
8. Modeling for nonlinear analysis. An aperçu

Our objective in this chapter is to introduce some main concepts of nonlinear
structural analysis. We will focus on the fundamental issues.

We choose the analysis of truss structures as a means to discuss in a simple
setting the basic concepts of nonlinear analysis. Let us recall that in Chapter
2 truss structures were used to exemplify the application of the fundamental
steps in structural mechanics leading to the matrix formulation. Later, several
more complex mathematical models and finite element formulations were
presented. Despite the complexity of these models, we could always find a
clear analogy between their formulations and those for truss structures.

Of course, it is out of the scope of this book to discuss nonlinear for-
mulations for the 2-D, 3-D, beam and shell mathematical models detailed
in Chapters 3 and 4 (for such formulations see Bathe, 1996). However, we
do endeavour to make the presentation for truss structures sufficiently com-
prehensive for the reader to gain insight into the important general aspects
of nonlinear analysis of complex problems. In our presentation we use the
notation of Bathe, 1996.

8.1 Sources of nonlinearity

We can classify many nonlinearities encountered in structural analysis as
geometric, material and contact nonlinearities (see Bathe, 1996). Of course,
in a general nonlinear analysis, these nonlinearities may arise together. We
give below an introductory discussion of these nonlinearities.

Geometric nonlinearities

A most important assumption of linear analysis − introduced in Chapter
2 − is that the displacements are assumed to be infinitesimally small. This
assumption is adequate for most applications of structural engineering. How-
ever, there are situations in which it does not apply. Consider, for example,
the trusses described in Figure 8.1.

The truss of Figure 8.1a corresponds to the truss defined in Figure 2.16
with R1 = R2 = −R

√
2

2
and the cross–sectional areas A = A1 = A2 =
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Fig. 8.1. Selected truss structures (� = 2 m)

1.5 × 10−3 m. The displacement v under the load can be readily evaluated
considering linear analysis and is given by

v =
R�

2EA sin (45◦)2
= 0.000508 m

which is very small compared to the dimensions of the truss. Therefore, the
linear assumption − imposing equilibrium in the undeformed configuration
− is adequate. For the truss of Figure 8.1b the linear analysis leads to

v =
R�

2EA sin (5◦)2
= 0.033434 m

which is a somewhat large value when compared to the height H = � sin 5◦ =
0.17431 m and, hence, imposing the equilibrium in the undeformed configu-
ration might not be an appropriate assumption.

In order to solve the problem allowing for any magnitude of displacement
we need to guarantee that equilibrium is satisfied in the deformed configu-
ration which is not known a priori. We solve this problem in Example 8.1
below and valuable insight in the nonlinear formulation will be gained from
this solution.

Finally, we note that the truss of Figure 8.1c can display infinitesimally
small rigid motions and therefore can not be solved in linear analysis.

In nonlinear analysis, it is usual to consider that the load is increased
from zero to a given value. We can describe such load variation by a function

tR = R(t)

where t is the time variable. Since we pursue a static analysis the loads are
assumed to be applied slowly, so that inertia effects are negligible. Therefore,
the time variable is merely used to define how the load varies during the
analysis. The nonlinear solution will then give the deformed configuration for
every time t in the range of interest. Of course, equilibrium will be enforced
in these deformed configurations.
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Example 8.11

Consider the arch described in Figure 8.2a which can be modeled as a one
bar truss structure. Obtain the deformed configurations associated with tR

Fig. 8.2. a) Arch structure; b) Model using symmetry

which is increased from zero. Assume that α is small such that the resulting
strain is also small and, therefore, Hooke’s law applies.

Solution

The kinematics of the structure is summarized in Figure 8.3a from which we
can write

Fig. 8.3. a) Kinematics of the truss; b) Normal force for a deformed configuration

0� = �, Δt� = t� − 0�

t� cos tθ = 0� cos α

t� sin tθ = 0� sin α − tv

which yields
1 This example is also discussed in (Bathe, 1996, Example 6.3)
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Δt� =
√

(0�)2 − 2 0� tv sin α + (tv)2- 0� (8.1)

and

sin tθ =
0� sin α − tv

0� + Δt�
. (8.2)

Referring to Figure 8.3b, equilibrium gives
tR

2
= − tN sin tθ (8.3)

where tN is the axial force of the bar at time t. Since the strains are small
we can use Hooke’s law to obtain

tN = EA
Δt�
0�

. (8.4)

From equations (8.1), (8.2), (8.3) and (8.4), we obtain

tR

2EA
=

⎛⎝ 1√
1 − 2 tv

0�
sin α +

( tv
0�

)2
− 1

⎞⎠(
sin α −

tv
0�

)
. (8.5)

We note that equation (8.5) allows to obtain the deformed configurations in
which tR is in equilibrium with the bar forces in the deformed configurations.

In Figure 8.4a the load-displacement relation is given when α = 5◦. We
note that for small tR the response is almost linear (up to point C). For
the load level between points C and A the response is truly nonlinear. At
the configuration corresponding to point A, with a “tiny” load increase the
structure “snaps”and reaches an equilibrated2 configuration corresponding to
point B. The configurations corresponding to points A and B are schemati-
cally presented in Figure 8.4b and, although the load increase was “tiny”, the
structure could not reach an equilibrated configuration in the vicinity of the
configuration corresponding to point A. The configurations between those of
points A and B can only be reached by imposing displacements. The load
level Rcr corresponding to the limit point A is called the critical load.

