7.5 - The Quadrature Hybrid

Reading Assignment: pp. 333-336

There are two different types of ideal 4-port 3dB couplers: the symmetric solution and the anti-symmetric solution. The symmetric solution is called the Quadrature Hybrid.

HO: THE QUADRATURE HYBRID

The Quadrature Hybrid possesses D_{4} symmetry-it has two planes of bilateral reflection symmetry.

Q: So?
A: This fact leads to circuit analysis procedure that is an extension of odd-even mode analysis. Instead of 2 modes (odd-even), the circuit can be expressed as a superposition of 4 modes!

Q: Four modes?! That's twice as many as 2 modes; that sounds like twice as much work!

A: Nope! It turns out that analyzing each of the four modes is simple and direct-much easier than analyzing the odd and/or even mode. As a result, this 4-mode analysis is much easier than the odd-even mode analysis.

HO: A QUAD-MODE ANALYSIS OF THE QUADRATURE HYBRID

The 90° Hybrid Coupler

The 90° Hybrid Coupler is a 4-port device, otherwise known as the quadrature coupler or branch-line coupler. Its scattering matrix (ideally) has the symmetric solution for a matched, lossless, reciprocal 4-port device:

$$
\mathcal{S}=\left[\begin{array}{cccc}
0 & \alpha & j \beta & 0 \\
\alpha & 0 & 0 & j \beta \\
j \beta & 0 & 0 & \alpha \\
0 & j \beta & \alpha & 0
\end{array}\right]
$$

However, for this coupler we find that

$$
\alpha=\frac{-j}{\sqrt{2}} \quad j \beta=\frac{-1}{\sqrt{2}}
$$

Therefore, the scattering matrix of a quadrature coupler is:

It is evident that, just as with the directional coupler, the ports are matched and the device is lossless. Note also, that if a signal is incident on one port only, then there will be a port from which no power will exit (i.e., an isolation port).

Unlike the directional coupler, the power that is flows into the input port will be evenly divided between the two non-isolated ports.

For example, if 10 mW is incident on port 3 (and all other ports are matched), then 5 mW will flow out of both port 1 and port 4 , while no power will exit port 2 (the isolated port).

Note however, that the although the magnitudes of the signals leaving ports 1 and 4 are equal, the relative phase of the two signals are separated by 90 degrees $\left(e^{j \pi / 2}=j\right)$.

We find, therefore, that if in real terms the voltage out of port 1 is:

$$
v_{1}(z, t)=\frac{\left|V_{0 \overline{3}}\right|}{\sqrt{2}} \cos \left(\omega_{0} t+\beta z\right)
$$

then the signal form port 4 will be:

$$
v_{4}(\boldsymbol{z}, t)=\frac{\left|V_{0 \overline{3}}\right|}{\sqrt{2}} \sin \left(\omega_{0} t+\beta \boldsymbol{z}\right)
$$

There are many useful applications where we require both the sine and cosine of a signal!

Q: But how do we construct this device?

A: Similar to the Wilkinson power divider, we construct a quadrature hybrid with quarter-wavelength sections of transmission lines.

Figure 7.21 (p. 333) Geometry of a branch-line coupler.

Q: Wow! How can we analyze such a complex circuit?

A: Note that this circuit is symmetric-we can use odd/even mode analysis!

Figure 7.23 (p. 334) Decomposition of the branch-line coupler into even- and odd-mode excitations. (a) Even mode (e). (b) Odd mode (o).

The details of this odd/even mode analysis are provide on pages 333-335 of your textbook.

Note that the $\lambda / 4$ structures make the quadrature hybrid an inherently narrow-band device.

Figure 7.25 (p .337) Sparameter magnitudes versus frequency for the branch-line coupler of Example 7.5

A Quad-Mode Analysis of

the Quadrature Hybrid

The quadrature hybrid is a matched, lossless, reciprocal fourport network that possesses two planes of bilateral symmetry (ie. D_{4} symmetry):

To determine the scattering parameters $S_{11}, S_{21}, S_{31}, S_{41}$, of this network, a matched source is placed on port 1 , while matched loads terminate the other 3 ports.

