ 9 ‘ 3 ‘
(6,7

Inversions A useful concept when analyzing sorting algorithms is an inversion: a
pair of array indices (a, b) such that a < b and arrayla] >arrayl[b], i.e., the
elements are in wrong order. For example, the array in Fig. 4.3 has three inversions:
(3,4), (3,5),and (6, 7).

The number of inversions indicates how much work is needed to sort the array.
An array is completely sorted when there are no inversions. On the other hand, if the
array elements are in the reverse order, the number of inversions is

nin—1)

=0,
which is the largest possible.

Swapping a pair of consecutive elements that are in the wrong order removes
exactly one inversion from the array. Hence, if a sorting algorithm can only swap
consecutive elements, each swap removes at most one inversion, and the time com-
plexity of the algorithm is at least O (n?).

4.1.2 Merge Sort

If we want to create an efficient sorting algorithm, we have to be able to reorder
elements that are in different parts of the array. There are several such sorting algo-
rithms that work in O (n log n) time. One of them is merge sort, which is based on
recursion. Merge sort sorts a subarray arrayla . .. b] as follows:

1. If a = b, do not do anything, because a subarray that only contains one element
is already sorted.

. Calculate the position of the middle element: k = | (a + b)/2].

. Recursively sort the subarray arrayla. . .k].

. Recursively sort the subarray arraylk + 1...b].

. Merge the sorted subarrays arrayla ...k]and array[k + 1...b] into a sorted
subarray arrayla...b].

[I SO I)

For example, Fig. 4.4 shows how merge sort sorts an array of eight elements. First,
the algorithm divides the array into two subarrays of four elements. Then, it sorts
these subarrays recursively by calling itself. Finally, it merges the sorted subarrays
into a sorted array of eight elements.

Merge sort is an efficient algorithm, because it halves the size of the subarray at
each step. Then, merging the sorted subarrays is possible in linear time, because they
are already sorted. Since there are O (logn) recursive levels, and processing each
level takes a total of O (n) time, the algorithm works in O (n logn) time.

40 4 Sorting and Searching

Fig.4.4 Sorting an array
using merge sort

Fig.4.5 The progress of a
sorting algorithm that
compares array elements

4.1.3 Sorting Lower Bound

Is it possible to sort an array faster than in O(nlogn) time? It turns out that this
is not possible when we restrict ourselves to sorting algorithms that are based on
comparing array elements.

The lower bound for the time complexity can be proved by considering sorting as
a process where each comparison of two elements gives more information about the
contents of the array. Figure4.5 illustrates the tree created in this process.

Here “x < y?” means that some elements x and y are compared. If x < y, the
process continues to the left, and otherwise to the right. The results of the process
are the possible ways to sort the array, a total of n! ways. For this reason, the height
of the tree must be at least

log, (n!) =log, (1) +1log,(2) + - - - + log, (n).

We get a lower bound for this sum by choosing the last /2 elements and changing
the value of each element to log, (n/2). This yields an estimate

log, (n!) = (n/2) - log, (n/2),

so the height of the tree and the worst-case number of steps in a sorting algorithm is
2(nlogn).

4.1 Sorting Algorithms 41

Fig.4.6 Sorting an array

using counting sort HENDOEED

oo 2 o 1 o o]]

4.1.4 Counting Sort

The lower bound £2 (n log n) does not apply to algorithms that do not compare array
elements but use some other information. An example of such an algorithm is count-
ing sort that sorts an array in O (n) time assuming that every element in the array is
an integer between 0. ..c and ¢ = O(n).

The algorithm creates a bookkeeping array, whose indices are elements of the
original array. The algorithm iterates through the original array and calculates how
many times each element appears in the array. As an example, Fig.4.6 shows an
array and the corresponding bookkeeping array. For example, the value at position
3 is 2, because the value 3 appears 2 times in the original array.

The construction of the bookkeeping array takes O (n) time. After this, the sorted
array can be created in O (n) time, because the number of occurrences of each element
can be retrieved from the bookkeeping array. Thus, the total time complexity of
counting sort is O (n).

Counting sort is a very efficient algorithm but it can only be used when the constant
cis small enough, so that the array elements can be used as indices in the bookkeeping
array.

4.1.5 Sortingin Practice

In practice, it is almost never a good idea to implement a home-made sorting algo-
rithm, because all modern programming languages have good sorting algorithms
in their standard libraries. There are many reasons to use a library function: it is
certainly correct and efficient, and also easy to use.

In C++, the function sort efﬁciently1 sorts the contents of a data structure. For
example, the following code sorts the elements of a vector in increasing order:

vector<int> v = {4,2,5,3,5,8,3};
sort (v.begin(),v.end()) ;

After the sorting, the contents of the vector will be [2, 3, 3, 4, 5, 5, 8]. The default
sorting order is increasing, but a reverse order is possible as follows:

I'The C++11 standard requires that the sort function works in O (nlogn) time; the exact imple-
mentation depends on the compiler.

