
3. The linear 3-D elasticity mathematical
model

In Chapter 2 we examined some fundamental conditions that should be sat-
isfied in the modeling of all deformable solids and structures. The study of
truss structures provided an excellent setting to explore how these conditions
can be used to formulate a mathematical model in structural mechanics, and
how to apply modern procedures to solve this mathematical model. These
solution procedures lead to the exact solution of the mathematical model
(see examples in Section 2.2 and 2.3).

In engineering analysis, more complex mathematical models need in gen-
eral to be considered and solved. Indeed, these mathematical models are so
complex that exact solutions can mostly not be obtained. The objective in this
chapter is to formulate the general mathematical model for three-dimensional
(3-D) solids, but still assuming, as for the truss structures, infinitesimally
small displacements and the linear constitutive relationship. The conditions
to be satisfied, namely equilibrium, compatibility and the stress-strain re-
lationship that we encountered in the analysis of truss structures are also
the basic conditions to be satisfied when formulating the three-dimensional
mathematical model of a solid. As for truss structures, these conditions need
be satisfied for every differential element of the mathematical model − and
now of the 3-D solid.

We shall use the discussion of the general three-dimensional mathemat-
ical model later in Chapter 4 to derive the various special models useful in
engineering analysis. The solution of these models is then presented in the
chapters thereafter.

Before embarking on the formulation of the mathematical model of 3-D
solids, we motivate its need by means of simple problems which are related
to the one-dimensional state of stress and strain of a truss bar, but which
already display some 3-D behavior.

3.1 The analysis of a steel sheet problem

In Section 2.2 we considered one-dimensional stress and strain conditions in a
truss bar. We now aim in this section to look deeper into the one-dimensional
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stress/strain conditions and to introduce in a physical manner new phenom-
ena that indeed pertain to two- and three-dimensional conditions. The more

formal physical and mathematical discussions of these phenomena are given
in the sections to follow.

3.1.1 One-dimensional conditions

Fig. 3.1. Steel sheet subjected to self-equilibrated constant surface tractions fS .
There are no body forces

Consider the steel sheet shown in Figure 3.1. We note that the external
forces are in static equilibrium, i.e., R = 0 and MO = 0. However, the steel
sheet is not properly supported and can undergo rigid body motions. In order
to suppress rigid body motions and not to interfere with the straining of the
material, we introduce the supports shown in Figure 3.2.

Fig. 3.2. Properly supported steel sheet

If we now cut the sheet by a plane orthogonal to its own plane and the x
axis as shown in Figure 3.3a, and introduce the stress τ , see Figure 3.3b, we
can, by equilibrium, evaluate the stress magnitude
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τ = fS

where τ is constant along the transverse direction y and, of course, inde-
pendent of the section position given by x (to show that τ is constant as
a function of y, we could also cut the sheet with a plane orthogonal to the
y–axis). Hence the state of stress is analogous to that in a truss bar. To find
the deformed configuration of the sheet we need to consider the relation be-
tween the stresses and strains — the constitutive equation. In Section 2.2.4
we introduced Hooke’s law for a one-dimensional state of stress and strain.
This 1-D constitutive relation is applicable for the steel sheet considering the
stress τ and the strain of the longitudinal fibers.

Fig. 3.3. a) Steel sheet cut by an orthogonal plane; b) Equilibrium of the extracted
part

An important physical phenomenon in 3-D elasticity is what is referred to
as “the Poisson effect”. This effect corresponds to a contraction of the fibers
that are orthogonal to the direction of the fibers being extended. The defor-
mation of the steel sheet considering Poisson’s effect is shown in Figure 3.4:
the relative shortenings of the fibers in the transverse directions are propor-
tional to the relative extension of the fibers in the longitudinal direction, that
is, Δh

h = Δb
b = −ν ΔL

L . The material property constant ν is called Poisson’s
ratio.

Since in this section we want to concentrate on the longitudinal deforma-
tion of the sheet (1-D conditions), we assume, for now, that ν = 0.

Considering Hooke’s law

τ = Eε

where

ε =
ΔL

L
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is the strain of the longitudinal fibers. Hence

τ = E
ΔL

L

and, we obtain

ΔL = τ
L

E
= fS L

E
.

The analogy to the truss model is evident since considering the cross-sectional
area A = hb and the axial force N = τA, we have

ΔL = τ
L

E
=

τAL

EA
= N

L

EA
.

As a side-note, this formula is in linear analysis valid for any ν.

Fig. 3.4. Schematic and magnified deformation of steel sheet

Fig. 3.5. Stretching of fiber PQ

Since the longitudinal stress is constant in the sheet the strain of any
horizontal fiber such as PQ, see Figure 3.5a, is given by
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‖P′Q′‖ − ‖PQ‖
‖PQ‖ =

ΔL

L
(3.1)

where P′Q′ is the fiber in the deformed configuration, see Figure 3.5b, and
‖PQ‖ indicates the Euclidean norm of the vector defined by PQ, i.e., the
vector length1. Figure 3.6 illustrates that both sides of (3.1) express the fiber
extension measured with respect to its original length induced by the same
constant stress field.

Fig. 3.6. Isolated part of the sheet corresponding to points P and Q

Fig. 3.7. Steel sheet problem considering a field of body forces. The field fB(x)
acts into the x direction, and fB(x) > 0 for all x

Next, let us increase the complexity of our loading by considering also a
field of body forces acting into the x direction as shown in Figure 3.7. In this

1 The Euclidian norm of a vector a can be evaluated by ‖a‖ =

√
3∑

i=1

(ai)
2 where

ai are the components of a in an orthonormal basis (see e.g. Bathe, 1996)
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figure, the function fB(x) gives the variation of the magnitude of fB along
the longitudinal direction. We assume that the surface tractions at x = 0 and
x = L considered together with the body forces are in equilibrium. Again,
the stress at a generic section, given by x, can be evaluated by considering a
cutting plane to obtain

τ (x) =
1
A

[∫ L

x

fB (z)A dz + fS
LA

]
(3.2)

where τ (x) is the stress shown in Figure 3.8. We note that τ (x) is no longer
constant with respect to x and since fB(x) > 0 for all x, τ (x) decreases with
increasing x.

Fig. 3.8. Steel sheet with body forces cut at a generic section

In Figure 3.9 we show the deformation of two fibers: PQ, positioned at
the same place as in Figure 3.5, and of another fiber originally of the same
length as PQ, described by MN. Since the state of stress varies along the
longitudinal direction we have that

Fig. 3.9. Stretching of two horizontal fibers for problem with body forces
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‖P′Q′‖ − ‖PQ‖
‖PQ‖ >

‖M′N′‖ − ‖MN‖
‖MN‖ .

There are two pieces of information in the above expression. The first one
is that the fiber strains are different since the stress level is different for the
regions where the fibers are located. The second piece of information is that
since the stress level is greater in the region of the fiber PQ, the fiber strain
of PQ is greater than that of MN. Therefore (3.1) only holds for the case
considered in Figure 3.2 because a special case is considered: a constant stress
leading to an induced constant longitudinal strain over the domain. On the
other hand, in the problem of Figure 3.7, the stress and the strain of the
fibers vary along the length of the sheet.

Now, if we consider an intermediate point on fiber PQ, say Q1, as shown
in Figure 3.10, by the above argument, we should have

‖P′Q′
1‖ − ‖PQ1‖
‖PQ1‖

>
‖P′Q′‖ − ‖PQ‖

‖PQ‖ .

Fig. 3.10. Stretching of fiber PQ considering an intermediate point Q1

However, we want to arrive at a local measure which corresponds to the
deformation behavior at a point and hence must be independent of the fiber
length considered. We, therefore, define the normal strain at point P in the
horizontal direction by

ε = lim
Q→P

‖P′Q′‖ − ‖PQ‖
‖PQ‖ (3.3)

where point Q is always taken on a horizontal line through point P. The
above quantity gives a measure of the straining of the horizontal fibers of
infinitesimal length at point P. Hence, using ‖PQ‖ = ds and ‖P′Q′‖ = ds′,
equation (3.3) can be equivalently written as

ε =
ds′ − ds

ds
.
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Note that as we use a fiber of infinitesimal length to evaluate the normal
strain, the direction is given by the direction of the infinitesimal fiber. The
terminology “normal” in “normal strain” is due to the fact that the normal
stress, normal to a cutting plane, induces this strain2.

Considering (3.3) it is clear that the change in length of the fiber PQ
is only due to the displacements of the material particles in the sheet. We
denote the displacement of a material particle of the sheet in the x direction
by u. In Figure 3.11, we show explicitly the displacements of points P and
Q, and hence we have

Fig. 3.11. Horizontal displacements of point P and Q

‖PQ‖ = xQ − xP

where xQ and xP are the x coordinate of the points Q and P respectively,
and

‖PQ‖ + uQ = uP + ‖P′Q′‖ .

The above relation is directly given by measuring the distance between points
P and Q′ in two alternative ways, see Figure 3.11. Then, we obtain

lim
Q→P

‖P′Q′‖ − ‖PQ‖
‖PQ‖ = lim

xQ→xP

uQ − uP

xQ − xP
=

du

dx

∣∣∣∣
xP

. (3.4)

The above limit corresponds to the definition of the derivative of u(x) at xP .
Therefore, (3.4) gives the normal strain of an infinitesimal horizontal fiber
with origin at a generic point x

2 It is also used to distinguish the normal strain from the shear strain which is
defined for a pair of fibers, see Section 3.2.2
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ε(x) =
du

dx
.

Now we can find the displacements of the material particles in the sheet for
the problem of Figure 3.10. Indeed

du

dx
= ε(x) =

τ(x)
E

which can be integrated using τ(x) in (3.2) and leads to u(x). While we
assumed tensile conditions in the above discussion, this formula is general
and also applicable in the case of compression.

3.1.2 Two Dimensional Conditions

Let us next consider the problem of Figure 3.2 with ν �= 0. Therefore, the
deformation of the sheet is as given in Figures 3.4 and 3.12. If we proceed as
before for the definition of a local strain measure for the fibers with origin in
P, but vertical, we would arrive at

ε = lim
R→P

‖P′R′‖ − ‖PR‖
‖PR‖ .

This strain value is negative since the vertical fibers contract (due to Pois-

Fig. 3.12. Deformation of fibers PQ and RT for sheet in Figure 3.4

son’s effect). If we take an inclined direction such as that given by PT we
would again arrive at a different value for the normal strain given by

ε = lim
T→P

‖P′T′‖ − ‖PT‖
‖PT‖ .

Therefore, the normal strain depends not only on the fiber location but also
on the fiber direction. Hence, we use the terminology “state of strain” at a
point and will characterize this state in detail in Section 3.2.

Actually, this more general strain concept is required to solve more com-
plex problems. Referring to Figure 3.2, we recall that the supports were only
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introduced for the purpose of suppressing rigid body motions. Consider the
boundary conditions given in Figure 3.13, i.e.,

u(0, y) = 0, v(0, 0) = 0.

Fig. 3.13. Steel sheet of Figure 3.2 with modified boundary conditions

The quantity v(0, 0) indicates the displacement in the direction of y of
the particle at point (0, 0). In general, the field of vertical displacements is
denoted by v(x, y). Since the deformation pattern for the problem of Figure
3.2 leads to u(0, y) = 0 the additional displacement restrictions introduced
in Figure 3.13 do not interfere with the previous deformation. Hence, the so-
lution to this problem can be determined solving for the stresses and strains
considering 1-D conditions, as before, and then if ν > 0 evaluating the con-
traction of the vertical fibers due to Poisson’s effect.

Therefore, for any material (either a steel or a rubber sheet) we have the
same stresses. Of course, the strain and the displacements depend on the
material of the sheet.

The problem of Figure 3.13 represents an analogue, in the context of a
2-D problem, to the statically determinate truss structures ( actually a single
bar) in the sense that only the equilibrium condition is used to determine the
stresses/internal forces in both cases.

Let us modify the boundary conditions of the problem of Figure 3.13 as
shown in Figure 3.14a, i.e., we now have the following boundary conditions

u(0, y) = 0, v(0, y) = 0. (3.5)

We see that the shortening of the edge of the sheet given by x = 0 is now
prevented and this is achieved by the reactions fS

x and fS
y at the clamped

edge. We could think of solving this problem by starting from the problem of
Figure 3.13 and looking for the field of forces fS

y which should be applied at
the edge given by x = 0 to obtain v(0, y) = 0. Figure 3.14b summarizes this
approach.

The state of stress and strain for the problem of Figure 3.14 is no longer
unidimensional and in addition to the longitudinal normal stresses, there are
normal stresses in the transverse direction and also shear stresses.
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Fig. 3.14. Steel sheet with restrictions to the vertical displacement at the edge
x = 0

In Figure 3.15, we introduce a notation to distinguish between these
stresses, i.e., τxx and τyy represent the normal stresses in the directions x
and y respectively and τxy the shear stresses. We also show qualitatively
their variations.

Fig. 3.15. Stresses schematically shown for internal faces defined by the cutting
planes

In Figure 3.16, we present the data of a problem as described above. In
Figures 3.17 and 3.18 we present the stress predictions for the lines shown
in Figure 3.16. The solution was obtained by the finite element method with
a mesh sufficiently refined to give a good quantitative description of the
solution. We can appreciate that at line 2, far from the edge given by x = 0,
the solution is very similar to that obtained for the problem of Figure 3.13 in
which the supports at the edge prevent only horizontal motions, whereas at
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line 1, we see that the transverse normal stresses τyy and the shear stresses
τxy are different from zero and that the normal stresses τxx are also not
constant.

Fig. 3.16. A steel sheet problem. Thickness t = 1 mm, E = 70× 104 N/mm2, ν =
0.25

Fig. 3.17. Stress distributions at line 1

We note that this problem is not statically determinate, i.e., we can not
find the stress field without imposing also the constitutive equations and
compatibility conditions.

When we considered statically indeterminate truss structures, we could
find many sets of internal forces that satisfy equilibrium, but only one of these
sets led to displacements at the nodes and at the supports that were compat-
ible. The steel sheet is an example of an analogous behavior in the continuum
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Fig. 3.18. Stress distributions at line 2; the τyy and τyx values are practically zero

case, since not all stress fields which satisfy equilibrium lead to fiber exten-
sions/contractions, more generally to strains, that correspond to displacement
fields with continuous displacements that satisfy the displacement boundary
conditions. Therefore, even to solve the very “simple” case described in Fig-
ure 3.16, we need a multi-dimensional description of the strains, stresses and
constitutive relations.

Motivated by the above discussion, we can now outline the contents of the
remaining sections of this chapter. In Section 3.2 we present the study of the
deformations considering first the motion of a three-dimensional body with
no restriction on the magnitude of the displacements. Then, we examine the
simplifications which are obtained when infinitesimally small displacements
are assumed. In Section 3.3 we study the stresses, also in the context of a
3-D body, starting from the concepts already introduced in Chapter 2. In
Section 3.4 the relations between the strains and stresses are discussed for a
linear isotropic elastic behavior, i.e., the constitutive equations are presented
under such conditions. In Section 3.5 the complete formulation of the 3-D
linear elasticity problem is presented. Finally, in Section 3.6 the 3-D elasticity
solution of the torsion of a prismatic bar is discussed.

3.2 Deformations

In Section 3.1 we showed by means of a very simple example − the analysis
of the steel sheet − that the strain of an infinitesimal fiber having origin at a
point depends not only on the position of the point but also on the direction
of the fiber.
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In the analysis of the steel sheet, we also exemplified that the stress in a
given direction induces a fiber strain in this direction and in the perpendicular
directions as well. Actually, besides these fiber strains, the change in angle
between fibers is also related to the stresses and, hence, should be included
in the characterization of the complete state of strain at a point.

In order to establish a precise terminology for strains, we call a normal
strain the strain of a fiber as introduced in Section 3.1 and a shear strain
the change of angle between pairs of orthogonal fibers. The shear strain is
sometimes referred to as angular distortion.

