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Deep Learning

This chapter covers the important topic of deep learning. At the time of deep
learningwriting (2020), deep learning is a very active area of research in the machine

learning and artificial intelligence communities. The cornerstone of deep
learning is the neural network. neural

networkNeural networks rose to fame in the late 1980s. There was a lot of excite-
ment and a certain amount of hype associated with this approach, and they
were the impetus for the popular Neural Information Processing Systems
meetings (NeurIPS, formerly NIPS) held every year, typically in exotic
places like ski resorts. This was followed by a synthesis stage, where the
properties of neural networks were analyzed by machine learners, math-
ematicians and statisticians; algorithms were improved, and the method-
ology stabilized. Then along came SVMs, boosting, and random forests,
and neural networks fell somewhat from favor. Part of the reason was that
neural networks required a lot of tinkering, while the new methods were
more automatic. Also, on many problems the new methods outperformed
poorly-trained neural networks. This was the status quo for the first decade
in the new millennium.

All the while, though, a core group of neural-network enthusiasts were
pushing their technology harder on ever-larger computing architectures and
data sets. Neural networks resurfaced after 2010 with the new name deep
learning, with new architectures, additional bells and whistles, and a string
of success stories on some niche problems such as image and video classifi-
cation, speech and text modeling. Many in the field believe that the major
reason for these successes is the availability of ever-larger training datasets,
made possible by the wide-scale use of digitization in science and industry.

In this chapter we discuss the basics of neural networks and deep learn-
ing, and then go into some of the specializations for specific problems, such
as convolutional neural networks (CNNs) for image classification, and re-
current neural networks (RNNs) for time series and other sequences. We
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FIGURE 10.1. Neural network with a single hidden layer. The hidden layer
computes activations Ak = hk(X) that are nonlinear transformations of linear
combinations of the inputs X1, X2, . . . , Xp. Hence these Ak are not directly ob-
served. The functions hk(·) are not fixed in advance, but are learned during the
training of the network. The output layer is a linear model that uses these acti-
vations Ak as inputs, resulting in a function f(X).

will also demonstrate these models using the Python torch package, along
with a number of helper packages.

The material in this chapter is slightly more challenging than elsewhere
in this book.

10.1 Single Layer Neural Networks
A neural network takes an input vector of p variables X = (X1, X2, . . . , Xp)
and builds a nonlinear function f(X) to predict the response Y . We have
built nonlinear prediction models in earlier chapters, using trees, boosting
and generalized additive models. What distinguishes neural networks from
these methods is the particular structure of the model. Figure 10.1 shows
a simple feed-forward neural network for modeling a quantitative response feed-forward

neural
network

using p = 4 predictors. In the terminology of neural networks, the four fea-
tures X1, . . . , X4 make up the units in the input layer. The arrows indicate

input layerthat each of the inputs from the input layer feeds into each of the K hidden
units (we get to pick K; here we chose 5). The neural network model has hidden unitsthe form

f(X) = β0 +
∑K

k=1 βkhk(X)

= β0 +
∑K

k=1 βkg(wk0 +
∑p

j=1 wkjXj).
(10.1)

It is built up here in two steps. First the K activations Ak, k = 1, . . . ,K, in activationsthe hidden layer are computed as functions of the input features X1, . . . , Xp,

Ak = hk(X) = g(wk0 +
∑p

j=1 wkjXj), (10.2)
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FIGURE 10.2. Activation functions. The piecewise-linear ReLU function is pop-
ular for its efficiency and computability. We have scaled it down by a factor of
five for ease of comparison.

where g(z) is a nonlinear activation function that is specified in advance. activation
functionWe can think of each Ak as a different transformation hk(X) of the original

features, much like the basis functions of Chapter 7. These K activations
from the hidden layer then feed into the output layer, resulting in

f(X) = β0 +
K∑

k=1

βkAk, (10.3)

a linear regression model in the K = 5 activations. All the parameters
β0, . . . ,βK and w10, . . . , wKp need to be estimated from data. In the early
instances of neural networks, the sigmoid activation function was favored, sigmoid

g(z) =
ez

1 + ez
=

1

1 + e−z
, (10.4)

which is the same function used in logistic regression to convert a linear
function into probabilities between zero and one (see Figure 10.2). The
preferred choice in modern neural networks is the ReLU (rectified linear ReLUunit) activation function, which takes the form rectified

linear unit
g(z) = (z)+ =

{
0 if z < 0
z otherwise. (10.5)

A ReLU activation can be computed and stored more efficiently than a
sigmoid activation. Although it thresholds at zero, because we apply it to a
linear function (10.2) the constant term wk0 will shift this inflection point.

So in words, the model depicted in Figure 10.1 derives five new features
by computing five different linear combinations of X, and then squashes
each through an activation function g(·) to transform it. The final model
is linear in these derived variables.

The name neural network originally derived from thinking of these hidden
units as analogous to neurons in the brain — values of the activations
Ak = hk(X) close to one are firing, while those close to zero are silent
(using the sigmoid activation function).

The nonlinearity in the activation function g(·) is essential, since without
it the model f(X) in (10.1) would collapse into a simple linear model in
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X1, . . . , Xp. Moreover, having a nonlinear activation function allows the
model to capture complex nonlinearities and interaction effects. Consider
a very simple example with p = 2 input variables X = (X1, X2), and
K = 2 hidden units h1(X) and h2(X) with g(z) = z2. We specify the other
parameters as

β0 = 0, β1 = 1
4 , β2 = − 1

4 ,
w10 = 0, w11 = 1, w12 = 1,
w20 = 0, w21 = 1, w22 = −1.

(10.6)

From (10.2), this means that

h1(X) = (0 +X1 +X2)2,
h2(X) = (0 +X1 −X2)2.

(10.7)

Then plugging (10.7) into (10.1), we get

f(X) = 0 + 1
4 · (0 +X1 +X2)2 − 1

4 · (0 +X1 −X2)2

= 1
4

[
(X1 +X2)2 − (X1 −X2)2

]

= X1X2.
(10.8)

So the sum of two nonlinear transformations of linear functions can give
us an interaction! In practice we would not use a quadratic function for
g(z), since we would always get a second-degree polynomial in the original
coordinates X1, . . . , Xp. The sigmoid or ReLU activations do not have such
a limitation.

Fitting a neural network requires estimating the unknown parameters in
(10.1). For a quantitative response, typically squared-error loss is used, so
that the parameters are chosen to minimize

n∑

i=1

(yi − f(xi))
2 . (10.9)

Details about how to perform this minimization are provided in Section 10.7.

10.2 Multilayer Neural Networks
Modern neural networks typically have more than one hidden layer, and
often many units per layer. In theory a single hidden layer with a large
number of units has the ability to approximate most functions. However,
the learning task of discovering a good solution is made much easier with
multiple layers each of modest size.

We will illustrate a large dense network on the famous and publicly
available MNIST handwritten digit dataset.1 Figure 10.3 shows examples of
these digits. The idea is to build a model to classify the images into their
correct digit class 0–9. Every image has p = 28 × 28 = 784 pixels, each
of which is an eight-bit grayscale value between 0 and 255 representing

1See LeCun, Cortes, and Burges (2010) “The MNIST database of handwritten digits”,
available at http://yann.lecun.com/exdb/mnist.

http://yann.lecun.com/exdb/mnist


10.2 Multilayer Neural Networks 403

FIGURE 10.3. Examples of handwritten digits from the MNIST corpus. Each
grayscale image has 28× 28 pixels, each of which is an eight-bit number (0–255)
which represents how dark that pixel is. The first 3, 5, and 8 are enlarged to show
their 784 individual pixel values.

the relative amount of the written digit in that tiny square.2 These pixels
are stored in the input vector X (in, say, column order). The output is
the class label, represented by a vector Y = (Y0, Y1, . . . , Y9) of 10 dummy
variables, with a one in the position corresponding to the label, and zeros
elsewhere. In the machine learning community, this is known as one-hot
encoding. There are 60,000 training images, and 10,000 test images. one-hot

encodingOn a historical note, digit recognition problems were the catalyst that
accelerated the development of neural network technology in the late 1980s
at AT&T Bell Laboratories and elsewhere. Pattern recognition tasks of this
kind are relatively simple for humans. Our visual system occupies a large
fraction of our brains, and good recognition is an evolutionary force for
survival. These tasks are not so simple for machines, and it has taken more
than 30 years to refine the neural-network architectures to match human
performance.

Figure 10.4 shows a multilayer network architecture that works well for
solving the digit-classification task. It differs from Figure 10.1 in several
ways:

• It has two hidden layers L1 (256 units) and L2 (128 units) rather
than one. Later we will see a network with seven hidden layers.

• It has ten output variables, rather than one. In this case the ten vari-
ables really represent a single qualitative variable and so are quite
dependent. (We have indexed them by the digit class 0–9 rather than
1–10, for clarity.) More generally, in multi-task learning one can pre- multi-task

learningdict different responses simultaneously with a single network; they
all have a say in the formation of the hidden layers.

• The loss function used for training the network is tailored for the
multiclass classification task.

2In the analog-to-digital conversion process, only part of the written numeral may
fall in the square representing a particular pixel.
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FIGURE 10.4. Neural network diagram with two hidden layers and multiple
outputs, suitable for the MNIST handwritten-digit problem. The input layer has
p = 784 units, the two hidden layers K1 = 256 and K2 = 128 units respectively,
and the output layer 10 units. Along with intercepts (referred to as biases in the
deep-learning community) this network has 235,146 parameters (referred to as
weights).

The first hidden layer is as in (10.2), with

A(1)
k = h(1)

k (X)

= g(w(1)
k0 +

∑p
j=1 w

(1)
kj Xj)

(10.10)

for k = 1, . . . ,K1. The second hidden layer treats the activations A(1)
k of

the first hidden layer as inputs and computes new activations

A(2)
$ = h(2)

$ (X)

= g(w(2)
$0 +

∑K1

k=1 w
(2)
$k A(1)

k )
(10.11)

for % = 1, . . . ,K2. Notice that each of the activations in the second layer
A(2)

$ = h(2)
$ (X) is a function of the input vector X. This is the case because

while they are explicitly a function of the activations A(1)
k from layer L1,

these in turn are functions of X. This would also be the case with more
hidden layers. Thus, through a chain of transformations, the network is
able to build up fairly complex transformations of X that ultimately feed
into the output layer as features.

We have introduced additional superscript notation such as h(2)
$ (X) and

w(2)
$j in (10.10) and (10.11) to indicate to which layer the activations and

weights (coefficients) belong, in this case layer 2. The notation W1 in Fig- weights
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ure 10.4 represents the entire matrix of weights that feed from the input
layer to the first hidden layer L1. This matrix will have 785×256 = 200,960
elements; there are 785 rather than 784 because we must account for the
intercept or bias term.3 bias

Each element A(1)
k feeds to the second hidden layer L2 via the matrix of

weights W2 of dimension 257× 128 = 32,896.
We now get to the output layer, where we now have ten responses rather

than one. The first step is to compute ten different linear models similar
to our single model (10.1),

Zm = βm0 +
∑K2

$=1 βm$h
(2)
$ (X)

= βm0 +
∑K2

$=1 βm$A
(2)
$ ,

(10.12)

for m = 0, 1, . . . , 9. The matrix B stores all 129 × 10 = 1,290 of these
weights.

If these were all separate quantitative responses, we would simply set
each fm(X) = Zm and be done. However, we would like our estimates to
represent class probabilities fm(X) = Pr(Y = m|X), just like in multi-
nomial logistic regression in Section 4.3.5. So we use the special softmax softmaxactivation function (see (4.13) on page 145),

fm(X) = Pr(Y = m|X) =
eZm

∑9
$=0 e

Z"
, (10.13)

for m = 0, 1, . . . , 9. This ensures that the 10 numbers behave like proba-
bilities (non-negative and sum to one). Even though the goal is to build
a classifier, our model actually estimates a probability for each of the 10
classes. The classifier then assigns the image to the class with the highest
probability.

To train this network, since the response is qualitative, we look for coef-
ficient estimates that minimize the negative multinomial log-likelihood

−
n∑

i=1

9∑

m=0

yim log(fm(xi)), (10.14)

also known as the cross-entropy. This is a generalization of the crite- cross-
entropyrion (4.5) for two-class logistic regression. Details on how to minimize this

objective are given in Section 10.7. If the response were quantitative, we
would instead minimize squared-error loss as in (10.9).

Table 10.1 compares the test performance of the neural network with
two simple models presented in Chapter 4 that make use of linear decision
boundaries: multinomial logistic regression and linear discriminant analysis.
The improvement of neural networks over both of these linear methods is
dramatic: the network with dropout regularization achieves a test error rate
below 2% on the 10,000 test images. (We describe dropout regularization in
Section 10.7.3.) In Section 10.9.2 of the lab, we present the code for fitting
this model, which runs in just over two minutes on a laptop computer.

3The use of “weights” for coefficients and “bias” for the intercepts wk0 in (10.2) is
popular in the machine learning community; this use of bias is not to be confused with
the “bias-variance” usage elsewhere in this book.
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Method Test Error
Neural Network + Ridge Regularization 2.3%
Neural Network + Dropout Regularization 1.8%
Multinomial Logistic Regression 7.2%
Linear Discriminant Analysis 12.7%

TABLE 10.1. Test error rate on the MNIST data, for neural networks with two
forms of regularization, as well as multinomial logistic regression and linear dis-
criminant analysis. In this example, the extra complexity of the neural network
leads to a marked improvement in test error.

FIGURE 10.5. A sample of images from the CIFAR100 database: a collection of
natural images from everyday life, with 100 different classes represented.

Adding the number of coefficients in W1, W2 and B, we get 235,146 in
all, more than 33 times the number 785×9 = 7,065 needed for multinomial
logistic regression. Recall that there are 60,000 images in the training set.
While this might seem like a large training set, there are almost four times
as many coefficients in the neural network model as there are observations in
the training set! To avoid overfitting, some regularization is needed. In this
example, we used two forms of regularization: ridge regularization, which
is similar to ridge regression from Chapter 6, and dropout regularization. dropoutWe discuss both forms of regularization in Section 10.7.

10.3 Convolutional Neural Networks
Neural networks rebounded around 2010 with big successes in image classi-
fication. Around that time, massive databases of labeled images were being
accumulated, with ever-increasing numbers of classes. Figure 10.5 shows
75 images drawn from the CIFAR100 database.4 This database consists of
60,000 images labeled according to 20 superclasses (e.g. aquatic mammals),
with five classes per superclass (beaver, dolphin, otter, seal, whale). Each
image has a resolution of 32× 32 pixels, with three eight-bit numbers per
pixel representing red, green and blue. The numbers for each image are
organized in a three-dimensional array called a feature map. The first two feature map

4See Chapter 3 of Krizhevsky (2009) “Learning multiple layers of fea-
tures from tiny images”, available at https://www.cs.toronto.edu/~kriz/
learning-features-2009-TR.pdf.

https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
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FIGURE 10.6. Schematic showing how a convolutional neural network classifies
an image of a tiger. The network takes in the image and identifies local features.
It then combines the local features in order to create compound features, which in
this example include eyes and ears. These compound features are used to output
the label “tiger”.

axes are spatial (both are 32-dimensional), and the third is the channel channelaxis,5 representing the three colors. There is a designated training set of
50,000 images, and a test set of 10,000.

A special family of convolutional neural networks (CNNs) has evolved for convolutional
neural
networks

classifying images such as these, and has shown spectacular success on a
wide range of problems. CNNs mimic to some degree how humans classify
images, by recognizing specific features or patterns anywhere in the image
that distinguish each particular object class. In this section we give a brief
overview of how they work.

Figure 10.6 illustrates the idea behind a convolutional neural network on
a cartoon image of a tiger.6

The network first identifies low-level features in the input image, such
as small edges, patches of color, and the like. These low-level features are
then combined to form higher-level features, such as parts of ears, eyes,
and so on. Eventually, the presence or absence of these higher-level features
contributes to the probability of any given output class.

How does a convolutional neural network build up this hierarchy? It com-
bines two specialized types of hidden layers, called convolution layers and
pooling layers. Convolution layers search for instances of small patterns in
the image, whereas pooling layers downsample these to select a prominent
subset. In order to achieve state-of-the-art results, contemporary neural-
network architectures make use of many convolution and pooling layers.
We describe convolution and pooling layers next.

10.3.1 Convolution Layers
A convolution layer is made up of a large number of convolution filters, each convolution

layer
convolution
filter

5The term channel is taken from the signal-processing literature. Each channel is a
distinct source of information.

6 Thanks to Elena Tuzhilina for producing the diagram and https://www.
cartooning4kids.com/ for permission to use the cartoon tiger.

https://www.cartooning4kids.com/
https://www.cartooning4kids.com/
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of which is a template that determines whether a particular local feature is
present in an image. A convolution filter relies on a very simple operation,
called a convolution, which basically amounts to repeatedly multiplying
matrix elements and then adding the results.

To understand how a convolution filter works, consider a very simple
example of a 4× 3 image:

Original Image =





a b c
d e f
g h i
j k l



 .

Now consider a 2× 2 filter of the form

Convolution Filter =

[
α β
γ δ

]
.

When we convolve the image with the filter, we get the result7

Convolved Image =




aα+ bβ + dγ + eδ bα+ cβ + eγ + fδ
dα+ eβ + gγ + hδ eα+ fβ + hγ + iδ
gα+ hβ + jγ + kδ hα+ iβ + kγ + lδ



 .

