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8.4 Filter Transformations 
 
Reading Assignment: pp. 398-405 
 
Q:  OK, so we now have the solutions for Chebychev and 
Butterworth low-pass filters.  But what about high-pass, 
band-pass, or band-stop filters? 
 
A: Surprisingly, the low-pass filter solutions likewise provide 
us with the solutions for any and all high-pass, band-pass and 
band-stop filters!  All we need to do is apply filter 
transformations. 
 
HO: FILTER TRANSFORMATIONS 
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Filter Transformations 
 
Q:  OK, so we now know how to design a lumped-element lowpass 
filter—how do we design say, a bandpass or highpass filter?? 
 
A:  If we have already designed a lowpass filter, we are almost 
done! 
 
We can use the concept of filter transformations to determine 
the new filter designs from a lowpass design.  As a result, we 
can construct  a 3rd-order Butterworth high-pass filter or a 
5th-order Chebychev  bandpass filter! 
 
We will find that the mathematics for each filter design  will be 
very similar.  For example, the difference between a lowpass 
and highpass filter is essentially an inverse—the frequencies 
below cω  are mapped into frequencies above cω —and vice versa. 
 
 
 
 
 
 
 
 
 
 
For example, we find that: 
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( ) ( )0 1lp hpω ω= = = ∞ =T T  
likewise: 

( ) ( )0 0lp hpω ω= ∞ = = =T T  
 

but: 
 

( ) ( ) 0 5c clp hp .ω ω ω ω= = = =T T  
 

Thus, in general we find: 
 

( ) 1
c clp hpω α ω ω ω

α
⎛ ⎞= = =⎜ ⎟
⎝ ⎠

T T  

 
where α  is some positive, real value (i.e., 0 α≤ < ∞ ). 
 
For example, if 0 5.α = , then  
 

( ) ( )0 5 2 0c clp hp. .ω ω ω ω= = =T T  
 

In other words, the transmission through a low-pass filter at 
one half the cutoff frequency will be equal to the transmission 
through a (mathematically similar) high-pass filter at twice the 
cutoff frequency. 
 
Now, recall the loss-ratio functions for Butterworth and 
Chebychev low-pass filters: 
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Note in each case that the argument of the function has the 
form: 

c

ω
ω

 

 
In other words, the frequency is normalized by the cutoff 
frequency. 
 
Consider now this mapping: 
 

c

c

ωω
ω ω

⇒ −  

 
This mapping transforms our lowpass filter response into a 
corresponding high pass filter response!  I.E.: 
 

( )
2

2

1

1

N
hp c

LR

N
c

P ωω
ω

ω
ω

⎛ ⎞= + −⎜ ⎟
⎝ ⎠

⎛ ⎞= + ⎜ ⎟
⎝ ⎠

             
( ) 2 2

2 2

1

1

hp c
LR N

c
N

P k T

k T

ωω
ω

ω
ω

⎛ ⎞= + −⎜ ⎟
⎝ ⎠
⎛ ⎞= + ⎜ ⎟
⎝ ⎠

 

 
Q:  Yikes! Where did this mapping come from?  Are sure this 
works? 
 
Consider the again the case where cω α ω= ;  the low pass 
responses are: 
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Now consider the high-pass responses where cω ω α= : 
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Thus, we can conclude from this mapping that: 
 

( ) 1lp hp
LR c LR cP Pω α ω ω ω

α
⎛ ⎞= = =⎜ ⎟
⎝ ⎠

 

 
And since 1

LRP −=T : 
 

( ) 1
c clp hpω α ω ω ω

α
⎛ ⎞= = =⎜ ⎟
⎝ ⎠

T T  

 
Exactly the result that we expected!  Our mapping provides a 
method for transforming a low-pass filter into a high-pass 
filter! 
 
Q:  OK Poindexter, you have succeeded in providing another one 
of your “fascinating” mathematical insights, but does this 
“mapping” provide anything useful for us engineers? 
 
A:  Absolutely!  We can apply this mapping one component 
element (capacitor or inductor) at a time to our low-pass 
schematic design, and the result will be a direct transformation 
into a high-pass filter schematic. 
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Recall the reactance of an inductor element in a low-pass filter 
design is: 
 

lp lp s
n n n n s

c c
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while that of a capacitor is: 
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Now applying the mapping: 
 

c
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ω ω

⇒ −  

 
we find for the inductor: 
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and the capacitor: 
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 It is clear (do you see why?) that the transformation has 
converted a positive (i.e., inductive) reactance into a negative 
(i.e., capacitive) reactance—and vice versa. 
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As a result, to transform a low-pass filter schematic into a 
high-pass filter schematic, we: 
 
1.  Replace each inductor with a capacitor of value: 
 

2
1 1hp

n lp
n s c c n

C
g R Lω ω

= =  

 
2.  Replace each capacitor with an inductor of value: 
 
 

2
1hp s

n lp
n c c n

RL
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= =  

 
Thus, a high-pass ladder circuit consists of series capacitors 
and shunt inductors (compare this to the low-pass) ladder 
circuit!).  
 
 
 
 
 
 
 
Q:  What about band-pass filters? 
 
A: The difference between a lowpass and bandpass filter is 
simply a shift in the “center” frequency of the filter, where the 
center frequency of a lowpass filter is essentially 0ω = . 
 
 

.... 
1L  3L  5L  

2C  4C  
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For this case, we find that the mapping: 
 

0

0
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transforms a low-pass function into a band-pass function, 
where ∆  is the normalized bandwidth: 
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ω ω
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and  1ω  and 2ω  define the two 3dB frequencies of the bandpass 
filter. 
 
For example, the Butterworth low-pass function: 
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becomes a Butterworth band-pass function: 
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Applying this transform to the reactance of a low-pass inductive 
element: 
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Look what happened!  The transformation turned the inductive 
reactance into an inductive reactance in series with a capacitive 
reactance. 
 
As similar analysis of the transformation of the low-pass 
capacitive reactance shows that it is transformed into an 
inductive reactance in parallel with an capacitive reactance. 
 
As a result, to transform a low-pass filter schematic into a 
band-pass filter schematic, we: 
 
1.  Replace each series inductor with a capacitor and inductor in 
series, with values: 
 

0 0
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2.  Replace each shunt capacitor with an inductor and capacitor 
in parallel, with values: 
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∆
 

 
Thus, the ladder circuit for band-pass circuit is simply a ladder 
network of LC  resonators, both series and parallel: 
 
 
 
 
 
 

.... 1L  3L  

2L  
2C  4C  

1C  3C  

4L  