This source destroys both planes of bilateral symmetry in the circuit. We can however recast the circuit above with a precisely equivalent circuit:

Note that the four series voltage sources on port 1 add to the original value of v_{s}, while the series source at the other four ports add to a value of zero-thus providing short circuit from the passive load Z_{0} to ground.

To analyze this circuit, we can apply superposition.

Sequentially turning off all but one source at each of the 4 ports provides us with four "modes". Each of these four modes can be analyzed, and the resulting circuit response is simply a coherent summation of the results of each of the four modes!

The benefit of this procedure is that each of the four modes preserve circuit symmetry. As a result, the planes of bilateral symmetry become virtual shorts and/or virtual opens.

Mode A

The even symmetry of this circuit is now restored, and so the voltages at each port are identical:

$$
V_{1 a}^{+}=V_{2 a}^{+}=V_{3 a}^{+}=V_{4 a}^{+}=\frac{V_{s}}{8} \quad \text { and } \quad V_{1 a}^{-}=V_{2 a}^{-}=V_{3 a}^{-}=V_{4 a}^{-}
$$

The two virtual opens segment this circuit into 4 identical sections. To determine the amplitude $V_{1 a}^{-}$, we need only analyze one of these sections:

$$
I=0
$$

The circuit has simplified to a 1-port device consisting of the parallel combination of two $1 / 8$ open-circuited stubs. The admittance of a $1 / 8$ open-circuit stub is:

$$
\begin{aligned}
y_{\text {stub }}^{o c} & =j y_{0} \cot \beta \ell \\
& =j y_{0} \cot 1 / 8 \\
& =j y_{0}
\end{aligned}
$$

As a result, the input admittance is:

$$
\begin{aligned}
y_{i n}^{d} & =j \sqrt{2} y_{0}+j y_{0} \\
& =j y_{0}(\sqrt{2}+1)
\end{aligned}
$$

The corresponding reflection coefficient is:

$$
\begin{aligned}
\Gamma_{a} & =\frac{y_{0}-y_{i n}^{a}}{y_{0}+y_{i n}^{a}} \\
& =\frac{y_{0}-j y_{0}(\sqrt{2}+1)}{y_{0}+j y_{0}(\sqrt{2}+1)} \\
& =\frac{1-j(\sqrt{2}+1)}{1+j(\sqrt{2}+1)}
\end{aligned}
$$

Since the input admittance is purely reactive, the magnitude of this reflection coefficient is $\left|\Gamma_{a}\right|=1.0$. The phase of this complex value can be determined from its real and imaginary part:

$$
\begin{aligned}
\Gamma_{a} & =\frac{1-j(\sqrt{2}+1)}{1+j(\sqrt{2}+1)}\left(\frac{1-j(\sqrt{2}+1)}{1-j(\sqrt{2}+1)}\right) \\
& =\frac{1-j 2(\sqrt{2}+1)-(\sqrt{2}+1)^{2}}{1+(\sqrt{2}+1)^{2}} \\
& =\frac{-2(\sqrt{2}+1)-j 2(\sqrt{2}+1)}{4+2 \sqrt{2}} \\
& =\frac{-(\sqrt{2}+1)-j(\sqrt{2}+1)}{\sqrt{2}(\sqrt{2}+1)} \\
& =\frac{-1-j}{\sqrt{2}}
\end{aligned}
$$

So that:

$$
\operatorname{Re}\left\{\Gamma_{a}\right\}=\frac{-1}{\sqrt{2}} \quad \text { and } \quad \operatorname{Im}\left\{\Gamma_{a}\right\}=\frac{-1}{\sqrt{2}}
$$