For instance, the top-left element comes from multiplying each element in
the 2 × 2 filter by the corresponding element in the top left 2 × 2 portion
of the image, and adding the results. The other elements are obtained in a
similar way: the convolution filter is applied to every 2×2 submatrix of the
original image in order to obtain the convolved image. If a 2× 2 submatrix
of the original image resembles the convolution filter, then it will have a
large value in the convolved image; otherwise, it will have a small value.
Thus, the convolved image highlights regions of the original image that
resemble the convolution filter. We have used 2 × 2 as an example; in
general convolution filters are small %1 × %2 arrays, with %1 and %2 small
positive integers that are not necessarily equal.

Figure 10.7 illustrates the application of two convolution filters to a 192×
179 image of a tiger, shown on the left-hand side.8 Each convolution filter
is a 15 × 15 image containing mostly zeros (black), with a narrow strip
of ones (white) oriented either vertically or horizontally within the image.
When each filter is convolved with the image of the tiger, areas of the tiger
that resemble the filter (i.e. that have either horizontal or vertical stripes or
edges) are given large values, and areas of the tiger that do not resemble the
feature are given small values. The convolved images are displayed on the
right-hand side. We see that the horizontal stripe filter picks out horizontal
stripes and edges in the original image, whereas the vertical stripe filter
picks out vertical stripes and edges in the original image.

7The convolved image is smaller than the original image because its dimension is
given by the number of 2 × 2 submatrices in the original image. Note that 2 × 2 is the
dimension of the convolution filter. If we want the convolved image to have the same
dimension as the original image, then padding can be applied.

8The tiger image used in Figures 10.7–10.9 was obtained from the public domain
image resource https://www.needpix.com/.

https://www.needpix.com/
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FIGURE 10.7. Convolution filters find local features in an image, such as edges
and small shapes. We begin with the image of the tiger shown on the left, and
apply the two small convolution filters in the middle. The convolved images high-
light areas in the original image where details similar to the filters are found.
Specifically, the top convolved image highlights the tiger’s vertical stripes, whereas
the bottom convolved image highlights the tiger’s horizontal stripes. We can think
of the original image as the input layer in a convolutional neural network, and
the convolved images as the units in the first hidden layer.

We have used a large image and two large filters in Figure 10.7 for illus-
tration. For the CIFAR100 database there are 32×32 color pixels per image,
and we use 3× 3 convolution filters.

In a convolution layer, we use a whole bank of filters to pick out a variety
of differently-oriented edges and shapes in the image. Using predefined
filters in this way is standard practice in image processing. By contrast,
with CNNs the filters are learned for the specific classification task. We can
think of the filter weights as the parameters going from an input layer to a
hidden layer, with one hidden unit for each pixel in the convolved image.
This is in fact the case, though the parameters are highly structured and
constrained (see Exercise 4 for more details). They operate on localized
patches in the input image (so there are many structural zeros), and the
same weights in a given filter are reused for all possible patches in the image
(so the weights are constrained).9

We now give some additional details.

• Since the input image is in color, it has three channels represented
by a three-dimensional feature map (array). Each channel is a two-
dimensional (32× 32) feature map — one for red, one for green, and
one for blue. A single convolution filter will also have three channels,
one per color, each of dimension 3×3, with potentially different filter
weights. The results of the three convolutions are summed to form
a two-dimensional output feature map. Note that at this point the
color information has been used, and is not passed on to subsequent
layers except through its role in the convolution.

9This used to be called weight sharing in the early years of neural networks.
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• If we use K different convolution filters at this first hidden layer,
we get K two-dimensional output feature maps, which together are
treated as a single three-dimensional feature map. We view each of
the K output feature maps as a separate channel of information, so
now we have K channels in contrast to the three color channels of
the original input feature map. The three-dimensional feature map is
just like the activations in a hidden layer of a simple neural network,
except organized and produced in a spatially structured way.

• We typically apply the ReLU activation function (10.5) to the con-
volved image. This step is sometimes viewed as a separate layer in
the convolutional neural network, in which case it is referred to as a
detector layer. detector

layer

10.3.2 Pooling Layers
A pooling layer provides a way to condense a large image into a smaller poolingsummary image. While there are a number of possible ways to perform
pooling, the max pooling operation summarizes each non-overlapping 2× 2
block of pixels in an image using the maximum value in the block. This
reduces the size of the image by a factor of two in each direction, and it
also provides some location invariance: i.e. as long as there is a large value
in one of the four pixels in the block, the whole block registers as a large
value in the reduced image.

Here is a simple example of max pooling:

Max pool





1 2 5 3
3 0 1 2
2 1 3 4
1 1 2 0



→
[
3 5
2 4

]
.

10.3.3 Architecture of a Convolutional Neural Network
So far we have defined a single convolution layer — each filter produces a
new two-dimensional feature map. The number of convolution filters in a
convolution layer is akin to the number of units at a particular hidden layer
in a fully-connected neural network of the type we saw in Section 10.2.
This number also defines the number of channels in the resulting three-
dimensional feature map. We have also described a pooling layer, which
reduces the first two dimensions of each three-dimensional feature map.
Deep CNNs have many such layers. Figure 10.8 shows a typical architecture
for a CNN for the CIFAR100 image classification task.

At the input layer, we see the three-dimensional feature map of a color
image, where the channel axis represents each color by a 32 × 32 two-
dimensional feature map of pixels. Each convolution filter produces a new
channel at the first hidden layer, each of which is a 32 × 32 feature map
(after some padding at the edges). After this first round of convolutions, we
now have a new “image”; a feature map with considerably more channels
than the three color input channels (six in the figure, since we used six
convolution filters).
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FIGURE 10.8. Architecture of a deep CNN for the CIFAR100 classification task.
Convolution layers are interspersed with 2× 2 max-pool layers, which reduce the
size by a factor of 2 in both dimensions.

This is followed by a max-pool layer, which reduces the size of the feature
map in each channel by a factor of four: two in each dimension.

This convolve-then-pool sequence is now repeated for the next two layers.
Some details are as follows:

• Each subsequent convolve layer is similar to the first. It takes as input
the three-dimensional feature map from the previous layer and treats
it like a single multi-channel image. Each convolution filter learned
has as many channels as this feature map.

• Since the channel feature maps are reduced in size after each pool
layer, we usually increase the number of filters in the next convolve
layer to compensate.

• Sometimes we repeat several convolve layers before a pool layer. This
effectively increases the dimension of the filter.

These operations are repeated until the pooling has reduced each channel
feature map down to just a few pixels in each dimension. At this point the
three-dimensional feature maps are flattened — the pixels are treated as
separate units — and fed into one or more fully-connected layers before
reaching the output layer, which is a softmax activation for the 100 classes
(as in (10.13)).

There are many tuning parameters to be selected in constructing such a
network, apart from the number, nature, and sizes of each layer. Dropout
learning can be used at each layer, as well as lasso or ridge regularization
(see Section 10.7). The details of constructing a convolutional neural net-
work can seem daunting. Fortunately, terrific software is available, with
extensive examples and vignettes that provide guidance on sensible choices
for the parameters. For the CIFAR100 official test set, the best accuracy as
of this writing is just above 75%, but undoubtedly this performance will
continue to improve.

10.3.4 Data Augmentation
An additional important trick used with image modeling is data augment- data aug-

mentationation. Essentially, each training image is replicated many times, with each
replicate randomly distorted in a natural way such that human recognition
is unaffected. Figure 10.9 shows some examples. Typical distortions are

10.3 Convolutional Neural Networks 411
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FIGURE 10.9. Data augmentation. The original image (leftmost) is distorted
in natural ways to produce different images with the same class label. These
distortions do not fool humans, and act as a form of regularization when fitting
the CNN.

zoom, horizontal and vertical shift, shear, small rotations, and in this case
horizontal flips. At face value this is a way of increasing the training set
considerably with somewhat different examples, and thus protects against
overfitting. In fact we can see this as a form of regularization: we build a
cloud of images around each original image, all with the same label. This
kind of fattening of the data is similar in spirit to ridge regularization.

We will see in Section 10.7.2 that the stochastic gradient descent al-
gorithms for fitting deep learning models repeatedly process randomly-
selected batches of, say, 128 training images at a time. This works hand-in-
glove with augmentation, because we can distort each image in the batch
on the fly, and hence do not have to store all the new images.

10.3.5 Results Using a Pretrained Classifier
Here we use an industry-level pretrained classifier to predict the class of
some new images. The resnet50 classifier is a convolutional neural network
that was trained using the imagenet data set, which consists of millions of
images that belong to an ever-growing number of categories.10 Figure 10.10
demonstrates the performance of resnet50 on six photographs (private col-
lection of one of the authors).11 The CNN does a reasonable job classifying
the hawk in the second image. If we zoom out as in the third image, it
gets confused and chooses the fountain rather than the hawk. In the final
image a “jacamar” is a tropical bird from South and Central America with
similar coloring to the South African Cape Weaver. We give more details
on this example in Section 10.9.4.

Much of the work in fitting a CNN is in learning the convolution filters
at the hidden layers; these are the coefficients of a CNN. For models fit to
massive corpora such as imagenet with many classes, the output of these
filters can serve as features for general natural-image classification prob-
lems. One can use these pretrained hidden layers for new problems with
much smaller training sets (a process referred to as weight freezing), and weight

freezingjust train the last few layers of the network, which requires much less data.

10For more information about resnet50, see He, Zhang, Ren, and Sun (2015) “Deep
residual learning for image recognition”, https://arxiv.org/abs/1512.03385. For de-
tails about imagenet, see Russakovsky, Deng, et al. (2015) “ImageNet Large Scale
Visual Recognition Challenge”, in International Journal of Computer Vision.

11These resnet results can change with time, since the publicly-trained model gets
updated periodically.

https://arxiv.org/abs/1512.03385
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flamingo Cooper’s hawk Cooper’s hawk
flamingo 0.83 kite 0.60 fountain 0.35
spoonbill 0.17 great grey owl 0.09 nail 0.12
white stork 0.00 robin 0.06 hook 0.07

Lhasa Apso cat Cape weaver
Tibetan terrier 0.56 Old English sheepdog 0.82 jacamar 0.28
Lhasa 0.32 Shih-Tzu 0.04 macaw 0.12
cocker spaniel 0.03 Persian cat 0.04 robin 0.12

FIGURE 10.10. Classification of six photographs using the resnet50 CNN
trained on the imagenet corpus. The table below the images displays the true
(intended) label at the top of each panel, and the top three choices of the classifier
(out of 100). The numbers are the estimated probabilities for each choice. (A kite
is a raptor, but not a hawk.)

The vignettes and book12 that accompany the keras package give more
details on such applications.

10.4 Document Classification
In this section we introduce a new type of example that has important
applications in industry and science: predicting attributes of documents.
Examples of documents include articles in medical journals, Reuters news
feeds, emails, tweets, and so on. Our example will be IMDb (Internet Movie
Database) ratings — short documents where viewers have written critiques
of movies.13 The response in this case is the sentiment of the review, which
will be positive or negative.

12Deep Learning with R by F. Chollet and J.J. Allaire, 2018, Manning Publications.
13For details, see Maas et al. (2011) “Learning word vectors for sentiment analysis”,

in Proceedings of the 49th Annual Meeting of the Association for Computational Lin-
guistics: Human Language Technologies, pages 142–150.
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Here is the beginning of a rather amusing negative review:

This has to be one of the worst films of the 1990s. When my
friends & I were watching this film (being the target audience it
was aimed at) we just sat & watched the first half an hour with
our jaws touching the floor at how bad it really was. The rest
of the time, everyone else in the theater just started talking to
each other, leaving or generally crying into their popcorn . . .

Each review can be a different length, include slang or non-words, have
spelling errors, etc. We need to find a way to featurize such a document. featurizeThis is modern parlance for defining a set of predictors.

The simplest and most common featurization is the bag-of-words model. bag-of-wordsWe score each document for the presence or absence of each of the words in
a language dictionary — in this case an English dictionary. If the dictionary
contains M words, that means for each document we create a binary feature
vector of length M , and score a 1 for every word present, and 0 otherwise.
That can be a very wide feature vector, so we limit the dictionary — in
this case to the 10,000 most frequently occurring words in the training
corpus of 25,000 reviews. Fortunately there are nice tools for doing this
automatically. Here is the beginning of a positive review that has been
redacted in this way:

〈START 〉 this film was just brilliant casting location scenery
story direction everyone’s really suited the part they played and
you could just imagine being there robert 〈UNK 〉 is an amazing
actor and now the same being director 〈UNK 〉 father came from
the same scottish island as myself so i loved . . .

Here we can see many words have been omitted, and some unknown words
(UNK) have been marked as such. With this reduction the binary feature
vector has length 10,000, and consists mostly of 0’s and a smattering of 1’s
in the positions corresponding to words that are present in the document.
We have a training set and test set, each with 25,000 examples, and each
balanced with regard to sentiment. The resulting training feature matrix X
has dimension 25,000×10,000, but only 1.3% of the binary entries are non-
zero. We call such a matrix sparse, because most of the values are the same
(zero in this case); it can be stored efficiently in sparse matrix format.14

sparse
matrix
format

There are a variety of ways to account for the document length; here we
only score a word as in or out of the document, but for example one could
instead record the relative frequency of words. We split off a validation set
of size 2,000 from the 25,000 training observations (for model tuning), and
fit two model sequences:

• A lasso logistic regression using the glmnet package;

• A two-class neural network with two hidden layers, each with 16
ReLU units.

14Rather than store the whole matrix, we can store instead the location and values for
the nonzero entries. In this case, since the nonzero entries are all 1, just the locations
are stored.
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FIGURE 10.11. Accuracy of the lasso and a two-hidden-layer neural network
on the IMDb data. For the lasso, the x-axis displays − log(λ), while for the neural
network it displays epochs (number of times the fitting algorithm passes through
the training set). Both show a tendency to overfit, and achieve approximately the
same test accuracy.

Both methods produce a sequence of solutions. The lasso sequence is in-
dexed by the regularization parameter λ. The neural-net sequence is in-
dexed by the number of gradient-descent iterations used in the fitting,
as measured by training epochs or passes through the training set (Sec-
tion 10.7). Notice that the training accuracy in Figure 10.11 (black points)
increases monotonically in both cases. We can use the validation error to
pick a good solution from each sequence (blue points in the plots), which
would then be used to make predictions on the test data set.

Note that a two-class neural network amounts to a nonlinear logistic
regression model. From (10.12) and (10.13) we can see that

log

(
Pr(Y = 1|X)

Pr(Y = 0|X)

)
= Z1 − Z0 (10.15)

= (β10 − β00) +
K2∑

$=1

(β1$ − β0$)A
(2)
$ .

(This shows the redundancy in the softmax function; for K classes we
really only need to estimate K−1 sets of coefficients. See Section 4.3.5.) In
Figure 10.11 we show accuracy (fraction correct) rather than classification accuracy
error (fraction incorrect), the former being more popular in the machine
learning community. Both models achieve a test-set accuracy of about 88%.

The bag-of-words model summarizes a document by the words present,
and ignores their context. There are at least two popular ways to take the
context into account:

• The bag-of-n-grams model. For example, a bag of 2-grams records bag-of-n-
grams
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the consecutive co-occurrence of every distinct pair of words. “Bliss-
fully long” can be seen as a positive phrase in a movie review, while
“blissfully short” a negative.

• Treat the document as a sequence, taking account of all the words in
the context of those that preceded and those that follow.

In the next section we explore models for sequences of data, which have
applications in weather forecasting, speech recognition, language transla-
tion, and time-series prediction, to name a few. We continue with this IMDb
example there.

10.5 Recurrent Neural Networks
Many data sources are sequential in nature, and call for special treatment
when building predictive models. Examples include:

• Documents such as book and movie reviews, newspaper articles, and
tweets. The sequence and relative positions of words in a document
capture the narrative, theme and tone, and can be exploited in tasks
such as topic classification, sentiment analysis, and language transla-
tion.

• Time series of temperature, rainfall, wind speed, air quality, and so
on. We may want to forecast the weather several days ahead, or cli-
mate several decades ahead.

• Financial time series, where we track market indices, trading volumes,
stock and bond prices, and exchange rates. Here prediction is often
difficult, but as we will see, certain indices can be predicted with
reasonable accuracy.

• Recorded speech, musical recordings, and other sound recordings. We
may want to give a text transcription of a speech, or perhaps a lan-
guage translation. We may want to assess the quality of a piece of
music, or assign certain attributes.

• Handwriting, such as doctor’s notes, and handwritten digits such as
zip codes. Here we want to turn the handwriting into digital text, or
read the digits (optical character recognition).

