

Escola Politécnica da Universidade de São Paulo Departamento de Engenharia de Minas e de Petróleo

CLASSIFICAÇÕES DE MACIÇOS ROCHOSOS PARTE 4

PMI 3309 - Mecânica de Rochas Aplicada à Mineração II Prof. Eduardo César Sansone

CLASSIFICAÇÕES DE MACIÇOS ROCHOSOS

CLASSIFICAÇÕES A SEREM ESTUDADAS

Classificação de Terzaghi - 1946 Rock Quality Designation Index (RQD) - 1967 Rock Structure Rating (RSR) - 1972 Rock Mass Rating (RMR) - 1976 Índice Q (Rock Tunnelling Quality Index) - 1974

ÍNDICE Q (ROCK TUNNELLING QUALITY INDEX)

Desenvolvido no NGI (Norwegian Geotechnical Institute), sob a liderança do Eng. Nick Barton, tem base em um grande número de estudos de casos de escavações subterrâneas civis e de mineração.

O índice Q (Rock Tunnelling Quality Index) considera seis diferentes parâmetros:

- Índice RQD.
- Número de famílias de juntas (J_n).
- Rugosidade da descontinuidade ou junta mais desfavorável (J_r).
- Grau de alteração ou enchimento da junta mais fraca (J_a).
- Fluxo de água (J_w).
- Condições de tensão (SRF Stress Reduction Factor).

A qualidade total do maciço é então dada por:

$$Q = \frac{RQD}{J_n} \cdot \frac{J_r}{J_a} \cdot \frac{J_w}{SRF}$$

- Índice RQD.
- Número de famílias de juntas (J_n).
- Rugosidade da descontinuidade ou junta mais desfavorável (J.).
- Grau de alteração ou enchimento da junta mais fraca (J_a).
- Fluxo de água (J_w).
- Condições de tensão (SRF Stress Reduction Factor).

Onde:

Quociente A: medida direta do tamanho de blocos ou partículas.

Quociente B: representa as tensões de cisalhamento entre os blocos.

Quociente C: representa as tensões ativas na região analisada.

ÍNDICE Q (ROCK TUNNELLING QUALITY INDEX)

1. ROCK QUALITY DESIGNATION	RQD	
A. Very poor	0 - 25	 Where RQD is reported or measured as ≤ 10 (including 0),
B. Poor	25 - 50	a nominal value of 10 is used to evaluate Q.
C. Fair	50 - 75	
D. Good	75 - 90	2. RQD intervals of 5, i.e. 100, 95, 90 etc. are sufficiently
E. Excellent	90 - 100	accurate.

2. JOINT SET NUMBER A. Massive, no or few joints	J_n 0.5 - 1.0		
B. One joint set	2		
C. One joint set plus random	3		
D. Two joint sets	4		
E. Two joint sets plus random	6		
F. Three joint sets	9	1. For intersections use $(3.0 \times J_n)$	
G. Three joint sets plus random	12		
H. Four or more joint sets, random,	15	2. For portals use $(2.0 \times J_n)$	
heavily jointed, 'sugar cube', etc.			
J. Crushed rock, earthlike	20		

5

3. JOINT ROUGHNESS NUMBER a. Rock wall contact	J_r	
b. Rock wall contact before 10 cm shear		
A. Discontinuous joints	4	
B. Rough and irregular, undulating	3	
C. Smooth undulating	2	
D. Slickensided undulating	1.5	1. Add 1.0 if the mean spacing of the relevant joint set is
E. Rough or irregular, planar	1.5	greater than 3 m.
F. Smooth, planar	1.0	
G. Slickensided, planar	0.5	2. J_r = 0.5 can be used for planar, slickensided joints having
c. No rock wall contact when sheared		lineations, provided that the lineations are oriented for
H. Zones containing clay minerals thick	1.0	minimum strength.
enough to prevent rock wall contact	(nominal)	
J. Sandy, gravely or crushed zone thick	1.0	
enough to prevent rock wall contact	(nominal)	