In this section we assume that the displacements of all material particles
are given (from the undeformed to the deformed configuration of a solid) and
calculate the normal and shear strains. Of course, the actual displacements
can only be calculated once the complete mathematical model has been es-
tablished.

3.2.1 Displacement field

Considering the motion of a deformable body, we described in Figure 2.1
generic configurations of the body, where 0V stood for the initial configu-
ration and tV for a generic configuration at time t. Since we are concerned
with statics and, primarily, with linear theories, we can focus on only two
configurations: the one prior to the application of external actions − the un-
deformed configuration − and the one after the introduction of the external
actions − the deformed configuration. In order to simplify the notation, we
redraw in Figure 3.19 the description presented in Figure 2.1. We choose to
label the undeformed configuration as V and the deformed configuration as
Vy. We also use x1, x2 and x3 as coordinate axes.

In Figure 3.19, P is a material particle3 of the solid in the undeformed
configuration and Py represents this particle in the deformed configuration.
The position of P is characterized by the vector4

3 We refer sometimes to a material particle as a point
4 A Euclidean vector v can be defined as the oriented straight line segment that

connects two points of the Euclidean three-dimensional space. Hence, the defi-
nition of a vector is independent of the choice of a coordinate system. However,
to perform calculations with vectors we need to represent them in a coordinate
system. For example, v =v1e1+v2e2+v3e3 where vi are the components of the
vector v in the coordinate system (O, e1, e2, e3). When ( e1, e2, e3) is an or-
thonormal basis the component vi is obtained by the scalar product vi = v · ei.

Sometimes we represent the vector v by v =

⎡⎢⎢⎣
v1

v2

v3

⎤⎥⎥⎦ . Actually, we are defining

the vector by a column matrix which collects the components of v in the coordi-
nate system (O, e1, e2, e3). Of course, in the coordinate system (O′, e′

1, e′
2, e′

3)
the components v′

i are different from vi and, hence, another column matrix would
correspond to the same vector v. Notwithstanding, we adopt this convention to
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Fig. 3.19. Deformed and undeformed configurations in a stationary Cartesian
coordinate system

x = x1e1 + x2e2 + x3e3 =
3∑

i=1

xiei

where the ei are the base vectors of the coordinate system. The position of
Py is given by

y =
3∑

i=1

yiei.

The displacement vector of the material particle is

u = y − x.

The deformation of a solid can be fully described by defining the function
which gives for every material particle in the undeformed configuration its
position in the deformed configuration

y = y(x)

which in components can be written as

keep the notation as simple and as operational as possible with the implicit un-
derstanding that the coordinate system used is implied by the context. Note that
the calculations are performed with matrix operations. For example, the scalar
product (or dot product) between two vectors v and w is obtained by vT w (see
Bathe, 1996)
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y1 = y1 (x1,x2, x3)

y2 = y2 (x1,x2, x3)

y3 = y3 (x1,x2, x3) .

The displacement field can be also written as

u1 = u1 (x1,x2, x3)

u2 = u2 (x1,x2, x3)

u3 = u3 (x1,x2, x3) .

In order to allow the reader to become familiar with this notation, let us
describe some very simple rigid plane motions in the example below.

Example 3.1
Consider a generic prismatic solid with transverse section parallel to the

coordinate plane x1x2 as shown in Figure 3.20a. Characterize the displace-
ment field for:

(i) a rigid body translation in the direction of x1 of intensity Δ
(ii) a rigid body rotation of intensity ϕ with respect to the x3 axis

Fig. 3.20. a) Transverse section of a prismatic solid and a generic point P; b)
Motion of a generic point in the section for an angle of rotation ϕ.

Solution

(i) It suffices to recognize that for every point of the solid denoting a material
particle
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u1 (x1,x2, x3) = Δ

u2 (x1,x2, x3) = 0

u3 (x1,x2, x3) = 0.

(ii) In Figure 3.20b, P stands for a generic point denoting a material particle
of coordinates x1 and x2 in the section of the solid and Py represents
its position in the deformed configuration, after the rigid body rotation.
Note that point P moves on a circle of radius r = ‖OP‖. Therefore the
displacements are given by

−u1 = r cos θ − r cos (θ + ϕ) , u2 = r sin (θ + ϕ) − r sin θ

which leads to

u1 = −r cos θ + r cos θ cos ϕ − r sin θ sin ϕ (3.6)

u2 = r sin θ cos ϕ + r sin ϕ cos θ − r sin θ. (3.7)

Considering that

x1 = r cos θ, x2 = r sin θ (3.8)

equations (3.6) and (3.7) can be re-written as

u1 (x1, x2, x3) = x1 cos ϕ − x2 sin ϕ − x1 (3.9)

u2 (x1, x2, x3) = x1 sin ϕ + x2 cos ϕ − x2 (3.10)

and, of course,

u3 (x1, x2, x3) = 0.

�

3.2.2 Normal and shear strains

As discussed in Section 3.1, the normal strain depends both on the fiber
location and its direction. In order to obtain a local measure at a point
(independent of the fiber length), a limit process was pursued which means,
in essence, to consider a fiber of infinitesimal length. This approach will be
used to study deformations in 3-D and from now on, unless stated otherwise,
a fiber is assumed to be of infinitesimal length.

Let us consider a deformation as described in Figure 3.19 and consider a
fiber with origin at P given by the vector dx, as shown in Figure 3.21.

Due to the deformation, the fiber dx becomes dy in the deformed con-
figuration, Vy, and we can write

dy = dx + u (x + dx) − u (x) (3.11)
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Fig. 3.21. Fibers in deformed and undeformed configurations

or in components

dyi = dxi + ui (x1 + dx1, x2 + dx2, x3 + dx3) − ui (x1, x2, x3)

for i = 1, 2 and 3. Recall from multivariable calculus that

ui (x1 + dx1, x2 + dx2, x3 + dx3)−ui (x1, x2, x3) =
∂ui

∂x1
dx1+

∂ui

∂x2
dx2+

∂ui

∂x3
dx3.

(3.12)

Substituting (3.12) into (3.11) gives

dyi = dxi +
∂ui

∂x1
dx1 +

∂ui

∂x2
dx2 +

∂ui

∂x3
dx3

and the range of indexes, such as i, is implicitly understood to vary from 1
to 3. We can write the above expression in matrix form⎡⎢⎢⎢⎣

dy1

dy2

dy3

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
dx1

dx2

dx3

⎤⎥⎥⎥⎦ +

⎡⎢⎢⎢⎣
∂u1
∂x1

∂u1
∂x2

∂u1
∂x3

∂u2
∂x1

∂u2
∂x2

∂u2
∂x3

∂u3
∂x1

∂u3
∂x2

∂u3
∂x3

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

dx1

dx2

dx3

⎤⎥⎥⎥⎦ (3.13)

or
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⎡⎢⎢⎢⎣
dy1

dy2

dy3

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
1 + ∂u1

∂x1

∂u1
∂x2

∂u1
∂x3

∂u2
∂x1

1 + ∂u2
∂x2

∂u2
∂x3

∂u3
∂x1

∂u3
∂x2

1 + ∂u3
∂x3

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

dx1

dx2

dx3

⎤⎥⎥⎥⎦ . (3.14)

Let us define the displacement gradient

∇u =

⎡⎢⎢⎢⎣
∂u1
∂x1

∂u1
∂x2

∂u1
∂x3

∂u2
∂x1

∂u2
∂x2

∂u2
∂x3

∂u3
∂x1

∂u3
∂x2

∂u3
∂x3

⎤⎥⎥⎥⎦ (3.15)

and the deformation gradient5

X =

⎡⎢⎢⎢⎣
1 + ∂u1

∂x1

∂u1
∂x2

∂u1
∂x3

∂u2
∂x1

1 + ∂u2
∂x2

∂u2
∂x3

∂u3
∂x1

∂u3
∂x2

1 + ∂u3
∂x3

⎤⎥⎥⎥⎦ = I + ∇u. (3.16)

Here, the identity matrix is denoted by I. Equation (3.13) can be re-written
as

dy = dx + ∇udx

and (3.14) as

dy =(I + ∇u)dx = Xdx. (3.17)

5 Both the displacement gradient and the deformation gradient are linear transfor-
mations which relate vectors to vectors (see equation (3.17)). For instance, let S
be a linear transformation. The linearity means that S (αp+βq) = αSp+βSq for
any real numbers α, β and any vectors p, q. Considering a coordinate system (O,

e1, e2, e3), w = Sv = S
(∑3

i=1 viei

)
=

∑3
i=1 viSei. Now let Sei=

∑3
j=1 Sjiej

then w =

⎡⎢⎢⎣
w1

w2

w3

⎤⎥⎥⎦ =

⎡⎢⎢⎣
S11 S12 S13

S21 S22 S23

S31 S32 S33

⎤⎥⎥⎦
⎡⎢⎢⎣

v1

v2

v3

⎤⎥⎥⎦ = Sv. In this book we call

tensor a linear transformation which relates vectors to vectors (although a ten-
sor is a more general concept). Note that a tensor can be represented in a basis
by a 3 × 3 matrix. Of course, as for vectors, when we change basis the matrix
components which represent the tensor will generally change. Nevertheless, we
choose to represent a tensor by a 3 × 3 matrix and the basis is implied by the
context (see Bathe, 1996 and Chapelle and Bathe, 2010a).

We also note that in many instances we will use matrices in their ordinary
sense, that is, not as representing either a vector or a tensor. We mention that
no special notation is used to distinguish between matrices when used in these
distinct situations
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Relation (3.17) is a very important result because it gives the change
in any fiber due to the deformation. That is, the deformation gradient X
relates a fiber dx in the undeformed configuration to the same fiber dy in
the deformed configuration. Of course, X and ∇u depend on the position (but
not the direction) of the fiber in the undeformed configuration. However, if
we choose a point, any fiber deformation at this point is obtained by the same
X (or ∇u).

The relation (3.17) can now be used to calculate both the normal and
shear strains.

Fig. 3.22. Infinitesimal fibers in undeformed and deformed configurations

Let us first derive the expression that gives the normal strain of any fiber.
Let m be the unit vector in the direction of dx as shown in Figure 3.22 and
ds and dsy be the lengths of the fibers dx and dy, which are given by

ds = ‖dx‖ =
(
(dx1)

2 + (dx2)
2 + (dx3)

2
) 1

2

(3.18)

dsy = ‖dy‖ =
(
(dy1)

2 + (dy2)
2 + (dy3)

2
) 1

2

The normal strain6 of the fiber dx is given by

ε� =
dsy − ds

ds
=

dsy

ds
− 1.

It is usual to define the stretch of a fiber by
6 For other strain measures, useful in nonlinear formulations, see e.g. Bathe, 1996
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λ =
dsy

ds

i.e., the ratio between the deformed and undeformed lengths. Hence,

ε� = λ − 1.

From equation (3.18)

dsy = ‖dy‖ =
√

dyT dy=
√

dxT XT Xdx.

which leads to

ε� =
dsy

ds
− 1 =

√
dxTXT Xdx√

dxT dx
− 1

and since dx =ds m we obtain

ε� =
ds

√
mT XT Xm

ds
√

mT m
− 1

or equivalently

ε� =
√

mT XT Xm − 1 (3.19)

since m is a unit vector.
The above expression gives the normal strain of a fiber, in the direction

m, i.e., ε� (m). There is no restriction on the magnitude of the displacements
involved in the deformation. However, when the displacements are assumed
to be infinitesimally small, we can introduce simplifications (this is the case
in linear elasticity).

Using equation (3.16) we can write

XT X = (I + ∇u)T (I + ∇u) (3.20)

= I + ∇u + ∇uT + ∇uT ∇u

Note that the components of ∇uT ∇u involve sums of terms of the form
∂ui

∂xk

∂uj

∂xk
(refer to relation (3.15)). When the displacements are considered

infinitesimally small, the terms ∂ui

∂xk
are also considered infinitesimally small

and therefore we can neglect ∂ui

∂xk

∂uj

∂xk
with respect to ∂ui

∂xk
. Hence we can

neglect ∇uT ∇u with respect to ∇u and use

XT X = I + ∇u + ∇uT . (3.21)

and can define the infinitesimal strain tensor E by

E =
1
2
(∇u + ∇uT

)
. (3.22)
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The components of E are

E =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂u1
∂x1

1
2

(
∂u1
∂x2

+ ∂u2
∂x1

)
1
2

(
∂u1
∂x3

+ ∂u3
∂x1

)
1
2

(
∂u1
∂x2

+ ∂u2
∂x1

)
∂u2
∂x2

1
2

(
∂u2
∂x3

+ ∂u3
∂x2

)
1
2

(
∂u1
∂x3

+ ∂u3
∂x1

)
1
2

(
∂u2
∂x3

+ ∂u3
∂x2

)
∂u3
∂x3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (3.23)

The strain tensor E is symmetric, E = ET , whereas X is in general not
symmetric. Hence assuming infinitesimally small displacements we have

XT X = I+2E (3.24)

and equation (3.19) can be re-written as

ε� =
√

mT (I+2E)m − 1 = (1 + 2mT Em)
1
2 − 1. (3.25)

Using (3.23) we can verify that

mT Em =
3∑

i=1

3∑
j=1

∂ui

∂xj
mimj . (3.26)

Of course, mT Em is a real number. We next recall the useful mathematical
identity

(1 + δ)s = 1 + sδ + (higher-order terms in δ) (3.27)

for δ and s real numbers and δ small. Substituting δ = 2mT Em and s = 1
2
,

we can write

(
1 + 2mT Em

) 1
2 = 1+

1
2

2mT Em+
(
higher-order terms in mT Em

)
. (3.28)

If we neglect higher-order terms in ∂ui

∂xj
, we arrive at

(
1 + 2mT Em

)1/2
= 1 + mT Em (3.29)

which is exact for infinitesimally small displacements. Introducing (3.29) into
(3.25), we finally obtain for infinitesimally small displacements

ε� (m) = mT Em. (3.30)

Therefore in analyses assuming infinitesimally small displacements, the nor-
mal strain ε� of any fiber with origin at point P and direction m can be
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Fig. 3.23. Shear strain γ for fibers da and db

determined by the strain tensor E at this point, and is given by equation
(3.30).

As we mentioned earlier, the change in angle between fibers due to the
deformation needs also to be evaluated.

Hence, let us consider two orthogonal fibers da and db in the undeformed
configuration whose directions are given by the unit vectors a and b as indi-
cated in Figure 3.23.

In general, these fibers are no longer orthogonal in the deformed configu-
ration. Let θ be the angle between the fibers in the deformed configuration.
We define the shear strain (angular distortion) for this pair of fibers by the
angle γ = π

2 − θ. Hence, the shear strain measures the deviation from the or-
thogonality and γ is positive when the angle between fibers, originally equal
to π/2 has decreased. To obtain γ, using the definition of the scalar product,
we write

Xda · Xdb = ‖Xda‖ ‖Xdb‖ cos θ

and using that da = daa and db = dbb, we obtain

Xa · Xb = ‖Xa‖ ‖Xb‖ cos θ.

