
Escola Politécnica da Universidade de São Paulo Departamento de Engenharia de Minas e de Petróleo

CRITÉRIOS DE RUPTURA PARTE 3

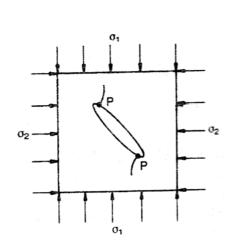
PMI 3309 - Mecânica de Rochas Aplicada à Mineração II Prof. Eduardo César Sansone

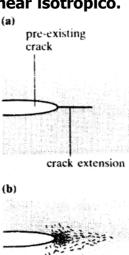
CRITÉRIO DE RUPTURA DE MOHR-COULOMB

Problemas com o critério de ruptura de Mohr-Coulomb na região de tensões negativas

CRITÉRIO DE RUPTURA DE GRIFFITH

CRITÉRIO DE RUPTURA DE GRIFFITH





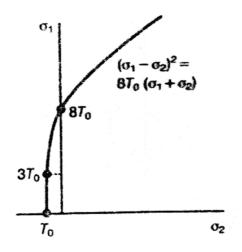
Segundo a hipótese de Griffith, a ruptura de materiais frágeis como as rochas, se inicia quando a resistência à tração do material é excedida pelas tensões geradas nas extremidades das fissuras microscópicas (pequenas fraturas ou contornos de grãos) presentes na rocha.

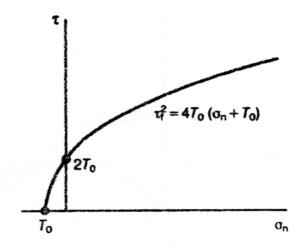
Griffith desenvolveu uma solução para a distribuição de tensões no entorno de fissuras de formato elíptico em um meio elástico-linear isotrópico.

Modelo de Griffith

a) Hipótese de Griffithb) Real comportamento das rochas

CRITÉRIO DE RUPTURA DE GRIFFITH


No estado plano de tensões o critério apresenta a seguinte expressão:


$$\left(\sigma_1-\sigma_2\right)^2-8T_0\left(\sigma_1+\sigma_2\right)=0$$

Ou em termos das tensões de cisalhamento e normal:

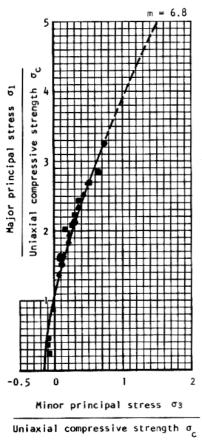
$$\tau^2 = 4T_0 \big(\sigma + T_0 \big)$$

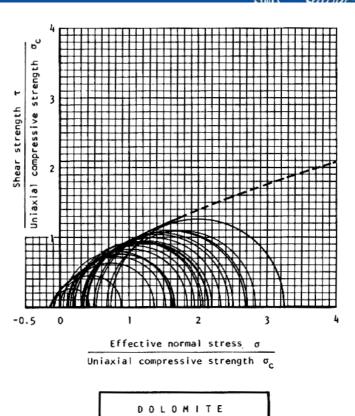
Onde T_0 é a resistência à tração da rocha.

Critério de ruptura de Griffith

5

CRITÉRIO DE RUPTURA DE HOEK & BROWN


Hoek e Brown em 1980 propuseram um critério de ruptura empírico, baseado diretamente em resultados de ensaios em rocha (tração, compressão uniaxial e compressão triaxial).


Este critério é mais adequado à representação do comportamento das rochas, pois fornece uma melhor aderência na região de baixas tensões e tração, já que o critério de Mohr-Coulomb tende a superestimar a resistência à tração das rochas.

O desenvolvimento do critério se baseou na realização de um grande número de ensaios sobre vários tipos litológicos.