Thus the reflection coefficient for mode A is:

$$
\Gamma_{a}=-\frac{1}{\sqrt{2}}-j \frac{1}{\sqrt{2}}=e^{-j^{3} / 4}
$$

And thus the amplitude of the reflected wave at port 1 is:

$$
V_{1 a}^{-}=\Gamma_{a} V_{1 a}^{+}=V_{s} \frac{e^{-j 3 \pi / 4}}{8}
$$

And so from the even symmetry of mode A we conclude:

$$
V_{1 a}^{-}=V_{2 a}^{-}=V_{3 a}^{-}=V_{4 a}^{-}=V_{s} \frac{e^{-j 3 \pi / 4}}{8}
$$

For mode B, the even symmetry exists about the vertical circuit plane, while odd symmetry occurs across the horizontal plane.

$$
V_{1 b}^{+}=V_{2 b}^{+}=-V_{3 b}^{+}=-V_{4 b}^{+}=\frac{V_{s}}{8} \quad \text { and } \quad V_{1 b}^{-}=V_{2 b}^{-}=-V_{3 b}^{-}=-V_{4 b}^{-}
$$

The circuit can again be segmented into four sections, with each section consisting of a shorted $\pi / 8$ stub and an opencircuited $1 / 8$ stub in parallel.

The admittance of a $1 / 8$ short-circuit stub is:

$$
\begin{aligned}
y_{\text {stub }}^{s c} & =-j y_{0} \tan \beta \ell \\
& =-j y_{0} \tan \lambda / 8 \\
& =-j y_{0}
\end{aligned}
$$

As a result, the input admittance is:

$$
y_{i n}^{b}=j \sqrt{2} y_{0}-j y_{0}=j y_{0}(\sqrt{2}-1)
$$

The corresponding reflection coefficient is:

$$
\begin{aligned}
\Gamma_{b} & =\frac{1-j(\sqrt{2}-1)}{1+j(\sqrt{2}-1)} \\
& =\frac{1-j 2(\sqrt{2}-1)-(\sqrt{2}-1)^{2}}{1+(\sqrt{2}-1)^{2}} \\
& =\frac{2(\sqrt{2}-1)-j 2(\sqrt{2}-1)}{2 \sqrt{2}(\sqrt{2}-1)} \\
& =\frac{1}{\sqrt{2}}-j \frac{1}{\sqrt{2}} \\
& =e^{-j^{\pi / 4}}
\end{aligned}
$$

And thus the amplitude of the reflected wave at port 1 is:

$$
V_{1 b}^{-}=\Gamma_{b} V_{1 b}^{+}=V_{s} \frac{e^{-j \pi / 4}}{8}
$$

And so from the symmetry of mode B we conclude:

$$
V_{1 b}^{-}=V_{2 b}^{-}=-V_{3 b}^{-}=-V_{4 b}^{-}=V_{s} \frac{e^{-j \pi / 4}}{8}
$$

For mode C, odd symmetry exists about the vertical circuit plane, while even symmetry occurs across the horizontal plane.

$$
V_{1 c}^{+}=-V_{2 c}^{+}=-V_{3 c}^{+}=V_{4 c}^{+}=\frac{V_{s}}{8} \quad \text { and } \quad V_{1 c}^{-}=-V_{2 c}^{-}=-V_{3 c}^{-}=V_{4 c}^{-}
$$

The circuit can again be segmented into four sections, with each section consisting of a shorted $\pi / 8$ stub and an opencircuited $1 / 8$ stub in parallel.

As a result, the input admittance is:

$$
y_{i n}^{c}=j \sqrt{2} y_{0}+j y_{0}=j y_{0}(\sqrt{2}-1)
$$

Note that this result is simply the complex conjugate of $Y_{i n}{ }^{b}$, and so we can immediately conclude:

$$
\Gamma_{c}=\Gamma_{b}^{*}=e^{+j \pi / 4}
$$

And thus the amplitude of the reflected wave at port 1 is:

$$
V_{1 c}^{-}=\Gamma_{c} V_{1 c}^{+}=V_{s} \frac{e^{+j \pi / 4}}{8}
$$

And so from the symmetry of mode C we conclude:

$$
V_{1 c}^{-}=-V_{2 c}^{-}=-V_{3 c}^{-}=V_{4 c}^{-}=V_{s} \frac{e^{+j \pi / 4}}{8}
$$

