8.4 Filter Transformations

Reading Assignment: pp. 398-405
Q: OK, so we now have the solutions for Chebychev and Butterworth low-pass filters. But what about high-pass, band-pass, or band-stop filters?

A: Surprisingly, the low-pass filter solutions likewise provide us with the solutions for any and all high-pass, band-pass and band-stop filters! All we need to do is apply filter transformations.

HO: FIlTER TRANSFORMATIONS

Filter Transformations

Q: OK, so we now know how to design a lumped-element lowpass filter-how do we design say, a bandpass or highpass filter??

A: If we have already designed a lowpass filter, we are almost done!

We can use the concept of filter transformations to determine the new filter designs from a lowpass design. As a result, we can construct a $3^{\text {rd }}$-order Butterworth high-pass filter or a $5^{\text {th }}$-order Chebychev bandpass filter!

We will find that the mathematics for each filter design will be very similar. For example, the difference between a lowpass and highpass filter is essentially an inverse-the frequencies below ω_{c} are mapped into frequencies above ω_{c}-and vice versa.

For example, we find that:

$$
\mathbf{T}_{/ p}(\omega=0)=\mathbf{T}_{h p}(\omega=\infty)=1
$$

likewise:

$$
\mathbf{T}_{/ p}(\omega=\infty)=\mathbf{T}_{h p}(\omega=0)=0
$$

but:

$$
\mathbf{T}_{/ p}\left(\omega=\omega_{c}\right)=\mathbf{T}_{h p}\left(\omega=\omega_{c}\right)=0.5
$$

Thus, in general we find:

$$
\mathrm{T}_{/ p}\left(\omega=\alpha \omega_{c}\right)=\mathrm{T}_{h p}\left(\omega=\frac{1}{\alpha} \omega_{c}\right)
$$

where α is some positive, real value (i.e., $0 \leq \alpha<\infty$).
For example, if $\alpha=0.5$, then

$$
\mathbf{T}_{/ p}\left(\omega=0.5 \omega_{c}\right)=\mathbf{T}_{h p}\left(\omega=2.0 \omega_{c}\right)
$$

In other words, the transmission through a low-pass filter at one half the cutoff frequency will be equal to the transmission through a (mathematically similar) high-pass filter at twice the cutoff frequency.

Now, recall the loss-ratio functions for Butterworth and Chebychev low-pass filters:

$$
P_{L R}^{/ p}(\omega)=1+\left(\frac{\omega}{\omega_{c}}\right)^{2 N} \quad P_{L R}^{/ p}(\omega)=1+k^{2} T_{N}^{2}\left(\frac{\omega}{\omega_{c}}\right)
$$

Note in each case that the argument of the function has the form:

$$
\frac{\omega}{\omega_{c}}
$$

In other words, the frequency is normalized by the cutoff frequency.

Consider now this mapping:

$$
\frac{\omega}{\omega_{c}} \Rightarrow-\frac{\omega_{c}}{\omega}
$$

This mapping transforms our lowpass filter response into a corresponding high pass filter response! I.E.:

$$
\begin{array}{rlrl}
P_{L R}^{h p}(\omega) & =1+\left(-\frac{\omega_{c}}{\omega}\right)^{2 N} & P_{L R}^{h p}(\omega) & =1+k^{2} T_{N}^{2}\left(-\frac{\omega_{c}}{\omega}\right) \\
& =1+\left(\frac{\omega_{c}}{\omega}\right)^{2 N} & =1+k^{2} T_{N}^{2}\left(\frac{\omega_{c}}{\omega}\right)
\end{array}
$$

Q: Yikes! Where did this mapping come from? Are sure this works?

Consider the again the case where $\omega=\alpha \omega_{c}$; the low pass responses are:

$$
\begin{aligned}
P_{L R}^{\prime p}(\omega) & =1+\left(\frac{\alpha \omega_{c}}{\omega_{c}}\right)^{2 N} & P_{L R}^{\prime p}(\omega) & =1+k^{2} T_{N}^{2}\left(\frac{\alpha \omega_{c}}{\omega_{c}}\right) \\
& =1+(\alpha)^{2 N} & & =1+k^{2} T_{N}^{2}(\alpha)
\end{aligned}
$$

Now consider the high-pass responses where $\omega=\omega_{c} / \alpha$:

$$
\begin{aligned}
P_{L R}^{h p}(\omega) & =1+\left(\frac{\omega_{c}}{\omega_{c} / \alpha}\right)^{2 N} & P_{L R}^{h p}(\omega) & =1+k^{2} T_{N}^{2}\left(\frac{\omega_{c}}{\omega_{c} / \alpha}\right) \\
& =1+(\alpha)^{2 N} & & =1+k^{2} T_{N}^{2}(\alpha)
\end{aligned}
$$

Thus, we can conclude from this mapping that:

$$
P_{L R}^{\prime p}\left(\omega=\alpha \omega_{c}\right)=P_{L R}^{h p}\left(\omega=\frac{1}{\alpha} \omega_{c}\right)
$$

And since $\mathbf{T}=P_{L R}^{-1}$:

$$
\mathbf{T}_{/ p}\left(\omega=\alpha \omega_{c}\right)=\mathbf{T}_{h p}\left(\omega=\frac{1}{\alpha} \omega_{c}\right)
$$

Exactly the result that we expected! Our mapping provides a method for transforming a low-pass filter into a high-pass filter!