CRITÉRIO DE RUPTURA DE HOEK & BROWN

Alguns ensaios realizados por Hoek & Brown

8

O critério de ruptura de Hoek & Brown prevê uma envoltória curvilínea para os círculos de Mohr correspondentes aos ensaios realizados, com a relação σ_3 x σ_1 assumindo a seguinte expressão:

$$\sigma_1 = \sigma_3 + \sqrt{m\sigma_c\sigma_3 + s\sigma_c}^2$$

Onde:

 σ_1 = tensão principal maior na ruptura

 σ_3 = tensão principal menor na ruptura

 σ_c = resistência à compressão uniaxial da rocha intacta

m = constante característica do tipo litológico variando entre 0 e 25

s = constante característica do grau de alteração da rocha variando entre 0 e 1

CRITÉRIO DE RUPTURA DE HOEK & BROWN

A seguir podemos observar gráficos típicos para $\sigma_3 \times \sigma_1 \in \sigma_N \times \tau$:

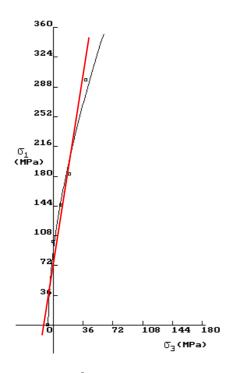


Gráfico $\sigma_3 \times \sigma_1$

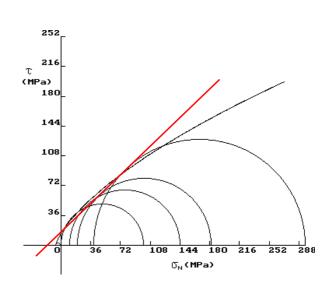


Gráfico $\sigma_N \times \tau$

Em 2002 Hoek, Torres e Corkum apresentaram uma FORMA GENERALIZADA DO CRITÉRIO ORIGINAL, adequando sua utilização para a representação tanto do comportamento de ROCHA INTACTA, como do comportamento de MACIÇOS ROCHOSOS FRATURADOS (o critério foi rediscutido em trabalho de 2018).

O critério de ruptura de Hoek & Brown generalizado prevê também uma envoltória curvilínea para os círculos de Mohr correspondentes aos ensaios realizados, com a relação σ_3 x σ_1 assumindo a seguinte expressão:

$$\sigma_1 = \sigma_3 + \sigma_{ci} \left(m_b \frac{\sigma_3}{\sigma_{ci}} + s \right)^a$$

 σ_1 = tensão principal maior na ruptura

 σ_3 = tensão principal menor na ruptura

 σ_{Ci} = resistência à compressão uniaxial da rocha intacta

 m_{hr} a e s = constantes características do tipo de maciço rochoso e da litologia

CRITÉRIO DE RUPTURA DE HOEK & BROWN

Para o caso de rocha intacta a equação assume a forma do critério de Hoek & **Brown original:**

$$\sigma_1 = \sigma_3 + \sigma_{\text{Ci}} \left(m_b \frac{\sigma_3}{\sigma_{\text{Ci}}} + s \right)^a$$

Com:

s = 1

a = 0.5

Tem-se:

$$\sigma_{1} = \sigma_{3} + \sigma_{\text{Ci}} \left(m_{\text{i}} \frac{\sigma_{3}}{\sigma_{\text{Ci}}} + 1 \right)^{0,5} \qquad \left(\sigma_{1} = \sigma_{3} + \sqrt{m\sigma_{\text{C}}\sigma_{3} + S\sigma_{\text{C}}^{2}} \right)$$

"m_b" é o valor corrigido da constante m_i característica da litologia:

$$m_{_b} = m_{_i} \; e^{\frac{GSI-100}{28-14D}}$$

Onde:

 m_b = constante característica da litologia para o caso de maciço rochoso m_i = constante característica da litologia para o caso de rocha intacta GSI = Geological Strengh Index

D = fator que caracteriza o distúrbio sofrido pelo maciço em razão da escavação e da relaxação das tensões

"s" e "a" são constantes características do maciço rochoso com expressões dadas por:

$$s=e^{\frac{GSI-100}{9-3D}}$$

$$a = \frac{1}{2} + \frac{1}{6} \left(e^{-\frac{GSI}{15}} - e^{-\frac{20}{3}} \right)$$