�
Material nonlinearities

The discussion presented so far assumed that the material has a linear
elastic behavior. However, there are situations for which the use of a nonlin-
ear material behavior is essential for correct modeling. Nonlinear elastic and
elasto-plastic behaviors are common examples.
2 Since the structural motion corresponding to the “snap” occurs in a short time

period, in physical reality, the structure would oscillate around the configura-
tion given by point B, before this configuration is finally reached due to energy
dissipation
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Fig. 8.4. a) Load-displacement curve. Linear response shown by the dashed line;
b) Selected configurations around middle node

In the discussion below we address only one-dimensional states of stress
and strain which are those relevant to the truss formulation and which allow
us to introduce the main concepts.

We recall the linear elastic behavior in Figure 8.5a and introduce the non-
linear elastic behavior in Figure 8.5b. The essential ingredient of an elastic
behavior is that the deformations are immediate and reversible. The defor-
mation being immediate means that there is no time lag between the devel-
opment of a strain state given a stress state. The reversibility means that
the stress state depends only on the current strain state, i.e., not on any
history of stress and strain. For example, for point A shown on the diagrams
of Figure 8.5, loading and unloading may have occurred many times before
the stress and strain states associated with A have been reached.

Fig. 8.5. a) Linear elastic; b) Nonlinear elastic
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Let us consider an elasto-plastic behavior as an example in which inelastic
deformations take place. In Figure 8.6a typical test data from a uniaxial
tension laboratory experiment of a metallic material is presented. The arrows
indicate the loading and unloading paths. We note the strongly nonlinear
behavior and that upon unloading a residual strain εp− the plastic strain
− is present. In Figure 8.6b a model representation of the data of Figure
8.6a is shown. In this bilinear model the behavior is purely elastic until the
yield stress τy is reached at point 1. Above this stress level, the increments
in stress and strain are related by the modulus ET (hardening modulus) and
unloading, like from point 2, occurs according to the Young’s modulus E of
the material. Total unloading will lead to a residual plastic deformation εp.
Reloading from this point (point 3), the behavior is purely elastic up to point
4, indicating that the yield stress has increased (strain hardening), and then
loading continues like to point 5.

Fig. 8.6. a) Stress-strain response from a laboratory experiment; b) Model stress-
strain curve

If we assume ET = 0 there is no strain hardening and the material is
referred to as elastic perfectly plastic.

Of course, the modeling of plasticity is a very large field in solid mechanics
(see e.g. Kojic and Bathe, 2005) but the behavior mentioned above already
allows us to present a valuable analysis example.

Example 8.2

Evaluate the load displacement response of the truss of Figure 8.7a; increase
the load P from zero up to start of collapse of the structure and then totally
unload the structure. The material is elastic perfectly plastic as described in
Figure 8.7b.
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Fig. 8.7. a) Truss structure; b) Stress-strain curve adopted

Solution

We suppose that the displacements are small enough such that equilibrium
is appropriately enforced in the undeformed configuration, and the nonlinear
behavior is due only to the material behavior. We refer to such analyses as
materially–nonlinear–only (M.N.O.) analyses.

The initial response of the structure is elastic. Due to symmetry conditions
N1 = N3 and equilibrium yields

2N1 cos 60◦ + N2 = P ⇒ N1 + N2 = P.

Referring to Figure 8.8, compatibility yields

Δ�2 = 2Δ�1

and since

Δ�1 =
N1�1

E1A1
=

N1�

2EA
and Δ�2 =

N2�2
E2A2

=
N2�

EA

we obtain

N1 = N2 =
P

2
.

During the elastic phase, the stresses in the bars are given by

τ1 =
P

2A1
=

P

8A
and τ2 =

P

2A2
=

P

2A
.

Therefore, bar 2 attains its plastic limit first at the load PI which is given by

PI = 2τyA
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Fig. 8.8. a) Compatibility of displacements; b) Geometric relations

and the stress at bar 1 for this load is

τ1 =
PI

2A1
=

τy

4
.

For increments of load beyond PI , only bars 1 and 3 have stiffness and bar
2 will deform, without increase in stress, to maintain compatibility. From
equilibrium

2ΔN1 cos 60◦ = ΔP ⇒ ΔN1 = ΔP.

The collapse of the structure is attained when the stress in bars 1 and 3 is
equal to τy. Then the structure is no longer able to sustain load increments.
Therefore, the load PII at the collapse of the structure is given by

PII = PI + ΔP II

where

ΔP II

4A
+

τy

4
= τy

leading to

PII = 5τyA.

The unloading is initially elastic for all three bars. However, bar 2 might
attain its compression yield stress before total unloading. In fact, the total
unloading requires

ΔP = −5τyA

leading to

Δτ2 =
ΔN2

A
=

ΔP

2A
< −2τy
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Therefore, the elastic part of the unloading phase associated with ΔP e can
be evaluated by imposing

Δτ2 =
ΔN2

A
=

ΔP e

2A
= −2τy

leading to

ΔP e = −4τyA.

For the final unloading phase only bars 1 and 3 change stress.
Since bars 1 and 3 remain elastic throughout the loading and unloading

phases they characterize the truss deformation. We note that

δ = Δ�2 = 2Δ�1 =
N1�

2EA
.

