Guia para a confecção do hardware-in-the-loop do conversor boost Professora: Vilma A. de Oliveira Monitor: Deniver R. Schutz

Resumo

Este roteiro tem como objetivo fornecer um guia claro para o desenvolvimento da simulação hardware-in-the-loop (HIL) de um conversor boost controlado por um controlador proporcional integrativo (PI). Para realizar essa simulação, utilizaremos o *board* STM32F407-Discovery e a plataforma Cube-IDE para a programação do mesmo. Este guia é baseado no roteiro de projeto disponibilizado na disciplina SEL0328 - Laboratório de Controle de Sistemas.

Palavras-chave: conversor *Boost*, controle de tensão e corrente, controle em cascata, modulação PWM, *hardware-in-the-loop*.

1 Introdução

A estratégia experimental *hardware-in-the-loop* (HIL) trata-se de um processo de emulação de performance de baixo custo frequentemente utilizada em sistemas onde testes não podem ser realizados com facilidade, capaz se capturar e respostas e dinâmicas do sistema sobre diferentes pontos de operação, sem a necessidade do acionamento do sistema físico real. Além de permitir a avaliação individual de algoritmos, componentes e *softwares* em lógica embarcada [1].

Neste guia, utilizaremos o STM32F407-Discovery para a simulação hardware-in-the-loop (HIL), mas vale ressaltar que a programação pode ser adaptada para outros microcontroladores STM32. Para facilitar a demonstração, utilizaremos a arquitetura de uma única placa, mas a lógica de programação é a mesma para a arquitetura clássica, em que o controlador e o modelo são separados em duas placas distintas.

O software de programação CubeIDE pode ser obtido gratuitamente no site da fabricante https://www.st.com/en/development-tools/stm32cubeide.html#get-software.

2 Criando o projeto

Abrindo o CubeIDE crie um novo "STM32 Project". Seguindo os passos da Figura 1 selecione a placa desejada e clique em "Next". Em seguida defina o nome do projeto, clique em "Finish" e "Yes" conforme a Figura 2.

Em seguida abrirá uma tela para a definição dos periféricos, conforme a Figura 3. Como pode ser observado a inicialização pela board apresentara alguns pinos já ativados devido a periféricos inerentes a placa, como por exemplo o *push botton* conectado ao "PA0" e os lED's interligados as portas "PD12" a "PD15". Nesse momento possuimos duas opções, podemos resetar todos os pinos indo em "Pinout" e em seguida "Clear Pinouts" ou seguir o projeto com os pinos ativados. **Para fins práticos de aprendizado seguiremos com os pinos ativados**. Caso deseje desativar será necessário configurar os pinos referentes ao cristal oscilador em "RCC".

(1)					
MCU/MPU Selector Board Selector Example Se	Selector Cross Selector				
Board Filters	Features	Large Picture	Docs & Resources	📑 Datasheet	📑 Buy
Part Number STM32F407G-DISC1	STM32F4 Series				
۹ 🛛 🕇 🗕	STM32F407G-DISC1	Discovery kit with STM32F407VG	MCU * New order code STM32	F407G-DISC1 (replaces STM32F4DISCOVERY)	
	ACTIVE Broduction production	Part Number : STM32F4DISCOVERY Commercial Part Number : STM32F407G-DISC	1	Unit Price (US\$): 19.9	
PRODUCT INFO				Mounted Device : STM32F407VGT6	
Type > Suppler > MCUT MPU Series > Marixeting Status > Price > MEMORY		The STM32F4DISCOVERY Discovery title easily it includes an ST-LINVC2A embedd driver, LEDs, push-buttons, and a USB OT Specialized add-on boards can be connect	verages the capabilities of the STMS2 de debug tool. on ST-MEMS digital a 3 Micro-AB connector. ad by means of the extension header of by means of the extension header of the states of the extension header of the extension header of the states of the states of the extension header of the states of the extension header of the states of the extension header	407 high-performance microcontrollers, to allow users to celerometer, one digital microphone, one audio DAC with onnectors.	develop audio applications Integrated class D speaker
Ext. Flash = 0 (MBit)	Boards List: 1 item	(;	3)		🐴 Export
Ext. EEPROM = 0 (kBytes)	1			Commercial Part No	
0 Ext. RAM = 0 (MBit) 0			STM32F407G-DISC1		
FEATURES					
Embedded Sensor					
User Button >					
Camera >					
CAN					
Connector >					
······					
					(4)
				c Back	Next > Einich Can

Figura 1: Criando Projeto

DE STM32 Project	×		
Setup STM32 project	IDE		
Project			
Project Name: HIL_Boost			
Use default location			
Location: C:/Users/lac/STM32CubelDE/workspace_1.10.1	Browse	DE Board Project Options:	×
Options Targeted Language ● C ○ C++		Initialize all peripherals with their default Mode ?)
Executable Static Library			
Targeted Project Type ● STM32Cube ○ Empty			
	Cancel		

Figura 2: Criando Projeto

3 Definindo os periféricos

Para o módulo de controle precisaremos dos seguintes periféricos:

- Uma Saída PWM de controle e
- Duas entradas analógicas referentes aos valores de tensão e corrente do modelo.

Já para o módulo referente ao modelo do conversor boost precisamos de :

- Uma entrada digital para a leitura do estado do PWM e
- Duas saídas analógicas referentes ao valores de tensão e corrente do modelo.

Figura 3: Tela de periféricos

3.1 Gerando o código

Para gerar o código C# a partir do CubeMx, página de configuração dos periféricos, basta seguir os passos da Figura 4. Toda vez que alterar algo no CubeMx é necessário gerar o código novamente.