4. JOINT ALTERATION NUMBER a. Rock wall contact	J _a	ϕr degrees (approx.).
A. Tightly healed, hard, non-softening, impermeable filling	0.75	•	 Values of \(\phi r\), the residual friction angle, are intended as an approximate guide
B. Unaltered joint walls, surface staining only	1.0	25 - 35	to the mineralogical properties of the
C. Slightly altered joint walls, non-softening mineral coatings, sandy particles, clay-free disintegrated rock, etc.	2.0	25 - 30	alteration products, if present.
D. Silty-, or sandy-clay coatings, small clay- fraction (non-softening)	3.0	20 - 25	
E. Softening or low-friction clay mineral coatings, i.e. kaolinite, mica. Also chlorite, talc, gypsum and graphite etc., and small quantities of swelling clays. (Discontinuous coatings, 1 - 2 mm or less)	4.0	8 - 16	

4, JOINT ALTERATION NUMBER	Ja	ør degrees (approx.)
b. Rock wall contact before 10 cm shear	- E/O	
F. Sandy particles, clay-free, disintegrating rock etc.	4.0	25 - 30
G. Strongly over-consolidated, non-softening	6.0	16 - 24
clay mineral fillings (continuous < 5 mm thick)		
H. Medium or low over-consolidation, softening	8.0	12 - 16
clay mineral fillings (continuous < 5 mm thick)		
J. Swelling clay fillings, i.e. montmorillonite,	8.0 - 12.0	6 - 12
(continuous < 5 mm thick). Values of Ja		
depend on percent of swelling clay-size		
particles, and access to water.		
c. No rock wall contact when sheared		
K. Zones or bands of disintegrated or crushed	6.0	
L. rock and clay (see G, H and J for clay	8.0	
M. conditions)	8.0 - 12.0	6 - 24
N. Zones or bands of silty- or sandy-clay, small	5.0	
clay fraction, non-softening		
O. Thick continuous zones or bands of clay	10.0 - 13.0	
P. & R. (see G.H and J for clay conditions)	6.0 - 24.0	

5. JOINT WATER REDUCTION	J _w	approx. water pressure (kgf/cm ²)
A. Dry excavation or minor inflow i.e. < 5 l/m locally	1.0	< 1.0
B. Medium inflow or pressure, occasional outwash of joint fillings	0.66	1.0 - 2.5
C. Large inflow or high pressure in competent rock with unfilled joints	0.5	 2.5 - 10.0 1. Factors C to F are crude estimates; increase J_W if drainage installed.
D. Large inflow or high pressure	0.33	2.5 - 10.0
 Exceptionally high inflow or pressure at blasting, decaying with time 	0.2 - 0.1	> 10 2. Special problems caused by ice formation are not considered.
F. Exceptionally high inflow or pressure	0.1 - 0.05	> 10

6. STRESS REDUCTION FACTOR a. Weakness zones intersecting excavation, which may cause loosening of rock mass when tunnel is excavated	SRF	
 Multiple occurrences of weakness zones containing clay or chemically disintegrated rock, very loose surrounding rock any depth) 	10.0	 Reduce these values of SRF by 25 - 50% but only if the relevant shear zones influence do not intersect the excavation
 B. Single weakness zones containing clay, or chemically dis- tegrated rock (excavation depth < 50 m) 	5.0	
 C. Single weakness zones containing clay, or chemically dis- tegrated rock (excavation depth > 50 m) 	2.5	
 D. Multiple shear zones in competent rock (clay free), loose surrounding rock (any depth) 	7.5	
 E. Single shear zone in competent rock (clay free). (depth of excavation < 50 m) 	5.0	
 F. Single shear zone in competent rock (clay free). (depth of excavation > 50 m) 	2.5	
G. Loose open joints, heavily jointed or 'sugar cube', (any depth)	5.0	