Let point A be associated with the yielding of bar 2 in tension; point B with

Fig. 8.9. a) Response of bars 1 and 3; b) Response of bar 2; c) Response of the
structure

the imminence of collapse; point C with the yielding of bar 2 in compression



568 8. Modeling for nonlinear analysis. An aperçu

and point D with total unloading. Then, Figure 8.9 summarizes the response
of the structure.

We should note the path dependency of the response of the structure and
that at the final configuration, without any external load, bars 1 and 3 are
in tension and bar 2 is in compression, all with residual stresses.

�

Contact nonlinearities

Contact nonlinearities arise when during the deformation process a body
establishes contact with other bodies or with itself. In essence, contact con-
ditions correspond to a change of boundary conditions on the body coming
into contact. A typical situation for a simple truss is presented in Figure 8.10.

Fig. 8.10. a) Contact implying a change of boundary condition; b) Spring modeling
the contact

Other sources of nonlinearities

In addition to the common sources of nonlinearities mentioned above,
there are other instances. For example, during construction or manufacturing
processes, structural parts may be added or suppressed which affect the sub-
sequent structural response. Also, problems with fluid-structure interactions
and thermo-mechanical interactions lead in general to a nonlinear response,
see e.g. Bathe, 2005.

8.2 Incremental formulation for nonlinear analysis

A basic result of the matrix analysis of truss structures derived in Chapter
2 was that for a given R, the column matrix of external nodal loads, the
equilibrium conditions are given by
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F = R

where F is column matrix of the nodal forces corresponding to the element
stresses. We also call these nodal point forces corresponding to the element
stresses, internal nodal point forces. In linear analysis, introducing the com-
patibility conditions and constitutive behaviors, we obtain

F = KU (8.6)

which leads to the final matrix equation

KU = R.

In nonlinear analysis equation (8.6) is no longer valid since the nodal forces
F depend nonlinearly on the nodal displacements.

Let us assume that the external nodal loads do not depend on the nodal
displacements and are given by tR where t is the time variable representing
the load and the configuration at time t.

The equilibrium conditions at time t can be expressed as

tF = tR (8.7)

where tF are the nodal forces corresponding to the element stresses for the
configuration at time t, i.e.,

tFi = tFi

(
tU1,

t U2, · · · ,t UN

)
for i = 1, · · · , N (8.8)

which in matrix notation is given by

tF = tF
(
tU

)
(8.9)

where

tUT =
[

tU1
tU2 · · · tUN

]
gives the nodal displacements at time t. In a nonlinear problem, the tFi of
equation (8.8) depend nonlinearly on tUj , j = 1, · · · , N . Therefore, to solve
directly (8.7) is, in general not possible. This fact prompts us to introduce
the incremental procedure as an effective approach to solve (8.7).

The fundamental idea of the incremental procedure is to suppose that
the solution is known at time t and develop a methodology to obtain the
solution at time t + Δt, where Δt is a finite time increment referred to as
“the time step” corresponding to positive or negative “increments” in forces
and displacements. With this methodology available, we can obtain, starting
from time t = 0, the solution for any time t by applying repeatedly this
time-step solution scheme (see also Bathe, 1996).

We may write
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t+ΔtF = tF + F (8.10)

where F is the unknown internal nodal force increment such that

t+ΔtF = t+ΔtR. (8.11)

Substituting (8.10) into (8.11) yields

F = t+ΔtR− tF. (8.12)

Let dFi be an infinitesimally small internal nodal force increment for degree
of freedom i which is given by

dFi =
N∑

j=1

∂ tFi

∂ tUj
dUj (8.13)

where the dUj are infinitesimally small nodal displacement increments. Defin-
ing

tK =

⎡⎢⎢⎢⎢⎢⎢⎣

∂ tF1
∂ tU1

∂ tF1
∂ tU2

· · · ∂ tF1
∂ tUN

...
. . .

...
...

. . .
...

∂ tFN

∂ tU1
· · · · · · ∂ tFN

∂ tUN

⎤⎥⎥⎥⎥⎥⎥⎦ (8.14)

we can re-write (8.13) as

dF = tK dU (8.15)

where the dF and dU are column matrices which collect the increments dFi,
dUj defined above. The matrix tK defined by equation (8.14) is called the
tangent stiffness matrix at time t with the obvious interpretation given by
(8.15) that it relates the infinitesimally small increments of nodal displace-
ments to the infinitesimally small increments of internal nodal point forces.

Let us define, considering equation (8.12), a first estimate ΔU(1) for the
increment of nodal displacements from time t to time t + Δt by

tK ΔU(1)= t+ΔtR− tF (8.16)

where we naturally use (8.15), but for larger and complex load changes. We
note that the right hand side of equation (8.16) is the out-of-balance load
when we change the external load from tR to t+ΔtR. The column matrix
ΔU(1) is, in general, only an approximation of the exact nodal displacement
increment. A first estimate of the nodal displacements at time t + Δt is
therefore given by
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t+ΔtU(1) = tU + ΔU(1)

and

t+ΔtF(1) = t+ΔtF
(

t+ΔtU(1)
)

defines the internal nodal point forces corresponding to the nodal displace-
ments t+ΔtU(1). We can evaluate the out-of-balance load t+ΔtR− t+ΔtF(1)

associated with the intermediate configuration (between t and t + Δt) given
by t+ΔtU(1), and then obtain a second nodal displacement increment ΔU(2)

from

t+ΔtK(1) ΔU(2)= t+ΔtR− t+ΔtF(1).