Pinout & Configuration Project Mar Categories > Software Packs Pinout Categories > TiM10 Mode and Configuration Mode System Core > Mode Mode Analog > Categories > Categories Timers I Mode Categories RTC - Categories > Categories Timers - Categories - Categories RTC - Categories - Categories Timers - Categories - Categories RTC - Categories - Categories Timers - Categories - Categories RTC - Categories - Categories Timers - Categories - Categories RTC - Categories - Categories Timers - Categories - Categories RTC - Categories - Categories Timers - Categories - Categories Remember my decision (2) - No Timers - No - No	🐘 🕸 ▼ 🔦 ▼ 📾 : IP> III 🔳 M .2. Boost_HILioc × 🕢 main.c 🛛 § startup_str Boost_HIL.loc - Pinout & Configuration	(1) 	9 4 • 1 🔗 • 1 🖢	▼ ∄ ▼ ♥ ♥ ♥ ♥ ♥ ▼ ♥ ♥ ●		
Categories Categories Princit System Core > Analog > Timers Categories RTC Categories Timers Categories Remember my decision (2) Times Categories Remember my decision Yes	Pinout & Configu	ration		Clock Configuration		Project Mana
Categories TM10 Mode and Configuration System Core > Analog > Timers ~ RTC Time Mode TIM1 Channel 1 [bisable One Pulse Mode I lusteou_ct_lport Timers ~ RTC Time Associated Perspective? TIM1 X A TIM2 This action can be associated with C/C++ perspective. Do you want to open this TIM6 Time TIM6 Time TIM6 Time TIM6 Yes				✓ Software Packs	✓ Pinout	
Categorius A>2 System Core > Analog > Analog > Timers ~ RTC Timers TIM1 A TIM3 Timers A TIM3 Times A TIM4 Times	2	0		TIM10 Mode and Configuration		1
System Care > Analog > Analog > Timers > RTC One Pulse Mode TIM > ATM2 > ATM3 Times ATM3 Times ATM6 Times TIM6 (2) Times (2) Times Yes	Categories A->Z			Mode		
Analog Channell Unable Channell Unabl	System Core	>	ctivated			
Timers Timers T	Analog	> Chan	nel1 Disable			
RTC TIM1 A TIM2 A TIM3 A TIM4 A TIM4 A TIM6 TIM6 <td>Timers</td> <td></td> <td>ne r uise mode</td> <td></td> <td></td> <td>I [LIS302DL_CS_I2C/SPI] PE</td>	Timers		ne r uise mode			I [LIS302DL_CS_I2C/SPI] PE
R1C1 Image: Constraint of Perspective? X TM42 Image: Constraint of Perspective? X TM42 Image: Constraint of Perspective? X TM45 Image: Constrain	DTO					PE
A TIM2 A TIM3 A TIM4 A TIM4 TIM5 TIM6 TIM7 A TIM8 TIM9 C TIM9 C T	TIM1			DE Open Associated Perspective?		× /
IM/3 IM/6 IM/7 IM/7 IM/8 IM/9 Ves No	▲ TIM2					20
TIM5 TIM5 TIM6 TIM7 A TIM8 TIM7 A TIM8 TIM9 TIM9 TIM9	▲ TIM4			This action can be associated perspective now?	with C/C++ perspective. Do yo	ou want to open this
IIM6 TIM7 ▲ TIM8 TIM9 Constance	A TIM5				(0)	15
▲ TM8 TM9 C TM0	TIM6 TIM7			Remember my decision	(2)	
	A TIM8				Yes	No
	TIM9					

Figura 4: Gerando o código C#

3.2 Configurando a interrupção

Por se tratar de um sistema que opera em tempo discreto, é necessário estabelecer uma rotina de interrupção, conforme ilustrado na Figura 5. É importante que o código seja escrito dentro dessa rotina, de modo que se respeite a taxa de amostragem a ser estabelecida.

Figura 5: Rotina de interrupção. Adaptado de [2].

A primeira etapa consiste em configurar o clock do sistema. No guia "Configuração do Clock" (Clock Configuration), ajustamos o valor do HCLK para obter a máxima frequência de clock possível. No caso do STM32F407, esse valor é de 168 MHz. É importante que você anote os valores de APB1 e APB2, pois serão necessários para configurar o tempo de interrupção e o sinal PWM. Nesse caso, o APB1 está configurado para 84 MHz e o APB2 para 168 MHz, conforme a Figura 6.

Para gerar a configuração utilizaremos o Timer 10. selecione o TIM10 e, em seguida, ative o timer conforme indicado na etapa (2) da Figura 7. Em seguida, configuraremos as interrupções para ocorrerem de acordo com a taxa de amostragem $T_s = 5 \times 10^{-6}$ (5 microssegundos). acordo com o datasheet do microcontrolador STM32F405xx [3], o Timer 10 (TIM10) está conectado ao barramento APB2, que anteriormente foi configurado para operar a uma frequência de 168 MHz.

Figura 6: Tela de periféricos

Para configurarmos a interrupção a cada 5 microssegundos ajustamos de acordo com o passo (3) da Figura 7 e seguindo as seguintes equações:

$$Prescaler = \frac{APBx}{Frequência \ de \ Chavemanto} = \frac{168 \ MHz}{200 \ KHz} = 840 \tag{1}$$

Quando o contador do timer atingir o valor do "auto-reload register" (ARR), será gerada a interrupção. Como a frequência de chaveamento já atinge a taxa de amostragem desejada de $T_s = 5 \times 10^{-6}$, podemos definir o valor de ARR como 1. Nesse ponto, há várias combinações possíveis de ARR e do prescaler que podem atingir a taxa necessária. Cabe ao projetista determinar a melhor configuração.

Por fim, na guia "NVIC Settings" (Configurações do NVIC), habilitamos a interrupção global do TIM10. Dessa forma, o microcontrolador pausará todas as atividades e executará o código da interrupção quando ocorrer a interrupção do TIM10.

A Figura 8 apresenta a localização da função gerado de interrupção. No período configurado o microcontrolador para as demais ações e executa o código aqui apresentado. É essencial colocar esse código entre os comentários indicados por (5), pois, mesmo que seja colocado dentro da função, mas fora dos comentários, há o risco de o código ser apagado caso ocorra uma alteração no CubeMx e um novo código seja gerado.

Figura 7: Configuração do Timer

Figura 8: Função geradora de interrupção. (1) Arquivo de projeto gerado a partir do CubeMx, (2) códigos e funções, (3) configuração dos temporizadores, (4) função de interrupção e (5) local para inserir o código

```
void TIM1_UP_TIM10_IRQHandler(void)
  /* USER CODE BEGIN TIM1_UP_TIM10_IRQn 0 */
{
```

Neste local deve ser inserido o código a ser executado em cada interrupção.

```
/* USER CODE END TIM1_UP_TIM10_IRQn 0 */
HAL_TIM_IRQHandler(&htim10);
/* USER CODE BEGIN TIM1_UP_TIM10_IRQn 1 */
/* USER CODE END TIM1_UP_TIM10_IRQn 1 */
```

}

Em *main.c* é importante iniciar a contagem do timer conforme o código:

```
int main(void)
{
   /* USER CODE BEGIN 2 */
   HAL_TIM_Base_Start_IT(&htim10);
   /* USER CODE END 2 */
```

Vale destacar que as variáveis declaras no main.c a serem utilizadas dentro da interrupção, devem também serem declaradas no arquivo $stm32f4xxz_it.c$ (arquivo de interrupção) como variáveis externas, por exemplo:

```
/* Private variables -----*/
/* USER CODE BEGIN PV */
extern float Ts;
```

3.3 Configurando a saída PWM

Será necessário configurar uma saída PWM, pois esse sinal será utilizado como o sinal de controle para o nosso controlador PI. Nesse exemplo será utilizado o TIM8 (timer 8) e uma frequência de PWM de 10 KHz. A Figura 9 apresenta Ativação do periférico como saída PWM. Para esse caso como foi escolhido o canal 4 do TIM8 o pino ativado foi o PC9, caso escolha outro canal e/ou outro timer o pino ativado será diferente.