For mode D, odd symmetry exists about both planes of circuit symmetry.

$$
+V_{1 c}^{+}=-V_{2 c}^{+}=+V_{3 c}^{+}=-V_{4 c}^{+}=\frac{V_{s}}{8} \quad \text { and } \quad+V_{1 c}^{-}=-V_{2 c}^{-}=+V_{3 c}^{-}=-V_{4 c}^{-}
$$

The circuit can again be segmented
 into four sections, with each section consisting two short-circuited $1 / 8$ stubs in parallel.

As a result, the input admittance is:

$$
V=0
$$

$$
y_{i n}^{d}=-j \sqrt{2} y_{0}-j y_{0}=-j y_{0}(\sqrt{2}+1)
$$

Note that this result is simply the complex conjugate of $Y_{i n}{ }^{a}$, and so we can immediately conclude:

$$
\Gamma_{d}=\Gamma_{a}^{*}=e^{+j 3 \pi / 4}
$$

And thus the amplitude of the reflected wave at port 1 is:

$$
V_{1 d}^{-}=\Gamma_{d} V_{1 d}^{+}=V_{s} \frac{e^{+j 3 \pi / 4}}{8}
$$

And so from the symmetry of mode D we find:

$$
+V_{1 c}^{-}=-V_{2 c}^{-}=+V_{3 c}^{-}=-V_{4 c}^{-}=V_{s} \frac{e^{+j^{33 / 4}}}{8}
$$

Not surprisingly, the symmetry of the quadrature hybrid has resulted in four modal solutions that possess precisely the same symmetry when plotted on the complex Γ plane.
$|\Gamma|=1$

The modal solutions associated with the other three ports are simply symmetric permutations of the port 1 solutions:

$$
\begin{aligned}
& \Gamma_{d}=\Gamma_{a}^{*} \\
& \Gamma_{b}=-\Gamma_{d}=-\Gamma_{a}^{*} \\
& \Gamma_{d}=\Gamma_{a}^{*} \text { 。 } \\
& \Gamma_{c}=\Gamma_{b}^{*}=-\Gamma_{a} \\
& |\Gamma|=1 \\
& \Gamma_{a}{ }^{\circ} \\
& \stackrel{\Gamma}{b}_{b}=-\Gamma_{a}^{*}
\end{aligned}
$$

Since our circuit is linear, we can determine the solution to our original circuit as a superposition of our four modal solutions:

$$
\begin{aligned}
V_{01}^{-} & =V_{1 a}^{-}+V_{1 b}^{-}+V_{1 c}^{-}+V_{1 d}^{-} \\
& =\frac{V_{s}}{8} e^{-j 3 \pi / 4}+\frac{V_{s}}{8} e^{-j \pi / 4}+\frac{V_{s}}{8} e^{+j \pi / 4}+\frac{V_{s}}{8} e^{+j 3 \pi / 4} \\
& =\left(e^{-j 3 \pi / 4}+e^{-j \pi / 4}+e^{+j \pi / 4}+e^{+j 3 \pi / 4}\right) \frac{V_{s}}{8} \\
& =\left(2 \cos ^{3 \pi / 4}+2 \cos \pi / 4\right) \frac{V_{s}}{8} \\
& =(-2 \cos \pi / 4+2 \cos \pi / 4) \frac{V_{s}}{8} \\
& =0 \\
V_{02}^{-} & =V_{2 a}^{-}+V_{2 b}^{-}+V_{2 c}^{-}+V_{2 d}^{-} \\
& =\frac{V_{s}}{8} e^{-j 3 \pi / 4}+\frac{V_{s}}{8} e^{-j \pi / 4}-\frac{V_{s}}{8} e^{+j \pi / 4}-\frac{V_{s}}{8} e^{+j 3 \pi / 4} \\
& =\left(e^{-j 3 \pi / 4}+e^{-j \pi / 4}-e^{-j \pi / 4}-e^{+j \pi / 4}\right) \frac{V_{s}}{8} \\
& =(-j 2 \sin 3 \pi / 4-j 2 \sin \pi / 4) \frac{V_{s}}{8} \\
& =(-j 2 \cos \pi / 4-j 2 \cos \pi / 4) \frac{V_{s}}{8} \\
& =V_{s} \frac{-j}{2 \sqrt{2}}
\end{aligned}
$$