Hence we obtain

t+ΔtU(2) = t+ΔtU(1)+ΔU(2)

and

t+ΔtF(2) = t+ΔtF
(

t+ΔtU(2)
)

.

Note that t+ΔtK(1) is the tangent stiffness matrix for the intermediate con-
figuration given by t+ΔtU(1), i.e.,

t+ΔtK
(1)
ij =

∂ t+ΔtFi

∂ t+ΔtUj

∣∣∣∣
t+ΔtU(1)

.

This iterative procedure is repeated until the out-of-balance load t+ΔtR−
t+ΔtF(k) is sufficiently small. We refer the reader to Bathe, 1996 for more
details and a discussion of the convergence of the iteration. When we have
found t+ΔtU(k) for which convergence has been achieved, we set

t+ΔtU = t+ΔtU(k)

and the next time step is considered.
The iteration procedure for each time step can be summarized by
t+ΔtK(i−1) ΔU(i) = t+ΔtR− t+ΔtF(i−1)

t+ΔtU(i) = t+ΔtU(i−1) + ΔU(i)

with the initial conditions

t+ΔtU(0) = tU, t+ΔtK(0) = tK, t+ΔtF(0) = tF.

The tangent stiffness matrix is a fundamental ingredient for the incre-
mental procedure and hence we need to address how to obtain tK for a truss
structure. As in linear analysis, we obtain tK by summing up the stiffness
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contributions of the truss elements of the assemblage. Therefore, if we have
the tangent stiffness matrix tk for a generic truss element, we can obtain tK
as in linear analysis (see Section 2.3).

Nonlinear stiffness matrix of a truss element

We follow in this derivation Example 6.16 of Bathe, 1996 and consider the
configurations at time 0 and t of a generic truss element as summarized in
Figure 8.11a. For simplicity of the derivations and interpretations, the truss

Fig. 8.11. a) Nodal displacement for a truss element; b) Nodal forces for a truss
element

element is supposed to be in the XY plane throughout the motion. In Figure
8.11a we show the nodal displacements for time t and in Figure 8.11b the
nodal forces where we also show the axial force tN and the angle tθ that the
bar axis makes with respect to the global X axis, both for time t.

The generic term of the tangent stiffness matrix of the truss element at
time t is given by

tkij =
∂ tfi

∂ tuj
.

The column matrix of nodal displacements and nodal forces at time t are
given by

tu =

⎡⎢⎢⎢⎢⎢⎢⎣
tu1

tu2

tu3

tu4

⎤⎥⎥⎥⎥⎥⎥⎦ , tf =

⎡⎢⎢⎢⎢⎢⎢⎣
tf1

tf2

tf3

tf4

⎤⎥⎥⎥⎥⎥⎥⎦ .
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Referring to Figure 8.11b, we can write

tf =

⎡⎢⎢⎢⎢⎢⎢⎣
− tN cos tθ

− tN sin tθ

tN cos tθ

tN sin tθ

⎤⎥⎥⎥⎥⎥⎥⎦ . (8.17)

Therefore, to evaluate tk we need to calculate the derivatives of tN and
tθ with respect to the nodal displacements tui. Referring to Figure 8.12,we

Fig. 8.12. Additional definitions related to the truss element kinematics

define the horizontal and vertical projections of the bar length at time t by

t�h = t� cos tθ = 0� cos 0θ + tu3 − tu1 (8.18)

t�v = t� sin tθ = 0� sin 0θ + tu4 − tu2 (8.19)

and defining

t� = 0� + Δt�

we can re-write (8.18) and (8.19) as

t�h =
(

0� + Δt�
)
cos tθ (8.20)

t�v =
(

0� + Δt�
)
sin tθ. (8.21)

A generic element of tk can be written as

tkij =
∂ tfi

∂ tuj
=

∂ tfi

∂ t�h

∂ t�h

∂ tuj
+

∂ tfi

∂ t�v

∂ t�v

∂ tuj
. (8.22)
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Note that we can easily obtain ∂ t�h

∂ tuj
and ∂ t�v

∂ tuj
from equations (8.18) and

(8.19). Therefore, let us focus on the terms ∂ tfi

∂ t�h
and ∂ tfi

∂ t�v
.

From equations (8.20) and (8.21), we obtain⎡⎣ ∂
∂(Δt�)

∂
∂ tθ

⎤⎦ =

⎡⎣ cos tθ sin tθ

− (
0� + Δt�

)
sin tθ

(
0� + Δt�

)
cos tθ

⎤⎦⎡⎣ ∂
∂ t�h

∂
∂ t�v

⎤⎦
which upon inversion leads to⎡⎣ ∂

∂ t�h

∂
∂ t�v

⎤⎦ =

⎡⎣ cos tθ − sin tθ
0�+ Δt�

sin tθ cos tθ
0�+ Δt�

⎤⎦⎡⎣ ∂
∂(Δt�)

∂
∂ tθ

⎤⎦ .

