
CHAPTER 2

End-to-End Machine Learning Project

In this chapter you will work through an example project end to end, pretending to
be a recently hired data scientist at a real estate company. This example is fictitious;
the goal is to illustrate the main steps of a machine learning project, not to learn
anything about the real estate business. Here are the main steps we will walk through:

1. Look at the big picture.1.
2. Get the data.2.
3. Explore and visualize the data to gain insights.3.
4. Prepare the data for machine learning algorithms.4.
5. Select a model and train it.5.
6. Fine-tune your model.6.
7. Present your solution.7.
8. Launch, monitor, and maintain your system.8.

Working with Real Data
When you are learning about machine learning, it is best to experiment with real-
world data, not artificial datasets. Fortunately, there are thousands of open datasets to
choose from, ranging across all sorts of domains. Here are a few places you can look
to get data:

• Popular open data repositories:•
— OpenML.org—
— Kaggle.com—

39

https://openml.org
https://kaggle.com/datasets

1 The original dataset appeared in R. Kelley Pace and Ronald Barry, “Sparse Spatial Autoregressions”, Statistics
& Probability Letters 33, no. 3 (1997): 291–297.

— PapersWithCode.com—
— UC Irvine Machine Learning Repository—
— Amazon’s AWS datasets—
— TensorFlow datasets—

• Meta portals (they list open data repositories):•
— DataPortals.org—
— OpenDataMonitor.eu—

• Other pages listing many popular open data repositories:•
— Wikipedia’s list of machine learning datasets—
— Quora.com—
— The datasets subreddit—

In this chapter we’ll use the California Housing Prices dataset from the StatLib
repository1 (see Figure 2-1). This dataset is based on data from the 1990 California
census. It is not exactly recent (a nice house in the Bay Area was still affordable at the
time), but it has many qualities for learning, so we will pretend it is recent data. For
teaching purposes I’ve added a categorical attribute and removed a few features.

Figure 2-1. California housing prices

40 | Chapter 2: End-to-End Machine Learning Project

https://paperswithcode.com/datasets
https://archive.ics.uci.edu/ml
https://registry.opendata.aws
https://tensorflow.org/datasets
https://dataportals.org
https://opendatamonitor.eu
https://homl.info/9
https://homl.info/10
https://reddit.com/r/datasets

2 A piece of information fed to a machine learning system is often called a signal, in reference to Claude
Shannon’s information theory, which he developed at Bell Labs to improve telecommunications. His theory:
you want a high signal-to-noise ratio.

Look at the Big Picture
Welcome to the Machine Learning Housing Corporation! Your first task is to use
California census data to build a model of housing prices in the state. This data
includes metrics such as the population, median income, and median housing price
for each block group in California. Block groups are the smallest geographical unit
for which the US Census Bureau publishes sample data (a block group typically has a
population of 600 to 3,000 people). I will call them “districts” for short.

Your model should learn from this data and be able to predict the median housing
price in any district, given all the other metrics.

Since you are a well-organized data scientist, the first thing you
should do is pull out your machine learning project checklist. You
can start with the one in Appendix A; it should work reasonably
well for most machine learning projects, but make sure to adapt
it to your needs. In this chapter we will go through many check‐
list items, but we will also skip a few, either because they are
self-explanatory or because they will be discussed in later chapters.

Frame the Problem
The first question to ask your boss is what exactly the business objective is. Building a
model is probably not the end goal. How does the company expect to use and benefit
from this model? Knowing the objective is important because it will determine
how you frame the problem, which algorithms you will select, which performance
measure you will use to evaluate your model, and how much effort you will spend
tweaking it.

Your boss answers that your model’s output (a prediction of a district’s median
housing price) will be fed to another machine learning system (see Figure 2-2), along
with many other signals.2 This downstream system will determine whether it is worth
investing in a given area. Getting this right is critical, as it directly affects revenue.

The next question to ask your boss is what the current solution looks like (if
any). The current situation will often give you a reference for performance, as
well as insights on how to solve the problem. Your boss answers that the district
housing prices are currently estimated manually by experts: a team gathers up-to-date
information about a district, and when they cannot get the median housing price,
they estimate it using complex rules.

Look at the Big Picture | 41

Figure 2-2. A machine learning pipeline for real estate investments

This is costly and time-consuming, and their estimates are not great; in cases where
they manage to find out the actual median housing price, they often realize that their
estimates were off by more than 30%. This is why the company thinks that it would
be useful to train a model to predict a district’s median housing price, given other
data about that district. The census data looks like a great dataset to exploit for this
purpose, since it includes the median housing prices of thousands of districts, as well
as other data.

Pipelines
A sequence of data processing components is called a data pipeline. Pipelines are very
common in machine learning systems, since there is a lot of data to manipulate and
many data transformations to apply.

Components typically run asynchronously. Each component pulls in a large amount
of data, processes it, and spits out the result in another data store. Then, some time
later, the next component in the pipeline pulls in this data and spits out its own
output. Each component is fairly self-contained: the interface between components
is simply the data store. This makes the system simple to grasp (with the help of a
data flow graph), and different teams can focus on different components. Moreover,
if a component breaks down, the downstream components can often continue to
run normally (at least for a while) by just using the last output from the broken
component. This makes the architecture quite robust.

On the other hand, a broken component can go unnoticed for some time if proper
monitoring is not implemented. The data gets stale and the overall system’s perfor‐
mance drops.

42 | Chapter 2: End-to-End Machine Learning Project

With all this information, you are now ready to start designing your system. First,
determine what kind of training supervision the model will need: is it a supervised,
unsupervised, semi-supervised, self-supervised, or reinforcement learning task? And
is it a classification task, a regression task, or something else? Should you use batch
learning or online learning techniques? Before you read on, pause and try to answer
these questions for yourself.

Have you found the answers? Let’s see. This is clearly a typical supervised learning
task, since the model can be trained with labeled examples (each instance comes
with the expected output, i.e., the district’s median housing price). It is a typical
regression task, since the model will be asked to predict a value. More specifically,
this is a multiple regression problem, since the system will use multiple features to
make a prediction (the district’s population, the median income, etc.). It is also
a univariate regression problem, since we are only trying to predict a single value for
each district. If we were trying to predict multiple values per district, it would be a
multivariate regression problem. Finally, there is no continuous flow of data coming
into the system, there is no particular need to adjust to changing data rapidly, and the
data is small enough to fit in memory, so plain batch learning should do just fine.

If the data were huge, you could either split your batch learning
work across multiple servers (using the MapReduce technique) or
use an online learning technique.

Select a Performance Measure
Your next step is to select a performance measure. A typical performance measure
for regression problems is the root mean square error (RMSE). It gives an idea of how
much error the system typically makes in its predictions, with a higher weight given
to large errors. Equation 2-1 shows the mathematical formula to compute the RMSE.

Equation 2-1. Root mean square error (RMSE)

RMSE X,ℎ = 1
m

∑
i = 1

m
ℎ x i − y i 2

Look at the Big Picture | 43

3 Recall that the transpose operator flips a column vector into a row vector (and vice versa).

Notations
This equation introduces several very common machine learning notations that I will
use throughout this book:

• m is the number of instances in the dataset you are measuring the RMSE on.•
— For example, if you are evaluating the RMSE on a validation set of 2,000—

districts, then m = 2,000.
• x(i) is a vector of all the feature values (excluding the label) of the ith instance in•

the dataset, and y(i) is its label (the desired output value for that instance).
— For example, if the first district in the dataset is located at longitude –118.29°,—

latitude 33.91°, and it has 1,416 inhabitants with a median income of $38,372,
and the median house value is $156,400 (ignoring other features for now),
then:

x 1 =

−118.29
33.91
1,416

38,372

and:

y 1 = 156,400

• X is a matrix containing all the feature values (excluding labels) of all instances•
in the dataset. There is one row per instance, and the ith row is equal to the
transpose of x(i), noted (x(i))⊺.3

— For example, if the first district is as just described, then the matrix X looks—
like this:

X =

x 1 ⊺

x 2 ⊺

⋮

x 1999 ⊺

x 2000 ⊺

=
−118.29 33.91 1,416 38,372
⋮ ⋮ ⋮ ⋮

44 | Chapter 2: End-to-End Machine Learning Project

• h is your system’s prediction function, also called a hypothesis. When your system•
is given an instance’s feature vector x(i), it outputs a predicted value ŷ(i) = h(x(i))
for that instance (ŷ is pronounced “y-hat”).
— For example, if your system predicts that the median housing price in the first—

district is $158,400, then ŷ(1) = h(x(1)) = 158,400. The prediction error for this
district is ŷ(1) – y(1) = 2,000.

• RMSE(X,h) is the cost function measured on the set of examples using your•
hypothesis h.

We use lowercase italic font for scalar values (such as m or y(i)) and function names
(such as h), lowercase bold font for vectors (such as x(i)), and uppercase bold font for
matrices (such as X).

Although the RMSE is generally the preferred performance measure for regression
tasks, in some contexts you may prefer to use another function. For example, if there
are many outlier districts. In that case, you may consider using the mean absolute
error (MAE, also called the average absolute deviation), shown in Equation 2-2:

Equation 2-2. Mean absolute error (MAE)

MAE X,ℎ = 1
m

∑
i = 1

m
ℎ x i − y i

Both the RMSE and the MAE are ways to measure the distance between two vectors:
the vector of predictions and the vector of target values. Various distance measures,
or norms, are possible:

• Computing the root of a sum of squares (RMSE) corresponds to the Euclidean•
norm: this is the notion of distance we are all familiar with. It is also called the ℓ2
norm, noted ∥ · ∥2 (or just ∥ · ∥).

• Computing the sum of absolutes (MAE) corresponds to the ℓ1 norm, noted ∥ · ∥1.•
This is sometimes called the Manhattan norm because it measures the distance
between two points in a city if you can only travel along orthogonal city blocks.

• More generally, the ℓk norm of a vector v containing n elements is defined as•
∥v∥k = (|v1|k + |v2|k + ... + |vn|k)1/k. ℓ0 gives the number of nonzero elements in the
vector, and ℓ∞ gives the maximum absolute value in the vector.

The higher the norm index, the more it focuses on large values and neglects small
ones. This is why the RMSE is more sensitive to outliers than the MAE. But when
outliers are exponentially rare (like in a bell-shaped curve), the RMSE performs very
well and is generally preferred.

Look at the Big Picture | 45

Check the Assumptions
Lastly, it is good practice to list and verify the assumptions that have been made so
far (by you or others); this can help you catch serious issues early on. For example,
the district prices that your system outputs are going to be fed into a downstream
machine learning system, and you assume that these prices are going to be used as
such. But what if the downstream system converts the prices into categories (e.g.,
“cheap”, “medium”, or “expensive”) and then uses those categories instead of the prices
themselves? In this case, getting the price perfectly right is not important at all; your
system just needs to get the category right. If that’s so, then the problem should have
been framed as a classification task, not a regression task. You don’t want to find this
out after working on a regression system for months.

Fortunately, after talking with the team in charge of the downstream system, you are
confident that they do indeed need the actual prices, not just categories. Great! You’re
all set, the lights are green, and you can start coding now!

Get the Data
It’s time to get your hands dirty. Don’t hesitate to pick up your laptop and walk
through the code examples. As I mentioned in the preface, all the code examples
in this book are open source and available online as Jupyter notebooks, which are
interactive documents containing text, images, and executable code snippets (Python
in our case). In this book I will assume you are running these notebooks on Google
Colab, a free service that lets you run any Jupyter notebook directly online, without
having to install anything on your machine. If you want to use another online plat‐
form (e.g., Kaggle) or if you want to install everything locally on your own machine,
please see the instructions on the book’s GitHub page.

Running the Code Examples Using Google Colab
First, open a web browser and visit https://homl.info/colab3: this will lead you to
Google Colab, and it will display the list of Jupyter notebooks for this book (see
Figure 2-3). You will find one notebook per chapter, plus a few extra notebooks and
tutorials for NumPy, Matplotlib, Pandas, linear algebra, and differential calculus. For
example, if you click 02_end_to_end_machine_learning_project.ipynb, the notebook
from Chapter 2 will open up in Google Colab (see Figure 2-4).

A Jupyter notebook is composed of a list of cells. Each cell contains either executable
code or text. Try double-clicking the first text cell (which contains the sentence
“Welcome to Machine Learning Housing Corp.!”). This will open the cell for editing.
Notice that Jupyter notebooks use Markdown syntax for formatting (e.g., **bold**,
italics, # Title, [url](link text), and so on). Try modifying this text, then
press Shift-Enter to see the result.

46 | Chapter 2: End-to-End Machine Learning Project

https://github.com/ageron/handson-ml3
https://homl.info/colab3

Figure 2-3. List of notebooks in Google Colab

Figure 2-4. Your notebook in Google Colab

Get the Data | 47

Next, create a new code cell by selecting Insert → “Code cell” from the menu.
Alternatively, you can click the + Code button in the toolbar, or hover your mouse
over the bottom of a cell until you see + Code and + Text appear, then click + Code.
In the new code cell, type some Python code, such as print("Hello World"), then
press Shift-Enter to run this code (or click the ▷ button on the left side of the cell).

If you’re not logged in to your Google account, you’ll be asked to log in now (if you
don’t already have a Google account, you’ll need to create one). Once you are logged
in, when you try to run the code you’ll see a security warning telling you that this
notebook was not authored by Google. A malicious person could create a notebook
that tries to trick you into entering your Google credentials so they can access your
personal data, so before you run a notebook, always make sure you trust its author
(or double-check what each code cell will do before running it). Assuming you trust
me (or you plan to check every code cell), you can now click “Run anyway”.

Colab will then allocate a new runtime for you: this is a free virtual machine located
on Google’s servers that contains a bunch of tools and Python libraries, including
everything you’ll need for most chapters (in some chapters, you’ll need to run a
command to install additional libraries). This will take a few seconds. Next, Colab
will automatically connect to this runtime and use it to execute your new code cell.
Importantly, the code runs on the runtime, not on your machine. The code’s output
will be displayed under the cell. Congrats, you’ve run some Python code on Colab!

