CHAPTER7
Ensemble Learning and Random Forests

Suppose you pose a complex question to thousands of random people, then aggregate
their answers. In many cases you will find that this aggregated answer is better than
an expert’s answer. This is called the wisdom of the crowd. Similarly, if you aggregate
the predictions of a group of predictors (such as classifiers or regressors), you will
often get better predictions than with the best individual predictor. A group of
predictors is called an ensemble; thus, this technique is called ensemble learning, and
an ensemble learning algorithm is called an ensemble method.

As an example of an ensemble method, you can train a group of decision tree
classifiers, each on a different random subset of the training set. You can then obtain
the predictions of all the individual trees, and the class that gets the most votes is
the ensemble’s prediction (see the last exercise in Chapter 6). Such an ensemble of
decision trees is called a random forest, and despite its simplicity, this is one of the
most powerful machine learning algorithms available today.

As discussed in Chapter 2, you will often use ensemble methods near the end of
a project, once you have already built a few good predictors, to combine them
into an even better predictor. In fact, the winning solutions in machine learning
competitions often involve several ensemble methods—most famously in the Netflix
Prize competition.

In this chapter we will examine the most popular ensemble methods, including
voting classifiers, bagging and pasting ensembles, random forests, and boosting, and
stacking ensembles.

n

https://en.wikipedia.org/wiki/Netflix_Prize
https://en.wikipedia.org/wiki/Netflix_Prize

Voting Classifiers

Suppose you have trained a few classifiers, each one achieving about 80% accuracy.
You may have a logistic regression classifier, an SVM classifier, a random forest
classifier, a k-nearest neighbors classifier, and perhaps a few more (see Figure 7-1).

[Random][other.. |
forest
classifier

qﬁ O Diverse predictors

)
Logistic
regression

O

T

Figure 7-1. Training diverse classifiers

A very simple way to create an even better classifier is to aggregate the predictions
of each classifier: the class that gets the most votes is the ensemble’s prediction. This

majority-vote classifier is called a hard voting classifier (see Figure 7-2).

Ensemble’s prediction
(e.g., majority vote)

‘ Predictions

O

O O

Diverse predictors

‘ New instance
0

Figure 7-2. Hard voting classifier predictions

212 | Chapter7: Ensemble Learning and Random Forests

Somewhat surprisingly, this voting classifier often achieves a higher accuracy than
the best classifier in the ensemble. In fact, even if each classifier is a weak learner
(meaning it does only slightly better than random guessing), the ensemble can still be
a strong learner (achieving high accuracy), provided there are a sufficient number of
weak learners in the ensemble and they are sufficiently diverse.

How is this possible? The following analogy can help shed some light on this mystery.
Suppose you have a slightly biased coin that has a 51% chance of coming up heads
and 49% chance of coming up tails. If you toss it 1,000 times, you will generally get
more or less 510 heads and 490 tails, and hence a majority of heads. If you do the
math, you will find that the probability of obtaining a majority of heads after 1,000
tosses is close to 75%. The more you toss the coin, the higher the probability (e.g.,
with 10,000 tosses, the probability climbs over 97%). This is due to the law of large
numbers: as you keep tossing the coin, the ratio of heads gets closer and closer to
the probability of heads (51%). Figure 7-3 shows 10 series of biased coin tosses. You
can see that as the number of tosses increases, the ratio of heads approaches 51%.
Eventually all 10 series end up so close to 51% that they are consistently above 50%.

o
=
©
—_
0
©
@©
[
I “
0.46 "}
L --- 51%
0.44 i+ — 50%
0.42 T T T T
0 2000 4000 6000 8000 10000

Number of coin tosses

Figure 7-3. The law of large numbers

Similarly, suppose you build an ensemble containing 1,000 classifiers that are indi-
vidually correct only 51% of the time (barely better than random guessing). If you
predict the majority voted class, you can hope for up to 75% accuracy! However, this
is only true if all classifiers are perfectly independent, making uncorrelated errors,
which is clearly not the case because they are trained on the same data. They are likely
to make the same types of errors, so there will be many majority votes for the wrong
class, reducing the ensemble’s accuracy.

Voting Classifiers | 213

Ensemble methods work best when the predictors are as independ-
ent from one another as possible. One way to get diverse classifiers
is to train them using very different algorithms. This increases the
chance that they will make very different types of errors, improving
the ensemble’s accuracy.

Scikit-Learn provides a VotingClassifier class thats quite easy to use: just give
it a list of name/predictor pairs, and use it like a normal classifier. Let’s try it on
the moons dataset (introduced in Chapter 5). We will load and split the moons
dataset into a training set and a test set, then we'll create and train a voting classifier
composed of three diverse classifiers:

from import make_moons

from import RandomForestClassifier, VotingClassifier
from import LogisticRegression

from import train_test_split

from import SVC

X, y = make_moons(n_samples=500, noise=0.30, random_state=42)
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=42)

voting_clf = VotingClassifier(
estimators=[
('lr', LogisticRegression(random_state=42)),
('rf', RandomForestClassifier(random_state=42)),
('svc', SVC(random_state=42))
]
)

voting_clf.fit(X_train, y_train)
When you fit a VotingClassifier, it clones every estimator and fits the clones. The
original estimators are available via the estimators attribute, while the fitted clones
are available via the estimators_ attribute. If you prefer a dict rather than a list, you
can use named_estimators or named_estimators_ instead. To begin, let’s look at each
fitted classifier’s accuracy on the test set:

>>> for name, clf in voting_clf.named_estimators_.items():
print(name, "=", clf.score(X_test, y_test))

1r = 0.864
rf = 0.896
svc = 0.896

When you call the voting classifier’s predict() method, it performs hard voting. For
example, the voting classifier predicts class 1 for the first instance of the test set,
because two out of three classifiers predict that class:

214 | Chapter7: Ensemble Learning and Random Forests

>>> voting_clf.predict(X_test[:1])

array([1])
>>> [clf.predict(X_test[:1]) for clf in voting_clf.estimators_]

[array([1]), array([1]), array([0])]

Now let’s look at the performance of the voting classifier on the test set:

>>> voting_clf.score(X_test, y_test)
0.912

There you have it! The voting classifier outperforms all the individual classifiers.

If all classifiers are able to estimate class probabilities (i.e., if they all have a
predict_proba() method), then you can tell Scikit-Learn to predict the class with
the highest class probability, averaged over all the individual classifiers. This is called
soft voting. It often achieves higher performance than hard voting because it gives
more weight to highly confident votes. All you need to do is set the voting classi-
fier’s voting hyperparameter to "soft", and ensure that all classifiers can estimate
class probabilities. This is not the case for the SVC class by default, so you need
to set its probability hyperparameter to True (this will make the SVC class use
cross-validation to estimate class probabilities, slowing down training, and it will add
a predict_proba() method). Let’s try that:

>>> voting_clf.voting = "soft"

>>> voting_clf.named_estimators["svc"].probability = True
>>> voting_clf.fit(X_train, y_train)

>>> voting_clf.score(X_test, y_test)

0.92

We reach 92% accuracy simply by using soft voting—not bad!

Bagging and Pasting

One way to get a diverse set of classifiers is to use very different training algorithms,
as just discussed. Another approach is to use the same training algorithm for every
predictor but train them on different random subsets of the training set. When
sampling is performed with replacement,' this method is called bagging* (short for
bootstrap aggregating®). When sampling is performed without replacement, it is called
pasting.*

1 Imagine picking a card randomly from a deck of cards, writing it down, then placing it back in the deck
before picking the next card: the same card could be sampled multiple times.

2 Leo Breiman, “Bagging Predictors”, Machine Learning 24, no. 2 (1996): 123-140.
3 In statistics, resampling with replacement is called bootstrapping.

4 Leo Breiman, “Pasting Small Votes for Classification in Large Databases and On-Line”, Machine Learning 36,
no. 1-2 (1999): 85-103.

Baggingand Pasting | 215

https://homl.info/20
https://homl.info/21

In other words, both bagging and pasting allow training instances to be sampled
several times across multiple predictors, but only bagging allows training instances to
be sampled several times for the same predictor. This sampling and training process
is represented in Figure 7-4.

O O O O

Predictors
(e.g., classifiers)

Training

Random sampling
(with replacement=bootstrap)

Training set

Figure 7-4. Bagging and pasting involve training several predictors on different random
samples of the training set

Once all predictors are trained, the ensemble can make a prediction for a new
instance by simply aggregating the predictions of all predictors. The aggregation
function is typically the statistical mode for classification (i.e., the most frequent
prediction, just like with a hard voting classifier), or the average for regression. Each
individual predictor has a higher bias than if it were trained on the original training
set, but aggregation reduces both bias and variance.® Generally, the net result is that
the ensemble has a similar bias but a lower variance than a single predictor trained on
the original training set.

As you can see in Figure 7-4, predictors can all be trained in parallel, via different
CPU cores or even different servers. Similarly, predictions can be made in parallel.
This is one of the reasons bagging and pasting are such popular methods: they scale
very well.

5 Bias and variance were introduced in Chapter 4.

216 | Chapter7: Ensemble Learning and Random Forests

Bagging and Pasting in Scikit-Learn

Scikit-Learn offers a simple API for both bagging and pasting: BaggingClassifier
class (or BaggingRegressor for regression). The following code trains an ensemble
of 500 decision tree classifiers:® each is trained on 100 training instances randomly
sampled from the training set with replacement (this is an example of bagging, but
if you want to use pasting instead, just set bootstrap=False). The n_jobs parameter
tells Scikit-Learn the number of CPU cores to use for training and predictions, and
-1 tells Scikit-Learn to use all available cores:

from import BaggingClassifier
from import DecisionTreeClassifier

bag_clf = BaggingClassifier(DecisionTreeClassifier(), n_estimators=500,
max_samples=100, n_jobs=-1, random_state=42)
bag_clf.fit(X_train, y_train)

A BaggingClassifier automatically performs soft voting instead
of hard voting if the base classifier can estimate class probabilities
(i.e., if it has a predict_proba() method), which is the case with
decision tree classifiers.

Figure 7-5 compares the decision boundary of a single decision tree with the decision
boundary of a bagging ensemble of 500 trees (from the preceding code), both trained
on the moons dataset. As you can see, the ensemble’s predictions will likely generalize
much better than the single decision tree’s predictions: the ensemble has a compara-
ble bias but a smaller variance (it makes roughly the same number of errors on the
training set, but the decision boundary is less irregular).

