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1.1 The Old Approach 

To  find the precursor of contemporary latent variable modeling  one  must go 
back to  the beginning of the 20th  century  and Charles Spearman’s invention 
of factor analysis. This was  followed,  half a century later, by latent class and 
latent  trait analysis and, from the 1960’s onwards, by covariance structure 
analysis. The most recent additions  to  the family  have been in the  area of 
latent time series analysis. This  chapter briefly  reviews each of these fields 
in turn as a  foundation for the evaluations and  comparisons which are made 
later. 

1.1.1 Factor analysis 

Spearman’s (1904) original paper  on factor analysis is remarkable, not so 
much  for what it achieved,  which was primitive by today’s standards,  but for 
the path-breaking  character of its central idea. He was writing when statis- 
tical theory was in its infancy. Apart from  regression analysis, all of today’s 
multivariate methods lay far in the  future. Therefore  Spearman  had not only 
to formulate the central idea,  but  to devise the algebraic and  computational 
methods for  delivering the results. At the  heart of the analysis was the dis- 
covery that one could  infer the presence of a latent  dimension of variation 
from the  pattern of the pairwise correlations coefficients.  However, Spearman 
was somewhat blinkered in his view  by his belief in a single underlying latent 
variable corresponding to general ability, or intelligence. The  data did not 
support  this hypothesis and  it was left to  others,  notably  Thurstone in the 
1930’s, to extend the theory to  what became commonly  known as multiple 
factor analysis. 

Factor analysis was created by, and almost entirely developed  by,  psy- 
chologists.  Hotelling’s introduction of principal components analysis in 1933 
approached essentially the same  problem from a different perspective, but his 
work  seems to have made little  impact on practitioners at  the time. 

It was not until the 1960’s and  the publication of Lawley and Maxwell’s 
(1971) book Factor  Analysis  as  a  Statistical  Method that any sustained at- 
tempt was made to  treat  the  subject statistically. Even then  there was little 
effect  on statisticians who, typically, continued to regard factor analysis as 
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an alien and highly subjective activity which  could not compete  with prin- 
cipal components analysis. Gradually the range of applications widened but 
without going far beyond the framework  provided by the founders. 

1.1.2 Latent  class  analysis 

Latent class analysis, along with latent  trait analysis (discussed later), have 
their roots in the work of the sociologist, Paul Lazarsfeld in the 1960’s.  Un- 
der the general umbrella of latent  structure analysis these techniques were 
intended as tools of sociological analysis. Although Lazarsfeld  recognized  cer- 
tain affinities with factor analysis he emphasized the differences. Thus in the 
old approach these families of methods were regarded as quite  distinct. 

Although statistical theory  had  made  great  strides since Spearman’s  day 
there was little  input from statisticians until Leo Goodman  began  to develop 
efficient methods for handling the  latent class  model around 1970. 

1.1.3 Latent  trait  analysis 

Although  a  latent trait model  differs  from a latent class model  only in the 
fact that  the  latent dimension is  viewed as continuous rather  than categorical, 
it is  considered separately  because  it owes its development to one  particular 
application. Educational  testing is  based  on the idea that  human abilities 
vary and  that individuals can be located on a scale of the ability under 
investigation by the answers  they give to  a set of test items. The  latent 
trait model provides the link between the responses and  the underlying trait. 
A seminal contribution to  the theory was provided by Birnbaum (1968) but 
today  there is an  enormous literature,  both applied and theoretical, including 
books, journals such as Applied  Psychological  Measurement and  a  multitude 
of articles. 

1.1.4 Covariance structure analysis 

This  term covers developments  stemming from the work of Joreskog in the 
1960’s. It is a generalization of factor analysis in which one explores causal 
relationships (usually linear)  among  the  latent variables. The significance of 
the word covariance is that these models are  fitted, as in factor analysis, by 
comparing the observed covariance matrix of the  data with that predicted 
by the model.  Since  much of empirical social  science  is  concerned with trying 
to establish causal relationships between  unobservable variables, this form of 
analysis has found many applications. This work has  been  greatly facilitated 
by the availability of good software packages  whose sophistication has kept 
pace with the speed  and capacity of desk-top (or lap-top)  computers. In 
some quarters, empirical social research has become almost  synonymous  with 
LISREL analysis. The acronym LISREL has  virtually become a generic title 
for linear structure relations modeling. 
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1.1.5 Latent time series 