Therefore,⎡⎣ ∂ tfi

∂ t�h

∂ tfi

∂ t�v

⎤⎦ =

⎡⎣ cos tθ − sin tθ
0�+ Δt�

sin tθ cos tθ
0�+ Δt�

⎤⎦⎡⎣ ∂ tfi

∂(Δt�)

∂ tfi

∂ tθ

⎤⎦ (8.23)

together with equation (8.22) give us the element of tk.
Let us detail the evaluation of one term. For example, to obtain tk11 we

need

∂ tf1

∂ Δt�
= − ∂ tN

∂ Δt�
cos tθ,

∂ tf1

∂ tθ
= tN sin tθ

∂ t�h

∂ tu1
= −1,

∂ t�v

∂ tu1
= 0.

Using the above relations together with (8.23) and (8.22), we obtain

k11 =
∂ tN

∂ Δt�
cos2 tθ +

tN
0� + Δt�

sin2 tθ. (8.24)

This equation can be written in an alternative form using the derivative rule
of the quotient of functions

∂ tN

∂ Δt�
=

∂

∂ Δt�

(
tN

0� + Δt�

)(
0� + Δt�

)
+

tN
0� + Δt�

which substituted in (8.24) yields

k11 =
∂

∂ Δt�

(
tN

0� + Δt�

)(
0� + Δt�

)
cos2 tθ +

tN
0� + Δt�

.

The other terms of the stiffness matrix can be obtained analogously lead-
ing to
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tk =
∂

∂ Δt�

(
tN

0� + Δt�

)(
0� + Δt�

)
⎡⎢⎢⎢⎢⎢⎢⎣

cos2 tθ sin tθ cos tθ − cos2 tθ − sin tθ cos tθ

sin tθ cos tθ sin2 tθ − sin tθ cos tθ − sin2 tθ

− cos2 tθ − sin tθ cos tθ cos2 tθ sin tθ cos tθ

− sin tθ cos tθ − sin2 tθ sin tθ cos tθ sin2 tθ

⎤⎥⎥⎥⎥⎥⎥⎦
(8.25)

+
tN

0� + Δt�

⎡⎢⎢⎢⎢⎢⎢⎣
1 0 −1 0

0 1 0 −1

−1 0 1 0

0 −1 0 1

⎤⎥⎥⎥⎥⎥⎥⎦ = tkL + tkNL

where we partitioned tk into tkL, the linear part, and tkNL, the nonlinear
part of the tangent stiffness matrix (see also (8.26)).

Let us now assume that the displacements are large but the strains are
small, and that Hooke’s law applies. Then

tN =
EA
0�

Δt�.

Note that, for such case,

∂

∂ Δt�

(
tN

0� + Δt�

)(
0� + Δt�

)
=

EA
0� + Δt�

which substituted in equation (8.25) gives

tk =
EA

0� + Δt�

⎡⎢⎢⎢⎣
cos2 tθ sin tθ cos tθ − cos2 tθ − sin tθ cos tθ

sin tθ cos tθ sin2 tθ − sin tθ cos tθ − sin2 tθ

− cos2 tθ − sin tθ cos tθ cos2 tθ sin tθ cos tθ

− sin tθ cos tθ − sin2 tθ sin tθ cos tθ sin2 tθ

⎤⎥⎥⎥⎦

+
tN

0� + Δt�

⎡⎢⎢⎢⎣
1 0 −1 0

0 1 0 −1

−1 0 1 0

0 −1 0 1

⎤⎥⎥⎥⎦
with
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tkL =
EA

0� + Δt�

⎡⎢⎢⎢⎣
cos2 tθ sin tθ cos tθ − cos2 tθ − sin tθ cos tθ

sin tθ cos tθ sin2 tθ − sin tθ cos tθ − sin2 tθ

− cos2 tθ − sin tθ cos tθ cos2 tθ sin tθ cos tθ

− sin tθ cos tθ − sin2 tθ sin tθ cos tθ sin2 tθ

⎤⎥⎥⎥⎦

tkNL =
tN

0� + Δt�

⎡⎢⎢⎢⎣
1 0 −1 0

0 1 0 −1

−1 0 1 0

0 −1 0 1

⎤⎥⎥⎥⎦ . (8.26)

Comparing tkL with the stiffness matrix of the linear truss element given
in equation (2.33), we can see that tkL corresponds to the stiffness matrix
of a linear truss element which is geometrically identical to the nonlinear
truss element at time t. Therefore, the interpretation of tkL − the linear part
of the tangent stiffness matrix − is that it corresponds to a linear stiffness
matrix which incorporates the change of geometry of the element due to the
deformations.

The matrix tkNL − the nonlinear part of the tangent stiffness matrix −
gives the stiffness contribution due to the force tN in the element.

Since we assumed that the strains are small we can generally set 0� +
Δt� = 0� in (8.26).

Example 8.3

Interpret the coefficients of the truss nonlinear stiffness matrix (8.26) impos-
ing unit end displacements.

Solution

For convenience, suppose that the truss element is horizontal at time t, as
shown in Figure 8.13a. In Figure 8.13b, we show the unit end displacement

Fig. 8.13. a) Horizontal truss element at time t; b) Unit end displacement imposed

of magnitude 1 which is imposed at the local degree of freedom 3 while the
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remaining degrees of freedom are fixed. The axial force acting on the bar
after the imposition of the unit end-displacement is given by

EA
0�

(
Δt� + 1

)
=

EA
0�

Δt� +
EA
0�

= tN +
EA
0�

.