6. STRESS REDUCTION FACTOR			SRF	
b. Competent rock, rock stress prob	lems			
	σ _c /σ ₁	$\sigma_{t}\sigma_{1}$		2. For strongly anisotropic virgin stress field
H. Low stress, near surface	> 200	> 13	2.5	(if measured): when $5 \le \sigma_1/\sigma_3 \le 10$, reduce σ_c
J. Medium stress	200 - 10	13 - 0.66	1.0	to $0.8\sigma_{\rm C}$ and $\sigma_{\rm t}$ to $0.8\sigma_{\rm t}$. When $\sigma_{\rm 1}/\sigma_{\rm 3} > 10$,
K. High stress, very tight structure	10 - 5	0.66 - 0.33	0.5 - 2	reduce $\sigma_{\rm c}$ and $\sigma_{\rm t}$ to $0.6\sigma_{\rm c}$ and $0.6\sigma_{\rm t}$, where
(usually favourable to stability, may				$\sigma_{\rm C}$ = unconfined compressive strength, and
be unfavourable to wall stability)				σ_{t} = tensile strength (point load) and σ_{1} and
L. Mild rockburst (massive rock)	5-2.5	0.33 - 0.16	5 - 10	σ_3 are the major and minor principal stresses.
M. Heavy rockburst (massive rock)	< 2.5	< 0.16	10 - 20	3. Few case records available where depth of
c. Squeezing rock, plastic flow of in-	competent roc	k		crown below surface is less than span width.
under influence of high rock pres	sure			Suggest SRF increase from 2.5 to 5 for such
N. Mild squeezing rock pressure			5 - 10	cases (see H).
O. Heavy squeezing rock pressure			10 - 20	
d. Swelling rock, chemical swelling	activity depen	ding on prese	nce of wate	•
P. Mild swelling rock pressure			5 - 10	
R. Heavy swelling rock pressure			10 - 15	

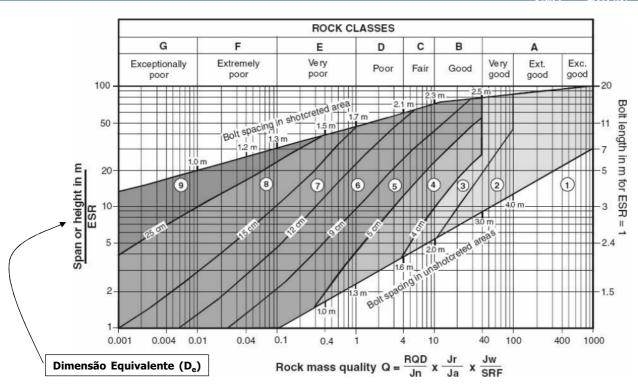
RESULTADOS FORNECIDOS PELO SISTEMA Q

13

ÍNDICE Q (ROCK TUNNELLING QUALITY INDEX)

O Sistema Q define o índice ESR (Nível de Suporte da Escavação) associando o uso ao qual se destina a escavação e o grau de segurança do sistema de suporte para que se mantenha sua estabilidade.

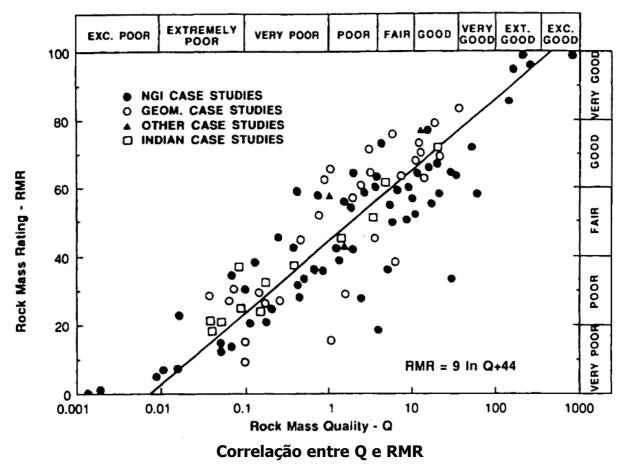
Categoria de Escavação				
Α	A Galerias temporárias de minas			
В	Galerias permanentes de minas, túneis para hidrelétricas (exceto alta pressão), túneis piloto	1,6		
С	Salas de armazenamento, estações de tratamento de água, túneis rodoviários e ferroviários pequenos, túneis de acesso	1,3		
D	Estações elétricas, túneis rodoviários e ferroviários grandes, câmaras de defesa civil, intersecções	1,0		
E	Estações de energia nuclear subterrâneas, estações ferroviárias, instalações esportivas e públicas, fábricas	0,8		


Através dos valores de ESR e da largura B da escavação é possível estimar o comprimento L dos parafusos de rocha necessários:

$$L=2+\frac{0,15\cdot B}{ESR}$$

Pode-se também determinar o vão máximo livre de suportes V:

$$V=2\cdot ESR\cdot Q^{0,4}$$



- 1) Unsupported
- 2) Spot bolting
- 3) Systematic bolting
- 4) Systematic bolting, (and unreinforced shotcrete, 4 10 cm)
- 5) Fibre reinforced shotcrete and bolting, 5 9 cm