The earliest use of latent variable ideas in  time series appears to have been 
due  to Wiggins (1973) but, as so often happens,  it was not followed up. Much 
later  there was rapid growth in  work on latent (or “hidden” as they  are often 
called) Markov chains. If individuals move  between a set of categories over 
time  it may be  that  their movement can  be modeled  by a Markov chain. 
Sometimes their category cannot  be observed directly and  the  state of the 
individual must  be inferred, indirectly, from other variables related to  that 
state.  The  true Markov chain is thus  latent, or hidden. An introduction to 
such processes  is  given in MacDonald and Zucchini (1997). Closely related 
work has been  going on, independently, in the modeling of neural networks. 
Harvey  and  Chung (2000) proposed  a latent  structural  time series model to 
model the local linear trend in unemployment. In  this context two observed 
series are  regarded as being imperfect indicators of “true”  unemployment. 

1.2 The New Approach 

The new, or statistical,  approach derives from the observation that all of 
the models behind the foregoing examples are, from a  statistical point of 
view, mixtures. The basis for this remark  can be explained by reference to 
a simple example which, at first sight, appears  to have little  to do  with 
latent variables. If all members of a population have a very small and equal 
chance of having an accident on any day, then  the  distribution of the number 
of accidents per month, say,  will  have a Poisson distribution. In practice 
the observed distribution often has  greater dispersion than predicted by the 
Poisson hypothesis. This  can  be explained by supposing that  the daily risk of 
accident varies  from one individual to  another.  In  other words, there  appears 
to be an unobservable source of variation which  may be called “accident 
proneness”. The  latter is a  latent variable. The  actual  distribution of number 
of accidents is thus  a (continuous) mixture of Poisson distributions. 

The position is essentially the same  with the  latent variable models pre- 
viously discussed. The  latent variable is a source of unobservable variation 
in some quantity, which characterizes members of the population. For the 
latent class model this  latent variable is categorical, for the  latent  trait  and 
factor analysis model it is continuous. The  actual  distribution of the manifest 
variables is then  a  mixture of the simple distributions  they would  have had in 
the absence of that heterogeneity. That simpler distribution is deducible from 
the assumed  behaviour of individuals with the same ability - or whatever it 
is that distinguishes them. This will be made more  precise  below. 

1.2.1 Origins of the new  approach 

The first attempt  to express all latent variable models within  a common 
mathematical framework appears  to have been that of Anderson (1959). The 
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title of the  paper suggests that  it is  concerned  only with the  latent class model 
and  this may  have caused his seminal contribution to  be overlooked. Fielding 
(1977)  used Anderson’s treatment in his exposition of latent  structure models 
but  this did not  appear to have  been  taken  up  until the present author used 
it as a basis for handling the factor analysis of categorical data (Bartholomew 
1980). This work  was  developed  in Bartholomew (1984) by the  introduction of 
exponential family  models and  the key concept of sufficiency. This approach, 
set  out in Bartholomew  and Knott (1999), lies behind the  treatment of the 
present chapter.  One of the most general treatments, which embraces  a very 
wide  family of models, is also contained in Arminger  and Kiisters (1988). 

1.2.2 Where  is the new  approach located on  the map of 
statistics? 

Statistical inference starts with data and seeks to generalize  from it.  It does 
this by setting  up a probability model  which  defines the process by  which 
the  data  are supposed to have been  generated. We have observations on a, 
possibly multivariate, random variable x and wish to make  inferences about 
the process  which  is determined by a set of parameters <. The link between 
the two  is expressed by the  distribution of x given t. F’requentist  inference 
treats < as fixed;  Bayesian  inference treats < as a  random variable. 

In latent variables analysis one may think of x as partitioned  into two 
parts x and y, where x is  observed and y, the  latent variable, is not ob- 
served. Formally then,  this is a standard inference  problem in which some of 
the variables are missing. The model will have to begin  with the  distribution 
of x given < and y. A purely frequentist approach would treat < and y as 
parameters, whereas the Bayesian  would  need a joint prior distribution for < 
and y. However, there is now an  intermediate position, which  is  more appro- 
priate in many applications, and  that is to  treat y as a  random variable with 
< fixed. Regarding y as fixed  would enable  one to make inferences about  the 
values of y for these members of the sample. But often one is interested in 
predicting the values of y for other members of the population  on the basis 
of their x-values. This is the case, for example, when one is constructing a 
measuring  instrument for  some mental ability. That is one  wants a means of 
locating an individual on a scale of ability on the basis of a set of scores, x, 
obtained  in a test. In that case it is  more appropriate  to  treat y as a random 
variable also. 