CRITÉRIO DE RUPTURA DE HOEK & BROWN

Rock type	Class	Group	Texture			
Sedimentary	Clastic		Coarse	Medium Fine		Very fine
			Conglomerates 21 ± 3 Breccias 19 ± 5	Sandstones 17 ± 4	Siltstones 7 ± 2 Greywackes 18 ± 3	Claystones 4 ± 2 Shales 6 ± 2 Marls 7 ± 2
	Non-	Evaporites		Gypsum 8 ± 2	Anhydrite 12 ± 2	
	Clastic	Carbonates	Crystalline	Sparitic	Micritic	Dolomites
			Limestone 12 ± 3	Limestones 10 ± 2	Limestones 9 ± 2	9 ± 3
		Organic	Coala 8-21			Chalk 7 ± 2
Metamorphic	Non foliated		Marble 9 ± 3	Hornfels 19 ± 4 Metasandstone 19 ± 3	Quartzites 20 ± 3	
	Slightly foliated		Migmatite 29 ± 3	Amphibolites 26 ± 6		·
	Foliated		Gneiss 28 ± 5	Schists 12 ± 3	Phyllites 7 ± 3	Slates 7 ± 4
Igneous	Plutonic	Light	Granite 32 ± 3	Diorite 25 ± 5		•
			Granodiorite 29 ± 3			
		Dark	Gabbro 27 ± 3	Dolerite 16 ± 5		
			Norite 20 ± 5			
	Hypabyssal		Porphyries 20 ± 5		Diabase 15 ± 5	Peridotite 25 ± 5
	Volcanic	Lava		Rhyolite 25 ± 5	Dacite 25 ± 3	Obsidian
				Andesite 25 ± 5	Basalt 25 ± 5	19 ± 3
		Pyroclastic	Agglomerate 19 ± 3	Breccia 19 ± 5	Tuff 13 ± 5	

Valores para m_i

GEOLOGICAL STRENGTH INDEX From the letter codes describing the structure and surface conditions of the rock mass (from Table 4), pick the appropriate box in this chart. Estimate the average value of the Geological Strength Index (GSI) from the contours. Do not attempt to be too precise. Quoting a range of GSI from 36 to 42 is more realistic than stating that GSI = 38. STRUCTURE BLOCKY - very well interlocked undisturbed rock mass consisting of cubical blocks formed by four or more discontinuity sets BLOCKY - interlocked, partially disturbed rock mass with multifaceted angular blocks formed by four or more discontinuity sets DECREASING SURFACE QUALITY BLOCKY/DISTURBED- folded and/or faulted with angular blocks formed by four or more discontinuity sets DISINITEGRATED - poorty interlocked, partially continuity sets								
BLOCKY - very well interlocked undisturbed rock mass consisting of cubical blocks formed by three orthogonal discontinuity sets VERY BLOCKY - interlocked, partially disturbed rock mass with multifaceted angular blocks formed by four or more discontinuity sets BLOCKY/DISTURBED- folded and/or faulted with angular blocks formed by many intersecting discontinuity sets DISINTEGRATED - poorly interlocked, heavily broken rock mass with a mixture or angular and rounded rock pieces	From the letter and surface co Table 4), plock t. Estimate the ar Strength Index Do not attempt range of GSI fr than stating the	codes describing the structure nditions of the rock mass (from he appropriate box in this chart verage value of the Geological (GSI) from the contours, to be too precise. Quoting a om 36 to 42 is more realistic	SURFACE CONDITIONS				POOR Slickensided, highly weathere compact coatings or fillings of	
BLOCKY - interlocked, partially disturbed rock mass with multifaceted angular blocks formed by four or more discontinuity sets BLOCKY/DISTURBED- folded and/or faulted with angular blocks formed by many intersecting discontinuity sets DISINTEGRATED - poorly interlocked, heavily broken rock mass with multifaceted and and or angular and rounded rock pieces	STRUCTURE			DECRE	ASING S	SURFACE	QUALIT	Y 5>
DISINTEGRATED - poorly interlocked, heavily broken rock mass with a mixture or angular and rounded rock pieces		undisturbed rock mass consisting of cubical blocks formed by three	CES	V7.				
DISINTEGRATED - poorly interlocked, heavily broken rock mass with a mixture or angular and rounded rock pieces		partially disturbed rock mass with multifaceted angular blocks formed	CKING OF ROCK PIE		//			
DISINTEGRATED - poorly interlocked, heavily broken rock mass with a mixture or angular and rounded rock pieces		and/or faulted with angular blocks formed by many intersecting	CREASING INTERLO			40 / /	30	///
		locked, heavily broken rock mass with a mixture or angular and					\ \frac{1}{\rightarrow}	10