Since tN was already acting on the bar at time t, the force necessary to
introduce the unit end displacement is

tk33 =
EA
0�

.

Let us verify that this is the tk33 which is obtained from (8.26). Considering
that tθ = 0, (8.26) gives

tk33 = tkL33 + tkNL33 =
EA

0� + Δt�
+

tN
0� + Δt�

. (8.27)

Introducing the relation tN = EA
0� Δt� into (8.27), we obtain

tk33 =
EA

0� + Δt�
+

EA Δt�
0� (0� + Δt�)

=
EA

0� + Δt�

(
1 +

Δt�
0�

)
=

EA
0�

. (8.28)

Note that from equilibrium

tk31 = −EA
0�

, tk32 = 0 and tk34 = 0

which can be easily obtained from (8.26).
Now consider the unit end displacement imposed for the local degree

of freedom 4 as shown in Figures 8.14a and 8.14b. The forces required to
guarantee equilibrium after the introduction of the unit end displacement
lead to

tk14 = 0, tk24 = −
tN

0� + Δt�
, tk34 = 0 and tk44 =

tN
0� + Δt�

.

Note that tk14 = tk34 = 0 and that the stiffness coefficients above are those
of tkNL, see (8.26) .

�

Example 8.4

Consider that the truss structure of Figure 8.15a is subjected to the imposed
horizontal displacement that leads to the configuration at time t as shown
in Figure 8.15b. Evaluate the tangent stiffness associated with the vertical
displacement δ.
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Fig. 8.14. a) Horizontal truss element at time t; b) Equilibrium considering the
unit end transverse displacement

Fig. 8.15. a) Configuration at time 0; b) Configuration at time t

Solution

We can directly obtain the stiffness from the truss bar stiffness matrix derived
above,

tk = tk
(1)
44 + tk

(2)
22 = tkNL44 + tkNL22

=
tN

0� + Δt�
+

tN
0� + Δt�

=
2 tN

0� + Δt�
.

We note that tk is only due to tkNL since the bars in the configuration at
time t are still horizontal, and that the stiffness is proportional to the axial
force in the bars.

�

8.3 Determination of ultimate loads leading to
structural collapse

Considering a spatial load distribution acting on a structure, it is of great
interest to calculate the value of the load multiplier that causes the structure
to lose its capability of sustaining a further increase in load, i.e., which causes
the structural collapse.

Structural collapse is a very involved subject and our objective in this
section is to only discuss briefly some basic facts.



8.3 Determination of ultimate loads leading to structural collapse 579

In Section 8.1 we have already encountered situations in which the struc-
ture lost its ability to sustain a further increase in load, namely Examples
8.1 and 8.2.

We examine, through the following example, another situation of interest.

�

Example 8.5

Consider the structure shown in Figure 8.16a, where k is a rotational spring.
The bar is assumed to be rigid. Find the equilibrium configurations when tR
is increased.

Fig. 8.16. a) Initial configuration; b) Potential deformed configuration

Solution

Let us examine possible equilibrium configurations. The bar remaining ver-
tical gives a configuration which is always possible and, of course, in such a
case the axial force in the bar is

tN = − tR.

Consider the equilibrium configuration shown in Figure 8.16b. Moment equi-
librium requires

− tR� sin θ + Mk = 0

where Mk is the moment associated with the rotational spring which is given
by

Mk = kθ

leading to
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− tR� sin θ + kθ = 0

which is satisfied by the undeformed configuration (θ = 0) and by the con-
figuration which corresponds to

tR =
kθ

� sin θ
.

Since

θ

sin θ
> 1 for θ �= 0

an equilibrium configuration with θ �= 0 is only possible for

tR >
k

�
.

The equilibrium configurations which are possible are summarized in Figure
8.17a: Up to the load tR = k

�
there is only one equilibrium configuration

possible and it corresponds to the vertical position of the bar. At the load
tR = k

�
there is a branching of the equilibrium paths, which is known as a

bifurcation. For load levels greater than the bifurcation load, there are three
possible equilibrium configurations as schematically shown in Figure 8.17a
by B, B′ and B′′.

Fig. 8.17. a) Possible equilibrium configurations; b) Possible equilibrium configu-
rations and their stability: the solid line represents stable equilibrium configurations
while the dashed line unstable equilibrium configurations

Now consider that we increase the load “slowly” from zero to a load
greater than the bifurcation or critical load Rc = k

� . We may then ask which
equilibrium path will be followed and this question prompts the discussion be-
low. �
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Stability of an equilibrium configuration

The basic idea associated with the concept of an equilibrium configuration
being stable is that if we introduce a small perturbation, for example through
any small imposed force acting during a short period of time, the resulting
motion will remain close to the equilibrium configuration, just like in linear
analysis. Of course, there are many rigorous definitions of stability and formu-
lations to verify whether an equilibrium configuration of a system/structure
is stable or not (see e.g. Thompson and Hunt, 1973). Since our objective here
is only to discuss the subject in an introductory and conceptual manner, we
adopt the above concept and verify − in our small example above − the sta-
bility of the equilibrium state by identifying if the total potential energy (see
Section 5.3) is at a local minimum for the configuration. That is, we use the
result that for a conservative system an equilibrium configuration is stable if
the total potential energy is at a local minimum3.

