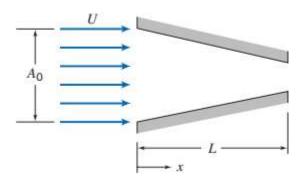
SAA 215 - MECÂNICA DOS FLUIDOS

LISTA DE EXERCÍCIOS - 5

PROBLEMA 1 (Fox 5.10)

Uma aproximação grosseira para a componente x da velocidade em uma camada limite laminar e incompressível é uma variação linear de u=0 na superfície (y=0) até a velocidade de corrente livre, U, na borda da camada limite ($y=\delta$). A equação do perfil é $u=Uy/\delta$, em que $\delta=c\sqrt{x}$, sendo c uma constante. Mostre que a expressão mais simples para a componente y da velocidade é v=uy/4x. Avalie o valor máximo da razão v/U em um local em que x=0,5 m e $\delta=5$ mm.

PROBLEMA 2 (Fox 5.28)


A função de corrente para certo campo de escoamento incompressível é dada pela expressão $\psi = -Ur \ sen \ \theta + q\theta/2\pi$. Obtenha uma expressão para o campo de velocidade. Encontre o(s) ponto(s) de estagnação em que $|\vec{V}| = 0$, e mostre que ali $\psi = 0$.

PROBLEMA 3 (Fox 5.41)

A componente x da velocidade em um campo de escoamento em regime permanente, incompressível, no plano xy, é $u = A(x^5 - 10x^3y^2 + 5xy^4)$, em que $A = 2 m^{-4} \cdot s^{-1}$ e x é medido em metros. Encontre a mais simples componente y da velocidade deste campo de escoamento. Avalie a aceleração de uma partícula fluida no ponto (x,y) = (1,3).

PROBLEMA 4 (Fox 5.66)

Considere o escoamento incompressível de um fluido através de um bocal, conforme mostrado. A área do bocal é dada por $A=A_0(1-bx)$ e a velocidade de entrada varia de acordo com $U=U_0(0.5+0.5\cos\omega t)$, em que $A_0=0.5\ m^2$, $L=5\ m$, $b=0.1\ m^{-1}$, $\omega=0.16\ rad/s$ e $U_0=5\ m/s$. Determine e trace um gráfico da aceleração na linha central, usando o tempo como parâmetro.

PROBLEMA 5 (Fox 5.69)

Quais, se existir algum, dos seguintes campos de escoamento são irrotacionais?

(a)
$$u = 2x^2 + y^2 - x^2y$$
; $v = x^3 + x(y^2 - 2y)$

(b)
$$u = 2xy - x^2 + y$$
; $v = 2xy - y^2 + x^2$

(c)
$$u = xt + 2y$$
; $v = xt^2 - yt$

(d)
$$u = (x + 2y)xt; v = -(2x + y)yt$$

PROBLEMA 6 (Fox 5.76)

Considere o campo de escoamento representado pela função de corrente $\psi = 3x^5y - 10x^3y^3 + 3xy^5$. Esse é um possível escoamento bidimensional incompressível? O escoamento é irrotacional?