- 6) Fibre reinforced shotcrete and bolting, 9 12 cm
- 7) Fibre reinforced shotcrete and bolting, 12 15 cm
- Fibre reinforced shotcrete, > 15 cm, reinforced ribs of shotcrete and bolting
- 9) Cast concrete lining

EXERCÍCIO

EXERCÍCIO

Classificar segundo o Rock Tunnelling Quality Index - Q o maciço rochoso em uma câmara com 15 m de largura, escavada em rocha a uma profundidade de 2100 m, com as seguintes características:

- 2 famílias de descontinuidades presentes (onduladas, rugosas, não intemperizadas e sem marcas de alteração nas superfícies).
- RQD variando entre 85 e 95%.
- Testes resultaram em resistência a compressão uniaxial igual a 170 MPa.
- Direções das tensões principais são aproximadamente horizontal e vertical.
- Tensão horizontal igual a cerca de 1,5 vezes a tensão vertical.
- Maciço se mostra úmido e não há evidências de fluxo de água subterrânea.

ÍNDICE Q (ROCK TUNNELLING QUALITY INDEX)

SOLUÇÃO

a) RQD: valor utilizado diretamente. Neste caso, deve ser tomada a média dos valores dados. Assim, RQD =

SOLUÇÃO

- a) RQD: valor utilizado diretamente. Neste caso, deve ser tomada a média dos valores dados. Assim, RQD = 90.
- b) J_n : para 2 famílias de descontinuidades, temos J_n =

21

2. JOINT SET NUMBER A. Massive, no or few joints	J_n 0.5 - 1.0		
B. One joint set	2		
C. One joint set plus random	3		
D. Two joint sets	4		
E. Two joint sets plus random	6		
F. Three joint sets	9	1. For intersections use $(3.0 \times J_n)$	
G. Three joint sets plus random	12		
H. Four or more joint sets, random,	15	2. For portals use $(2.0 \times J_n)$	
heavily jointed, 'sugar cube', etc.			
J. Crushed rock, earthlike	20		

SOLUÇÃO

- a) RQD: valor utilizado diretamente. Neste caso, deve ser tomada a média dos valores dados. Assim, RQD = 90.
- b) J_n : para 2 famílias de descontinuidades, temos $J_n = 4$.

23

3. JOINT ROUGHNESS NUMBER a. Rock wall contact	J_r	
b. Rock wall contact before 10 cm shear		
A. Discontinuous joints	4	
B. Rough and irregular, undulating	3	
C. Smooth undulating	2	
D. Slickensided undulating	1.5	1. Add 1.0 if the mean spacing of the relevant joint set is
E. Rough or irregular, planar	1.5	greater than 3 m.
F. Smooth, planar	1.0	
G. Slickensided, planar	0.5	2. $J_r = 0.5$ can be used for planar, slickensided joints having
c. No rock wall contact when sheared		lineations, provided that the lineations are oriented for
H. Zones containing clay minerals thick	1.0	minimum strength.
enough to prevent rock wall contact	(nominal)	
J. Sandy, gravely or crushed zone thick	1.0	
enough to prevent rock wall contact	(nominal)	

SOLUÇÃO

- a) RQD: valor utilizado diretamente. Neste caso, deve ser tomada a média dos valores dados. Assim, RQD = 90.
- b) J_n : para 2 famílias de descontinuidades, temos $J_n = 4$.
- c) J_r : para juntas onduladas, rugosas e irregulares, temos $J_r = 3$.

2.