Bagging introduces a bit more diversity in the subsets that each predictor is trained
on, so bagging ends up with a slightly higher bias than pasting; but the extra diversity
also means that the predictors end up being less correlated, so the ensemble’s variance
is reduced. Overall, bagging often results in better models, which explains why
it's generally preferred. But if you have spare time and CPU power, you can use
cross-validation to evaluate both bagging and pasting and select the one that works
best.

6 max_samples can alternatively be set to a float between 0.0 and 1.0, in which case the max number of sampled
instances is equal to the size of the training set times max_samples.

Baggingand Pasting | 217

Decision Tree Decision Trees with Bagging

Figure 7-5. A single decision tree (left) versus a bagging ensemble of 500 trees (right)

Out-of-Bag Evaluation

With bagging, some training instances may be sampled several times for any given
predictor, while others may not be sampled at all. By default a BaggingClassifier
samples m training instances with replacement (bootstrap=True), where m is the
size of the training set. With this process, it can be shown mathematically that only
about 63% of the training instances are sampled on average for each predictor.” The
remaining 37% of the training instances that are not sampled are called out-of-bag
(OOB) instances. Note that they are not the same 37% for all predictors.

A bagging ensemble can be evaluated using OOB instances, without the need for
a separate validation set: indeed, if there are enough estimators, then each instance
in the training set will likely be an OOB instance of several estimators, so these
estimators can be used to make a fair ensemble prediction for that instance. Once
you have a prediction for each instance, you can compute the ensemble’s prediction
accuracy (or any other metric).

In Scikit-Learn, you can set oob_score=True when creating a BaggingClassifier
to request an automatic OOB evaluation after training. The following code demon-
strates this. The resulting evaluation score is available in the oob_score_ attribute:

>>> bag_clf = BaggingClassifier(DecisionTreeClassifier(), n_estimators=500,
oob_score=True, n_jobs=-1, random_state=42)

>>> bag_clf.fit(X_train, y_train)
>>> bag_clf.oob_score_
0.896

7 As m grows, this ratio approaches 1 - exp(-1) = 63%.

218 | Chapter7: Ensemble Learning and Random Forests

According to this OOB evaluation, this BaggingClassifier is likely to achieve about
89.6% accuracy on the test set. Let’s verify this:

>>> from import accuracy_score

>>> y_pred = bag_clf.predict(X_test)

>>> accuracy_score(y_test, y_pred)

0.92
We get 92% accuracy on the test. The OOB evaluation was a bit too pessimistic, just
over 2% too low.

The OOB decision function for each training instance is also available through the
oob_decision_function_ attribute. Since the base estimator has a predict_proba()
method, the decision function returns the class probabilities for each training
instance. For example, the OOB evaluation estimates that the first training instance
has a 67.6% probability of belonging to the positive class and a 32.4% probability of
belonging to the negative class:

>>> bag_clf.oob_decision_function_[:3] # probas for the first 3 instances
array([[0.32352941, 0.67647059],

[0.3375 , 0.6625 1,

[1. , 0. 1D

Random Patches and Random Subspaces

The BaggingClassifier class supports sampling the features as well. Sampling is
controlled by two hyperparameters: max_features and bootstrap_features. They
work the same way as max_samples and bootstrap, but for feature sampling instead
of instance sampling. Thus, each predictor will be trained on a random subset of the
input features.

This technique is particularly useful when you are dealing with high-dimensional
inputs (such as images), as it can considerably speed up training. Sampling both
training instances and features is called the random patches method.® Keeping all
training instances (by setting bootstrap=False and max_samples=1.0) but sampling
features (by setting bootstrap_features to True and/or max_features to a value
smaller than 1.0) is called the random subspaces method.’

Sampling features results in even more predictor diversity, trading a bit more bias for
a lower variance.

8 Gilles Louppe and Pierre Geurts, “Ensembles on Random Patches”, Lecture Notes in Computer Science 7523
(2012): 346-361.

9 Tin Kam Ho, “The Random Subspace Method for Constructing Decision Forests”, IEEE Transactions on
Pattern Analysis and Machine Intelligence 20, no. 8 (1998): 832-844.

Baggingand Pasting | 219

https://homl.info/22
https://homl.info/23

Random Forests

As we have discussed, a random forest' is an ensemble of decision trees, generally
trained via the bagging method (or sometimes pasting), typically with max_samples
set to the size of the training set. Instead of building a BaggingClassifier and
passing it a DecisionTreeClassifier, you can use the RandomForestClassifier
class, which is more convenient and optimized for decision trees' (similarly, there
is a RandomForestRegressor class for regression tasks). The following code trains a
random forest classifier with 500 trees, each limited to maximum 16 leaf nodes, using
all available CPU cores:

from import RandomForestClassifier

rnd_clf = RandomForestClassifier(n_estimators=500, max_leaf_nodes=16,
n_jobs=-1, random_state=42)
rnd_clf.fit(X_train, y_train)

y_pred_rf = rnd_clf.predict(X_test)

With a few exceptions, a RandomForestClassifier has all the hyperparameters of
a DecisionTreeClassifier (to control how trees are grown), plus all the hyperpara-
meters of a BaggingClassifier to control the ensemble itself.