Let us examine the stability of the equilibrium configurations for the
problem described in Figure 8.16. Since the bar is rigid, the strain energy is
given by

U(θ) =
1
2
kθ2

and, therefore, the total potential energy is given by

Π(θ, tR) =
1
2
kθ2 − tR� (1 − cos θ) .

Verifying the stability as defined above, we have that for 0 < tR < Rcr the
equilibrium configurations are stable. For tR > Rcr and θ = 0 the equilibrium
configurations are unstable and for θ �= 0 they are stable. The configuration
that defines the bifurcation is itself unstable.

In Figure 8.17b we redraw Figure 8.17a using the solid lines to represent
stable configurations and the dashed line to represent those which are un-
stable. Based on these conclusions, if we increase tR from zero, very slowly,
the “deformed” configuration corresponds to θ = 0 for tR < Rcr. For a given
tR > Rcr we could theoretically have a deformed configuration correspond-
ing to θ > 0, θ = 0 or θ < 0. However, any perturbation would lead to a
configuration corresponding to either θ > 0 or θ < 0 .

The bifurcation phenomenon is also referred to as buckling due to the fact
that, conceptually, it is the same kind of instability that causes a straight
column subjected to a compressive load to adopt an alternative curved, i.e.
buckled, equilibrium configuration, when the magnitude of the load reaches
a certain value, i.e., the critical or buckling load.

We summarize in Table 8.1 the basic stability behaviors of 1-D structural
systems. Problem 1 is equivalent to that of Example 8.1 since the spring is
3 We refer the reader to the Lagrange-Dirichlet theorem which establishes rigor-

ously a sufficient condition for the stability of an equilibrium configuration
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equivalent to the truss element with k = EA
�

. In the response of the systems,
we have identified in Table 8.1 the stability status of the equilibrium config-
urations using the same convention as adopted for Figure 8.17b. The point
for which the system changes its stability is called a singular or critical point
and the associated load is the critical load. These points are identified for all
problems described in Table 8.1. The critical point of Problem 1 is defined
as a limit point.

The limit point is a critical point for which there is no bifurcation of the
equilibrium paths and for which there is no equilibrium configuration in its
neighborhood for a load greater than the load associated with the limit point.

For Problems 2 to 4 the critical points are bifurcation points since we
can clearly identify the branching of the equilibrium paths. They receive spe-
cific names, as shown in Table 8.1, that are connected to the characteristics
of the post-critical (post-buckling) equilibrium paths. It can be shown that,
for example, for Problem 3, if the load is increased very slowly from zero to
the critical load and slightly beyond with a tiny horizontal load as a pertur-
bation, a dynamic response initiates. Of course, the objective of presenting
the problems in Table 8.1 is to give the reader insight into classical stability
behaviors which serve as reference behaviors for more complex models.

The response of the systems summarized in Table 8.1 are for the perfect
system, i.e., with no imperfection in geometry or load application. Since no
real structure or system to be modeled is totally free from imperfections, the
response of the imperfect system is of interest. This, in particular, because
the behavior may drastically change when we go from the perfect to the
imperfect system, as discussed below.

In Table 8.2 we show the response of the problems of Table 8.1 when
geometrical imperfections are considered. For Problem 1, although there is a
change in the magnitude of the critical load, the qualitative behavior remains
the same. For Problem 2, there is a change in the qualitative behavior of
the system, that is, the system no longer displays a bifurcation point. The
same happens for Problem 3. However, for this case, the response of the
imperfect system has a limit point, instead of the bifurcation, with a critical
load magnitude lower than that of the perfect system. Note that depending
on the magnitude of the imperfection, the critical load may be significantly
lower than that of the perfect system. For Problem 4, depending on the sense
of the imperfection the system behaves either as 2 or 3. We observe that when
the imperfection leads to a sharp decrease in the critical load, the structure
is said to be sensitive to imperfections.

An important conclusion reached by studying the behavior of the imper-
fect systems is that the response may qualitatively change. Most importantly,
however, is that the critical load may be significantly lower leading to collapse
much earlier than predicted for the perfect system.
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Table 8.1. Stability behavior of selected models

Problem Perfect system

1)
Limit point

2)
Stable symmetric point of bifurcation

3) Unstable symmetric point of bifurcation

4) Asymmetric point of bifurcation
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Table 8.2. Behavior of selected models subjected to geometrical imperfections.
The horizontal axes of displacements include the imperfections

Problem System with imperfection

1)

Limit point

2)
Stable symmetric point of bifurcation

3) Unstable symmetric point of bifurcation

4) Asymmetric point of bifurcation
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Now let us consider the Problem 3 of Table 8.1, but for a flexible bar, i.e.,
a truss bar. The problem is summarized in Figure 8.18 where we have placed
the bar horizontally.

Fig. 8.18. Problem 3 of Table 8.1 with flexible bar

Considering the equilibrium configuration for a horizontal configuration
of the bar, we can write

tR = − tN

Δt� =
tN 0�

EA

tu = −Δt� = −
tN 0�

EA
=

tR 0�

EA

tv = 0.

The tangent stiffness matrix is given by

tK =
EA

0� + Δt�

⎡⎣ 1 0

0 0

⎤⎦ +
tN

0� + Δt�

⎡⎣ 1 0

0 1

⎤⎦ +

⎡⎣ 0 0

0 k

⎤⎦
where we have presented above the tkL and the tkNL matrices of the truss
bar and the contribution of the spring. We can re-write the tangent stiffness
matrix as

tK =

⎡⎣ EA
0�

0

0 k − tR
0�+ Δt�

⎤⎦ .