In a recurrent neural network (RNN), the input object X is a sequence. recurrent
neural
network

Consider a corpus of documents, such as the collection of IMDb movie re-
views. Each document can be represented as a sequence of L words, so
X = {X1, X2, . . . , XL}, where each X$ represents a word. The order of
the words, and closeness of certain words in a sentence, convey semantic
meaning. RNNs are designed to accommodate and take advantage of the
sequential nature of such input objects, much like convolutional neural net-
works accommodate the spatial structure of image inputs. The output Y
can also be a sequence (such as in language translation), but often is a
scalar, like the binary sentiment label of a movie review document.
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FIGURE 10.12. Schematic of a simple recurrent neural network. The input is a
sequence of vectors {X"}L1 , and here the target is a single response. The network
processes the input sequence X sequentially; each X" feeds into the hidden layer,
which also has as input the activation vector A"−1 from the previous element in
the sequence, and produces the current activation vector A". The same collections
of weights W, U and B are used as each element of the sequence is processed. The
output layer produces a sequence of predictions O" from the current activation
A", but typically only the last of these, OL, is of relevance. To the left of the equal
sign is a concise representation of the network, which is unrolled into a more
explicit version on the right.

Figure 10.12 illustrates the structure of a very basic RNN with a sequence
X = {X1, X2, . . . , XL} as input, a simple output Y , and a hidden-layer
sequence {A$}L1 = {A1, A2, . . . , AL}. Each X$ is a vector; in the document
example X$ could represent a one-hot encoding for the %th word based on
the language dictionary for the corpus (see the top panel in Figure 10.13
for a simple example). As the sequence is processed one vector X$ at a
time, the network updates the activations A$ in the hidden layer, taking
as input the vector X$ and the activation vector A$−1 from the previous
step in the sequence. Each A$ feeds into the output layer and produces a
prediction O$ for Y . OL, the last of these, is the most relevant.

In detail, suppose each vector X$ of the input sequence has p components
XT

$ = (X$1, X$2, . . . , X$p), and the hidden layer consists of K units AT
$ =

(A$1, A$2, . . . , A$K). As in Figure 10.4, we represent the collection of K ×
(p+1) shared weights wkj for the input layer by a matrix W, and similarly
U is a K × K matrix of the weights uks for the hidden-to-hidden layers,
and B is a K + 1 vector of weights βk for the output layer. Then

A$k = g
(
wk0 +

p∑

j=1

wkjX$j +
K∑

s=1

uksA$−1,s

)
, (10.16)

and the output O$ is computed as

O$ = β0 +
K∑

k=1

βkA$k (10.17)

for a quantitative response, or with an additional sigmoid activation func-
tion for a binary response, for example. Here g(·) is an activation function
such as ReLU. Notice that the same weights W, U and B are used as we
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process each element in the sequence, i.e. they are not functions of %. This
is a form of weight sharing used by RNNs, and similar to the use of filters weight

sharingin convolutional neural networks (Section 10.3.1.) As we proceed from be-
ginning to end, the activations A$ accumulate a history of what has been
seen before, so that the learned context can be used for prediction.

For regression problems the loss function for an observation (X,Y ) is

(Y −OL)
2, (10.18)

which only references the final output OL = β0+
∑K

k=1 βkALk. Thus O1, O2,
. . . , OL−1 are not used. When we fit the model, each element X$ of the input
sequence X contributes to OL via the chain (10.16), and hence contributes
indirectly to learning the shared parameters W, U and B via the loss
(10.18). With n input sequence/response pairs (xi, yi), the parameters are
found by minimizing the sum of squares
n∑

i=1

(yi−oiL)2 =
n∑

i=1

(
yi−

(
β0+

K∑

k=1

βkg
(
wk0+

p∑

j=1

wkjxiLj+
K∑

s=1

uksai,L−1,s

)))2
.

(10.19)
Here we use lowercase letters for the observed yi and vector sequences
xi = {xi1, xi2, . . . , xiL},15 as well as the derived activations.

Since the intermediate outputs O$ are not used, one may well ask why
they are there at all. First of all, they come for free, since they use the same
output weights B needed to produce OL, and provide an evolving prediction
for the output. Furthermore, for some learning tasks the response is also a
sequence, and so the output sequence {O1, O2, . . . , OL} is explicitly needed.

When used at full strength, recurrent neural networks can be quite com-
plex. We illustrate their use in two simple applications. In the first, we
continue with the IMDb sentiment analysis of the previous section, where
we process the words in the reviews sequentially. In the second application,
we illustrate their use in a financial time series forecasting problem.

10.5.1 Sequential Models for Document Classification
Here we return to our classification task with the IMDb reviews. Our ap-
proach in Section 10.4 was to use the bag-of-words model. Here the plan
is to use instead the sequence of words occurring in a document to make
predictions about the label for the entire document.

We have, however, a dimensionality problem: each word in our document
is represented by a one-hot-encoded vector (dummy variable) with 10,000
elements (one per word in the dictionary)! An approach that has become
popular is to represent each word in a much lower-dimensional embedding embeddingspace. This means that rather than representing each word by a binary
vector with 9,999 zeros and a single one in some position, we will represent
it instead by a set of m real numbers, none of which are typically zero. Here
m is the embedding dimension, and can be in the low 100s, or even less.
This means (in our case) that we need a matrix E of dimension m×10,000,

15This is a sequence of vectors; each element xi" is a p-vector.
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FIGURE 10.13. Depiction of a sequence of 20 words representing a single doc-
ument: one-hot encoded using a dictionary of 16 words (top panel) and embedded
in an m-dimensional space with m = 5 (bottom panel).

where each column is indexed by one of the 10,000 words in our dictionary,
and the values in that column give the m coordinates for that word in the
embedding space.

Figure 10.13 illustrates the idea (with a dictionary of 16 rather than
10,000, and m = 5). Where does E come from? If we have a large corpus
of labeled documents, we can have the neural network learn E as part
of the optimization. In this case E is referred to as an embedding layer, embedding

layerand a specialized E is learned for the task at hand. Otherwise we can
insert a precomputed matrix E in the embedding layer, a process known
as weight freezing. Two pretrained embeddings, word2vec and GloVe, are weight

freezing
word2vec
GloVe

widely used.16 These are built from a very large corpus of documents by
a variant of principal components analysis (Section 12.2). The idea is that
the positions of words in the embedding space preserve semantic meaning;
e.g. synonyms should appear near each other.

So far, so good. Each document is now represented as a sequence of m-
vectors that represents the sequence of words. The next step is to limit
each document to the last L words. Documents that are shorter than L
get padded with zeros upfront. So now each document is represented by a
series consisting of L vectors X = {X1, X2, . . . , XL}, and each X$ in the
sequence has m components.

We now use the RNN structure in Figure 10.12. The training corpus
consists of n separate series (documents) of length L, each of which gets
processed sequentially from left to right. In the process, a parallel series of
hidden activation vectors A$, % = 1, . . . , L is created as in (10.16) for each
document. A$ feeds into the output layer to produce the evolving prediction
O$. We use the final value OL to predict the response: the sentiment of the
review.

16 word2vec is described in Mikolov, Chen, Corrado, and Dean (2013), available
at https://code.google.com/archive/p/word2vec. GloVe is described in Pennington,
Socher, and Manning (2014), available at https://nlp.stanford.edu/projects/glove.

https://code.google.com/archive/p/word2vec
https://nlp.stanford.edu/projects/glove
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This is a simple RNN, and has relatively few parameters. If there are K
hidden units, the common weight matrix W has K × (m+ 1) parameters,
the matrix U has K×K parameters, and B has 2(K+1) for the two-class
logistic regression as in (10.15). These are used repeatedly as we process
the sequence X = {X$}L1 from left to right, much like we use a single
convolution filter to process each patch in an image (Section 10.3.1). If the
embedding layer E is learned, that adds an additional m ×D parameters
(D = 10,000 here), and is by far the biggest cost.

We fit the RNN as described in Figure 10.12 and the accompaying text to
the IMDb data. The model had an embedding matrix E with m = 32 (which
was learned in training as opposed to precomputed), followed by a single
recurrent layer with K = 32 hidden units. The model was trained with
dropout regularization on the 25,000 reviews in the designated training
set, and achieved a disappointing 76% accuracy on the IMDb test data. A
network using the GloVe pretrained embedding matrix E performed slightly
worse.

For ease of exposition we have presented a very simple RNN. More elab-
orate versions use long term and short term memory (LSTM). Two tracks
of hidden-layer activations are maintained, so that when the activation A$

is computed, it gets input from hidden units both further back in time,
and closer in time — a so-called LSTM RNN. With long sequences, this LSTM RNNovercomes the problem of early signals being washed out by the time they
get propagated through the chain to the final activation vector AL.

When we refit our model using the LSTM architecture for the hidden
layer, the performance improved to 87% on the IMDb test data. This is com-
parable with the 88% achieved by the bag-of-words model in Section 10.4.
We give details on fitting these models in Section 10.9.6.

Despite this added LSTM complexity, our RNN is still somewhat “entry
level”. We could probably achieve slightly better results by changing the
size of the model, changing the regularization, and including additional
hidden layers. However, LSTM models take a long time to train, which
makes exploring many architectures and parameter optimization tedious.

RNNs provide a rich framework for modeling data sequences, and they
continue to evolve. There have been many advances in the development
of RNNs — in architecture, data augmentation, and in the learning algo-
rithms. At the time of this writing (early 2020) the leading RNN configura-
tions report accuracy above 95% on the IMDb data. The details are beyond
the scope of this book.17

10.5.2 Time Series Forecasting
Figure 10.14 shows historical trading statistics from the New York Stock
Exchange. Shown are three daily time series covering the period December
3, 1962 to December 31, 1986:18

17An IMDb leaderboard can be found at https://paperswithcode.com/sota/
sentiment-analysis-on-imdb.

18These data were assembled by LeBaron and Weigend (1998) IEEE Transactions on
Neural Networks, 9(1): 213–220.

https://paperswithcode.com/sota/sentiment-analysis-on-imdb
https://paperswithcode.com/sota/sentiment-analysis-on-imdb
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FIGURE 10.14. Historical trading statistics from the New York Stock Exchange.
Daily values of the normalized log trading volume, DJIA return, and log volatility
are shown for a 24-year period from 1962–1986. We wish to predict trading volume
on any day, given the history on all earlier days. To the left of the red bar (January
2, 1980) is training data, and to the right test data.

• Log trading volume. This is the fraction of all outstanding shares that
are traded on that day, relative to a 100-day moving average of past
turnover, on the log scale.

• Dow Jones return. This is the difference between the log of the Dow
Jones Industrial Index on consecutive trading days.

• Log volatility. This is based on the absolute values of daily price
movements.

Predicting stock prices is a notoriously hard problem, but it turns out that
predicting trading volume based on recent past history is more manageable
(and is useful for planning trading strategies).

An observation here consists of the measurements (vt, rt, zt) on day t, in
this case the values for log_volume, DJ_return and log_volatility. There
are a total of T = 6,051 such triples, each of which is plotted as a time series
in Figure 10.14. One feature that strikes us immediately is that the day-
to-day observations are not independent of each other. The series exhibit
auto-correlation — in this case values nearby in time tend to be similar auto-

correlationto each other. This distinguishes time series from other data sets we have
encountered, in which observations can be assumed to be independent of
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FIGURE 10.15. The autocorrelation function for log_volume. We see that
nearby values are fairly strongly correlated, with correlations above 0.2 as far as
20 days apart.

each other. To be clear, consider pairs of observations (vt, vt−$), a lag of % lagdays apart. If we take all such pairs in the vt series and compute their corre-
lation coefficient, this gives the autocorrelation at lag %. Figure 10.15 shows
the autocorrelation function for all lags up to 37, and we see considerable
correlation.

Another interesting characteristic of this forecasting problem is that the
response variable vt — log_volume — is also a predictor! In particular, we
will use the past values of log_volume to predict values in the future.

RNN forecaster
We wish to predict a value vt from past values vt−1, vt−2, . . ., and also to
make use of past values of the other series rt−1, rt−2, . . . and zt−1, zt−2, . . ..
Although our combined data is quite a long series with 6,051 trading
days, the structure of the problem is different from the previous document-
classification example.

• We only have one series of data, not 25,000.

• We have an entire series of targets vt, and the inputs include past
values of this series.

How do we represent this problem in terms of the structure displayed in
Figure 10.12? The idea is to extract many short mini-series of input se-
quences X = {X1, X2, . . . , XL} with a predefined length L (called the lag lagin this context), and a corresponding target Y . They have the form

X1 =




vt−L

rt−L

zt−L



 , X2 =




vt−L+1

rt−L+1

zt−L+1



 , · · · , XL =




vt−1

rt−1

zt−1



 , and Y = vt.

(10.20)
So here the target Y is the value of log_volume vt at a single timepoint t,
and the input sequence X is the series of 3-vectors {X$}L1 each consisting
of the three measurements log_volume, DJ_return and log_volatility from
day t− L, t− L+ 1, up to t− 1. Each value of t makes a separate (X,Y )
pair, for t running from L+ 1 to T . For the NYSE data we will use the past
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FIGURE 10.16. RNN forecast of log_volume on the NYSE test data. The black
lines are the true volumes, and the superimposed orange the forecasts. The fore-
casted series accounts for 42% of the variance of log_volume.

five trading days to predict the next day’s trading volume. Hence, we use
L = 5. Since T = 6,051, we can create 6,046 such (X,Y ) pairs. Clearly L
is a parameter that should be chosen with care, perhaps using validation
data.

We fit this model with K = 12 hidden units using the 4,281 training
sequences derived from the data before January 2, 1980 (see Figure 10.14),
and then used it to forecast the 1,770 values of log_volume after this date.
We achieve an R2 = 0.42 on the test data. Details are given in Sec-
tion 10.9.6. As a straw man,19 using yesterday’s value for log_volume as
the prediction for today has R2 = 0.18. Figure 10.16 shows the forecast
results. We have plotted the observed values of the daily log_volume for the
test period 1980–1986 in black, and superimposed the predicted series in
orange. The correspondence seems rather good.

In forecasting the value of log_volume in the test period, we have to use
the test data itself in forming the input sequences X. This may feel like
cheating, but in fact it is not; we are always using past data to predict the
future.

Autoregression
The RNN we just fit has much in common with a traditional autoregression auto-

regression(AR) linear model, which we present now for comparison. We first consider
the response sequence vt alone, and construct a response vector y and a
matrix M of predictors for least squares regression as follows:

y =





vL+1

vL+2

vL+3
...
vT




M =





1 vL vL−1 · · · v1
1 vL+1 vL · · · v2
1 vL+2 vL+1 · · · v3
...

...
... . . . ...

1 vT−1 vT−2 · · · vT−L




. (10.21)

M and y each have T − L rows, one per observation. We see that the
predictors for any given response vt on day t are the previous L values

19A straw man here refers to a simple and sensible prediction that can be used as a
baseline for comparison.
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of the same series. Fitting a regression of y on M amounts to fitting the
model

v̂t = β̂0 + β̂1vt−1 + β̂2vt−2 + · · ·+ β̂Lvt−L, (10.22)
and is called an order-L autoregressive model, or simply AR(L). For the
NYSE data we can include lagged versions of DJ_return and log_volatility,
rt and zt, in the predictor matrix M, resulting in 3L+ 1 columns. An AR
model with L = 5 achieves a test R2 of 0.41, slightly inferior to the 0.42
achieved by the RNN.

Of course the RNN and AR models are very similar. They both use
the same response Y and input sequences X of length L = 5 and dimen-
sion p = 3 in this case. The RNN processes this sequence from left to
right with the same weights W (for the input layer), while the AR model
simply treats all L elements of the sequence equally as a vector of L × p
predictors — a process called flattening in the neural network literature. flatteningOf course the RNN also includes the hidden layer activations A$ which
transfer information along the sequence, and introduces additional nonlin-
earity. From (10.19) with K = 12 hidden units, we see that the RNN has
13+12× (1+3+12) = 205 parameters, compared to the 16 for the AR(5)
model.

An obvious extension of the AR model is to use the set of lagged predic-
tors as the input vector to an ordinary feedforward neural network (10.1),
and hence add more flexibility. This achieved a test R2 = 0.42, slightly
better than the linear AR, and the same as the RNN.

All the models can be improved by including the variable day_of_week
corresponding to the day t of the target vt (which can be learned from the
calendar dates supplied with the data); trading volume is often higher on
Mondays and Fridays. Since there are five trading days, this one-hot en-
codes to five binary variables. The performance of the AR model improved
to R2 = 0.46 as did the RNN, and the nonlinear AR model improved to
R2 = 0.47.

We used the most simple version of the RNN in our examples here.
Additional experiments with the LSTM extension of the RNN yielded small
improvements, typically of up to 1% in R2 in these examples.

We give details of how we fit all three models in Section 10.9.6.

10.5.3 Summary of RNNs
We have illustrated RNNs through two simple use cases, and have only
scratched the surface.

There are many variations and enhancements of the simple RNN we
used for sequence modeling. One approach we did not discuss uses a one-
dimensional convolutional neural network, treating the sequence of vectors
(say words, as represented in the embedding space) as an image. The con-
volution filter slides along the sequence in a one-dimensional fashion, with
the potential to learn particular phrases or short subsequences relevant to
the learning task.

One can also have additional hidden layers in an RNN. For example,
with two hidden layers, the sequence A$ is treated as an input sequence to
the next hidden layer in an obvious fashion.
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The RNN we used scanned the document from beginning to end; alter-
native bidirectional RNNs scan the sequences in both directions. bidirectionalIn language translation the target is also a sequence of words, in a
language different from that of the input sequence. Both the input se-
quence and the target sequence are represented by a structure similar to
Figure 10.12, and they share the hidden units. In this so-called Seq2Seq Seq2Seqlearning, the hidden units are thought to capture the semantic meaning
of the sentences. Some of the big breakthroughs in language modeling and
translation resulted from the relatively recent improvements in such RNNs.