Em seguida tem-se que configurar o timer de modo a geral a frequência estimada em projeto. A configuração é semelhante a já executada no timer de interrupção. Pelo datasheet o TIM8 está conectado ao APB2, logo a configuração do prescaler e do ARR é dado por:

$$Tim \ Clock = \frac{APBx}{Prescaler} = \frac{168 \ MHz}{168} = 1 \ MHz \tag{2}$$

Figura 9: Ativação do periférico como saída PWM

$$Freq = \frac{Tim \ Clock}{ARR} = \frac{1 \ MHz}{100} = 10 \ KHz \tag{3}$$

É importante destacar o ARR (Auto-Reload Register), pois ele determinará a faixa de dutycycle a ser adotada. No nosso caso, o duty-cycle será de 0 a 100. A configuração é apresentada na Figura 10.

Conti	guration	
Reset Configuration		
S User Constants NVIC Settings	OMA Settings OPIO Settings	
⊘ Param	eter Settings	
Configure the below parameters :		
Search (Ctri+F)		,
 Counter Settings 		
Prescaler (PSC - 16 bits value)	168-1	
Counter Mode	Up	
Counter Period (AutoReload Register - 16	. 100-1	
Internal Clock Division (CKD)	No Division	
Repetition Counter (RCR - 8 bits value)	0	
auto-reload preload	Disable	
 Trigger Output (TRGO) Parameters 		
Master/Slave Mode (MSM bit)	Disable (Trigger input effect not delayed)	
Trigger Event Selection	Reset (UG bit from TIMx_EGR)	
 Break And Dead Time management - BRK Config 		
BRK State	Disable	
BRK Polarity	High	
 Break And Dead Time management - Output Conf 		
Automatic Output State	Disable	
Off State Selection for Idle Mode (OSSI)	Disable	
Lock Configuration	Off	
 PWM Generation Channel 4 		
Mode	PWM mode 1	
Pulse (16 bits value)	500	
Output compare preload	Enable	
⊢ast Mode	Disable	
CH Polarity	High	
CH Idle State	Reset	
Settings 🔗 User Constants 🔗 NMC Sattings	O DMA Settings O GPIO Settings	
Settings Set Constants Settings	• DMA Settings	_
;		
2		DW (
Signal on Pin GPIO output level _GPIO mode	GPIO Pull-up/P Maximum outp User Label	
SI IN THOUSE	Cool Labor	

Figura 10: Configuração do PWM

A inicialização do PWM deve ser incuida no main.c void entre o /* USER CODE BEGIN 2 */, conforme o código:

```
/* USER CODE BEGIN 2 */
HAL_TIM_PWM_Start(&htim8,TIM_CHANNEL_4); // Inicia o PWM
```

Pi PC9

TIM8->CCR4 =30; //Duty=CCR/ARR -> Inicia um PWM de 30% de duty-cycle /* USER CODE END 2 */

Neste momento, é recomendável avaliar a saída PWM com o auxílio de um osciloscópio. Analise a frequência de chaveamento e verifique se está de acordo com o que foi programado.

3.4 Configuração da entrada digital

A entrada digital é utilizada pelo módulo do modelo matemático do motor de corrente contínua (CC) para ler o estado do sistema, ou seja, verificar se o sinal PWM está em nível alto ou baixo. Isso permite ao microcontrolador chavear o modelo de acordo com o estado atual do sinal PWM, garantindo o funcionamento adequado do conversor.

Para configurar uma entrada digital basta clicar com o botão direito do mouse sobre o Pino desejado e configura-lo como *GPIO_Input*, conforme a Figura 11.

Figura 11: Configuração da entrada digital

Para esse exemplo configuramos o periférico PC6. No código para ler o estado dessa entra utiliziamos o comando:

HAL_GPIO_ReadPin(GPIOC, GPIO_PIN_6)

//Onde C e 6 devem ser trocadas de acordo com o seu periferico
// Por exemplo PD5 deve ser utilzado: HAL_GPIO_ReadPin(GPIOD, GPIO_PIN_5)

3.5 Configuração da saída analógica - DAC

As saídas analógicas são utilizadas para representar as saídas da corrente do indutor e a tensão da carga no conversor CC. Essas saídas são importantes para o monitoramento e análise do comportamento do sistema, permitindo que o controlador obtenha informações precisas sobre a corrente e a tensão do circuito, facilitando o controle e ajuste adequado do conversor.

DAC significa conversor digital para analógico e, como o nome sugere, converte o sinal digital em analógico. Conforme a Figura 12 clique sobre DAC (1) e habilite duas saídas digitais (2), note que o *Output Buffer* é ativado e o Trigger desativado. Ao finalizar dois periféricos serão ativados, no caso do exemplo PA4 ePA5.

Categories A->7		Mode		1		
System Core >	OUT1 Configuration OUT2 Configuration	2)				
Analog ~	External Trigger			PHO		
© DAC						
				PCO		
				² C1		
Timers >				PC3		
Connectivity >						
Multimedia >						
Security >						
Computing >		Configuration		240-		
Middleware and Software Packs	Reset Configuration			201		
	NVIC Settings	OMA Settings	GPIO Settings			
	Parameter Se	ttings	User Constants	PA2		
	Configure the below parameters	0	0	A3	/SS	PA4 PA5
	✓ DAC Out1 Settings					- 0
	Output Buffer	Enable		Ë		In In
	V DAC Out2 Settings	None		Ď		0 0'
	Output Buffer	Enable		4		66
	Trigger	None				(3)
🤄 Parameter Settings 🛛 🔮 User Cons	stants 🛛 🛇 NVIC Settings 🛛 🤡	DMA Settings	ngs		1	
Search Signals				ale Madified Dise		
Search (Ctrl+F)				only woulded Pins	·	
Pin Name C Signal on Pin	GPIO output level GPIO mod	e GPIO Pull-up/Pull Maxim	um output User Label	Modified		
PA5 DAC_00T2 n	/a Analog mode	No pull-up and no n/a				