$$
\begin{aligned}
V_{03}^{-} & =V_{3 a}^{-}+V_{3 b}^{-}+V_{3 c}^{-}+V_{3 d}^{-} \\
& =\frac{V_{s}}{8} e^{-j 3 \pi / 4}-\frac{V_{s}}{8} e^{j \pi / 4}-\frac{V_{s}}{8} e^{-j \pi / 4}+\frac{V_{s}}{8} e^{-j 3 \pi / 4} \\
& =\left(e^{-j 3 \pi / 4}-e^{-j \pi / 4}-e^{+j \pi / 4}+e^{+j 3 \pi / 4}\right) \frac{V_{s}}{8} \\
& =\left(2 \cos ^{3 \pi / 4}-2 \cos \pi / 4\right) \frac{V_{s}}{8} \\
& =(-2 \cos \pi / 4-2 \cos \pi / 4) \frac{V_{s}}{8} \\
& =V_{s} \frac{-1}{2 \sqrt{2}} \\
V_{04}^{-} & =V_{4 a}^{-}+V_{4 b}^{-}+V_{4 c}^{-}+V_{4 d}^{-} \\
& =\frac{V_{s}}{8} e^{-j 3 \pi / 4}-\frac{V_{s}}{8} e^{j \pi / 4}+\frac{V_{s}}{8} e^{-j \pi / 4}-\frac{V_{s}}{8} e^{-j 3 \pi / 4} \\
& =\left(e^{-j 3 \pi / 4}-e^{j \pi / 4}+e^{-j \pi / 4}-e^{-j 3 \pi / 4}\right) \frac{V_{s}}{8} \\
& =(j 2 \sin 3 \pi / 4-j 2 \sin \pi / 4) \frac{V_{s}}{8} \\
& =(j 2 \sin \pi / 4-j 2 \sin \pi / 4) \frac{V_{s}}{8} \\
& =0
\end{aligned}
$$

From these results we can determine the scattering parameters $S_{11}, S_{21}, S_{31}, S_{41}$:

$$
S_{11}=\frac{V_{01}^{-}}{V_{01}^{+}}=\frac{2}{V_{s}} 0=0
$$

$$
\begin{aligned}
& S_{21}=\frac{V_{02}^{-}}{V_{01}^{+}}=\frac{2}{V_{s}} \frac{-j V_{s}}{2 \sqrt{2}}=\frac{-j}{\sqrt{2}} \\
& S_{31}=\frac{V_{03}^{-}}{V_{01}^{+}}=\frac{2}{V_{s}} \frac{-V_{s}}{2 \sqrt{2}}=\frac{-1}{\sqrt{2}} \\
& S_{41}=\frac{V_{04}^{-}}{V_{01}^{+}}=\frac{2}{V_{s}} 0=0
\end{aligned}
$$

Given the symmetry of the device, we can extend these four results to determine the entire scattering matrix:

$$
\mathcal{S}=\left[\begin{array}{cccc}
0 & -j / \sqrt{\sqrt{2}} & -1 / \sqrt{2} & 0 \\
-j / \sqrt{2} & 0 & 0 & -1 / \sqrt{2} \\
-1 / \sqrt{2} & 0 & 0 & -j / \sqrt{2} \\
0 & -1 / \sqrt{2} & -j / \sqrt{2} & 0
\end{array}\right]
$$

Precisely the correct result!