Algorithms used to fit RNNs can be complex and computationally costly.
Fortunately, good software protects users somewhat from these complexi-
ties, and makes specifying and fitting these models relatively painless. Many
of the models that we enjoy in daily life (like Google Translate) use state-
of-the-art architectures developed by teams of highly skilled engineers, and
have been trained using massive computational and data resources.

10.6 When to Use Deep Learning
The performance of deep learning in this chapter has been rather impres-
sive. It nailed the digit classification problem, and deep CNNs have really
revolutionized image classification. We see daily reports of new success sto-
ries for deep learning. Many of these are related to image classification
tasks, such as machine diagnosis of mammograms or digital X-ray images,
ophthalmology eye scans, annotations of MRI scans, and so on. Likewise
there are numerous successes of RNNs in speech and language translation,
forecasting, and document modeling. The question that then begs an an-
swer is: should we discard all our older tools, and use deep learning on every
problem with data? To address this question, we revisit our Hitters dataset
from Chapter 6.

This is a regression problem, where the goal is to predict the Salary of
a baseball player in 1987 using his performance statistics from 1986. After
removing players with missing responses, we are left with 263 players and
19 variables. We randomly split the data into a training set of 176 players
(two thirds), and a test set of 87 players (one third). We used three methods
for fitting a regression model to these data.

• A linear model was used to fit the training data, and make predictions
on the test data. The model has 20 parameters.

• The same linear model was fit with lasso regularization. The tuning
parameter was selected by 10-fold cross-validation on the training
data. It selected a model with 12 variables having nonzero coefficients.

• A neural network with one hidden layer consisting of 64 ReLU units
was fit to the data. This model has 1,345 parameters.20

20The model was fit by stochastic gradient descent with a batch size of 32 for 1,000
epochs, and 10% dropout regularization. The test error performance flattened out and
started to slowly increase after 1,000 epochs. These fitting details are discussed in Sec-
tion 10.7.
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Model # Parameters Mean Abs. Error Test Set R2

Linear Regression 20 254.7 0.56
Lasso 12 252.3 0.51

Neural Network 1345 257.4 0.54
TABLE 10.2. Prediction results on the Hitters test data for linear models fit
by ordinary least squares and lasso, compared to a neural network fit by stochastic
gradient descent with dropout regularization.

Coefficient Std. error t-statistic p-value
Intercept -226.67 86.26 -2.63 0.0103
Hits 3.06 1.02 3.00 0.0036
Walks 0.181 2.04 0.09 0.9294
CRuns 0.859 0.12 7.09 < 0.0001
PutOuts 0.465 0.13 3.60 0.0005

TABLE 10.3. Least squares coefficient estimates associated with the regres-
sion of Salary on four variables chosen by lasso on the Hitters data set. This
model achieved the best performance on the test data, with a mean absolute error
of 224.8. The results reported here were obtained from a regression on the test
data, which was not used in fitting the lasso model.

Table 10.2 compares the results. We see similar performance for all three
models. We report the mean absolute error on the test data, as well as
the test R2 for each method, which are all respectable (see Exercise 5).
We spent a fair bit of time fiddling with the configuration parameters of
the neural network to achieve these results. It is possible that if we were to
spend more time, and got the form and amount of regularization just right,
that we might be able to match or even outperform linear regression and
the lasso. But with great ease we obtained linear models that work well.
Linear models are much easier to present and understand than the neural
network, which is essentially a black box. The lasso selected 12 of the 19
variables in making its prediction. So in cases like this we are much better
off following the Occam’s razor principle: when faced with several methods Occam’s

razorthat give roughly equivalent performance, pick the simplest.
After a bit more exploration with the lasso model, we identified an even

simpler model with four variables. We then refit the linear model with these
four variables to the training data (the so-called relaxed lasso), and achieved
a test mean absolute error of 224.8, the overall winner! It is tempting to
present the summary table from this fit, so we can see coefficients and p-
values; however, since the model was selected on the training data, there
would be selection bias. Instead, we refit the model on the test data, which
was not used in the selection. Table 10.3 shows the results.

We have a number of very powerful tools at our disposal, including neural
networks, random forests and boosting, support vector machines and gen-
eralized additive models, to name a few. And then we have linear models,
and simple variants of these. When faced with new data modeling and pre-
diction problems, it’s tempting to always go for the trendy new methods.
Often they give extremely impressive results, especially when the datasets
are very large and can support the fitting of high-dimensional nonlinear
models. However, if we can produce models with the simpler tools that
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perform as well, they are likely to be easier to fit and understand, and po-
tentially less fragile than the more complex approaches. Wherever possible,
it makes sense to try the simpler models as well, and then make a choice
based on the performance/complexity tradeoff.

Typically we expect deep learning to be an attractive choice when the
sample size of the training set is extremely large, and when interpretability
of the model is not a high priority.

10.7 Fitting a Neural Network
Fitting neural networks is somewhat complex, and we give a brief overview
here. The ideas generalize to much more complex networks. Readers who
find this material challenging can safely skip it. Fortunately, as we see in
the lab at the end of this chapter, good software is available to fit neural
network models in a relatively automated way, without worrying about the
technical details of the model-fitting procedure.

We start with the simple network depicted in Figure 10.1 in Section 10.1.
In model (10.1) the parameters are β = (β0,β1, . . . ,βK), as well as each of
the wk = (wk0, wk1, . . . , wkp), k = 1, . . . ,K. Given observations (xi, yi), i =
1, . . . , n, we could fit the model by solving a nonlinear least squares problem

minimize
{wk}K

1 , β

1

2

n∑

i=1

(yi − f(xi))
2, (10.23)

where

f(xi) = β0 +
K∑

k=1

βkg
(
wk0 +

p∑

j=1

wkjxij

)
. (10.24)

The objective in (10.23) looks simple enough, but because of the nested
arrangement of the parameters and the symmetry of the hidden units, it is
not straightforward to minimize. The problem is nonconvex in the param-
eters, and hence there are multiple solutions. As an example, Figure 10.17
shows a simple nonconvex function of a single variable θ; there are two
solutions: one is a local minimum and the other is a global minimum. Fur- local

minimum
global
minimum

thermore, (10.1) is the very simplest of neural networks; in this chapter we
have presented much more complex ones where these problems are com-
pounded. To overcome some of these issues and to protect from overfitting,
two general strategies are employed when fitting neural networks.

• Slow Learning: the model is fit in a somewhat slow iterative fash-
ion, using gradient descent. The fitting process is then stopped when gradient

descentoverfitting is detected.
• Regularization: penalties are imposed on the parameters, usually lasso

or ridge as discussed in Section 6.2.
Suppose we represent all the parameters in one long vector θ. Then we

can rewrite the objective in (10.23) as

R(θ) =
1

2

n∑

i=1

(yi − fθ(xi))
2, (10.25)
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FIGURE 10.17. Illustration of gradient descent for one-dimensional θ. The
objective function R(θ) is not convex, and has two minima, one at θ = −0.46
(local), the other at θ = 1.02 (global). Starting at some value θ0 (typically ran-
domly chosen), each step in θ moves downhill — against the gradient — until it
cannot go down any further. Here gradient descent reached the global minimum
in 7 steps.

where we make explicit the dependence of f on the parameters. The idea
of gradient descent is very simple.

1. Start with a guess θ0 for all the parameters in θ, and set t = 0.

2. Iterate until the objective (10.25) fails to decrease:

(a) Find a vector δ that reflects a small change in θ, such that θt+1 =
θt + δ reduces the objective; i.e. such that R(θt+1) < R(θt).

(b) Set t← t+ 1.

One can visualize (Figure 10.17) standing in a mountainous terrain, and
the goal is to get to the bottom through a series of steps. As long as each
step goes downhill, we must eventually get to the bottom. In this case we
were lucky, because with our starting guess θ0 we end up at the global
minimum. In general we can hope to end up at a (good) local minimum.

10.7.1 Backpropagation
How do we find the directions to move θ so as to decrease the objective R(θ)
in (10.25)? The gradient of R(θ), evaluated at some current value θ = θm, gradientis the vector of partial derivatives at that point:

∇R(θm) =
∂R(θ)

∂θ

∣∣∣
θ=θm

. (10.26)

The subscript θ = θm means that after computing the vector of derivatives,
we evaluate it at the current guess, θm. This gives the direction in θ-space
in which R(θ) increases most rapidly. The idea of gradient descent is to
move θ a little in the opposite direction (since we wish to go downhill):

θm+1 ← θm − ρ∇R(θm). (10.27)
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For a small enough value of the learning rate ρ, this step will decrease the learning rateobjective R(θ); i.e. R(θm+1) ≤ R(θm). If the gradient vector is zero, then
we may have arrived at a minimum of the objective.

How complicated is the calculation (10.26)? It turns out that it is quite
simple here, and remains simple even for much more complex networks,
because of the chain rule of differentiation. chain ruleSince R(θ) =

∑n
i=1 Ri(θ) =

1
2

∑n
i=1(yi − fθ(xi))2 is a sum, its gradient

is also a sum over the n observations, so we will just examine one of these
terms,

Ri(θ) =
1

2

(
yi − β0 −

K∑

k=1

βkg
(
wk0 +

p∑

j=1

wkjxij

))2
. (10.28)

To simplify the expressions to follow, we write zik = wk0 +
∑p

j=1 wkjxij .
First we take the derivative with respect to βk:

∂Ri(θ)

∂βk
=

∂Ri(θ)

∂fθ(xi)
· ∂fθ(xi)

∂βk

= −(yi − fθ(xi)) · g(zik). (10.29)

And now we take the derivative with respect to wkj :

∂Ri(θ)

∂wkj
=

∂Ri(θ)

∂fθ(xi)
· ∂fθ(xi)

∂g(zik)
· ∂g(zik)

∂zik
· ∂zik
∂wkj

= −(yi − fθ(xi)) · βk · g′(zik) · xij . (10.30)

Notice that both these expressions contain the residual yi − fθ(xi). In
(10.29) we see that a fraction of that residual gets attributed to each of
the hidden units according to the value of g(zik). Then in (10.30) we see
a similar attribution to input j via hidden unit k. So the act of differen-
tiation assigns a fraction of the residual to each of the parameters via the
chain rule — a process known as backpropagation in the neural network backprop-

agationliterature. Although these calculations are straightforward, it takes careful
bookkeeping to keep track of all the pieces.

10.7.2 Regularization and Stochastic Gradient Descent
Gradient descent usually takes many steps to reach a local minimum. In
practice, there are a number of approaches for accelerating the process.
Also, when n is large, instead of summing (10.29)–(10.30) over all n ob-
servations, we can sample a small fraction or minibatch of them each time minibatchwe compute a gradient step. This process is known as stochastic gradient
descent (SGD) and is the state of the art for learning deep neural networks. stochastic

gradient
descent

Fortunately, there is very good software for setting up deep learning mod-
els, and for fitting them to data, so most of the technicalities are hidden
from the user.

We now turn to the multilayer network (Figure 10.4) used in the digit
recognition problem. The network has over 235,000 weights, which is around
four times the number of training examples. Regularization is essential here
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FIGURE 10.18. Evolution of training and validation errors for the MNIST neural
network depicted in Figure 10.4, as a function of training epochs. The objective
refers to the log-likelihood (10.14).

to avoid overfitting. The first row in Table 10.1 uses ridge regularization on
the weights. This is achieved by augmenting the objective function (10.14)
with a penalty term:

R(θ;λ) = −
n∑

i=1

9∑

m=0

yim log(fm(xi)) + λ
∑

j

θ2j . (10.31)

The parameter λ is often preset at a small value, or else it is found using the
validation-set approach of Section 5.3.1. We can also use different values of
λ for the groups of weights from different layers; in this case W1 and W2

were penalized, while the relatively few weights B of the output layer were
not penalized at all. Lasso regularization is also popular as an additional
form of regularization, or as an alternative to ridge.

Figure 10.18 shows some metrics that evolve during the training of the
network on the MNIST data. It turns out that SGD naturally enforces its
own form of approximately quadratic regularization.21 Here the minibatch
size was 128 observations per gradient update. The term epochs labeling the epochshorizontal axis in Figure 10.18 counts the number of times an equivalent of
the full training set has been processed. For this network, 20% of the 60,000
training observations were used as a validation set in order to determine
when training should stop. So in fact 48,000 observations were used for
training, and hence there are 48,000/128 ≈ 375 minibatch gradient updates
per epoch. We see that the value of the validation objective actually starts
to increase by 30 epochs, so early stopping can also be used as an additional early

stoppingform of regularization.

21This and other properties of SGD for deep learning are the subject of much research
in the machine learning literature at the time of writing.
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FIGURE 10.19. Dropout Learning. Left: a fully connected network. Right: net-
work with dropout in the input and hidden layer. The nodes in grey are selected
at random, and ignored in an instance of training.

10.7.3 Dropout Learning
The second row in Table 10.1 is labeled dropout. This is a relatively new dropoutand efficient form of regularization, similar in some respects to ridge reg-
ularization. Inspired by random forests (Section 8.2), the idea is to ran-
domly remove a fraction φ of the units in a layer when fitting the model.
Figure 10.19 illustrates this. This is done separately each time a training
observation is processed. The surviving units stand in for those missing,
and their weights are scaled up by a factor of 1/(1 − φ) to compensate.
This prevents nodes from becoming over-specialized, and can be seen as
a form of regularization. In practice dropout is achieved by randomly set-
ting the activations for the “dropped out” units to zero, while keeping the
architecture intact.

10.7.4 Network Tuning
The network in Figure 10.4 is considered to be relatively straightforward;
it nevertheless requires a number of choices that all have an effect on the
performance:

• The number of hidden layers, and the number of units per layer.
Modern thinking is that the number of units per hidden layer can
be large, and overfitting can be controlled via the various forms of
regularization.

• Regularization tuning parameters. These include the dropout rate φ
and the strength λ of lasso and ridge regularization, and are typically
set separately at each layer.

• Details of stochastic gradient descent. These include the batch size,
the number of epochs, and if used, details of data augmentation (Sec-
tion 10.3.4.)

Choices such as these can make a difference. In preparing this MNIST exam-
ple, we achieved a respectable 1.8% misclassification error after some trial
and error. Finer tuning and training of a similar network can get under
1% error on these data, but the tinkering process can be tedious, and can
result in overfitting if done carelessly.
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FIGURE 10.20. Double descent phenomenon, illustrated using error plots for a
one-dimensional natural spline example. The horizontal axis refers to the number
of spline basis functions on the log scale. The training error hits zero when the
degrees of freedom coincides with the sample size n = 20, the “interpolation
threshold”, and remains zero thereafter. The test error increases dramatically
at this threshold, but then descends again to a reasonable value before finally
increasing again.

10.8 Interpolation and Double Descent
Throughout this book, we have repeatedly discussed the bias-variance trade-
off, first presented in Section 2.2.2. This trade-off indicates that statistical
learning methods tend to perform the best, in terms of test-set error, for an
intermediate level of model complexity. In particular, if we plot “flexibil-
ity” on the x-axis and error on the y-axis, then we generally expect to see
that test error has a U-shape, whereas training error decreases monotoni-
cally. Two “typical” examples of this behavior can be seen in the right-hand
panel of Figure 2.9 on page 29, and in Figure 2.17 on page 39. One implica-
tion of the bias-variance trade-off is that it is generally not a good idea to
interpolate the training data — that is, to get zero training error — since interpolatethat will often result in very high test error.

However, it turns out that in certain specific settings it can be possible for
a statistical learning method that interpolates the training data to perform
well — or at least, better than a slightly less complex model that does not
quite interpolate the data. This phenomenon is known as double descent,
and is displayed in Figure 10.20. “Double descent” gets its name from the
fact that the test error has a U-shape before the interpolation threshold is
reached, and then it descends again (for a while, at least) as an increasingly
flexible model is fit.

We now describe the set-up that resulted in Figure 10.20. We simulated
n = 20 observations from the model

Y = sin(X) + ε,

where X ∼ U [−5, 5] (uniform distribution), and ε ∼ N(0,σ2) with σ = 0.3.
We then fit a natural spline to the data, as described in Section 7.4, with d
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FIGURE 10.21. Fitted functions f̂d(X) (orange), true function f(X) (black)
and the observed 20 training data points. A different value of d (degrees of freedom)
is used in each panel. For d ≥ 20 the orange curves all interpolate the training
points, and hence the training error is zero.

degrees of freedom.22 Recall from Section 7.4 that fitting a natural spline
with d degrees of freedom amounts to fitting a least-squares regression
of the response onto a set of d basis functions. The upper-left panel of
Figure 10.21 shows the data, the true function f(X), and f̂8(X), the fitted
natural spline with d = 8 degrees of freedom.

Next, we fit a natural spline with d = 20 degrees of freedom. Since n = 20,
this means that n = d, and we have zero training error; in other words, we
have interpolated the training data! We can see from the top-right panel of
Figure 10.21 that f̂20(X) makes wild excursions, and hence the test error
will be large.