The incremental displacements can be evaluated by solving

tKΔu = ΔR (8.29)

where ΔRT =
[

ΔR 0
]
. Therefore ΔuT =

[
Δu 0

]
is a solution of

(8.29) and if det tK �=0 it is the unique solution. Note that
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det tK =
EA
0�

(
k −

tR
0� + Δt�

)
where

tR = k
(
0� + Δt�

)
= k t�

leads to det tK = 0 and characterizes a singular or critical point.
The simple idea presented above can be generalized for structures with

many degrees of freedom. Let us assume that the load vector is defined by

tR = tλR0

where R0 is a reference load vector and tλ is the load multiplier. In addition,
suppose that we are using the incremental procedure to obtain the structural
response. For a given time t, we seek the incremental displacements using

tKΔU =ΔλR0 (8.30)

and as long as det tK �=0 we can solve for ΔU. When tK becomes singular,
i.e., det tK = 0, we have reached a singular or critical point. Conceptually,
we have an analogous situation to the 1-D problem. We may have either a
bifurcation of the equilibrium path or a limit point. In the limit point case
there is no branching of the equilibrium path and an equilibrium configuration
in the vicinity of the critical point is associated with a decrease in tλ. In this
case it is still possible to obtain the post-critical response of the structure by
means of an incremental solution. However, adequate procedures should be
used since the (immediate) post-critical path is associated with a decrease
in tλ. There are incremental strategies which have as unknowns not only
the incremental displacements Δu but also the increment Δλ of the load
multiplier parameter which may be negative, see Bathe, 1996.

In many cases of practical interest the critical point may be taken as the
ultimate configuration at which the structure can no longer support a further
increase of the external load. Therefore, in such cases the determination of the
critical point and associated loading characterizes the ultimate load carrying
capacity of the structure.

An incremental procedure always determines only one equilibrium path.
Therefore, when a critical point is reached, to identify the nature of the
critical point, the basic behaviors summarized in Tables 8.1 and 8.2 need be
considered. For perfect systems, the nature of the critical point may indicate
the kind of imperfection to be considered in the model in order to avoid an
overestimation of the actual physical collapse load of the structure.

In the above approach, the determination of a critical point requires that
the incremental solution be undertaken up to the critical point. Sometimes
it is convenient to have an estimate of the critical load without performing
the full incremental solution. We describe such approach below.
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Linearized buckling analysis

The basic assumption of a linearized buckling analysis is that the tangent
stiffness matrix varies linearly with respect to the load parameter λ as

τK = t−ΔtK+λ
(

tK− t−ΔtK
)

(8.31)

where τ is the time associated with

τR = t−ΔtR+λ
(

tR− t−ΔtR
)

. (8.32)

We are interested in determining the value of λ which makes τK singular,
i.e.,

det τK = 0 (8.33)

or equivalently

τKφ = 0 (8.34)

with φ �= 0. The values of λi that satisfy (8.33) or (8.34) can be found by
solving an eigenvalue problem as detailed in Bathe, 1996 which also gives φi

as the eigenvectors.
The eigenvalues λi define through equation (8.32) the buckling loads and

the associated eigenvectors define the buckling modes, since by equation
(8.34) we can see that a buckling mode corresponds to a valid displacement
solution associated with no increment in the load.

The quality of the predictions obtained with the linearized buckling anal-
ysis depends primarily on whether the approximation adopted for the tangent
stiffness matrix given by (8.31) is sufficiently accurate.

In general, we take t−ΔtK = 0K, i.e., the stiffness matrix prior to the ap-
plication of external loads. When the magnitude of the displacements which
take place prior to the critical point is small, the assumption implicitly con-
tained in (8.31) is adequate. Then, the linearized buckling analysis is quite
useful.

Finally, we note that the buckling modes may be used to generate imper-
fections. When properly scaled, buckling modes can be added to the initial
geometry of the structure generating an imperfect initial geometry, which
may correspond to a significantly lower critical load than that of the perfect
structure. An example of this procedure can be found in Bathe, 1996.

8.4 Modeling nonlinear problems

As mentioned at the beginning of this chapter, the finite element nonlinear
formulations of the mathematical models of Chapters 3 and 4 are out of the
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scope of this book and we refer the reader to Bathe, 1996 where such formula-
tions are given. We note, however, that the nonlinear formulation presented
for the truss element is a valuable aid for conceptually understanding the
nonlinear finite element matrices of more complex formulations. In fact, we
note that there are analogies between the nonlinear formulation of the truss
element and that of every finite element presented in Chapter 6. Namely:

• The incremental formulation is the same as that presented in Section 8.2.
• For each element the tangent stiffness matrix can be decomposed into a

tkL and a tkNL with analogous interpretations as for the truss element,
i.e., tkL accounts for the additional straining of the element and tkNL for
the effect that there are already internal forces/stresses in the element.

However, there are many complex additional considerations when consider-
ing nonlinear 2-D, 3-D, beam and shell analyses, and these are particularly
complex because the details of the formulations matter a great deal in order
to obtain reliable, accurate and effective solutions, see Bathe, 1996.
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