To insert a new code cell, you can also type Ctrl-M (or Cmd-M
on macOS) followed by A (to insert above the active cell) or B (to
insert below). There are many other keyboard shortcuts available:
you can view and edit them by typing Ctrl-M (or Cmd-M) then
H. If you choose to run the notebooks on Kaggle or on your own
machine using JupyterLab or an IDE such as Visual Studio Code
with the Jupyter extension, you will see some minor differences—
runtimes are called kernels, the user interface and keyboard short‐
cuts are slightly different, etc.—but switching from one Jupyter
environment to another is not too hard.

Saving Your Code Changes and Your Data
You can make changes to a Colab notebook, and they will persist for as long as
you keep your browser tab open. But once you close it, the changes will be lost.
To avoid this, make sure you save a copy of the notebook to your Google Drive by
selecting File → “Save a copy in Drive”. Alternatively, you can download the notebook
to your computer by selecting File → Download → “Download .ipynb”. Then you can
later visit https://colab.research.google.com and open the notebook again (either from
Google Drive or by uploading it from your computer).

48 | Chapter 2: End-to-End Machine Learning Project

https://colab.research.google.com

Google Colab is meant only for interactive use: you can play
around in the notebooks and tweak the code as you like, but you
cannot let the notebooks run unattended for a long period of time,
or else the runtime will be shut down and all of its data will be lost.

If the notebook generates data that you care about, make sure you download this
data before the runtime shuts down. To do this, click the Files icon (see step 1 in
Figure 2-5), find the file you want to download, click the vertical dots next to it (step
2), and click Download (step 3). Alternatively, you can mount your Google Drive on
the runtime, allowing the notebook to read and write files directly to Google Drive as
if it were a local directory. For this, click the Files icon (step 1), then click the Google
Drive icon (circled in Figure 2-5) and follow the on-screen instructions.

Figure 2-5. Downloading a file from a Google Colab runtime (steps 1 to 3), or mounting
your Google Drive (circled icon)

By default, your Google Drive will be mounted at /content/drive/MyDrive.
If you want to back up a data file, simply copy it to this directory by
running !cp /content/my_great_model /content/drive/MyDrive. Any command
starting with a bang (!) is treated as a shell command, not as Python code: cp is
the Linux shell command to copy a file from one path to another. Note that Colab
runtimes run on Linux (specifically, Ubuntu).

The Power and Danger of Interactivity
Jupyter notebooks are interactive, and that’s a great thing: you can run each cell one
by one, stop at any point, insert a cell, play with the code, go back and run the same
cell again, etc., and I highly encourage you to do so. If you just run the cells one by
one without ever playing around with them, you won’t learn as fast. However, this
flexibility comes at a price: it’s very easy to run cells in the wrong order, or to forget to

Get the Data | 49

run a cell. If this happens, the subsequent code cells are likely to fail. For example, the
very first code cell in each notebook contains setup code (such as imports), so make
sure you run it first, or else nothing will work.

If you ever run into a weird error, try restarting the runtime (by
selecting Runtime → “Restart runtime” from the menu) and then
run all the cells again from the beginning of the notebook. This
often solves the problem. If not, it’s likely that one of the changes
you made broke the notebook: just revert to the original notebook
and try again. If it still fails, please file an issue on GitHub.

Book Code Versus Notebook Code
You may sometimes notice some little differences between the code in this book and
the code in the notebooks. This may happen for several reasons:

• A library may have changed slightly by the time you read these lines, or perhaps•
despite my best efforts I made an error in the book. Sadly, I cannot magically fix
the code in your copy of this book (unless you are reading an electronic copy and
you can download the latest version), but I can fix the notebooks. So, if you run
into an error after copying code from this book, please look for the fixed code in
the notebooks: I will strive to keep them error-free and up-to-date with the latest
library versions.

• The notebooks contain some extra code to beautify the figures (adding labels,•
setting font sizes, etc.) and to save them in high resolution for this book. You can
safely ignore this extra code if you want.

I optimized the code for readability and simplicity: I made it as linear and flat as
possible, defining very few functions or classes. The goal is to ensure that the code
you are running is generally right in front of you, and not nested within several layers
of abstractions that you have to search through. This also makes it easier for you to
play with the code. For simplicity, there’s limited error handling, and I placed some
of the least common imports right where they are needed (instead of placing them at
the top of the file, as is recommended by the PEP 8 Python style guide). That said,
your production code will not be very different: just a bit more modular, and with
additional tests and error handling.

OK! Once you’re comfortable with Colab, you’re ready to download the data.

Download the Data
In typical environments your data would be available in a relational database or
some other common data store, and spread across multiple tables/documents/files.

50 | Chapter 2: End-to-End Machine Learning Project

4 You might also need to check legal constraints, such as private fields that should never be copied to unsafe
data stores.

To access it, you would first need to get your credentials and access authorizations4

and familiarize yourself with the data schema. In this project, however, things are
much simpler: you will just download a single compressed file, housing.tgz, which
contains a comma-separated values (CSV) file called housing.csv with all the data.

Rather than manually downloading and decompressing the data, it’s usually prefera‐
ble to write a function that does it for you. This is useful in particular if the data
changes regularly: you can write a small script that uses the function to fetch the
latest data (or you can set up a scheduled job to do that automatically at regular
intervals). Automating the process of fetching the data is also useful if you need to
install the dataset on multiple machines.

Here is the function to fetch and load the data:

from pathlib import Path
import pandas as pd
import tarfile
import urllib.request

def load_housing_data():
 tarball_path = Path("datasets/housing.tgz")
 if not tarball_path.is_file():
 Path("datasets").mkdir(parents=True, exist_ok=True)
 url = "https://github.com/ageron/data/raw/main/housing.tgz"
 urllib.request.urlretrieve(url, tarball_path)
 with tarfile.open(tarball_path) as housing_tarball:
 housing_tarball.extractall(path="datasets")
 return pd.read_csv(Path("datasets/housing/housing.csv"))

housing = load_housing_data()

When load_housing_data() is called, it looks for the datasets/housing.tgz file. If it
does not find it, it creates the datasets directory inside the current directory (which
is /content by default, in Colab), downloads the housing.tgz file from the ageron/data
GitHub repository, and extracts its content into the datasets directory; this creates the
datasets/housing directory with the housing.csv file inside it. Lastly, the function loads
this CSV file into a Pandas DataFrame object containing all the data, and returns it.

Take a Quick Look at the Data Structure
You start by looking at the top five rows of data using the DataFrame’s head()
method (see Figure 2-6).

Get the Data | 51

Figure 2-6. Top five rows in the dataset

Each row represents one district. There are 10 attributes (they are not all
shown in the screenshot): longitude, latitude, housing_median_age, total_rooms,
total_bedrooms, population, households, median_income, median_house_value,
and ocean_proximity.

The info() method is useful to get a quick description of the data, in particular the
total number of rows, each attribute’s type, and the number of non-null values:

>>> housing.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 20640 entries, 0 to 20639
Data columns (total 10 columns):
 # Column Non-Null Count Dtype
--- ------ -------------- -----
 0 longitude 20640 non-null float64
 1 latitude 20640 non-null float64
 2 housing_median_age 20640 non-null float64
 3 total_rooms 20640 non-null float64
 4 total_bedrooms 20433 non-null float64
 5 population 20640 non-null float64
 6 households 20640 non-null float64
 7 median_income 20640 non-null float64
 8 median_house_value 20640 non-null float64
 9 ocean_proximity 20640 non-null object
dtypes: float64(9), object(1)
memory usage: 1.6+ MB

In this book, when a code example contains a mix of code and
outputs, as is the case here, it is formatted like in the Python
interpreter, for better readability: the code lines are prefixed with
>>> (or ... for indented blocks), and the outputs have no prefix.

There are 20,640 instances in the dataset, which means that it is fairly small by
machine learning standards, but it’s perfect to get started. You notice that the

52 | Chapter 2: End-to-End Machine Learning Project

5 The standard deviation is generally denoted σ (the Greek letter sigma), and it is the square root of the
variance, which is the average of the squared deviation from the mean. When a feature has a bell-shaped
normal distribution (also called a Gaussian distribution), which is very common, the “68-95-99.7” rule applies:
about 68% of the values fall within 1σ of the mean, 95% within 2σ, and 99.7% within 3σ.

total_bedrooms attribute has only 20,433 non-null values, meaning that 207 districts
are missing this feature. You will need to take care of this later.

All attributes are numerical, except for ocean_proximity. Its type is object, so it
could hold any kind of Python object. But since you loaded this data from a CSV
file, you know that it must be a text attribute. When you looked at the top five
rows, you probably noticed that the values in the ocean_proximity column were
repetitive, which means that it is probably a categorical attribute. You can find out
what categories exist and how many districts belong to each category by using the
value_counts() method:

>>> housing["ocean_proximity"].value_counts()
<1H OCEAN 9136
INLAND 6551
NEAR OCEAN 2658
NEAR BAY 2290
ISLAND 5
Name: ocean_proximity, dtype: int64

Let’s look at the other fields. The describe() method shows a summary of the
numerical attributes (Figure 2-7).

Figure 2-7. Summary of each numerical attribute

The count, mean, min, and max rows are self-explanatory. Note that the null values
are ignored (so, for example, the count of total_bedrooms is 20,433, not 20,640).
The std row shows the standard deviation, which measures how dispersed the values
are.5 The 25%, 50%, and 75% rows show the corresponding percentiles: a percentile

Get the Data | 53

indicates the value below which a given percentage of observations in a group of
observations fall. For example, 25% of the districts have a housing_median_age lower
than 18, while 50% are lower than 29 and 75% are lower than 37. These are often
called the 25th percentile (or first quartile), the median, and the 75th percentile (or
third quartile).

Another quick way to get a feel of the type of data you are dealing with is to plot a
histogram for each numerical attribute. A histogram shows the number of instances
(on the vertical axis) that have a given value range (on the horizontal axis). You can
either plot this one attribute at a time, or you can call the hist() method on the
whole dataset (as shown in the following code example), and it will plot a histogram
for each numerical attribute (see Figure 2-8):

import matplotlib.pyplot as plt

housing.hist(bins=50, figsize=(12, 8))
plt.show()

Figure 2-8. A histogram for each numerical attribute

54 | Chapter 2: End-to-End Machine Learning Project

Looking at these histograms, you notice a few things:

• First, the median income attribute does not look like it is expressed in US dollars•
(USD). After checking with the team that collected the data, you are told that
the data has been scaled and capped at 15 (actually, 15.0001) for higher median
incomes, and at 0.5 (actually, 0.4999) for lower median incomes. The numbers
represent roughly tens of thousands of dollars (e.g., 3 actually means about
$30,000). Working with preprocessed attributes is common in machine learning,
and it is not necessarily a problem, but you should try to understand how the
data was computed.

• The housing median age and the median house value were also capped. The•
latter may be a serious problem since it is your target attribute (your labels). Your
machine learning algorithms may learn that prices never go beyond that limit.
You need to check with your client team (the team that will use your system’s
output) to see if this is a problem or not. If they tell you that they need precise
predictions even beyond $500,000, then you have two options:
— Collect proper labels for the districts whose labels were capped.—
— Remove those districts from the training set (and also from the test set,—

since your system should not be evaluated poorly if it predicts values beyond
$500,000).

• These attributes have very different scales. We will discuss this later in this•
chapter, when we explore feature scaling.

• Finally, many histograms are skewed right: they extend much farther to the•
right of the median than to the left. This may make it a bit harder for some
machine learning algorithms to detect patterns. Later, you’ll try transforming
these attributes to have more symmetrical and bell-shaped distributions.

You should now have a better understanding of the kind of data you’re dealing with.

Wait! Before you look at the data any further, you need to create a
test set, put it aside, and never look at it.

Create a Test Set
It may seem strange to voluntarily set aside part of the data at this stage. After all,
you have only taken a quick glance at the data, and surely you should learn a whole
lot more about it before you decide what algorithms to use, right? This is true,
but your brain is an amazing pattern detection system, which also means that it is
highly prone to overfitting: if you look at the test set, you may stumble upon some

Get the Data | 55

6 You will often see people set the random seed to 42. This number has no special property, other than being the
Answer to the Ultimate Question of Life, the Universe, and Everything.

seemingly interesting pattern in the test data that leads you to select a particular kind
of machine learning model. When you estimate the generalization error using the test
set, your estimate will be too optimistic, and you will launch a system that will not
perform as well as expected. This is called data snooping bias.

Creating a test set is theoretically simple; pick some instances randomly, typically
20% of the dataset (or less if your dataset is very large), and set them aside:

import numpy as np

def shuffle_and_split_data(data, test_ratio):
 shuffled_indices = np.random.permutation(len(data))
 test_set_size = int(len(data) * test_ratio)
 test_indices = shuffled_indices[:test_set_size]
 train_indices = shuffled_indices[test_set_size:]
 return data.iloc[train_indices], data.iloc[test_indices]

You can then use this function like this:

>>> train_set, test_set = shuffle_and_split_data(housing, 0.2)
>>> len(train_set)
16512
>>> len(test_set)
4128

Well, this works, but it is not perfect: if you run the program again, it will generate a
different test set! Over time, you (or your machine learning algorithms) will get to see
the whole dataset, which is what you want to avoid.

One solution is to save the test set on the first run and then load it in subsequent
runs. Another option is to set the random number generator’s seed (e.g., with
np.random.seed(42))6 before calling np.random.permutation() so that it always
generates the same shuffled indices.

However, both these solutions will break the next time you fetch an updated dataset.
To have a stable train/test split even after updating the dataset, a common solution is
to use each instance’s identifier to decide whether or not it should go in the test set
(assuming instances have unique and immutable identifiers). For example, you could
compute a hash of each instance’s identifier and put that instance in the test set if the
hash is lower than or equal to 20% of the maximum hash value. This ensures that the
test set will remain consistent across multiple runs, even if you refresh the dataset.
The new test set will contain 20% of the new instances, but it will not contain any
instance that was previously in the training set.