This problem can also be expressed in terms of probability distributions 
as follows.  For an observable random variable x, the  distribution  can  be 
represented in the form 

r 

Here, for simplicity, the  notation is that of continuous  random variables, but 
the point being made is quite general. 
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1.2.3 Basic relationships 

Equation 1.1 reveals an  important indeterminacy in the problem defined. 
One  can  make  any one-to-one transformation of y without  changing f(x 1 
[). In  other words the  distribution of y is indeterminate.  There  can  be  no 
empirical justification for  choosing one prior distribution for y rather  than 
another. This might seem to be  a crippling handicap but, as shall now be seen, 
important deductions  can be made which  hold  for  all prior distributions. 

The problem is to say something about  the missing  values, y, when one 
knows x. All of the information about y given x is contained in 

f(Y I x) = h(Y)f(X I Y)/fW (1.2) 

where [ has  been  suppressed in the  notation because it is not relevant for the 
point being  made. 

At first sight one is at  an impasse  because of the presence of the unknown 
h(y) on the right hand side. However, suppose that  it were the case that 
f(x I y) could  be expressed in  the form 

f(x I Y) = g(X I Y>4(X) (1.3) 

where X is a function of x of the same  dimension as y. Then one would find, 
by substitution  into equation 1.2, that 

f(Y I x) = f(Y I X) 0: h(YMX I Y). (1.4) 

The point of this  manoeuvre is that all that one  needs to know about x in 
order to determine f(y 1 x) is the  statistic X. This provides a  statistic which, 
in a precise sense, contains all the information about y which  is  provided  by 
x. In  that sense, then,  one  can use X in place of y. 

The usefulness of this observation depends, of course, on whether or  not 
the representation of (1.3) is possible in a large enough  class of problems. 
One  needs to know  for what class of models, defined  by f(x I y), is this fac- 
torization possible. This is a simpler question than  it  appears  to be  because 
other considerations, outlined in Section 3.1 below, mean that one  can re- 
strict  attention  to  the case  where the x’s are conditionally independent (see 
Equation 1.5). This  means that one only has to ask the question of the uni- 
variate  distributions of the individual xi’s. Roughly speaking  this  means that 
one requires that f(xi I y) be  a  member of an exponential family  for  all i 
(for further  details see Bartholomew & Knott, 1999). Fortunately this family, 
which includes the normal, binomial, multinomial  and  gamma  distributions, 
is large enough for  most practical purposes. 

The relationship given  by Equation 1.3 is  referred to as the suficiency 
principle because it is, essentially, a  statement  that X is  sufficient  for y in 
the Bayesian sense. It should be noted that, in saying this, all parameters  in 
the model are  treated as known. 
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1.3 The General  Linear  Latent  Variable  Model 

1.3.1 Theory 

The foregoing analysis has  been very general, and deliberately so. In order to 
relate  it  to  the various latent variable models in use the analysis must now 
be more  specific. 

In  a typical problem x is a vector of dimension p say,  where p is often 
large. Elements of x may be scores on test  items or responses to questions in 
a survey,  for example. The point of introducing the  latent variables y, is to 
explain the inter-dependencies among the x’s. If this  can be done  with  a small 
number, q, of y’s a  substantial reduction in dimensionality shall be achieved. 
One may  also hope that  the y’s can be identified with more fundamental 
underlying variables like attitudes or abilities. 

If the effect of the y’s is to induce  dependencies  among the x’s, then  one 
would  know that enough y’s have been  introduced if,  when one conditions on 
them,  the x’s are independent. That is, one  needs to introduce just sufficient 
y’s to make 

P 

f (x  I Y) = n fi(Xi I Y). (1.5) 
i= l  

The problem is then  to find distributions {fi(xi I y)} such that  the sufficiency 
property holds. 