We now continue to fit natural splines to the data, with increasing values
of d. For d > 20, the least squares regression of Y onto d basis functions
is not unique: there are an infinite number of least squares coefficient es-
timates that achieve zero error. To select among them, we choose the one
with the smallest sum of squared coefficients,

∑d
j=1 β̂

2
j . This is known as

the minimum-norm solution.
The two lower panels of Figure 10.21 show the minimum-norm natural

spline fits with d = 42 and d = 80 degrees of freedom. Incredibly, f̂42(X)
is quite a bit less less wild than f̂20(X), even though it makes use of more
degrees of freedom. And f̂80(X) is not much different. How can this be?
Essentially, f̂20(X) is very wild because there is just a single way to interpo-
late n = 20 observations using d = 20 basis functions, and that single way
results in a somewhat extreme fitted function. By contrast, there are an

22This implies the choice of d knots, here chosen at d equi-probability quantiles of the
training data. When d > n, the quantiles are found by interpolation.
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infinite number of ways to interpolate n = 20 observations using d = 42 or
d = 80 basis functions, and the smoothest of them — that is, the minimum
norm solution — is much less wild than f̂20(X)!

In Figure 10.20, we display the training error and test error associated
with f̂d(X), for a range of values of the degrees of freedom d. We see that
the training error drops to zero once d = 20 and beyond; i.e. once the
interpolation threshold is reached. By contrast, the test error shows a U -
shape for d ≤ 20, grows extremely large around d = 20, and then shows a
second region of descent for d > 20. For this example the signal-to-noise
ratio — Var(f(X))/σ2 — is 5.9, which is quite high (the data points are
close to the true curve). So an estimate that interpolates the data and does
not wander too far inbetween the observed data points will likely do well.

In Figures 10.20 and 10.21, we have illustrated the double descent phe-
nomenon in a simple one-dimensional setting using natural splines. How-
ever, it turns out that the same phenomenon can arise for deep learning.
Basically, when we fit neural networks with a huge number of parameters,
we are sometimes able to get good results with zero training error. This is
particularly true in problems with high signal-to-noise ratio, such as natural
image recognition and language translation, for example. This is because
the techniques used to fit neural networks, including stochastic gradient
descent, naturally lend themselves to selecting a “smooth” interpolating
model that has good test-set performance on these kinds of problems.

Some points are worth emphasizing:
• The double-descent phenomenon does not contradict the bias-variance

trade-off, as presented in Section 2.2.2. Rather, the double-descent
curve seen in the right-hand side of Figure 10.20 is a consequence of
the fact that the x-axis displays the number of spline basis functions
used, which does not properly capture the true “flexibility” of models
that interpolate the training data. Stated another way, in this exam-
ple, the minimum-norm natural spline with d = 42 has lower variance
than the natural spline with d = 20.

• Most of the statistical learning methods seen in this book do not exhibit
double descent. For instance, regularization approaches typically do
not interpolate the training data, and thus double descent does not
occur. This is not a drawback of regularized methods: they can give
great results without interpolating the data!
In particular, in the examples here, if we had fit the natural splines
using ridge regression with an appropriately-chosen penalty rather
than least squares, then we would not have seen double descent, and
in fact would have obtained better test error results.

• In Chapter 9, we saw that maximal margin classifiers and SVMs that
have zero training error nonetheless often achieve very good test error.
This is in part because those methods seek smooth minimum norm
solutions. This is similar to the fact that the minimum-norm natural
spline can give good results with zero training error.

• The double-descent phenomenon has been used by the machine learn-
ing community to explain the successful practice of using an over-
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parametrized neural network (many layers, and many hidden units),
and then fitting all the way to zero training error. However, fitting
to zero error is not always optimal, and whether it is advisable de-
pends on the signal-to-noise ratio. For instance, we may use ridge
regularization to avoid overfitting a neural network, as in (10.31). In
this case, provided that we use an appropriate choice for the tuning
parameter λ, we will never interpolate the training data, and thus
will not see the double descent phenomenon. Nonetheless we can get
very good test-set performance, likely much better than we would
have achieved had we interpolated the training data. Early stopping
during stochastic gradient descent can also serve as a form of regular-
ization that prevents us from interpolating the training data, while
still getting very good results on test data.

To summarize: though double descent can sometimes occur in neural net-
works, we typically do not want to rely on this behavior. Moreover, it
is important to remember that the bias-variance trade-off always holds
(though it is possible that test error as a function of flexibility may not
exhibit a U-shape, depending on how we have parametrized the notion of
“flexibility” on the x-axis).

10.9 Lab: Deep Learning
In this section we demonstrate how to fit the examples discussed in the
text. We use the Python torch package, along with the pytorch_lightning torch

pytorch_
lightning

package which provides utilities to simplify fitting and evaluating mod-
els. This code can be impressively fast with certain special processors,
such as Apple’s new M1 chip. The package is well-structured, flexible, and
will feel comfortable to Python users. A good companion is the site py-
torch.org/tutorials. Much of our code is adapted from there, as well as the
pytorch_lightning documentation.23

We start with several standard imports that we have seen before.
In [1]: import numpy as np, pandas as pd

from matplotlib.pyplot import subplots
from sklearn.linear_model import \

(LinearRegression,
LogisticRegression,
Lasso)

from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import KFold
from sklearn.pipeline import Pipeline
from ISLP import load_data
from ISLP.models import ModelSpec as MS
from sklearn.model_selection import \

(train_test_split,
GridSearchCV)

23The precise URLs at the time of writing are https://pytorch.org/tutorials/
beginner/basics/intro.html and https://pytorch-lightning.readthedocs.io/en/
latest/.

https://pytorch.org/tutorials/beginner/basics/intro.html
https://pytorch.org/tutorials/beginner/basics/intro.html
https://pytorch.org/tutorials/beginner/basics/intro.html
https://pytorch.org/tutorials/beginner/basics/intro.html
https://pytorch-lightning.readthedocs.io/en/latest/
https://pytorch-lightning.readthedocs.io/en/latest/
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Torch-Specific Imports
There are a number of imports for torch. (These are not included with
ISLP, so must be installed separately.) First we import the main library
and essential tools used to specify sequentially-structured networks.

In [2]: import torch
from torch import nn
from torch.optim import RMSprop
from torch.utils.data import TensorDataset

There are several other helper packages for torch. For instance, the
torchmetrics package has utilities to compute various metrics to evalu- torchmetricsate performance when fitting a model. The torchinfo package provides a torchinfouseful summary of the layers of a model. We use the read_image() function read_image()when loading test images in Section 10.9.4.

In [3]: from torchmetrics import (MeanAbsoluteError,
R2Score)

from torchinfo import summary
from torchvision.io import read_image

The package pytorch_lightning is a somewhat higher-level interface to
torch that simplifies the specification and fitting of models by reducing the
amount of boilerplate code needed (compared to using torch alone).

In [4]: from pytorch_lightning import Trainer
from pytorch_lightning.loggers import CSVLogger

In order to reproduce results we use seed_everything(). We will also seed_
everything()instruct torch to use deterministic algorithms where possible.

In [5]: from pytorch_lightning.utilities.seed import seed_everything
seed_everything(0, workers=True)
torch.use_deterministic_algorithms(True, warn_only=True)

We will use several datasets shipped with torchvision for our examples: torchvisiona pretrained network for image classification, as well as some transforms
used for preprocessing.

In [6]: from torchvision.datasets import MNIST, CIFAR100
from torchvision.models import (resnet50,

ResNet50_Weights)
from torchvision.transforms import (Resize,

Normalize,
CenterCrop,
ToTensor)

We have provided a few utilities in ISLP specifically for this lab. The
SimpleDataModule and SimpleModule are simple versions of objects used
in pytorch_lightning, the high-level module for fitting torch models. Al-
though more advanced uses such as computing on graphical processing
units (GPUs) and parallel data processing are possible in this module, we
will not be focusing much on these in this lab. The ErrorTracker handles
collections of targets and predictions over each mini-batch in the validation
or test stage, allowing computation of the metric over the entire validation
or test data set.
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In [7]: from ISLP.torch import (SimpleDataModule,
SimpleModule,
ErrorTracker,
rec_num_workers)

In addition we have included some helper functions to load the IMDb
database, as well as a lookup that maps integers to particular keys in the
database. We’ve included a slightly modified copy of the preprocessed IMDb
data from keras, a separate package for fitting deep learning models. This kerassaves us significant preprocessing and allows us to focus on specifying and
fitting the models themselves.

In [8]: from ISLP.torch.imdb import (load_lookup,
load_tensor,
load_sparse,
load_sequential)

Finally, we introduce some utility imports not directly related to torch.
The glob() function from the glob module is used to find all files matching glob()wildcard characters, which we will use in our example applying the ResNet50
model to some of our own images. The json module will be used to load a jsonJSON file for looking up classes to identify the labels of the pictures in the
ResNet50 example.

In [9]: from glob import glob
import json

10.9.1 Single Layer Network on Hitters Data
We start by fitting the models in Section 10.6 on the Hitters data.

In [10]: Hitters = load_data('Hitters').dropna()
n = Hitters.shape[0]

We will fit two linear models (least squares and lasso) and compare their
performance to that of a neural network. For this comparison we will use
mean absolute error on a validation dataset.

MAE(y, ŷ) = 1

n

n∑

i=1

|yi − ŷi|.

We set up the model matrix and the response.
In [11]: model = MS(Hitters.columns.drop('Salary'), intercept=False)

X = model.fit_transform(Hitters).to_numpy()
Y = Hitters['Salary'].to_numpy()

The to_numpy() method above converts pandas data frames or series to to_numpy()
numpy arrays. We do this because we will need to use sklearn to fit the
lasso model, and it requires this conversion. We also use a linear regres-
sion method from sklearn, rather than the method in Chapter 3 from
statsmodels, to facilitate the comparisons.

We now split the data into test and training, fixing the random state
used by sklearn to do the split.
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In [12]: (X_train,
X_test,
Y_train,
Y_test) = train_test_split(X,

Y,
test_size=1/3,
random_state=1)

Linear Models
We fit the linear model and evaluate the test error directly.

In [13]: hit_lm = LinearRegression().fit(X_train, Y_train)
Yhat_test = hit_lm.predict(X_test)
np.abs(Yhat_test - Y_test).mean()

Out[13]: 259.7153

Next we fit the lasso using sklearn. We are using mean absolute error
to select and evaluate a model, rather than mean squared error. The spe-
cialized solver we used in Section 6.5.2 uses only mean squared error. So
here, with a bit more work, we create a cross-validation grid and perform
the cross-validation directly.

We encode a pipeline with two steps: we first normalize the features
using a StandardScaler() transform, and then fit the lasso without further
normalization.

In [14]: scaler = StandardScaler(with_mean=True, with_std=True)
lasso = Lasso(warm_start=True, max_iter=30000)
standard_lasso = Pipeline(steps=[('scaler', scaler),

('lasso', lasso)])

We need to create a grid of values for λ. As is common practice, we
choose a grid of 100 values of λ, uniform on the log scale from lam_max
down to 0.01*lam_max. Here lam_max is the smallest value of λ with an all-
zero solution. This value equals the largest absolute inner-product between
any predictor and the (centered) response.24

In [15]: X_s = scaler.fit_transform(X_train)
n = X_s.shape[0]
lam_max = np.fabs(X_s.T.dot(Y_train - Y_train.mean())).max() / n
param_grid = {'alpha': np.exp(np.linspace(0, np.log(0.01), 100))

* lam_max}

Note that we had to transform the data first, since the scale of the vari-
ables impacts the choice of λ. We now perform cross-validation using this
sequence of λ values.

In [16]: cv = KFold(10,
shuffle=True,
random_state=1)

grid = GridSearchCV(lasso,

24The derivation of this result is beyond the scope of this book.
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param_grid,
cv=cv,
scoring='neg_mean_absolute_error')

grid.fit(X_train, Y_train);

We extract the lasso model with best cross-validated mean absolute error,
and evaluate its performance on X_test and Y_test, which were not used
in cross-validation.

In [17]: trained_lasso = grid.best_estimator_
Yhat_test = trained_lasso.predict(X_test)
np.fabs(Yhat_test - Y_test).mean()

Out[17]: 257.2382

This is similar to the results we got for the linear model fit by least squares.
However, these results can vary a lot for different train/test splits; we en-
courage the reader to try a different seed in code block 12 and rerun the
subsequent code up to this point.

Specifying a Network: Classes and Inheritance
To fit the neural network, we first set up a model structure that describes
the network. Doing so requires us to define new classes specific to the model
we wish to fit. Typically this is done in pytorch by sub-classing a generic
representation of a network, which is the approach we take here. Although
this example is simple, we will go through the steps in some detail, since it
will serve us well for the more complex examples to follow.

In [18]: class HittersModel(nn.Module):

def __init__(self, input_size):
super(HittersModel, self).__init__()
self.flatten = nn.Flatten()
self.sequential = nn.Sequential(

nn.Linear(input_size, 50),
nn.ReLU(),
nn.Dropout(0.4),
nn.Linear(50, 1))

def forward(self, x):
x = self.flatten(x)
return torch.flatten(self.sequential(x))

The class statement identifies the code chunk as a declaration for a class
HittersModel that inherits from the base class nn.Module. This base class is
ubiquitous in torch and represents the mappings in the neural networks.

Indented beneath the class statement are the methods of this class: in
this case __init__ and forward. The __init__ method is called when an
instance of the class is created as in the cell below. In the methods, self
always refers to an instance of the class. In the __init__ method, we have
attached two objects to self as attributes: flatten and sequential. These
are used in the forward method to describe the map that this module
implements.
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There is one additional line in the __init__ method, which is a call to
super(). This function allows subclasses (i.e. HittersModel) to access meth- super()ods of the class they inherit from. For example, the class nn.Module has its
own __init__ method, which is different from the HittersModel.__init__()
method we’ve written above. Using super() allows us to call the method
of the base class. For torch models, we will always be making this super()
call as it is necessary for the model to be properly interpreted by torch.

The object nn.Module has more methods than simply __init__ and forward.
These methods are directly accessible to HittersModel instances because of
this inheritance. One such method we will see shortly is the eval() method,
used to disable dropout for when we want to evaluate the model on test
data.

In [19]: hit_model = HittersModel(X.shape[1])

The object self.sequential is a composition of four maps. The first
maps the 19 features of Hitters to 50 dimensions, introducing 50× 19+50
parameters for the weights and intercept of the map (often called the bias).
This layer is then mapped to a ReLU layer followed by a 40% dropout layer,
and finally a linear map down to 1 dimension, again with a bias. The total
number of trainable parameters is therefore 50× 19 + 50 + 50 + 1 = 1051.

The package torchinfo provides a summary() function that neatly sum-
marizes this information. We specify the size of the input and see the size
of each tensor as it passes through layers of the network.

In [20]: summary(hit_model,
input_size=X_train.shape,
col_names=['input_size',

'output_size',
'num_params'])

Out[20]: =====================================================================
Layer (type:depth-idx) Input Shape Output Shape Param #
=====================================================================
HittersModel [175, 19] [175] --

Flatten: 1-1 [175, 19] [175, 19] --
Sequential: 1-2 [175, 19] [175, 1] --

Linear: 2-1 [175, 19] [175, 50] 1,000
ReLU: 2-2 [175, 50] [175, 50] --
Dropout: 2-3 [175, 50] [175, 50] --
Linear: 2-4 [175, 50] [175, 1] 51

=====================================================================
Total params: 1,051
Trainable params: 1,051

We have truncated the end of the output slightly, here and in subsequent
uses.

We now need to transform our training data into a form accessible to
torch. The basic datatype in torch is a tensor, which is very similar to
an ndarray from early chapters. We also note here that torch typically
works with 32-bit (single precision) rather than 64-bit (double precision)
floating point numbers. We therefore convert our data to np.float32 before
forming the tensor. The X and Y tensors are then arranged into a Dataset Dataset
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recognized by torch using TensorDataset(). Tensor
Dataset()In [21]: X_train_t = torch.tensor(X_train.astype(np.float32))

Y_train_t = torch.tensor(Y_train.astype(np.float32))
hit_train = TensorDataset(X_train_t, Y_train_t)

We do the same for the test data.

In [22]: X_test_t = torch.tensor(X_test.astype(np.float32))
Y_test_t = torch.tensor(Y_test.astype(np.float32))
hit_test = TensorDataset(X_test_t, Y_test_t)

Finally, this dataset is passed to a DataLoader() which ultimately passes
data into our network. While this may seem like a lot of overhead, this
structure is helpful for more complex tasks where data may live on different
machines, or where data must be passed to a GPU. We provide a helper
function SimpleDataModule() in ISLP to make this task easier for standard SimpleData

Module()usage. One of its arguments is num_workers, which indicates how many
processes we will use for loading the data. For small data like Hitters
this will have little effect, but it does provide an advantage for the MNIST
and CIFAR100 examples below. The torch package will inspect the process
running and determine a maximum number of workers.25 We’ve included a
function rec_num_workers() to compute this so we know how many workers
might be reasonable (here the max was 16).

In [23]: max_num_workers = rec_num_workers()

The general training setup in pytorch_lightning involves training, vali-
dation and test data. These are each represented by different data loaders.
During each epoch, we run a training step to learn the model and a vali-
dation step to track the error. The test data is typically used at the end of
training to evaluate the model.

In this case, as we had split only into test and training, we’ll use the
test data as validation data with the argument validation=hit_test. The
validation argument can be a float between 0 and 1, an integer, or a
Dataset. If a float (respectively, integer), it is interpreted as a percentage
(respectively number) of the training observations to be used for validation.
If it is a Dataset, it is passed directly to a data loader.