56 | Chapter 2: End-to-End Machine Learning Project

7 The location information is actually quite coarse, and as a result many districts will have the exact same ID, so
they will end up in the same set (test or train). This introduces some unfortunate sampling bias.

Here is a possible implementation:

from zlib import crc32

def is_id_in_test_set(identifier, test_ratio):
 return crc32(np.int64(identifier)) < test_ratio * 2**32

def split_data_with_id_hash(data, test_ratio, id_column):
 ids = data[id_column]
 in_test_set = ids.apply(lambda id_: is_id_in_test_set(id_, test_ratio))
 return data.loc[~in_test_set], data.loc[in_test_set]

Unfortunately, the housing dataset does not have an identifier column. The simplest
solution is to use the row index as the ID:

housing_with_id = housing.reset_index() # adds an `index` column
train_set, test_set = split_data_with_id_hash(housing_with_id, 0.2, "index")

If you use the row index as a unique identifier, you need to make sure that new data
gets appended to the end of the dataset and that no row ever gets deleted. If this is not
possible, then you can try to use the most stable features to build a unique identifier.
For example, a district’s latitude and longitude are guaranteed to be stable for a few
million years, so you could combine them into an ID like so:7

housing_with_id["id"] = housing["longitude"] * 1000 + housing["latitude"]
train_set, test_set = split_data_with_id_hash(housing_with_id, 0.2, "id")

Scikit-Learn provides a few functions to split datasets into multiple subsets in various
ways. The simplest function is train_test_split(), which does pretty much the
same thing as the shuffle_and_split_data() function we defined earlier, with a
couple of additional features. First, there is a random_state parameter that allows
you to set the random generator seed. Second, you can pass it multiple datasets with
an identical number of rows, and it will split them on the same indices (this is very
useful, for example, if you have a separate DataFrame for labels):

from sklearn.model_selection import train_test_split

train_set, test_set = train_test_split(housing, test_size=0.2, random_state=42)

So far we have considered purely random sampling methods. This is generally fine if
your dataset is large enough (especially relative to the number of attributes), but if it
is not, you run the risk of introducing a significant sampling bias. When employees
at a survey company decides to call 1,000 people to ask them a few questions, they
don’t just pick 1,000 people randomly in a phone book. They try to ensure that
these 1,000 people are representative of the whole population, with regard to the
questions they want to ask. For example, the US population is 51.1% females and

Get the Data | 57

48.9% males, so a well-conducted survey in the US would try to maintain this ratio in
the sample: 511 females and 489 males (at least if it seems possible that the answers
may vary across genders). This is called stratified sampling: the population is divided
into homogeneous subgroups called strata, and the right number of instances are
sampled from each stratum to guarantee that the test set is representative of the
overall population. If the people running the survey used purely random sampling,
there would be about a 10.7% chance of sampling a skewed test set with less than
48.5% female or more than 53.5% female participants. Either way, the survey results
would likely be quite biased.

Suppose you’ve chatted with some experts who told you that the median income is a
very important attribute to predict median housing prices. You may want to ensure
that the test set is representative of the various categories of incomes in the whole
dataset. Since the median income is a continuous numerical attribute, you first need
to create an income category attribute. Let’s look at the median income histogram
more closely (back in Figure 2-8): most median income values are clustered around
1.5 to 6 (i.e., $15,000–$60,000), but some median incomes go far beyond 6. It is
important to have a sufficient number of instances in your dataset for each stratum,
or else the estimate of a stratum’s importance may be biased. This means that you
should not have too many strata, and each stratum should be large enough. The
following code uses the pd.cut() function to create an income category attribute
with five categories (labeled from 1 to 5); category 1 ranges from 0 to 1.5 (i.e., less
than $15,000), category 2 from 1.5 to 3, and so on:

housing["income_cat"] = pd.cut(housing["median_income"],
 bins=[0., 1.5, 3.0, 4.5, 6., np.inf],
 labels=[1, 2, 3, 4, 5])

These income categories are represented in Figure 2-9:

housing["income_cat"].value_counts().sort_index().plot.bar(rot=0, grid=True)
plt.xlabel("Income category")
plt.ylabel("Number of districts")
plt.show()

Now you are ready to do stratified sampling based on the income category. Scikit-
Learn provides a number of splitter classes in the sklearn.model_selection package
that implement various strategies to split your dataset into a training set and a test set.
Each splitter has a split() method that returns an iterator over different training/
test splits of the same data.

58 | Chapter 2: End-to-End Machine Learning Project

Figure 2-9. Histogram of income categories

To be precise, the split() method yields the training and test indices, not the
data itself. Having multiple splits can be useful if you want to better estimate the
performance of your model, as you will see when we discuss cross-validation later in
this chapter. For example, the following code generates 10 different stratified splits of
the same dataset:

from sklearn.model_selection import StratifiedShuffleSplit

splitter = StratifiedShuffleSplit(n_splits=10, test_size=0.2, random_state=42)
strat_splits = []
for train_index, test_index in splitter.split(housing, housing["income_cat"]):
 strat_train_set_n = housing.iloc[train_index]
 strat_test_set_n = housing.iloc[test_index]
 strat_splits.append([strat_train_set_n, strat_test_set_n])

For now, you can just use the first split:

strat_train_set, strat_test_set = strat_splits[0]

Or, since stratified sampling is fairly common, there’s a shorter way to get a single
split using the train_test_split() function with the stratify argument:

strat_train_set, strat_test_set = train_test_split(
 housing, test_size=0.2, stratify=housing["income_cat"], random_state=42)

Get the Data | 59

Let’s see if this worked as expected. You can start by looking at the income category
proportions in the test set:

>>> strat_test_set["income_cat"].value_counts() / len(strat_test_set)
3 0.350533
2 0.318798
4 0.176357
5 0.114341
1 0.039971
Name: income_cat, dtype: float64

With similar code you can measure the income category proportions in the full data‐
set. Figure 2-10 compares the income category proportions in the overall dataset, in
the test set generated with stratified sampling, and in a test set generated using purely
random sampling. As you can see, the test set generated using stratified sampling has
income category proportions almost identical to those in the full dataset, whereas the
test set generated using purely random sampling is skewed.

Figure 2-10. Sampling bias comparison of stratified versus purely random sampling

You won’t use the income_cat column again, so you might as well drop it, reverting
the data back to its original state:

for set_ in (strat_train_set, strat_test_set):
 set_.drop("income_cat", axis=1, inplace=True)

We spent quite a bit of time on test set generation for a good reason: this is an often
neglected but critical part of a machine learning project. Moreover, many of these
ideas will be useful later when we discuss cross-validation. Now it’s time to move on
to the next stage: exploring the data.

Explore and Visualize the Data to Gain Insights
So far you have only taken a quick glance at the data to get a general understanding of
the kind of data you are manipulating. Now the goal is to go into a little more depth.

First, make sure you have put the test set aside and you are only exploring the train‐
ing set. Also, if the training set is very large, you may want to sample an exploration

60 | Chapter 2: End-to-End Machine Learning Project

set, to make manipulations easy and fast during the exploration phase. In this case,
the training set is quite small, so you can just work directly on the full set. Since
you’re going to experiment with various transformations of the full training set, you
should make a copy of the original so you can revert to it afterwards:

housing = strat_train_set.copy()

Visualizing Geographical Data
Because the dataset includes geographical information (latitude and longitude), it is a
good idea to create a scatterplot of all the districts to visualize the data (Figure 2-11):

housing.plot(kind="scatter", x="longitude", y="latitude", grid=True)
plt.show()

Figure 2-11. A geographical scatterplot of the data

This looks like California all right, but other than that it is hard to see any particular
pattern. Setting the alpha option to 0.2 makes it much easier to visualize the places
where there is a high density of data points (Figure 2-12):

housing.plot(kind="scatter", x="longitude", y="latitude", grid=True, alpha=0.2)
plt.show()

Now that’s much better: you can clearly see the high-density areas, namely the Bay
Area and around Los Angeles and San Diego, plus a long line of fairly high-density
areas in the Central Valley (in particular, around Sacramento and Fresno).

Our brains are very good at spotting patterns in pictures, but you may need to play
around with visualization parameters to make the patterns stand out.

Explore and Visualize the Data to Gain Insights | 61

8 If you are reading this in grayscale, grab a red pen and scribble over most of the coastline from the Bay Area
down to San Diego (as you might expect). You can add a patch of yellow around Sacramento as well.

Figure 2-12. A better visualization that highlights high-density areas

Next, you look at the housing prices (Figure 2-13). The radius of each circle repre‐
sents the district’s population (option s), and the color represents the price (option
c). Here you use a predefined color map (option cmap) called jet, which ranges from
blue (low values) to red (high prices):8

housing.plot(kind="scatter", x="longitude", y="latitude", grid=True,
 s=housing["population"] / 100, label="population",
 c="median_house_value", cmap="jet", colorbar=True,
 legend=True, sharex=False, figsize=(10, 7))
plt.show()

This image tells you that the housing prices are very much related to the location
(e.g., close to the ocean) and to the population density, as you probably knew already.
A clustering algorithm should be useful for detecting the main cluster and for adding
new features that measure the proximity to the cluster centers. The ocean proximity
attribute may be useful as well, although in Northern California the housing prices in
coastal districts are not too high, so it is not a simple rule.

62 | Chapter 2: End-to-End Machine Learning Project

Figure 2-13. California housing prices: red is expensive, blue is cheap, larger circles
indicate areas with a larger population

Look for Correlations
Since the dataset is not too large, you can easily compute the standard correlation
coefficient (also called Pearson’s r) between every pair of attributes using the corr()
method:

corr_matrix = housing.corr()

Now you can look at how much each attribute correlates with the median house
value:

>>> corr_matrix["median_house_value"].sort_values(ascending=False)
median_house_value 1.000000
median_income 0.688380
total_rooms 0.137455
housing_median_age 0.102175
households 0.071426
total_bedrooms 0.054635
population -0.020153
longitude -0.050859
latitude -0.139584
Name: median_house_value, dtype: float64

Explore and Visualize the Data to Gain Insights | 63

The correlation coefficient ranges from –1 to 1. When it is close to 1, it means that
there is a strong positive correlation; for example, the median house value tends to
go up when the median income goes up. When the coefficient is close to –1, it means
that there is a strong negative correlation; you can see a small negative correlation
between the latitude and the median house value (i.e., prices have a slight tendency
to go down when you go north). Finally, coefficients close to 0 mean that there is no
linear correlation.

Another way to check for correlation between attributes is to use the Pandas
scatter_matrix() function, which plots every numerical attribute against every
other numerical attribute. Since there are now 11 numerical attributes, you would
get 112 = 121 plots, which would not fit on a page—so you decide to focus on a
few promising attributes that seem most correlated with the median housing value
(Figure 2-14):

from pandas.plotting import scatter_matrix

attributes = ["median_house_value", "median_income", "total_rooms",
 "housing_median_age"]
scatter_matrix(housing[attributes], figsize=(12, 8))
plt.show()

Figure 2-14. This scatter matrix plots every numerical attribute against every other
numerical attribute, plus a histogram of each numerical attribute’s values on the main
diagonal (top left to bottom right)

64 | Chapter 2: End-to-End Machine Learning Project

The main diagonal would be full of straight lines if Pandas plotted each variable
against itself, which would not be very useful. So instead, the Pandas displays a histo‐
gram of each attribute (other options are available; see the Pandas documentation for
more details).

Looking at the correlation scatterplots, it seems like the most promising attribute
to predict the median house value is the median income, so you zoom in on their
scatterplot (Figure 2-15):

housing.plot(kind="scatter", x="median_income", y="median_house_value",
 alpha=0.1, grid=True)
plt.show()

Figure 2-15. Median income versus median house value

This plot reveals a few things. First, the correlation is indeed quite strong; you can
clearly see the upward trend, and the points are not too dispersed. Second, the price
cap you noticed earlier is clearly visible as a horizontal line at $500,000. But the
plot also reveals other less obvious straight lines: a horizontal line around $450,000,
another around $350,000, perhaps one around $280,000, and a few more below that.
You may want to try removing the corresponding districts to prevent your algorithms
from learning to reproduce these data quirks.

Explore and Visualize the Data to Gain Insights | 65

The correlation coefficient only measures linear correlations (“as x
goes up, y generally goes up/down”). It may completely miss out on
nonlinear relationships (e.g., “as x approaches 0, y generally goes
up”). Figure 2-16 shows a variety of datasets along with their corre‐
lation coefficient. Note how all the plots of the bottom row have a
correlation coefficient equal to 0, despite the fact that their axes are
clearly not independent: these are examples of nonlinear relation‐
ships. Also, the second row shows examples where the correlation
coefficient is equal to 1 or –1; notice that this has nothing to do
with the slope. For example, your height in inches has a correlation
coefficient of 1 with your height in feet or in nanometers.

Figure 2-16. Standard correlation coefficient of various datasets (source: Wikipedia;
public domain image)

Experiment with Attribute Combinations
Hopefully the previous sections gave you an idea of a few ways you can explore
the data and gain insights. You identified a few data quirks that you may want to
clean up before feeding the data to a machine learning algorithm, and you found
interesting correlations between attributes, in particular with the target attribute. You
also noticed that some attributes have a skewed-right distribution, so you may want
to transform them (e.g., by computing their logarithm or square root). Of course,
your mileage will vary considerably with each project, but the general ideas are
similar.

One last thing you may want to do before preparing the data for machine learning
algorithms is to try out various attribute combinations. For example, the total num‐
ber of rooms in a district is not very useful if you don’t know how many households
there are. What you really want is the number of rooms per household. Similarly,
the total number of bedrooms by itself is not very useful: you probably want to

66 | Chapter 2: End-to-End Machine Learning Project

compare it to the number of rooms. And the population per household also seems
like an interesting attribute combination to look at. You create these new attributes as
follows:

housing["rooms_per_house"] = housing["total_rooms"] / housing["households"]
housing["bedrooms_ratio"] = housing["total_bedrooms"] / housing["total_rooms"]
housing["people_per_house"] = housing["population"] / housing["households"]

And then you look at the correlation matrix again:

>>> corr_matrix = housing.corr()
>>> corr_matrix["median_house_value"].sort_values(ascending=False)
median_house_value 1.000000
median_income 0.688380
rooms_per_house 0.143663
total_rooms 0.137455
housing_median_age 0.102175
households 0.071426
total_bedrooms 0.054635
population -0.020153
people_per_house -0.038224
longitude -0.050859
latitude -0.139584
bedrooms_ratio -0.256397
Name: median_house_value, dtype: float64

Hey, not bad! The new bedrooms_ratio attribute is much more correlated with the
median house value than the total number of rooms or bedrooms. Apparently houses
with a lower bedroom/room ratio tend to be more expensive. The number of rooms
per household is also more informative than the total number of rooms in a district—
obviously the larger the houses, the more expensive they are.