Valores para GSI

CRITÉRIO DE RUPTURA DE HOEK & BROWN

1	ASSESS III	1 12
A		VO)
		ZSY.

15

Appearance of rock mass	Description of rock mass	Suggested value of D
	Excellent quality controlled blasting or excavation by Tunnel Boring Machine results in minimal disturbance to the confined rock mass surrounding a tunnel.	<i>D</i> = 0
	Mechanical or hand excavation in poor quality rock masses (no blasting) results in minimal disturbance to the surrounding rock mass. Where squeezing problems result in significant floor	D = 0 $D = 0.5$
	heave, disturbance can be severe unless a temporary invert, as shown in the photograph, is placed.	No invert
a Milional	Very poor quality blasting in a hard rock tunnel results in severe local damage, extending 2 or 3 m, in the surrounding rock mass.	D = 0.8
	Small scale blasting in civil engineering slopes results in modest rock mass damage, particularly if controlled blasting is used as shown on the left hand side of the	D = 0.7 Good blasting
	basing is used as shown on the left hand side of the photograph. However, stress relief results in some disturbance.	D = 1.0 Poor blasting
	Very large open pit mine slopes suffer significant disturbance due to heavy production blasting and also due to stress relief from overburden removal.	D = 1.0 Production blasting
	In some softer rocks excavation can be carried out by ripping and dozing and the degree of damage to the slopes is less.	D = 0.7 Mechanical excavation

Valores para D

16

A resistência à compressão uniaxial do maciço σ_{Cm} será dada por:

(onde σ_{ci} é a resistência à compressão uniaxial da rocha intacta)

Fazendo $\sigma_3 = 0$ na expressão do critério:

$$\sigma_1 = \sigma_3 + \sigma_{\text{Ci}} \left(m_b \frac{\sigma_3}{\sigma_{\text{Ci}}} + s \right)^a$$

CRITÉRIO DE RUPTURA DE HOEK & BROWN

A determinação experimental dos parâmetros característicos de cada litologia, m_i e σ_{ci} para o CASO DE ENSAIOS SOBRE ROCHA INTACTA pode ser feita através de uma análise de regressão sobre resultados de ensaios mecânicos em rocha sob diferentes condições de confinamento (diferentes estados σ_3 x

$$\sigma_1 = \sigma_3 + \sigma_{Ci} \left(m_i \frac{\sigma_3}{\sigma_{Ci}} + 1 \right)^{0.5}$$

É possível realizar uma regressão linear fazendo uma mudança de variável sobre a expressão do critério:

$$(\sigma_1 - \sigma_3)^2 = \sigma_{Ci} m_i \sigma_3 + \sigma_{Ci}^2$$

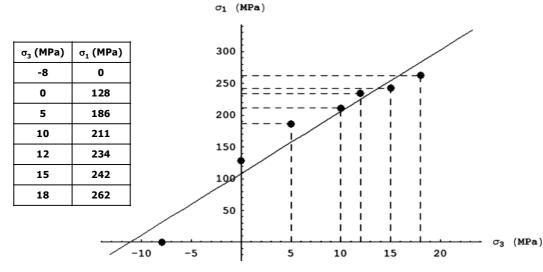
$$y = A x + B \implies y = \sigma_{Ci} m_i x + \sigma_{Ci}^2$$

Assim:
$$\sigma_{Ci} = \sqrt{B}$$

$$m_i = \frac{A}{\sqrt{R}}$$

Parâmetros para o Maciço Rochoso
$$= \begin{cases} m_b = m_i \ e^{\frac{GSI-100}{28-14D}} \\ s = e^{\frac{GSI-100}{9-3D}} \\ a = \frac{1}{2} + \frac{1}{6} \left(e^{-\frac{GSI}{15}} - e^{-\frac{20}{3}} \right) \end{cases}$$

EXERCÍCIO 09-1


A equipe responsável pelo projeto de uma mina a céu aberto deseja analisar a condição de estabilidade dos taludes da cava. Para isso, coletou amostras e obteve os seguintes resultados para os ensaios realizados em amostras de rocha intacta:

σ ₃ (MPa)	σ ₁ (MPa)
-8	0
0	128
5	186
10	211
12	234
15	242
18	262

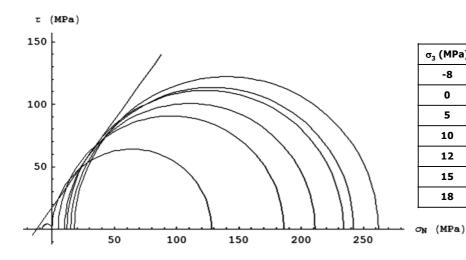
EXEMPLO - CRITÉRIO DE RUPTURA DE HOEK & BROWN

a) Determine o critério de ruptura de Mohr-Coulomb e faça estimativas para as resistências a compressão uniaxial σ_{Ci} e a tração σ_{Ti} da rocha intacta.

