
8
Tree-Based Methods

In this chapter, we describe tree-based methods for regression and classifi-
cation. These involve stratifying or segmenting the predictor space into a
number of simple regions. In order to make a prediction for a given ob-
servation, we typically use the mean or the mode response value for the
training observations in the region to which it belongs. Since the set of
splitting rules used to segment the predictor space can be summarized in
a tree, these types of approaches are known as decision tree methods. decision treeTree-based methods are simple and useful for interpretation. However,
they typically are not competitive with the best supervised learning ap-
proaches, such as those seen in Chapters 6 and 7, in terms of prediction
accuracy. Hence in this chapter we also introduce bagging, random forests,
boosting, and Bayesian additive regression trees. Each of these approaches
involves producing multiple trees which are then combined to yield a single
consensus prediction. We will see that combining a large number of trees
can often result in dramatic improvements in prediction accuracy, at the
expense of some loss in interpretation.

8.1 The Basics of Decision Trees
Decision trees can be applied to both regression and classification problems.
We first consider regression problems, and then move on to classification.

8.1.1 Regression Trees
In order to motivate regression trees, we begin with a simple example. regression

tree

© Springer Nature Switzerland AG 2023
G. James et al., An Introduction to Statistical Learning, Springer Texts in Statistics,
https://doi.org/10.1007/978-3-031-38747-0_8

331

https://doi.org/10.1007/978-3-031-38747-0_8
https://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-38747-0_8&domain=pdf

332 8. Tree-Based Methods

|Years < 4.5

Hits < 117.5
5.11

6.00 6.74

FIGURE 8.1. For the Hitters data, a regression tree for predicting the log
salary of a baseball player, based on the number of years that he has played in
the major leagues and the number of hits that he made in the previous year. At a
given internal node, the label (of the form Xj < tk) indicates the left-hand branch
emanating from that split, and the right-hand branch corresponds to Xj ≥ tk.
For instance, the split at the top of the tree results in two large branches. The
left-hand branch corresponds to Years<4.5, and the right-hand branch corresponds
to Years>=4.5. The tree has two internal nodes and three terminal nodes, or
leaves. The number in each leaf is the mean of the response for the observations
that fall there.

Predicting Baseball Players’ Salaries Using Regression Trees
We use the Hitters data set to predict a baseball player’s Salary based on
Years (the number of years that he has played in the major leagues) and
Hits (the number of hits that he made in the previous year). We first remove
observations that are missing Salary values, and log-transform Salary so
that its distribution has more of a typical bell-shape. (Recall that Salary
is measured in thousands of dollars.)

Figure 8.1 shows a regression tree fit to this data. It consists of a series
of splitting rules, starting at the top of the tree. The top split assigns
observations having Years<4.5 to the left branch.1 The predicted salary
for these players is given by the mean response value for the players in
the data set with Years<4.5. For such players, the mean log salary is 5.107,
and so we make a prediction of e5.107 thousands of dollars, i.e. $165,174, for
these players. Players with Years>=4.5 are assigned to the right branch, and
then that group is further subdivided by Hits. Overall, the tree stratifies
or segments the players into three regions of predictor space: players who
have played for four or fewer years, players who have played for five or more
years and who made fewer than 118 hits last year, and players who have
played for five or more years and who made at least 118 hits last year. These
three regions can be written as R1 ={X | Years<4.5}, R2 ={X | Years>=4.5,
Hits<117.5}, and R3 ={X | Years>=4.5, Hits>=117.5}. Figure 8.2 illustrates

1Both Years and Hits are integers in these data; the function used to fit this tree
labels the splits at the midpoint between two adjacent values.

8.1 The Basics of Decision Trees 333

Years

H
its

1

117.5

238

1 4.5 24

R1

R3

R2

FIGURE 8.2. The three-region partition for the Hitters data set from the
regression tree illustrated in Figure 8.1.

the regions as a function of Years and Hits. The predicted salaries for these
three groups are $1,000×e5.107 =$165,174, $1,000×e5.999 =$402,834, and
$1,000×e6.740 =$845,346 respectively.

In keeping with the tree analogy, the regions R1, R2, and R3 are known as
terminal nodes or leaves of the tree. As is the case for Figure 8.1, decision terminal

node
leaf

trees are typically drawn upside down, in the sense that the leaves are at
the bottom of the tree. The points along the tree where the predictor space
is split are referred to as internal nodes. In Figure 8.1, the two internal internal

nodenodes are indicated by the text Years<4.5 and Hits<117.5. We refer to the
segments of the trees that connect the nodes as branches. branchWe might interpret the regression tree displayed in Figure 8.1 as follows:
Years is the most important factor in determining Salary, and players with
less experience earn lower salaries than more experienced players. Given
that a player is less experienced, the number of hits that he made in the
previous year seems to play little role in his salary. But among players who
have been in the major leagues for five or more years, the number of hits
made in the previous year does affect salary, and players who made more
hits last year tend to have higher salaries. The regression tree shown in
Figure 8.1 is likely an over-simplification of the true relationship between
Hits, Years, and Salary. However, it has advantages over other types of
regression models (such as those seen in Chapters 3 and 6): it is easier to
interpret, and has a nice graphical representation.

Prediction via Stratification of the Feature Space
We now discuss the process of building a regression tree. Roughly speaking,
there are two steps.

1. We divide the predictor space — that is, the set of possible values
for X1, X2, . . . , Xp — into J distinct and non-overlapping regions,
R1, R2, . . . , RJ .

334 8. Tree-Based Methods

2. For every observation that falls into the region Rj , we make the same
prediction, which is simply the mean of the response values for the
training observations in Rj .

For instance, suppose that in Step 1 we obtain two regions, R1 and R2,
and that the response mean of the training observations in the first region
is 10, while the response mean of the training observations in the second
region is 20. Then for a given observation X = x, if x ∈ R1 we will predict
a value of 10, and if x ∈ R2 we will predict a value of 20.

We now elaborate on Step 1 above. How do we construct the regions
R1, . . . , RJ? In theory, the regions could have any shape. However, we
choose to divide the predictor space into high-dimensional rectangles, or
boxes, for simplicity and for ease of interpretation of the resulting predic-
tive model. The goal is to find boxes R1, . . . , RJ that minimize the RSS,
given by

J∑

j=1

∑

i∈Rj

(yi − ŷRj
)2, (8.1)

where ŷRj
is the mean response for the training observations within the

jth box. Unfortunately, it is computationally infeasible to consider every
possible partition of the feature space into J boxes. For this reason, we take
a top-down, greedy approach that is known as recursive binary splitting. The recursive

binary
splitting

approach is top-down because it begins at the top of the tree (at which point
all observations belong to a single region) and then successively splits the
predictor space; each split is indicated via two new branches further down
on the tree. It is greedy because at each step of the tree-building process,
the best split is made at that particular step, rather than looking ahead
and picking a split that will lead to a better tree in some future step.

In order to perform recursive binary splitting, we first select the pre-
dictor Xj and the cutpoint s such that splitting the predictor space into
the regions {X|Xj < s} and {X|Xj ≥ s} leads to the greatest possible
reduction in RSS. (The notation {X|Xj < s} means the region of predictor
space in which Xj takes on a value less than s.) That is, we consider all
predictors X1, . . . , Xp, and all possible values of the cutpoint s for each of
the predictors, and then choose the predictor and cutpoint such that the
resulting tree has the lowest RSS. In greater detail, for any j and s, we
define the pair of half-planes

R1(j, s) = {X|Xj < s} and R2(j, s) = {X|Xj ≥ s}, (8.2)

and we seek the value of j and s that minimize the equation
∑

i: xi∈R1(j,s)

(yi − ŷR1
)2 +

∑

i: xi∈R2(j,s)

(yi − ŷR2
)2, (8.3)

where ŷR1
is the mean response for the training observations in R1(j, s),

and ŷR2
is the mean response for the training observations in R2(j, s).

Finding the values of j and s that minimize (8.3) can be done quite quickly,
especially when the number of features p is not too large.

Next, we repeat the process, looking for the best predictor and best
cutpoint in order to split the data further so as to minimize the RSS within

8.1 The Basics of Decision Trees 335

|

t1

t2

t3

t4

R1

R1

R2

R2

R3

R3

R4

R4

R5

R5

X1

X1X1

X2

X
2

X
2

X1 ≤ t1

X2 ≤ t2 X1 ≤ t3

X2 ≤ t4

FIGURE 8.3. Top Left: A partition of two-dimensional feature space that could
not result from recursive binary splitting. Top Right: The output of recursive
binary splitting on a two-dimensional example. Bottom Left: A tree corresponding
to the partition in the top right panel. Bottom Right: A perspective plot of the
prediction surface corresponding to that tree.

each of the resulting regions. However, this time, instead of splitting the
entire predictor space, we split one of the two previously identified regions.
We now have three regions. Again, we look to split one of these three regions
further, so as to minimize the RSS. The process continues until a stopping
criterion is reached; for instance, we may continue until no region contains
more than five observations.