This round of exploration does not have to be absolutely thorough; the point is to
start off on the right foot and quickly gain insights that will help you get a first
reasonably good prototype. But this is an iterative process: once you get a prototype
up and running, you can analyze its output to gain more insights and come back to
this exploration step.

Prepare the Data for Machine Learning Algorithms
It’s time to prepare the data for your machine learning algorithms. Instead of doing
this manually, you should write functions for this purpose, for several good reasons:

• This will allow you to reproduce these transformations easily on any dataset (e.g.,•
the next time you get a fresh dataset).

• You will gradually build a library of transformation functions that you can reuse•
in future projects.

Prepare the Data for Machine Learning Algorithms | 67

• You can use these functions in your live system to transform the new data before•
feeding it to your algorithms.

• This will make it possible for you to easily try various transformations and see•
which combination of transformations works best.

But first, revert to a clean training set (by copying strat_train_set once again). You
should also separate the predictors and the labels, since you don’t necessarily want
to apply the same transformations to the predictors and the target values (note that
drop() creates a copy of the data and does not affect strat_train_set):

housing = strat_train_set.drop("median_house_value", axis=1)
housing_labels = strat_train_set["median_house_value"].copy()

Clean the Data
Most machine learning algorithms cannot work with missing features, so you’ll need
to take care of these. For example, you noticed earlier that the total_bedrooms
attribute has some missing values. You have three options to fix this:

1. Get rid of the corresponding districts.1.
2. Get rid of the whole attribute.2.
3. Set the missing values to some value (zero, the mean, the median, etc.). This is3.

called imputation.

You can accomplish these easily using the Pandas DataFrame’s dropna(), drop(), and
fillna() methods:

housing.dropna(subset=["total_bedrooms"], inplace=True) # option 1

housing.drop("total_bedrooms", axis=1) # option 2

median = housing["total_bedrooms"].median() # option 3
housing["total_bedrooms"].fillna(median, inplace=True)

You decide to go for option 3 since it is the least destructive, but instead of the
preceding code, you will use a handy Scikit-Learn class: SimpleImputer. The benefit
is that it will store the median value of each feature: this will make it possible to
impute missing values not only on the training set, but also on the validation set,
the test set, and any new data fed to the model. To use it, first you need to create a
SimpleImputer instance, specifying that you want to replace each attribute’s missing
values with the median of that attribute:

from sklearn.impute import SimpleImputer

imputer = SimpleImputer(strategy="median")

68 | Chapter 2: End-to-End Machine Learning Project

Since the median can only be computed on numerical attributes, you then need to
create a copy of the data with only the numerical attributes (this will exclude the text
attribute ocean_proximity):

housing_num = housing.select_dtypes(include=[np.number])

Now you can fit the imputer instance to the training data using the fit() method:

imputer.fit(housing_num)

The imputer has simply computed the median of each attribute and stored the result
in its statistics_ instance variable. Only the total_bedrooms attribute had missing
values, but you cannot be sure that there won’t be any missing values in new data
after the system goes live, so it is safer to apply the imputer to all the numerical
attributes:

>>> imputer.statistics_
array([-118.51 , 34.26 , 29. , 2125. , 434. , 1167. , 408. , 3.5385])
>>> housing_num.median().values
array([-118.51 , 34.26 , 29. , 2125. , 434. , 1167. , 408. , 3.5385])

Now you can use this “trained” imputer to transform the training set by replacing
missing values with the learned medians:

X = imputer.transform(housing_num)

Missing values can also be replaced with the mean value (strategy="mean"), or
with the most frequent value (strategy="most_frequent"), or with a constant
value (strategy="constant", fill_value=…). The last two strategies support non-
numerical data.

There are also more powerful imputers available in the
sklearn.impute package (both for numerical features only):

• KNNImputer replaces each missing value with the mean of the•
k-nearest neighbors’ values for that feature. The distance is
based on all the available features.

• IterativeImputer trains a regression model per feature to•
predict the missing values based on all the other available
features. It then trains the model again on the updated data,
and repeats the process several times, improving the models
and the replacement values at each iteration.

Prepare the Data for Machine Learning Algorithms | 69

9 For more details on the design principles, see Lars Buitinck et al., “API Design for Machine Learning Software:
Experiences from the Scikit-Learn Project”, arXiv preprint arXiv:1309.0238 (2013).

10 Some predictors also provide methods to measure the confidence of their predictions.

Scikit-Learn Design
Scikit-Learn’s API is remarkably well designed. These are the main design principles:9

Consistency
All objects share a consistent and simple interface:

Estimators
Any object that can estimate some parameters based on a dataset is called
an estimator (e.g., a SimpleImputer is an estimator). The estimation itself is
performed by the fit() method, and it takes a dataset as a parameter, or two
for supervised learning algorithms—the second dataset contains the labels.
Any other parameter needed to guide the estimation process is considered a
hyperparameter (such as a SimpleImputer’s strategy), and it must be set as
an instance variable (generally via a constructor parameter).

Transformers
Some estimators (such as a SimpleImputer) can also transform a dataset;
these are called transformers. Once again, the API is simple: the transforma‐
tion is performed by the transform() method with the dataset to transform
as a parameter. It returns the transformed dataset. This transformation gen‐
erally relies on the learned parameters, as is the case for a SimpleImputer.
All transformers also have a convenience method called fit_transform(),
which is equivalent to calling fit() and then transform() (but sometimes
fit_transform() is optimized and runs much faster).

Predictors
Finally, some estimators, given a dataset, are capable of making predictions;
they are called predictors. For example, the LinearRegression model in
the previous chapter was a predictor: given a country’s GDP per capita, it
predicted life satisfaction. A predictor has a predict() method that takes a
dataset of new instances and returns a dataset of corresponding predictions.
It also has a score() method that measures the quality of the predictions,
given a test set (and the corresponding labels, in the case of supervised
learning algorithms).10

Inspection
All the estimator’s hyperparameters are accessible directly via public instance
variables (e.g., imputer.strategy), and all the estimator’s learned parameters
are accessible via public instance variables with an underscore suffix (e.g.,
imputer.statistics_).

70 | Chapter 2: End-to-End Machine Learning Project

https://homl.info/11

11 By the time you read these lines, it may be possible to make all transformers output Pandas DataFrames when
they receive a DataFrame as input: Pandas in, Pandas out. There will likely be a global configuration option
for this: sklearn.set_config(pandas_in_out=True).

Nonproliferation of classes
Datasets are represented as NumPy arrays or SciPy sparse matrices, instead of
homemade classes. Hyperparameters are just regular Python strings or numbers.

Composition
Existing building blocks are reused as much as possible. For example, it is easy to
create a Pipeline estimator from an arbitrary sequence of transformers followed
by a final estimator, as you will see.

Sensible defaults
Scikit-Learn provides reasonable default values for most parameters, making it
easy to quickly create a baseline working system.

Scikit-Learn transformers output NumPy arrays (or sometimes SciPy sparse matri‐
ces) even when they are fed Pandas DataFrames as input.11 So, the output of
imputer.transform(housing_num) is a NumPy array: X has neither column names
nor index. Luckily, it’s not too hard to wrap X in a DataFrame and recover the column
names and index from housing_num:

housing_tr = pd.DataFrame(X, columns=housing_num.columns,
 index=housing_num.index)

Handling Text and Categorical Attributes
So far we have only dealt with numerical attributes, but your data may also contain
text attributes. In this dataset, there is just one: the ocean_proximity attribute. Let’s
look at its value for the first few instances:

>>> housing_cat = housing[["ocean_proximity"]]
>>> housing_cat.head(8)
 ocean_proximity
13096 NEAR BAY
14973 <1H OCEAN
3785 INLAND
14689 INLAND
20507 NEAR OCEAN
1286 INLAND
18078 <1H OCEAN
4396 NEAR BAY

It’s not arbitrary text: there are a limited number of possible values, each of which
represents a category. So this attribute is a categorical attribute. Most machine

Prepare the Data for Machine Learning Algorithms | 71

learning algorithms prefer to work with numbers, so let’s convert these categories
from text to numbers. For this, we can use Scikit-Learn’s OrdinalEncoder class:

from sklearn.preprocessing import OrdinalEncoder

ordinal_encoder = OrdinalEncoder()
housing_cat_encoded = ordinal_encoder.fit_transform(housing_cat)

Here’s what the first few encoded values in housing_cat_encoded look like:

>>> housing_cat_encoded[:8]
array([[3.],
 [0.],
 [1.],
 [1.],
 [4.],
 [1.],
 [0.],
 [3.]])

You can get the list of categories using the categories_ instance variable. It is a list
containing a 1D array of categories for each categorical attribute (in this case, a list
containing a single array since there is just one categorical attribute):

>>> ordinal_encoder.categories_
[array(['<1H OCEAN', 'INLAND', 'ISLAND', 'NEAR BAY', 'NEAR OCEAN'],
 dtype=object)]

One issue with this representation is that ML algorithms will assume that two nearby
values are more similar than two distant values. This may be fine in some cases
(e.g., for ordered categories such as “bad”, “average”, “good”, and “excellent”), but it is
obviously not the case for the ocean_proximity column (for example, categories 0
and 4 are clearly more similar than categories 0 and 1). To fix this issue, a common
solution is to create one binary attribute per category: one attribute equal to 1 when
the category is "<1H OCEAN" (and 0 otherwise), another attribute equal to 1 when the
category is "INLAND" (and 0 otherwise), and so on. This is called one-hot encoding,
because only one attribute will be equal to 1 (hot), while the others will be 0 (cold).
The new attributes are sometimes called dummy attributes. Scikit-Learn provides a
OneHotEncoder class to convert categorical values into one-hot vectors:

from sklearn.preprocessing import OneHotEncoder

cat_encoder = OneHotEncoder()
housing_cat_1hot = cat_encoder.fit_transform(housing_cat)

72 | Chapter 2: End-to-End Machine Learning Project

12 See SciPy’s documentation for more details.

By default, the output of a OneHotEncoder is a SciPy sparse matrix, instead of a
NumPy array:

>>> housing_cat_1hot
<16512x5 sparse matrix of type '<class 'numpy.float64'>'
 with 16512 stored elements in Compressed Sparse Row format>

A sparse matrix is a very efficient representation for matrices that contain mostly
zeros. Indeed, internally it only stores the nonzero values and their positions. When
a categorical attribute has hundreds or thousands of categories, one-hot encoding it
results in a very large matrix full of 0s except for a single 1 per row. In this case, a
sparse matrix is exactly what you need: it will save plenty of memory and speed up
computations. You can use a sparse matrix mostly like a normal 2D array,12 but if you
want to convert it to a (dense) NumPy array, just call the toarray() method:

>>> housing_cat_1hot.toarray()
array([[0., 0., 0., 1., 0.],
 [1., 0., 0., 0., 0.],
 [0., 1., 0., 0., 0.],
 ...,
 [0., 0., 0., 0., 1.],
 [1., 0., 0., 0., 0.],
 [0., 0., 0., 0., 1.]])

Alternatively, you can set sparse=False when creating the OneHotEncoder, in which
case the transform() method will return a regular (dense) NumPy array directly.

As with the OrdinalEncoder, you can get the list of categories using the encoder’s
categories_ instance variable:

>>> cat_encoder.categories_
[array(['<1H OCEAN', 'INLAND', 'ISLAND', 'NEAR BAY', 'NEAR OCEAN'],
 dtype=object)]

Pandas has a function called get_dummies(), which also converts each categorical
feature into a one-hot representation, with one binary feature per category:

>>> df_test = pd.DataFrame({"ocean_proximity": ["INLAND", "NEAR BAY"]})
>>> pd.get_dummies(df_test)
 ocean_proximity_INLAND ocean_proximity_NEAR BAY
0 1 0
1 0 1

It looks nice and simple, so why not use it instead of OneHotEncoder? Well, the
advantage of OneHotEncoder is that it remembers which categories it was trained
on. This is very important because once your model is in production, it should be
fed exactly the same features as during training: no more, no less. Look what our

Prepare the Data for Machine Learning Algorithms | 73

trained cat_encoder outputs when we make it transform the same df_test (using
transform(), not fit_transform()):

>>> cat_encoder.transform(df_test)
array([[0., 1., 0., 0., 0.],
 [0., 0., 0., 1., 0.]])

See the difference? get_dummies() saw only two categories, so it output two columns,
whereas OneHotEncoder output one column per learned category, in the right order.
Moreover, if you feed get_dummies() a DataFrame containing an unknown category
(e.g., "<2H OCEAN"), it will happily generate a column for it:

>>> df_test_unknown = pd.DataFrame({"ocean_proximity": ["<2H OCEAN", "ISLAND"]})
>>> pd.get_dummies(df_test_unknown)
 ocean_proximity_<2H OCEAN ocean_proximity_ISLAND
0 1 0
1 0 1

But OneHotEncoder is smarter: it will detect the unknown category and raise
an exception. If you prefer, you can set the handle_unknown hyperparameter to
"ignore", in which case it will just represent the unknown category with zeros:

>>> cat_encoder.handle_unknown = "ignore"
>>> cat_encoder.transform(df_test_unknown)
array([[0., 0., 0., 0., 0.],
 [0., 0., 1., 0., 0.]])