The random forest algorithm introduces extra randomness when growing trees;
instead of searching for the very best feature when splitting a node (see Chapter 6),
it searches for the best feature among a random subset of features. By default, it
samples /1 features (where 7 is the total number of features). The algorithm results
in greater tree diversity, which (again) trades a higher bias for a lower variance,
generally yielding an overall better model. So, the following BaggingClassifier is
equivalent to the previous RandomForestClassifier:
bag_clf = BaggingClassifier(

DecisionTreeClassifier(max_features="sqrt", max_leaf_nodes=16),
n_estimators=500, n_jobs=-1, random_state=42)

Extra-Trees

When you are growing a tree in a random forest, at each node only a random subset
of the features is considered for splitting (as discussed earlier). It is possible to make
trees even more random by also using random thresholds for each feature rather than
searching for the best possible thresholds (like regular decision trees do). For this,
simply set splitter="random" when creating a DecisionTreeClassifier.

10 Tin Kam Ho, “Random Decision Forests”, Proceedings of the Third International Conference on Document
Analysis and Recognition 1 (1995): 278.

11 The BaggingClassifier class remains useful if you want a bag of something other than decision trees.

220 | Chapter7: Ensemble Learning and Random Forests

https://homl.info/24

A forest of such extremely random trees is called an extremely randomized trees' (or
extra-trees for short) ensemble. Once again, this technique trades more bias for a
lower variance. It also makes extra-trees classifiers much faster to train than regular
random forests, because finding the best possible threshold for each feature at every
node is one of the most time-consuming tasks of growing a tree.

You can create an extra-trees classifier using Scikit-Learn’s ExtraTreesClassifier
class. Its API is identical to the RandomForestClassifier class, except bootstrap
defaults to False. Similarly, the ExtraTreesRegressor class has the same API as the
RandomForestRegressor class, except bootstrap defaults to False.

It is hard to tell in advance whether a RandomForestClassifier
will perform better or worse than an ExtraTreesClassifier. Gen-
erally, the only way to know is to try both and compare them using
cross-validation.

Feature Importance

Yet another great quality of random forests is that they make it easy to measure the
relative importance of each feature. Scikit-Learn measures a feature’s importance by
looking at how much the tree nodes that use that feature reduce impurity on average,
across all trees in the forest. More precisely, it is a weighted average, where each
node’s weight is equal to the number of training samples that are associated with it
(see Chapter 6).

Scikit-Learn computes this score automatically for each feature after training, then
it scales the results so that the sum of all importances is equal to 1. You can access
the result using the feature_importances_ variable. For example, the following code
trains a RandomForestClassifier on the iris dataset (introduced in Chapter 4) and
outputs each feature’s importance. It seems that the most important features are
the petal length (44%) and width (42%), while sepal length and width are rather
unimportant in comparison (11% and 2%, respectively):

>>> from import load_iris

>>> iris = load_iris(as_frame=True)

>>> rnd_clf = RandomForestClassifier(n_estimators=500, random_state=42)

>>> rnd_clf.fit(iris.data, iris.target)

>>> for score, name in zip(rnd_clf.feature_importances_, iris.data.columns):
print(round(score, 2), name)

0.11 sepal length (cm)
0.02 sepal width (cm)

12 Pierre Geurts et al., “Extremely Randomized Trees”, Machine Learning 63, no. 1 (2006): 3-42.

Random Forests | 221

https://homl.info/25

0.44 petal length (cm)

0.42 petal width (cm)
Similarly, if you train a random forest classifier on the MNIST dataset (introduced
in Chapter 3) and plot each pixel's importance, you get the image represented in
Figure 7-6.

— Very important

Not important

Figure 7-6. MNIST pixel importance (according to a random forest classifier)

Random forests are very handy to get a quick understanding of what features actually
matter, in particular if you need to perform feature selection.

Boosting

Boosting (originally called hypothesis boosting) refers to any ensemble method that
can combine several weak learners into a strong learner. The general idea of most
boosting methods is to train predictors sequentially, each trying to correct its prede-
cessor. There are many boosting methods available, but by far the most popular
are AdaBoost” (short for adaptive boosting) and gradient boosting. Let’s start with
AdaBoost.

AdaBoost

One way for a new predictor to correct its predecessor is to pay a bit more attention
to the training instances that the predecessor underfit. This results in new predictors
focusing more and more on the hard cases. This is the technique used by AdaBoost.

13 Yoav Freund and Robert E. Schapire, “A Decision-Theoretic Generalization of On-Line Learning and an
Application to Boosting’, Journal of Computer and System Sciences 55, no. 1 (1997): 119-139.

222 | Chapter7: Ensemble Learning and Random Forests

https://homl.info/26

For example, when training an AdaBoost classifier, the algorithm first trains a base
classifier (such as a decision tree) and uses it to make predictions on the training set.
The algorithm then increases the relative weight of misclassified training instances.
Then it trains a second classifier, using the updated weights, and again makes predic-
tions on the training set, updates the instance weights, and so on (see Figure 7-7).

Figure 7-8 shows the decision boundaries of five consecutive predictors on the
moons dataset (in this example, each predictor is a highly regularized SVM classifier
with an RBF kernel).' The first classifier gets many instances wrong, so their weights
get boosted. The second classifier therefore does a better job on these instances, and
so on. The plot on the right represents the same sequence of predictors, except that
the learning rate is halved (i.e., the misclassified instance weights are boosted much
less at every iteration). As you can see, this sequential learning technique has some
similarities with gradient descent, except that instead of tweaking a single predictor’s
parameters to minimize a cost function, AdaBoost adds predictors to the ensemble,
gradually making it better.

Figure 7-7. AdaBoost sequential training with instance weight updates

14 This is just for illustrative purposes. SVMs are generally not good base predictors for AdaBoost; they are slow
and tend to be unstable with it.

Boosting | 223

Once all predictors are trained, the ensemble makes predictions very much like
bagging or pasting, except that predictors have different weights depending on their
overall accuracy on the weighted training set.

learning_rate = 1 learning_rate = 0.5

15

Figure 7-8. Decision boundaries of consecutive predictors

There is one important drawback to this sequential learning techni-
que: training cannot be parallelized since each predictor can only
be trained after the previous predictor has been trained and evalu-
ated. As a result, it does not scale as well as bagging or pasting.

Let’s take a closer look at the AdaBoost algorithm. Each instance weight w is initially
set to 1/m. A first predictor is trained, and its weighted error rate r, is computed on
the training set; see Equation 7-1.

Equation 7-1. Weighted error rate of the j* predictor

m) .
Wk > w® where @gz) is the jth predictor’s prediction for the M instance
i=1

l
@E-i) = (0

The predictor’s weight «; is then computed using Equation 7-2, where # is the
learning rate hyperparameter (defaults to 1)."* The more accurate the predictor is, the
higher its weight will be. If it is just guessing randomly, then its weight will be close
to zero. However, if it is most often wrong (i.e., less accurate than random guessing),
then its weight will be negative.

15 The original AdaBoost algorithm does not use a learning rate hyperparameter.

224 | Chapter7: Ensemble Learning and Random Forests

Equation 7-2. Predictor weight

1—7“]‘

ozjznlog 7“j

Next, the AdaBoost algorithm updates the instance weights, using Equation 7-3,
which boosts the weights of the misclassified instances.

Equation 7-3. Weight update rule
for i=1,2,---,m
w if 3 = 40
w?) exp (ozj) if ij(I') =yl

wd

Then all the instance weights are normalized (i.e., divided by ;. | w?),

Finally, a new predictor is trained using the updated weights, and the whole process
is repeated: the new predictor’s weight is computed, the instance weights are updated,
then another predictor is trained, and so on. The algorithm stops when the desired
number of predictors is reached, or when a perfect predictor is found.

To make predictions, AdaBoost simply computes the predictions of all the predictors
and weighs them using the predictor weights &, The predicted class is the one that
receives the majority of weighted votes (see Equation 7-4).

Equation 7-4. AdaBoost predictions

It
y(x) = arg?ax Y «; where N is the number of predictors

Scikit-Learn uses a multiclass version of AdaBoost called SAMME' (which stands for
Stagewise Additive Modeling using a Multiclass Exponential loss function). When there
are just two classes, SAMME is equivalent to AdaBoost. If the predictors can estimate
class probabilities (i.e., if they have a predict_proba() method), Scikit-Learn can use
a variant of SAMME called SAMME.R (the R stands for “Real”), which relies on class
probabilities rather than predictions and generally performs better.

16 For more details, see Ji Zhu et al., “Multi-Class AdaBoost”, Statistics and Its Interface 2, no. 3 (2009): 349-360.

Boosting | 225

https://homl.info/27

The following code trains an AdaBoost classifier based on 30 decision stumps using
Scikit-Learn’s AdaBoostClassifier class (as you might expect, there is also an
AdaBoostRegressor class). A decision stump is a decision tree with max_depth=1—in
other words, a tree composed of a single decision node plus two leaf nodes. This is
the default base estimator for the AdaBoostClassifier class:

from import AdaBoostClassifier

ada_clf = AdaBoostClassifier(
DecisionTreeClassifier(max_depth=1), n_estimators=30,
learning_rate=0.5, random_state=42)
ada_clf.fit(X_train, y_train)

If your AdaBoost ensemble is overfitting the training set, you can
try reducing the number of estimators or more strongly regulariz-
ing the base estimator.

Gradient Boosting

Another very popular boosting algorithm is gradient boosting.”” Just like AdaBoost,
gradient boosting works by sequentially adding predictors to an ensemble, each one
correcting its predecessor. However, instead of tweaking the instance weights at every
iteration like AdaBoost does, this method tries to fit the new predictor to the residual
errors made by the previous predictor.

Let’s go through a simple regression example, using decision trees as the base predic-
tors; this is called gradient tree boosting, or gradient boosted regression trees (GBRT).
First, let’s generate a noisy quadratic dataset and fit a DecisionTreeRegressor to it:

import as
from import DecisionTreeRegressor

np.random.seed(42)
X = np.random.rand(100, 1) - 0.5
y =3 * X[:, 0] ** 2 + 0.05 * np.random.randn(100) # y = 3x? + Gaussian noise

tree_regl = DecisionTreeRegressor(max_depth=2, random_state=42)
tree_regl.fit(X, y)

17 Gradient boosting was first introduced in Leo Breiman’s 1997 paper “Arcing the Edge” and was further
developed in the 1999 paper “Greedy Function Approximation: A Gradient Boosting Machine” by Jerome H.
Friedman.

226 | Chapter7: Ensemble Learning and Random Forests

https://homl.info/arcing
https://homl.info/gradboost
https://homl.info/28

Next, we'll train a second DecisionTreeRegressor on the residual errors made by the
first predictor:

y2 =y - tree_regl.predict(X)

tree_reg2 = DecisionTreeRegressor(max_depth=2, random_state=43)

tree_reg2.fit(X, y2)
And then well train a third regressor on the residual errors made by the second
predictor:

y3 = y2 - tree_reg2.predict(X)

tree_reg3 = DecisionTreeRegressor(max_depth=2, random_state=44)

tree_reg3.fit(X, y3)
Now we have an ensemble containing three trees. It can make predictions on a new
instance simply by adding up the predictions of all the trees:

>>> X_new = np.array([[-0.4], [0.], [0.5]])
>>> sum(tree.predict(X_new) for tree in (tree_regl, tree_reg2, tree_reg3))
array([0.49484029, 0.04021166, 0.75026781])

Figure 7-9 represents the predictions of these three trees in the left column, and the
ensemble’s predictions in the right column. In the first row, the ensemble has just one
tree, so its predictions are exactly the same as the first tree’s predictions. In the second
row, a new tree is trained on the residual errors of the first tree. On the right you can
see that the ensemble’s predictions are equal to the sum of the predictions of the first
two trees. Similarly, in the third row another tree is trained on the residual errors of
the second tree. You can see that the ensemble’s predictions gradually get better as
trees are added to the ensemble.

You can use Scikit-Learns GradientBoostingRegressor class to train GBRT ensem-
bles more easily (there’s also a GradientBoostingClassifier class for classifica-
tion). Much like the RandomForestRegressor class, it has hyperparameters to
control the growth of decision trees (e.g., max_depth, min_samples_leaf), as well
as hyperparameters to control the ensemble training, such as the number of trees
(n_estimators). The following code creates the same ensemble as the previous one:

from import GradientBoostingRegressor

gbrt = GradientBoostingRegressor(max_depth=2, n_estimators=3,
learning_rate=1.0, random_state=42)
gbrt.fit(X, vy)

Boosting | 227

Residuals and tree predictions Ensemble predictions

0.8

+ Training set S + Training set N
— hi(x1) o° — h(x1) = h1(x1) o°
20 % P
:
.
L.
oo
s
. ‘e *
- kL
:
KU o o °
0.0 RN A
. 3%
-0.2 . .
~0.4 ~0.2 0.0 02 0.4 0.4
06
. .
+ Residuals: y — hi(x1) .
0.4 ha(x1) o
r—
+ .
.
0.2 4 +I+I+ + N .
- + +
y I + + O
+ o+ + ot + +
0.0 +++ = ++1 + 0
+ +
+F # 23 A +
A .
024 +F T M
—0.4 ~0.2 .
-0.4 -0.2 0.0 02 0.4 -0.4 -0.2 0.0 02 0.4
0.6 0.8
b
+ Residuals: y — h1(x1) — ha(x1) * = h(x1) = hi(x1) + ha(x1) + h3(x1)
0.4 h3(x1) 0.6 o
.
.
02 0.4 s .
y + L+ + & 3
J
Feow f ot T s o
o+ - o+ o4 & .
0.0 = 7 o+ % RTE + 0.2 4 .
A + ¥ * ¥ *
& +
~0.21 . 0.0
+
~0.4 -0.2 . ‘
~0.4 -0.2 0.0 02 0.4 ~0.4 ~0.2 0.0 02 0.4
X1 X1

Figure 7-9. In this depiction of gradient boosting, the first predictor (top left) is trained
normally, then each consecutive predictor (middle left and lower left) is trained on the
previous predictor’s residuals; the right column shows the resulting ensemble’s predictions

The learning_rate hyperparameter scales the contribution of each tree. If you set
it to a low value, such as 0.05, you will need more trees in the ensemble to fit the
training set, but the predictions will usually generalize better. This is a regularization
technique called shrinkage. Figure 7-10 shows two GBRT ensembles trained with
different hyperparameters: the one on the left does not have enough trees to fit the
training set, while the one on the right has about the right amount. If we added more
trees, the GBRT would start to overfit the training set.

228 | Chapter7: Ensemble Learning and Random Forests

o8 learning_rate=1.0, n_estimators=3 learning_rate=0.05, n_estimators=92
8T —
074% —— Ensemble predictions
o
-
.
.
—6.4 —6.2 0:0 012 074 —6.4 —6.2 010 0!2 0?4
X1 X1

Figure 7-10. GBRT ensembles with not enough predictors (left) and just enough (right)

To find the optimal number of trees, you could perform cross-validation using
GridSearchCV or RandomizedSearchCV, as usual, but there’s a simpler way: if you set
the n_iter_no_change hyperparameter to an integer value, say 10, then the Gradient
BoostingRegressor will automatically stop adding more trees during training if it
sees that the last 10 trees didn't help. This is simply early stopping (introduced in
Chapter 4), but with a little bit of patience: it tolerates having no progress for a few
iterations before it stops. Let’s train the ensemble using early stopping:

gbrt_best = GradientBoostingRegressor(
max_depth=2, learning_rate=0.05, n_estimators=500,
n_iter_no_change=10, random_state=42)
gbrt_best.fit(X, y)

If you set n_iter_no_change too low, training may stop too early and the model will
underfit. But if you set it too high, it will overfit instead. We also set a fairly small

learning rate and a high number of estimators, but the actual number of estimators in
the trained ensemble is much lower, thanks to early stopping:

>>> gbrt_best.n_estimators_
92

When n_iter_no_change is set, the fit() method automatically splits the training
set into a smaller training set and a validation set: this allows it to evaluate the
model’s performance each time it adds a new tree. The size of the validation set is
controlled by the validation_fraction hyperparameter, which is 10% by default.
The tol hyperparameter determines the maximum performance improvement that
still counts as negligible. It defaults to 0.0001.