$$y = Ax + B$$

$$A = \frac{n \sum xy - \sum x \sum y}{n \sum x^2 - (\sum x)^2} \quad e \quad B = \frac{\sum y \sum x^2 - \sum x \sum xy}{n \sum x^2 - (\sum x)^2}$$

$$Curva \quad \sigma_1 \quad x \quad \sigma_3:$$


$$\sigma_1 = 108.322 + 9.70663 \, \sigma_3$$

$$r^2 = 0.941953$$

-Parâmetros da Rocha: σ_{Ci} = 108.322 MPa σ_{Ti} = -11.1596 MPa

EXEMPLO - CRITÉRIO DE RUPTURA DE HOEK & BROWN

σ ₃ (MPa)	σ ₁ (MPa)
-8	0
0	128
5	186
10	211
12	234
15	242
18	262

$$\sigma_1 = A \sigma_3 + B \implies \tau = c + \sigma_N tg\phi$$

$$\phi = \arcsin \frac{A-1}{A+1} \quad e \quad c = \frac{B}{2\sqrt{A}}$$

-Envoltória de Ruptura:

 $\tau = 17.3841 + \tan(54.4098) \sigma_{N}$

21

EXEMPLO - CRITÉRIO DE RUPTURA DE HOEK & BROWN

b) Determine o critério de ruptura de Hoek & Brown para rocha intacta e faça estimativas para as resistências a compressão uniaxial σ_{Ci} e a tração $_{\sigma\text{Ti}}$.

$$\sigma_1 = \sigma_3 + \sigma_{\text{Ci}} \left(\mathbf{m}_{\text{i}} \frac{\sigma_3}{\sigma_{\text{Ci}}} + \mathbf{1} \right)^{0.5}$$

$$\left(\sigma_{1}-\sigma_{3}\right)^{2}=\sigma_{Ci}\ m_{i}\ \sigma_{3}+\sigma_{Ci}^{2}$$

$$y = Ax + B \Rightarrow y = \sigma_{ci} m_i x + \sigma_{ci}^2$$

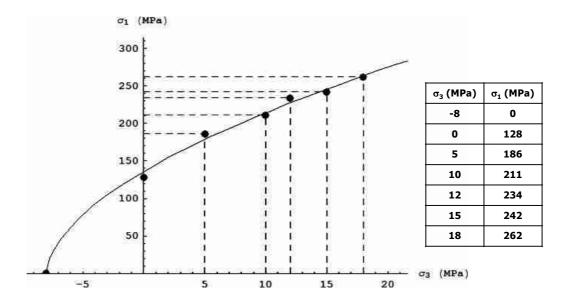
$$\sigma_{\text{Ci}} = \sqrt{\pmb{B}}$$

$$m_i = \frac{A}{\sqrt{B}}$$

X		y
σ_3	σ_1	$(\sigma_1 - \sigma_3)^2$
-8	0	64
0	128	16.384
5	186	32.761
10	211	40.401
12	234	49.284
15	242	51.529
18	262	59.536

-Curva
$$\sigma_1 \times \sigma_3$$
:
 $(\sigma_1 - \sigma_3)^2 = 18528.1 + 2312.73 \sigma_3$
 $r^2 = 0.990453$

-Parâmetros para a Rocha Intacta:


 $\sigma_{Ci} = 136.118 \text{ MPa}$

 $m_i = 16.9907$

 $\sigma_{Ti} = -7.98378 \text{ MPa}$

EXEMPLO - CRITÉRIO DE RUPTURA DE HOEK & BROWN

Critério de ruptura de Hoek & Brown para rocha intacta

EXEMPLO - CRITÉRIO DE RUPTURA DE HOEK & BROWN

c) Determine os parâmetros do critério de ruptura de Hoek & Brown para o caso de um maciço rochoso com fraturamento regular e blocos cúbicos bem definidos e onde é possível observar faces de descontinuidades muito rugosas e sem alteração, onde é escavado um talude de mineração de grandes dimensões por meio de desmonte por explosivos.

EXEMPLO - CRITÉRIO DE RUPTURA DE HOEK & BROWN

From the letter codes describing the structure and surface conditions of the rock mass (from Table 4), pick the appropriate box in this chart. Estimate the average value of the Geological Strength Index (GSI) from the contours. Do not attempt to be too precise. Quoting a range of GSI from 36 to 42 is more realistic than stating that GSI = 38.