Then also

Xa · Xb = aT XT Xb, ‖Xa‖ =
√

aT XT Xa, ‖Xb‖ =
√

bT XT Xb

leading to

sin γ =
aT XT Xb√

aT XT Xa
√

bT XTXb
(3.31)
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where we used cos θ = sin γ. From (3.19)

1 + ε� (a) =
√

aT XT Xa, 1 + ε� (b) =
√

bT XTXb

where ε� (a) and ε� (b) are the normal strains of the fibers in the directions
of a and b. Therefore (3.31) can be written as

sin γ =
aT XT Xb

(1 + ε� (a)) (1 + ε� (b))
. (3.32)

Both expressions (3.31) and (3.32) give the shear strain without any ap-
proximation no matter how large the displacements might be. However, con-
sidering infinitesimally small displacements and using (3.24), the numerator
of expression (3.31) can be written as

bT (I+2E)a = 2bT Ea + bTa = 2bT Ea

since a and b are orthogonal to each other. Using (3.26) and (3.30) we can
see that ε� will always be given by a sum of terms of the type ∂ui

∂xj
. Hence,

we can neglect ε� with respect to 1 in the denominator of (3.32). Also, using
sin γ = γ since we are considering infinitesimally small displacements, we
obtain

γ= 2bTEa. (3.33)

Hence, in summary, the infinitesimal strain tensor E gives, through the
very simple expressions (3.30) and (3.33), the normal and shear strains. Writ-
ing

E =

⎡⎢⎢⎢⎣
E11 E12 E13

E21 E22 E23

E31 E32 E33

⎤⎥⎥⎥⎦
the normal strain of a fiber in the direction of e1 is given by

ε� = eT
1 Ee1

or

ε� =
[

1 0 0
]⎡⎢⎢⎢⎣

E11 E12 E13

E21 E22 E23

E31 E32 E33

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

1

0

0

⎤⎥⎥⎥⎦
which leads to
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Table 3.1. Normal and shear strains for finite and infinitesimally small displace-
ments

Finite displacements
Infinitesimally small

displacements

Normal strain of

fiber with

direction m

ε� =
√

mT XT Xm − 1 ε� = mT Em

Shear strain

of a pair of

orthogonal

fibers with

direction

a and b

sin γ = aT XT Xb
(1+ε�(a))(1+ε�(b))

γ= 2bT Ea

ε� (e1) = E11

i.e., E11 gives the normal strain of a fiber in the direction of e1. Analogously,

ε� (e2) = E22, ε� (e3) = E33.

The shear strain of two fibers whose directions are e1 and e2 is given by

γ = 2eT
1 Ee2

= 2
[

1 0 0
]⎡⎢⎢⎢⎣

E11 E12 E13

E21 E22 E23

E31 E32 E33

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

0

1

0

⎤⎥⎥⎥⎦
which leads to

γ (e1, e2) = 2E12

and allows for the physical interpretation of the component E12 (see Exam-
ple 3.2). We note that γ (e1, e2) = 2E12 = 2E21 = γ (e2, e1) due to the
symmetry of E. Analogously

γ (e1, e3) = 2E13 = 2E31 = γ (e3, e1) , γ (e2, e3) = 2E23 = 2E32 = γ (e3, e2) .

In Table 3.1 we summarize the equations that give the normal and shear
strains considering finite and infinitesimally small displacements. Note that
the term “finite” (as opposed to “infinitesimal”) is used to characterize dis-
placements of arbitrary magnitude (which of course includes the infinitesi-
mally small displacement case). The terminology “large displacements” and
“small displacements” is also used to describe these conditions.
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There is one important point to recognize. While we have six strain com-
ponents in E, see (3.23), these are clearly not linearly independent since
they are all calculated from the three independent displacement fields u, v
and w. However, as long as the strain components are calculated from the
(continuous) displacements as discussed above, the strains will be compati-
ble. Throughout the presentations in this book we shall assume continuous
displacements for all problems considered, and hence strain compatibility re-
duces to calculating the strain components appropriately from the applicable
strain-displacement relationships.

Example 3.2

Consider a block which has a generic section parallel to the x1x2 plane as
shown in Figure 3.24a. The deformed configuration to be studied is defined
by

y1 = x1 + tanβ x2

y2 = x2

y3 = x3

with β large as shown in Figure 3.24b.

Fig. 3.24. Section of block and deformation

(i) Calculate the displacement field and the normal strains of the fibers with
directions e1, e2, m1 =

√
2

2
e1 +

√
2

2
e2 and m2= −

√
2

2
e1 +

√
2

2
e2.
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(ii) Calculate the shear strains of the pairs of fibers with directions e1, e2

and m1, m2.
(iii) Repeat items (i) and (ii) assuming that β is small. Obtain the results

first directly using small displacement theory, and then show that these
same results are also obtained from (i) and (ii).

Solution

(i) The displacement field is given by

ui = yi − xi

which leads to

u1 = y1 − x1 = tan β x2

u2 = y2 − x2 = 0

u3 = y3 − x3 = 0.

Considering large displacements, we need to evaluate the deformation
gradient

X =

⎡⎢⎢⎢⎣
1 tanβ 0

0 1 0

0 0 1

⎤⎥⎥⎥⎦
where we note that throughout the block the elements in X are constant
(independent of x1, x2, x3). Then

XT X =

⎡⎢⎢⎢⎣
1 tan β 0

tanβ 1 + (tanβ)2 0

0 0 1

⎤⎥⎥⎥⎦ .

Now using the left column in Table 3.1

ε�(e1) =
√

eT
1 XT Xe1 − 1 = 0 (3.34)

ε�(e2) =
√

eT
2 XT Xe2 − 1 =

√
1 + (tan β)2 − 1 (3.35)

ε�(m1) =
√

mT
1 XT Xm1 − 1 =

√
1 + tanβ +

(tanβ)2

2
− 1 (3.36)

ε�(m2) =
√

mT
2 XT Xm2 − 1 =

√
1 − tanβ +

(tanβ)2

2
− 1. (3.37)
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We can interpret these results with the aid of Figure 3.25, where we can see
that the fibers in the directions given by AB and AC extended, whereas the
fibers along the diagonal DB shortened. Of course, the fibers parallel to AD
did not change their lengths.

Fig. 3.25. Deformed and undeformed configurations with diagonals represented

(ii) The shear strains can be evaluated using again Table 3.1

sin γ (e1, e2) =
eT
1 XTXe2

(1 + ε�(e1)) (1 + ε�(e2))
=

tanβ√
1 + (tanβ)2

= sin β (3.38)

leading to γ = β, and

sin γ (m1,m2) =
mT

1 XT Xm2

(1 + ε�(m1)) (1 + ε�(m2))

=
(tanβ)2

2
√

1 + tanβ + (tan β)2

2

√
1 − tanβ + (tan β)2

2

. (3.39)

(iii) When the displacements are infinitesimally small, we can evaluate the
normal and shear strains using the infinitesimal strain tensor whose com-
ponents are given by

Eij =
1
2

(
∂ui

∂xj
+

∂uj

∂xi

)
.
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Then,

E11 =
∂u1

∂x1
= 0, E22 =

∂u2

∂x2
= 0, E33 =

∂u3

∂x3
= 0

and since for infinitesimally small displacements tanβ = β

E12 = E21 =
1
2

(
∂u1

∂x2
+

∂u2

∂x1

)
=

β

2

E13 = E31 =
1
2

(
∂u1

∂x3
+

∂u3

∂x1

)
= 0

E23 = E32 =
1
2

(
∂u2

∂x3
+

∂u3

∂x2

)
= 0

leading to

E =

⎡⎢⎢⎢⎣
0 β/2 0

β/2 0 0

0 0 0

⎤⎥⎥⎥⎦
and, hence, we obtain

ε� (e1) = E11 = 0, ε� (e2) = E22 = 0, γ (e1, e2) = 2E12 = β.

The normal strains of the fibers in the directions of m1 and m2 can be
evaluated by

ε� (m1) = mT
1 Em1

=
[ √

2
2

√
2

2
0

]⎡⎢⎢⎢⎣
0 β/2 0

β/2 0 0

0 0 0

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

√
2

2√
2

2

0

⎤⎥⎥⎥⎦ =
β

2

ε� (m2) = mT
2 Em2

=
[

−
√

2
2

√
2

2
0

]⎡⎢⎢⎢⎣
0 β/2 0

β/2 0 0

0 0 0

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

−
√

2
2√
2

2

0

⎤⎥⎥⎥⎦ = −β

2
.

The shear strain of the fibers with directions m1, m2 is given by
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γ(m1,m2) = 2mT
1 Em2

= 2
[ √

2
2

√
2

2 0
]⎡⎢⎢⎢⎣

0 β/2 0

β/2 0 0

0 0 0

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

−
√

2
2√
2

2

0

⎤⎥⎥⎥⎦ = 0.

In order to show that we obtain the above results from the values calculated
in (i) and (ii), we need to consider β infinitesimally small in the expressions
(3.35) to (3.39). Using the mathematical identity (3.27) we obtain

ε�(e2) = 1 +
1
2

(tanβ)2 +
(
higher order terms in (tanβ)2

)
− 1

leading to

ε�(e2) = 0. (3.40)

Similarly

ε�(m1) = 1+
1

2

(
tan β +

(tan β)2

2

)
+

(
higher order terms in

(
tan β +

(tan β)2

2

))
−1

leading to

ε�(m1) =
1
2

tanβ. (3.41)

Analogously, we obtain

ε�(m2) = −1
2

tanβ. (3.42)

Note that to obtain these relations we neglected the terms (tan β)2 and
of higher–order. And now using that for infinitesimally small displacements
tanβ = β gives

ε� (e2) = 0, ε� (m1) =
β

2
and ε� (m2) = −β

2
.

Introducing the same approximations for (3.38) and (3.39), we directly obtain

γ(e1, e2) = β

and

γ (m1,m2) = 0.

Referring to Figure 3.25, we note that fibers that are parallel to the diago-
nals AC and DB, hence orthogonal in the undeformed configuration, remain
orthogonal for infinitesimally small displacements.

�
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3.2.3 Finite and infinitesimal rigid deformations

The kinematic description presented so far is of course very general and
therefore includes a rigid body motion/deformation of a solid.

We start by studying a rigid body rotation which is always referred to an
axis − the axis of rotation which is shown in Figure 3.26a. The rotation can

Fig. 3.26. Kinematic description of a rigid rotation

be kinematically characterized by describing the motion of a generic point P
of the solid as shown in Figure 3.26b. We see that point P moves on the plane
which is orthogonal to the axis of rotation and passes through P, and on the
circle centered on the axis of rotation. The angle θ defines the magnitude of
the rotation. Hence, a rotation is fully characterized by the vector θ = θe,
where e is a unit vector in the direction of the axis of rotation.

Let us choose a reference system such that e3 = e as shown in Figure
3.26b. Referring to Example 3.1, the deformation corresponding to the rota-
tion described above is given by⎡⎢⎢⎢⎣

y1

y2

y3

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
cos θ − sin θ 0

sin θ cos θ 0

0 0 1

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

x1

x2

x3

⎤⎥⎥⎥⎦ (3.43)

y = Qx (3.44)

where Q is an orthogonal tensor. Orthogonal tensors are defined by either
one of the following equivalent statements:
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‖Qw‖ = ‖w‖ for every vector w (3.45)

QQT = QT Q = I ⇒ Q−1 = QT . (3.46)

From (3.46), we can write det(QQT ) = detQ detQT = (detQ)2 = 1. Hence
detQ = ±1.

It can be shown that every orthogonal tensor with positive determinant
(detQ = 1) describes a rotation through equation (3.44). The example below
is an illustration.

Example 3.3

Consider a tensor Q given in the basis (e1, e2, e3) by

Q =

⎡⎢⎢⎢⎣
4
9 + 5

√
3

18
5
18 − 2

√
3

9
5
9 −

√
3

9

11
18

− 2
√

3
9

4
9

+ 5
√

3
18

− 1
9

−
√

3
9

− 1
9 −

√
3

9
5
9 −

√
3

9
1
9 + 4

√
3

9

⎤⎥⎥⎥⎦ .

Verify that Q is an orthogonal tensor. Then, obtain the axis and the magni-
tude of the rotation given by Q.

Solution

It suffices to verify that QT Q = I to conclude that Q is an orthogonal tensor.
Let e be a unit vector in the direction of the axis of rotation defined by

Q. Then

Qe = e.

We can determine e solving

(Q − I) e = 0 (3.47)

to obtain

e =

⎡⎢⎢⎢⎣
2
3

2
3

1
3

⎤⎥⎥⎥⎦ .

Let us define a unit vector g which is orthogonal to the axis of rotation using

g =
e × e2

‖e × e2‖ =

⎡⎢⎢⎢⎣
−

√
5

5

0
2
√

5
5

⎤⎥⎥⎥⎦ .
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Note that

f = Qg =

⎡⎢⎢⎢⎣
−

√
15

10 + 2
√

5
15

−
√

5
6√

15
5

+
√

5
15

⎤⎥⎥⎥⎦
gives a unit vector which is rotated with respect to g by the angle of rotation
θ. Then

g · f = ‖g‖ ‖f‖ cos θ =
√

3
2

and since

(g × f)·e =
1
2

we have

θ =
π

6
.

�
Now let us show that the deformation given by

y(x) = y0 + Q(x − x0) (3.48)

is rigid for any given vectors y0 and x0, and any orthogonal tensor Q. As
detailed later (see Figure 3.27), y0 gives the translation part of the rigid
deformation while Q(x−x0) gives the rotation part and x0 is a point on the
axis of rotation.

The fundamental property of a rigid deformation is that the distance
between any two points of the solid does not change with the deformation.
Let us verify that this property holds for any deformation defined by (3.48).
Let x1 and x2 be the position vectors of two arbitrarily selected points of the
solid. Then, their positions in the deformed configuration are given by

y1 = y0 + Q(x1 − x0) (3.49)

y2 = y0 + Q(x2 − x0). (3.50)

Subtracting (3.49) from (3.50), we obtain

y2 − y1 = Qx2 − Qx1 = Q (x2 − x1) . (3.51)

Taking norms in both sides of (3.51) and using (3.45), we can write

‖y2 − y1‖ = ‖Q (x2 − x1)‖ = ‖x2 − x1‖
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which shows that the distance between any two points of the solid is main-
tained and, indeed, (3.48) defines a rigid deformation or a finite rigid defor-
mation since the magnitude of the rotation may be arbitrarily large.

Of course, we can select x1 and x2 close enough such that dx = x2 − x1

defines a fiber. Then, (3.51) leads to

dy = Qdx

showing that the deformation gradient of a rigid deformation given by (3.48)
is Q, that is,

X = Q (3.52)

and due to (3.16)

∇u = Q − I. (3.53)

Note that X and ∇u as given in equations (3.52) and (3.53) are the same for
every point of the solid.

Since

‖dy‖ = ‖Qdx‖ = ‖dx‖ (3.54)

the normal strain in any direction is zero. Also, there is no shear strain
between any pair of orthogonal fibers. Indeed, using (3.32)

sin γ =
aT QT Qb

(1 + ε� (a)) (1 + ε� (b))
= aT b =0. (3.55)

The results given by (3.54) and (3.55) actually confirm our expectation re-
garding strains for a rigid deformation.

Defining u0 = y0 − x0, we obtain the displacement field for a rigid defor-
mation

u = y(x) −x = u0 +Q(x−x0) − (x−x0) = u0 + (Q − I) (x−x0) (3.56)

and using (3.53), we obtain

u = u0 + ∇u(x − x0). (3.57)

We emphasize that ∇u in (3.57) is the displacement gradient for the finite
rigid deformation given by (3.53).

In order to motivate the definition of an infinitesimal rigid deformation
we consider the following derivations.

Using (3.20) and (3.52), we obtain

XT X = QT Q = I = I + ∇u + ∇uT + ∇uT ∇u
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hence,

∇u + ∇uT

2
= −1

2
∇uT ∇u

and the infinitesimal strain tensor for the rigid deformation is given by (see
(3.22))

E =
1
2
(∇u + ∇uT ) = −1

2
∇uT ∇u (3.58)

which is not exactly zero. This fact motivates the definition of an infinitesimal
rigid deformation as the deformation which gives E = 0.

Consider

u(x) = u0 + W(x − x0) (3.59)

where W is a skew tensor, that is, a tensor for which WT = −W. Then the
displacement gradient for the u(x) defined in (3.59) is

∇u = W

and

E =
1
2
(∇u + ∇uT

)
=

1
2
(
W + WT

)
= 0. (3.60)

Equation (3.60) shows that every displacement field defined by (3.59) with
W skew leads to E = 0, i.e., defines an infinitesimal rigid deformation.