In [24]: hit_dm = SimpleDataModule(hit_train,
hit_test,
batch_size=32,
num_workers=min(4, max_num_workers),
validation=hit_test)

Next we must provide a pytorch_lightning module that controls the
steps performed during the training process. We provide methods for our
SimpleModule() that simply record the value of the loss function and any
additional metrics at the end of each epoch. These operations are controlled
by the methods SimpleModule.[training/test/validation]_step(), though
we will not be modifying these in our examples.

25This depends on the computing hardware and the number of cores available.
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In [25]: hit_module = SimpleModule.regression(hit_model,
metrics={'mae':MeanAbsoluteError()})

By using the SimpleModule.regression() method, we indicate that we SimpleModule.
regression()will use squared-error loss as in (10.23). We have also asked for mean ab-

solute error to be tracked as well in the metrics that are logged.
We log our results via CSVLogger(), which in this case stores the results

in a CSV file within a directory logs/hitters. After the fitting is complete,
this allows us to load the results as a pd.DataFrame() and visualize them
below. There are several ways to log the results within pytorch_lightning,
though we will not cover those here in detail.

In [26]: hit_logger = CSVLogger('logs', name='hitters')

Finally we are ready to train our model and log the results. We use
the Trainer() object from pytorch_lightning to do this work. The argu-
ment datamodule=hit_dm tells the trainer how training/validation/test logs
are produced, while the first argument hit_module specifies the network
architecture as well as the training/validation/test steps. The callbacks
argument allows for several tasks to be carried out at various points while
training a model. Here our ErrorTracker() callback will enable us to com-
pute validation error while training and, finally, the test error. We now fit
the model for 50 epochs.

In [27]: hit_trainer = Trainer(deterministic=True,
max_epochs=50,
log_every_n_steps=5,
logger=hit_logger,
callbacks=[ErrorTracker()])

hit_trainer.fit(hit_module, datamodule=hit_dm)

At each step of SGD, the algorithm randomly selects 32 training observa-
tions for the computation of the gradient. Recall from Section 10.7 that an
epoch amounts to the number of SGD steps required to process n observa-
tions. Since the training set has n = 175, and we specified a batch_size of
32 in the construction of hit_dm, an epoch is 175/32 = 5.5 SGD steps.

After having fit the model, we can evaluate performance on our test data
using the test() method of our trainer.

In [28]: hit_trainer.test(hit_module, datamodule=hit_dm)

Out[28]: [{'test_loss': 104098.5469, 'test_mae': 229.5012}]

The results of the fit have been logged into a CSV file. We can find the
results specific to this run in the experiment.metrics_file_path attribute
of our logger. Note that each time the model is fit, the logger will output
results into a new subdirectory of our directory logs/hitters.

We now create a plot of the MAE (mean absolute error) as a function of
the number of epochs. First we retrieve the logged summaries.
hit_results = pd.read_csv(hit_logger.experiment.metrics_file_path)

Since we will produce similar plots in later examples, we write a simple
generic function to produce this plot.
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In [29]: def summary_plot(results,
ax,
col='loss',
valid_legend='Validation',
training_legend='Training',
ylabel='Loss',
fontsize=20):

for (column,
color,
label) in zip([f'train_{col}_epoch',

f'valid_{col}'],
['black',
'red'],

[training_legend,
valid_legend]):

results.plot(x='epoch',
y=column,
label=label,
marker='o',
color=color,
ax=ax)

ax.set_xlabel('Epoch')
ax.set_ylabel(ylabel)
return ax

We now set up our axes, and use our function to produce the MAE plot.

In [30]: fig, ax = subplots(1, 1, figsize=(6, 6))
ax = summary_plot(hit_results,

ax,
col='mae',
ylabel='MAE',
valid_legend='Validation (=Test)')

ax.set_ylim([0, 400])
ax.set_xticks(np.linspace(0, 50, 11).astype(int));

We can predict directly from the final model, and evaluate its per-
formance on the test data. Before fitting, we call the eval() method of
hit_model. This tells torch to effectively consider this model to be fitted,
so that we can use it to predict on new data. For our model here, the biggest
change is that the dropout layers will be turned off, i.e. no weights will be
randomly dropped in predicting on new data.

In [31]: hit_model.eval()
preds = hit_module(X_test_t)
torch.abs(Y_test_t - preds).mean()

Out[31]: tensor(229.5012, grad_fn=<MeanBackward0 >)

Cleanup
In setting up our data module, we had initiated several worker processes
that will remain running. We delete all references to the torch objects to
ensure these processes will be killed.



444 10. Deep Learning

In [32]: del(Hitters,
hit_model, hit_dm,
hit_logger,
hit_test, hit_train,
X, Y,
X_test, X_train,
Y_test, Y_train,
X_test_t, Y_test_t,
hit_trainer, hit_module)

10.9.2 Multilayer Network on the MNIST Digit Data
The torchvision package comes with a number of example datasets, includ-
ing the MNIST digit data. Our first step is to retrieve the training and test
data sets; the MNIST() function within torchvision.datasets is provided for MNIST()this purpose. The data will be downloaded the first time this function is
executed, and stored in the directory data/MNIST.

In [33]: (mnist_train,
mnist_test) = [MNIST(root='data',

train=train,
download=True,
transform=ToTensor())

for train in [True, False]]
mnist_train

Out[33]: Dataset MNIST
Number of datapoints: 60000
Root location: data
Split: Train
StandardTransform

Transform: ToTensor()

There are 60,000 images in the training data and 10,000 in the test data.
The images are 28 × 28, and stored as a matrix of pixels. We need to
transform each one into a vector.

Neural networks are somewhat sensitive to the scale of the inputs, much
as ridge and lasso regularization are affected by scaling. Here the inputs
are eight-bit grayscale values between 0 and 255, so we rescale to the unit
interval.26 This transformation, along with some reordering of the axes, is
performed by the ToTensor() transform from the torchvision.transforms
package.

As in our Hitters example, we form a data module from the training and
test datasets, setting aside 20% of the training images for validation.

In [34]: mnist_dm = SimpleDataModule(mnist_train,
mnist_test,
validation=0.2,
num_workers=max_num_workers,
batch_size=256)

26Note: eight bits means 28, which equals 256. Since the convention is to start at 0,
the possible values range from 0 to 255.
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Let’s take a look at the data that will get fed into our network. We loop
through the first few chunks of the test dataset, breaking after 2 batches:

In [35]: for idx, (X_ ,Y_) in enumerate(mnist_dm.train_dataloader()):
print('X: ', X_.shape)
print('Y: ', Y_.shape)
if idx >= 1:

break

X: torch.Size([256, 1, 28, 28])
Y: torch.Size([256])
X: torch.Size([256, 1, 28, 28])
Y: torch.Size([256])

We see that the X for each batch consists of 256 images of size 1x28x28.
Here the 1 indicates a single channel (greyscale). For RGB images such as
CIFAR100 below, we will see that the 1 in the size will be replaced by 3 for
the three RGB channels.

Now we are ready to specify our neural network.
In [36]: class MNISTModel(nn.Module):

def __init__(self):
super(MNISTModel, self).__init__()
self.layer1 = nn.Sequential(

nn.Flatten(),
nn.Linear(28*28, 256),
nn.ReLU(),
nn.Dropout(0.4))

self.layer2 = nn.Sequential(
nn.Linear(256, 128),
nn.ReLU(),
nn.Dropout(0.3))

self._forward = nn.Sequential(
self.layer1,
self.layer2,
nn.Linear(128, 10))

def forward(self, x):
return self._forward(x)

We see that in the first layer, each 1x28x28 image is flattened, then
mapped to 256 dimensions where we apply a ReLU activation with 40%
dropout. A second layer maps the first layer’s output down to 128 di-
mensions, applying a ReLU activation with 30% dropout. Finally, the 128
dimensions are mapped down to 10, the number of classes in the MNIST
data.

In [37]: mnist_model = MNISTModel()

We can check that the model produces output of expected size based on
our existing batch X_ above.

In [38]: mnist_model(X_).size()

Out[38]: torch.Size([256, 10])

Let’s take a look at the summary of the model. Instead of an input_size
we can pass a tensor of correct shape. In this case, we pass through the
final batched X_ from above.
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In [39]: summary(mnist_model,
input_data=X_,
col_names=['input_size',

'output_size',
'num_params'])

Out[39]: =====================================================================
Layer (type:depth-idx) Input Shape Output Shape Param #
=====================================================================
MNISTModel [256, 1, 28, 28] [256, 10] --

Sequential: 1-1 [256, 1, 28, 28] [256, 10] --
Sequential: 2-1 [256, 1, 28, 28] [256, 256] --

Flatten: 3-1 [256, 1, 28, 28] [256, 784] --
Linear: 3-2 [256, 784] [256, 256] 200,960
ReLU: 3-3 [256, 256] [256, 256] --
Dropout: 3-4 [256, 256] [256, 256] --

Sequential: 2-2 [256, 256] [256, 128] --
Linear: 3-5 [256, 256] [256, 128] 32,896
ReLU: 3-6 [256, 128] [256, 128] --
Dropout: 3-7 [256, 128] [256, 128] --

Linear: 2-3 [256, 128] [256, 10] 1,290
=====================================================================
Total params: 235,146
Trainable params: 235,146

Having set up both the model and the data module, fitting this model is
now almost identical to the Hitters example. In contrast to our regression
model, here we will use the SimpleModule.classification() method which SimpleModule.

classifi-
cation()

uses the cross-entropy loss function instead of mean squared error.
In [40]: mnist_module = SimpleModule.classification(mnist_model)

mnist_logger = CSVLogger('logs', name='MNIST')

Now we are ready to go. The final step is to supply training data, and
fit the model.

In [41]: mnist_trainer = Trainer(deterministic=True,
max_epochs=30,
logger=mnist_logger,
callbacks=[ErrorTracker()])

mnist_trainer.fit(mnist_module,
datamodule=mnist_dm)

We have suppressed the output here, which is a progress report on the
fitting of the model, grouped by epoch. This is very useful, since on large
datasets fitting can take time. Fitting this model took 245 seconds on a
MacBook Pro with an Apple M1 Pro chip with 10 cores and 16 GB of
RAM. Here we specified a validation split of 20%, so training is actually
performed on 80% of the 60,000 observations in the training set. This is an
alternative to actually supplying validation data, like we did for the Hitters
data. SGD uses batches of 256 observations in computing the gradient, and
doing the arithmetic, we see that an epoch corresponds to 188 gradient
steps.

SimpleModule.classification() includes an accuracy metric by default.
Other classification metrics can be added from torchmetrics. We will use
our summary_plot() function to display accuracy across epochs.
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In [42]: mnist_results = pd.read_csv(mnist_logger.experiment.
metrics_file_path)

fig, ax = subplots(1, 1, figsize=(6, 6))
summary_plot(mnist_results,

ax,
col='accuracy',
ylabel='Accuracy')

ax.set_ylim([0.5, 1])
ax.set_ylabel('Accuracy')
ax.set_xticks(np.linspace(0, 30, 7).astype(int));

Once again we evaluate the accuracy using the test() method of our
trainer. This model achieves 97% accuracy on the test data.

In [43]: mnist_trainer.test(mnist_module,
datamodule=mnist_dm)

Out[43]: [{'test_loss': 0.1471, 'test_accuracy': 0.9681}]

Table 10.1 also reports the error rates resulting from LDA (Chapter 4) and
multiclass logistic regression. For LDA we refer the reader to Section 4.7.3.
Although we could use the sklearn function LogisticRegression() to fit
multiclass logistic regression, we are set up here to fit such a model with
torch. We just have an input layer and an output layer, and omit the hidden
layers!

In [44]: class MNIST_MLR(nn.Module):
def __init__(self):

super(MNIST_MLR, self).__init__()
self.linear = nn.Sequential(nn.Flatten(),

nn.Linear(784, 10))
def forward(self, x):

return self.linear(x)

mlr_model = MNIST_MLR()
mlr_module = SimpleModule.classification(mlr_model)
mlr_logger = CSVLogger('logs', name='MNIST_MLR')

In [45]: mlr_trainer = Trainer(deterministic=True,
max_epochs=30,
callbacks=[ErrorTracker()])

mlr_trainer.fit(mlr_module, datamodule=mnist_dm)

We fit the model just as before and compute the test results.
In [46]: mlr_trainer.test(mlr_module,

datamodule=mnist_dm)

Out[46]: [{'test_loss': 0.3187, 'test_accuracy': 0.9241}]

The accuracy is above 90% even for this pretty simple model.
As in the Hitters example, we delete some of the objects we created

above.
In [47]: del(mnist_test,

mnist_train,
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mnist_model,
mnist_dm,
mnist_trainer,
mnist_module,
mnist_results,
mlr_model,
mlr_module,
mlr_trainer)

10.9.3 Convolutional Neural Networks
In this section we fit a CNN to the CIFAR100 data, which is available in the
torchvision package. It is arranged in a similar fashion as the MNIST data.

In [48]: (cifar_train,
cifar_test) = [CIFAR100(root="data",

train=train,
download=True)

for train in [True, False]]

In [49]: transform = ToTensor()
cifar_train_X = torch.stack([transform(x) for x in

cifar_train.data])
cifar_test_X = torch.stack([transform(x) for x in

cifar_test.data])
cifar_train = TensorDataset(cifar_train_X,

torch.tensor(cifar_train.targets))
cifar_test = TensorDataset(cifar_test_X,

torch.tensor(cifar_test.targets))

The CIFAR100 dataset consists of 50,000 training images, each represented
by a three-dimensional tensor: each three-color image is represented as a
set of three channels, each of which consists of 32× 32 eight-bit pixels. We
standardize as we did for the digits, but keep the array structure. This is
accomplished with the ToTensor() transform.

Creating the data module is similar to the MNIST example.
In [50]: cifar_dm = SimpleDataModule(cifar_train,

cifar_test,
validation=0.2,
num_workers=max_num_workers,
batch_size=128)

We again look at the shape of typical batches in our data loaders.
In [51]: for idx, (X_ ,Y_) in enumerate(cifar_dm.train_dataloader()):

print('X: ', X_.shape)
print('Y: ', Y_.shape)
if idx >= 1:

break

X: torch.Size([128, 3, 32, 32])
Y: torch.Size([128])
X: torch.Size([128, 3, 32, 32])
Y: torch.Size([128])
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Before we start, we look at some of the training images; similar code
produced Figure 10.5 on page 406. The example below also illustrates that
TensorDataset objects can be indexed with integers — we are choosing ran-
dom images from the training data by indexing cifar_train. In order to dis-
play correctly, we must reorder the dimensions by a call to np.transpose().

In [52]: fig, axes = subplots(5, 5, figsize=(10,10))
rng = np.random.default_rng(4)
indices = rng.choice(np.arange(len(cifar_train)), 25,

replace=False).reshape((5,5))
for i in range(5):

for j in range(5):
idx = indices[i,j]
axes[i,j].imshow(np.transpose(cifar_train[idx][0],

[1,2,0]),
interpolation=None)

axes[i,j].set_xticks([])
axes[i,j].set_yticks([])

Here the imshow() method recognizes from the shape of its argument that .imshow()it is a 3-dimensional array, with the last dimension indexing the three RGB
color channels.

We specify a moderately-sized CNN for demonstration purposes, simi-
lar in structure to Figure 10.8. We use several layers, each consisting of
convolution, ReLU, and max-pooling steps. We first define a module that
defines one of these layers. As in our previous examples, we overwrite the
__init__() and forward() methods of nn.Module. This user-defined module
can now be used in ways just like nn.Linear() or nn.Dropout().

In [53]: class BuildingBlock(nn.Module):

def __init__(self,
in_channels,
out_channels):

super(BuildingBlock, self).__init__()
self.conv = nn.Conv2d(in_channels=in_channels,

out_channels=out_channels,
kernel_size=(3,3),
padding='same')

self.activation = nn.ReLU()
self.pool = nn.MaxPool2d(kernel_size=(2,2))

def forward(self, x):
return self.pool(self.activation(self.conv(x)))

Notice that we used the padding = "same" argument to nn.Conv2d(),
which ensures that the output channels have the same dimension as the
input channels. There are 32 channels in the first hidden layer, in contrast
to the three channels in the input layer. We use a 3 × 3 convolution fil-
ter for each channel in all the layers. Each convolution is followed by a
max-pooling layer over 2× 2 blocks.

In forming our deep learning model for the CIFAR100 data, we use several
of our BuildingBlock() modules sequentially. This simple example illus-
trates some of the power of torch. Users can define modules of their own,
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which can be combined in other modules. Ultimately, everything is fit by
a generic trainer.

In [54]: class CIFARModel(nn.Module):

def __init__(self):
super(CIFARModel, self).__init__()
sizes = [(3,32),

(32,64),
(64,128),
(128,256)]

self.conv = nn.Sequential(*[BuildingBlock(in_, out_)
for in_, out_ in sizes])

self.output = nn.Sequential(nn.Dropout(0.5),
nn.Linear(2*2*256, 512),
nn.ReLU(),
nn.Linear(512, 100))

def forward(self, x):
val = self.conv(x)
val = torch.flatten(val, start_dim=1)
return self.output(val)

We build the model and look at the summary. (We had created examples
of X_ earlier.)