42 4 Sorting and Searching

sort (v.rbegin(),v.rend());

An ordinary array can be sorted as follows:

int n = 7; // array size
int al] = {4,2,5,3,5,8,3};
sort(a,a+n) ;

Then, the following code sorts the string s:

string s = "monkey";
sort(s.begin(), s.end());

Sorting a string means that the characters of the string are sorted. For example,
the string “monkey” becomes “ekmnoy”.

Comparison Operators The sort function requires that a comparison operator is
defined for the data type of the elements to be sorted. When sorting, this operator
will be used whenever it is necessary to find out the order of two elements.

Most C++ data types have a built-in comparison operator, and elements of those
types can be sorted automatically. Numbers are sorted according to their values, and
strings are sorted in alphabetical order. Pairs are sorted primarily according to their
first elements and secondarily according to their second elements:

vector<pair<int,int>> v;
v.push_back ({1,5});
v.push_back({2,3});
v.push_back ({1,2});

sort (v.begin(), v.end());

// result: [(1,2),(1,5),(2,3)]

In a similar way, tuples are sorted primarily by the first element, secondarily by
the second element, etc.2:

vector<tuple<int, int, int>> v;
v.push_back({2,1,4});
v.push_back({1,5,3});
v.push_back({2,1,3});

sort (v.begin(), v.end());

// result: [(1,5,3),(2,1,3),(2,1,4)]

User-defined structs do not have a comparison operator automatically. The opera-
tor should be defined inside the struct as a function operator <, whose parameter

2Note that in some older compilers, the function make_tuple has to be used to create a tuple
instead of braces (for example, make_tuple(2,1,4) instead of {2,1,4}).

4.1 Sorting Algorithms 43

is another element of the same type. The operator should return true if the element
is smaller than the parameter, and false otherwise.

For example, the following struct point contains the x and y coordinates of a
point. The comparison operator is defined so that the points are sorted primarily by
the x coordinate and secondarily by the y coordinate.

struct point {

int x, vy;
bool operator< (const point &p) {
if (x == p.X) return y < p.y;

else return x < p.X;

i

Comparison Functions It is also possible to give an external comparison function
to the sort function as a callback function. For example, the following comparison
function comp sorts strings primarily by length and secondarily by alphabetical
order:

bool comp (string a, string b) {
if (a.size() == b.size()) return a < b;
else return a.size() < b.size();

}

Now a vector of strings can be sorted as follows:

sort(v.begin(), v.end(), comp);

4.2 Solving Problems by Sorting

Often, we can easily solve a problem in O (n?) time using a brute force algorithm,
but such an algorithm is too slow if the input size is large. In fact, a frequent goal
in algorithm design is to find O (n) or O (nlogn) time algorithms for problems that
can be trivially solved in O (n?) time. Sorting is one way to achieve this goal.

For example, suppose that we want to check if all elements in an array are unique.
A brute force algorithm goes through all pairs of elements in O (n?) time:

bool ok = true;
for (int 1 = 0; i < n; i++) {
for (int j = i+1; j < n; Jj++) {
if (arrayl[i] == arrayl[j]) ok = false;

44 4 Sorting and Searching

However, we can solve the problem in O (nlogn) time by first sorting the array.
Then, if there are equal elements, they are next to each other in the sorted array, so
they are easy to find in O (n) time:

bool ok = true;
sort (array, array+n);
for (int 1 = 0; i < n-1; i++4) {
if (arrayl[i] == arrayl[i+l]) ok = false;

Several other problems can be solved in a similar way in O(n logn) time, such
as counting the number of distinct elements, finding the most frequent element, and
finding two elements whose difference is minimum.

4.2,1 Sweep Line Algorithms

A sweep line algorithm models a problem as a set of events that are processed in
a sorted order. For example, suppose that there is a restaurant and we know the
arriving and leaving times of all customers on a certain day. Our task is to find out
the maximum number of customers who visited the restaurant at the same time.

For example, Fig.4.7 shows an instance of the problem where there are four
customers A, B, C, and D. In this case, the maximum number of simultaneous
customers is three between A’s arrival and B’s leaving.

To solve the problem, we create two events for each customer: one event for
arrival and another event for leaving. Then, we sort the events and go through them
according to their times. To find the maximum number of customers, we maintain
a counter whose value increases when a customer arrives and decreases when a
customer leaves. The largest value of the counter is the answer to the problem.

Figure 4.8 shows the events in our example scenario. Each customer is assigned
two events: “4-”” denotes an arriving customer and “—" denotes a leaving customer.
The resulting algorithm works in O (n log n) time, because sorting the events takes
O (nlogn) time and the sweep line part takes O (n) time.

Fig.4.7 An instance of the
restaurant problem

O A %= >

Fig.4.8 Solving the DD ® 606006006

restaurant problem using a
sweep line algorithm

4.2 Solving Problems by Sorting 45

Fig.4.9 An instance of the]
scheduling problem and an o

optimal solution with two
events l |

Fig.4.10 If we select the []
short event, we can only
select one event, but we :I

could select both long events I

Fig.4.11 If we select the \ |

first event, we cannot select :]
any other events, but we
could to select the other two]

events

4.2.2 Scheduling Events

Many scheduling problems can be solved by sorting the input data and then using a
greedy strategy to construct a solution. A greedy algorithm always makes a choice
that looks the best at the moment and never takes back its choices.