There  are  many ways in which this  can  be  done  but  one  such way produces 
a large enough class of models to meet most practical needs. Thus, consider 
distributions of the following  form 

fi(xi I &) = Fi(xi)G(fli)eeiUi(Zi) (1.6) 

where 0, is  some function of y. It is then easily  verified that  there exists a 
sufficient statistic 

U 

x = C.i(.i). 
i=l 

The  particular special case considered, henceforth known as the general linear 
latent  variable  model (GLLVM), supposes that 

Bi = ai0 + a i l y l +  ai2y2 + . . . + aiqyq (2 = 1, 2, . . .q ) .  (1.8) 

This  produces  most of the  standard models - and many  more  besides. 

1.3.2 Examples 

Two of the most important examples arise when the x’s are (a) all binary or 
(b) all normal. 
The  binary  case. If xi is binary then, conditional upon y, it is reasonable to 
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assume that  it  has a Bernoulli distribution  with P r { x i  = 1 1 y} = 7ri(y). This 
is a  member of the exponential family (1.6) with 

Oi = logitxi(y) = crio + crilyl + cri2y2 + . . . + aiqyq (2 = 1,  2, . . . p )  (1.9) 

This is a  latent  trait model in which q is usually taken  to be 1,  when it is 
known as the logit model. 
The normal case. If x is normal  with xi I y N N ( p i ,  u:) (i = 1, 2, . . . p )  
the  parameter Oi in (1.6) is 

Oi = pi/ui  = ai0 + a i l y l  + . . . + aiqgq (i = 1 , 2 , .  . . p ) .  (1.10) 

Since the  distribution  depends  on two parameters, pi  and u,, one  of them 
must  be  treated as a nuisance parameter. If this is chosen to be ut, one  may 
write the model 

xi  = Xi0 + Xily1 + Xi292 + . . . Xiqy, + ei (i = 1, 2, . . . p )  (1.11) 

where X i j  = aijui ( j  = 1,  2, . . . q)  and ei N N(0,  u,") with { e * }  independent 
of y. This will be recognized as the  standard representation of the linear 
normal factor model. 

Other special cases can be  found in Bartholomew  and Knott (1999) in- 
cluding the  latent class model  which can be regarded as a special case of the 
general latent  trait model  given  above. 

It is interesting to  note  that for both of the examples given  above 

P 
xj = f f i j x i  ( j  = 1, 2, . . . q).  

i=l 

Weighted sums of the manifest variables have  long been used as indices  for 
underlying latent variables on purely intuitive grounds. The foregoing theory 
provides a  more  fundamental rationale for this practice. 

1.4 Contrasts Between the Old and New Approaches 

1.4.1 Computation 

Factor analysis was introduced at a time when computational resources were 
very limited by today's  standards.  The inversion of even small matrices was 
very time  consuming on a  hand calculator and beset by numerical instabili- 
ties. This not only made fitting the models  very  slow, but  it had  a distorting 
effect  on the development of the  subject.  Great efforts were made to devise 
shortcuts  and  approximations for parameter  estimation.  The calculation of 
standard errors was almost beyond reach. The  matter of rotation was as much 
an  art as a science, and  this  contributed  to  the perception by  some that  factor 
analysis was little  better  than mumbo  jumbo. 
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Things were little  better when latent  structure analysis came on the scene 
in  the 1950’s.  Inefficient methods of fitting based  on  moments  and  such like 
took precedence simply  because they were  feasible. There was virtually noth- 
ing in common between the  methods used  for fitting  the various models  be- 
yond their  numerical complexity.  As computers  became  more powerful t@ 
wards the end of the  20th century, a degree of commonality  became  apparent 
in  the unifying effect of maximum likelihood estimation,  but  this did not ex- 
ploit the common structure revealed by the new approach. The possibility of 
a single algorithm for fitting all  models  derived  from the new approach was 
pointed out by Bartholomew  and Knott (1999, Section 7) and  this  has now 
been  implemented by Moustaki (1999). 

1.4.2 Disciplinary focus 

Another  distorting  feature springs from the diverse disciplinary origins of the 
various models.  Factor analysis was invented by a psychologist and largely 
developed by psychologists. Latent  structure analysis was a  product of so- 
ciology. This close tie  with  substantive  problems  had obvious advantages, 
principally that  the problems tackled were those which are  important  rather 
than merely tractable.  But  it also had disadvantages. Many of the innovators 
lacked the technical tools necessary and did not always  realize that some, at 
least, were already available in other fields.  By  focussing on the  particular 
psychological hypothesis of a single general factor, Spearman failed to see 
the  importance of multiple factor analysis. Lazarsfeld emphasized the differ- 
ence  between  his own work on  latent  structure  and factor analysis, which 
were unimportant,  and minimized the similarities, which  were fundamental. 
In such ways progress was slowed and professional statisticians, who did have 
something to offer,  were debarred from entering the field. When  they eventu- 
ally did make  a  tentative  entry in the  shape of the first edition of Lawley and 
Maxwell’s  book in the 1960’s, the contribution was not warmly  welcomed  by 
either side! 