Figura 12: Configuração das saídas digitais

No código precisamos iniciar as saídas:

```
/* USER CODE BEGIN 2 */
HAL_DAC_Start(&hdac, DAC_CHANNEL_1); //Inicia DAC chanel 1 (PA4)
HAL_DAC_Start(&hdac, DAC_CHANNEL_2); //Inicia DAC chanel 2 (PA5)
/* USER CODE END 2 */
```

Correto, se os sinais enviados variam de 0 a 3.3V e estamos utilizando 12 bits de resolução, o range de envio deve ser convertido para o intervalo de 0 a 4095. Isso significa que os valores a serem enviados devem ser escalados proporcionalmente para esse novo range, a fim de utilizar toda a resolução disponível e obter uma representação mais precisa dos sinais analógicos. Pelos conhecimentos do modelo e da planta de controle inciamos as seguinte variáveis.

```
/* USER CODE BEGIN PV */
float iL=0; // Corrente no indutor
```

```
float vC=0; //Tensão na Carga
float iL_lim[2]={2,300}; // Valores limites de Corrente
float vC_lim[2]={2,300}; // Valores limites de Tensão
uint16_t sentIL =0; //Valor a ser enviado de corrente
uint16_t sentvC =0; //Valor a ser enviado de tensão
/* USER CODE END PV */
```

Os valores limites são estimados com base no conhecimento do modelo e são utilizados na conversão do range de atuação. A conversão pode ser feito por:

```
float percentage=(iL-iL_lim[0])/(iL_lim[1]-iL_lim[0]);
sentIL=percentage*(4095-0)+0;
percentage=(vC-vC_lim[0])/(vC_lim[1]-vC_lim[0]);
sentvC=percentage*(4095-0)+0;
```

```
// Função para enviar os sinais analógicos
```

```
HAL_DAC_SetValue(&hdac, DAC1_CHANNEL_2, DAC_ALIGN_12B_R, sentIL);//iL
HAL_DAC_SetValue(&hdac, DAC1_CHANNEL_1, DAC_ALIGN_12B_R, sentvC);//vC
```

3.6 Configuração das entrada analógica - ADC

Para configurar as duas entradas analógicas e obter os valores de leitura de v_C (tensão do capacitor) e i_L (corrente do indutor), é recomendado utilizar o método DMA (Direct Memory Access). O DMA permite realizar a leitura analógica de forma não bloqueante, ou seja, enquanto o restante do programa é executado, o DMA continua buscando os valores em segundo plano.

Quando a conversão é concluída, os valores do ADC (Conversor Analógico-Digital) são salvos em um buffer pelo DMA. Dessa forma, podemos obter os valores lidos quando necessário, sem interromper a execução do programa principal.

O uso do DMA oferece vantagens em termos de desempenho e eficiência, permitindo que o programa continue executando outras tarefas enquanto as leituras analógicas são realizadas em segundo plano. Na Figura 13 é apresentada a sequência para a ativação dos periféricos. O exemplo apresenta a configuração de uma porta extra por precaução, porém somente duas são necessárias

Para a configuração seguimos o exemplo da Figura 14.

Na Figura 14 Como faremos a leitura analógicas continuamente ao longo do loop de controle selecionamos como *Enabled* a entrada *Continuos Conversion Mode* e como *Disabled* a entrada *Discontinuos Conversion Mode*. Se entrada *Scan mode* estiver ativado, a conversão não para no último canal do grupo selecionado, mas continua novamente a partir do primeiro canal do grupo selecionado. Para a utilização do DMA é necessário a habilitação do *Scan Mode* permite o armazenamento dos valores convertidos para posterior utilização pelo programa. Este modo será selecionado automaticamente se você estiver fazendo conversões para mais de 1 canal. Como *Resolution* usaremos 12 Bits, uma vez que foi configurado a mesma taxa pra as saídas analógicas anteriormente. Definimos o numero de conversões como 3 e o rank de prioridade conforme indicado. Por fim ativamos o DMA conforme a Figura 15.

Figura 13: Ativação das entradas analógicas

Parameter Settings Set User Constants NVIC Sett	ings 🛛 📀 DMA Settings 🔄 📀 GPIO Settings
Configure the below parameters :	
Q Search (Ctrl+F) ③ ④	0
V ADCs_Common_Settings	
Mode	Independent mode
V ADC_Settings	
Clock Prescaler	PCLK2 divided by 8
Resolution	12 bits (15 ADC Clock cycles)
Data Alignment	Right alignment
Scan Conversion Mode	Enabled
Continuous Conversion Mode	Enabled
Discontinuous Conversion Mode	Disabled
DMA Continuous Requests	Enabled
End Of Conversion Selection	EOC flag at the end of single channel conversion
✓ ADC Regular ConversionMode	
Number Of Conversion	3
External Trigger Conversion Source	Regular Conversion launched by software
External Trigger Conversion Edge	None
> Rank	1
> Rank	2
> Rank	3
✓ ADC Injected ConversionMode	
Number Of Conversions	0
✓ WatchDog	
Enable Analog WatchDog Mode	
Parameter Settings Subser Constants NVIC Set	tings 🛛 🛇 DMA Settings 🔄 🔗 GPIO Settings
NVIC Interrupt Table	Enabled Preemption Priority Sub Priority
ADC1, ADC2 and ADC3 global interrupts	0 0
DMA2 stream0 global interrupt	0 0

Figura 14: Configuração das entradas analógicas

Parameter Setting:	s 🛛 🤗 User Constants	⊘ NVIC Settings	OMA Settings	Setting GPIO Setting	gs	
DMA Requ	est	Stream	Dire	ction		Priority
ADC1	DMA2 Str	ream 0	ADC1		Low	
DMA Request Settings -				Peripheral		Memory
Mode Circular	\sim		Increment Addres	s 🗌		
Use Fifo 🗌 🔤	Threshold	~	Data Width	Half Word	~	Half Word 🗸 🗸
			Burst Size		~	~
Parameter Settings	Subser Constants	Solution Settings	OMA Settings	GPIO Settings		
earch Signals						
earch (Ctrl+F)					SI SI	how only Modified Pi
in Name 🔶 👘 Signal	on Pin GPIO output le	evel GPIO mode	GPIO Pull-up/P M	aximum outp	User Lab	el Modified
1 ADC1_IN	1 n/a	Analog mode	No pull-up and n/a	3		
3 ADC1_IN	3 n/a	Analog mode	No pull-up and n/a	1		
1 ADC1_IN	9 n/a	Analog mode	No pull-up and n/a	1		

Figura 15: Configuração e ativação do DMA.