Since for every skew tensor W there is a unique vector w, called the axial
vector, such that

Wa = w × a for every vector a

and vice-versa (see Crandall, Dahl and Lardner, 1978), we can re-write (3.59)
as

u(x) = u0 + w × (x − x0). (3.61)

Now, let us interpret the finite and infinitesimal rigid deformations. In Figure
3.27a, we detail the displacement of a generic point for a finite rigid deforma-
tion. The unit vector e gives the direction of the axis of rotation associated
with the orthogonal tensor Q and x0 is a point on the axis of rotation. Ac-
cording to equation (3.56) there are two contributions for the displacement.
The first, Q(x − x0) − (x − x0), is due to the rotation and the second, u0,
is due to the translation. In Figure 3.27b, we consider the displacement of
a generic point x for an infinitesimal rigid deformation. The vector w is the
axial vector associated with W and according to (3.61) the term w×(x−x0)
gives the contribution of the rotation and u0 of the translation.
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Fig. 3.27. Displacement of a point for finite and infinitesimal rigid deformations

Comparing both rigid deformations, we note that the difference lies on
how the rotation is described. While for the finite rotation the point displaces
along the circumference centered on the axis of rotation, for the infinitesi-
mal rotation the point displaces over the straight line which makes a right
angle with the radius of this circumference, that is, over the tangent to this
circumference. We recall that this distinction in describing the rotation was
also addressed in Section 2.2.5 for the rotation of a truss bar.

Example 3.4
Consider the rigid body rotation described in Example 3.1 (ii). Let the

angle of rotation be infinitesimally small, that is, dϕ instead of ϕ. Calculate
the displacement field associated with this infinitesimal rigid deformation.
Then, verify that E = 0.

Solution
In Figure 3.28a we repeat Figure 3.20b which describes the finite rotation

of a generic point of the solid and in Figure 3.28b we show the analogous
situation for an infinitesimal rotation. Since the rotation is infinitesimal, we
should take the displacements over the tangent to the circumference which
has center in O and radius r = ‖OP‖. Therefore

−u1 = dϕ rsinθ

u2 = dϕ rcosθ.

Using (3.8) , we obtain
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Fig. 3.28. Motion of a generic point in the section. a) Finite rotation ϕ; b) In-
finitesimal rotation dϕ

u1 = −dϕ x2

u2 = dϕ x1

Finally

u1 (x1, x2, x3) = −dϕ x2

u2 (x1, x2, x3) = dϕ x1

u3 (x1, x2, x3) = 0.

Using the displacement field above and (3.23) we obtain E = 0.

�

3.2.4 Technical or engineering notation for the strains

In the engineering literature it is very common to use what is called technical
or engineering notation in which the coordinate axes are denoted by x, y,
and z, i.e., x ≡ x1, y ≡ x2 and z ≡ x3 and the displacements by u, v, and w,
i.e., u ≡ u1, v ≡ u2 and w ≡ u3.

In this notation the components of the strain tensor are given and denoted
by

εxx = εx =
∂u

∂x

εyy = εy =
∂v

∂y
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εzz = εz =
∂w

∂z

εxy = εyx =
1
2

(
∂u

∂y
+

∂v

∂x

)

εyz = εzy =
1
2

(
∂v

∂z
+

∂w

∂y

)

εzx = εxz =
1
2

(
∂w

∂x
+

∂u

∂z

)
.

These relations are called strain-displacement relations. We can also write
the shear strain for the pairs of fibers parallel to the coordinate axes by

γxy = 2εxy, γyz = 2εyz, γzx = 2εzx. (3.62)

Note that these shear strains are twice the corresponding tensorial compo-
nents and we call γxy, γyz, γzx the engineering shear strains and εxy, εyz, εzx

the tensorial shear strains.

3.2.5 Deformation in the vicinity of a point

In order to obtain more insight into the deformation, let us examine the
deformation in a small region around a point − its vicinity. Consider a defor-
mation with infinitesimally small displacements and w = 0, u = u(x, y) and
v = v(x, y). Under such conditions the deformation observed in any plane
parallel to the plane xy is identical, and the displacement gradient and strain
tensor are given by

∇u =

⎡⎢⎢⎢⎣
∂u
∂x

∂u
∂y 0

∂v
∂x

∂v
∂y 0

0 0 0

⎤⎥⎥⎥⎦ , E =

⎡⎢⎢⎢⎣
∂u
∂x

1
2

(
∂u
∂y

+ ∂v
∂x

)
0

1
2

(
∂u
∂y + ∂v

∂x

)
∂v
∂y 0

0 0 0

⎤⎥⎥⎥⎦ .

Assume that at point P in Figure 3.29 u = 0, v = 0, ∂u
∂x

= 0 and ∂v
∂y

= 0,
i.e., the normal strains in the directions of x and y are zero. In Figure 3.30a,
we show the deformed and undeformed configurations for the selected part.
We note that the geometrical interpretation of the engineering shear strain
γxy = ∂u

∂y + ∂v
∂x is evident. Now, in Figure 3.30b we show a special case in

which ∂v
∂x = −∂u

∂y . Then, of course, γxy = 0 and we have a rigid body rotation
of the part of intensity α = ∂v

∂x = −∂u
∂y . We note that despite the fact we have

a rigid rotation, the components of the displacement gradient are not zero
since ∂u

∂y �= 0 and ∂v
∂x �= 0.

Considering the deformation of Figure 3.30a, we can also write
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Fig. 3.29. Schematic representation of a generic square part defining the region of
interest

Fig. 3.30. a) Deformation of the selected part; b) Geometrical interpretation of
an infinitesimal rigid rotation

∂u

∂y
=

1
2

(
∂u

∂y
+

∂v

∂x

)
+

1
2

(
∂u

∂y
− ∂v

∂x

)
(3.63)

∂v

∂x
=

1
2

(
∂u

∂y
+

∂v

∂x

)
− 1

2

(
∂u

∂y
− ∂v

∂x

)
(3.64)

The left hand sides of equations (3.63) and (3.64) give components of
the displacement gradient and the right hand sides represent one half of the
engineering shear strain plus a term which can be interpreted as a rigid body
rotation. The geometrical interpretation of equations (3.63) and (3.64) is
given in Figure 3.317.

Although in the above discussion some assumptions were made to simplify
the visualization of the deformation, the interpretation given is quite general.
Let us define
7 In Section 3.4 we will relate γxy by a material constant to a shear stress. Note

that the rotation in (3.63) and (3.64) does not cause a stress
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Fig. 3.31. Geometrical interpretation of the decomposition of the displacement
gradient. The inherent rotation does not cause a stress (see Section 3.4)

W = ∇u − E

W =
1
2
(∇u − ∇uT

)
or

W =

⎡⎢⎢⎢⎣
0 1

2

(
∂u
∂y − ∂v

∂x

)
1
2

(
∂u
∂z − ∂w

∂x

)
− 1

2

(
∂u
∂y − ∂v

∂x

)
0 1

2

(
∂v
∂z − ∂w

∂y

)
− 1

2

(
∂u
∂z

− ∂w
∂x

) − 1
2

(
∂v
∂z

− ∂w
∂y

)
0

⎤⎥⎥⎥⎦ .

Of course,

∇u = E + W. (3.65)

We can also write

u(x + dx) − u(x) = ∇udx = (E + W)dx. (3.66)

Since W is skew, Wdx represents the displacement due to an infinitesimal
rigid rotation (refer to equation (3.59)). Therefore, (3.66) allows the inter-
pretation that, locally, the increment in displacements has a contribution of
a rigid rotation plus that of the straining of the material fibers.
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Equation (3.65) is referred to as the additive decomposition of the dis-
placement gradient ∇u into its symmetric part − the infinitesimal strain
tensor − and into its skew part W − the infinitesimal rotation tensor.

Example 3.5
Consider the cylinder shown in Figure 3.32. Suppose that the transverse

sections rotate without deformation in the plane yz around the cylinder’s
axis by an angle θ(x) with the constant rate of rotation dθ

dx
= α. Calculate,

assuming infinitesimal displacement conditions:

(i) The displacement field.
(ii) The strain tensor within the cylinder.

Fig. 3.32. Cylinder under study

Solution
(i) We obtain by integration

θ(x) = αx + C.

Since the rotation at x = 0 is prevented

θ(0) = 0 ⇒ C = 0

and therefore the rotation of a generic section is given by

θ(x) = αx.

Since the section rotations are infinitesimal, we can use directly the results
derived in Example 3.4. Therefore, considering x1 ≡ y, x2 ≡ z, x3 ≡ x, we
obtain
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u = 0

v = −θz = −αxz

w = θy = αxy.

(ii) The strain components are

εxx =
∂u

∂x
= 0, εyy =

∂v

∂y
= 0, εzz =

∂w

∂z
= 0

εxy =
1
2

(
∂u

∂y
+

∂v

∂x

)
= −1

2
αz

εxz =
1
2

(
∂u

∂z
+

∂w

∂x

)
=

1
2
αy

εyz =
1
2

(
∂v

∂z
+

∂w

∂y

)
=

1
2

(−αx + αx) = 0.

Therefore

E =

⎡⎢⎢⎢⎣
0 − 1

2αz 1
2αy

− 1
2
αz 0 0

1
2αy 0 0

⎤⎥⎥⎥⎦
and the engineering shear strains are

γxy = −αz

γxz = αy

γyz = 0.

In Figure 3.33 a geometrical interpretation of γxz is given. Referring to Figure
3.33 we can calculate γxz for a point of coordinates x, y = R, z = 0 as the
ratio

γxz =
dθR

dx
= αR

which is in accordance with the derived expression.

�

3.3 Stresses

In Section 2.1.3 we introduced the concept of stress, see Figure 2.3. In this
figure, a field of forces per unit area − the field of stresses − is acting on the
internal surface of the part ΔtV .
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Fig. 3.33. Deformation of the cylinder

In Section 2.1.4 we arrived at the conditions for a solid, subjected to
external forces, to be in static equilibrium. These conditions are given by
tR = 0 and tMO = 0 where tR is the resultant of all externally applied
forces and tMO is the moment of these forces about the system origin8. We
also pointed out that the static equilibrium condition should hold for any
part ΔtV extracted from the body when, of course, we consider the stresses
and the external actions on ΔtV .

Fig. 3.34. Solid in equilibrium

8 Actually the moment has to be zero about any point since tR = 0 as discussed
in Chapter 2
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The objective of this section is to examine in detail the concept of stress
at a point, the stress field and the relations which link the stress field to the
external field of forces acting on the solid.

We start in the next section by introducing in a classical manner the
concept of stress.

3.3.1 Classical concept of stress

Let Vy in Figure 3.19 represent the deformed configuration of a solid which
is in static equilibrium subjected to the field of body forces fB and surface
tractions fS. We suppose that fS is defined over the entire external surface
of the solid, therefore it includes possible reactions associated with motion
restraints. Since we consider only this deformed configuration in the following
discussion, we use simply V to denote Vy and this situation is summarized in
Figure 3.34. Let P be a point in the interior of the solid and let π be a plane
that passes through P and which sections the solid into two parts, ΔVI and
ΔVII . These two parts are shown separately in Figure 3.35.

Fig. 3.35. Two parts of solid V sectioned by plane π (part rotated merely for
better visualization)

The fields of internal forces that act on ΔVI and ΔVII on that plane are
also shown. We note that the force actions of part ΔVII onto part ΔVI are
such that ΔVI considered alone is in static equilibrium, and similarly for part
ΔVII .

Let ΔS be a surface region around P as shown in Figure 3.36 and let
ΔF be the resultant of the internal forces acting on ΔS by the action of part
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ΔVII onto ΔVI . We can define

tm =
ΔF
ΔS

which is an average force per unit of surface area. This vector quantity tm is
called the average stress at P considering the plane π and the area ΔS.

Fig. 3.36. Forces transmitted through ΔS

Since we want to obtain a local measure of the force transmitted per unit
of area, we define the stress t at P on the plane π as

t = lim
ΔS→0

ΔF
ΔS

= lim
ΔS→0

tm.

Since the plane π is well defined by its normal unit vector n we have

t = t (P,n) . (3.67)

Here n is taken to point outward from the face of the solid on which the
stress is acting. Hence, the stress at the same point P and considering the
same plane π but representing the action of part ΔVI onto ΔVII is given by

t = t (P, −n) .

It is usual to decompose the stress into two vector components: tn normal
to the plane, i.e., in the direction n, and ts tangential to the plane, i.e.,
normal to n, see Figure 3.37. Therefore

t = tn+ts

tn = (t · n)n = tnn, ts = t − tn.

Then tn is called the normal stress and ts the shear stress. This decomposition
is not merely formal, since the physical effects associated with the action of
these components are very different. Indeed, the normal stress when tn > 0
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Fig. 3.37. Decomposition of the stress

(tensile stress) induces extension of the fiber along the normal direction, and
when tn < 0 (compressive stress) induces shortening of the same fiber. Also,
as detailed later, the shear stress induces shear strain.

In the discussion above, we have considered the plane π as a generic plane
to pass through P. Therefore for each plane defined by a generic normal n
there is a different value of t representing the action of part ΔVII on ΔVI (of
course, as n changes ΔVI and ΔVII also change). This fact was acknowledged
in equation (3.67) as we explicitly indicated the dependency on the plane
through the normal n. As there are infinitely many planes that pass through
P (each time characterized by the corresponding n), it is usual to refer to a
“state of stress” at a point.

3.3.2 Characterization of the state of stress at a point

Our next objective is to better characterize the state of stress at a point.

First consequence of equilibrium

Let us first establish a relation between the stresses t (P,n) and t (P, −n),
i.e., they are defined for the same point and for the same plane but act on
different parts of the sectioned solid, see Figure 3.34. Consider as a part ΔV
of the solid of Figure 3.34, the parallelepiped shown in Figure 3.38. It has two
faces parallel to the plane π which also sections the parallelepiped into two
equal halves. This parallelepiped is also shown in Figure 3.39. Its thickness
is (δ)q, q ≥ 2, with δ infinitesimally small.

Equilibrium requires

t (P,n) δ2 + t (P, −n) δ2 + t (P,n1) δq+1 + t (P, −n1) δq+1+

t (P,n2) δq+1 + t (P,−n2) δq+1 + fB (P) δq+2 = 0

Since δ is infinitesimal, the stress is constant over each face and therefore
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Fig. 3.38. Selection of a parallelepiped part around P

Fig. 3.39. Definition of the parallelepiped part, fB is the body force per unit of
volume

can be evaluated at P. Neglecting terms of higher-order in δ, we obtain

t (P,n) = −t (P,−n) . (3.68)

Of course, taking the height to be δq and the base to be δ was an appro-
priate choice and certainly allowed since every part of the solid should be in
equilibrium.

The relation (3.68) simply states that the stress acting on a plane but
on the two different parts of the sectioned solid is of same magnitude and
direction but of opposite orientation.
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Fig. 3.40. Decomposition of the stress on the plane with unit normal e2

Stress components

Consider the situation in Figure 3.40 where we isolated a parallelepiped
with infinitesimally small sides from the solid to examine the stress acting on
a plane with normal e2. Let T22 be the component of t (e2) in the direction of
e2 and T12 and T32 be the components in the directions e1 and e3 respectively,
i.e.,

t (e2) = T12e1 + T22e2 + T32e3 =
3∑

i=1

Ti2ei. (3.69)

where Ti2 = t (e2) · ei.
In Figure 3.41 we still represent the same part but now we indicate ex-

plicitly the stresses and their components, defined as above, also for planes
whose normals are e1 and e3. We can write

t (ej) =
3∑

i=1

Tijei. (3.70)

The stress acting at the same point as t (e2), but considering a plane defined
by −e2, is also represented in Figure 3.41. This stress represents the action
of part (I) onto part (II) whereas t (e2) represents the action of part (II)
onto part (I) (note that part (II) was displaced vertically only to permit
visualization). Using (3.68) and (3.69) we have that

t (−e2) = −t (e2) = −T12e1 − T22e2 − T32e3

and the orientation indicated in Figure 3.41 are those corresponding to pos-
itive values of Ti2. Here Tii represents the normal stress to the plane given
by ei and -ei and a positive value indicates tension, Tij , i �= j, represents
a shear stress component in the direction of ei for the plane defined by the
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Fig. 3.41. Stress components in planes parallel to coordinate planes

normal ej and a positive value indicates that the orientation is the same as
ei. However, when the plane is defined by −ej , then Tij with a positive value
indicates that the orientation is opposite to that given by ei.