If a categorical attribute has a large number of possible categories
(e.g., country code, profession, species), then one-hot encoding
will result in a large number of input features. This may slow
down training and degrade performance. If this happens, you may
want to replace the categorical input with useful numerical fea‐
tures related to the categories: for example, you could replace the
ocean_proximity feature with the distance to the ocean (similarly,
a country code could be replaced with the country’s population and
GDP per capita). Alternatively, you can use one of the encoders
provided by the category_encoders package on GitHub. Or, when
dealing with neural networks, you can replace each category with
a learnable, low-dimensional vector called an embedding. This is
an example of representation learning (see Chapters 13 and 17 for
more details).

74 | Chapter 2: End-to-End Machine Learning Project

https://github.com/scikit-learn-contrib/category_encoders

When you fit any Scikit-Learn estimator using a DataFrame, the estimator stores the
column names in the feature_names_in_ attribute. Scikit-Learn then ensures that
any DataFrame fed to this estimator after that (e.g., to transform() or predict())
has the same column names. Transformers also provide a get_feature_names_out()
method that you can use to build a DataFrame around the transformer’s output:

>>> cat_encoder.feature_names_in_
array(['ocean_proximity'], dtype=object)
>>> cat_encoder.get_feature_names_out()
array(['ocean_proximity_<1H OCEAN', 'ocean_proximity_INLAND',
 'ocean_proximity_ISLAND', 'ocean_proximity_NEAR BAY',
 'ocean_proximity_NEAR OCEAN'], dtype=object)
>>> df_output = pd.DataFrame(cat_encoder.transform(df_test_unknown),
... columns=cat_encoder.get_feature_names_out(),
... index=df_test_unknown.index)
...

Feature Scaling and Transformation
One of the most important transformations you need to apply to your data is feature
scaling. With few exceptions, machine learning algorithms don’t perform well when
the input numerical attributes have very different scales. This is the case for the
housing data: the total number of rooms ranges from about 6 to 39,320, while the
median incomes only range from 0 to 15. Without any scaling, most models will be
biased toward ignoring the median income and focusing more on the number of
rooms.

There are two common ways to get all attributes to have the same scale: min-max
scaling and standardization.

As with all estimators, it is important to fit the scalers to the train‐
ing data only: never use fit() or fit_transform() for anything
else than the training set. Once you have a trained scaler, you can
then use it to transform() any other set, including the validation
set, the test set, and new data. Note that while the training set
values will always be scaled to the specified range, if new data
contains outliers, these may end up scaled outside the range. If you
want to avoid this, just set the clip hyperparameter to True.

Prepare the Data for Machine Learning Algorithms | 75

Min-max scaling (many people call this normalization) is the simplest: for each
attribute, the values are shifted and rescaled so that they end up ranging from
0 to 1. This is performed by subtracting the min value and dividing by the dif‐
ference between the min and the max. Scikit-Learn provides a transformer called
MinMaxScaler for this. It has a feature_range hyperparameter that lets you change
the range if, for some reason, you don’t want 0–1 (e.g., neural networks work best
with zero-mean inputs, so a range of –1 to 1 is preferable). It’s quite easy to use:

from sklearn.preprocessing import MinMaxScaler

min_max_scaler = MinMaxScaler(feature_range=(-1, 1))
housing_num_min_max_scaled = min_max_scaler.fit_transform(housing_num)

Standardization is different: first it subtracts the mean value (so standardized values
have a zero mean), then it divides the result by the standard deviation (so standard‐
ized values have a standard deviation equal to 1). Unlike min-max scaling, standardi‐
zation does not restrict values to a specific range. However, standardization is much
less affected by outliers. For example, suppose a district has a median income equal
to 100 (by mistake), instead of the usual 0–15. Min-max scaling to the 0–1 range
would map this outlier down to 1 and it would crush all the other values down to
0–0.15, whereas standardization would not be much affected. Scikit-Learn provides a
transformer called StandardScaler for standardization:

from sklearn.preprocessing import StandardScaler

std_scaler = StandardScaler()
housing_num_std_scaled = std_scaler.fit_transform(housing_num)

If you want to scale a sparse matrix without converting it to a dense
matrix first, you can use a StandardScaler with its with_mean
hyperparameter set to False: it will only divide the data by the
standard deviation, without subtracting the mean (as this would
break sparsity).

When a feature’s distribution has a heavy tail (i.e., when values far from the mean
are not exponentially rare), both min-max scaling and standardization will squash
most values into a small range. Machine learning models generally don’t like this
at all, as you will see in Chapter 4. So before you scale the feature, you should first
transform it to shrink the heavy tail, and if possible to make the distribution roughly
symmetrical. For example, a common way to do this for positive features with a heavy
tail to the right is to replace the feature with its square root (or raise the feature to
a power between 0 and 1). If the feature has a really long and heavy tail, such as a
power law distribution, then replacing the feature with its logarithm may help. For
example, the population feature roughly follows a power law: districts with 10,000
inhabitants are only 10 times less frequent than districts with 1,000 inhabitants, not

76 | Chapter 2: End-to-End Machine Learning Project

exponentially less frequent. Figure 2-17 shows how much better this feature looks
when you compute its log: it’s very close to a Gaussian distribution (i.e., bell-shaped).

Figure 2-17. Transforming a feature to make it closer to a Gaussian distribution

Another approach to handle heavy-tailed features consists in bucketizing the feature.
This means chopping its distribution into roughly equal-sized buckets, and replacing
each feature value with the index of the bucket it belongs to, much like we did to
create the income_cat feature (although we only used it for stratified sampling).
For example, you could replace each value with its percentile. Bucketizing with
equal-sized buckets results in a feature with an almost uniform distribution, so there’s
no need for further scaling, or you can just divide by the number of buckets to force
the values to the 0–1 range.

When a feature has a multimodal distribution (i.e., with two or more clear peaks,
called modes), such as the housing_median_age feature, it can also be helpful to
bucketize it, but this time treating the bucket IDs as categories, rather than as numeri‐
cal values. This means that the bucket indices must be encoded, for example using a
OneHotEncoder (so you usually don’t want to use too many buckets). This approach
will allow the regression model to more easily learn different rules for different ranges
of this feature value. For example, perhaps houses built around 35 years ago have
a peculiar style that fell out of fashion, and therefore they’re cheaper than their age
alone would suggest.

Another approach to transforming multimodal distributions is to add a feature for
each of the modes (at least the main ones), representing the similarity between the
housing median age and that particular mode. The similarity measure is typically
computed using a radial basis function (RBF)—any function that depends only on the
distance between the input value and a fixed point. The most commonly used RBF is
the Gaussian RBF, whose output value decays exponentially as the input value moves
away from the fixed point. For example, the Gaussian RBF similarity between the
housing age x and 35 is given by the equation exp(–γ(x – 35)²). The hyperparameter
γ (gamma) determines how quickly the similarity measure decays as x moves away
from 35. Using Scikit-Learn’s rbf_kernel() function, you can create a new Gaussian
RBF feature measuring the similarity between the housing median age and 35:

Prepare the Data for Machine Learning Algorithms | 77

from sklearn.metrics.pairwise import rbf_kernel

age_simil_35 = rbf_kernel(housing[["housing_median_age"]], [[35]], gamma=0.1)

Figure 2-18 shows this new feature as a function of the housing median age (solid
line). It also shows what the feature would look like if you used a smaller gamma value.
As the chart shows, the new age similarity feature peaks at 35, right around the spike
in the housing median age distribution: if this particular age group is well correlated
with lower prices, there’s a good chance that this new feature will help.

Figure 2-18. Gaussian RBF feature measuring the similarity between the housing
median age and 35

So far we’ve only looked at the input features, but the target values may also need
to be transformed. For example, if the target distribution has a heavy tail, you may
choose to replace the target with its logarithm. But if you do, the regression model
will now predict the log of the median house value, not the median house value itself.
You will need to compute the exponential of the model’s prediction if you want the
predicted median house value.

Luckily, most of Scikit-Learn’s transformers have an inverse_transform() method,
making it easy to compute the inverse of their transformations. For example, the
following code example shows how to scale the labels using a StandardScaler (just
like we did for inputs), then train a simple linear regression model on the resulting
scaled labels and use it to make predictions on some new data, which we transform
back to the original scale using the trained scaler’s inverse_transform() method.
Note that we convert the labels from a Pandas Series to a DataFrame, since the

78 | Chapter 2: End-to-End Machine Learning Project

StandardScaler expects 2D inputs. Also, in this example we just train the model on a
single raw input feature (median income), for simplicity:

from sklearn.linear_model import LinearRegression

target_scaler = StandardScaler()
scaled_labels = target_scaler.fit_transform(housing_labels.to_frame())

model = LinearRegression()
model.fit(housing[["median_income"]], scaled_labels)
some_new_data = housing[["median_income"]].iloc[:5] # pretend this is new data

scaled_predictions = model.predict(some_new_data)
predictions = target_scaler.inverse_transform(scaled_predictions)

This works fine, but a simpler option is to use a TransformedTargetRegressor. We
just need to construct it, giving it the regression model and the label transformer,
then fit it on the training set, using the original unscaled labels. It will automatically
use the transformer to scale the labels and train the regression model on the resulting
scaled labels, just like we did previously. Then, when we want to make a prediction, it
will call the regression model’s predict() method and use the scaler’s inverse_trans
form() method to produce the prediction:

from sklearn.compose import TransformedTargetRegressor

model = TransformedTargetRegressor(LinearRegression(),
 transformer=StandardScaler())
model.fit(housing[["median_income"]], housing_labels)
predictions = model.predict(some_new_data)

Custom Transformers
Although Scikit-Learn provides many useful transformers, you will need to write
your own for tasks such as custom transformations, cleanup operations, or combin‐
ing specific attributes.

For transformations that don’t require any training, you can just write a function
that takes a NumPy array as input and outputs the transformed array. For example,
as discussed in the previous section, it’s often a good idea to transform features
with heavy-tailed distributions by replacing them with their logarithm (assuming the
feature is positive and the tail is on the right). Let’s create a log-transformer and apply
it to the population feature:

from sklearn.preprocessing import FunctionTransformer

log_transformer = FunctionTransformer(np.log, inverse_func=np.exp)
log_pop = log_transformer.transform(housing[["population"]])

Prepare the Data for Machine Learning Algorithms | 79

The inverse_func argument is optional. It lets you specify an inverse transform
function, e.g., if you plan to use your transformer in a TransformedTargetRegressor.

Your transformation function can take hyperparameters as additional arguments. For
example, here’s how to create a transformer that computes the same Gaussian RBF
similarity measure as earlier:

rbf_transformer = FunctionTransformer(rbf_kernel,
 kw_args=dict(Y=[[35.]], gamma=0.1))
age_simil_35 = rbf_transformer.transform(housing[["housing_median_age"]])

Note that there’s no inverse function for the RBF kernel, since there are always two
values at a given distance from a fixed point (except at distance 0). Also note that
rbf_kernel() does not treat the features separately. If you pass it an array with
two features, it will measure the 2D distance (Euclidean) to measure similarity. For
example, here’s how to add a feature that will measure the geographic similarity
between each district and San Francisco:

sf_coords = 37.7749, -122.41
sf_transformer = FunctionTransformer(rbf_kernel,
 kw_args=dict(Y=[sf_coords], gamma=0.1))
sf_simil = sf_transformer.transform(housing[["latitude", "longitude"]])

Custom transformers are also useful to combine features. For example, here’s a
FunctionTransformer that computes the ratio between the input features 0 and 1:

>>> ratio_transformer = FunctionTransformer(lambda X: X[:, [0]] / X[:, [1]])
>>> ratio_transformer.transform(np.array([[1., 2.], [3., 4.]]))
array([[0.5],
 [0.75]])

FunctionTransformer is very handy, but what if you would like your transformer to
be trainable, learning some parameters in the fit() method and using them later
in the transform() method? For this, you need to write a custom class. Scikit-Learn
relies on duck typing, so this class does not have to inherit from any particular base
class. All it needs is three methods: fit() (which must return self), transform(),
and fit_transform().

You can get fit_transform() for free by simply adding TransformerMixin as a base
class: the default implementation will just call fit() and then transform(). If you
add BaseEstimator as a base class (and avoid using *args and **kwargs in your
constructor), you will also get two extra methods: get_params() and set_params().
These will be useful for automatic hyperparameter tuning.

For example, here’s a custom transformer that acts much like the StandardScaler:

80 | Chapter 2: End-to-End Machine Learning Project

from sklearn.base import BaseEstimator, TransformerMixin
from sklearn.utils.validation import check_array, check_is_fitted

class StandardScalerClone(BaseEstimator, TransformerMixin):
 def __init__(self, with_mean=True): # no *args or **kwargs!
 self.with_mean = with_mean

 def fit(self, X, y=None): # y is required even though we don't use it
 X = check_array(X) # checks that X is an array with finite float values
 self.mean_ = X.mean(axis=0)
 self.scale_ = X.std(axis=0)
 self.n_features_in_ = X.shape[1] # every estimator stores this in fit()
 return self # always return self!

 def transform(self, X):
 check_is_fitted(self) # looks for learned attributes (with trailing _)
 X = check_array(X)
 assert self.n_features_in_ == X.shape[1]
 if self.with_mean:
 X = X - self.mean_
 return X / self.scale_

Here are a few things to note:

• The sklearn.utils.validation package contains several functions we can use•
to validate the inputs. For simplicity, we will skip such tests in the rest of this
book, but production code should have them.

• Scikit-Learn pipelines require the fit() method to have two arguments X and y,•
which is why we need the y=None argument even though we don’t use y.

• All Scikit-Learn estimators set n_features_in_ in the fit() method, and they•
ensure that the data passed to transform() or predict() has this number of
features.

• The fit() method must return self.•
• This implementation is not 100% complete: all estimators should set•
feature_names_in_ in the fit() method when they are passed a DataFrame.
Moreover, all transformers should provide a get_feature_names_out() method,
as well as an inverse_transform() method when their transformation can be
reversed. See the last exercise at the end of this chapter for more details.