Ativa-se o DMA no modo *Circular*, isso garante que o DMA continue atuando durante todo o loop de controle. de modo geral, depois que a conversão é completa, o contador irá reiniciar e o DMA irá iniciar automaticamente. A entrada *Data Width* é selecionada como *Half WORD*.

No código criaremos um buffer que irá armazenar as variáveis lidas e definimos uma variável referente ao numero de canais ADC *NUMBER_ADC_CHANNEL* e uma variável que definira o tamanho do buffer *NUMBER_ADC_CHANNEL_AVERAGE_PER_CHANNEL*:

```
/* USER CODE BEGIN PD */
#define NUMBER_ADC_CHANNEL 3 //Número de canais
#define NUMBER_ADC_CHANNEL_AVERAGE_PER_CHANNEL 8 //Tamanho do Buffer
/* USER CODE END PD */
/* USER CODE BEGIN PV */
// Cria o Buffer
uint16_t ADC_DMA_BUFF[NUMBER_ADC_CHANNEL *
NUMBER_ADC_CHANNEL_AVERAGE_PER_CHANNEL]={0};
```

Em seguida, criamos uma função que, toda vez que solicitarmos os valores de tensão e corrente, fornecerá os últimos 8 valores de leitura de tensão e corrente entre a ocorrência da interrupção.

```
uint16_t ADC_DMA_AVERAGE(int channel)
{
/* Private user code ------
                               _____
/* USER CODE BEGIN 0 */
       uint32_t adc_sum;
       int i;
       adc_sum=0;
       if(channel<NUMBER_ADC_CHANNEL)
       {
               for(i=0;i<NUMBER_ADC_CHANNEL_AVERAGE_PER_CHANNEL;i++)</pre>
                       adc_sum+=ADC_DMA_BUFF[channel+i*NUMBER_ADC_CHANNEL];
       }
       else
               return 1;
       return adc_sum/NUMBER_ADC_CHANNEL_AVERAGE_PER_CHANNEL;
}
/* USER CODE END 0 */
  Iniciamos as entradas ADC e e o DMA:
```

HAL_ADC_Start(&hadc1); HAL_ADC_Start_DMA(&hadc1, (uint32_t*)ADC_DMA_BUFF, NUMBER_ADC_CHANNEL*NUMBER_ADC_CHANNEL_AVERAGE_PER_CHANNEL); Para solicitar os valores de leitura do buffer basta "chamar" a função e converter os valores:

```
adciL=ADC_DMA_AVERAGE(0); //Solicita do primeiro buffer a corrente
adcvC=ADC_DMA_AVERAGE(1); //Solicita do segundo buffer a Tensão
```

```
// Converte os valores para a faixa de valores
adciL_aux=((float)(adciL)/4095)*(iL_lim[1]-iL_lim[0])+iL_lim[0];
adcvC_aux=((float)(adcvC)/4095)*(vC_lim[1]-vC_lim[0])+vC_lim[0];
```

3.7 Controlador PID

Para implementar um controlador em um microcontrolador, é necessário adaptá-lo para operar no domínio discreto, levando em consideração o período de tempo discreto. Assim, a equação do controlador PID do domínio Z deve ser transformado em termos de equações de diferenças.

$$C_{PID}(z) = \frac{U(z)}{E(z)} = \frac{b_0 + b_1 z^{-1} + b_2 z^{-2}}{a_0 + a_1 z^{-1} + a_2 z^{-2}}$$
(4)

onde U(z) é a saída de controle e E(z) erro. Os coeficientes do controlador são escritos em termos da taxa de amostragem T_s :

$$b_{0} = K_{p}(1 + NT_{s}) + K_{i}T_{s}(1 + NT_{s}) + K_{d}N$$

$$b_{1} = -(K_{p}(2 + NT_{s}) + K_{i}T_{s} + 2K_{d}N)$$

$$b_{2} = K_{p} + K_{d}N$$

$$a_{0} = (1 + NT_{s})$$

$$a_{1} = -(2 + NT_{s})$$

$$a_{2} = 1$$

A partir de (4):

$$a_0 U(z) + a_1 z^{-1} U(z) + a_2 z^{-2} U(z) = b_0 E(z) + b_1 z^{-1} E(z) + b_2 z^{-2} E(z)$$
(5)

$$a_0 U(z) = -a_1 z^{-1} U(z) - a_2 z^{-2} U(z) + b_0 E(z) + b_1 z^{-1} E(z) + b_2 z^{-2} E(z)$$
(6)

.

Logo a equação de diferenças do controlador a ser embarcada é dada por:

$$u[k] = -\frac{a_1}{a_0}u[k-1] - \frac{a_2}{a_0}u[k-2] + \frac{b_0}{a_0}e[k] + \frac{b_1}{a_0}e[k-1] + \frac{b_2}{a_0}e[k-2]$$
(7)

No código primeiramente definimos as variáveis:

```
/* USER CODE BEGIN PV */
//Variáveis do controlador de corrente
float N=20;
float kc_i=0.0144; //Kc
```

```
float ti_i=4;
                    //Ki
float td_i=0;
                    //Kd
//Variáveis do controlador de tensão
float kc_v=0.0188;//Kc
float ti_v=32;
                 //Ki
float td_v=0;
                      //Kd
/* USER CODE END PV */
int main(void)
{
  /* USER CODE BEGIN 1 */
        a0=(1+N*Ts);
        a1 = -(2 + N * Ts);
        a2=1;
//Coeficientes do controlador de corrente
    b0_i=kc_i*(1+N*Ts)+ti_i*Ts*(1+N*Ts)+td_i*N;
    b1_i=-(kc_i*(2+N*Ts)+ti_i*Ts+2*td_i*N);
    b2_i=kc_i+td_i*N;
//Coeficientes do controlador de tensão
    b0_v=kc_v*(1+N*Ts)+ti_v*Ts*(1+N*Ts)+td_v*N;
    b1_v=-(kc_v*(2+N*Ts)+ti_v*Ts+2*td_v*N);
    b2_v=kc_v+td_v*N;
/* USER CODE END 1 */
```

Vale ressaltar que para o controle em cascata definem-se essas variáveis tanto para o controlador de corrente quanto para o de tensão. Uma dica é definir os coeficientes antes de iniciar o timer de interrupção, dessa forma diminui-se o tempo crítico de processamento, consequentemente relaxando a taxa de amostragem.