As an example, consider the following problem: Given n events with their starting
and ending times, find a schedule that includes as many events as possible. For
example, Fig.4.9 shows an instance of the problem where an optimal solution is to
select two events.

In this problem, there are several ways how we could sort the input data. One
strategy is to sort the events according to their lengths and select as short events as
possible. However, this strategy does not always work, as shown in Fig.4.10. Then,
another idea is to sort the events according to their starting times and always select
the next possible event that begins as early as possible. However, we can find a
counterexample also for this strategy, shown in Fig.4.11.

A third idea is to sort the events according to their ending times and always select
the next possible event that ends as early as possible. It turns out that this algorithm
always produces an optimal solution. To justify this, consider what happens if we
first select an event that ends later than the event that ends as early as possible. Now,
we will have at most an equal number of choices left how we can select the next
event. Hence, selecting an event that ends later can never yield a better solution, and
the greedy algorithm is correct.

4.2.3 Tasks and Deadlines

Finally, consider a problem where we are given n tasks with durations and deadlines
and our task is to choose an order to perform the tasks. For each task, we earn d — x
points where d is the task’s deadline and x is the moment when we finish the task.
What is the largest possible total score we can obtain?

46 4 Sorting and Searching

Fig.4.12 An optimal 0 5 10
schedule for the tasks L
[C [B [A D |
Fig.4.13 Improving the initial order [X [Y]
solution by swapping tasks ~ ~
XandY a b
swapped order [Y [X |
b a

For example, suppose that the tasks are as follows:

task duration deadline

A 4 2
B 3 10
c 2 8
D 4 15

Figure4.12 shows an optimal schedule for the tasks in our example scenario.
Using this schedule, C yields 6 points, B yields 5 points, A yields —7 points, and D
yields 2 points, so the total score is 6.

It turns out that the optimal solution to the problem does not depend on the
deadlines at all, but a correct greedy strategy is to simply perform the tasks sorted
by their durations in increasing order. The reason for this is that if we ever perform
two tasks one after another such that the first task takes longer than the second task,
we can obtain a better solution if we swap the tasks.

For example, in Fig.4.13, there are two tasks X and Y with durations a and
b. Initially, X is scheduled before Y. However, since a > b, the tasks should be
swapped. Now X gives b points less and Y gives a points more, so the total score
increases by a — b > 0. Thus, in an optimal solution, a shorter task must always
come before a longer task, and the tasks must be sorted by their durations.

4.3 Binary Search

Binary search is an O (logn) time algorithm that can be used, for example, to effi-
ciently check whether a sorted array contains a given element. In this section, we
first focus on the implementation of binary search, and after that, we will see how
binary search can be used to find optimal solutions for problems.

4.3 Binary Search 47

Fig.4.14 The traditional
way to implement binary
search. At each step we
check the middle element of
the active subarray and ’1 ‘3 ‘3 ‘4 ‘5 ‘5 ‘6 ‘9 ‘10‘12‘12‘15‘
proceed to the left or right

part

| 1]3]3]4]5]5]6]9]10]12]12]15]

[1]3]3]4]s]5]6]9]10]i2]12]15]

[1]3]3]4]s5]5]6]9]10][r2]12]15]

T

4.3.1 Implementing the Search

Suppose that we are given a sorted array of n elements and we want to check if
the array contains an element with a target value x. Next we discuss two ways to
implement a binary search algorithm for this problem.

First Method The most common way to implement binary search resembles looking
for aword in a dictionary.? The search maintains an active subarray in the array, which
initially contains all array elements. Then, a number of steps are performed, each of
which halves the search range. At each step, the search checks the middle element of
the active subarray. If the middle element has the target value, the search terminates.
Otherwise, the search recursively continues to the left or right half of the subarray,
depending on the value of the middle element. For example, Fig.4.14 shows how an
element with value 9 is found in the array.
The search can be implemented as follows:

int a = 0, b = n-1;
while (a <= b) {
int k = (a+b)/2;
if (arraylk] == x) {
// x found at index k
}
if (arraylk] < x) a = k+1;
else b = k-1;

}

In this implementation, the range of the active subarray is a . . . b, and the initial
range is 0...n — 1. The algorithm halves the size of the subarray at each step, so
the time complexity is O (logn).

3Some people, including the author of this book, still use printed dictionaries. Another example is
finding a phone number in a printed phone book, which is even more obsolete.

48 4 Sorting and Searching

Fig.4.15 An alternative
way to implement binary
search. We scan the array

from left to right jumping
over elements ‘1‘3‘3‘4‘5‘5‘6‘9‘10‘12‘12‘15‘

[1]3]3]4]5]5]6]9]10]r2]12]15]

[1]3]3]4]5]5]6]9]10]r2]12]15]

[1]3]3]4]5]5]6]9]10]r2]12]15]

Second Method Another way to implement binary search is to go through the array
from left to right making jumps. The initial jump length is n/2, and the jump length
is halved on each round: first n/4,