Fig. 3.42. Tetrahedral part to be isolated from the solid

Second consequence of equilibrium

We are now ready to demonstrate an important result which helps to
further characterize the state of stress at a point. Consider a solid in static
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equilibrium and a part of the solid, the tetrahedron, shown in Figure 3.42.
The tetrahedron has one vertex denoted by P, and as shown three edges are
parallel to the coordinate axes. The edges are assumed to be of infinitesimal
length. We can isolate the tetrahedron from the solid, and the action of the
rest of the solid onto the tetrahedron is represented by the stresses acting on
its faces.

Fig. 3.43. Stress on tetrahedral faces, n is the unit outward normal vector on the
face S

Therefore, in Figure 3.43, we are representing by t (−ei) the stress on
the face with exterior normal −ei and area Si (i = 1, 2, 3). The stress acting
on the inclined face, which has normal n and area S, is given by t (n). The
stresses are taken to be constant over each face since the edges are of in-
finitesimal lengths and are given by t (n) and t (−ei) i = 1, 2, 3 (representing
t (P,n), t (P, −ei) respectively). Similarly, we do not include the spatial vari-
ation of the stress from P to the inclined face at the distance h from P since
this variation is given by an infinitesimal of higher order and its contribution
would drop out in the derivation not affecting the final result.

Some geometric properties of the tetrahedron are shown in Figure 3.44.
Note that ni = n·ei = ‖n‖ ‖ei‖ cos αi = cos αi, where αi is the angle between
n and ei; cos α1, cos α2 and cos α3 are usually called the direction cosines of
n. Therefore the volume of the tetrahedron can be evaluated either taking S
as the base and h as the height or Si as the base and h

ni
as the height leading

to

V =
1
3
Sh =

1
3
Si

(
h

ni

)
(3.71)

from which

Si = niS. (3.72)
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Fig. 3.44. Geometric properties of the tetrahedron of volume V

The tetrahedron must be in equilibrium and, therefore, the resultant of
all forces acting on the tetrahedron should be zero, i.e.,

R = t (n) S + t (−e1) S1 + t (−e2)S2 + t (−e3)S3 + fBV = 0 (3.73)

where fB is the externally applied body force for points inside the tetrahedron
which can also be taken as constant, since the edges are of infinitesimal
lengths. Dividing (3.73) by S and using (3.71) and (3.72) gives

t (n) + t (−e1)n1 + t (−e2)n2 + t (−e3)n3 +
1
3
fBh = 0. (3.74)

Since h is also infinitesimal (the edges are infinitesimal) we can neglect the
term 1

3 f
Bh with respect to the others terms in (3.74). Using (3.68) we obtain

t (n) = t (e1)n1 + t (e2)n2 + t (e3)n3. (3.75)

The fundamental result is that the stress on the inclined face, defined by the
normal n, can be obtained from the stresses on the three planes parallel to
the coordinate planes.

Substituting (3.70) into (3.75) results into

t (n) =

(
3∑

i=1

Ti1ei

)
n1 +

(
3∑

i=1

Ti2ei

)
n2 +

(
3∑

i=1

Ti3ei

)
n3. (3.76)

Since t (n) =
∑3

i=1 tiei, we obtain

t1 = T11n1 + T12n2 + T13n3

t2 = T21n1 + T22n2 + T23n3

t3 = T31n1 + T32n2 + T33n3
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or in matrix form⎡⎢⎢⎢⎣
t1

t2

t3

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
T11 T12 T13

T21 T22 T23

T31 T32 T33

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

n1

n2

n3

⎤⎥⎥⎥⎦ . (3.77)

This relation defines implicitly the Cauchy stress tensor T given by

T =

⎡⎢⎢⎢⎣
T11 T12 T13

T21 T22 T23

T31 T32 T33

⎤⎥⎥⎥⎦ .

We note that the Cauchy stress components listed in T correspond to the
base vectors e1, e2 and e3. Equation (3.77) shows that for any point in the
solid we can use T to calculate the stresses acting on any plane through the
point, that is we have

t (n) = Tn. (3.78)

Third consequence of equilibrium

For the tetrahedron to be in equilibrium it is also necessary to have that
the moment of the forces acting on it about any point is equal to zero.

Fig. 3.45. Geometric property that holds for the centers of gravity of tetrahedron
faces
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We note that since the stresses can be taken as constant over each face of
the tetrahedron, the resultant of the stresses on each face should be applied
to the center of gravity of the face. Let Gi be the center of gravity of the face
Si and G the center of gravity of the inclined face. It is a geometric property
that straight lines parallel to the coordinate axes through the points Gi meet
at the center of gravity of the inclined face, as shown in Figure 3.45.

Fig. 3.46. Quantities used for moment balance

Referring to Figure 3.46 and imposing moment equilibrium we obtain∑
ME1 = 0 = T32S2

dy2

3
− T23S3

dy3

3

therefore

T32

(
dy1dy3

2

)
dy2

3
= T23

(
dy1dy2

2

)
dy3

3

which leads to

T23 = T32.

Note that the moment produced by the body forces was not considered since
it corresponds to an infinitesimal quantity of higher–order.

Also∑
ME2 = 0 = −T31S1

dy1

3
+ T13S3

dy3

3
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T31

(
dy2dy3

2

)
dy1

3
= T13

(
dy1dy2

2

)
dy3

3

leading to

T31 = T13

and∑
ME3 = 0 = T21S1

dy1

3
− T12S2

dy2

3

T21

(
dy2dy3

2

)
dy1

3
= T12

(
dy1dy3

2

)
dy2

3

resulting into

T21 = T12.

Hence, based on the moment equilibrium condition we showed that the
Cauchy stress tensor T is symmetric.

Fig. 3.47. Generic parallelepiped isolated from the solid

3.3.3 Differential equilibrium equations

So far we did not consider any spatial variations in the stresses − which
however, of course, exist in almost all analyses. As we mentioned, if the
spatial variation of the stresses were included in all above derivations, they
would result into higher–order infinitesimal contributions and the final results
would be the same as those given. However, we now want to study how every
differential element of sides dy1, dy2, dy3 (see Figure 3.47) is in equilibrium
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when body forces are present and then need to include the spatial variation
of the stresses.

Let us isolate the parallelepiped in Figure 3.47 as a free body and consider
the stresses on its faces and the body forces in its volume. We show the
stresses in three separate figures, 3.48, 3.49 and 3.50 merely to facilitate the
visualization; each figure shows the stresses on opposing parallel faces.

Imposing equilibrium in the e1 direction

− T11dy2dy3 + T11dy2dy3 +
∂T11

∂y1
dy1dy2dy3

− T12dy1dy3 + T12dy1dy3 +
∂T12

∂y2
dy2dy1dy3 (3.79)

− T13dy1dy2 + T13dy1dy2 +
∂T13

∂y3
dy3dy1dy2

+ fB
1 dy1dy2dy3 = 0

Fig. 3.48. Components of stress in planes dy1 apart

Since the edges are infinitesimal we may assume the stresses to be constant
on each face and the body force fB

i = fB
1 e1 +fB

2 e2 +fB
3 e3 to be constant in-

side the parallelepiped. If spatial variations for these quantities were included,
they would result in infinitesimal contributions of higher-order and not affect
the final equations9. Simplifying (3.79) and dividing it by the parallelepiped’s
volume dy1dy2dy3 we obtain
9 The general approach here, and in Section 3.3.2, is to include only those varia-

tions that lead to infinitesimal quantities of low-order and need to be included
to extract the final result
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Fig. 3.49. Components of stress in planes dy2 apart

Fig. 3.50. Components of stress in planes dy3 apart

∂T11

∂y1
+

∂T12

∂y2
+

∂T13

∂y3
+ fB

1 = 0 (3.80)

Analogously, imposing equilibrium in the directions e2 and e3 gives

∂T21

∂y1
+

∂T22

∂y2
+

∂T23

∂y3
+ fB

2 = 0 (3.81)

∂T31

∂y1
+

∂T32

∂y2
+

∂T33

∂y3
+ fB

3 = 0. (3.82)
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The equations (3.80) to (3.82) are referred to as the differential equilibrium
equations, and these need to be satisfied throughout the body.

3.3.4 Principal stresses

Since the stress t at a point depends on the plane it is acting given by the
unit normal vector n, see Figure 3.43 and equation (3.78), natural questions
are:

• On which plane do we have the maximum and minimum normal stresses?
• What values do the maximum and minimum normal stresses have?
• On which plane do we have the maximum and minimum shear stresses?
• What values do the maximum and minimum shear stresses have?
• Are there planes on which the shear stress is zero, and if yes, on which

planes?

Mathematically, since the stress vector is given by equation (3.78), this
last question is answered by solving for tn and n, the equation10

Tn = tnn. (3.83)

Namely, only when this equation holds, are the shear stresses zero. Equation
(3.83) can be re-written as

(T−tnI)n = 0 (3.84)

or as⎡⎢⎢⎢⎣
T11 − λ T12 T13

T21 T22 − λ T23

T31 T32 T33 − λ

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

n1

n2

n3

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
0

0

0

⎤⎥⎥⎥⎦ . (3.85)

In equation (3.85) we have replaced tn by λ.
A trivial solution of (3.85) is n1 = n2 = n3 = 0, but since n should be a

unit vector, i.e., ‖n‖ = 1, the trivial solution is of no value. The non-trivial
solutions of (3.85) are obtained by enforcing that the coefficient matrix be
singular, that is, we enforce

det

⎡⎢⎢⎢⎣
T11 − λ T12 T13

T21 T22 − λ T23

T31 T32 T33 − λ

⎤⎥⎥⎥⎦ = 0 (3.86)

which leads to an equation for λ

10 The relation (3.83) is an eigenvalue problem (see e.g. Bathe, 1996)
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λ3 − I1λ
2 + I2λ − I3 = 0 (3.87)

where

I1 = T11 + T22 + T33

I2 =

∣∣∣∣∣∣ T11 T12

T21 T22

∣∣∣∣∣∣ +

∣∣∣∣∣∣ T22 T23

T32 T33

∣∣∣∣∣∣ +

∣∣∣∣∣∣ T11 T13

T31 T33

∣∣∣∣∣∣
I3 =

∣∣∣∣∣∣∣∣∣
T11 T12 T13

T21 T22 T23

T31 T32 T33

∣∣∣∣∣∣∣∣∣ .
The scalar quantities I1, I2 and I3 are called the stress invariants since they
are independent of the reference system used.

The roots of equation (3.87) are the eigenvalues and are denoted as λi,
i = 1, 2 and 3. For each λi we can find an eigenvector ni by solving11 (3.85)
with λ = λi. It can be proven that, since T is symmetric, the solutions of
(3.87) are always real values and three situations can arise (see Bathe, 1996):

(i) The three values of λ which satisfy (3.87) are distinct, i.e., λ1 �= λ2 �= λ3.
Then the vectors n1, n2 and n3 are automatically orthogonal. In fact,
considering n1 and n2, for example, we have

Tn1 = λ1n1

Tn2 = λ2n2

and pre multiplying by nT
2 and nT

1 , respectively, we obtain

nT
2 Tn1 = λ1nT

2 n1 (3.88)

nT
1 Tn2 = λ2nT

1 n2. (3.89)

Since T is symmetric, we have

nT
1 Tn2= nT

2 Tn1 (3.90)

and obtain

(λ1 − λ2)nT
1 n2=0. (3.91)

Since λ1 �= λ2, nT
1 n2 = 0 and hence n1 and n2 are orthogonal vectors.

(ii) Assume λ1 = λ2, λ3 �= λ1. Then there is a unique n3 corresponding to λ3.
Also, it can be proven that any unit vector in a plane orthogonal to n3 is
a vector that satisfies (3.85) for λ = λ1 = λ2. Hence we can choose two

such vectors, orthogonal to each other, and assign them to correspond to
λ1 and λ2.

11 In this solution we enforce ‖ni‖ to be equal to 1
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(iii) Assume λ1 = λ2 = λ3. In this case any unit vector n satisfies (3.85) for
λ = λ1 = λ2 = λ3 and we can choose three orthogonal vectors and assign
them to correspond to λ1, λ2 and λ3.

From these properties, it is easy to see that we can always find three
orthogonal unit vectors, n1, n2 and n3 which satisfy (3.85) and which are
associated with the solutions of (3.87), i.e., λ1, λ2 and λ3. We order λ1, λ2

and λ3 according to their algebraic values

λ1 ≥ λ2 ≥ λ3.

If instead of using the orthonormal unit vectors ei, we now use the or-
thonormal vectors ni to define our reference system12, then the stress tensor
in such a system reads

T =

⎡⎢⎢⎢⎣
λ1 0 0

0 λ2 0

0 0 λ3

⎤⎥⎥⎥⎦ . (3.92)

Of course, the stress tensor given in (3.92), tells that there are no shear
stresses on the planes with normals n1, n2 and n3.

Let us now address the question of determining the maximum and mini-
mum values of the normal stresses. Recall that the normal stress acting on a
plane with normal n is given by

tn= n · t = n · Tn = nT Tn. (3.93)

To find the maximum and minimum values of tn that can be reached by
varying n, it is effective to evaluate tn as a function of the normal n using
the reference system defined by n1, n2 and n3, i.e.,

tn(n)= nTTn =
[

n1 n2 n3

]⎡⎢⎢⎢⎣
λ1 0 0

0 λ2 0

0 0 λ3

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

n1

n2

n3

⎤⎥⎥⎥⎦ .

Hence

tn=λ1 (n1)
2 + λ2 (n2)

2 + λ3 (n3)
2 (3.94)

Since n is a unit vector

(n1)
2 + (n2)

2 + (n3)
2 = 1

12 Orthogonal vectors ni and nj are also orthonormal if nT
i nj = δij (δij , the Kro-

necker delta, = 1 for i = j and = 0 for i �= j)
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and substituting in (3.94)

(n1)
2 = 1 − (n2)

2 − (n3)
2

gives

tn=λ1

(
1 − (n2)

2 − (n3)
2
)

+ λ2 (n2)
2 + λ3 (n3)

2

or

tn=λ1 + (λ2 − λ1) (n2)
2 + (λ3 − λ1) (n3)

2
. (3.95)

Since λ1 ≥ λ2 ≥ λ3 we can conclude that

tn ≤ λ1

and hence the maximum value of tn that can be reached by varying the plane
at the point (varying n) is λ1 and, of course, is reached for the plane with
normal n1. Analogously, substituting (n3)

2 = 1 − (n1)
2 − (n2)

2 into (3.94)
leads to

tn=λ3 + (λ1 − λ3) (n1)
2 + (λ1 − λ2) (n2)

2

which implies that

tn ≥ λ3

and hence λ3 is the minimum value13 of tn and, of course, is reached for the
plane with normal n3.

Since λ1 and λ3 are the maximum and minimum stress values that can
be reached, we call λ1, λ2 and λ3 principal values and denote these principal
stresses as τ1, τ2 and τ3 respectively, and the associated normals n1, n2, n3

the principal stress directions.

Example 3.6
Consider the cylinder as shown in Figure 3.32. The solid cylinder is sub-

jected to self-equilibrating torsional moments Mt at the end sections, i.e.,
Mt = Mtex at x = L and Mt = −Mtex at x = 0. The stresses at a generic
cross-section are given in Figure 3.51 (see Section 3.6). Therefore, at a generic
cross-section there is only a shear stress distribution and the maximum value
τ is related to the twisting moment by τ = Mt

It
R where It = πR4

2 . Let us
consider the point P with coordinates y = R, z = 0, 0 ≤ x ≤ L. Evaluate
the principal stresses and the principal stress directions.
13 The expression tn(n)= nT Tn is actually a Rayleigh quotient, and we have in

general for the Rayleigh quotient ρ (v) = vT Av, with vT v =1 and A a symmet-
ric matrix of order n, that λn ≤ ρ (v) ≤ λ1, where λn and λ1 are the smallest
and largest eigenvalues of A, see Bathe, 1996 for a proof
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Fig. 3.51. Shear stress for a cross-section of a cylinder in torsion

Solution
The stress tensor at point P is given by

T =

⎡⎢⎢⎢⎣
0 0 τ

0 0 0

τ 0 0

⎤⎥⎥⎥⎦
and the principal stresses can be obtained solving

det(T−λI) = det

⎡⎢⎢⎢⎣
−λ 0 τ

0 −λ 0

τ 0 −λ

⎤⎥⎥⎥⎦ = 0

which leads to

−λ
(
λ2 − τ2

)
= 0.