Por fim a equação de diferenças pode ser embarcada no loop como:

```
/* USER CODE BEGIN PV */
//Variáveis do loop de controle de corrente
float UPID_i=0;
float erro_i[3]={0,0,0};
float u_i[2]={0,0};
// Variáveis do loop de controle de Tensão
float u_i[2]={0,0};
float u_v[2]={0,0};
float UPID_v=0;
```

```
float ref; // Referência de tensão
/* USER CODE END PV */
```

No loop de controle:

/* USER CODE BEGIN TIM1_UP_TIM10_IRQn 0 */

//_____PID Tensão_____//

```
//Atualização das variáveis passadas
erro_v[2]=erro_v[1];
erro_v[1]=erro_v[0];
erro_v[0]=ref-adcvC_aux; //Cálcula o erro
u_v[1]=u_v[0];
u_v[0]=UPID_v;
```

// Equação de diferença

$$\label{eq:upide} \begin{split} & \text{UPID}_{v=-}(a1/a0)*u_v[0]-(a2/a0)*u_v[1]+(b0_v/a0)*\text{erro}_v[0]+(b1_v/a0)*\text{erro}_v[1]+(b2_v/a0)*\text{erro}_v[2]; \end{split}$$

//_____PID Corrente_____//

```
//Atualização das variáveis passadas
erro_i[2]=erro_i[1];
erro_i[1]=erro_i[0];
erro_i[0]=UPID_v-adciL_aux; //Erro em cascata
u_i[1]=u_i[0];
u_i[0]=UPID_i;
```

```
// Equação de diferença
```

UPID_i=-(a1/a0)*u_i[0]-(a2/a0)*u_i[1]+(b0_i/a0)*erro_i[0]+(b1_i/a0)*erro_i[1]+(b2_i/a0)*erro_i[2];

```
//_____Saída PWM_____//
// Definição do Duty-cycle
Duty=UPID_i*100; // Transforma pro range definido
```

3.8 Modelo matemático

O diagrama do circuito elétrico do conversor *boost* é apresentado na Figura 16. A configuração do modelo em linguagem C# deve seguir o diagrama de interrupção apresentado na Figura 5.

Figura 16: Diagrama elétrico do conversor CC-CC Boost.

onde L é a indutância, C a capacitância, V_s a tensão de entrada, R a resistência da carga, d a entrada PWM (pulse width modulation) e r_L , r_D e r_Q as perdas resistivas no indutor, diodo e interruptor de potência respectivamente. A dinâmica do modelo do conversor *boost* é derivada dos circuitos correspondentes dos estados de interrupção alto (d = 1) e baixo (d = 0) [2].As variáveis de espaço de estados do conversor boost podem ser descritas como [2]:

$$\begin{aligned} x &= [i_L \ v_C]^T, \\ u &= V_s \ \mathbf{e} \\ y &= x. \end{aligned}$$

O modelo de espaço do conversor com nível lógico do PWM alto é dado por:

$$\dot{x} = A_1 x + B_1 u \tag{8}$$

onde:

$$A_1 = \begin{bmatrix} -\frac{r_L + r_Q}{L} & 0\\ 0 & -\frac{1}{RC} \end{bmatrix} \quad e \ B_1 = \begin{bmatrix} 1/L\\ 0 \end{bmatrix}$$
(9)

e para o nível lógico do PWM baixo é dado por:

$$A_1 = \begin{bmatrix} -\frac{r_L + r_Q}{L} & -\frac{1}{L} \\ \frac{1}{C} & -\frac{1}{RC} \end{bmatrix} \quad e \ B_1 = \begin{bmatrix} 1/L \\ 0 \end{bmatrix}$$
(10)

Para o código em C# iniciamos definindo as variáveis e as matrizes:

/* USER CODE BEGIN PV */

```
//Definição das variáveis do Modelo
    float Vs=100; //Entrada de tensão
   float rL=0.1; //Resistência Indutor
   float rD=0.1; //Resistência Diodo
   float rQ=0.1; //Resistência Power Switch
   float R=10; //Load resistance
   float C=0.0004; //Capacit.
   float L=0.01; //Induct.
    float Ts=0.00005; //Taxa de amostragem
//Matrizes do estado 1
    float A1[2][2]={{0, 0},{0,0}};
    float B1[2]={0,0};
//Matrizes do estado 2
    float A2[2][2]={{0, 0},{0,0}};
    float B2[2] = \{0, 0\};
/* USER CODE END PV */
int main(void)
{
/* USER CODE BEGIN 1 */
// Modelo estado 1
   A1[0][0] = -(rL+rQ)/L;
   A1[1][1]=-1/(R*C);
   B1[0]=1/L;
// Modelo estado 2
   A2[0][0] = -(rL+rD)/L;
   A2[0][1]=-1/L;
   A2[1][1]=-1/(R*C);
   A2[1][0]=1/C;
   B2[0]=1/L;
```

No módulo contendo o modelo matemático os estados são configurados através do código:

```
//______Modelo do Conversor Boost_____//
// Faz a Leitura do Estado
if(HAL_GPIO_ReadPin(GPIOC, GPIO_PIN_6)) //Se estado PWM alto
{
    x_dot[0]=A1[0][0]*x[0]+A1[0][1]*x[1]+B1[0]*Vs; //Calculo iL
    x_dot[1]=A1[1][0]*x[0]+A1[1][1]*x[1]+B1[1]*Vs; //Calculo vC
}
else { //Se estado PWM baixo
    x_dot[0]=A2[0][0]*x[0]+A2[0][1]*x[1]+B2[0]*Vs; //Calculo iL
    x_dot[1]=A2[1][0]*x[0]+A2[1][1]*x[1]+B2[1]*Vs; //Calculo vC
}
```

```
x[0]=x[0]+Ts*x_dot[0];
x[1]=x[1]+Ts*x_dot[1];
if (x[0]<0){
    x[0]=0;
}
iL=x[0]; // Corrente
vC=x[1]; // Tensão
//______Descreve as saídas analógicas_____//
//Converte para 12 Bits
float percentage=(iL-iL_lim[0])/(iL_lim[1]-iL_lim[0]);
sentIL=percentage*(4095-0)+0;
percentage=(vC-vC_lim[0])/(vC_lim[1]-vC_lim[0]);
sentvC=percentage*(4095-0)+0;
//Aciona as saídas
```

```
HAL_DAC_SetValue(&hdac, DAC1_CHANNEL_2, DAC_ALIGN_12B_R, sentIL); //iL HAL_DAC_SetValue(&hdac, DAC1_CHANNEL_1, DAC_ALIGN_12B_R, sentvC); //vC
```

3.9 Compilando o código e observando as variáveis

Para carregar o código desenvolvido para o microcontrolador basta seguir os passos descritos na Figura 17.