A custom transformer can (and often does) use other estimators in its implementa‐
tion. For example, the following code demonstrates custom transformer that uses a
KMeans clusterer in the fit() method to identify the main clusters in the training
data, and then uses rbf_kernel() in the transform() method to measure how
similar each sample is to each cluster center:

Prepare the Data for Machine Learning Algorithms | 81

from sklearn.cluster import KMeans

class ClusterSimilarity(BaseEstimator, TransformerMixin):
 def __init__(self, n_clusters=10, gamma=1.0, random_state=None):
 self.n_clusters = n_clusters
 self.gamma = gamma
 self.random_state = random_state

 def fit(self, X, y=None, sample_weight=None):
 self.kmeans_ = KMeans(self.n_clusters, random_state=self.random_state)
 self.kmeans_.fit(X, sample_weight=sample_weight)
 return self # always return self!

 def transform(self, X):
 return rbf_kernel(X, self.kmeans_.cluster_centers_, gamma=self.gamma)

 def get_feature_names_out(self, names=None):
 return [f"Cluster {i} similarity" for i in range(self.n_clusters)]

You can check whether your custom estimator respects Scikit-
Learn’s API by passing an instance to check_estimator() from
the sklearn.utils.estimator_checks package. For the full API,
check out https://scikit-learn.org/stable/developers.

As you will see in Chapter 9, k-means is a clustering algorithm that locates clusters in
the data. How many it searches for is controlled by the n_clusters hyperparameter.
After training, the cluster centers are available via the cluster_centers_ attribute.
The fit() method of KMeans supports an optional argument sample_weight, which
lets the user specify the relative weights of the samples. k-means is a stochastic
algorithm, meaning that it relies on randomness to locate the clusters, so if you
want reproducible results, you must set the random_state parameter. As you can see,
despite the complexity of the task, the code is fairly straightforward. Now let’s use this
custom transformer:

cluster_simil = ClusterSimilarity(n_clusters=10, gamma=1., random_state=42)
similarities = cluster_simil.fit_transform(housing[["latitude", "longitude"]],
 sample_weight=housing_labels)

This code creates a ClusterSimilarity transformer, setting the number of clusters to
10. Then it calls fit_transform() with the latitude and longitude of every district in
the training set, weighting each district by its median house value. The transformer
uses k-means to locate the clusters, then measures the Gaussian RBF similarity
between each district and all 10 cluster centers. The result is a matrix with one row
per district, and one column per cluster. Let’s look at the first three rows, rounding to
two decimal places:

82 | Chapter 2: End-to-End Machine Learning Project

https://scikit-learn.org/stable/developers

>>> similarities[:3].round(2)
array([[0. , 0.14, 0. , 0. , 0. , 0.08, 0. , 0.99, 0. , 0.6],
 [0.63, 0. , 0.99, 0. , 0. , 0. , 0.04, 0. , 0.11, 0.],
 [0. , 0.29, 0. , 0. , 0.01, 0.44, 0. , 0.7 , 0. , 0.3]])

Figure 2-19 shows the 10 cluster centers found by k-means. The districts are colored
according to their geographic similarity to their closest cluster center. As you can see,
most clusters are located in highly populated and expensive areas.

Figure 2-19. Gaussian RBF similarity to the nearest cluster center

Transformation Pipelines
As you can see, there are many data transformation steps that need to be executed
in the right order. Fortunately, Scikit-Learn provides the Pipeline class to help with
such sequences of transformations. Here is a small pipeline for numerical attributes,
which will first impute then scale the input features:

from sklearn.pipeline import Pipeline

num_pipeline = Pipeline([
 ("impute", SimpleImputer(strategy="median")),
 ("standardize", StandardScaler()),
])

Prepare the Data for Machine Learning Algorithms | 83

The Pipeline constructor takes a list of name/estimator pairs (2-tuples) defining a
sequence of steps. The names can be anything you like, as long as they are unique
and don’t contain double underscores (__). They will be useful later, when we discuss
hyperparameter tuning. The estimators must all be transformers (i.e., they must
have a fit_transform() method), except for the last one, which can be anything: a
transformer, a predictor, or any other type of estimator.

In a Jupyter notebook, if you import sklearn and run sklearn.
set_config(display="diagram"), all Scikit-Learn estimators will
be rendered as interactive diagrams. This is particularly useful for
visualizing pipelines. To visualize num_pipeline, run a cell with
num_pipeline as the last line. Clicking an estimator will show more
details.

If you don’t want to name the transformers, you can use the make_pipeline() func‐
tion instead; it takes transformers as positional arguments and creates a Pipeline
using the names of the transformers’ classes, in lowercase and without underscores
(e.g., "simpleimputer"):

from sklearn.pipeline import make_pipeline

num_pipeline = make_pipeline(SimpleImputer(strategy="median"), StandardScaler())

If multiple transformers have the same name, an index is appended to their names
(e.g., "foo-1", "foo-2", etc.).

When you call the pipeline’s fit() method, it calls fit_transform() sequentially on
all the transformers, passing the output of each call as the parameter to the next call
until it reaches the final estimator, for which it just calls the fit() method.

The pipeline exposes the same methods as the final estimator. In this example the
last estimator is a StandardScaler, which is a transformer, so the pipeline also acts
like a transformer. If you call the pipeline’s transform() method, it will sequentially
apply all the transformations to the data. If the last estimator were a predictor instead
of a transformer, then the pipeline would have a predict() method rather than a
transform() method. Calling it would sequentially apply all the transformations to
the data and pass the result to the predictor’s predict() method.

Let’s call the pipeline’s fit_transform() method and look at the output’s first two
rows, rounded to two decimal places:

>>> housing_num_prepared = num_pipeline.fit_transform(housing_num)
>>> housing_num_prepared[:2].round(2)
array([[-1.42, 1.01, 1.86, 0.31, 1.37, 0.14, 1.39, -0.94],
 [0.6 , -0.7 , 0.91, -0.31, -0.44, -0.69, -0.37, 1.17]])

84 | Chapter 2: End-to-End Machine Learning Project

As you saw earlier, if you want to recover a nice DataFrame, you can use the pipeline’s
get_feature_names_out() method:

df_housing_num_prepared = pd.DataFrame(
 housing_num_prepared, columns=num_pipeline.get_feature_names_out(),
 index=housing_num.index)

Pipelines support indexing; for example, pipeline[1] returns the second estimator
in the pipeline, and pipeline[:-1] returns a Pipeline object containing all but the
last estimator. You can also access the estimators via the steps attribute, which is a
list of name/estimator pairs, or via the named_steps dictionary attribute, which maps
the names to the estimators. For example, num_pipeline["simpleimputer"] returns
the estimator named "simpleimputer".

So far, we have handled the categorical columns and the numerical columns sepa‐
rately. It would be more convenient to have a single transformer capable of handling
all columns, applying the appropriate transformations to each column. For this,
you can use a ColumnTransformer. For example, the following ColumnTransformer
will apply num_pipeline (the one we just defined) to the numerical attributes and
cat_pipeline to the categorical attribute:

from sklearn.compose import ColumnTransformer

num_attribs = ["longitude", "latitude", "housing_median_age", "total_rooms",
 "total_bedrooms", "population", "households", "median_income"]
cat_attribs = ["ocean_proximity"]

cat_pipeline = make_pipeline(
 SimpleImputer(strategy="most_frequent"),
 OneHotEncoder(handle_unknown="ignore"))

preprocessing = ColumnTransformer([
 ("num", num_pipeline, num_attribs),
 ("cat", cat_pipeline, cat_attribs),
])

First we import the ColumnTransformer class, then we define the list of numeri‐
cal and categorical column names and construct a simple pipeline for categorical
attributes. Lastly, we construct a ColumnTransformer. Its constructor requires a list of
triplets (3-tuples), each containing a name (which must be unique and not contain
double underscores), a transformer, and a list of names (or indices) of columns that
the transformer should be applied to.

Prepare the Data for Machine Learning Algorithms | 85

Instead of using a transformer, you can specify the string "drop"
if you want the columns to be dropped, or you can specify
"passthrough" if you want the columns to be left untouched. By
default, the remaining columns (i.e., the ones that were not listed)
will be dropped, but you can set the remainder hyperparameter to
any transformer (or to "passthrough") if you want these columns
to be handled differently.

Since listing all the column names is not very convenient, Scikit-Learn provides
a make_column_selector() function that returns a selector function you can use
to automatically select all the features of a given type, such as numerical or cate‐
gorical. You can pass this selector function to the ColumnTransformer instead of
column names or indices. Moreover, if you don’t care about naming the transform‐
ers, you can use make_column_transformer(), which chooses the names for you,
just like make_pipeline() does. For example, the following code creates the same
ColumnTransformer as earlier, except the transformers are automatically named
"pipeline-1" and "pipeline-2" instead of "num" and "cat":

from sklearn.compose import make_column_selector, make_column_transformer

preprocessing = make_column_transformer(
 (num_pipeline, make_column_selector(dtype_include=np.number)),
 (cat_pipeline, make_column_selector(dtype_include=object)),
)

Now we’re ready to apply this ColumnTransformer to the housing data:

housing_prepared = preprocessing.fit_transform(housing)

Great! We have a preprocessing pipeline that takes the entire training dataset and
applies each transformer to the appropriate columns, then concatenates the trans‐
formed columns horizontally (transformers must never change the number of rows).
Once again this returns a NumPy array, but you can get the column names using
preprocessing.get_feature_names_out() and wrap the data in a nice DataFrame
as we did before.

The OneHotEncoder returns a sparse matrix and the num_pipeline
returns a dense matrix. When there is such a mix of sparse and
dense matrices, the ColumnTransformer estimates the density of the
final matrix (i.e., the ratio of nonzero cells), and it returns a sparse
matrix if the density is lower than a given threshold (by default,
sparse_threshold=0.3). In this example, it returns a dense matrix.

Your project is going really well and you’re almost ready to train some models! You
now want to create a single pipeline that will perform all the transformations you’ve
experimented with up to now. Let’s recap what the pipeline will do and why:

86 | Chapter 2: End-to-End Machine Learning Project

• Missing values in numerical features will be imputed by replacing them with•
the median, as most ML algorithms don’t expect missing values. In categorical
features, missing values will be replaced by the most frequent category.

• The categorical feature will be one-hot encoded, as most ML algorithms only•
accept numerical inputs.

• A few ratio features will be computed and added: bedrooms_ratio,•
rooms_per_house, and people_per_house. Hopefully these will better correlate
with the median house value, and thereby help the ML models.

• A few cluster similarity features will also be added. These will likely be more•
useful to the model than latitude and longitude.

• Features with a long tail will be replaced by their logarithm, as most models•
prefer features with roughly uniform or Gaussian distributions.

• All numerical features will be standardized, as most ML algorithms prefer when•
all features have roughly the same scale.

The code that builds the pipeline to do all of this should look familiar to you by now:

def column_ratio(X):
 return X[:, [0]] / X[:, [1]]

def ratio_name(function_transformer, feature_names_in):
 return ["ratio"] # feature names out

def ratio_pipeline():
 return make_pipeline(
 SimpleImputer(strategy="median"),
 FunctionTransformer(column_ratio, feature_names_out=ratio_name),
 StandardScaler())

log_pipeline = make_pipeline(
 SimpleImputer(strategy="median"),
 FunctionTransformer(np.log, feature_names_out="one-to-one"),
 StandardScaler())
cluster_simil = ClusterSimilarity(n_clusters=10, gamma=1., random_state=42)
default_num_pipeline = make_pipeline(SimpleImputer(strategy="median"),
 StandardScaler())
preprocessing = ColumnTransformer([
 ("bedrooms", ratio_pipeline(), ["total_bedrooms", "total_rooms"]),
 ("rooms_per_house", ratio_pipeline(), ["total_rooms", "households"]),
 ("people_per_house", ratio_pipeline(), ["population", "households"]),
 ("log", log_pipeline, ["total_bedrooms", "total_rooms", "population",
 "households", "median_income"]),
 ("geo", cluster_simil, ["latitude", "longitude"]),
 ("cat", cat_pipeline, make_column_selector(dtype_include=object)),
],
 remainder=default_num_pipeline) # one column remaining: housing_median_age

Prepare the Data for Machine Learning Algorithms | 87

If you run this ColumnTransformer, it performs all the transformations and outputs a
NumPy array with 24 features:

>>> housing_prepared = preprocessing.fit_transform(housing)
>>> housing_prepared.shape
(16512, 24)
>>> preprocessing.get_feature_names_out()
array(['bedrooms__ratio', 'rooms_per_house__ratio',
 'people_per_house__ratio', 'log__total_bedrooms',
 'log__total_rooms', 'log__population', 'log__households',
 'log__median_income', 'geo__Cluster 0 similarity', [...],
 'geo__Cluster 9 similarity', 'cat__ocean_proximity_<1H OCEAN',
 'cat__ocean_proximity_INLAND', 'cat__ocean_proximity_ISLAND',
 'cat__ocean_proximity_NEAR BAY', 'cat__ocean_proximity_NEAR OCEAN',
 'remainder__housing_median_age'], dtype=object)

Select and Train a Model
At last! You framed the problem, you got the data and explored it, you sampled a
training set and a test set, and you wrote a preprocessing pipeline to automatically
clean up and prepare your data for machine learning algorithms. You are now ready
to select and train a machine learning model.

Train and Evaluate on the Training Set
The good news is that thanks to all these previous steps, things are now going to be
easy! You decide to train a very basic linear regression model to get started:

from sklearn.linear_model import LinearRegression

lin_reg = make_pipeline(preprocessing, LinearRegression())
lin_reg.fit(housing, housing_labels)

Done! You now have a working linear regression model. You try it out on the training
set, looking at the first five predictions and comparing them to the labels:

>>> housing_predictions = lin_reg.predict(housing)
>>> housing_predictions[:5].round(-2) # -2 = rounded to the nearest hundred
array([243700., 372400., 128800., 94400., 328300.])
>>> housing_labels.iloc[:5].values
array([458300., 483800., 101700., 96100., 361800.])