In [55]: cifar_model = CIFARModel()
summary(cifar_model,

input_data=X_,
col_names=['input_size',

'output_size',
'num_params'])

Out[55]: ======================================================================
Layer (type:depth-idx) Input Shape Output Shape Param #
======================================================================
CIFARModel [128, 3, 32, 32] [128, 100] --

Sequential: 1-1 [128, 3, 32, 32] [128, 256, 2, 2] --
BuildingBlock: 2-1 [128, 3, 32, 32] [128, 32, 16, 16] --

Conv2d: 3-1 [128, 3, 32, 32] [128, 32, 32, 32] 896
ReLU: 3-2 [128, 32, 32, 32] [128, 32, 32, 32] --
MaxPool2d: 3-3 [128, 32, 32, 32] [128, 32, 16, 16] --

BuildingBlock: 2-2 [128, 32, 16, 16] [128, 64, 8, 8] --
Conv2d: 3-4 [128, 32, 16, 16] [128, 64, 16, 16] 18,496
ReLU: 3-5 [128, 64, 16, 16] [128, 64, 16, 16] --
MaxPool2d: 3-6 [128, 64, 16, 16] [128, 64, 8, 8] --

BuildingBlock: 2-3 [128, 64, 8, 8] [128, 128, 4, 4] --
Conv2d: 3-7 [128, 64, 8, 8] [128, 128, 8, 8] 73,856
ReLU: 3-8 [128, 128, 8, 8] [128, 128, 8, 8] --
MaxPool2d: 3-9 [128, 128, 8, 8] [128, 128, 4, 4] --

BuildingBlock: 2-4 [128, 128, 4, 4] [128, 256, 2, 2] --
Conv2d: 3-10 [128, 128, 4, 4] [128, 256, 4, 4] 295,168
ReLU: 3-11 [128, 256, 4, 4] [128, 256, 4, 4] --
MaxPool2d: 3-12 [128, 256, 4, 4] [128, 256, 2, 2] --

Sequential: 1-2 [128, 1024] [128, 100] --
Dropout: 2-5 [128, 1024] [128, 1024] --
Linear: 2-6 [128, 1024] [128, 512] 524,800
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ReLU: 2-7 [128, 512] [128, 512] --
Linear: 2-8 [128, 512] [128, 100] 51,300

======================================================================
Total params: 964,516
Trainable params: 964,516

The total number of trainable parameters is 964,516. By studying the size
of the parameters, we can see that the channels halve in both dimensions
after each of these max-pooling operations. After the last of these we have
a layer with 256 channels of dimension 2 × 2. These are then flattened to
a dense layer of size 1,024; in other words, each of the 2 × 2 matrices is
turned into a 4-vector, and put side-by-side in one layer. This is followed
by a dropout regularization layer, then another dense layer of size 512, and
finally, the output layer.

Up to now, we have been using a default optimizer in SimpleModule(). For
these data, experiments show that a smaller learning rate performs better
than the default 0.01. We use a custom optimizer here with a learning rate
of 0.001. Besides this, the logging and training follow a similar pattern
to our previous examples. The optimizer takes an argument params that
informs the optimizer which parameters are involved in SGD (stochastic
gradient descent).

We saw earlier that entries of a module’s parameters are tensors. In
passing the parameters to the optimizer we are doing more than simply
passing arrays; part of the structure of the graph is encoded in the tensors
themselves.

In [56]: cifar_optimizer = RMSprop(cifar_model.parameters(), lr=0.001)
cifar_module = SimpleModule.classification(cifar_model,

optimizer=cifar_optimizer)
cifar_logger = CSVLogger('logs', name='CIFAR100')

In [57]: cifar_trainer = Trainer(deterministic=True,
max_epochs=30,
logger=cifar_logger,
callbacks=[ErrorTracker()])

cifar_trainer.fit(cifar_module,
datamodule=cifar_dm)

This model takes 10 minutes or more to run and achieves about 42%
accuracy on the test data. Although this is not terrible for 100-class data
(a random classifier gets 1% accuracy), searching the web we see results
around 75%. Typically it takes a lot of architecture carpentry, fiddling with
regularization, and time, to achieve such results.

Let’s take a look at the validation and training accuracy across epochs.
In [58]: log_path = cifar_logger.experiment.metrics_file_path

cifar_results = pd.read_csv(log_path)
fig, ax = subplots(1, 1, figsize=(6, 6))
summary_plot(cifar_results,

ax,
col='accuracy',
ylabel='Accuracy')

ax.set_xticks(np.linspace(0, 10, 6).astype(int))
ax.set_ylabel('Accuracy')
ax.set_ylim([0, 1]);
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Finally, we evaluate our model on our test data.

In [59]: cifar_trainer.test(cifar_module,
datamodule=cifar_dm)

Out[59]: [{'test_loss': 2.4238 'test_accuracy': 0.4206}]

Hardware Acceleration
As deep learning has become ubiquitous in machine learning, hardware
manufacturers have produced special libraries that can often speed up the
gradient-descent steps.

For instance, Mac OS devices with the M1 chip may have the Metal pro-
gramming framework enabled, which can speed up the torch computations.
We present an example of how to use this acceleration.

The main changes are to the Trainer() call as well as to the metrics that
will be evaluated on the data. These metrics must be told where the data
will be located at evaluation time. This is accomplished with a call to the
to() method of the metrics.

In [60]: try:
for name, metric in cifar_module.metrics.items():

cifar_module.metrics[name] = metric.to('mps')
cifar_trainer_mps = Trainer(accelerator='mps',

deterministic=True,
max_epochs=30)

cifar_trainer_mps.fit(cifar_module,
datamodule=cifar_dm)

cifar_trainer_mps.test(cifar_module,
datamodule=cifar_dm)

except:
pass

This yields approximately two- or three-fold acceleration for each epoch.
We have protected this code block using try: and except: clauses; if it
works, we get the speedup, if it fails, nothing happens.

10.9.4 Using Pretrained CNN Models
We now show how to use a CNN pretrained on the imagenet database to
classify natural images, and demonstrate how we produced Figure 10.10.
We copied six JPEG images from a digital photo album into the direc-
tory book_images. These images are available from the data section of www.
statlearning.com, the ISLP book website. Download book_images.zip;
when clicked it creates the book_images directory.

The pretrained network we use is called resnet50; specification details
can be found on the web. We will read in the images, and convert them into
the array format expected by the torch software to match the specifications
in resnet50. The conversion involves a resize, a crop and then a predefined
standardization for each of the three channels. We now read in the images
and preprocess them.

http://www.statlearning.com
http://www.statlearning.com
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In [61]: resize = Resize((232,232))
crop = CenterCrop(224)
normalize = Normalize([0.485,0.456,0.406],

[0.229,0.224,0.225])
imgfiles = sorted([f for f in glob('book_images/*')])
imgs = torch.stack([torch.div(crop(resize(read_image(f))), 255)

for f in imgfiles])
imgs = normalize(imgs)
imgs.size()

Out[61]: torch.Size([6, 3, 224, 224])

We now set up the trained network with the weights we read in code
block 6. The model has 50 layers, with a fair bit of complexity.

In [62]: resnet_model = resnet50(weights=ResNet50_Weights.DEFAULT)
summary(resnet_model,

input_data=imgs,
col_names=['input_size',

'output_size',
'num_params'])

We set the mode to eval() to ensure that the model is ready to predict on
new data.

In [63]: resnet_model.eval()

Inspecting the output above, we see that when setting up the resnet_model,
the authors defined a Bottleneck, much like our BuildingBlock module.

We now feed our six images through the fitted network.
In [64]: img_preds = resnet_model(imgs)

Let’s look at the predicted probabilities for each of the top 3 choices.
First we compute the probabilities by applying the softmax to the logits
in img_preds. Note that we have had to call the detach() method on the
tensor img_preds in order to convert it to our a more familiar ndarray.

In [65]: img_probs = np.exp(np.asarray(img_preds.detach()))
img_probs /= img_probs.sum(1)[:,None]

In order to see the class labels, we must download the index file associated
with imagenet.27

In [66]: labs = json.load(open('imagenet_class_index.json'))
class_labels = pd.DataFrame([(int(k), v[1]) for k, v in

labs.items()],
columns=['idx', 'label'])

class_labels = class_labels.set_index('idx')
class_labels = class_labels.sort_index()

We’ll now construct a data frame for each image file with the labels with
the three highest probabilities as estimated by the model above.

27This is avalable from the book website and s3.amazonaws.com/deep-learning-
models/image-models/imagenet_class_index.json.

https://s3.amazonaws.com/deep-learning-models/image-models/imagenet_class_index.json
https://s3.amazonaws.com/deep-learning-models/image-models/imagenet_class_index.json
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In [67]: for i, imgfile in enumerate(imgfiles):
img_df = class_labels.copy()
img_df['prob'] = img_probs[i]
img_df = img_df.sort_values(by='prob', ascending=False)[:3]
print(f'Image: {imgfile}')
print(img_df.reset_index().drop(columns=['idx']))

Image: book_images/Cape_Weaver.jpg
label prob

0 jacamar 0.287283
1 bee_eater 0.046768
2 bulbul 0.037507
Image: book_images/Flamingo.jpg

label prob
0 flamingo 0.591761
1 spoonbill 0.012386
2 American_egret 0.002105
Image: book_images/Hawk_Fountain.jpg

label prob
0 great_grey_owl 0.287959
1 kite 0.039478
2 fountain 0.029384
Image: book_images/Hawk_cropped.jpg

label prob
0 kite 0.301830
1 jay 0.121674
2 magpie 0.015513
Image: book_images/Lhasa_Apso.jpg

label prob
0 Lhasa 0.151143
1 Shih-Tzu 0.129850
2 Tibetan_terrier 0.102358
Image: book_images/Sleeping_Cat.jpg

label prob
0 tabby 0.173627
1 tiger_cat 0.110414
2 doormat 0.093447

We see that the model is quite confident about Flamingo.jpg, but a little
less so for the other images.

We end this section with our usual cleanup.

In [68]: del(cifar_test,
cifar_train,
cifar_dm,
cifar_module,
cifar_logger,
cifar_optimizer,
cifar_trainer)

10.9.5 IMDB Document Classification
We now implement models for sentiment classification (Section 10.4) on
the IMDB dataset. As mentioned above code block 8, we are using a prepro-
cessed version of the IMDB dataset found in the keras package. As keras uses
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tensorflow, a different tensor and deep learning library, we have converted
the data to be suitable for torch. The code used to convert from keras
is available in the module ISLP.torch._make_imdb. It requires some of the
keras packages to run. These data use a dictionary of size 10,000.

We have stored three different representations of the review data for this
lab:

• load_tensor(), a sparse tensor version usable by torch;

• load_sparse(), a sparse matrix version usable by sklearn, since we
will compare with a lasso fit;

• load_sequential(), a padded version of the original sequence repre-
sentation, limited to the last 500 words of each review.

In [69]: (imdb_seq_train,
imdb_seq_test) = load_sequential(root='data/IMDB')

padded_sample = np.asarray(imdb_seq_train.tensors[0][0])
sample_review = padded_sample[padded_sample > 0][:12]
sample_review[:12]

Out[69]: array([ 1, 14, 22, 16, 43, 530, 973, 1622, 1385,
65, 458, 4468], dtype=int32)

The datasets imdb_seq_train and imdb_seq_test are both instances of the
class TensorDataset. The tensors used to construct them can be found in
the tensors attribute, with the first tensor the features X and the second
the outcome Y. We have taken the first row of features and stored it as
padded_sample. In the preprocessing used to form these data, sequences
were padded with 0s in the beginning if they were not long enough, hence
we remove this padding by restricting to entries where padded_sample > 0.
We then provide the first 12 words of the sample review.

We can find these words in the lookup dictionary from the ISLP.torch.imdb
module.

In [70]: lookup = load_lookup(root='data/IMDB')
' '.join(lookup[i] for i in sample_review)

Out[70]: "<START> this film was just brilliant casting location scenery
story direction everyone's"

For our first model, we have created a binary feature for each of the
10,000 possible words in the dataset, with an entry of one in the i, j entry
if word j appears in review i. As most reviews are quite short, such a feature
matrix has over 98% zeros. These data are accessed using load_tensor()
from the ISLP library.

In [71]: max_num_workers=10
(imdb_train,
imdb_test) = load_tensor(root='data/IMDB')

imdb_dm = SimpleDataModule(imdb_train,
imdb_test,
validation=2000,
num_workers=min(6, max_num_workers),
batch_size=512)
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We’ll use a two-layer model for our first model.
In [72]: class IMDBModel(nn.Module):

def __init__(self, input_size):
super(IMDBModel, self).__init__()
self.dense1 = nn.Linear(input_size, 16)
self.activation = nn.ReLU()
self.dense2 = nn.Linear(16, 16)
self.output = nn.Linear(16, 1)

def forward(self, x):
val = x
for _map in [self.dense1,

self.activation,
self.dense2,
self.activation,
self.output]:

val = _map(val)
return torch.flatten(val)

We now instantiate our model and look at a summary (not shown).
In [73]: imdb_model = IMDBModel(imdb_test.tensors[0].size()[1])

summary(imdb_model,
input_size=imdb_test.tensors[0].size(),
col_names=['input_size',

'output_size',
'num_params'])

We’ll again use a smaller learning rate for these data, hence we pass an
optimizer to the SimpleModule. Since the reviews are classified into positive
or negative sentiment, we use SimpleModule.binary_classification().28

In [74]: imdb_optimizer = RMSprop(imdb_model.parameters(), lr=0.001)
imdb_module = SimpleModule.binary_classification(

imdb_model,
optimizer=imdb_optimizer)

Having loaded the datasets into a data module and created a SimpleModule,
the remaining steps are familiar.

In [75]: imdb_logger = CSVLogger('logs', name='IMDB')
imdb_trainer = Trainer(deterministic=True,

max_epochs=30,
logger=imdb_logger,
callbacks=[ErrorTracker()])

imdb_trainer.fit(imdb_module,
datamodule=imdb_dm)

Evaluating the test error yields roughly 86% accuracy.
In [76]: test_results = imdb_trainer.test(imdb_module, datamodule=imdb_dm)

test_results

28Our use of binary_classification() instead of classification() is due to
some subtlety in how torchmetrics.Accuracy() works, as well as the data type of
the targets.
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Out[76]: [{'test_loss': 1.0863, 'test_accuracy': 0.8550}]

Comparison to Lasso
We now fit a lasso logistic regression model using LogisticRegression()
from sklearn. Since sklearn does not recognize the sparse tensors of torch,
we use a sparse matrix that is recognized by sklearn.

In [77]: ((X_train, Y_train),
(X_valid, Y_valid),
(X_test, Y_test)) = load_sparse(validation=2000,

random_state=0,
root='data/IMDB')

Similar to what we did in Section 10.9.1, we construct a series of 50
values for the lasso reguralization parameter λ.

In [78]: lam_max = np.abs(X_train.T * (Y_train - Y_train.mean())).max()
lam_val = lam_max * np.exp(np.linspace(np.log(1),

np.log(1e-4), 50))

With LogisticRegression() the regularization parameter C is specified as
the inverse of λ. There are several solvers for logistic regression; here we
use liblinear which works well with the sparse input format.

In [79]: logit = LogisticRegression(penalty='l1',
C=1/lam_max,
solver='liblinear',
warm_start=True,
fit_intercept=True)

The path of 50 values takes approximately 40 seconds to run.
In [80]: coefs = []

intercepts = []

for l in lam_val:
logit.C = 1/l
logit.fit(X_train, Y_train)
coefs.append(logit.coef_.copy())
intercepts.append(logit.intercept_)

The coefficient and intercepts have an extraneous dimension which can
be removed by the np.squeeze() function.

In [81]: coefs = np.squeeze(coefs)
intercepts = np.squeeze(intercepts)

We’ll now make a plot to compare our neural network results with the
lasso.

In [82]: %%capture
fig, axes = subplots(1, 2, figsize=(16, 8), sharey=True)
for ((X_, Y_),

data_,
color) in zip([(X_train, Y_train),

(X_valid, Y_valid),
(X_test, Y_test)],
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['Training', 'Validation', 'Test'],
['black', 'red', 'blue']):

linpred_ = X_ * coefs.T + intercepts[None,:]
label_ = np.array(linpred_ > 0)
accuracy_ = np.array([np.mean(Y_ == l) for l in label_.T])
axes[0].plot(-np.log(lam_val / X_train.shape[0]),

accuracy_,
'.--',
color=color,
markersize=13,
linewidth=2,
label=data_)

axes[0].legend()
axes[0].set_xlabel(r'$-\log(\lambda)$', fontsize=20)
axes[0].set_ylabel('Accuracy', fontsize=20)

Notice the use of %%capture, which suppresses the displaying of the partially %%capturecompleted figure. This is useful when making a complex figure, since the
steps can be spread across two or more cells. We now add a plot of the lasso
accuracy, and display the composed figure by simply entering its name at
the end of the cell.

In [83]: imdb_results = pd.read_csv(imdb_logger.experiment.metrics_file_path)
summary_plot(imdb_results,

axes[1],
col='accuracy',
ylabel='Accuracy')

axes[1].set_xticks(np.linspace(0, 30, 7).astype(int))
axes[1].set_ylabel('Accuracy', fontsize=20)
axes[1].set_xlabel('Epoch', fontsize=20)
axes[1].set_ylim([0.5, 1]);
axes[1].axhline(test_results[0]['test_accuracy'],

color='blue',
linestyle='--',
linewidth=3)

fig

From the graphs we see that the accuracy of the lasso logistic regression
peaks at about 0.88, as it does for the neural network.