1.4.3 Types of variables 

One rather surprising feature which  delayed the unification of the  subject 
on the lines set  out here runs  through  the whole of statistics,  but is particu- 
larly conspicuous in latent variable modelling. This is the distinction between 
continuous  and categorical variables. 

The development of statistical theory for continuous variables was much 
more rapid than for categorical variables. This doubtless owed  much to  the 
fact that Karl  Pearson  and  Ronald Fisher were mainly interested in problems 
involving continuous variables and, once their  bandwagon was rolling, that 
was  where the theoreticians wanted to be. There were  some points of contact 
as, for example,  on correlation and association but  there seems to have  been 
little recognition that much of what could be done for continuous variables 
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could, in principle, also be  done for categorical variables or for mixtures of the 
two types. In  part  this was a notational  matter. A perusal of Goodman's work 
on  latent class analysis (e.g., Goodman, 1974), in  which he uses a precise but 
forbidding notation, obscures rather  than reveals the links with latent  trait 
or factor analysis. Formulating the new approach in a sufficiently abstract 
form to include all types of variables, reveals the essential common structure 
and so makes matters simpler. 

1.4.4 Probability modelling 

A probability model  is the foundation of statistical analysis. Faced with  a 
new  problem the  statistician will determine the variables involved and express 
the relationships between them in probabilistic terms. There  are, of course, 
standard models  for  common problems, so the work does  not always  have 
to be done ab initio. However, what is now almost a matter of routine is a 
relatively recent phenomenon  and much of the development of latent variable 
models lies on the far side of the water-shed, which  may be  roughly  dated to 
the 1950's. This was common to all branches of statistics  but  it  can easily be 
illustrated by reference to factor analysis. 

In approaching the  subject today, one would naturally  think in terms 
of probability distributions  and ask what is the  distribution of x given y. 
Approaching it in this way one  might write 

x = p + A y + e  (1.12) 

or, equivalently, 

with  appropriate  further  assumptions  about  independence  and  the distrib- 
ution of y. Starting from this,  one  can  construct a likelihood function and 
from that, devise methods of estimation, testing goodness of fit and so on. In 
earlier times the  starting point would  have  been the  structure of the covari- 
ance (or correlation) matrix, C, and  the  attempt  to find a representation of 
the form 

C = An' + $J. (1.14) 

In  fact,  this way  of viewing the problem still survives as when (1.14) is referred 
to as a model. 

The distinction between the old and new approaches lies in  the fact that, 
whereas C is  specific to factor analysis and has no  obvious analogue in  la- 
tent  structure analysis, the probabilistic representation of (1.12) and (1.13) 
immediately generalizes as our formulation of the GLLVM shows. 
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1.5 Some Benefits of the New Approach 

1.5.1 Factor scores 

The so-called ”factor scores problem”  has a long and controversial history, 
which still has some  life in  it as Maraun (1996) and  the ensuing discussion 
shows. The problem is how to  locate a sample  member in the y-space  on the 
basis of its observed  value of x. In the old approach to factor analysis, which 
treated (1.12) as a linear equation in mathematical (as opposed to random) 
variables, it was clear that  there were  insufficient equations p to determine 
the q y’s because, altogether,  there were p + q unknowns (y’s and e’s). Hence 
the y’s (factor scores) were said to be  indeterminate. 

Using the new approach,  it is  obvious that y is not uniquely  determined 
by x but  that knowledge of it is contained in the posterior distribution of 
y given x. n o m  that  distribution one  can predict y using  some measure of 
location of the posterior distribution, such as E ( y  I x). Oddly  enough,  this 
approach has always been used  for the  latent class  model,  where individuals 
are allocated to classes  on the basis of the posterior probabilities of belong- 
ing to  the various classes. The inconsistency of using one  method for factor 
analysis and  another for latent class analysis only  becomes strikingly obvious 
when the two techniques are  set within a common  framework. 