The roots of this equation are λ1 = τ , λ2 = 0 and λ3 = −τ . Hence, the
principal stresses are

τ1 = τ , τ2 = 0, τ3 = −τ.

To obtain the principal stress directions, we need to solve

(T−τiI)ni = 0 with ‖ni‖ = 1

for i = 1 to 3. For the first principal stress, τ1 = τ we have⎡⎢⎢⎢⎣
−τ 0 τ

0 −τ 0

τ 0 −τ

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

n1

n2

n3

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
0

0

0

⎤⎥⎥⎥⎦ (3.96)
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or ⎧⎪⎪⎪⎨⎪⎪⎪⎩
−τn1 + τn3 = 0

−τn2 = 0

τn1 − τn3 = 0

.

Of course, the first and third equations in the above system are the same.
Considering the first and the second equations, we obtain

n1 = n3, n2 = 0

and imposing that

n2
1 + n2

2 + n2
3 = 1 (3.97)

we obtain

2n2
1 = 1 ⇒ n1 = ±

√
2

2
.

Choosing n1 =
√

2
2 we have

n1 =
√

2
2

ex +
√

2
2

ez.

Note that if we had used n1 = −
√

2
2 , then we would have simply obtained

−n1 as the solution. Considering τ2 we have⎡⎢⎢⎢⎣
0 0 τ

0 0 0

τ 0 0

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

n1

n2

n3

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
0

0

0

⎤⎥⎥⎥⎦
or ⎧⎪⎪⎪⎨⎪⎪⎪⎩

τn3 = 0

0 = 0

τn1 = 0

which yields

n1 = 0, n3 = 0

and equation (3.97) gives

n2 = ±1.
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Therefore we can select

n2 = ey.

Finally, for τ3 we have⎡⎢⎢⎢⎣
τ 0 τ

0 τ 0

τ 0 τ

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

n1

n2

n3

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
0

0

0

⎤⎥⎥⎥⎦
or ⎧⎪⎪⎪⎨⎪⎪⎪⎩

τn1 + τn3 = 0

τn2 = 0

τn1 + τn3 = 0

which gives

n1 = −n3, n2 = 0

and substituting in (3.97)

n1 = ±
√

2
2

Selecting n1 = −
√

2
2 yields n3 =

√
2

2 and we have in summary the following
orthonormal vectors defining the principal directions, i.e.,

n1 =
√

2
2

ex +
√

2
2

ez

n2 = ey

n3 = −
√

2
2

ex +
√

2
2

ez.

These can be used as new base vectors of a new reference coordinate system,
and in this system,

T =

⎡⎢⎢⎢⎣
τ 0 0

0 0 0

0 0 −τ

⎤⎥⎥⎥⎦ .

Of course, since τ1 and τ3 are the maximum and minimum normal stresses,
we have
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max(tn) = τ

min(tn) = −τ.

�

Mohr’s circles

In order to obtain further insight into the state of stress at a point, we
study below the stresses for planes which contain one of the principal direc-
tions. For example, let us consider a generic plane π which contains n3. This
situation is summarized in Figure 3.52.

Fig. 3.52. Definition of a generic plane π which contains n3; the angle α is varying;
the stress state in the plane π is analyzed

Since n1 and n2 are orthogonal to n3, they lie in a plane orthogonal to
π which we call ϕ. Let α be the angle between π and n1 measured in the
clockwise sense from n1, see Figure 3.52. The stress vector acting on π can
be decomposed in the normal and tangential directions, i.e.,

t = tn+ts = tnn + tss

where n is the normal to π and we let s be a unit vector in the direction of
ts. The sense of s is chosen such that when ts is positive it tends to rotate
the prism of triangular base shown in Figure 3.52 in the clockwise direction.
The unit vectors n and s and hence t lie in plane ϕ and the stress on the
plane π is
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t = Tn =

⎡⎢⎢⎢⎣
τ1 0 0

0 τ2 0

0 0 τ3

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

− sinα

− cos α

0

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
−τ1 sin α

−τ2 cos α

0

⎤⎥⎥⎥⎦
where we used the reference system defined by n1, n2 and n3. Here α is an
angle that we consider to vary. We can evaluate tn using

tn = nT Tn =
[

− sin α − cos α 0
]⎡⎢⎢⎢⎣

τ1 0 0

0 τ2 0

0 0 τ3

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

− sin α

− cos α

0

⎤⎥⎥⎥⎦
which leads to

tn = τ1 sin2 α + τ2 cos2 α

and using the identities sin2 α + cos2 α = 1 and cos2 α = 1+cos 2α
2

, we obtain

tn =
1
2

(τ1 + τ2) − 1
2

(τ1 − τ2) cos 2α. (3.98)

We can also evaluate ts

ts = = sT Tn =
[

− cos α sin α 0
]⎡⎢⎢⎢⎣

τ1 0 0

0 τ2 0

0 0 τ3

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

− sin α

− cos α

0

⎤⎥⎥⎥⎦
which yields

ts = (τ1 − τ2) cos α sin α =
1
2

(τ1 − τ2) sin 2α. (3.99)

Equations (3.98) and (3.99) allow a graphical representation of the pair (tn,
ts) as shown in Figure 3.53.

This representation is referred to as Mohr’s Circle and represents the
variation of stress in a plane orthogonal to a principal stress direction (this
principal stress might be zero, as in a plane stress analysis, see Section 4.1.2).

If we consider the variation of the stress in planes that contain the prin-
cipal directions n1 and n2, we obtain the additional results summarized in
Figure 3.54. It is possible to show that the pairs (tn, ts) for planes which do
not contain any of the principal directions are in the dashed region of Figure
3.54. This result permits to determine the maximum absolute value of the
shear stress, i.e.,

tsmax = max (‖ts‖) =
(τ1 − τ3)

2
.
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Fig. 3.53. Mohr’s circle graphical representation for pairs (tn, ts)

Fig. 3.54. Mohr’s Circles for planes which contain one of the principal stress
directions. Dashed region represents allowed pairs (tn, ts)

3.3.5 Principal strains

The results derived in the study of the stress at a point can directly be used
to also study the strains at a point and evaluate the principal strain values.

As we mentioned, an eigenvalue problem was considered, see (3.83) with
T a symmetric tensor. The infinitesimal strain tensor E is also symmetric and
hence we can consider the problem of finding the eigenvalues and eigenvectors
of

Ex =λx.

The eigenvalues are represented by

ε1 ≥ ε2 ≥ ε3
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and are called the principal strains. The eigenvectors which can be denoted
also by h1, h2 and h3 define the principal strain directions. In the reference
system defined by the principal strain directions, E is given by

E =

⎡⎢⎢⎢⎣
ε1 0 0

0 ε2 0

0 0 ε3

⎤⎥⎥⎥⎦ .

We note that the off–diagonal terms are zero hence there are no shear
strains between fibers aligned with the principal strain directions. We also
recall that the strain of a fiber whose direction is defined by the unit vector
m is given by

ε(m) = mT Em.

Therefore, referring to (3.93) we can conclude that ε1 is the maximum normal
strain and ε3 is the minimum normal strain and these occur for fibers in the
directions of h1 and h3 respectively.

3.3.6 Infinitesimally small displacements

The discussion presented so far in Section 3.3 is valid for arbitrarily large
displacements. In fact, the concept of stress was introduced for a generic
deformed configuration of the solid. However, as discussed in Section 2.1.5,
when we consider infinitesimally small displacements, the principles of linear
and angular momenta are written for the undeformed configuration. Then,
the conditions of equilibrium apply for the undeformed configuration, that
is, as if the solid had not displaced.

Hence, when we consider infinitesimally small displacements all the dis-
cussion presented in Section 3.3 is valid considering the undeformed configu-
ration. In particular, the differential equilibrium equations now read

∂T11

∂x1
+

∂T12

∂x2
+

∂T13

∂x3
+ fB

1 = 0

∂T21

∂x1
+

∂T22

∂x2
+

∂T23

∂x3
+ fB

2 = 0

∂T31

∂x1
+

∂T32

∂x2
+

∂T33

∂x3
+ fB

3 = 0.

The formulation of the mathematical model for three-dimensional solids is
greatly simplified for infinitesimally small displacement conditions. One of
the reasons is that equilibrium is enforced in the undeformed configuration
which is known.
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3.3.7 Technical or engineering notation for the stresses

In the technical or engineering notation, which is commonly used in the
engineering literature, the coordinate axes are denoted by x, y and z, i.e.,
x ≡ x1, y ≡ x2 and z ≡ x3 and the stress components are represented by
τxx, τyy, τzz, τxy = τyx, τxz = τzx and τyz = τzy.

3.4 Constitutive equations

In this section, we introduce the characterization of the material of de-
formable solids. Recall that, both, the study of the deformations in Section
3.2 and the study of the stresses in Section 3.3 were carried out without
having specified a material behavior for the solid. But in the analysis of the
truss structures (see Section 2.2.4) and the analysis of the steel sheet (Section
3.1) we used the fact, justified by experimental observations, that the stresses
induce strains.

For the one-dimensional stress conditions in the bars, the truss structures
could be completely analyzed using Hooke’s law relating the one-dimensional
normal stress to the one-dimensional normal strain.

For the analysis of the steel sheet, we introduced the Poisson’s ratio effect
and the problem could be solved only for very simple conditions. Actually,
the observed interaction between the strains and the stresses prompted to
undertake a 3-D study of the deformations and stresses.

When we consider a three-dimensional solid undergoing arbitrarily large
displacements, the constitutive equation is defined as the relation that gives
the Cauchy stress at a point in a given configuration as a function of the
complete history of deformation, that is, from the initial configuration of
the solid up to the current configuration (see Bathe, 1996 and Kojic and
Bathe, 2005). Such a general constitutive equation can be used to describe
not only usual structural engineering materials but also very unusual ones.

The concept explored for the 1-D problem, that for an elastic material
the normal stress depends only on the current state of deformation given
by the current normal strain, can be generalized to define a constitutive
relation for elastic materials in 3-D conditions. Considering three-dimensional
solids undergoing arbitrarily large displacements, we can define a constitutive
relation for elastic behavior by

T = F(X) for every point of the solid

that is, the Cauchy stress at a point in the current configuration depends on
the deformation gradient X at that point through a function F .

However, our present objective is to introduce the elastic behavior con-
sidering infinitesimally small displacements. This is achieved by relating, for
a generic point in the solid, the state of stress in the undeformed configura-
tion to the state of strain for infinitesimally small displacement conditions.
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Our discussion is restricted to linear elastic materials, i.e., to those materials
for which the deformation is immediate (with loading) and reversible, and
moreover the relation between the stresses and strains is linear. We also as-
sume that the material is isotropic, i.e., it behaves in the same manner in all
directions, and homogenous, i.e., its behavior does not change from point to
point. Under these conditions the relation between the stresses and strains
can be represented by the generalized Hooke’s law which we detail below.

3.4.1 Hooke’s law for three-dimensional isotropic material
conditions

Consider a parallelepiped of differential volume dx1dx2dx3 subjected to a
uniform one-dimensional state of stress as shown in Figure 3.55a. Since this
is a one-dimensional state of normal stress we can use Hooke’s law

ε =
tn
E

where E is the Young modulus. In the two directions orthogonal to the di-

Fig. 3.55. a) Surface forces inducing an uniform state of stress; b) Placement of
the parallelepiped with respect to the coordinate axes

rection of the applied stress a contraction takes place due to Poisson’s effect
given by −ν tn

E , where ν is the Poisson ratio. If we place the parallelepiped
with respect to the coordinate axes shown in Figure 3.55b the Cauchy stress
tensor would be
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T =

⎡⎢⎢⎢⎣
tn 0 0

0 0 0

0 0 0

⎤⎥⎥⎥⎦
i.e.,

T11 = tn

and the infinitesimal strain tensor would be given by

E =

⎡⎢⎢⎢⎣
tn

E 0 0

0 −ν tn

E 0

0 0 −ν tn

E

⎤⎥⎥⎥⎦
or

E11 =
tn
E

=
T11

E

and

E22 = E33 = −ν
tn
E

= −ν
T11

E
= −νE11.

If we consider analogous situations for the directions e2 and e3, and use
superposition, we can write

E11 =
T11

E
− ν

E
(T22 + T33) (3.100)

E22 =
T22

E
− ν

E
(T11 + T33) (3.101)

E33 =
T33

E
− ν

E
(T11 + T22) (3.102)

where T22 and T33 are normal stresses for the planes with normals e2 and
e3, respectively. We note that an isotropic behavior was implicitly assumed
since the same behavior was assumed for the three directions (expressed by E
and ν). For material with non-isotropic behavior, the Young’s modulus and
Poisson’s ratios depend on the material direction considered, see Crandall,
Dahl and Lardner, 1978 and Jones, 1975. We will focus in this book on
isotropic material behaviors.

Now let us suppose that shearing tractions shown in Figure 3.56a are
applied to the surface of the parallelepiped. The stress tensor is given by

T =

⎡⎢⎢⎢⎣
0 ts 0

ts 0 0

0 0 0

⎤⎥⎥⎥⎦
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Fig. 3.56. a) Uniform shearing state of stress; b) Deformation associated with
uniform shearing state of stress

It is an experimentally supported observation that the deformation in-
duced by this state of stress is that given in Figure 3.56b14, i.e., a shear
strain is induced and the strain tensor is given by

E =

⎡⎢⎢⎢⎣
0 γ

2
0

γ
2 0 0

0 0 0

⎤⎥⎥⎥⎦
as detailed in Example 3.2.

The relation between the shear stress and the shear strain is

γ =
ts
G

(3.103)

where G is a material constant called the shear modulus. Relation (3.103)
expressed in components reads

2E12 =
T12

G
(3.104)

and considering analogous uniform shearing stress states corresponding to
T13 and T23, we have

2E13 =
T13

G
(3.105)

14 Of course, an infinitesimal rigid rotation could be added to the deformation which
would not affect the resulting E (see Section 3.2.5)
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2E23 =
T23

G
. (3.106)

Collecting equations (3.100) to (3.102) and (3.104) to (3.106), we have
the (so-called) Generalized Hooke’s law which relates the stress components
to the strain components

E11 =
T11

E
− ν

E
(T22 + T33)

E22 =
T22

E
− ν

E
(T11 + T33)

E33 =
T33

E
− ν

E
(T11 + T22)

E12 =
T12

2G
or γ12 =

T12

G

E13 =
T13

2G
or γ13 =

T13

G

E23 =
T23

2G
or γ23 =

T23

G
.

When the solid is subjected to changes in its temperature field, thermal
strains are induced. Let αth be the thermal expansion coefficient and

Δθ(x) = θf − θi

be the field of temperature changes, where θi and θf are the initial and final
temperature fields respectively. The induced thermal strain field is given by

Eth =

⎡⎢⎢⎢⎣
αthΔθ 0 0

0 αthΔθ 0

0 0 αthΔθ

⎤⎥⎥⎥⎦ .

Then, the Generalized Hooke’s law reads

E11 =
T11

E
− ν

E
(T22 + T33) + αthΔθ

E22 =
T22

E
− ν

E
(T11 + T33) + αthΔθ

E33 =
T33

E
− ν

E
(T11 + T22) + αthΔθ

E12 =
T12

2G
or γ12 =

T12

G
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E13 =
T13

2G
or γ13 =

T13

G

E23 =
T23

2G
or γ23 =

T23

G
.

Of course, the strains above are the total strains, that is, the strains due to
the stress field – the mechanical strains – plus those due to the temperature
changes – the thermal strains.

3.4.2 Relation between G and E, ν

The following analysis shows that there is a relation between the shear mod-
ulus G, Young’s modulus E and Poisson’s ratio ν.

Fig. 3.57. a) Uniform state of stress in a cube; b) Section of the cube by a cutting
plane parallel to x1x2. The square ABCD represents the trace of the parallelepiped
on the cutting plane

Consider the uniform state of stress in the cube shown in Figure 3.57a.
The stress tensor is given by

T =

⎡⎢⎢⎢⎣
tn 0 0

0 −tn 0

0 0 0

⎤⎥⎥⎥⎦ . (3.107)

Let us select a parallelepiped in the interior of the cube of Figure 3.57a as
shown in Figure 3.57b.

The stress acting on the face defined by AB can be evaluated by
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t = Tn =

⎡⎢⎢⎢⎣
tn 0 0

0 −tn 0

0 0 0

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

√
2

2√
2

2

0

⎤⎥⎥⎥⎦ = tn

⎡⎢⎢⎢⎣
√

2
2

−
√

2
2

0

⎤⎥⎥⎥⎦ .

This stress is tangential to the parallelepiped’s face since

nT Tn =
[ √

2
2

√
2

2 0
]
tn

⎡⎢⎢⎢⎣
√

2
2

−
√

2
2

0

⎤⎥⎥⎥⎦ = 0

and its direction is given by the unit vector s, sT =
[ √

2
2

−
√

2
2

0
]
. It is

therefore a shear stress given by

ts = tss

with ts = tn.

Fig. 3.58. a) Stress acting on the parallelepiped faces; b) Induced deformation

Analogous derivations for the other three faces of the parallelepiped lead
to the situation shown in Figure 3.58a. If we choose a new set of axes to
represent the stress tensor denoted by x′

1, x′
2 and x′

3 with base vector (e′1,
e′2, e′3) (see Figure 3.58a), we have

Te′ =

⎡⎢⎢⎢⎣
0 ts 0

ts 0 0

0 0 0

⎤⎥⎥⎥⎦
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and by the generalized Hooke’s law, we obtain

Ee′ =

⎡⎢⎢⎢⎣
0 ts

2G 0
ts

2G 0 0

0 0 0

⎤⎥⎥⎥⎦ .

The notation Te′ Ee′ is being used in the above expressions to emphasize
that we are referring the stresses/strains to the reference system defined by
e′, that is, (e′1, e′2, e′3).

The strain tensor for the reference system (e1, e2, e3) denoted by e can
also be evaluated by Hooke’s law. From (3.107)

E11 =
T11

E
− ν (T22 + T33) =

tn
E

− ν

E
(−tn) =

tn (1 + ν)
E

E22 =
T22

E
− ν (T11 + T33) = − tn

E
− ν

E
tn = − tn (1 + ν)

E

E33 =
T33

E
− ν (T11 + T22) = − ν

E
(tn − tn) = 0

E12 = E13 = E23 = 0

leading to

Ee =

⎡⎢⎢⎢⎣
tn(1+ν)

E
0 0

0 − tn(1+ν)
E 0

0 0 0

⎤⎥⎥⎥⎦ . (3.108)

We note that the normal strain of a fiber in the direction of e1 is εl (e1) =
tn(1+ν)

E
(refer to (3.108)). This strain can also be calculated by using the

strain tensor Ee′ . The unit vector e1 can be written as
√

2
2 e′1 +

√
2

2 e′2 and
therefore the strain in this direction can also be evaluated by

ε�(
√

2
2

e′1 +
√

2
2

e′2) =
[ √

2
2

√
2

2 0
]
Ee′

⎡⎢⎢⎢⎣
√

2
2√
2

2

0

⎤⎥⎥⎥⎦

=
[ √

2
2

√
2

2
0

]⎡⎢⎢⎢⎣
0 ts

2G 0
ts

2G
0 0

0 0 0

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

√
2

2√
2

2

0

⎤⎥⎥⎥⎦
=

ts
2G

.
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Equating the values, we obtain

ts
2G

=
tn
E

(1 + ν)

since ts = tn, we arrive at

G =
E

2 (1 + ν)
. (3.109)

Hence, of the three elastic constants E, ν and G only two are independent.
In Figure 3.58b we show schematically the deformed configuration of the

section. The fiber considered above is given by DB in the undeformed con-
figuration and DyBy in the deformed configuration. We note that the only
way this fiber displays the same deformation when interpreted as being in
the cube subjected to normal stresses and in the parallelepiped subjected to
pure shear is when relation (3.109) holds.

3.4.3 Generalized Hooke’s law for an isotropic material in matrix
notation

We may define column matrices to collect the independent components of
the stress and strain tensors denoting them by τ and ε respectively

τT =
[

τ11 τ22 τ33 τ12 τ13 τ23

]
εT =

[
ε11 ε22 ε33 γ12 γ13 γ23

]
where τij = Tij , εii = Eii for i, j = 1, 2, 3 and γ12 = 2E12, γ13 = 2E13,
γ23 = 2E23. Considering the above definitions the generalized Hooke’s law
reads

ε = Dτ (3.110)

where

D =
1
E

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −ν −ν 0 0 0

−ν 1 −ν 0 0 0

−ν −ν 1 0 0 0

0 0 0 2 (1 + ν) 0 0

0 0 0 0 2 (1 + ν) 0

0 0 0 0 0 2 (1 + ν)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (3.111)

We also have
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τ = D−1ε = Cε (3.112)

where

C =
E (1 − ν)

(1 + ν) (1 − 2ν)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 ν
1−ν

ν
1−ν

0 0 0
ν

1−ν 1 ν
1−ν 0 0 0

ν
1−ν

ν
1−ν 1 0 0 0

0 0 0 1−2ν
2(1−ν)

0 0

0 0 0 0 1−2ν
2(1−ν) 0

0 0 0 0 0 1−2ν
2(1−ν)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(3.113)

We note that the Hooke’s law written in the form of (3.112) leads directly
to the expected result that an infinitesimally small rigid motion produces no
stresses, since this motion results in zero strains.

We can also conclude either from (3.110) or (3.112) that for an isotropic
elastic material the principal directions of the stress and strain tensors co-
incide, since zero shear stresses lead to zero shear strains and vice-versa
and, hence, the principal stresses and strains are also related by (3.110) and
(3.112).

3.5 Formulation of the linear elasticity problem

In Chapter 2 we examined, in the context of truss structures, the Three
Fundamental Conditions to be satisfied in the formulation of a structural
mechanics problem:

• Equilibrium.
• Compatibility.
• Constitutive equations.

In Section 3.1, by means of a simple problem − the analysis of the steel
sheet − we motivated the need for expressing these conditions for a three-
dimensional deformable body.

Compatibility was addressed in Section 3.2 in which the deformations
of a 3-D body were studied, strain measures were defined and the relations
between the strains and displacements were derived.

In Section 3.3, the state of stress at a point was characterized by means
of the Cauchy stress tensor and the equations of differential equilibrium were
established.
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In Section 3.4, the relations between the strains and stresses were detailed
for an elastic, isotropic and homogeneous material. Now we are ready to
formulate the elasticity problem.

Consider a deformable solid subjected to the action of a field of body
forces fB defined for every point x within the solid. On part of its surface,
Su, prescribed displacements û are imposed and on the complementary part
of the surface, Sf , with unit normal n, prescribed surface tractions fS are
imposed15. We note that Su ∪ Sf = S which represents the surface of the
body and Su ∩ Sf = ∅. This situation is schematically represented in Figure
3.59 where the undeformed configuration V is shown. The linear elasticity
problem can be posed as follows.

Fig. 3.59. Schematic representation of actions and boundary conditions for linear
elasticity problem

Formulation of the 3-D elasticity problem

Find the displacement field u(x), the stress field τ(x) and the strain field
ε(x) such that for every point x within V

3∑
j=1

∂τij

∂xj
+ fB

i = 0 i = 1, 2, 3 (3.114)

15 There are situations for which at a point on the surface the displacements are
restricted in some directions and the surface tractions are prescribed in the re-
maining directions. Then Su and Sf should be defined for each component of
surface displacement and surface traction (see Section 2.1.1)
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εij =
1
2

(
∂ui

∂xj
+

∂uj

∂xi

)
i, j = 1, 2, 3 (3.115)

τ = Cε (3.116)

with the boundary conditions for points x on Sf

3∑
j=1

τijnj = fS
i , i = 1, 2, 3, (3.117)

where the ni are the components of n, and for the points x on Su

u = û (3.118)

or

ui = ûi, i = 1, 2, 3.

The equations (3.114) to (3.118) are field equations in the volume V
and on the surfaces Sf and Su, as applicable. The Equilibrium Condition
corresponds to satisfying the differential equilibrium in (3.114) and (3.117);
the Compatibility Condition corresponds to finding continuous displacements
u(x) that satisfy (3.118) and from which the strains are calculated as given
in (3.115); and the Constitutive Condition is given in (3.116). Therefore all
the requirements for the solution of the 3-D problem are contained in the
above equations and the formulation is complete.

Note that when the solid is also subjected to known temperature changes,
we should use in the above formulation the generalized Hooke’s law which
includes the thermal strains as given in Section 3.4.1.

The search for analytical solutions of the above problem when special-
ized to specific geometries, loading and boundary conditions has challenged
mathematicians and engineers alike for a number of centuries. A great deal of
solutions have been derived − albeit frequently based on simplifying assump-
tions − and they are available in the literature. These solutions represent
a very important resource for understanding the behavior of elastic solids
subjected to external actions.

In the past, prior to the availability of computer resources and numerical
methods for the solution of (3.114) to (3.118), these analytical solutions to
special problems, derived and idealized from the full 3-D problem, were the
only solutions available for analysis. While, at present, full 3-D problems with
arbitrary boundary conditions can be solved using the finite element method,
the solution of the full 3-D problem is in many cases not an effective way to
perform engineering analysis.
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The 3-D elasticity model is of great importance, since it is our highest or-
der hierarchical model assuming linear elastic behavior. Therefore, it provides
a conceptual reference model from which other specific and frequently more
effective models can be derived. The solutions of these models can then be
compared with the solution of the full 3-D model giving good insight into the
modeling of physical problems − all within the objective of using hierarchical
mathematical modeling in engineering analysis.

Before we close this chapter, we present two illustrative cases of analytical
solutions of the 3-D elasticity model which are important for structural anal-
ysis: the pure bending of a prismatic bar of rectangular cross-section (given
in Example 3.7) and the uniform torsion of a prismatic bar (given in Section
3.6).

Example 3.7
Consider the undeformed configuration of a solid as shown in Figure 3.60.

Fig. 3.60. Definition of the solid under study

Let the displacement field be given by

u = − M

EI
xz (3.119)

v = ν
M

EI
yz (3.120)

w =
M

2EI

[
x2 + ν

(
z2 − y2

)]
. (3.121)

where M is a positive constant, E and ν are Young’s modulus and Poisson’s
ratio of the material and I is the moment of inertia about the y axis, I = bh3

12
(see Section 4.2.2).

(i) Find the stress field associated with the given displacement field.
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(ii) Identify the problem for which the given displacement field represents
the exact solution of the 3-D elasticity model.

Solution

(i) The strains are given as

εxx =
∂u

∂x
= − M

EI
z

εyy =
∂v

∂y
= ν

M

EI
z

εzz =
∂w

∂z
= ν

M

EI
z

εxy =
1
2

(
∂u

∂y
+

∂v

∂x

)
= 0

εxz =
1
2

(
∂u

∂z
+

∂w

∂x

)
=

1
2

(
− M

EI
x +

M

EI
x

)
= 0

εyz =
1
2

(
∂v

∂z
+

∂w

∂y

)
=

1
2

(
ν

M

EI
y − ν

M

EI
y

)
= 0.

The stresses can be obtained using the generalized Hooke’s law (see equa-
tion (3.112))

τxx =
E (1 − ν)

(1 + ν) (1 − 2ν)

[
εxx +

ν

1 − ν
(εyy + εzz)

]
.

Noting that for our problem

εyy = εzz = −νεxx (3.122)

we obtain

τxx = Eεxx = −M

I
z.

We also have

τyy =
E (1 − ν)

(1 + ν) (1 − 2ν)

[
εyy +

ν

1 − ν
(εxx + εzz)

]

τzz =
E (1 − ν)

(1 + ν) (1 − 2ν)

[
εzz +

ν

1 − ν
(εxx + εyy)

]
and considering (3.122) we obtain

τyy = τzz = 0.

Of course, since γxy = γxz = γyz = 0, we have

τxy = τxz = τyz = 0.
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This completes part (i) of the problem.

(ii) To identify the 3-D problem actually solved, we need to determine which
fields of body forces and surface tractions are in equilibrium with this
stress field. Considering the differential equilibrium equations and intro-
ducing this stress field, we have

∂τxx

∂x
+

∂τxy

∂y
+

∂τxz

∂z
+ fB

x = 0 ⇒ fB
x = 0

∂τxy

∂x
+

∂τyy

∂y
+

∂τyz

∂z
+ fB

y = 0 ⇒ fB
y = 0

∂τxz

∂x
+

∂τyz

∂y
+

∂τzz

∂z
+ fB

z = 0 ⇒ fB
z = 0.

Therefore, there should be no body forces. Since the only nonzero stress
component is τxx, the surface tractions should be zero on all four lateral
surfaces. Further, for the surface defined by x = L

Tn = fS ⇒ τxxex = fS ⇒ fS = −M

I
zex

and for x = 0

Tn = fS ⇒ -τxxex = fS ⇒ fS =
M

I
zex.

If we reduce the surface tractions at the section given by x = L to its
center of gravity we obtain for the force resultant

R =
∫

A

fS dA =
∫

A

−M

I
zex dA = 0

and for the moment resultant with respect to the center of the section,
represented by C

MC =
∫

A

(yey + zez) × fS dA

=
∫

A

(
M

I
yzez − M

I
z2ey

)
dA = −M

I

∫
A

z2dA ey = −M ey.

Hence the applied surface tractions at x = L correspond to a bending
moment, see Figure 3.61. Analogously, for the end section defined by
x = 0 we obtain R = 0 and Mey leading to a self-equilibrated force
system.
Note also that the displacement field given in (3.119) − (3.121) satisfies
u = 0 for x = 0, and u = v = w = 0 for x = y = z = 0.



3.5 Formulation of the linear elasticity problem 165

Fig. 3.61. Problem summary. Body forces are zero

We can conclude that the displacements given in (3.119) to (3.121), the
derived strains and stresses correspond to the exact solution of the cantilever
beam subjected to a pure bending moment at the tip, as summarized in
Figure 3.61, as long as the bending moment at x = L is introduced by the
surface traction field fS = −M

I zex and the displacement restrictions at the
“built-in section” x = 0 are as shown in Figure 3.61.

In Figure 3.62, we show the deformed and undeformed configuration of the
solid. We see that a line parallel to the y axis in the undeformed configuration
is deformed into an arc, whose curvature is opposite to the curvature of the
deformed axis. This transverse curvature is known as anticlastic curvature
and it is due to the Poisson effect.

Fig. 3.62. Deformations for selected planes. a) Plane given by x = 0; b) Plane
given by y = 0. The magnitude of the displacements is chosen for visualization
purposes; the shown displacements are much larger than those for which the linear
model would be adequate

�
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3.6 Torsion of a prismatic bar

We present below the exact solution of a 3-D elasticity problem − the Saint
Venant torsion solution for a prismatic bar − which is of considerable prac-
tical importance. It is also a classical example of the so-called semi-inverse
method for deriving solutions. In this method, some assumptions on the func-
tional form of the displacements are made, either motivated by experimental
observations or by intuition. These displacement assumptions are the starting
point towards obtaining a solution.