Well, it works, but not always: the first prediction is way off (by over $200,000!),
while the other predictions are better: two are off by about 25%, and two are off
by less than 10%. Remember that you chose to use the RMSE as your performance
measure, so you want to measure this regression model’s RMSE on the whole training
set using Scikit-Learn’s mean_squared_error() function, with the squared argument
set to False:

88 | Chapter 2: End-to-End Machine Learning Project

>>> from sklearn.metrics import mean_squared_error
>>> lin_rmse = mean_squared_error(housing_labels, housing_predictions,
... squared=False)
...
>>> lin_rmse
68687.89176589991

This is better than nothing, but clearly not a great score: the median_housing_values
of most districts range between $120,000 and $265,000, so a typical prediction error
of $68,628 is really not very satisfying. This is an example of a model underfitting the
training data. When this happens it can mean that the features do not provide enough
information to make good predictions, or that the model is not powerful enough.
As we saw in the previous chapter, the main ways to fix underfitting are to select a
more powerful model, to feed the training algorithm with better features, or to reduce
the constraints on the model. This model is not regularized, which rules out the last
option. You could try to add more features, but first you want to try a more complex
model to see how it does.

You decide to try a DecisionTreeRegressor, as this is a fairly powerful model capable
of finding complex nonlinear relationships in the data (decision trees are presented in
more detail in Chapter 6):

from sklearn.tree import DecisionTreeRegressor

tree_reg = make_pipeline(preprocessing, DecisionTreeRegressor(random_state=42))
tree_reg.fit(housing, housing_labels)

Now that the model is trained, you evaluate it on the training set:

>>> housing_predictions = tree_reg.predict(housing)
>>> tree_rmse = mean_squared_error(housing_labels, housing_predictions,
... squared=False)
...
>>> tree_rmse
0.0

Wait, what!? No error at all? Could this model really be absolutely perfect? Of course,
it is much more likely that the model has badly overfit the data. How can you be sure?
As you saw earlier, you don’t want to touch the test set until you are ready to launch a
model you are confident about, so you need to use part of the training set for training
and part of it for model validation.

Better Evaluation Using Cross-Validation
One way to evaluate the decision tree model would be to use the train_

test_split() function to split the training set into a smaller training set and a
validation set, then train your models against the smaller training set and evaluate
them against the validation set. It’s a bit of effort, but nothing too difficult, and it
would work fairly well.

Select and Train a Model | 89

A great alternative is to use Scikit-Learn’s k_-fold cross-validation feature. The follow‐
ing code randomly splits the training set into 10 nonoverlapping subsets called folds,
then it trains and evaluates the decision tree model 10 times, picking a different fold
for evaluation every time and using the other 9 folds for training. The result is an
array containing the 10 evaluation scores:

from sklearn.model_selection import cross_val_score

tree_rmses = -cross_val_score(tree_reg, housing, housing_labels,
 scoring="neg_root_mean_squared_error", cv=10)

Scikit-Learn’s cross-validation features expect a utility function
(greater is better) rather than a cost function (lower is better), so
the scoring function is actually the opposite of the RMSE. It’s a
negative value, so you need to switch the sign of the output to get
the RMSE scores.

Let’s look at the results:

>>> pd.Series(tree_rmses).describe()
count 10.000000
mean 66868.027288
std 2060.966425
min 63649.536493
25% 65338.078316
50% 66801.953094
75% 68229.934454
max 70094.778246
dtype: float64

Now the decision tree doesn’t look as good as it did earlier. In fact, it seems to
perform almost as poorly as the linear regression model! Notice that cross-validation
allows you to get not only an estimate of the performance of your model, but also a
measure of how precise this estimate is (i.e., its standard deviation). The decision tree
has an RMSE of about 66,868, with a standard deviation of about 2,061. You would
not have this information if you just used one validation set. But cross-validation
comes at the cost of training the model several times, so it is not always feasible.

If you compute the same metric for the linear regression model, you will find that
the mean RMSE is 69,858 and the standard deviation is 4,182. So the decision tree
model seems to perform very slightly better than the linear model, but the difference
is minimal due to severe overfitting. We know there’s an overfitting problem because
the training error is low (actually zero) while the validation error is high.

Let’s try one last model now: the RandomForestRegressor. As you will see in Chap‐
ter 7, random forests work by training many decision trees on random subsets of
the features, then averaging out their predictions. Such models composed of many
other models are called ensembles: they are capable of boosting the performance of

90 | Chapter 2: End-to-End Machine Learning Project

the underlying model (in this case, decision trees). The code is much the same as
earlier:

from sklearn.ensemble import RandomForestRegressor

forest_reg = make_pipeline(preprocessing,
 RandomForestRegressor(random_state=42))
forest_rmses = -cross_val_score(forest_reg, housing, housing_labels,
 scoring="neg_root_mean_squared_error", cv=10)

Let’s look at the scores:

>>> pd.Series(forest_rmses).describe()
count 10.000000
mean 47019.561281
std 1033.957120
min 45458.112527
25% 46464.031184
50% 46967.596354
75% 47325.694987
max 49243.765795
dtype: float64

Wow, this is much better: random forests really look very promising for this task!
However, if you train a RandomForest and measure the RMSE on the training set,
you will find roughly 17,474: that’s much lower, meaning that there’s still quite a
lot of overfitting going on. Possible solutions are to simplify the model, constrain
it (i.e., regularize it), or get a lot more training data. Before you dive much deeper
into random forests, however, you should try out many other models from various
categories of machine learning algorithms (e.g., several support vector machines with
different kernels, and possibly a neural network), without spending too much time
tweaking the hyperparameters. The goal is to shortlist a few (two to five) promising
models.

Fine-Tune Your Model
Let’s assume that you now have a shortlist of promising models. You now need to
fine-tune them. Let’s look at a few ways you can do that.

Grid Search
One option would be to fiddle with the hyperparameters manually, until you find a
great combination of hyperparameter values. This would be very tedious work, and
you may not have time to explore many combinations.

Instead, you can use Scikit-Learn’s GridSearchCV class to search for you. All you need
to do is tell it which hyperparameters you want it to experiment with and what values
to try out, and it will use cross-validation to evaluate all the possible combinations

Fine-Tune Your Model | 91

of hyperparameter values. For example, the following code searches for the best
combination of hyperparameter values for the RandomForestRegressor:

from sklearn.model_selection import GridSearchCV

full_pipeline = Pipeline([
 ("preprocessing", preprocessing),
 ("random_forest", RandomForestRegressor(random_state=42)),
])
param_grid = [
 {'preprocessing__geo__n_clusters': [5, 8, 10],
 'random_forest__max_features': [4, 6, 8]},
 {'preprocessing__geo__n_clusters': [10, 15],
 'random_forest__max_features': [6, 8, 10]},
]
grid_search = GridSearchCV(full_pipeline, param_grid, cv=3,
 scoring='neg_root_mean_squared_error')
grid_search.fit(housing, housing_labels)

Notice that you can refer to any hyperparameter of any estimator in a pipeline,
even if this estimator is nested deep inside several pipelines and column transform‐
ers. For example, when Scikit-Learn sees "preprocessing__geo__n_clusters", it
splits this string at the double underscores, then it looks for an estimator named
"preprocessing" in the pipeline and finds the preprocessing ColumnTransformer.
Next, it looks for a transformer named "geo" inside this ColumnTransformer and
finds the ClusterSimilarity transformer we used on the latitude and longitude
attributes. Then it finds this transformer’s n_clusters hyperparameter. Similarly,
random_forest__max_features refers to the max_features hyperparameter of the
estimator named "random_forest", which is of course the RandomForest model (the
max_features hyperparameter will be explained in Chapter 7).

Wrapping preprocessing steps in a Scikit-Learn pipeline allows you
to tune the preprocessing hyperparameters along with the model
hyperparameters. This is a good thing since they often interact.
For example, perhaps increasing n_clusters requires increasing
max_features as well. If fitting the pipeline transformers is com‐
putationally expensive, you can set the pipeline’s memory hyperpara‐
meter to the path of a caching directory: when you first fit the
pipeline, Scikit-Learn will save the fitted transformers to this direc‐
tory. If you then fit the pipeline again with the same hyperparame‐
ters, Scikit-Learn will just load the cached transformers.

There are two dictionaries in this param_grid, so GridSearchCV will first evaluate
all 3 × 3 = 9 combinations of n_clusters and max_features hyperparameter values
specified in the first dict, then it will try all 2 × 3 = 6 combinations of hyperparame‐
ter values in the second dict. So in total the grid search will explore 9 + 6 = 15

92 | Chapter 2: End-to-End Machine Learning Project

combinations of hyperparameter values, and it will train the pipeline 3 times per
combination, since we are using 3-fold cross validation. This means there will be a
grand total of 15 × 3 = 45 rounds of training! It may take a while, but when it is done
you can get the best combination of parameters like this:

>>> grid_search.best_params_
{'preprocessing__geo__n_clusters': 15, 'random_forest__max_features': 6}

In this example, the best model is obtained by setting n_clusters to 15 and setting
max_features to 8.

Since 15 is the maximum value that was evaluated for n_clusters,
you should probably try searching again with higher values; the
score may continue to improve.

You can access the best estimator using grid_search.best_estimator_. If
GridSearchCV is initialized with refit=True (which is the default), then once it finds
the best estimator using cross-validation, it retrains it on the whole training set. This
is usually a good idea, since feeding it more data will likely improve its performance.

The evaluation scores are available using grid_search.cv_results_. This is a dictio‐
nary, but if you wrap it in a DataFrame you get a nice list of all the test scores for
each combination of hyperparameters and for each cross-validation split, as well as
the mean test score across all splits:

>>> cv_res = pd.DataFrame(grid_search.cv_results_)
>>> cv_res.sort_values(by="mean_test_score", ascending=False, inplace=True)
>>> [...] # change column names to fit on this page, and show rmse = -score
>>> cv_res.head() # note: the 1st column is the row ID
 n_clusters max_features split0 split1 split2 mean_test_rmse
12 15 6 43460 43919 44748 44042
13 15 8 44132 44075 45010 44406
14 15 10 44374 44286 45316 44659
7 10 6 44683 44655 45657 44999
9 10 6 44683 44655 45657 44999

The mean test RMSE score for the best model is 44,042, which is better than the
score you got earlier using the default hyperparameter values (which was 47,019).
Congratulations, you have successfully fine-tuned your best model!

Randomized Search
The grid search approach is fine when you are exploring relatively few combinations,
like in the previous example, but RandomizedSearchCV is often preferable, especially
when the hyperparameter search space is large. This class can be used in much
the same way as the GridSearchCV class, but instead of trying out all possible

Fine-Tune Your Model | 93

combinations it evaluates a fixed number of combinations, selecting a random value
for each hyperparameter at every iteration. This may sound surprising, but this
approach has several benefits:

• If some of your hyperparameters are continuous (or discrete but with many•
possible values), and you let randomized search run for, say, 1,000 iterations, then
it will explore 1,000 different values for each of these hyperparameters, whereas
grid search would only explore the few values you listed for each one.

• Suppose a hyperparameter does not actually make much difference, but you don’t•
know it yet. If it has 10 possible values and you add it to your grid search, then
training will take 10 times longer. But if you add it to a random search, it will not
make any difference.

• If there are 6 hyperparameters to explore, each with 10 possible values, then grid•
search offers no other choice than training the model a million times, whereas
random search can always run for any number of iterations you choose.

For each hyperparameter, you must provide either a list of possible values, or a
probability distribution:

from sklearn.model_selection import RandomizedSearchCV
from scipy.stats import randint

param_distribs = {'preprocessing__geo__n_clusters': randint(low=3, high=50),
 'random_forest__max_features': randint(low=2, high=20)}

rnd_search = RandomizedSearchCV(
 full_pipeline, param_distributions=param_distribs, n_iter=10, cv=3,
 scoring='neg_root_mean_squared_error', random_state=42)

rnd_search.fit(housing, housing_labels)

Scikit-Learn also has HalvingRandomSearchCV and HalvingGridSearchCV hyperpara‐
meter search classes. Their goal is to use the computational resources more efficiently,
either to train faster or to explore a larger hyperparameter space. Here’s how they
work: in the first round, many hyperparameter combinations (called “candidates”) are
generated using either the grid approach or the random approach. These candidates
are then used to train models that are evaluated using cross-validation, as usual.
However, training uses limited resources, which speeds up this first round consider‐
ably. By default, “limited resources” means that the models are trained on a small
part of the training set. However, other limitations are possible, such as reducing
the number of training iterations if the model has a hyperparameter to set it. Once
every candidate has been evaluated, only the best ones go on to the second round,
where they are allowed more resources to compete. After several rounds, the final
candidates are evaluated using full resources. This may save you some time tuning
hyperparameters.

94 | Chapter 2: End-to-End Machine Learning Project

Ensemble Methods
Another way to fine-tune your system is to try to combine the models that perform
best. The group (or “ensemble”) will often perform better than the best individual
model—just like random forests perform better than the individual decision trees
they rely on—especially if the individual models make very different types of errors.
For example, you could train and fine-tune a k-nearest neighbors model, then create
an ensemble model that just predicts the mean of the random forest prediction and
that model’s prediction. We will cover this topic in more detail in Chapter 7.

Analyzing the Best Models and Their Errors
You will often gain good insights on the problem by inspecting the best models. For
example, the RandomForestRegressor can indicate the relative importance of each
attribute for making accurate predictions:

>>> final_model = rnd_search.best_estimator_ # includes preprocessing
>>> feature_importances = final_model["random_forest"].feature_importances_
>>> feature_importances.round(2)
array([0.07, 0.05, 0.05, 0.01, 0.01, 0.01, 0.01, 0.19, [...], 0.01])

Let’s sort these importance scores in descending order and display them next to their
corresponding attribute names:

>>> sorted(zip(feature_importances,
... final_model["preprocessing"].get_feature_names_out()),
... reverse=True)
...
[(0.18694559869103852, 'log__median_income'),
 (0.0748194905715524, 'cat__ocean_proximity_INLAND'),
 (0.06926417748515576, 'bedrooms__ratio'),
 (0.05446998753775219, 'rooms_per_house__ratio'),
 (0.05262301809680712, 'people_per_house__ratio'),
 (0.03819415873915732, 'geo__Cluster 0 similarity'),
 [...]
 (0.00015061247730531558, 'cat__ocean_proximity_NEAR BAY'),
 (7.301686597099842e-05, 'cat__ocean_proximity_ISLAND')]

With this information, you may want to try dropping some of the less useful features
(e.g., apparently only one ocean_proximity category is really useful, so you could try
dropping the others).