4. JOINT ALTERATION NUMBER a. Rock wall contact	J_a	φr degrees (appro	x)
A. Tightly healed, hard, non-softening, impermeable filling	0.75		 Values of \(\phi r\), the residual friction angle, are intended as an approximate guide
B. Unaltered joint walls, surface staining only	1.0	25 - 35	to the mineralogical properties of the
C. Slightly altered joint walls, non-softening mineral coatings, sandy particles, clay-free disintegrated rock, etc.	2.0	25 - 30	alteration products, if present.
 D. Silty-, or sandy-clay coatings, small clay- fraction (non-softening) 	3.0	20 - 25	
E. Softening or low-friction clay mineral coatings, i.e. kaolinite, mica. Also chlorite, talc, gypsum and graphite etc., and small quantities of swelling clays. (Discontinuous coatings, 1 - 2 mm or less)	4.0	8 - 16	

SOLUÇÃO

- a) RQD: valor utilizado diretamente. Neste caso, deve ser tomada a média dos valores dados. Assim, RQD = 90.
- b) J_n : para 2 famílias de descontinuidades, temos $J_n = 4$.
- c) J_r : para juntas onduladas, rugosas e irregulares, temos $J_r = 3$.
- d) J_a : para paredes de juntas inalteradas, temos $J_a = 1$.

27

5. JOINT WATER REDUCTION	$J_{\mathbf{w}}$	approx. water pressure (kgf/cm ²)	
A. Dry excavation or minor inflow i.e. < 5 l/m locally	1.0	< 1.0	We will reside to
B. Medium inflow or pressure, occasional outwash of joint fillings	0.66	1.0 - 2.5	
C. Large inflow or high pressure in competent rock with unfilled joints	0.5	2.5 - 10.0	 Factors C to F are crude estimates; increase J_W if drainage installed.
D. Large inflow or high pressure	0.33	2.5 - 10.0	
 E. Exceptionally high inflow or pressure at blasting, decaying with time 	0.2 - 0.1	> 10	Special problems caused by ice formation are not considered.
F. Exceptionally high inflow or pressure	0.1 - 0.05	> 10	

SOLUÇÃO

- a) RQD: valor utilizado diretamente. Neste caso, deve ser tomada a média dos valores dados. Assim, RQD = 90.
- b) J_n : para 2 famílias de descontinuidades, temos $J_n = 4$.
- c) J_r : para juntas onduladas, rugosas e irregulares, temos $J_r = 3$.
- d) J_a : para paredes de juntas inalteradas, temos $J_a = 1$.
- e) J_w : para escavação com mínimo fluxo de água, temos J_w = 1.

20

6. STRESS REDUCTION FACTOR			SRF		
b. Competent rock, rock stress prob	lems				
	σ _c /σ ₁	$\sigma_t \sigma_1$		2. For strongly anisotropic virgin stress field	
H. Low stress, near surface	> 200	> 13	2.5	(if measured): when $5 \le \sigma_1/\sigma_3 \le 10$, reduce σ_c	
J. Medium stress	200 - 10	13 - 0.66	1.0	to $0.8\sigma_{\rm C}$ and $\sigma_{\rm t}$ to $0.8\sigma_{\rm t}$. When $\sigma_{\rm 1}/\sigma_{\rm 3} > 10$,	
K. High stress, very tight structure	10 - 5	0.66 - 0.33	0.5 - 2	reduce $\sigma_{\rm c}$ and $\sigma_{\rm t}$ to $0.6\sigma_{\rm c}$ and $0.6\sigma_{\rm t}$, where	
(usually favourable to stability, may				$\sigma_{\rm C}$ = unconfined compressive strength, and	
be unfavourable to wall stability)				$\sigma_{\rm t}$ = tensile strength (point load) and $\sigma_{\rm t}$ and	
L. Mild rockburst (massive rock)	5-2.5	0.33 - 0.16	5 - 10	σ_3 are the major and minor principal stresses.	
M. Heavy rockburst (massive rock)	< 2.5	< 0.16	10 - 20	3. Few case records available where depth of	
c. Squeezing rock, plastic flow of incompetent rock				crown below surface is less than span width.	
under influence of high rock pressure				Suggest SRF increase from 2.5 to 5 for such	
N. Mild squeezing rock pressure			5 - 10	cases (see H).	
O. Heavy squeezing rock pressure			10 - 20		
d. Swelling rock, chemical swelling	activity depen	ding on prese	nce of wate	•	
P. Mild swelling rock pressure			5 - 10		
R. Heavy swelling rock pressure			10 - 15		