Once the regions R1, . . . , RJ have been created, we predict the response
for a given test observation using the mean of the training observations in
the region to which that test observation belongs.

A five-region example of this approach is shown in Figure 8.3.

Tree Pruning
The process described above may produce good predictions on the training
set, but is likely to overfit the data, leading to poor test set performance.
This is because the resulting tree might be too complex. A smaller tree

336 8. Tree-Based Methods

with fewer splits (that is, fewer regions R1, . . . , RJ) might lead to lower
variance and better interpretation at the cost of a little bias. One possible
alternative to the process described above is to build the tree only so long
as the decrease in the RSS due to each split exceeds some (high) threshold.
This strategy will result in smaller trees, but is too short-sighted since a
seemingly worthless split early on in the tree might be followed by a very
good split—that is, a split that leads to a large reduction in RSS later on.

Therefore, a better strategy is to grow a very large tree T0, and then
prune it back in order to obtain a subtree. How do we determine the best prune

subtreeway to prune the tree? Intuitively, our goal is to select a subtree that
leads to the lowest test error rate. Given a subtree, we can estimate its
test error using cross-validation or the validation set approach. However,
estimating the cross-validation error for every possible subtree would be too
cumbersome, since there is an extremely large number of possible subtrees.
Instead, we need a way to select a small set of subtrees for consideration.

Cost complexity pruning—also known as weakest link pruning—gives us cost
complexity
pruning
weakest link
pruning

a way to do just this. Rather than considering every possible subtree, we
consider a sequence of trees indexed by a nonnegative tuning parameter α.
For each value of α there corresponds a subtree T ⊂ T0 such that

|T |∑

m=1

∑

i: xi∈Rm

(yi − ŷRm)2 + α|T | (8.4)

is as small as possible. Here |T | indicates the number of terminal nodes
of the tree T , Rm is the rectangle (i.e. the subset of predictor space) cor-
responding to the mth terminal node, and ŷRm is the predicted response
associated with Rm—that is, the mean of the training observations in Rm.
The tuning parameter α controls a trade-off between the subtree’s com-
plexity and its fit to the training data. When α = 0, then the subtree T
will simply equal T0, because then (8.4) just measures the training error.
However, as α increases, there is a price to pay for having a tree with
many terminal nodes, and so the quantity (8.4) will tend to be minimized
for a smaller subtree. Equation 8.4 is reminiscent of the lasso (6.7) from
Chapter 6, in which a similar formulation was used in order to control the
complexity of a linear model.

It turns out that as we increase α from zero in (8.4), branches get pruned
from the tree in a nested and predictable fashion, so obtaining the whole
sequence of subtrees as a function of α is easy. We can select a value of
α using a validation set or using cross-validation. We then return to the
full data set and obtain the subtree corresponding to α. This process is
summarized in Algorithm 8.1.

Figures 8.4 and 8.5 display the results of fitting and pruning a regression
tree on the Hitters data, using nine of the features. First, we randomly
divided the data set in half, yielding 132 observations in the training set
and 131 observations in the test set. We then built a large regression tree
on the training data and varied α in (8.4) in order to create subtrees with
different numbers of terminal nodes. Finally, we performed six-fold cross-
validation in order to estimate the cross-validated MSE of the trees as

8.1 The Basics of Decision Trees 337

Algorithm 8.1 Building a Regression Tree
1. Use recursive binary splitting to grow a large tree on the training

data, stopping only when each terminal node has fewer than some
minimum number of observations.

2. Apply cost complexity pruning to the large tree in order to obtain a
sequence of best subtrees, as a function of α.

3. Use K-fold cross-validation to choose α. That is, divide the training
observations into K folds. For each k = 1, . . . ,K:
(a) Repeat Steps 1 and 2 on all but the kth fold of the training data.
(b) Evaluate the mean squared prediction error on the data in the
left-out kth fold, as a function of α.
Average the results for each value of α, and pick α to minimize the
average error.

4. Return the subtree from Step 2 that corresponds to the chosen value
of α.

a function of α. (We chose to perform six-fold cross-validation because
132 is an exact multiple of six.) The unpruned regression tree is shown
in Figure 8.4. The green curve in Figure 8.5 shows the CV error as a
function of the number of leaves,2 while the orange curve indicates the
test error. Also shown are standard error bars around the estimated errors.
For reference, the training error curve is shown in black. The CV error
is a reasonable approximation of the test error: the CV error takes on its
minimum for a three-node tree, while the test error also dips down at the
three-node tree (though it takes on its lowest value at the ten-node tree).
The pruned tree containing three terminal nodes is shown in Figure 8.1.

8.1.2 Classification Trees
A classification tree is very similar to a regression tree, except that it is classification

treeused to predict a qualitative response rather than a quantitative one. Re-
call that for a regression tree, the predicted response for an observation is
given by the mean response of the training observations that belong to the
same terminal node. In contrast, for a classification tree, we predict that
each observation belongs to the most commonly occurring class of training
observations in the region to which it belongs. In interpreting the results of
a classification tree, we are often interested not only in the class prediction
corresponding to a particular terminal node region, but also in the class
proportions among the training observations that fall into that region.

The task of growing a classification tree is quite similar to the task of
growing a regression tree. Just as in the regression setting, we use recursive

2Although CV error is computed as a function of α, it is convenient to display the
result as a function of |T |, the number of leaves; this is based on the relationship between
α and |T | in the original tree grown to all the training data.

338 8. Tree-Based Methods

|Years < 4.5

RBI < 60.5

Putouts < 82

Years < 3.5

Years < 3.5

Hits < 117.5

Walks < 43.5
Runs < 47.5

Walks < 52.5

RBI < 80.5
Years < 6.5

5.487
4.622 5.183

5.394 6.189

6.015 5.571
6.407 6.549

6.459 7.007
7.289

FIGURE 8.4. Regression tree analysis for the Hitters data. The unpruned tree
that results from top-down greedy splitting on the training data is shown.

binary splitting to grow a classification tree. However, in the classification
setting, RSS cannot be used as a criterion for making the binary splits.
A natural alternative to RSS is the classification error rate. Since we plan classification

error rateto assign an observation in a given region to the most commonly occurring
class of training observations in that region, the classification error rate is
simply the fraction of the training observations in that region that do not
belong to the most common class:

E = 1−max
k

(p̂mk). (8.5)

Here p̂mk represents the proportion of training observations in the mth
region that are from the kth class. However, it turns out that classification
error is not sufficiently sensitive for tree-growing, and in practice two other
measures are preferable.

The Gini index is defined by Gini index

G =
K∑

k=1

p̂mk(1− p̂mk), (8.6)

a measure of total variance across the K classes. It is not hard to see
that the Gini index takes on a small value if all of the p̂mk’s are close to
zero or one. For this reason the Gini index is referred to as a measure of

8.1 The Basics of Decision Trees 339

2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Tree Size

M
ea

n
Sq

ua
re

d
Er

ro
r

Training
Cross−Validation
Test

FIGURE 8.5. Regression tree analysis for the Hitters data. The training,
cross-validation, and test MSE are shown as a function of the number of terminal
nodes in the pruned tree. Standard error bands are displayed. The minimum
cross-validation error occurs at a tree size of three.

node purity—a small value indicates that a node contains predominantly
observations from a single class.

An alternative to the Gini index is entropy, given by entropy

D = −
K∑

k=1

p̂mk log p̂mk. (8.7)

Since 0 ≤ p̂mk ≤ 1, it follows that 0 ≤ −p̂mk log p̂mk. One can show that
the entropy will take on a value near zero if the p̂mk’s are all near zero or
near one. Therefore, like the Gini index, the entropy will take on a small
value if the mth node is pure. In fact, it turns out that the Gini index and
the entropy are quite similar numerically.

When building a classification tree, either the Gini index or the entropy
are typically used to evaluate the quality of a particular split, since these
two approaches are more sensitive to node purity than is the classification
error rate. Any of these three approaches might be used when pruning the
tree, but the classification error rate is preferable if prediction accuracy of
the final pruned tree is the goal.

Figure 8.6 shows an example on the Heart data set. These data con-
tain a binary outcome HD for 303 patients who presented with chest pain.
An outcome value of Yes indicates the presence of heart disease based on
an angiographic test, while No means no heart disease. There are 13 predic-
tors including Age, Sex, Chol (a cholesterol measurement), and other heart
and lung function measurements. Cross-validation results in a tree with six
terminal nodes.

In our discussion thus far, we have assumed that the predictor vari-
ables take on continuous values. However, decision trees can be constructed
even in the presence of qualitative predictor variables. For instance, in the
Heart data, some of the predictors, such as Sex, Thal (Thallium stress test),

340 8. Tree-Based Methods

|
Thal:a

Ca < 0.5

MaxHR < 161.5

RestBP < 157
Chol < 244

MaxHR < 156
MaxHR < 145.5

ChestPain:bc

Chol < 244 Sex < 0.5

Ca < 0.5

Slope < 1.5

Age < 52 Thal:b
ChestPain:a

Oldpeak < 1.1

RestECG < 1

No Yes
No

No
Yes

No

No No No Yes

Yes No No

No Yes

Yes Yes
Yes

5 10 15

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

Tree Size

Er
ro

r

Training
Cross−Validation
Test

|
Thal:a

Ca < 0.5

MaxHR < 161.5 ChestPain:bc

Ca < 0.5

No No

No Yes

Yes Yes

FIGURE 8.6. Heart data. Top: The unpruned tree. Bottom Left: Cross-valida-
tion error, training, and test error, for different sizes of the pruned tree. Bottom
Right: The pruned tree corresponding to the minimal cross-validation error.

and ChestPain, are qualitative. Therefore, a split on one of these variables
amounts to assigning some of the qualitative values to one branch and
assigning the remaining to the other branch. In Figure 8.6, some of the in-
ternal nodes correspond to splitting qualitative variables. For instance, the
top internal node corresponds to splitting Thal. The text Thal:a indicates
that the left-hand branch coming out of that node consists of observations
with the first value of the Thal variable (normal), and the right-hand node
consists of the remaining observations (fixed or reversible defects). The text
ChestPain:bc two splits down the tree on the left indicates that the left-hand
branch coming out of that node consists of observations with the second
and third values of the ChestPain variable, where the possible values are
typical angina, atypical angina, non-anginal pain, and asymptomatic.

Figure 8.6 has a surprising characteristic: some of the splits yield two
terminal nodes that have the same predicted value. For instance, consider
the split RestECG<1 near the bottom right of the unpruned tree. Regardless
of the value of RestECG, a response value of Yes is predicted for those ob-

8.1 The Basics of Decision Trees 341

servations. Why, then, is the split performed at all? The split is performed
because it leads to increased node purity. That is, all 9 of the observations
corresponding to the right-hand leaf have a response value of Yes, whereas
7/11 of those corresponding to the left-hand leaf have a response value of
Yes. Why is node purity important? Suppose that we have a test obser-
vation that belongs to the region given by that right-hand leaf. Then we
can be pretty certain that its response value is Yes. In contrast, if a test
observation belongs to the region given by the left-hand leaf, then its re-
sponse value is probably Yes, but we are much less certain. Even though
the split RestECG<1 does not reduce the classification error, it improves the
Gini index and the entropy, which are more sensitive to node purity.

8.1.3 Trees Versus Linear Models
Regression and classification trees have a very different flavor from the more
classical approaches for regression and classification presented in Chapters 3
and 4. In particular, linear regression assumes a model of the form

f(X) = β0 +
p∑

j=1

Xjβj , (8.8)

whereas regression trees assume a model of the form

f(X) =
M∑

m=1

cm · 1(X∈Rm) (8.9)

where R1, . . . , RM represent a partition of feature space, as in Figure 8.3.
Which model is better? It depends on the problem at hand. If the re-

lationship between the features and the response is well approximated by
a linear model as in (8.8), then an approach such as linear regression will
likely work well, and will outperform a method such as a regression tree
that does not exploit this linear structure. If instead there is a highly non-
linear and complex relationship between the features and the response as
indicated by model (8.9), then decision trees may outperform classical ap-
proaches. An illustrative example is displayed in Figure 8.7. The relative
performances of tree-based and classical approaches can be assessed by es-
timating the test error, using either cross-validation or the validation set
approach (Chapter 5).

Of course, other considerations beyond simply test error may come into
play in selecting a statistical learning method; for instance, in certain set-
tings, prediction using a tree may be preferred for the sake of interpretabil-
ity and visualization.

8.1.4 Advantages and Disadvantages of Trees
Decision trees for regression and classification have a number of advantages
over the more classical approaches seen in Chapters 3 and 4:

! Trees are very easy to explain to people. In fact, they are even easier
to explain than linear regression!

342 8. Tree-Based Methods

−2 −1 0 1 2

−2
−1

0
1

2

X1

X 2

−2 −1 0 1 2

−2
−1

0
1

2

X1

X 2

−2 −1 0 1 2

−2
−1

0
1

2

X1

X 2

−2 −1 0 1 2

−2
−1

0
1

2

X1

X 2

FIGURE 8.7. Top Row: A two-dimensional classification example in which the
true decision boundary is linear, and is indicated by the shaded regions. A classical
approach that assumes a linear boundary (left) will outperform a decision tree
that performs splits parallel to the axes (right). Bottom Row: Here the true de-
cision boundary is non-linear. Here a linear model is unable to capture the true
decision boundary (left), whereas a decision tree is successful (right).

! Some people believe that decision trees more closely mirror human
decision-making than do the regression and classification approaches
seen in previous chapters.

! Trees can be displayed graphically, and are easily interpreted even by
a non-expert (especially if they are small).

! Trees can easily handle qualitative predictors without the need to
create dummy variables.

Unfortunately, trees generally do not have the same level of predictive
accuracy as some of the other regression and classification approaches
seen in this book.

Additionally, trees can be very non-robust. In other words, a small
change in the data can cause a large change in the final estimated
tree.

However, by aggregating many decision trees, using methods like bagging,
random forests, and boosting, the predictive performance of trees can be
substantially improved. We introduce these concepts in the next section.

8.2 Bagging, Random Forests, Boosting, and Bayesian Additive Regression Trees 343

8.2 Bagging, Random Forests, Boosting, and
Bayesian Additive Regression Trees

An ensemble method is an approach that combines many simple “building ensembleblock” models in order to obtain a single and potentially very powerful
model. These simple building block models are sometimes known as weak
learners, since they may lead to mediocre predictions on their own. weak

learnersWe will now discuss bagging, random forests, boosting, and Bayesian
additive regression trees. These are ensemble methods for which the simple
building block is a regression or a classification tree.

8.2.1 Bagging
The bootstrap, introduced in Chapter 5, is an extremely powerful idea. It is
used in many situations in which it is hard or even impossible to directly
compute the standard deviation of a quantity of interest. We see here that
the bootstrap can be used in a completely different context, in order to
improve statistical learning methods such as decision trees.

The decision trees discussed in Section 8.1 suffer from high variance.
This means that if we split the training data into two parts at random,
and fit a decision tree to both halves, the results that we get could be
quite different. In contrast, a procedure with low variance will yield similar
results if applied repeatedly to distinct data sets; linear regression tends
to have low variance, if the ratio of n to p is moderately large. Bootstrap
aggregation, or bagging, is a general-purpose procedure for reducing the baggingvariance of a statistical learning method; we introduce it here because it is
particularly useful and frequently used in the context of decision trees.

Recall that given a set of n independent observations Z1, . . . , Zn, each
with variance σ2, the variance of the mean Z̄ of the observations is given
by σ2/n. In other words, averaging a set of observations reduces variance.
Hence a natural way to reduce the variance and increase the test set ac-
curacy of a statistical learning method is to take many training sets from
the population, build a separate prediction model using each training set,
and average the resulting predictions. In other words, we could calculate
f̂1(x), f̂2(x), . . . , f̂B(x) using B separate training sets, and average them
in order to obtain a single low-variance statistical learning model, given by

f̂avg(x) =
1

B

B∑

b=1

f̂ b(x).

Of course, this is not practical because we generally do not have access
to multiple training sets. Instead, we can bootstrap, by taking repeated
samples from the (single) training data set. In this approach we generate
B different bootstrapped training data sets. We then train our method on
the bth bootstrapped training set in order to get f̂∗b(x), and finally average
all the predictions, to obtain

f̂bag(x) =
1

B

B∑

b=1

f̂∗b(x).

344 8. Tree-Based Methods

0 50 100 150 200 250 300

0.
10

0.
15

0.
20

0.
25

0.
30

Number of Trees

Er
ro

r

Test: Bagging
Test: RandomForest
OOB: Bagging
OOB: RandomForest

FIGURE 8.8. Bagging and random forest results for the Heart data. The test
error (black and orange) is shown as a function of B, the number of bootstrapped
training sets used. Random forests were applied with m =

√
p. The dashed line

indicates the test error resulting from a single classification tree. The green and
blue traces show the OOB error, which in this case is — by chance — considerably
lower.

This is called bagging.
While bagging can improve predictions for many regression methods,

it is particularly useful for decision trees. To apply bagging to regression
trees, we simply construct B regression trees using B bootstrapped training
sets, and average the resulting predictions. These trees are grown deep,
and are not pruned. Hence each individual tree has high variance, but
low bias. Averaging these B trees reduces the variance. Bagging has been
demonstrated to give impressive improvements in accuracy by combining
together hundreds or even thousands of trees into a single procedure.

Thus far, we have described the bagging procedure in the regression
context, to predict a quantitative outcome Y . How can bagging be extended
to a classification problem where Y is qualitative? In that situation, there
are a few possible approaches, but the simplest is as follows. For a given test
observation, we can record the class predicted by each of the B trees, and
take a majority vote: the overall prediction is the most commonly occurring majority

voteclass among the B predictions.
Figure 8.8 shows the results from bagging trees on the Heart data. The

test error rate is shown as a function of B, the number of trees constructed
using bootstrapped training data sets. We see that the bagging test error
rate is slightly lower in this case than the test error rate obtained from a
single tree. The number of trees B is not a critical parameter with bagging;
using a very large value of B will not lead to overfitting. In practice we

8.2 Bagging, Random Forests, Boosting, and Bayesian Additive Regression Trees 345

use a value of B sufficiently large that the error has settled down. Using
B = 100 is sufficient to achieve good performance in this example.

Out-of-Bag Error Estimation
It turns out that there is a very straightforward way to estimate the test
error of a bagged model, without the need to perform cross-validation or
the validation set approach. Recall that the key to bagging is that trees are
repeatedly fit to bootstrapped subsets of the observations. One can show
that on average, each bagged tree makes use of around two-thirds of the
observations.3 The remaining one-third of the observations not used to fit a
given bagged tree are referred to as the out-of-bag (OOB) observations. We out-of-bagcan predict the response for the ith observation using each of the trees in
which that observation was OOB. This will yield around B/3 predictions
for the ith observation. In order to obtain a single prediction for the ith
observation, we can average these predicted responses (if regression is the
goal) or can take a majority vote (if classification is the goal). This leads
to a single OOB prediction for the ith observation. An OOB prediction
can be obtained in this way for each of the n observations, from which the
overall OOB MSE (for a regression problem) or classification error (for a
classification problem) can be computed. The resulting OOB error is a valid
estimate of the test error for the bagged model, since the response for each
observation is predicted using only the trees that were not fit using that
observation. Figure 8.8 displays the OOB error on the Heart data. It can
be shown that with B sufficiently large, OOB error is virtually equivalent
to leave-one-out cross-validation error. The OOB approach for estimating
the test error is particularly convenient when performing bagging on large
data sets for which cross-validation would be computationally onerous.

Variable Importance Measures
As we have discussed, bagging typically results in improved accuracy over
prediction using a single tree. Unfortunately, however, it can be difficult to
interpret the resulting model. Recall that one of the advantages of decision
trees is the attractive and easily interpreted diagram that results, such as
the one displayed in Figure 8.1. However, when we bag a large number of
trees, it is no longer possible to represent the resulting statistical learning
procedure using a single tree, and it is no longer clear which variables
are most important to the procedure. Thus, bagging improves prediction
accuracy at the expense of interpretability.

Although the collection of bagged trees is much more difficult to interpret
than a single tree, one can obtain an overall summary of the importance of
each predictor using the RSS (for bagging regression trees) or the Gini index
(for bagging classification trees). In the case of bagging regression trees, we
can record the total amount that the RSS (8.1) is decreased due to splits
over a given predictor, averaged over all B trees. A large value indicates
an important predictor. Similarly, in the context of bagging classification

3This relates to Exercise 2 of Chapter 5.

346 8. Tree-Based Methods

Thal

Ca

ChestPain

Oldpeak

MaxHR

RestBP

Age

Chol

Slope

Sex

ExAng

RestECG

Fbs

0 20 40 60 80 100

Variable Importance

FIGURE 8.9. A variable importance plot for the Heart data. Variable impor-
tance is computed using the mean decrease in Gini index, and expressed relative
to the maximum.

trees, we can add up the total amount that the Gini index (8.6) is decreased
by splits over a given predictor, averaged over all B trees.

A graphical representation of the variable importances in the Heart data variable
importanceis shown in Figure 8.9. We see the mean decrease in Gini index for each vari-

able, relative to the largest. The variables with the largest mean decrease
in Gini index are Thal, Ca, and ChestPain.

8.2.2 Random Forests
Random forests provide an improvement over bagged trees by way of a random

forestsmall tweak that decorrelates the trees. As in bagging, we build a number
of decision trees on bootstrapped training samples. But when building these
decision trees, each time a split in a tree is considered, a random sample of
m predictors is chosen as split candidates from the full set of p predictors.
The split is allowed to use only one of those m predictors. A fresh sample of
m predictors is taken at each split, and typically we choose m ≈ √p—that
is, the number of predictors considered at each split is approximately equal
to the square root of the total number of predictors (4 out of the 13 for the
Heart data).

In other words, in building a random forest, at each split in the tree,
the algorithm is not even allowed to consider a majority of the available
predictors. This may sound crazy, but it has a clever rationale. Suppose
that there is one very strong predictor in the data set, along with a num-
ber of other moderately strong predictors. Then in the collection of bagged
trees, most or all of the trees will use this strong predictor in the top split.
Consequently, all of the bagged trees will look quite similar to each other.

8.2 Bagging, Random Forests, Boosting, and Bayesian Additive Regression Trees 347

Hence the predictions from the bagged trees will be highly correlated. Un-
fortunately, averaging many highly correlated quantities does not lead to
as large of a reduction in variance as averaging many uncorrelated quan-
tities. In particular, this means that bagging will not lead to a substantial
reduction in variance over a single tree in this setting.

Random forests overcome this problem by forcing each split to consider
only a subset of the predictors. Therefore, on average (p − m)/p of the
splits will not even consider the strong predictor, and so other predictors
will have more of a chance. We can think of this process as decorrelating
the trees, thereby making the average of the resulting trees less variable
and hence more reliable.

The main difference between bagging and random forests is the choice
of predictor subset size m. For instance, if a random forest is built using
m = p, then this amounts simply to bagging. On the Heart data, random
forests using m =

√
p leads to a reduction in both test error and OOB error

over bagging (Figure 8.8).
Using a small value of m in building a random forest will typically be

helpful when we have a large number of correlated predictors. We applied
random forests to a high-dimensional biological data set consisting of ex-
pression measurements of 4,718 genes measured on tissue samples from 349
patients. There are around 20,000 genes in humans, and individual genes
have different levels of activity, or expression, in particular cells, tissues,
and biological conditions. In this data set, each of the patient samples has
a qualitative label with 15 different levels: either normal or 1 of 14 different
types of cancer. Our goal was to use random forests to predict cancer type
based on the 500 genes that have the largest variance in the training set.
We randomly divided the observations into a training and a test set, and
applied random forests to the training set for three different values of the
number of splitting variables m. The results are shown in Figure 8.10. The
error rate of a single tree is 45.7%, and the null rate is 75.4%.4 We see that
using 400 trees is sufficient to give good performance, and that the choice
m =

√
p gave a small improvement in test error over bagging (m = p) in

this example. As with bagging, random forests will not overfit if we increase
B, so in practice we use a value of B sufficiently large for the error rate to
have settled down.

8.2.3 Boosting
We now discuss boosting, yet another approach for improving the predic- boostingtions resulting from a decision tree. Like bagging, boosting is a general
approach that can be applied to many statistical learning methods for re-
gression or classification. Here we restrict our discussion of boosting to the
context of decision trees.

Recall that bagging involves creating multiple copies of the original train-
ing data set using the bootstrap, fitting a separate decision tree to each
copy, and then combining all of the trees in order to create a single predic-

4The null rate results from simply classifying each observation to the dominant class
overall, which is in this case the normal class.

348 8. Tree-Based Methods

0 100 200 300 400 500

0.
2

0.
3

0.
4

0.
5

Number of Trees

Te
st

 C
la

ss
ifi

ca
tio

n
Er

ro
r

m=p
m=p/2
m= p

FIGURE 8.10. Results from random forests for the 15-class gene expression
data set with p = 500 predictors. The test error is displayed as a function of
the number of trees. Each colored line corresponds to a different value of m, the
number of predictors available for splitting at each interior tree node. Random
forests (m < p) lead to a slight improvement over bagging (m = p). A single
classification tree has an error rate of 45.7 %.

tive model. Notably, each tree is built on a bootstrap data set, independent
of the other trees. Boosting works in a similar way, except that the trees are
grown sequentially: each tree is grown using information from previously
grown trees. Boosting does not involve bootstrap sampling; instead each
tree is fit on a modified version of the original data set.

Consider first the regression setting. Like bagging, boosting involves com-
bining a large number of decision trees, f̂1, . . . , f̂B . Boosting is described
in Algorithm 8.2.

What is the idea behind this procedure? Unlike fitting a single large deci-
sion tree to the data, which amounts to fitting the data hard and potentially
overfitting, the boosting approach instead learns slowly. Given the current
model, we fit a decision tree to the residuals from the model. That is, we
fit a tree using the current residuals, rather than the outcome Y , as the re-
sponse. We then add this new decision tree into the fitted function in order
to update the residuals. Each of these trees can be rather small, with just
a few terminal nodes, determined by the parameter d in the algorithm. By
fitting small trees to the residuals, we slowly improve f̂ in areas where it
does not perform well. The shrinkage parameter λ slows the process down
even further, allowing more and different shaped trees to attack the resid-
uals. In general, statistical learning approaches that learn slowly tend to
perform well. Note that in boosting, unlike in bagging, the construction of
each tree depends strongly on the trees that have already been grown.

We have just described the process of boosting regression trees. Boosting
classification trees proceeds in a similar but slightly more complex way, and
the details are omitted here.

8.2 Bagging, Random Forests, Boosting, and Bayesian Additive Regression Trees 349

Algorithm 8.2 Boosting for Regression Trees

1. Set f̂(x) = 0 and ri = yi for all i in the training set.

2. For b = 1, 2, . . . , B, repeat:

(a) Fit a tree f̂ b with d splits (d+1 terminal nodes) to the training
data (X, r).

(b) Update f̂ by adding in a shrunken version of the new tree:

f̂(x)← f̂(x) + λf̂ b(x). (8.10)

(c) Update the residuals,

ri ← ri − λf̂ b(xi). (8.11)

3. Output the boosted model,

f̂(x) =
B∑

b=1

λf̂ b(x). (8.12)

Boosting has three tuning parameters:

1. The number of trees B. Unlike bagging and random forests, boosting
can overfit if B is too large, although this overfitting tends to occur
slowly if at all. We use cross-validation to select B.

2. The shrinkage parameter λ, a small positive number. This controls
the rate at which boosting learns. Typical values are 0.01 or 0.001, and
the right choice can depend on the problem. Very small λ can require
using a very large value of B in order to achieve good performance.

3. The number d of splits in each tree, which controls the complexity
of the boosted ensemble. Often d = 1 works well, in which case each
tree is a stump, consisting of a single split. In this case, the boosted stumpensemble is fitting an additive model, since each term involves only a
single variable. More generally d is the interaction depth, and controls interaction

depththe interaction order of the boosted model, since d splits can involve
at most d variables.

In Figure 8.11, we applied boosting to the 15-class cancer gene expression
data set, in order to develop a classifier that can distinguish the normal
class from the 14 cancer classes. We display the test error as a function of
the total number of trees and the interaction depth d. We see that simple
stumps with an interaction depth of one perform well if enough of them
are included. This model outperforms the depth-two model, and both out-
perform a random forest. This highlights one difference between boosting
and random forests: in boosting, because the growth of a particular tree
takes into account the other trees that have already been grown, smaller

350 8. Tree-Based Methods

0 1000 2000 3000 4000 5000

0.
05

0.
10

0.
15

0.
20

0.
25

Number of Trees

Te
st

 C
la

ss
ifi

ca
tio

n
Er

ro
r

Boosting: depth=1
Boosting: depth=2
RandomForest: m= p

FIGURE 8.11. Results from performing boosting and random forests on the
15-class gene expression data set in order to predict cancer versus normal. The test
error is displayed as a function of the number of trees. For the two boosted models,
λ = 0.01. Depth-1 trees slightly outperform depth-2 trees, and both outperform
the random forest, although the standard errors are around 0.02, making none of
these differences significant. The test error rate for a single tree is 24 %.

trees are typically sufficient. Using smaller trees can aid in interpretability
as well; for instance, using stumps leads to an additive model.

8.2.4 Bayesian Additive Regression Trees
Finally, we discuss Bayesian additive regression trees (BART), another en- Bayesian

additive
regression
trees

semble method that uses decision trees as its building blocks. For simplicity,
we present BART for regression (as opposed to classification).

Recall that bagging and random forests make predictions from an aver-
age of regression trees, each of which is built using a random sample of data
and/or predictors. Each tree is built separately from the others. By con-
trast, boosting uses a weighted sum of trees, each of which is constructed
by fitting a tree to the residual of the current fit. Thus, each new tree at-
tempts to capture signal that is not yet accounted for by the current set
of trees. BART is related to both approaches: each tree is constructed in
a random manner as in bagging and random forests, and each tree tries to
capture signal not yet accounted for by the current model, as in boosting.
The main novelty in BART is the way in which new trees are generated.

Before we introduce the BART algorithm, we define some notation. We
let K denote the number of regression trees, and B the number of iterations
for which the BART algorithm will be run. The notation f̂ b

k(x) represents
the prediction at x for the kth regression tree used in the bth iteration. At
the end of each iteration, the K trees from that iteration will be summed,
i.e. f̂ b(x) =

∑K
k=1 f̂

b
k(x) for b = 1, . . . , B.

In the first iteration of the BART algorithm, all trees are initialized to
have a single root node, with f̂1

k (x) =
1

nK

∑n
i=1 yi, the mean of the response

8.2 Bagging, Random Forests, Boosting, and Bayesian Additive Regression Trees 351

(a): f̂ b−1
k (X) (b): Possibility #1 for f̂ b

k(X)

|X < 169.17

X < 114.305

X < 140.35
−0.5031

 0.2667 −0.2470

 0.4079

|X < 169.17

X < 114.305
X < 140.35

−0.5110

 0.2693 −0.2649

 0.4221

(c): Possibility #2 for f̂ b
k(X) (d): Possibility #3 for f̂ b

k(X)

|X < 169.17

−0.1218 0.4079

|X < 169.17

X < 114.305

X < 106.755 X < 140.35

−0.05089 −1.03100 0.26670 −0.24700

 0.40790

FIGURE 8.12. A schematic of perturbed trees from the BART algorithm. (a):
The kth tree at the (b− 1)st iteration, f̂ b−1

k (X), is displayed. Panels (b)–(d)
display three of many possibilities for f̂ b

k(X), given the form of f̂ b−1
k (X). (b): One

possibility is that f̂ b
k(X) has the same structure as f̂ b−1

k (X), but with different
predictions at the terminal nodes. (c): Another possibility is that f̂ b

k(X) results
from pruning f̂ b−1

k (X). (d): Alternatively, f̂ b
k(X) may have more terminal nodes

than f̂ b−1
k (X).

values divided by the total number of trees. Thus, f̂1(x) =
∑K

k=1 f̂
1
k (x) =

1
n

∑n
i=1 yi.

In subsequent iterations, BART updates each of the K trees, one at a
time. In the bth iteration, to update the kth tree, we subtract from each
response value the predictions from all but the kth tree, in order to obtain
a partial residual

ri = yi −
∑

k′<k

f̂ b
k′(xi)−

∑

k′>k

f̂ b−1
k′ (xi)

for the ith observation, i = 1, . . . , n. Rather than fitting a fresh tree to this
partial residual, BART randomly chooses a perturbation to the tree from
the previous iteration (f̂ b−1

k) from a set of possible perturbations, favoring
ones that improve the fit to the partial residual. There are two components
to this perturbation:

1. We may change the structure of the tree by adding or pruning branches.

2. We may change the prediction in each terminal node of the tree.

Figure 8.12 illustrates examples of possible perturbations to a tree.
The output of BART is a collection of prediction models,

f̂ b(x) =
K∑

k=1

f̂ b
k(x), for b = 1, 2, . . . , B.

352 8. Tree-Based Methods

Algorithm 8.3 Bayesian Additive Regression Trees

1. Let f̂1
1 (x) = f̂1

2 (x) = · · · = f̂1
K(x) = 1

nK

∑n
i=1 yi.

2. Compute f̂1(x) =
∑K

k=1 f̂
1
k (x) =

1
n

∑n
i=1 yi.

3. For b = 2, . . . , B:

(a) For k = 1, 2, . . . ,K:
i. For i = 1, . . . , n, compute the current partial residual

ri = yi −
∑

k′<k

f̂ b
k′(xi)−

∑

k′>k

f̂ b−1
k′ (xi).

ii. Fit a new tree, f̂ b
k(x), to ri, by randomly perturbing the

kth tree from the previous iteration, f̂ b−1
k (x). Perturbations

that improve the fit are favored.
(b) Compute f̂ b(x) =

∑K
k=1 f̂

b
k(x).

4. Compute the mean after L burn-in samples,

f̂(x) =
1

B − L

B∑

b=L+1

f̂ b(x).

We typically throw away the first few of these prediction models, since
models obtained in the earlier iterations — known as the burn-in period burn-in— tend not to provide very good results. We can let L denote the num-
ber of burn-in iterations; for instance, we might take L = 200. Then, to
obtain a single prediction, we simply take the average after the burn-in
iterations, f̂(x) = 1

B−L

∑B
b=L+1 f̂

b(x). However, it is also possible to com-
pute quantities other than the average: for instance, the percentiles of
f̂L+1(x), . . . , f̂B(x) provide a measure of uncertainty in the final predic-
tion. The overall BART procedure is summarized in Algorithm 8.3.

A key element of the BART approach is that in Step 3(a)ii., we do not fit
a fresh tree to the current partial residual: instead, we try to improve the fit
to the current partial residual by slightly modifying the tree obtained in the
previous iteration (see Figure 8.12). Roughly speaking, this guards against
overfitting since it limits how “hard” we fit the data in each iteration.
Furthermore, the individual trees are typically quite small. We limit the
tree size in order to avoid overfitting the data, which would be more likely
to occur if we grew very large trees.

Figure 8.13 shows the result of applying BART to the Heart data, using
K = 200 trees, as the number of iterations is increased to 10, 000. During
the initial iterations, the test and training errors jump around a bit. After
this initial burn-in period, the error rates settle down. We note that there
is only a small difference between the training error and the test error,
indicating that the tree perturbation process largely avoids overfitting.

8.2 Bagging, Random Forests, Boosting, and Bayesian Additive Regression Trees 353

5 10 50 100 500 5000

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Number of Iterations

Er
ro

r

BART Training Error
BART Test Error
Boosting Training Error
Boosting Test Error

FIGURE 8.13. BART and boosting results for the Heart data. Both training
and test errors are displayed. After a burn-in period of 100 iterations (shown in
gray), the error rates for BART settle down. Boosting begins to overfit after a
few hundred iterations.

The training and test errors for boosting are also displayed in Figure 8.13.
We see that the test error for boosting approaches that of BART, but then
begins to increase as the number of iterations increases. Furthermore, the
training error for boosting decreases as the number of iterations increases,
indicating that boosting has overfit the data.

Though the details are outside of the scope of this book, it turns out
that the BART method can be viewed as a Bayesian approach to fitting an
ensemble of trees: each time we randomly perturb a tree in order to fit the
residuals, we are in fact drawing a new tree from a posterior distribution.
(Of course, this Bayesian connection is the motivation for BART’s name.)
Furthermore, Algorithm 8.3 can be viewed as a Markov chain Monte Carlo Markov

chain Monte
Carlo

algorithm for fitting the BART model.
When we apply BART, we must select the number of trees K, the number

of iterations B, and the number of burn-in iterations L. We typically choose
large values for B and K, and a moderate value for L: for instance, K = 200,
B = 1,000, and L = 100 is a reasonable choice. BART has been shown to
have very impressive out-of-box performance — that is, it performs well
with minimal tuning.

8.2.5 Summary of Tree Ensemble Methods
Trees are an attractive choice of weak learner for an ensemble method
for a number of reasons, including their flexibility and ability to handle

354 8. Tree-Based Methods

predictors of mixed types (i.e. qualitative as well as quantitative). We have
now seen four approaches for fitting an ensemble of trees: bagging, random
forests, boosting, and BART.

• In bagging, the trees are grown independently on random samples of
the observations. Consequently, the trees tend to be quite similar to
each other. Thus, bagging can get caught in local optima and can fail
to thoroughly explore the model space.

• In random forests, the trees are once again grown independently on
random samples of the observations. However, each split on each tree
is performed using a random subset of the features, thereby decorre-
lating the trees, and leading to a more thorough exploration of model
space relative to bagging.

• In boosting, we only use the original data, and do not draw any ran-
dom samples. The trees are grown successively, using a “slow” learn-
ing approach: each new tree is fit to the signal that is left over from
the earlier trees, and shrunken down before it is used.

• In BART, we once again only make use of the original data, and we
grow the trees successively. However, each tree is perturbed in order
to avoid local minima and achieve a more thorough exploration of
the model space.

8.3 Lab: Tree-Based Methods
We import some of our usual libraries at this top level.

In [1]: import numpy as np
import pandas as pd
from matplotlib.pyplot import subplots
from statsmodels.datasets import get_rdataset
import sklearn.model_selection as skm
from ISLP import load_data, confusion_table
from ISLP.models import ModelSpec as MS

We also collect the new imports needed for this lab.

In [2]: from sklearn.tree import (DecisionTreeClassifier as DTC,
DecisionTreeRegressor as DTR,
plot_tree,
export_text)

from sklearn.metrics import (accuracy_score,
log_loss)

from sklearn.ensemble import \
(RandomForestRegressor as RF,
GradientBoostingRegressor as GBR)

from ISLP.bart import BART

8.3 Lab: Tree-Based Methods 355

8.3.1 Fitting Classification Trees
We first use classification trees to analyze the Carseats data set. In these
data, Sales is a continuous variable, and so we begin by recoding it as a
binary variable. We use the where() function to create a variable, called where()
High, which takes on a value of Yes if the Sales variable exceeds 8, and
takes on a value of No otherwise.

In [3]: Carseats = load_data('Carseats')
High = np.where(Carseats.Sales > 8,

"Yes",
"No")

We now use DecisionTreeClassifier() to fit a classification tree in order DecisionTree
Classifier()to predict High using all variables but Sales. To do so, we must form a

model matrix as we did when fitting regression models.

In [4]: model = MS(Carseats.columns.drop('Sales'), intercept=False)
D = model.fit_transform(Carseats)
feature_names = list(D.columns)
X = np.asarray(D)

We have converted D from a data frame to an array X, which is needed in
some of the analysis below. We also need the feature_names for annotating
our plots later.

There are several options needed to specify the classifier, such as max_depth
(how deep to grow the tree), min_samples_split (minimum number of ob-
servations in a node to be eligible for splitting) and criterion (whether to
use Gini or cross-entropy as the split criterion). We also set random_state
for reproducibility; ties in the split criterion are broken at random.

In [5]: clf = DTC(criterion='entropy',
max_depth=3,
random_state=0)

clf.fit(X, High)

Out[5]: DecisionTreeClassifier(criterion='entropy', max_depth=3)

In our discussion of qualitative features in Section 3.3, we noted that for
a linear regression model such a feature could be represented by including a
matrix of dummy variables (one-hot-encoding) in the model matrix, using
the formula notation of statsmodels. As mentioned in Section 8.1, there is
a more natural way to handle qualitative features when building a decision
tree, that does not require such dummy variables; each split amounts to
partitioning the levels into two groups. However, the sklearn implementa-
tion of decision trees does not take advantage of this approach; instead it
simply treats the one-hot-encoded levels as separate variables.

In [6]: accuracy_score(High, clf.predict(X))

Out[6]: 0.7275

With only the default arguments, the training error rate is 21%. For clas-
sification trees, we can access the value of the deviance using log_loss(), log_loss()

356 8. Tree-Based Methods

−2
∑

m

∑

k

nmk log p̂mk,

where nmk is the number of observations in the mth terminal node that
belong to the kth class.

In [7]: resid_dev = np.sum(log_loss(High, clf.predict_proba(X)))
resid_dev

Out[7]: 0.4711

This is closely related to the entropy, defined in (8.7). A small deviance
indicates a tree that provides a good fit to the (training) data.

One of the most attractive properties of trees is that they can be graphi-
cally displayed. Here we use the plot() function to display the tree structure
(not shown here).

In [8]: ax = subplots(figsize=(12,12))[1]
plot_tree(clf,

feature_names=feature_names,
ax=ax);

The most important indicator of Sales appears to be ShelveLoc.
We can see a text representation of the tree using export_text(), which export_text()displays the split criterion (e.g. Price <= 92.5) for each branch. For leaf

nodes it shows the overall prediction (Yes or No). We can also see the number
of observations in that leaf that take on values of Yes and No by specifying
show_weights=True.

In [9]: print(export_text(clf,
feature_names=feature_names,
show_weights=True))

Out[9]: |--- ShelveLoc[Good] <= 0.50
| |--- Price <= 92.50
| | |--- Income <= 57.00
| | | |--- weights: [7.00, 3.00] class: No
| | |--- Income > 57.00
| | | |--- weights: [7.00, 29.00] class: Yes
| |--- Price > 92.50
| | |--- Advertising <= 13.50
| | | |--- weights: [183.00, 41.00] class: No
| | |--- Advertising > 13.50
| | | |--- weights: [20.00, 25.00] class: Yes
|--- ShelveLoc[Good] > 0.50
| |--- Price <= 135.00
| | |--- US[Yes] <= 0.50
| | | |--- weights: [6.00, 11.00] class: Yes
| | |--- US[Yes] > 0.50
| | | |--- weights: [2.00, 49.00] class: Yes
| |--- Price > 135.00
| | |--- Income <= 46.00
| | | |--- weights: [6.00, 0.00] class: No
| | |--- Income > 46.00
| | | |--- weights: [5.00, 6.00] class: Yes

8.3 Lab: Tree-Based Methods 357

In order to properly evaluate the performance of a classification tree on
these data, we must estimate the test error rather than simply computing
the training error. We split the observations into a training set and a test
set, build the tree using the training set, and evaluate its performance
on the test data. This pattern is similar to that in Chapter 6, with the
linear models replaced here by decision trees — the code for validation is
almost identical. This approach leads to correct predictions for 68.5% of
the locations in the test data set.

In [10]: validation = skm.ShuffleSplit(n_splits=1,
test_size=200,
random_state=0)

results = skm.cross_validate(clf,
D,
High,
cv=validation)

results['test_score']

Out[10]: array([0.685])

Next, we consider whether pruning the tree might lead to improved clas-
sification performance. We first split the data into a training and test set.
We will use cross-validation to prune the tree on the training set, and then
evaluate the performance of the pruned tree on the test set.

In [11]: (X_train,
X_test,
High_train,
High_test) = skm.train_test_split(X,

High,
test_size=0.5,
random_state=0)

We first refit the full tree on the training set; here we do not set a max_depth
parameter, since we will learn that through cross-validation.

In [12]: clf = DTC(criterion='entropy', random_state=0)
clf.fit(X_train, High_train)
accuracy_score(High_test, clf.predict(X_test))

Out[12]: 0.735

Next we use the cost_complexity_pruning_path() method of clf to extract cost_
complexity_
pruning_
path()

cost-complexity values.
In [13]: ccp_path = clf.cost_complexity_pruning_path(X_train, High_train)

kfold = skm.KFold(10,
random_state=1,
shuffle=True)

This yields a set of impurities and α values from which we can extract an
optimal one by cross-validation.

In [14]: grid = skm.GridSearchCV(clf,
{'ccp_alpha': ccp_path.ccp_alphas},
refit=True,

358 8. Tree-Based Methods

cv=kfold,
scoring='accuracy')

grid.fit(X_train, High_train)
grid.best_score_

Out[14]: 0.685

Let’s take a look at the pruned true.
In [15]: ax = subplots(figsize=(12, 12))[1]

best_ = grid.best_estimator_
plot_tree(best_,

feature_names=feature_names,
ax=ax);

This is quite a bushy tree. We could count the leaves, or query best_ instead.
In [16]: best_.tree_.n_leaves

Out[16]: 30

The tree with 30 terminal nodes results in the lowest cross-validation error
rate, with an accuracy of 68.5%. How well does this pruned tree perform
on the test data set? Once again, we apply the predict() function.

In [17]: print(accuracy_score(High_test,
best_.predict(X_test)))

confusion = confusion_table(best_.predict(X_test),
High_test)

confusion

Out[17]: 0.72

Truth No Yes
Predicted

No 108 61
Yes 10 21

Now 72.0% of the test observations are correctly classified, which is
slightly worse than the error for the full tree (with 35 leaves). So cross-
validation has not helped us much here; it only pruned off 5 leaves, at
a cost of a slightly worse error. These results would change if we were to
change the random number seeds above; even though cross-validation gives
an unbiased approach to model selection, it does have variance.

8.3.2 Fitting Regression Trees
Here we fit a regression tree to the Boston data set. The steps are similar
to those for classification trees.

In [18]: Boston = load_data("Boston")
model = MS(Boston.columns.drop('medv'), intercept=False)
D = model.fit_transform(Boston)
feature_names = list(D.columns)
X = np.asarray(D)

8.3 Lab: Tree-Based Methods 359

First, we split the data into training and test sets, and fit the tree to the
training data. Here we use 30% of the data for the test set.

In [19]: (X_train,
X_test,
y_train,
y_test) = skm.train_test_split(X,

Boston['medv'],
test_size=0.3,
random_state=0)

Having formed our training and test data sets, we fit the regression tree.
In [20]: reg = DTR(max_depth=3)

reg.fit(X_train, y_train)
ax = subplots(figsize=(12,12))[1]
plot_tree(reg,

feature_names=feature_names,
ax=ax);

The variable lstat measures the percentage of individuals with lower
socioeconomic status. The tree indicates that lower values of lstat corre-
spond to more expensive houses. The tree predicts a median house price
of $12,042 for small-sized homes (rm < 6.8), in suburbs in which residents
have low socioeconomic status (lstat > 14.4) and the crime-rate is mod-
erate (crim > 5.8).

Now we use the cross-validation function to see whether pruning the tree
will improve performance.

In [21]: ccp_path = reg.cost_complexity_pruning_path(X_train, y_train)
kfold = skm.KFold(5,

shuffle=True,
random_state=10)

grid = skm.GridSearchCV(reg,
{'ccp_alpha': ccp_path.ccp_alphas},
refit=True,
cv=kfold,
scoring='neg_mean_squared_error')

G = grid.fit(X_train, y_train)

In keeping with the cross-validation results, we use the pruned tree to
make predictions on the test set.

In [22]: best_ = grid.best_estimator_
np.mean((y_test - best_.predict(X_test))**2)

Out[22]: 28.07

In other words, the test set MSE associated with the regression tree is
28.07. The square root of the MSE is therefore around 5.30, indicating that
this model leads to test predictions that are within around $5300 of the
true median home value for the suburb.

Let’s plot the best tree to see how interpretable it is.
In [23]: ax = subplots(figsize=(12,12))[1]

plot_tree(G.best_estimator_,
feature_names=feature_names,
ax=ax);

360 8. Tree-Based Methods

8.3.3 Bagging and Random Forests
Here we apply bagging and random forests to the Boston data, using the
RandomForestRegressor() from the sklearn.ensemble package. Recall that RandomForest

Regressor()
sklearn.
ensemble

bagging is simply a special case of a random forest with m = p. Therefore,
the RandomForestRegressor() function can be used to perform both bagging
and random forests. We start with bagging.

In [24]: bag_boston = RF(max_features=X_train.shape[1], random_state=0)
bag_boston.fit(X_train, y_train)

Out[24]: RandomForestRegressor(max_features=12, random_state=0)

The argument max_features indicates that all 12 predictors should be
considered for each split of the tree — in other words, that bagging should
be done. How well does this bagged model perform on the test set?

In [25]: ax = subplots(figsize=(8,8))[1]
y_hat_bag = bag_boston.predict(X_test)
ax.scatter(y_hat_bag, y_test)
np.mean((y_test - y_hat_bag)**2)

Out[25]: 14.63

The test set MSE associated with the bagged regression tree is 14.63, about
half that obtained using an optimally-pruned single tree. We could change
the number of trees grown from the default of 100 by using the n_estimators
argument:

In [26]: bag_boston = RF(max_features=X_train.shape[1],
n_estimators=500,
random_state=0).fit(X_train, y_train)

y_hat_bag = bag_boston.predict(X_test)
np.mean((y_test - y_hat_bag)**2)

Out[26]: 14.61

There is not much change. Bagging and random forests cannot overfit by
increasing the number of trees, but can underfit if the number is too small.

Growing a random forest proceeds in exactly the same way, except
that we use a smaller value of the max_features argument. By default,
RandomForestRegressor() uses p variables when building a random forest of
regression trees (i.e. it defaults to bagging), and RandomForestClassifier()
uses√p variables when building a random forest of classification trees. Here
we use max_features=6.

In [27]: RF_boston = RF(max_features=6,
random_state=0).fit(X_train, y_train)

y_hat_RF = RF_boston.predict(X_test)
np.mean((y_test - y_hat_RF)**2)

Out[27]: 20.04

The test set MSE is 20.04; this indicates that random forests did some-
what worse than bagging in this case. Extracting the feature_importances_
values from the fitted model, we can view the importance of each variable.

8.3 Lab: Tree-Based Methods 361

In [28]: feature_imp = pd.DataFrame(
{'importance':RF_boston.feature_importances_},
index=feature_names)

feature_imp.sort_values(by='importance', ascending=False)

Out[28]: importance
lstat 0.368683

rm 0.333842
ptratio 0.057306

indus 0.053303
crim 0.052426
dis 0.042493
nox 0.034410
age 0.024327
tax 0.022368
rad 0.005048
zn 0.003238

chas 0.002557

This is a relative measure of the total decrease in node impurity that results
from splits over that variable, averaged over all trees (this was plotted in
Figure 8.9 for a model fit to the Heart data).

The results indicate that across all of the trees considered in the random
forest, the wealth level of the community (lstat) and the house size (rm)
are by far the two most important variables.

8.3.4 Boosting
Here we use GradientBoostingRegressor() from sklearn.ensemble to fit Gradient

Boosting
Regressor()

boosted regression trees to the Boston data set. For classification we would
use GradientBoostingClassifier(). The argument n_estimators=5000 indi-

Gradient
Boosting
Classifier()

cates that we want 5000 trees, and the option max_depth=3 limits the depth
of each tree. The argument learning_rate is the λ mentioned earlier in the
description of boosting.

In [29]: boost_boston = GBR(n_estimators=5000,
learning_rate=0.001,
max_depth=3,
random_state=0)

boost_boston.fit(X_train, y_train)

We can see how the training error decreases with the train_score_ at-
tribute. To get an idea of how the test error decreases we can use the
staged_predict() method to get the predicted values along the path.

In [30]: test_error = np.zeros_like(boost_boston.train_score_)
for idx, y_ in enumerate(boost_boston.staged_predict(X_test)):

test_error[idx] = np.mean((y_test - y_)**2)

plot_idx = np.arange(boost_boston.train_score_.shape[0])
ax = subplots(figsize=(8,8))[1]
ax.plot(plot_idx,

boost_boston.train_score_,
'b',
label='Training')

362 8. Tree-Based Methods

ax.plot(plot_idx,
test_error,
'r',
label='Test')

ax.legend();

We now use the boosted model to predict medv on the test set:
In [31]: y_hat_boost = boost_boston.predict(X_test);

np.mean((y_test - y_hat_boost)**2)

Out[31]: 14.48

The test MSE obtained is 14.48, similar to the test MSE for bagging. If we
want to, we can perform boosting with a different value of the shrinkage
parameter λ in (8.10). The default value is 0.001, but this is easily modified.
Here we take λ = 0.2.