Boosting | 229

The GradientBoostingRegressor class also supports a subsample hyperparameter,
which specifies the fraction of training instances to be used for training each tree.
For example, if subsample=0.25, then each tree is trained on 25% of the training
instances, selected randomly. As you can probably guess by now, this technique
trades a higher bias for a lower variance. It also speeds up training considerably. This
is called stochastic gradient boosting.

Histogram-Based Gradient Boosting

Scikit-Learn also provides another GBRT implementation, optimized for large data-
sets: histogram-based gradient boosting (HGB). It works by binning the input features,
replacing them with integers. The number of bins is controlled by the max_bins
hyperparameter, which defaults to 255 and cannot be set any higher than this. Bin-
ning can greatly reduce the number of possible thresholds that the training algorithm
needs to evaluate. Moreover, working with integers makes it possible to use faster and
more memory-efficient data structures. And the way the bins are built removes the
need for sorting the features when training each tree.

As a result, this implementation has a computational complexity of O(bxm) instead
of O(nxmxlog(m)), where b is the number of bins, m is the number of training
instances, and » is the number of features. In practice, this means that HGB can
train hundreds of times faster than regular GBRT on large datasets. However, binning
causes a precision loss, which acts as a regularizer: depending on the dataset, this may
help reduce overfitting, or it may cause underfitting.

Scikit-Learn provides two classes for HGB: HistGradientBoostingRegressor and
HistGradientBoostingClassifier. Theyre similar to GradientBoostingRegressor
and GradientBoostingClassifier, with a few notable differences:

o Early stopping is automatically activated if the number of instances is greater
than 10,000. You can turn early stopping always on or always off by setting the
early_stopping hyperparameter to True or False.

 Subsampling is not supported.
e n_estimators is renamed to max_1iter.

o The only decision tree hyperparameters that can be tweaked are max_leaf_nodes,
min_samples_leaf, and max_depth.

230 | Chapter7: Ensemble Learning and Random Forests

The HGB classes also have two nice features: they support both categorical features
and missing values. This simplifies preprocessing quite a bit. However, the categorical
features must be represented as integers ranging from 0 to a number lower than
max_bins. You can use an OrdinalEncoder for this. For example, heres how to
build and train a complete pipeline for the California housing dataset introduced in
Chapter 2:

from sklearn.pipeline import make_pipeline

from sklearn.compose import make_column_transformer

from sklearn.ensemble import HistGradientBoostingRegressor
from sklearn.preprocessing import OrdinalEncoder

hgb_reg = make_pipeline(
make_column_transformer((OrdinalEncoder(), ["ocean_proximity"]),
remainder="passthrough"),
HistGradientBoostingRegressor(categorical_features=[0], random_state=42)

)
hgb_reg.fit(housing, housing_labels)

The whole pipeline is just as short as the imports! No need for an imputer, scaler,
or a one-hot encoder, so its really convenient. Note that categorical_features
must be set to the categorical column indices (or a Boolean array). Without any
hyperparameter tuning, this model yields an RMSE of about 47,600, which is not too
bad.

Several other optimized implementations of gradient boosting are
available in the Python ML ecosystem: in particular, XGBoost, Cat-
Boost, and LightGBM. These libraries have been around for several
years. They are all specialized for gradient boosting, their APIs are
very similar to Scikit-Learn’s, and they provide many additional
features, including GPU acceleration; you should definitely check
them out! Moreover, the TensorFlow Random Forests library pro-
vides optimized implementations of a variety of random forest
algorithms, including plain random forests, extra-trees, GBRT, and
several more.

Boosting | 231

https://github.com/dmlc/xgboost
https://catboost.ai
https://catboost.ai
https://lightgbm.readthedocs.io
https://tensorflow.org/decision_forests

Stacking

The last ensemble method we will discuss in this chapter is called stacking (short for
stacked generalization).'® It is based on a simple idea: instead of using trivial functions
(such as hard voting) to aggregate the predictions of all predictors in an ensemble,
why don’t we train a model to perform this aggregation? Figure 7-11 shows such an
ensemble performing a regression task on a new instance. Each of the bottom three
predictors predicts a different value (3.1, 2.7, and 2.9), and then the final predictor
(called a blender, or a meta learner) takes these predictions as inputs and makes the
final prediction (3.0).

O

Blending

@ Predictions

O

Predict

%

New instance
N

Figure 7-11. Aggregating predictions using a blending predictor

To train the blender, you first need to build the blending training set. You can
use cross_val_predict() on every predictor in the ensemble to get out-of-sample
predictions for each instance in the original training set (Figure 7-12), and use these

18 David H. Wolpert, “Stacked Generalization”, Neural Networks 5, no. 2 (1992): 241-259.

232 | Chapter7: Ensemble Learning and Random Forests

https://homl.info/29

can be used as the input features to train the blender; and the targets can simply be
copied from the original training set. Note that regardless of the number of features
in the original training set (just one in this example), the blending training set will
contain one input feature per predictor (three in this example). Once the blender is
trained, the base predictors are retrained one last time on the full original training set.

Blending

Train
to combine predictions

I; i Blending training set «- -------- ,

]

1

]

1

]

)

1

4\ F [Cross-validation |
A predictions !
)

1

1

]

O !
1

. 1
Predictors :

)

]

1

1

1

:

)

1

1

Copy the targets,

o -
R Trainingset == ===-=-=-=----=-<

Figure 7-12. Training the blender in a stacking ensemble

It is actually possible to train several different blenders this way (e.g., one using linear
regression, another using random forest regression) to get a whole layer of blenders,
and then add another blender on top of that to produce the final prediction, as shown
in Figure 7-13. You may be able to squeeze out a few more drops of performance by
doing this, but it will cost you in both training time and system complexity.

Stacking | 233

* New instance
(X

Figure 7-13. Predictions in a multilayer stacking ensemble

Scikit-Learn provides two classes for stacking ensembles: StackingClassifier and
StackingRegressor. For example, we can replace the VotingClassifier we used at
the beginning of this chapter on the moons dataset with a StackingClassifier:

from sklearn.ensemble import StackingClassifier

stacking_clf = StackingClassifier(
estimators=[
('lr', LogisticRegression(random_state=42)),
('rf', RandomForestClassifier(random_state=42)),
('svc', SVC(probability=True, random_state=42))
1,
final_estimator=RandomForestClassifier(random_state=43),
cv=5 # number of cross-validation folds
)
stacking_clf.fit(X_train, y_train)

For each predictor, the stacking classifier will call predict_proba() if available; if not
it will fall back to decision_function() or, as a last resort, call predict(). If you

don’t provide a final estimator, StackingClassifier will use LogisticRegression
and StackingRegressor will use RidgeCV.

234 | Chapter7: Ensemble Learning and Random Forests

If you evaluate this stacking model on the test set, you will find 92.8% accuracy,
which is a bit better than the voting classifier using soft voting, which got 92%.

In conclusion, ensemble methods are versatile, powerful, and fairly simple to use.
Random forests, AdaBoost, and GBRT are among the first models you should test for
most machine learning tasks, and they particularly shine with heterogeneous tabular
data. Moreover, as they require very little preprocessing, theyre great for getting a
prototype up and running quickly. Lastly, ensemble methods like voting classifiers
and stacking classifiers can help push your system’s performance to its limits.

Exercises

1. If you have trained five different models on the exact same training data, and
they all achieve 95% precision, is there any chance that you can combine these
models to get better results? If so, how? If not, why?

2. What is the difference between hard and soft voting classifiers?

3. Is it possible to speed up training of a bagging ensemble by distributing it across
multiple servers? What about pasting ensembles, boosting ensembles, random
forests, or stacking ensembles?

4. What is the benefit of out-of-bag evaluation?

5. What makes extra-trees ensembles more random than regular random forests?
How can this extra randomness help? Are extra-trees classifiers slower or faster
than regular random forests?

6. If your AdaBoost ensemble underfits the training data, which hyperparameters
should you tweak, and how?

7. If your gradient boosting ensemble overfits the training set, should you increase
or decrease the learning rate?

8. Load the MNIST dataset (introduced in Chapter 3), and split it into a training
set, a validation set, and a test set (e.g., use 50,000 instances for training, 10,000
for validation, and 10,000 for testing). Then train various classifiers, such as a
random forest classifier, an extra-trees classifier, and an SVM classifier. Next, try
to combine them into an ensemble that outperforms each individual classifier
on the validation set, using soft or hard voting. Once you have found one, try
it on the test set. How much better does it perform compared to the individual
classifiers?

9. Run the individual classifiers from the previous exercise to make predictions on
the validation set, and create a new training set with the resulting predictions:
each training instance is a vector containing the set of predictions from all your
classifiers for an image, and the target is the images class. Train a classifier
on this new training set. Congratulations—you have just trained a blender, and

Exercises | 235

together with the classifiers it forms a stacking ensemble! Now evaluate the
ensemble on the test set. For each image in the test set, make predictions with all
your classifiers, then feed the predictions to the blender to get the ensemble’s pre-
dictions. How does it compare to the voting classifier you trained earlier? Now
try again using a StackingClassifier instead. Do you get better performance? If
s0, why?

Solutions to these exercises are available at the end of this chapter’s notebook, at
https://homl.info/colab3.

236 | Chapter7: Ensemble Learning and Random Forests

https://homl.info/colab3

	Part I. The Fundamentals of Machine Learning
	Chapter 7. Ensemble Learning and Random Forests
	Voting Classifiers
	Bagging and Pasting
	Bagging and Pasting in Scikit-Learn
	Out-of-Bag Evaluation
	Random Patches and Random Subspaces

	Random Forests
	Extra-Trees
	Feature Importance

	Boosting
	AdaBoost
	Gradient Boosting
	Histogram-Based Gradient Boosting

	Stacking
	Exercises