The sklearn.feature_selection.SelectFromModel transformer
can automatically drop the least useful features for you: when you
fit it, it trains a model (typically a random forest), looks at its fea
ture_importances_ attribute, and selects the most useful features.
Then when you call transform(), it drops the other features.

Fine-Tune Your Model | 95

You should also look at the specific errors that your system makes, then try to
understand why it makes them and what could fix the problem: adding extra features
or getting rid of uninformative ones, cleaning up outliers, etc.

Now is also a good time to ensure that your model not only works well on average,
but also on all categories of districts, whether they’re rural or urban, rich or poor,
northern or southern, minority or not, etc. Creating subsets of your validation set for
each category takes a bit of work, but it’s important: if your model performs poorly on
a whole category of districts, then it should probably not be deployed until the issue
is solved, or at least it should not be used to make predictions for that category, as it
may do more harm than good.

Evaluate Your System on the Test Set
After tweaking your models for a while, you eventually have a system that performs
sufficiently well. You are ready to evaluate the final model on the test set. There is
nothing special about this process; just get the predictors and the labels from your
test set and run your final_model to transform the data and make predictions, then
evaluate these predictions:

X_test = strat_test_set.drop("median_house_value", axis=1)
y_test = strat_test_set["median_house_value"].copy()

final_predictions = final_model.predict(X_test)

final_rmse = mean_squared_error(y_test, final_predictions, squared=False)
print(final_rmse) # prints 41424.40026462184

In some cases, such a point estimate of the generalization error will not be quite
enough to convince you to launch: what if it is just 0.1% better than the model
currently in production? You might want to have an idea of how precise this estimate
is. For this, you can compute a 95% confidence interval for the generalization error
using scipy.stats.t.interval(). You get a fairly large interval from 39,275 to
43,467, and your previous point estimate of 41,424 is roughly in the middle of it:

>>> from scipy import stats
>>> confidence = 0.95
>>> squared_errors = (final_predictions - y_test) ** 2
>>> np.sqrt(stats.t.interval(confidence, len(squared_errors) - 1,
... loc=squared_errors.mean(),
... scale=stats.sem(squared_errors)))
...
array([39275.40861216, 43467.27680583])

96 | Chapter 2: End-to-End Machine Learning Project

If you did a lot of hyperparameter tuning, the performance will usually be slightly
worse than what you measured using cross-validation. That’s because your system
ends up fine-tuned to perform well on the validation data and will likely not perform
as well on unknown datasets. That’s not the case in this example since the test
RMSE is lower than the validation RMSE, but when it happens you must resist the
temptation to tweak the hyperparameters to make the numbers look good on the test
set; the improvements would be unlikely to generalize to new data.

Now comes the project prelaunch phase: you need to present your solution (high‐
lighting what you have learned, what worked and what did not, what assumptions
were made, and what your system’s limitations are), document everything, and create
nice presentations with clear visualizations and easy-to-remember statements (e.g.,
“the median income is the number one predictor of housing prices”). In this Califor‐
nia housing example, the final performance of the system is not much better than the
experts’ price estimates, which were often off by 30%, but it may still be a good idea
to launch it, especially if this frees up some time for the experts so they can work on
more interesting and productive tasks.

Launch, Monitor, and Maintain Your System
Perfect, you got approval to launch! You now need to get your solution ready for
production (e.g., polish the code, write documentation and tests, and so on). Then
you can deploy your model to your production environment. The most basic way to
do this is just to save the best model you trained, transfer the file to your production
environment, and load it. To save the model, you can use the joblib library like this:

import joblib

joblib.dump(final_model, "my_california_housing_model.pkl")

It’s often a good idea to save every model you experiment with so
that you can come back easily to any model you want. You may also
save the cross-validation scores and perhaps the actual predictions
on the validation set. This will allow you to easily compare scores
across model types, and compare the types of errors they make.

Once your model is transferred to production, you can load it and use it. For this you
must first import any custom classes and functions the model relies on (which means
transferring the code to production), then load the model using joblib and use it to
make predictions:

Launch, Monitor, and Maintain Your System | 97

13 In a nutshell, a REST (or RESTful) API is an HTTP-based API that follows some conventions, such as using
standard HTTP verbs to read, update, create, or delete resources (GET, POST, PUT, and DELETE) and using
JSON for the inputs and outputs.

import joblib
[...] # import KMeans, BaseEstimator, TransformerMixin, rbf_kernel, etc.

def column_ratio(X): [...]
def ratio_name(function_transformer, feature_names_in): [...]
class ClusterSimilarity(BaseEstimator, TransformerMixin): [...]

final_model_reloaded = joblib.load("my_california_housing_model.pkl")

new_data = [...] # some new districts to make predictions for
predictions = final_model_reloaded.predict(new_data)

For example, perhaps the model will be used within a website: the user will type in
some data about a new district and click the Estimate Price button. This will send
a query containing the data to the web server, which will forward it to your web
application, and finally your code will simply call the model’s predict() method
(you want to load the model upon server startup, rather than every time the model
is used). Alternatively, you can wrap the model within a dedicated web service that
your web application can query through a REST API13 (see Figure 2-20). This makes
it easier to upgrade your model to new versions without interrupting the main appli‐
cation. It also simplifies scaling, since you can start as many web services as needed
and load-balance the requests coming from your web application across these web
services. Moreover, it allows your web application to use any programming language,
not just Python.

Figure 2-20. A model deployed as a web service and used by a web application

Another popular strategy is to deploy your model to the cloud, for example on
Google’s Vertex AI (formerly known as Google Cloud AI Platform and Google Cloud
ML Engine): just save your model using joblib and upload it to Google Cloud
Storage (GCS), then head over to Vertex AI and create a new model version, pointing
it to the GCS file. That’s it! This gives you a simple web service that takes care of load
balancing and scaling for you. It takes JSON requests containing the input data (e.g.,
of a district) and returns JSON responses containing the predictions. You can then
use this web service in your website (or whatever production environment you are
using). As you will see in Chapter 19, deploying TensorFlow models on Vertex AI is
not much different from deploying Scikit-Learn models.

98 | Chapter 2: End-to-End Machine Learning Project

14 A captcha is a test to ensure a user is not a robot. These tests have often been used as a cheap way to label
training data.

But deployment is not the end of the story. You also need to write monitoring
code to check your system’s live performance at regular intervals and trigger alerts
when it drops. It may drop very quickly, for example if a component breaks in your
infrastructure, but be aware that it could also decay very slowly, which can easily go
unnoticed for a long time. This is quite common because of model rot: if the model
was trained with last year’s data, it may not be adapted to today’s data.

So, you need to monitor your model’s live performance. But how do you do that?
Well, it depends. In some cases, the model’s performance can be inferred from down‐
stream metrics. For example, if your model is part of a recommender system and it
suggests products that the users may be interested in, then it’s easy to monitor the
number of recommended products sold each day. If this number drops (compared
to non-recommended products), then the prime suspect is the model. This may be
because the data pipeline is broken, or perhaps the model needs to be retrained on
fresh data (as we will discuss shortly).

However, you may also need human analysis to assess the model’s performance. For
example, suppose you trained an image classification model (we’ll look at these in
Chapter 3) to detect various product defects on a production line. How can you get
an alert if the model’s performance drops, before thousands of defective products
get shipped to your clients? One solution is to send to human raters a sample of
all the pictures that the model classified (especially pictures that the model wasn’t
so sure about). Depending on the task, the raters may need to be experts, or they
could be nonspecialists, such as workers on a crowdsourcing platform (e.g., Amazon
Mechanical Turk). In some applications they could even be the users themselves,
responding, for example, via surveys or repurposed captchas.14

Either way, you need to put in place a monitoring system (with or without human
raters to evaluate the live model), as well as all the relevant processes to define what to
do in case of failures and how to prepare for them. Unfortunately, this can be a lot of
work. In fact, it is often much more work than building and training a model.

If the data keeps evolving, you will need to update your datasets and retrain your
model regularly. You should probably automate the whole process as much as possi‐
ble. Here are a few things you can automate:

• Collect fresh data regularly and label it (e.g., using human raters).•
• Write a script to train the model and fine-tune the hyperparameters automati‐•

cally. This script could run automatically, for example every day or every week,
depending on your needs.

Launch, Monitor, and Maintain Your System | 99

• Write another script that will evaluate both the new model and the previous•
model on the updated test set, and deploy the model to production if the perfor‐
mance has not decreased (if it did, make sure you investigate why). The script
should probably test the performance of your model on various subsets of the
test set, such as poor or rich districts, rural or urban districts, etc.

You should also make sure you evaluate the model’s input data quality. Sometimes
performance will degrade slightly because of a poor-quality signal (e.g., a malfunc‐
tioning sensor sending random values, or another team’s output becoming stale), but
it may take a while before your system’s performance degrades enough to trigger an
alert. If you monitor your model’s inputs, you may catch this earlier. For example, you
could trigger an alert if more and more inputs are missing a feature, or the mean or
standard deviation drifts too far from the training set, or a categorical feature starts
containing new categories.

Finally, make sure you keep backups of every model you create and have the process
and tools in place to roll back to a previous model quickly, in case the new model
starts failing badly for some reason. Having backups also makes it possible to easily
compare new models with previous ones. Similarly, you should keep backups of every
version of your datasets so that you can roll back to a previous dataset if the new one
ever gets corrupted (e.g., if the fresh data that gets added to it turns out to be full
of outliers). Having backups of your datasets also allows you to evaluate any model
against any previous dataset.

As you can see, machine learning involves quite a lot of infrastructure. Chapter 19
discusses some aspects of this, but it’s a very broad topic called ML Operations
(MLOps), which deserves its own book. So don’t be surprised if your first ML project
takes a lot of effort and time to build and deploy to production. Fortunately, once all
the infrastructure is in place, going from idea to production will be much faster.

Try It Out!
Hopefully this chapter gave you a good idea of what a machine learning project looks
like as well as showing you some of the tools you can use to train a great system. As
you can see, much of the work is in the data preparation step: building monitoring
tools, setting up human evaluation pipelines, and automating regular model training.
The machine learning algorithms are important, of course, but it is probably prefera‐
ble to be comfortable with the overall process and know three or four algorithms well
rather than to spend all your time exploring advanced algorithms.

So, if you have not already done so, now is a good time to pick up a laptop, select a
dataset that you are interested in, and try to go through the whole process from A to
Z. A good place to start is on a competition website such as Kaggle: you will have a
dataset to play with, a clear goal, and people to share the experience with. Have fun!

100 | Chapter 2: End-to-End Machine Learning Project

https://kaggle.com

Exercises
The following exercises are based on this chapter’s housing dataset:

1. Try a support vector machine regressor (sklearn.svm.SVR) with various1.
hyperparameters, such as kernel="linear" (with various values for the
C hyperparameter) or kernel="rbf" (with various values for the C and gamma
hyperparameters). Note that support vector machines don’t scale well to large
datasets, so you should probably train your model on just the first 5,000 instances
of the training set and use only 3-fold cross-validation, or else it will take hours.
Don’t worry about what the hyperparameters mean for now; we’ll discuss them
in Chapter 5. How does the best SVR predictor perform?

2. Try replacing the GridSearchCV with a RandomizedSearchCV.2.
3. Try adding a SelectFromModel transformer in the preparation pipeline to select3.

only the most important attributes.
4. Try creating a custom transformer that trains a k-nearest neighbors regressor4.

(sklearn.neighbors.KNeighborsRegressor) in its fit() method, and outputs
the model’s predictions in its transform() method. Then add this feature to
the preprocessing pipeline, using latitude and longitude as the inputs to this
transformer. This will add a feature in the model that corresponds to the housing
median price of the nearest districts.

5. Automatically explore some preparation options using GridSearchCV.5.
6. Try to implement the StandardScalerClone class again from scratch,6.

then add support for the inverse_transform() method: executing scaler.
inverse_transform(scaler.fit_transform(X)) should return an array very
close to X. Then add support for feature names: set feature_names_in_ in the
fit() method if the input is a DataFrame. This attribute should be a NumPy
array of column names. Lastly, implement the get_feature_names_out()

method: it should have one optional input_features=None argument. If passed,
the method should check that its length matches n_features_in_, and it should
match feature_names_in_ if it is defined; then input_features should be
returned. If input_features is None, then the method should either return
feature_names_in_ if it is defined or np.array(["x0", "x1", ...]) with
length n_features_in_ otherwise.

Solutions to these exercises are available at the end of this chapter’s notebook, at
https://homl.info/colab3.

Exercises | 101

https://homl.info/colab3

	Part I. The Fundamentals of Machine Learning
	Chapter 2. End-to-End Machine Learning Project
	Working with Real Data
	Look at the Big Picture
	Frame the Problem
	Select a Performance Measure
	Check the Assumptions

	Get the Data
	Running the Code Examples Using Google Colab
	Saving Your Code Changes and Your Data
	The Power and Danger of Interactivity
	Book Code Versus Notebook Code
	Download the Data
	Take a Quick Look at the Data Structure
	Create a Test Set

	Explore and Visualize the Data to Gain Insights
	Visualizing Geographical Data
	Look for Correlations
	Experiment with Attribute Combinations

	Prepare the Data for Machine Learning Algorithms
	Clean the Data
	Handling Text and Categorical Attributes
	Feature Scaling and Transformation
	Custom Transformers
	Transformation Pipelines

	Select and Train a Model
	Train and Evaluate on the Training Set
	Better Evaluation Using Cross-Validation

	Fine-Tune Your Model
	Grid Search
	Randomized Search
	Ensemble Methods
	Analyzing the Best Models and Their Errors
	Evaluate Your System on the Test Set

	Launch, Monitor, and Maintain Your System
	Try It Out!
	Exercises