Q: OK Poindexter, you have succeeded in providing another one of your "fascinating" mathematical insights, but does this "mapping" provide anything useful for us engineers?

A: Absolutely! We can apply this mapping one component element (capacitor or inductor) at a time to our low-pass schematic design, and the result will be a direct transformation into a high-pass filter schematic.

Recall the reactance of an inductor element in a low-pass filter design is:

$$
j X_{n}^{\prime p}=j \omega L_{n}^{l p}=j \omega g_{n}\left(\frac{R_{s}}{\omega_{c}}\right)=j g_{n} R_{s}\left(\frac{\omega}{\omega_{c}}\right)
$$

while that of a capacitor is:

$$
j X_{n}^{/ p}=\frac{1}{j \omega C_{n}^{\prime p}}=\frac{1}{j \omega\left(\frac{g_{n}}{R_{s} \omega_{c}}\right)^{-1}}=-j \frac{R_{s}}{g_{n}}\left(\frac{\omega_{c}}{\omega}\right)
$$

Now applying the mapping:

$$
\frac{\omega}{\omega_{c}} \Rightarrow-\frac{\omega_{c}}{\omega}
$$

we find for the inductor:

$$
j X_{n}^{h p}=j g_{n} R_{s}\left(-\frac{\omega_{c}}{\omega}\right)=-j \frac{g_{n} R_{s} \omega_{c}}{\omega}=\frac{1}{j\left(g_{n} R_{s} \omega_{c}\right)^{-1} \omega}
$$

and the capacitor:

$$
j X_{n}^{h p}=-j \frac{R_{s}}{g_{n}}\left(-\frac{\omega}{\omega_{c}}\right)=j \omega\left(\frac{R_{s}}{g_{n} \omega_{c}}\right)
$$

It is clear (do you see why?) that the transformation has converted a positive (i.e., inductive) reactance into a negative (i.e., capacitive) reactance-and vice versa.

As a result, to transform a low-pass filter schematic into a high-pass filter schematic, we:

1. Replace each inductor with a capacitor of value:

$$
C_{n}^{h p}=\frac{1}{g_{n} R_{s} \omega_{c}}=\frac{1}{\omega_{c}^{2} L_{n}^{1 p}}
$$

2. Replace each capacitor with an inductor of value:

$$
L_{n}^{h p}=\frac{R_{s}}{g_{n} \omega_{c}}=\frac{1}{\omega_{c}^{2} C_{n}^{1 p}}
$$

Thus, a high-pass ladder circuit consists of series capacitors and shunt inductors (compare this to the low-pass) ladder circuit!).

Q: What about band-pass filters?

A: The difference between a lowpass and bandpass filter is simply a shift in the "center" frequency of the filter, where the center frequency of a lowpass filter is essentially $\omega=0$.

For this case, we find that the mapping:

$$
\frac{\omega}{\omega_{c}} \Rightarrow \frac{1}{\Delta}\left(\frac{\omega}{\omega_{0}}-\frac{\omega_{0}}{\omega}\right)
$$

transforms a low-pass function into a band-pass function, where Δ is the normalized bandwidth:

$$
\Delta=\frac{\omega_{2}-\omega_{1}}{\omega_{0}}
$$

and ω_{1} and ω_{2} define the two 3 dB frequencies of the bandpass filter.

For example, the Butterworth low-pass function:

$$
P_{L R}(\omega)=1+\left(\frac{\omega}{\omega_{c}}\right)^{2 N}
$$

becomes a Butterworth band-pass function:

$$
P_{L R}(\omega)=1+\frac{1}{\Delta^{2 N}}\left(\frac{\omega}{\omega_{0}}-\frac{\omega_{0}}{\omega}\right)^{2 N}
$$

Applying this transform to the reactance of a low-pass inductive element:

$$
j X_{n}^{b p}=j g_{n} R_{s} \frac{1}{\Delta}\left(\frac{\omega}{\omega_{0}}-\frac{\omega_{0}}{\omega}\right)=j \omega\left(\frac{g_{n} R_{s}}{\omega_{0} \Delta}\right)+\frac{1}{j \omega\left(\Delta / g_{n} \omega_{0} R_{s}\right)}
$$

Look what happened! The transformation turned the inductive reactance into an inductive reactance in series with a capacitive reactance.

As similar analysis of the transformation of the low-pass capacitive reactance shows that it is transformed into an inductive reactance in parallel with an capacitive reactance.

As a result, to transform a low-pass filter schematic into a band-pass filter schematic, we:

1. Replace each series inductor with a capacitor and inductor in series, with values:

$$
L_{n}^{b p}=g_{n} \frac{R_{s}}{\omega_{0} \Delta} \quad C_{n}^{b p}=\frac{1}{g_{n}} \frac{\Delta}{\omega_{0} R_{s}}
$$

2. Replace each shunt capacitor with an inductor and capacitor in parallel, with values:

$$
L_{n}^{b p}=\frac{1}{g_{n}} \frac{\Delta R_{s}}{\omega_{0}} \quad C_{n}^{b p}=g_{n} \frac{1}{\omega_{0} \Delta R_{s}}
$$

Thus, the ladder circuit for band-pass circuit is simply a ladder network of $L C$ resonators, both series and parallel:

