
Chapter 13

Nonlinear Classification Models

The previous chapter described models that were intrinsically linear—the
structure of the model would produce linear class boundaries unless nonlinear
functions of the predictors were manually specified. This chapter deals with
some intrinsically nonlinear models. As in the regression sections, there are
other nonlinear models that use trees or rules for modeling the data. These
are discussed in the next chapter.

With a few exceptions (such as FDA models, Sect. 13.3), the techniques
described in this chapter can be adversely affected when a large number
of non-informative predictors are used as inputs. As such, combining these
models with feature selection tools (described in Chap. 19) can significantly
increase performance. The analyses shown in this chapter are conducted with-
out supervised removal of non-informative predictors, so performance is likely
to be less than what could be achieved with a more comprehensive approach.

13.1 Nonlinear Discriminant Analysis

We saw in the previous chapter that the linear boundaries of linear discrim-
inant analysis came about by making some very specific assumptions for the
underlying distributions of the predictors. In this section, we will explore
ways that linear discriminant methods as described in the previous chapter
are modified in order to handle data that are best separated by nonlinear
structures. These methods include quadratic discriminant analysis (QDA),
regularized discriminant analysis (RDA), and mixture discriminant analysis
(MDA).
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330 13 Nonlinear Classification Models

Quadratic and Regularized Discriminant Analysis

Recall that linear discriminant analysis could be formulated such that the
trained model minimized the total probability of misclassification. The con-
sequence of the assumption that the predictors in each class shared a common
covariance structure was that the class boundaries were linear functions of
the predictors.

In quadratic discriminant models, this assumption is relaxed so that a
class-specific covariance structure can be accommodated. The primary reper-
cussion of this change is that the decision boundaries now become quadrati-
cally curvilinear in the predictor space. The increased discriminant function
complexity may improve model performance for many problems. However,
another repercussion of this generalization is that the data requirements be-
come more stringent. Since class-specific covariance matrices are utilized, the
inverse of the matrices must exist. This means that the number of predictors
must be less than the number of cases within each class. Also, the predictors
within each class must not have pathological levels of collinearity. Addition-
ally, if the majority of the predictors in the data are indicators for discrete
categories, QDA will only to able to model these as linear functions, thus
limiting the effectiveness of the model.

In pure mathematical optimization terms, LDA and QDA each minimize
the total probability of misclassification assuming that the data can truly
be separated by hyperplanes or quadratic surfaces. Reality may be, however,
that the data are best separated by structures somewhere between linear and
quadratic class boundaries. RDA, proposed by Friedman (1989), is one way
to bridge the separating surfaces between LDA and QDA. In this approach,
Friedman advocated the following covariance matrix:

˜Σ� (λ) = λΣ� + (1− λ)Σ, (13.1)

where Σ� is the covariance matrix of the �th class and Σ is the pooled covari-
ance matrix across all classes. It is easy to see that the tuning parameter, λ,
enables the method to flex the covariance matrix between LDA (when λ = 0)
and QDA (when λ = 1). If a model is tuned over λ, a data-driven approach
can be used to choose between linear or quadratic boundaries as well as
boundaries that fall between the two.

RDA makes another generalization of the data: the pooled covariance
matrix can be allowed to morph from its observed value to one where the
predictors are assumed to be independent (as represented by an identity
matrix):

Σ (γ) = γΣ+ (1− γ)σ2I, (13.2)

where σ2 is the common variance of all predictors and I is the identity matrix
(i.e., the diagonal entries of the matrix are 1 and all other entries are 0),
which forces the model to assume that all of the predictors are independent.
Recall the familiar two-class example with two predictors, last seen in Chap. 4
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(p. 69). There is a high correlation between these predictors indicating that γ
values near 1 are most likely to be appropriate. However, in higher dimensions,
it becomes increasingly more difficult to visually recognize such patterns, so
tuning an RDA model over λ and γ enables the training set data to decide
the most appropriate assumptions for the model. Note, however, that unless
γ is one or λ is zero, the more stringent data standards of QDA must be
applied.

Mixture Discriminant Analysis

MDA was developed by Hastie and Tibshirani (1996) as an extension of
LDA. LDA assumes a distribution of the predictor data such that the class-
specific means are different (but the covariance structure is independent of the
classes). MDA generalizes LDA in a different manner; it allows each class to be
represented bymultiplemultivariate normal distributions. These distributions
can have different means but, like LDA, the covariance structures are assumed
to be the same. Figure 13.1 presents this idea with a single predictor. Here,
each class is represented by three normal distributions with different means
and common variances. These are effectively sub-classes of the data. The
modeler would specify how many different distributions should be used and
the MDA model would determine their optimal locations in the predictor
space.

How are the distributions aggregated so that a class prediction can be cal-
culated? In the context of Bayes’ Rule (Eq. 12.4), MDA modifies Pr[X|Y =
C�]. The class-specific distributions are combined into a single multivariate
normal distribution by creating a per-class mixture. Suppose D�k(x) is the
discriminant function for the kth subclass in the �th class, the overall dis-
criminant function for the �th class would be proportional to

D�(x) ∝
L�
∑

k=1

φ�kD�k(x),

where L� is the number of distributions being used for the �th class and the
φ�k are the mixing proportions that are estimated during training. This over-
all discriminant function can then produce class probabilities and predictions.

For this model, the number of distributions per class is the tuning
parameter for the model (they need not be equal per class). Hastie and
Tibshirani (1996) describe algorithms for determining starting values for
the class-specific means required for each distribution, along with numerical
optimization routines to solve the nontrivial equations. Also, similar to LDA,
Clemmensen et al. (2011) describe using ridge- and lasso-like penalties to
MDA, which would integrate feature selection into the MDA model.
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Fig. 13.1: For a single predictor, three distinct subclasses are determined
within each class using mixture discriminant analysis
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Fig. 13.2: The tuning parameter profile for the MDA model for the grants
data. The optimal number of subclasses is 1, which is identical to performing
LDA

For the grant data, MDA was tuned over the number of subclasses per
group with possible values ranging from 1 to 8 (Fig. 13.2). The areas under
the ROC curve was optimized using one subclass per group, which is the same
as performing LDA. MDA may be adverse to more complex discriminant
boundaries in these data due to the large number of binary predictors.
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13.2 Neural Networks

As we have seen with other classification methods, such as partial least
squares discriminant analysis, the C classes can be encoded into C binary
columns of dummy variables and then used as the outcomes for the model.
Although the previous discussion on neural networks for regression used a
single response, the model can easily handle multiple outputs for both regres-
sion and classification. For neural network classification, this is the approach
discussed here.

Figure 13.3 shows a diagram of the model architecture for classification.
Instead of a single output (as in Fig. 7.1 for regression), the bottom layer has
multiple nodes for each class. Note that, unlike neural networks for regression,
an additional nonlinear transformation is used on the combination of hidden
units. Each class is predicted by a linear combination of the hidden units that
have been transformed to be between zero and one (usually by a sigmoidal
function). However, even though the predictions are between zero and one
(due the extra sigmoidal function), they aren’t “probability-like” since they
do not add up to one. The softmax transformation described in Sect. 11.1 is
used here to ensure that the outputs of the neural network comply with this
extra constraint:

f∗
i�(x) =

efi�(x)
∑

l e
fil(x)

,

where fi�(x) is the model prediction of the �th class and the ith sample.
What should the neural network optimize to find appropriate parameter

estimates? For regression, the sum of the squared errors was the focus and,
for this case, it would be altered to handle multiple outputs by accumulating
the errors across samples and the classes:

C
∑

�=1

n
∑

i=1

(yi� − f∗
i�(x))

2
,

where yi� is the 0/1 indicator for class �. For classification, this can be ef-
fective method for determining parameter values. The class with the largest
predicted value would be used to classify the sample.

Alternatively, parameter estimates can be found that can maximize the
likelihood of the Bernoulli distribution, which corresponds to a binomial like-
lihood function (Eq. 12.1) with a sample size of n = 1:

C
∑

�=1

n
∑

i=1

yi� ln f
∗
i�(x). (13.3)

This function also goes by then names entropy or cross-entropy, which is used
in some of the tree-based models discussed in the next chapter (Sect. 14). The
likelihood has more theoretical validity than the squared error approach,
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Fig. 13.3: A diagram of a neural network for classification with a single hidden
layer. The hidden units are linear combinations of the predictors that have
been transformed by a sigmoidal function. The output is also modeled by a
sigmoidal function

although studies have shown that differences in performance tend to be neg-
ligible (Kline and Berardi 2005). However, Bishop (1995) suggests that the
entropy function should more accurately estimate small probabilities than
those generated by the squared-error function.
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Fig. 13.4: Classification boundaries for neural networks with varying levels
of smoothing and regularization. As weight decay and number of models
increase, the boundaries become smoother

Like their regression counterparts, neural networks for classification have
a significant potential for over-fitting. When optimizing the sums of squares
error or entropy, weight decay attenuates the size of the parameter estimates.
This can lead to much smoother classification boundaries. Also, as previously
discussed, model averaging helps reduce over-fitting. In this case, the class
probability estimates (f∗

i�(x)) would be averaged across networks and these
average values would be used to classify samples.

Figure 13.4 shows examples of models fit with different amounts of weight
decay and model averaging. Each model was initiated with the same random
seed, used three hidden units, and was optimized for the sums of squared
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errors. The first row of models without weight decay shows significant over-
fitting, and, in these cases, model averaging has a marginal impact. The small
amount of decay shown in the second row shows an improvement (as does the
model averaging) but is still over-adapting to the training data when a single
network is used. The highest amount of weight decay showed the best results
with virtually no impact of model averaging. For these data, a single model
with weight decay is probably the best choice since it is computationally least
expensive.

Many other aspects of neural network classification models mirror their
regression counterparts. Increasing the number of predictors or hidden units
will still give rise to a large number of parameters in the model and the
same numerical routines, such as back-propagation, can be used to estimate
these parameters. Collinearity and non-informative predictors will have a
comparable impact on model performance.

Several types of neural networks were fit to the grant data. First, single
network models (i.e., no model averaging) were fit using entropy to estimate
the model coefficients. The models were tuned over the number of units in
the hidden layer (ranging from 1 to 10), as well as the amount of weight decay
(λ = 0, 0.1, 1, 2). The best model used eight hidden units with λ = 2 and
had an area under the ROC curve of 0.884. The tuning parameter profiles
show a significant amount of variation, with no clear trend across the tuning
parameters.

To counter this variation, the same tuning process was repeated, but 10
networks were fit to the data and their results averaged. Here, the best model
had six hidden units with λ = 2 and had an area under the ROC curve of
0.884.

To increase the effectiveness of the model, various transformations of the
data were evaluated. One in particular, the spatial sign transformation, had
a significant positive impact on the performance of the neural networks for
these data. When combined with a single network model, the area under the
curve was 0.903. When model averaging was used, the area under the ROC
curve was 0.911.

Figure 13.5 visualizes the tuning parameter profiles across the various
models. When no data transformations are used, model averaging increases
the performance of the models across all of the tuning parameters. It also
has the effect of smoothing out differences between the models; the profile
curves are much closer together. When the spatial sign transformation is used
with the single network model, it shows an improvement over the model with-
out the transformation. However, performance appears to be optimized when
using both model averaging and the spatial sign.
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Fig. 13.5: Top: The models for grant success were tuned under four different
conditions: with and without a transformation on the predictors and with and
without model averaging. Bottom: The ROC curve for the 2008 holdout set
when a model averaged network is used with the spatial sign transformation
(area under the curve: 0.911)
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1 Create a new response matrix of binary dummy variable columns for
each of the C classes

2 Create a multivariate regression model using any method that
generates slopes and intercepts for predictors or functions of the
predictors (e.g. linear regression, MARS, etc)

3 Post-process the model parameters using the optimal scoring
technique

4 Use the adjusted regression coefficients as discriminant values

Algorithm 13.1: The flexible discriminant analysis algorithm for
generalizing LDA model (Hastie et al. 1994)

13.3 Flexible Discriminant Analysis

In the last chapter, the motivation for classical linear discriminant analysis
was based on minimizing the total probability of misclassification. It turns
out that the same model can be derived in a completely different manner.
Hastie et al. (1994) describe a process where, for C classes, a set of C linear
regression models can be fit to binary class indicators and show that the
regression coefficients from these models can be post-processed to derive the
discriminant coefficients (see Algorithm 13.1). This allows the idea of linear
discriminant analysis to be extended in a number of ways. First, many of the
models in Chaps. 6 and 7, such as the lasso, ridge regression, or MARS, can be
extended to create discriminant variables. For example, MARS can be used
to create a set of hinge functions that result in discriminant functions that are
nonlinear combinations of the original predictors. As another example, the
lasso can create discriminant functions with feature selection. This conceptual
framework is referred to as flexible discriminant analysis (FDA).

We can illustrate the nonlinear nature of the flexible discriminant algo-
rithm using MARS with the example data in Fig. 4.1 (p. 63). Recall that
MARS has two tuning parameters: the number of retained terms and the de-
gree of predictors involved in the hinge functions. If we use an additive model
(i.e., a first-degree model), constrain the maximum number of retained terms
to 2 and have a binary response of class membership, then discriminant func-
tion is

D(A,B) = 0.911− 19.1× h(0.2295−B)

In this equation, h(·) is the hinge function described in Eq. 7.1 on p. 146. If
the discriminant function is greater than zero, the sample would be predicted
to be the first class. In this model, the prediction equation only used the
one variable, and the left-hand panel in Fig. 13.6 shows the resulting class
boundaries. The class boundary is a horizontal line since predictor B is the
only predictor in the split.
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Fig. 13.6: Classification boundaries for two FDA models of different complex-
ities

The effectiveness of FDA is not apparent when MARS is so severely re-
stricted. If the maximum number of retained terms is relaxed to 4, then the
discriminant equation is estimated to be

D(A,B) =− 0.242

+ 11.6× h(A− 0.1322)

− 13.9× h(A− 0.2621)

− 12.1× h(0.2295−B).

This FDA model uses both predictors and its class boundary is shown in
the right-hand panel of Fig. 13.6. Recall that the MARS hinge function h
sets one side of the breakpoint to zero. Because of this, the hinge functions
isolate certain regions of the data. For example, if A < 0.1322 and B >
0.2295, none of the hinge functions affect the prediction and the negative
intercept in the model indicates that all points in this region correspond to
the second class. However, if A > 0.2621 and B < 0.2295, the prediction
is a function of all three hinge functions. Essentially, the MARS features
isolate multidimensional polytopal regions of the predictor space and predict
a common class within these regions.

An FDA model was tuned and trained for the grant application model.
First-degree MARS hinge functions were evaluated where the number of re-
tained terms ranged from 2 to 25. Performance increases as the number of
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Fig. 13.7: Top: The parameter tuning profile for the FDA model. Bottom:
The FDA ROC curve (area under the curve: 0.924) is shown in relation to
the curve for the previous neural network model (in grey)

terms increases and plateaus around 15 terms (see Fig. 13.7). The numeri-
cally optimal value was 19 although there is clearly some flexibility in this
parameter. For this model, the area under the ROC curve for the 2008 data
was estimated to be 0.924, with a sensitivity of 82.5% and a specificity of
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86.4%. Although the FDA model contained 19 terms, 14 unique predictors
were used (of a possible 1,070). Also, nine of the model terms were simple
linear functions of binary categorical predictors. The discriminant equation
for the model is

D(x) = 0.85

− 0.53× h(1− number of chief investigators)

+ 0.11× h(number of successful grants by chief investigators− 1)

− 1.1× h(1− number of successful grants by chief investigators)

− 0.23× h(number of unsuccessful grants by chief investigators− 1)

+ 1.4× h(1− number of unsuccessful grants by chief investigators)

+ 0.18× h(number of unsuccessful grants by chief investigators− 4)

− 0.035× h(8− number of A journal papers by all investigators)

− 0.79× sponsor code 24D

− 1× sponsor code 59C

− 0.98× sponsor code 62B

− 1.4× sponsor code 6B

+ 1.2× unknown sponsor

− 0.34× contract value band B

− 1.5× unknown contract value band

− 0.34× grant category code 30B

+ 0.3× submission day of Saturday

+ 0.022× h(54− numeric day of the year)

+ 0.076× h(numeric day of the year− 338).

From this equation, the exact effect of the predictors on the model can be
elucidated. For example, as the number of chief investigators increases from
zero to one, the probability of a successful grant increases. Having more than
one chief investigator does not affect the model since the opposite hinge func-
tion was eliminated. Also, the probability of success increases with the num-
ber of successful grants by chief investigators and decreases with the number
of unsuccessful grants by chief investigators; this is a similar result to what
was found with previous models. For the day of the year, the probability of
a successful grant decreases as the year proceeds and has no affect on the
model until late in the year when the probability of success increases.

The discriminant function shown above can be additionally transformed to
produce class probability estimates. Visually, the probability trends for the
continuous predictors are shown in Fig. 13.8. Recall that since an additive
model was used, the probability profile for each variable can be considered
independently of the others. Here, the terms for the number of chief inves-
tigators and the number of publications in A-level journals only affect the
prediction up to a point. This is the result of the pruning algorithm elimi-
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Fig. 13.8: Probability profiles for each of the continuous predictors used in
the additive FDA model

nating one of each predictor’s reflective pairs. The profile for the day of the
year has two terms that remain from two different reflected pairs. As a re-
sult, this predictor only affects the model in the early and late periods of the
year. In the last chapter, there was good evidence that this predictor had a
nonlinear relationship with the outcome that was approximated by adding
a quadratic function of the predictor. Here, FDA also tries to approximate
the same relationship. One predictor, the number of unsuccessful grants by
chief investigators, has multiple terms in the model, which is reflected in the
smoother probability profile. Of the binary terms, the predictors for contract
value band B, unknown contract value band, grant category code 30B, spon-
sor code 24D, sponsor code 59C, sponsor code 62B, and sponsor code 6B had
a positive effect on the probability of success while the terms for submission
day of Saturday and unknown sponsor were associated with a decrease in the
success rate.

Bagging the model coerces FDA to produce smoother relationships
between the predictors and the outcome. MARS models are moderately un-
stable predictors since they use exhaustive searches of the data and the splits
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are based on specific data points in the training set.1 Bagging the FDA model
will have the effect of adding more splits for the important predictors, leading
to a better approximation. However, our experience is that bagging MARS
or FDA models has a marginal impact on model performance and increased
number of terms diminishes the interpretation of the discriminant equation
(similar to the trend shown in Fig. 8.16).

Since many of the predictors in the FDA model are on different scales, it
is difficult to use the discriminant function to uncover which variables have
the most impact on the outcome. The same method of measuring variable
importance described in Sect. 7.2 can be employed here. The five most im-
portant predictors are, in order: unknown contract value band, the number
of unsuccessful grants by chief investigators, the number of successful grants
by chief investigators, unknown sponsor, and numeric day of the year.

As an alternative to using MARS within the FDA framework, Milborrow
(2012) describes a two-phase approach with logistic regression when there
are two classes. Here, an initial MARS model is created to predict the binary
dummy response variable (i.e., the first two steps in Algorithm 13.1). After
this, a logistic regression model is created with the MARS features produced
by the original dummy variable model. Our preliminary experiences with this
approach are that it yields results very similar to the FDA model.

13.4 Support Vector Machines

Support vector machines are a class of statistical models first developed in
the mid-1960s by Vladimir Vapnik. In later years, the model has evolved
considerably into one of the most flexible and effective machine learning
tools available, and Vapnik (2010) provides a comprehensive treatment. The
regression version of these models was previously discussed in Sect. 7.3, which
was an extension of the model from its original development in the classifica-
tion setting. Here we touch on similar concepts from SVM for regression and
layout the case for classification.

Consider the enviable problem shown in the left panel of Fig. 13.9 where
two variables are used to predict two classes of samples that are completely
separable. As shown on the left, there are a multitude (in fact an infinite)
number of linear boundaries that perfectly classify these data. Given this,
how would we choose an appropriate class boundary? Many performance
measures, such as accuracy, are insufficient since all the curves would be
deemed equivalent. What would a more appropriate metric be for judging
the efficacy of a model?

Vapnik defined an alternate metric called the margin. Loosely speaking,
the margin is the distance between the classification boundary and the closest

1 However, MARS and FDA models tend to be more stable than tree-based models
since they use linear regression to estimate the model parameters.
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Fig. 13.9: Left: A data set with completely separable classes. An infinite
number of linear class boundaries would produce zero errors. Right: The class
boundary associated with the linear maximum margin classifier. The solid
black points indicate the support vectors

training set point. For example, the right-hand panel of Fig. 13.9 shows one
possible classification boundary as a solid line. The dashed lines on both sides
of the boundary are at the maximum distance from the line to the closest
training set data (equidistant from the boundary line). In this example the
three data points are equally closest to the classification boundary and are
highlighted with solid black symbols. The margin defined by these data points
can be quantified and used to evaluate possible models. In SVM terminology,
the slope and intercept of the boundary that maximize the buffer between
the boundary and the data is known as the maximum margin classifier.

Let’s explore a few of the mathematical constructs of SVM in the context
of a simple example in order to better understand the inner workings of the
method. Suppose we have a two-class problem and we code the class #1
samples with a value of 1 and the class #2 samples with −1. Also, let the
vectors xi contain the predictor data for a training set sample. The maximum
margin classifier creates a decision valueD(x) that classifies samples such that
if D(x) > 0 we would predict a sample to be class #1, otherwise class #2.
For an unknown sample u, the decision equation can be written in a similar
form as a linear discriminant function that is parameterized in terms of an
intercept and slopes as

D(u) = β0 + β′u

= β0 +
P
∑

j=1

βjuj .
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Notice that this equation works from the viewpoint of the predictors. This
equation can be transformed so that the maximum margin classifier can be
written in terms of each data point in the sample. This changes the equa-
tion to

D(u) = β0 +

P
∑

j=1

βjuj

= β0 +
n
∑

i=1

yiαix
′
iu (13.4)

with αi ≥ 0 (similar to Eq. 7.2). It turns out that, in the completely separable
case, the α parameters are exactly zero for all samples that are not on the
margin. Conversely, the set of nonzero α values are the points that fall on
the boundary of the margin (i.e., the solid black points in Fig. 13.9). Because
of this, the predictor equation is a function of only a subset of the training
set points and these are referred to as the support vectors. Interestingly, the
prediction function is only a function of the training set samples that are
closest to the boundary and are predicted with the least amount of certainty.2

Since the prediction equation is supported solely by these data points, the
maximum margin classifier is the usually called the support vector machine.

On first examination, Eq. 13.4 may appear somewhat arcane. However, it
can shed some light on how support vector machines classify new samples.
Consider Fig. 13.10 where a new sample, shown as a solid grey circle, is pre-
dicted by the model. The distances between each of the support vectors and
the new sample are as grey dotted lines.

For these data, there are three support vectors, and therefore contain
the only information necessary for classifying the new sample. The meat of
Eq. 13.4 is the summation of the product of: the sign of the class, the model
parameter, and the dot product between the new sample and the support
vector predictor values. The following table shows the components of this
sum, broken down for each of the three support vectors:

True Dot
class product yi αi Product

SV 1 Class 2 −2.4 −1 1.00 2.40
SV 2 Class 1 5.1 1 0.34 1.72
SV 3 Class 1 1.2 1 0.66 0.79

The dot product, x′
iu, can be written as a product of the distance of xi from

the origin, the distance of u from the origin, and the cosine of the angle
between xi and u (Dillon and Goldstein 1984).

2 Recall a similar situation with support vector regression models where the prediction
function was determined by the samples with the largest residuals.
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Fig. 13.10: Prediction of a new sample using a support vector machine. The
final value of the decision equation is D(u) = 0.583. The grey lines indicate
the distance of the new sample to the support vectors

Based on the parameter estimates αi, the first support vector has the
largest single effect on the prediction equation (all other things being equal)
and it has a negative slope. For our new sample, the dot product is negative,
so the total contribution of this point is positive and pushes the prediction
towards the first class (i.e., a positive value of the decision function D(u)).
The remaining two support vectors have positive dot products and an over-
all product that increases the decision function value for this sample. For
this model, the intercept is −4.372; D(u) for the new sample is therefore
0.583. Since this value is greater than zero, the new sample has the highest
association with the first class.

What happens when the classes are not completely separable? Cortes and
Vapnik (1995) develop extensions to the early maximum margin classifier to
accommodate this situation. Their formulation puts a cost on the sum of the
training set points that are on the boundary or on the wrong side of the
boundary. When determining the estimates of the α values, the margin is
penalized when data points are on the wrong side of the class boundary or
inside the margin. The cost value would be a tuning parameter for the model
and is the primary mechanism to control the complexity of the boundary.
For example, as the cost of errors increases, the classification boundary will
shift and contort itself so that it correctly classifies as many of the training
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set points as possible. Figure 4.2 in Chap. 4 demonstrated this; the panel on
the right-hand side of this figure used an inappropriately high cost value,
resulting in severe over-fitting.

Echoing the comments in Sect. 7.3, most of the regularization models dis-
cussed in this book add penalties to the coefficients, to prevent over-fitting.
Large penalties, similar to costs, impose limits on the model complexity. For
support vector machines, cost values are used to penalize number of errors;
as a consequence, larger cost values induce higher model complexity rather
than restrain it.