Para observarmos as variáveis em tempo real podemos ativas o *Live expressions*. Depois de compilar o código, uma nova janela será aberta. Seguindo os passos da Figura 18 abrimos a aba do *Live expressions*.

Dentro da aba do *live expressions* adicionamos as variáveis que queremos observar, conforme a Figura 19.

Por fim, podemos rodar o código e observar o funcionamento do HIL projetado em tempo real, conforme a Figura 20.

	((1)			
= 21 🌢 🛙	🕯 • 🚳 • 💽 • 🞯 •	🎄 • 🗿 • 💁 • 🙆 🤞	/ • 🍠 🕼 🔲 👖 😫 • 🖓 • 🏷 43 🤃	• • => • 🛃 🚺	
C main.c	S startup_stm32f407vgtx	s 💽 stm32f4xx_it.c	ie main.c ×		
BEGIN HEdder */	/		***		
: main.c : Main.n	c program body				
on IDE E	dit Configuration				
t (c) 2023 Edit ts reserve	launch configuration p	operties			TO.
tware is 1					
Nam	ne: Guia_HIL Debug				
END Heade	Main 🐝 Debugger 🕨 Si	artup 🛯 🍄 Source 🔲 Comm	ion		
in.h" Gu	ject: jia HII				Browse
o_host.h" C/C	C++ Application:				bronsen
BEGIN Inc De	ebug/Guia_HIL.elf			Search Project	Browse
END Inclu	uild (if required) before laur	ching			
BEGIN PTC	Build Configuration: Select	Automatically			~
END PTD * C	Enable auto build		O Disable auto build		
BEGIN PD	Use workspace settings		Configure workspace Settings		
END PD */	Confirm Persp	ective Switch	×		
BEGIN PM	This kind	of launch is configured to ope	en the Debug perspective when it suspends.		
	This Debu	g perspective supports application of the debug stack variables and	ation debugging by providing views for		
sks 📮 Ca	Switch to	this nersnertive?	a breakpoints.		æ
Jia_HIL] O Guia_H.	Sinterito	and perspectively	(2)		-w1,
Guia HI	Remember my	decision	()		
mp -h -s bss (Switch No		
3592 35 default.s				Revert	Apply
Guia_HIL.				(4)	
shed. 0 e)			ОК	Cancel

Figura 17: Com o microcontrolador conectado: Caregar o código

Figura 18: Ativando o Live expressions

3.10 Cube Monitor

Uma maneira mais eficiente de observar a resposta do HIL é através do CubeMonitor, o qual é uma ferramenta de analise gráfica distribuída gratuitamente pela própria STM32 https:// www.st.com/en/development-tools/stm32cubemonitor.html. Primeiramente abra o Cube-Monitor, na aba *Menu* em seguida *Import*, copie o texto do arquivo txt disponibilizado no link e

(x)= Variables 💁 Breakpoints 👾 Exp	pressions 1919 Registers 6	같 Live Expressions 🗙 📾 SFRs	× 344 00 -
Expression	Туре	Value	Address
(x)= iL	float	0	0x2000020c
(×)= sentIL	uint32_t	0	0x20000214
(×)= vC	float	0	0x20000210
(X)= sentvC	uint32_t	0	0x20000216
(x)= UPID_v	float	0	0x20000248
(x)= UPID_i	float	0	0x20000244
> 🥭 erro_i	float [3]	[3]	0x2000028c
> 🥭 erro_v	float [3]	[3]	0x20000280
(×)= Duty	float	0	0x20000250
(×)= ref	float	150	0x20000030
(×)= Vs	float	100	0x20000014
(x)= Ts	float	4.99999987e-005	0x20000000
🐈 Add new expression			
		(2)	

Figura 19: Inserindo variáveis

(1)	◎ ┓ ,			(2)	Q. 🗄 🖻 🛛 🐱 🚁
	💶 Boost_HIL.ioc 🕼 main.c 🗙 🛐 startup_stm32f407 🕼 stm32f4xx_it.c 💽 _aeabi_dadd() at 0 📟	(*)= Variables 💁 Breakpoints 🏘 Expression	s 1919 Registers of Live Expressions	× 🚥 SFRs	× 🔆 i 🗖 🗖
	152 (* 153 (**(i+0):<(KHAREE,MCC_CHANNEL_MYERAGE_PER_CHANNEL]; :+*) 154 8d<_sum=AdC_SMA_BUFF(Channel:<**NUMBER_ADC_CHANNEL]; 155 ? 156 ? 157 return 1; 158 ? 159 return 6d_sum/NUMBER_ADC_CHANNEL_AVERAGE_PER_CHANNEL; 159 ? 159 return 6d_sum/NUMBER_ADC_CHANNEL_AVERAGE_PER_CHANNEL; 150 ? 157 ? 158 ? 159 ? 159 ? 150 ? 150 ? 157 ? 158 ? 159 ? 150 ? 150 ? 155 ? 156 ? 157 ? 158 ? 159 ? 150 ? 150 ? 150 ? 150 ? </th <th>Expression 00 i i, 00 sentil. 00 v cC 00 sentoC 00 uPD p. 00 uPD p. 00 uPD p. 2 get erro.j 2 get erro.j 2 get erro.y 00 to buty 00 r ef 00 v 5 sentoC 00 sentoC</th> <th>Type float unit32_t float unit32_t float float float float float float float float float float float float float float</th> <th>Value 22.9650483 130613536 147.04921 67529 22.9557977 0.297709495 [3] [3] [3] [3] [3] [23.7705903 150 [50]</th> <th>Address 0x200022t4 0x2000214 0x2000216 0x2000248 0x2000248 0x2000244 0x2000280 0x2000280 0x20000280 0x20000280 0x20000280 0x2000030 0x2000030 0x2000031 0x2000031 0x2000031 0x2000031 0x2000031 0x2000031 0x2000031 0x2000031 0x2000031 0x2000031 0x2000031 0x2000031 0x2000031 0x2000031 0x200031 0x200031 0x200031 0x200031 0x200031 0x200031 0x200031 0x200031 0x20031</th>	Expression 00 i i, 00 sentil. 00 v cC 00 sentoC 00 uPD p. 00 uPD p. 00 uPD p. 2 get erro.j 2 get erro.j 2 get erro.y 00 to buty 00 r ef 00 v 5 sentoC 00 sentoC	Type float unit32_t float unit32_t float float float float float float float float float float float float float float	Value 22.9650483 130613536 147.04921 67529 22.9557977 0.297709495 [3] [3] [3] [3] [3] [23.7705903 150 [50]	Address 0x200022t4 0x2000214 0x2000216 0x2000248 0x2000248 0x2000244 0x2000280 0x2000280 0x20000280 0x20000280 0x20000280 0x2000030 0x2000030 0x2000031 0x2000031 0x2000031 0x2000031 0x2000031 0x2000031 0x2000031 0x2000031 0x2000031 0x2000031 0x2000031 0x2000031 0x2000031 0x2000031 0x200031 0x200031 0x200031 0x200031 0x200031 0x200031 0x200031 0x200031 0x20031
	169 '/ USER code Becku 1 */ 170 // Bodela sstade 1 171 172 172 Alg[0]=-(r+rey)/L;	(X)= Ts Add new expression	float	4.99999987e-005	0x20000000