Y GOOD rough,fresh

POOR
Sinckensided, highly weathered su
compact coatings or fillings of ang
VERY POOR
Sinckensided, highly weathered su
very and any ocatings or fillings

SURFACE CONDITIONS DECI

SING SURFACE QUALITY 🗫

STRUCTURE

BLOCKY - very well interlocked undisturbed rock mass consisting of cubical blocks formed by three orthogonal discontinuity sets

VERY BLOCKY - interlocked, partially disturbed rock mass with multifaceted angular blocks forme by four or more discontinuity sets

BLOCKY/DISTURBED- folded and/or faulted with angular blocks formed by many intersecting discontinuity sets

locked, heavily broken rock mass with a mixture or angular and rounded rock piece

Р DECREASING INTERLOCKING Ÿ

Valores para GSI

EXEMPLO - CRITÉRIO DE RUPTURA DE HOEK & BROWN

Appearance of rock mass Description of rock mass Excellent quality controlled blasting or excavation by Tunnel Boring Machine results in minimal disturbance to the confined rock mass surrounding a tunnel.

Mechanical or hand excavation in poor quality rock masses (no blasting) results in minimal disturbance to the surrounding rock mass.

Where squeezing problems result in significant floor heave, disturbance can be severe unless a temporary invert, as shown in the photograph, is placed.

No invert

"Talude de mineração de grandes dimensões por meio de desmonte por explosivos"

"Macico rochoso com fraturamento

definidos e onde é possível observar faces de descontinuidades muito

GSI = 75

regular e blocos cúbicos bem

rugosas e sem alteração"

D = 1,0

d liberal

Very poor quality blasting in a hard rock tunnel results in severe local damage, extending 2 or 3 m, in the surrounding rock mass.

> D = 0.7D = 1.0

D = 0.8

Small scale blasting in civil engineering slopes results in modest rock mass damage, particularly if controlled blasting is used as shown on the left hand side of the photograph. However, stress relief results in some disturbance.

Production

Very large open pit mine slopes suffer significant disturbance due to heavy production blasting and also due to stress relief from overburden removal. In some softer rocks excavation can be carried out by

ripping and dozing and the degree of damage to the slopes is less.

D = 0.7Mechanical excavation

Valores para D

Fórmulas:

$$m_{_b} = m_{_i} \; e^{\frac{GSI-100}{28-14D}}$$

$$s = e^{\frac{GSI-100}{9-3D}}$$

$$a = \frac{1}{2} + \frac{1}{6} \left(e^{-\frac{GSI}{15}} - e^{-\frac{20}{3}} \right)$$

-Parâmetro para a Rocha Intacta:

 $m_i = 16.9907$

-Parâmetros do Maciço Rochoso:

GSI = 75

D = 1

-Parâmetros do Critério de Hoek & Brown (2002):

$$m_b = 2.84895$$

$$s = 0.0155039$$

$$a = 0.500911$$

$$\sigma_1 = \sigma_3 + \sigma_{Ci} \left(m_b \frac{\sigma_3}{\sigma_{Ci}} + s \right)^a$$

27

EXEMPLO - CRITÉRIO DE RUPTURA DE HOEK & BROWN

d) Determine a resistência à compressão uniaxial σ_{cm} esperada para o maciço rochoso.

$$\boldsymbol{\sigma}_{\text{Cm}} = \boldsymbol{\sigma}_{\text{Ci}} \ \boldsymbol{s}^{\text{a}}$$

 $\sigma_{Ci} = 136.118 \text{ MPa}$

s = 0.0155039

a = 0.500911

- Resistência à Compressão Uniaxial do Maciço Rochoso:

 $\sigma_{\rm C}$ = 16.8845 MPa

Fator de Escala = 8

BRADY, B. H. G.; BROWN, E. T. Rock mechanics for underground mining. London, Chapman & Hall, 1994.

HOEK, E. Rock engineering - the application of modern techniques to underground design. São Paulo, CBMR, 1998.

GOODMAN, R. E. Introduction to rock mechanics. New York, Wiley, 1980.

PARRY, R. H. G. Mohr circles, stress paths and geotechnics. London, FN Spon, 1995.

OBRIGADO!

Contato: Prof. Eduardo César Sansone esansone@usp.br