Fig. 3.63. Generic prismatic bar which will be subjected to torsion. Solid section
with no holes

Consider a prismatic bar with a generic cross-section as shown in Figure
3.63. Suppose that the bar is subjected to self-equilibrated torsional moments
at the end sections, i.e., Mt = Mtex at x = L and −Mt at x = 0. It is an
experimental observation that for a bar subjected to such loading the cross-
sections rotate as rigid bodies in their own plane (see Example 3.5 for the
in-plane displacements). However, these sections do not remain plane, they
display some warping. Motivated by these observations, we will seek a solution
of the 3-D elasticity mathematical model of this problem using the following
displacement assumptions

u = θ′ψ(y, z) (3.123)

v = −θ′xz (3.124)

w = θ′xy (3.125)

where θ′ is the rate of rotation of the cross-sections with respect to the x
axis which is assumed to be constant. Hence, denoting by θ(x) the angle of
rotation of a generic section, we have
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θ′ =
dθ

dx
= constant.

Referring to Example 3.5, v and w as given by equations (3.124) and (3.125)
are the displacements associated with the section rotations given by θ(x) =
θ′x. Note that we are implicitly assuming that there is no section rotation
at x = 0. The functional form of u reflects the warping of the section. In
fact, ψ(y, z) gives the spatial variation of the out of section displacements
and is called the warping function. Its precise form should be determined
based on additional conditions as will be seen shortly. We also note that the
intensity of warping is assumed to be proportional to the rate of rotation of
the sections, θ′.

Starting from the displacement assumptions given in equations (3.123) to
(3.125), we derive the associated strain field

εxx =
∂u

∂x
= 0, εyy =

∂v

∂y
= 0, εzz =

∂w

∂z
= 0

γxy =
∂u

∂y
+

∂v

∂x
= θ′

∂ψ

∂y
− θ′z = θ′

(
∂ψ

∂y
− z

)

γxz =
∂u

∂z
+

∂w

∂x
= θ′

∂ψ

∂z
+ θ′y = θ′

(
∂ψ

∂z
+ y

)
γyz =

∂v

∂z
+

∂w

∂y
= −θ′x + θ′x = 0.

The stresses can be obtained using the generalized Hooke’s law. Since we are
considering a homogenous and isotropic material we have

τxx =
E (1 − ν)

(1 + ν) (1 − 2ν)

[
εxx +

ν

1 − ν
(εyy + εzz)

]

τyy =
E (1 − ν)

(1 + ν) (1 − 2ν)

[
εyy +

ν

1 − ν
(εxx + εzz)

]

τzz =
E (1 − ν)

(1 + ν) (1 − 2ν)

[
εzz +

ν

1 − ν
(εxx + εyy)

]
which lead to

τxx = τyy = τzz = 0 (3.126)

since εxx = εyy = εzz = 0. For the shear stresses we have

τxy = Gγxy = Gθ′
(

∂ψ

∂y
− z

)
(3.127)

τxz = Gγxz = Gθ′
(

∂ψ

∂z
+ y

)
(3.128)

τyz = Gγyz = 0. (3.129)
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Consider now the equilibrium conditions. Assuming that we have no body
forces, the differential equilibrium relations read

∂τxx

∂x
+

∂τxy

∂y
+

∂τxz

∂z
= 0 (3.130)

∂τxy

∂x
+

∂τyy

∂y
+

∂τyz

∂z
= 0 (3.131)

∂τxz

∂x
+

∂τyz

∂y
+

∂τzz

∂z
= 0. (3.132)

Referring to the stresses given in equations (3.126) to (3.129) , we verify that
the equilibrium conditions (3.131) and (3.132) are identically satisfied and
equation (3.130) leads to

∂2ψ

∂y2
+

∂2ψ

∂z2
= 0 (3.133)

which is the condition on the warping function that guarantees equilibrium.
Next, we consider the boundary conditions. Since the lateral surfaces are

free from any surface tractions, we should have

Fig. 3.64. Generic cross section

Tn =

⎡⎢⎢⎢⎣
0 τxy τxz

τxy 0 0

τxz 0 0

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

0

ny

nz

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
0

0

0

⎤⎥⎥⎥⎦
or

τxyny + τxznz = 0. (3.134)
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Let s be the arc length coordinate along the section boundary as shown
in Figure 3.64. Of course, for a given cross-section, the section boundary is
characterized by y = y(s) and z = z(s). Defining α as the angle that the
surface outward’s unit normal makes with the z axis, we can write

ny = sin α, nz = cos α

ds cos α = dy, ds sin α = −dz

and introducing these relations into equation (3.134)

τxz
dy

ds
− τxy

dz

ds
= 0. (3.135)

This equation can be written in terms of the warping function

Gθ′
(

∂ψ

∂z
+ y

)
dy

ds
− Gθ′

(
∂ψ

∂y
− z

)
dz

ds
= 0

which finally leads to(
∂ψ

∂z
+ y

)
dy

ds
−

(
∂ψ

∂y
− z

)
dz

ds
= 0. (3.136)

This condition is to be satisfied for every point on the section boundary.
The field equation (3.133) subjected to the boundary condition (3.136)

should determine the warping function ψ(y, z). We note that the boundary
condition (3.136) depends only on the geometry of the cross-section. There-
fore, given a cross-section, the warping function can be determined and de-
pends only on the shape of the cross-section.

Although the warping function can be determined as described above,
Prandtl (see Timoshenko and Goodier, 1970) has introduced a stress func-
tion φ(y, z) to propose an alternative, somewhat simpler, formulation of the
torsion problem. In order to introduce the stress function, let us consider the
equilibrium equation (3.130) and re-write it as

∂τxy

∂y
= −∂τxz

∂z
. (3.137)

Therefore, we can define a function φ(y, z) such that

∂φ

∂z
= τxy and

∂φ

∂y
= −τxz (3.138)

and (3.137) is automatically satisfied.
Using (3.127) and (3.128) we also have

∂φ

∂z
= Gθ′

(
∂ψ

∂y
− z

)
(3.139)

∂φ

∂y
= −Gθ′

(
∂ψ

∂z
+ y

)
. (3.140)
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To eliminate ψ and obtain the governing differential equation in terms of φ
we take derivatives of equations (3.139) and (3.140) with respect to z and y
respectively, and then add to obtain

∂2φ

∂y2
+

∂2φ

∂z2
= −2Gθ′. (3.141)

Expressing the boundary condition (3.135) in terms of φ, we obtain

∂φ

∂y

dy

ds
+

∂φ

∂z

dz

ds
= 0

which leads to

dφ

ds
= 0 ⇒ φ ≡ constant over the boundary.

Since the stresses are obtained from φ by taking derivatives we can choose

φ = 0 on the boundary of the cross-section. (3.142)

Let us summarize what we have obtained so far.
The formulation based on the warping function can be written as:
Find ψ(y, z) defined on the cross-section domain such that⎧⎨⎩
∂2ψ
∂y2 + ∂2ψ

∂z2 = 0 for every point in the cross-section domain(
∂ψ
∂z + y

)
dy
ds −

(
∂ψ
∂y − z

)
dz
ds = 0 for every point on the cross-section boundary.

Having determined ψ(y, z), the displacements can be obtained from equations
(3.123) − (3.125) and the stresses from (3.126) − (3.129) . We note that θ′ is
still to be found as will be discussed shortly. The formulation based on the
stress function can be summarized as:

Find φ(y, z) defined on the cross-section domain such that⎧⎨⎩
∂2φ
∂y2 + ∂2φ

∂z2 = −2Gθ′ for every point in the cross-section domain

φ = 0 for every point on the cross-section boundary.

Having determined φ(y, z), we can obtain ψ(y, z) by integration of equations
(3.139)−(3.140) and hence the remaining quantities can be found as described
above. The same observation regarding θ′ applies.

To complete the formulation of the torsion problem and to obtain θ′

we consider the tractions on the boundary surfaces at x = L and x = 0.
Specifically

fS = Tex at x = L

or
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⎡⎢⎢⎢⎣
fS

x

fS
y

fS
z

⎤⎥⎥⎥⎦=

⎡⎢⎢⎢⎣
0 τxy τxz

τxy 0 0

τxz 0 0

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

1

0

0

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
0

τxy

τxz

⎤⎥⎥⎥⎦
where τxy and τxz are given by equation (3.127) and (3.128) or alternatively
by (3.138) . These stress components are shown in Figure 3.65.

Fig. 3.65. Stress components at section x = L

Let us evaluate the stress resultants at the end section x = L. The normal
force N and the bending moments My = Myey and Mz = Mzez are trivially
found to be zero since

N =
∫

A

τxx dA = 0, My =
∫

A

τxx z dA = 0, Mz =
∫

A

−τxx y dA = 0

when we take into account that τxx = 0. The shear forces Vy = Vyey and
Vz = Vzez are given by

Vy =
∫

A

τxy dA, Vz =
∫

A

τxz dA

which can be shown to be zero by expressing τxy and τxz in terms of φ (see
equation (3.138)) and performing the above integrations.

Therefore, we can conclude that the stresses at the end section x = L are
mechanically equivalent to a torsional moment Mt only, since the resultants
N = My = Mz = Vy = Vz = 0 and we have

Mt =
∫

A

(τxzy − τxyz) dA (3.143)

=
∫

A

τxz y dA −
∫

A

τxy z dA.
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Performing the integrations it can be shown that

Mt = 2
∫

A

φdA (3.144)

which relates the stress function to the torsional moment applied. We can also
relate the torsional moment to the warping function. Starting from (3.143)
and introducing (3.127) and (3.128), we obtain

Mt = Gθ′
∫

A

[(
∂ψ

∂z
+ y

)
y −

(
∂ψ

∂y
− z

)
z

]
dA

= Gθ′
∫

A

[(
∂ψ

∂z
y − ∂ψ

∂y
z

)
+

(
y2 + z2

)]
dA.

Recalling that the warping function ψ depends only on the geometry of the
cross-section, we can define the torsional moment of inertia of the cross-
section

It =
∫

A

[(
∂ψ

∂z
y − ∂ψ

∂y
z

)
+

(
y2 + z2

)]
dA. (3.145)

and hence

Mt

GIt
= θ′ (3.146)

establishing the link between the torsional moment and θ′. Analogous deriva-
tions hold for the end section given by x = 0.

The formulation of the torsion problem is now complete and its solutions
is an exact solution to the 3–D elasticity mathematical model as long as
Mt is applied by means of the surface tractions fS = Tex at x = L and
fS = T (−ex) at x = 0.

As an example, we present below the solution of the torsion problem for
an elliptical cross-section.

Example 3.8

Consider a bar with the elliptical cross-section in Figure 3.66. The bar is
subjected to self–equilibrated torsional moments Mt = Mtex at x = L and
−Mt at x = 0. Solve for the stress and displacement fields.
Solution

We consider the solution in terms of the stress function φ. Since the
boundary equation is

y2

a2
+

z2

b2
− 1 = 0

we can investigate solutions of the form
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Fig. 3.66. Definitions for elliptic cross section

φ = C

(
y2

a2
+

z2

b2
− 1

)
(3.147)

where C is a real constant. Of course, (3.147) satisfies the condition φ = 0 at
the boundary and substituting (3.147) in (3.141) yields

2C

a2
+

2C

b2
= −2Gθ′

which leads to

C = −a2b2Gθ′

a2 + b2
.

Therefore

φ = − a2b2

a2 + b2
Gθ′

(
y2

a2
+

z2

b2
− 1

)
and the stresses

τxy =
∂φ

∂z
= − 2a2

a2 + b2
Gθ′z, τxz = −∂φ

∂y
=

2b2

a2 + b2
Gθ′y.

Using relations (3.139) and (3.140) we obtain(
∂ψ

∂y
− z

)
= − 2a2

a2 + b2
z,

(
∂ψ

∂z
+ y

)
=

2b2

a2 + b2
y (3.148)

which lead to ψ(y, z) by integration. In fact, integrating (3.148) with respect
to y and z respectively leads to

ψ = yz − 2a2

a2 + b2
yz + f(z), ψ = −yz +

2b2

a2 + b2
yz + f(y).

Hence
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ψ =
b2 − a2

a2 + b2
yz + K

where K is a real constant. Assuming that u = 0 for y = z = 0 yields

ψ(y, z) =
b2 − a2

a2 + b2
yz.

Having the warping function ψ(y, z), we can obtain It from (3.145) which
gives

It =
πa3b3

a2 + b2

and we can relate Mt to θ′, i.e.,

θ′ =
Mt

GIt
=

Mt

G

a2 + b2

πa3b3
. (3.149)

Alternatively we could have used

Mt = 2
∫

A

φdA

leading also to the result given in (3.149). The displacements are

u = θ′ψ(y, z) =
Mt

G

b2 − a2

πa3b3
yz

v = −θ′xz = −Mt

G

a2 + b2

πa3b3
xz

w = θ′xy =
Mt

G

a2 + b2

πa3b3
xy

and the stresses can be written in terms of Mt by

τxy = −2Mta
2

πa3b3
z, τxz =

2Mtb
2

πa3b3
y.

The stress variation along the selected lines is schematically represented
in Figure 3.67a and the out-of-plane displacements u(y, z) − the warping
displacements − are shown in Figure 3.67b. We note that the above solution
includes the classical torsion solution of a prismatic bar of circular cross-
section when a = b = r, r being the radius of the circular cross-section.
In this case, there is no warping of the cross-section and since the solution
derived above is an exact solution of the 3-D elasticity problem, the classical
solution of a circular prismatic bar is also exact.

�
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Fig. 3.67. a) Some shear stresses for the solution of a prismatic bar of elliptic cross
section; b) Lines connecting points of equal values of warping displacements. The
solid lines represent positive displacements and the dashed lines represent negative
displacements

The membrane analogy

A valuable physical interpretation of the solution reached in (3.141) is ob-
tained by the Prandtl membrane analogy. Namely, a membrane prestressed
with uniform tension T and subjected to transverse pressure p undergoes the
transverse displacement u(y, z) calculated from (see e.g. Bathe, 1996)

∂2u

∂y2
+

∂2u

∂z2
= − p

T
(3.150)

with u = 0 on the boundary. Hence from (3.141) , we obtain

φ = c u(y, z) with c =
2Gθ′T

p
. (3.151)

Therefore, the transverse displacement of the membrane is proportional to φ
with c the constant of proportionality.

There are two properties linked to the fact that the shear stresses are
obtained as derivatives of φ which are of interest. In Figure 3.68a, we show
a generic cross-section and a curve for which φ is constant. It can be shown
(Timoshenko and Goodier, 1970) that

ts = tss

that is, ts is always tangent to the curve of constant φ since s is the tangent
unit vector to this curve, and that

ts = −dφ

dn
(3.152)
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that is, the derivative of φ with respect to the normal direction to the curve
of constant φ gives the magnitude of the shear stress ts. In Figure 3.68b a
typical distribution is shown. Due to the membrane analogy, a curve which
gives equal values of φ corresponds to a level curve of the deformed membrane
and hence we can qualitatively anticipate the shear stress distributions.

Fig. 3.68. a) A generic curve of constant φ; b) A typical shear stress distribution
for the points on a curve of constant φ

We demonstrate these observations in the following example.

Example 3.9

Derive the shear stress distribution and the torsional moment of inertia for
the torsion problem for a thin rectangular cross-section as shown in Figure
3.69a.

Solution

In Figure 3.69b, the deformation of the associated membrane is shown. We
can see that, except in the small end regions, the membrane displacements
are such that

∂u

∂y
= 0.

Therefore, equation (3.150) simplifies to

∂2u

∂z2
= − p

T
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Fig. 3.69. a) Thin rectangular cross section; b) Associated deformed membrane

which upon integration leads to

u =
p

8T

(
t2 − 4z2

)
.

Using relation (3.151), we have

φ =
Gθ′

4
(
t2 − 4z2

)
.

The shear stresses can be evaluated from (3.138) which leads to

τxz = −∂φ

∂y
= 0, τxy =

∂φ

∂z
= −2Gθ′z.

Note the shear stresses are tangent to the level curves of the membrane as
shown in Figure 3.69b. The torsional moment of inertia can be calculated
using (3.144) and (3.146)

It =
bt3

3
.

Of course, the derived quantities are approximate since we assumed that
∂u
∂y = 0 also in the end regions.

�
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