Figura 20: Em (1) na sequência podemos rodar, pausar e parar o loop do HIL, em (2) tempos a atualização da variáveis do HIL em tempo real.

cole no clipbord. https://drive.google.com/file/d/1RzLj9tjEK93_EaM-8RMA1uKW7IaCej4u/ view?usp=drive_link

Primeiramente carregamos os arquivos .*elf* gerados a partir da compilação do código no CubeIDE. Na guia de design, seguindo a Figura 21, clique em MyVariables.

Figura 21: Designe carregado

Pela 22 em (2) colaca-se o local do arquivo criado apartir do CubeIde, em (3) seleciona-se o arquivo *elf* e por fim seleciona-se as variáveis desejadas, aqui selecionaremos a corrente i_L , a tensão v_C , a referência e o Duty-cycle gerado pela saída do controlador.

Com o STM32 conectado à entra USB iniciaremos a conexão com o STM32 através do STLink, conforme os passos da Figura 23

		© Proper	ties		0	•	
		Name	Boost				
Edit variables node		🛔 Folder	D:\Deniver\Boost	HIL-20230508T170	052Z-001\Boost_HIL		(2)
Delete	Cancel Done	File	Boost_HIL.elf			•	(3)
© Properties		🗌 Expan	d Variable List				
		🔳 Variabl	le List				
Group Name	My/variables	Select Nar	me ‡å	Start Address	Туре		
oroup Hamo	Wy variables	🗍 htir	m8.Instance	0x2000012c	Unsigned 32-bit		
Coress point	0	htir	m8.Lock	0x20000168	Signed 8-bit		
A ricess point	•	htir	m8.State	0x20000169	Signed 8-bit		
D Forestelle		🔽 IL		0x2000020c	Float		
E Executable	Boost (Boost_HiL.ell)	🗌 🗌 iL_	lim[0]	0x20000004	Float		
	$\overline{(1)}$	□ k		0x20000218	Signed 32-bit		
	(1)	ПК		0x2000027c	Float		(4)
		kc_	J.	0x20000040	Float		··/
		kc_	v	0x20000034	Float		
				0x2000002c	Float		
		□ N		0x2000003c	Float		
		- R		0x20000024	Float		
		D1 🗌		0x2000001c	Float		
		🔽 ref		0x20000030	Float		
				000000040	Floot		

Figura 22: Selecionando as variáveis

				Edit acq out node			
	yPanel			Delete			Cancel Done
	(1)	_		Properties			*
es	p2p connected (STM32F40xco/41x	xx		≭ Probe Config	Boost		· / (2)
				Name	myProbe_Out	t	
Edit acq out node	e > Edit probe node						(5)
Delete	Cancel		Im	Edit acq out no	ode		(5)
© Properties		2	(4)	Delete			Cancel Done
Name	Roost	٦		Properties			• 2 2
X Probe	ST-Link v2-1B 066AFF383032534E43183820 *			Con Probe Con	Boost		✓
Protocol	SWD *		(3)	Name	myProbe	Out	
+ Frequency	1.8 MHz - Default						
ST Link firmw	are version V2.J41						

Figura 23: Coneção entre o STM e o Cube Monitor. Probe irá variar conforme sua conexão.

Se a conexão for estabelecida um ícone verde indicando a conexão p2p irá aparecer sobre $myProbe_Out$. Em $MyProbe_In$ realize os mesmos passos para efetuar a conexão com STM32.

Por fim, iniciamos a comunicação seguindo os passos da Figura 24. Se a conexão for bem sucedida um ícone verde sob *MyVariables* indicará a iniciação do processamento.

Figura 24: Coneção entre o STM e o Cube Monitor.

Em Dashboard ao lado do botão Deploy será gerado um dashboard gráfico para a avaliação das variáveis do HIL. Clicando em Star Acquisition pode-se iniciar a impressão gráfica das variáveis selecionadas. Mais abaixo pode-se variar a referência do controlador selecionando-se a variável de referência e clicando em Write. A Figura 25 apresenta a resposta do HIL projetado

nesse guia, sendo i_L a corrente no indutor, Duty do duty-cycle do sinal PWM e v_C a corrente na carga.

Figura 25: Resultado final do HIL projetado

Nessa resposta podemos ver que através do controle em cascata projetado o controlador segue a referência de tensão variando-se o duty-cycle do sinal PWM, atestando tanto o funcionamento do HIL projetado.

3.11 Considerações Finais

Nesse guia foi apresentado o passo a passo para o desenvolvimento de uma simulação Hardwaere-in-the-loop HIL de um conversor boost com tensão controlada por um controlador Proporcional Integrativo em cascata. Por se tratar de um guia específico adaptações podem ser necessárias dependendo da aplicação.

Referências

- J. A. Ledin, "Hardware-in-the-loop simulation," *Embedded Systems Programming*, vol. 12, pp. 42–62, 1999.
- [2] D. S. Castro, R. F. Magossi, R. F. Bastos, V. A. Oliveira, and R. Q. Machado, "Low-cost hardware in the loop implementation of a boost converter," in 2019 18th European Control Conference (ECC). IEEE, 2019, pp. 423–428.
- S. Microelectronics, "Stm32f405xx/stm32f407xx datasheet," Tech. rep., ST Microelectronics, Tech. Rep., 2013. [Online]. Available: https://pdf1.alldatasheet.com/datasheet-pdf/ view/435286/STMICROELECTRONICS/STM32F407XX.html

Alguns sites que podem ajudar:

- Timers: https://community.st.com/t5/stm32-mcus/how-to-generate-a-one-second-interrug ta-p/49858
- 2. PWM: https://controllerstech.com/pwm-in-stm32/
- 3. DAC (Saída analógica): https://controllerstech.com/dac-in-stm32/
- 4. ADC (Entrada analógica): https://controllerstech.com/stm32-adc-single-channel/
- 5. Cube Monitor:https://wiki.st.com/stm32mcu/wiki/STM32CubeMonitor:How_to_log_data_in_a_.csv_file