1.5.2 Reliability 

The posterior distribution also tells something about  the  uncertainty  attached 
to  the factor scores. In practice, the dispersion of the posterior distribution 
can be disconcertingly large. This means that  the factor scores are  then poorly 
determined or,  to use the technical term, unreliable. This poor  determination 
of latent variables is a common phenomenon which manifests itself in  other 
ways.  For example, it  has often been  noted that  latent class and  latent  trait 
models  sometimes give equally good fits to  the same data. A good  example 
is given by Bartholomew (2000). A latent  trait  model,  with  one  latent vari- 
able, was fitted  to one of the classical data  sets of educational testing - the 
Law  School  Admissions Test - with 5 items. A latent class model  with two 
classes  was  also fitted  to  the same data  and  the results for the two models 
were hardly distinguishable. It  thus  appears  that  it is  very  difficult to distin- 
guish empirically between a model in which the  latent variable is distributed 
normally  and  one in which it consists of two probability masses. 

A similar result has  been  demonstrated  mathematically by Molenaar and 
von  Eye  (1994)  for the factor analysis model and the  latent profile  model. The 
latter is one where the manifest variables are  continuous but  the  latent vari- 
able categorical. They were able to show that, given any factor model, it was 
possible to find a latent profile  model with the same covariance matrix,  and 
conversely.  Hence,  whenever one model fits the  data,  the  other will fit equally 
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well as judged by the covariances.  Once again, therefore, the  latent distrib- 
ution is poorly  determined.  These conclusions have important implications 
for linear structural relations models which  seek to explore the relationships 
between latent variables. If very little can be said about  the  distribution of 
a latent variable, it is clear that  the form of any relationship between  them 
must also be very  difficult to  determine. 

1.5.3 Variability 

The calculation of standard  errors of parameter estimates and  measures of 
goodness of fit has  been relatively neglected. In  part  this  has been due to  the 
heavy computations involved,  even  for finding asymptotic errors. However, 
it may  also owe something to  the  strong disciplinary focus  which was noted 
in the previous section. The criterion of ”meaningfulness”  has often been 
invoked as a justification for taking  the fit of models at face value, even when 
the sample size  is  very small. The broad  span of professional experience, which 
is brought to bear in making  such  judgements, is not to be disregarded, but 
it  cannot replace an objective evaluation of the variability inherent in  the 
method of fitting. 

The  treatment of latent variable models  given in Bartholomew and  Knott 
(1999) lays emphasis  on the calculation of standard errors and  goodness of fit. 
In  addition  to  the  standard  asymptotic theory, which  flows  from the  method 
of maximum likelihood, it is now feasible to use  re-sampling methods like the 
bootstrap  to  study sampling variation. This is made the more  necessary  by 
the fact that  asymptotic sampling theory is sometimes  quite  inadequate for 
sample sizes such as one finds in practice (e.g., de Menezes 1999). A further 
complication arises when a model with  more than one  latent variable is fitted. 
This arises because, in the GLLVM, orthogonal linear transformation of the 
9’s leave the  joint  distribution of the 5’s unchanged. In factor analysis, this 
process is familiar as “rotation”,  but  the same point applies to any  member 
of the general family. It means, for example, that there is not  one solution 
to  the maximum likelihood equation  but infinitely many,  linked  by linear 
transformations. Describing the sampling variability of a set of solutions, 
rather  than a point within the  set, is not straightforward. Further  problems 
arise in testing goodness of fit. For example,  with p binary variables, there 
are 2 P  possible combinations which  may occur. The obvious way of judging 
goodness of fit is to compare the observed and  expected frequencies of these 
response patterns (or cell frequencies). However, if p is large, 2 P  may be 
large compared  with the sample size. In these circumstances  many  expected 
frequencies will be too small for the usual chi-squared tests  to  be valid. This 
sparsity, as it is called, requires new methods  on which there is  much current 
research. 
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1.6 Conclusion 

Latent  variables  analysis is a powerful  and  useful  tool  which  has  languished 
too  long in the shadowy  regions on the borders of statistics. It is now  taking 
its  place in the main stream, stimulated in part by the recognition that i t  
can be given a sound foundation within a traditional  statistical  framework. It 
can  justly be claimed that the new approach clarifies,  simplifies, and unifies 
the disparate  developments  spanning over a century. 
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