SOLUÇÃO

- a) RQD: valor utilizado diretamente. Neste caso, deve ser tomada a média dos valores dados. Assim, RQD = 90.
- b) J_n : para 2 famílias de descontinuidades, temos $J_n = 4$.
- c) J_r : para juntas onduladas, rugosas e irregulares, temos $J_r = 3$.
- d) J_a : para paredes de juntas inalteradas, temos $J_a = 1$.
- e) J_w : para escavação com mínimo fluxo de água, temos $J_w = 1$.
- f) SRF: para uma profundidade de 2100 m, a tensão vertical será igual a cerca de 57 MPa. Neste caso, a tensão principal maior será σ_1 = 85 MPa (σ_h = 1,5 σ_v). Sabendo que a resistência a compressão uniaxial do material é de 170 MPa, temos a relação σ_c/σ_1 = 2. Para rocha maciça, com problemas esperados relacionados a tensões no maciço, o valor σ_c/σ_1 = 2 acusa sérias possibilidades de ocorrência de rockburst. Da mesma forma, temos que o valor de SRF deve ser adotado entre 10 e 20. Portanto, temos a média SRF = 15.

ÍNDICE Q (ROCK TUNNELLING QUALITY INDEX)

Através destes valores, temos:

$$Q = \frac{90}{4} \cdot \frac{3}{1} \cdot \frac{1}{15} = 4,5$$

Para relacionar o índice Q às necessidades de suporte em escavações, foi definido adicionalmente o parâmetro Dimensão Equivalente (D_e), obtido por:

$$D_e = \frac{\text{Extensão, diâmetro ou altura da escavação (m)}}{\text{Nível de suporte da escavação (ESR)}}$$

No exemplo em questão temos uma galeria de mina permanente (ESR = 1,6). Assim:

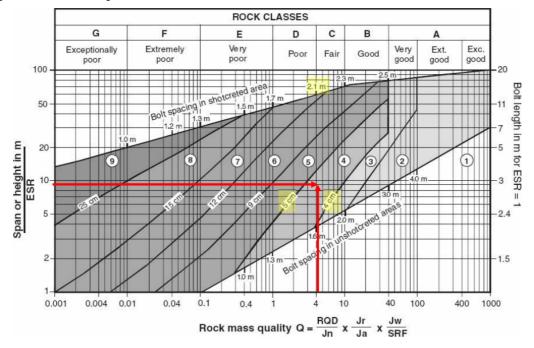
$$D_e = \frac{15}{1.6} = 9.4$$

Categoria de Escavação		
Α	Galerias temporárias de minas	3 - 5
В	Galerias permanentes de minas, túneis para hidrelétricas (exceto alta pressão), túneis piloto	1,6
С	Salas de armazenamento, estações de tratamento de água, túneis rodoviários e ferroviários pequenos, túneis de acesso	1,3
D	Estações elétricas, túneis rodoviários e ferroviários grandes, câmaras de defesa civil, intersecções	1,0
Е	Estações de energia nuclear subterrâneas, estações ferroviárias, instalações esportivas e públicas, fábricas	0,8

ESR (Nível de Suporte da Escavação)

ÍNDICE Q (ROCK TUNNELLING QUALITY INDEX)

Podemos determinar o comprimento L dos parafusos e o vão máximo livre de suportes V através das fórmulas (Q = 4,5; B = 15 m e ESR = 1,6):


$$L = \frac{2 + 0,15 \cdot B}{ESR} = \frac{2 + 0,15 \cdot 15}{1,6} \Leftrightarrow L = 2,66m$$

$$V = 2 \cdot ESR \cdot Q^{0,4} = 2 \cdot 1,6 \cdot 4,5^{0,4} \Leftrightarrow V = 5,84m$$

33

Através dos valores de $D_{\rm e}$ = 9,4; Q = 4,5 e do gráfico abaixo, podemos verificar a categoria do maciço.

Temos então uma escavação classificada na categoria 4, que requer um padrão de parafusos de rocha (com espaçamento de 2,1 m e comprimento de cerca de 2,66 m) e 4 a 5 cm de concreto projetado.

REFERÊNCIAS

BIENIAWSKI, Z. T. Engineering rock mass classifications. New York, John Wiley, 1989.

HOEK, E. Practical rock engineering. disponível em: http://www.rocscience.com/ educationhoeks_corner.

OBRIGADO!

Contato: Prof. Eduardo César Sansone esansone@usp.br