Once again, we end with a cleanup.
In [84]: del(imdb_model,

imdb_trainer,
imdb_logger,
imdb_dm,
imdb_train,
imdb_test)

10.9.6 Recurrent Neural Networks
In this lab we fit the models illustrated in Section 10.5.

Sequential Models for Document Classification
Here we fit a simple LSTM RNN for sentiment prediction to the IMDb
movie-review data, as discussed in Section 10.5.1. For an RNN we use
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the sequence of words in a document, taking their order into account. We
loaded the preprocessed data at the beginning of Section 10.9.5. A script
that details the preprocessing can be found in the ISLP library. Notably,
since more than 90% of the documents had fewer than 500 words, we set
the document length to 500. For longer documents, we used the last 500
words, and for shorter documents, we padded the front with blanks.

In [85]: imdb_seq_dm = SimpleDataModule(imdb_seq_train,
imdb_seq_test,
validation=2000,
batch_size=300,
num_workers=min(6, max_num_workers)
)

The first layer of the RNN is an embedding layer of size 32, which will
be learned during training. This layer one-hot encodes each document as a
matrix of dimension 500× 10, 003, and then maps these 10, 003 dimensions
down to 32.29 Since each word is represented by an integer, this is effectively
achieved by the creation of an embedding matrix of size 10, 003× 32; each
of the 500 integers in the document are then mapped to the appropriate
32 real numbers by indexing the appropriate rows of this matrix.

The second layer is an LSTM with 32 units, and the output layer is a
single logit for the binary classification task. In the last line of the forward()
method below, we take the last 32-dimensional output of the LSTM and
map it to our response.

In [86]: class LSTMModel(nn.Module):
def __init__(self, input_size):

super(LSTMModel, self).__init__()
self.embedding = nn.Embedding(input_size, 32)
self.lstm = nn.LSTM(input_size=32,

hidden_size=32,
batch_first=True)

self.dense = nn.Linear(32, 1)
def forward(self, x):

val, (h_n, c_n) = self.lstm(self.embedding(x))
return torch.flatten(self.dense(val[:,-1]))

We instantiate and take a look at the summary of the model, using the
first 10 documents in the corpus.

In [87]: lstm_model = LSTMModel(X_test.shape[-1])
summary(lstm_model,

input_data=imdb_seq_train.tensors[0][:10],
col_names=['input_size',

'output_size',
'num_params'])

Out[87]: ====================================================================
Layer (type:depth-idx) Input Shape Output Shape Param #
====================================================================
LSTMModel [10, 500] [10] --

29The extra 3 dimensions correspond to commonly occurring non-word entries in the
reviews.
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Embedding: 1-1 [10, 500] [10, 500, 32] 320,096
LSTM: 1-2 [10, 500, 32] [10, 500, 32] 8,448
Linear: 1-3 [10, 32] [10, 1] 33

====================================================================
Total params: 328,577
Trainable params: 328,577

The 10,003 is suppressed in the summary, but we see it in the parameter
count, since 10, 003× 32 = 320, 096.

In [88]: lstm_module = SimpleModule.binary_classification(lstm_model)
lstm_logger = CSVLogger('logs', name='IMDB_LSTM')

In [89]: lstm_trainer = Trainer(deterministic=True,
max_epochs=20,
logger=lstm_logger,
callbacks=[ErrorTracker()])

lstm_trainer.fit(lstm_module,
datamodule=imdb_seq_dm)

The rest is now similar to other networks we have fit. We track the test
performance as the network is fit, and see that it attains 85% accuracy.

In [90]: lstm_trainer.test(lstm_module, datamodule=imdb_seq_dm)

Out[90]: [{'test_loss': 0.8178, 'test_accuracy': 0.8476}]

We once again show the learning progress, followed by cleanup.
In [91]: lstm_results = pd.read_csv(lstm_logger.experiment.metrics_file_path)

fig, ax = subplots(1, 1, figsize=(6, 6))
summary_plot(lstm_results,

ax,
col='accuracy',
ylabel='Accuracy')

ax.set_xticks(np.linspace(0, 20, 5).astype(int))
ax.set_ylabel('Accuracy')
ax.set_ylim([0.5, 1])

In [92]: del(lstm_model,
lstm_trainer,
lstm_logger,
imdb_seq_dm,
imdb_seq_train,
imdb_seq_test)

Time Series Prediction
We now show how to fit the models in Section 10.5.2 for time series pre-
diction. We first load and standardize the data.

In [93]: NYSE = load_data('NYSE')
cols = ['DJ_return', 'log_volume', 'log_volatility']
X = pd.DataFrame(StandardScaler(

with_mean=True,
with_std=True).fit_transform(NYSE[cols]),

columns=NYSE[cols].columns,
index=NYSE.index)
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Next we set up the lagged versions of the data, dropping any rows with
missing values using the dropna() method.

In [94]: for lag in range(1, 6):
for col in cols:

newcol = np.zeros(X.shape[0]) * np.nan
newcol[lag:] = X[col].values[:-lag]
X.insert(len(X.columns), "{0}_{1}".format(col, lag), newcol)

X.insert(len(X.columns), 'train', NYSE['train'])
X = X.dropna()

Finally, we extract the response, training indicator, and drop the current
day’s DJ_return and log_volatility to predict only from previous day’s
data.

In [95]: Y, train = X['log_volume'], X['train']
X = X.drop(columns=['train'] + cols)
X.columns

Out[95]: Index(['DJ_return_1', 'log_volume_1', 'log_volatility_1',
'DJ_return_2', 'log_volume_2', 'log_volatility_2',
'DJ_return_3', 'log_volume_3', 'log_volatility_3',
'DJ_return_4', 'log_volume_4', 'log_volatility_4',
'DJ_return_5', 'log_volume_5', 'log_volatility_5'],

dtype='object')

We first fit a simple linear model and compute the R2 on the test data
using the score() method.

In [96]: M = LinearRegression()
M.fit(X[train], Y[train])
M.score(X[∼train], Y[∼train])

Out[96]: 0.4129

We refit this model, including the factor variable day_of_week. For a cate-
gorical series in pandas, we can form the indicators using the get_dummies()
method.

In [97]: X_day = pd.merge(X,
pd.get_dummies(NYSE['day_of_week']),
on='date')

Note that we do not have to reinstantiate the linear regression model as its
fit() method accepts a design matrix and a response directly.

In [98]: M.fit(X_day[train], Y[train])
M.score(X_day[∼train], Y[∼train])

Out[98]: 0.4595

This model achieves an R2 of about 46%.
To fit the RNN, we must reshape the data, as it will expect 5 lagged

versions of each feature as indicated by the input_shape argument to the
layer nn.RNN() below. We first ensure the columns of our data frame are
such that a reshaped matrix will have the variables correctly lagged. We
use the reindex() method to do this.
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For an input shape (5,3), each row represents a lagged version of the
three variables. The nn.RNN() layer also expects the first row of each obser-
vation to be earliest in time, so we must reverse the current order. Hence
we loop over range(5,0,-1) below, which is an example of using a slice()
to index iterable objects. The general notation is start:end:step.

In [99]: ordered_cols = []
for lag in range(5,0,-1):

for col in cols:
ordered_cols.append('{0}_{1}'.format(col, lag))

X = X.reindex(columns=ordered_cols)
X.columns

Out[99]: Index(['DJ_return_5', 'log_volume_5', 'log_volatility_5',
'DJ_return_4', 'log_volume_4', 'log_volatility_4',
'DJ_return_3', 'log_volume_3', 'log_volatility_3',
'DJ_return_2', 'log_volume_2', 'log_volatility_2',
'DJ_return_1', 'log_volume_1', 'log_volatility_1'],

dtype='object')

We now reshape the data.
In [100]: X_rnn = X.to_numpy().reshape((-1,5,3))

X_rnn.shape

Out[100]: (6046, 5, 3)

By specifying the first size as -1, numpy.reshape() deduces its size based on
the remaining arguments.

Now we are ready to proceed with the RNN, which uses 12 hidden units,
and 10% dropout. After passing through the RNN, we extract the final
time point as val[:,-1] in forward() below. This gets passed through a
10% dropout and then flattened through a linear layer.

In [101]: class NYSEModel(nn.Module):
def __init__(self):

super(NYSEModel, self).__init__()
self.rnn = nn.RNN(3,

12,
batch_first=True)

self.dense = nn.Linear(12, 1)
self.dropout = nn.Dropout(0.1)

def forward(self, x):
val, h_n = self.rnn(x)
val = self.dense(self.dropout(val[:,-1]))
return torch.flatten(val)

nyse_model = NYSEModel()

We fit the model in a similar fashion to previous networks. We supply
the fit function with test data as validation data, so that when we monitor
its progress and plot the history function we can see the progress on the
test data. Of course we should not use this as a basis for early stopping,
since then the test performance would be biased.

We form the training dataset similar to our Hitters example.
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In [102]: datasets = []
for mask in [train, ∼train]:

X_rnn_t = torch.tensor(X_rnn[mask].astype(np.float32))
Y_t = torch.tensor(Y[mask].astype(np.float32))
datasets.append(TensorDataset(X_rnn_t, Y_t))

nyse_train, nyse_test = datasets

Following our usual pattern, we inspect the summary.
In [103]: summary(nyse_model,

input_data=X_rnn_t,
col_names=['input_size',

'output_size',
'num_params'])

Out[103]: ====================================================================
Layer (type:depth-idx) Input Shape Output Shape Param #
====================================================================
NYSEModel [1770, 5, 3] [1770] --

RNN: 1-1 [1770, 5, 3] [1770, 5, 12] 204
Dropout: 1-2 [1770, 12] [1770, 12] --
Linear: 1-3 [1770, 12] [1770, 1] 13

====================================================================
Total params: 217
Trainable params: 217

We again put the two datasets into a data module, with a batch size of 64.
In [104]: nyse_dm = SimpleDataModule(nyse_train,

nyse_test,
num_workers=min(4, max_num_workers),
validation=nyse_test,
batch_size=64)

We run some data through our model to be sure the sizes match up cor-
rectly.

In [105]: for idx, (x, y) in enumerate(nyse_dm.train_dataloader()):
out = nyse_model(x)
print(y.size(), out.size())
if idx >= 2:

break

torch.Size([64]) torch.Size([64])
torch.Size([64]) torch.Size([64])
torch.Size([64]) torch.Size([64])

We follow our previous example for setting up a trainer for a regression
problem, requesting the R2 metric to be be computed at each epoch.

In [106]: nyse_optimizer = RMSprop(nyse_model.parameters(),
lr=0.001)

nyse_module = SimpleModule.regression(nyse_model,
optimizer=nyse_optimizer,
metrics={'r2':R2Score()})

Fitting the model should by now be familiar. The results on the test data
are very similar to the linear AR model.
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In [107]: nyse_trainer = Trainer(deterministic=True,
max_epochs=200,
callbacks=[ErrorTracker()])

nyse_trainer.fit(nyse_module,
datamodule=nyse_dm)

nyse_trainer.test(nyse_module,
datamodule=nyse_dm)

Out[107]: [{'test_loss': 0.6141, 'test_r2': 0.4172}]

We could also fit a model without the nn.RNN() layer by just using a
nn.Flatten() layer instead. This would be a nonlinear AR model. If in
addition we excluded the hidden layer, this would be equivalent to our
earlier linear AR model.

Instead we will fit a nonlinear AR model using the feature set X_day that
includes the day_of_week indicators. To do so, we must first create our test
and training datasets and a corresponding data module. This may seem a
little burdensome, but is part of the general pipeline for torch.

In [108]: datasets = []
for mask in [train, ∼train]:

X_day_t = torch.tensor(
np.asarray(X_day[mask]).astype(np.float32))

Y_t = torch.tensor(np.asarray(Y[mask]).astype(np.float32))
datasets.append(TensorDataset(X_day_t, Y_t))

day_train, day_test = datasets

Creating a data module follows a familiar pattern.

In [109]: day_dm = SimpleDataModule(day_train,
day_test,
num_workers=min(4, max_num_workers),
validation=day_test,
batch_size=64)

We build a NonLinearARModel() that takes as input the 20 features and
a hidden layer with 32 units. The remaining steps are familiar.

In [110]: class NonLinearARModel(nn.Module):
def __init__(self):

super(NonLinearARModel, self).__init__()
self._forward = nn.Sequential(nn.Flatten(),

nn.Linear(20, 32),
nn.ReLU(),
nn.Dropout(0.5),
nn.Linear(32, 1))

def forward(self, x):
return torch.flatten(self._forward(x))

In [111]: nl_model = NonLinearARModel()
nl_optimizer = RMSprop(nl_model.parameters(),

lr=0.001)
nl_module = SimpleModule.regression(nl_model,

optimizer=nl_optimizer,
metrics={'r2':R2Score()})
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We continue with the usual training steps, fit the model, and evaluate
the test error. We see the test R2 is a slight improvement over the linear
AR model that also includes day_of_week.

In [112]: nl_trainer = Trainer(deterministic=True,
max_epochs=20,
callbacks=[ErrorTracker()])

nl_trainer.fit(nl_module, datamodule=day_dm)
nl_trainer.test(nl_module, datamodule=day_dm)

Out[112]: [{'test_loss': 0.5625, 'test_r2': 0.4662}]

10.10 Exercises
Conceptual

1. Consider a neural network with two hidden layers: p = 4 input units,
2 units in the first hidden layer, 3 units in the second hidden layer,
and a single output.

(a) Draw a picture of the network, similar to Figures 10.1 or 10.4.
(b) Write out an expression for f(X), assuming ReLU activation

functions. Be as explicit as you can!
(c) Now plug in some values for the coefficients and write out the

value of f(X).
(d) How many parameters are there?

2. Consider the softmax function in (10.13) (see also (4.13) on page 145)
for modeling multinomial probabilities.

(a) In (10.13), show that if we add a constant c to each of the z$,
then the probability is unchanged.

(b) In (4.13), show that if we add constants cj , j = 0, 1, . . . , p, to
each of the corresponding coefficients for each of the classes, then
the predictions at any new point x are unchanged.

This shows that the softmax function is over-parametrized. However, over-
parametrizedregularization and SGD typically constrain the solutions so that this

is not a problem.

3. Show that the negative multinomial log-likelihood (10.14) is equiva-
lent to the negative log of the likelihood expression (4.5) when there
are M = 2 classes.

4. Consider a CNN that takes in 32 × 32 grayscale images and has a
single convolution layer with three 5× 5 convolution filters (without
boundary padding).

(a) Draw a sketch of the input and first hidden layer similar to
Figure 10.8.
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(b) How many parameters are in this model?
(c) Explain how this model can be thought of as an ordinary feed-

forward neural network with the individual pixels as inputs, and
with constraints on the weights in the hidden units. What are
the constraints?

(d) If there were no constraints, then how many weights would there
be in the ordinary feed-forward neural network in (c)?

5. In Table 10.2 on page 426, we see that the ordering of the three
methods with respect to mean absolute error is different from the
ordering with respect to test set R2. How can this be?

Applied
6. Consider the simple function R(β) = sin(β) + β/10.

(a) Draw a graph of this function over the range β ∈ [−6, 6].
(b) What is the derivative of this function?
(c) Given β0 = 2.3, run gradient descent to find a local minimum

of R(β) using a learning rate of ρ = 0.1. Show each of β0,β1, . . .
in your plot, as well as the final answer.

(d) Repeat with β0 = 1.4.

7. Fit a neural network to the Default data. Use a single hidden layer
with 10 units, and dropout regularization. Have a look at Labs 10.9.1–
10.9.2 for guidance. Compare the classification performance of your
model with that of linear logistic regression.

8. From your collection of personal photographs, pick 10 images of an-
imals (such as dogs, cats, birds, farm animals, etc.). If the subject
does not occupy a reasonable part of the image, then crop the image.
Now use a pretrained image classification CNN as in Lab 10.9.4 to
predict the class of each of your images, and report the probabilities
for the top five predicted classes for each image.

9. Fit a lag-5 autoregressive model to the NYSE data, as described in
the text and Lab 10.9.6. Refit the model with a 12-level factor repre-
senting the month. Does this factor improve the performance of the
model?

10. In Section 10.9.6, we showed how to fit a linear AR model to the
NYSE data using the LinearRegression() function. However, we also
mentioned that we can “flatten” the short sequences produced for
the RNN model in order to fit a linear AR model. Use this latter
approach to fit a linear AR model to the NYSE data. Compare the test
R2 of this linear AR model to that of the linear AR model that we fit
in the lab. What are the advantages/disadvantages of each approach?

11. Repeat the previous exercise, but now fit a nonlinear AR model by
“flattening” the short sequences produced for the RNN model.
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12. Consider the RNN fit to the NYSE data in Section 10.9.6. Modify the
code to allow inclusion of the variable day_of_week, and fit the RNN.
Compute the test R2.

13. Repeat the analysis of Lab 10.9.5 on the IMDb data using a similarly
structured neural network. We used 16 hidden units at each of two
hidden layers. Explore the effect of increasing this to 32 and 64 units
per layer, with and without 30% dropout regularization.
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