In [32]: boost_boston = GBR(n_estimators=5000,
learning_rate=0.2,
max_depth=3,
random_state=0)

boost_boston.fit(X_train,
y_train)

y_hat_boost = boost_boston.predict(X_test);
np.mean((y_test - y_hat_boost)**2)

Out[32]: 14.50

In this case, using λ = 0.2 leads to a almost the same test MSE as when
using λ = 0.001.

8.3.5 Bayesian Additive Regression Trees
In this section we demonstrate a Python implementation of BART found in
the ISLP.bart package. We fit a model to the Boston housing data set. This
BART() estimator is designed for quantitative outcome variables, though BART()other implementations are available for fitting logistic and probit models
to categorical outcomes.

In [33]: bart_boston = BART(random_state=0, burnin=5, ndraw=15)
bart_boston.fit(X_train, y_train)

Out[33]: BART(burnin=5, ndraw=15, random_state=0)

On this data set, with this split into test and training, we see that the
test error of BART is similar to that of random forest.

In [34]: yhat_test = bart_boston.predict(X_test.astype(np.float32))
np.mean((y_test - yhat_test)**2)

Out[34]: 20.92

We can check how many times each variable appeared in the collection
of trees. This gives a summary similar to the variable importance plot for
boosting and random forests.

8.4 Exercises 363

In [35]: var_inclusion = pd.Series(bart_boston.variable_inclusion_.mean(0),
index=D.columns)

var_inclusion

Out[35]: crim 25.333333
zn 27.000000

indus 21.266667
chas 20.466667
nox 25.400000
rm 32.400000

age 26.133333
dis 25.666667
rad 24.666667
tax 23.933333

ptratio 25.000000
lstat 31.866667

dtype: float64

8.4 Exercises
Conceptual

1. Draw an example (of your own invention) of a partition of two-
dimensional feature space that could result from recursive binary
splitting. Your example should contain at least six regions. Draw a
decision tree corresponding to this partition. Be sure to label all as-
pects of your figures, including the regions R1, R2, . . ., the cutpoints
t1, t2, . . ., and so forth.
Hint: Your result should look something like Figures 8.1 and 8.2.

2. It is mentioned in Section 8.2.3 that boosting using depth-one trees
(or stumps) leads to an additive model: that is, a model of the form

f(X) =
p∑

j=1

fj(Xj).

Explain why this is the case. You can begin with (8.12) in
Algorithm 8.2.

3. Consider the Gini index, classification error, and entropy in a simple
classification setting with two classes. Create a single plot that dis-
plays each of these quantities as a function of p̂m1. The x-axis should
display p̂m1, ranging from 0 to 1, and the y-axis should display the
value of the Gini index, classification error, and entropy.
Hint: In a setting with two classes, p̂m1 = 1 − p̂m2. You could make
this plot by hand, but it will be much easier to make in R.

4. This question relates to the plots in Figure 8.14.

364 8. Tree-Based Methods

|
X2 < 1

X1 < 1

X1 < 0

X2 < 2

-1.80
-1.06 0.21

 0.63

 2.49

 5

15

10

0

3

0 1

X2

X1

0

1

FIGURE 8.14. Left: A partition of the predictor space corresponding to Exer-
cise 4a. Right: A tree corresponding to Exercise 4b.

(a) Sketch the tree corresponding to the partition of the predictor
space illustrated in the left-hand panel of Figure 8.14. The num-
bers inside the boxes indicate the mean of Y within each region.

(b) Create a diagram similar to the left-hand panel of Figure 8.14,
using the tree illustrated in the right-hand panel of the same
figure. You should divide up the predictor space into the correct
regions, and indicate the mean for each region.

5. Suppose we produce ten bootstrapped samples from a data set
containing red and green classes. We then apply a classification tree
to each bootstrapped sample and, for a specific value of X, produce
10 estimates of P (Class is Red|X):

0.1, 0.15, 0.2, 0.2, 0.55, 0.6, 0.6, 0.65, 0.7, and 0.75.

There are two common ways to combine these results together into a
single class prediction. One is the majority vote approach discussed in
this chapter. The second approach is to classify based on the average
probability. In this example, what is the final classification under each
of these two approaches?

6. Provide a detailed explanation of the algorithm that is used to fit a
regression tree.

Applied
7. In Section 8.3.3, we applied random forests to the Boston data using

max_features = 6 and using n_estimators = 100 and n_estimators =
500. Create a plot displaying the test error resulting from random
forests on this data set for a more comprehensive range of values
for max_features and n_estimators. You can model your plot after
Figure 8.10. Describe the results obtained.

8. In the lab, a classification tree was applied to the Carseats data set af-
ter converting Sales into a qualitative response variable. Now we will
seek to predict Sales using regression trees and related approaches,
treating the response as a quantitative variable.

8.4 Exercises 365

(a) Split the data set into a training set and a test set.
(b) Fit a regression tree to the training set. Plot the tree, and inter-

pret the results. What test MSE do you obtain?
(c) Use cross-validation in order to determine the optimal level of

tree complexity. Does pruning the tree improve the test MSE?
(d) Use the bagging approach in order to analyze this data. What

test MSE do you obtain? Use the feature_importance_ values to
determine which variables are most important.

(e) Use random forests to analyze this data. What test MSE do
you obtain? Use the feature_importance_ values to determine
which variables are most important. Describe the effect of m, the
number of variables considered at each split, on the error rate
obtained.

(f) Now analyze the data using BART, and report your results.

9. This problem involves the OJ data set which is part of the ISLP
package.

(a) Create a training set containing a random sample of 800 obser-
vations, and a test set containing the remaining observations.

(b) Fit a tree to the training data, with Purchase as the response
and the other variables as predictors. What is the training error
rate?

(c) Create a plot of the tree, and interpret the results. How many
terminal nodes does the tree have?

(d) Use the export_tree() function to produce a text summary of
the fitted tree. Pick one of the terminal nodes, and interpret the
information displayed.

(e) Predict the response on the test data, and produce a confusion
matrix comparing the test labels to the predicted test labels.
What is the test error rate?

(f) Use cross-validation on the training set in order to determine
the optimal tree size.

(g) Produce a plot with tree size on the x-axis and cross-validated
classification error rate on the y-axis.

(h) Which tree size corresponds to the lowest cross-validated classi-
fication error rate?

(i) Produce a pruned tree corresponding to the optimal tree size
obtained using cross-validation. If cross-validation does not lead
to selection of a pruned tree, then create a pruned tree with five
terminal nodes.

(j) Compare the training error rates between the pruned and un-
pruned trees. Which is higher?

(k) Compare the test error rates between the pruned and unpruned
trees. Which is higher?

366 8. Tree-Based Methods

10. We now use boosting to predict Salary in the Hitters data set.

(a) Remove the observations for whom the salary information is
unknown, and then log-transform the salaries.

(b) Create a training set consisting of the first 200 observations, and
a test set consisting of the remaining observations.

(c) Perform boosting on the training set with 1,000 trees for a range
of values of the shrinkage parameter λ. Produce a plot with
different shrinkage values on the x-axis and the corresponding
training set MSE on the y-axis.

(d) Produce a plot with different shrinkage values on the x-axis and
the corresponding test set MSE on the y-axis.

(e) Compare the test MSE of boosting to the test MSE that results
from applying two of the regression approaches seen in
Chapters 3 and 6.

(f) Which variables appear to be the most important predictors in
the boosted model?

(g) Now apply bagging to the training set. What is the test set MSE
for this approach?

11. This question uses the Caravan data set.

(a) Create a training set consisting of the first 1,000 observations,
and a test set consisting of the remaining observations.

(b) Fit a boosting model to the training set with Purchase as the
response and the other variables as predictors. Use 1,000 trees,
and a shrinkage value of 0.01. Which predictors appear to be
the most important?

(c) Use the boosting model to predict the response on the test data.
Predict that a person will make a purchase if the estimated prob-
ability of purchase is greater than 20%. Form a confusion ma-
trix. What fraction of the people predicted to make a purchase
do in fact make one? How does this compare with the results
obtained from applying KNN or logistic regression to this data
set?

12. Apply boosting, bagging, random forests, and BART to a data set
of your choice. Be sure to fit the models on a training set and to
evaluate their performance on a test set. How accurate are the results
compared to simple methods like linear or logistic regression? Which
of these approaches yields the best performance?

	8 Tree-Based Methods
	8.1 The Basics of Decision Trees
	8.1.1 Regression Trees
	8.1.2 Classification Trees
	8.1.3 Trees Versus Linear Models
	8.1.4 Advantages and Disadvantages of Trees

	8.2 Bagging, Random Forests, Boosting, and Bayesian Additive Regression Trees
	8.2.1 Bagging
	8.2.2 Random Forests
	8.2.3 Boosting
	8.2.4 Bayesian Additive Regression Trees
	8.2.5 Summary of Tree Ensemble Methods

	8.3 Lab: Tree-Based Methods
	8.3.1 Fitting Classification Trees
	8.3.2 Fitting Regression Trees
	8.3.3 Bagging and Random Forests
	8.3.4 Boosting
	8.3.5 Bayesian Additive Regression Trees

	8.4 Exercises
	Conceptual
	Applied