Thus far, we have considered linear classification boundaries for these mod-
els. In Eq. 13.4, note the dot product x′

iu. Since the predictors enter into this
equation in a linear manner, the decision boundary is correspondingly linear.
Boser et al. (1992) extended the linear nature of the model to nonlinear clas-
sification boundaries by substituting the kernel function instead of the simple
linear cross product:

D(u) = β0 +

n
∑

i=1

yiαix
′
iu

= β0 +
n
∑

i=1

yiαiK(xi,u),

where K(·, ·) is a kernel function of the two vectors. For the linear case, the
kernel function is the same inner product x′

iu. However, just as in regression
SVMs, other nonlinear transformations can be applied, including:

polynomial = (scale (x′u) + 1)
degree

radial basis function = exp(−σ‖x− u‖2)
hyperbolic tangent = tanh (scale (x′u) + 1) .

Note that, due to the dot product, the predictor data should be centered and
scaled prior to fitting so that attributes whose values are large in magnitude
do not dominate the calculations.

The kernel trick allows the SVM model produce extremely flexible decision
boundaries. The choice of the kernel function parameters and the cost value
control the complexity and should be tuned appropriately so that the model
does not over-fit the training data. Figure 13.11 shows examples of the classi-
fication boundaries produced by several models using different combinations
of the cost and tuning parameter values. When the cost value is low, the
models clearly underfit the data. Conversely, when the cost is relatively high
(say a value of 16), the model can over-fit the data, especially if the kernel
parameter has a large value. Using resampling to find appropriate estimates
of these parameters tends to find a reasonable balance between under- and
over-fitting. Section 4.6 used the radial basis function support vector machine
as an example for model tuning.
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Fig. 13.11: Classification boundaries for nine radial basis function support
vector machine models varied over the cost parameter and the kernel param-
eter (σ)

Support vector machines fall into a more general category of kernel
methods and this has been an extremely active area of research for some
time. Here, we have discussed extensions to the original model to allow
for misclassified samples and nonlinear class boundaries. Still more exten-
sions have been developed for support vector machines, such as handling
more than two classes (Hsu and Lin 2002; Duan and Keerthi 2005). Also,
the original motivation of the model is to create a hard decision bound-
ary for the purpose of classifying samples, as opposed to estimating class
probabilities. However, Platt (2000) describes methods of post-processing
the output of the SVM model to estimate class probabilities. Alternate
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versions of the support vector machine model also exist, such as least squares
support vector machines (Suykens and Vandewalle 1999), relevance vector
machines (Tipping 2001), and import vector machines (Zhu and Hastie 2005).

Specialized kernels have also been developed. For example, the QSAR ap-
plication discussed in Sect. 6.1 and used throughout the regression chapters
used chemical descriptors as predictors. Figure 6.1 shows the chemical formula
of aspirin. Rather than deriving descriptors from a molecular formula, the for-
mula can be converted to a graph (or network) representation. A specialized
class of kernel functions, called graph kernels, can directly relate the content
of the chemical formula to the model without deriving descriptor variables
(Mahé et al. 2005; Mahé and Vert 2009). Similarly, there are different kernels
that can be employed in text mining problems. The “bag-of-words” approach
summarizes a body of text by calculating frequencies of specific words. These
counts are treated as predictor variables in classification models. There are
a few issues with this approach. First, the additional computational burden
of deriving the predictor variables can be taxing. Secondly, this term-based
approach does not consider the ordering of the text. For example, the text
“Miranda ate the bear” and “the bear ate Miranda” would score the same
in the bag-of-words model but have very different meanings. String kernels
(Lodhi et al. 2002; Cancedda et al. 2003) can use the entire text of a doc-
ument directly and has more potential to find important relationships than
the bag-of-words approach.

For the grant data, there are several approaches to using SVMs. We eval-
uated the radial basis function kernel as well as the polynomial kernel (con-
figured to be either linear or quadratic). Also, both the full and reduced
predictor sets were evaluated. As will be shown in Chap. 19, support vector
machines can be negatively affected by including non-informative predictors
in the model.

For the radial basis function kernel, the analytical approach for deter-
mining the radial basis function parameter was assessed. For the full set of
predictors, the estimate was σ = 0.000559 and for the reduced set, the value
was calculated to be σ = 0.00226. However, these models did not show good
performance, so this parameter was varied over values that were smaller than
analytical estimates. Figure 13.12 shows the results of these models. The
smaller predictor set yields better results than the more comprehensive set,
with an optimal area under the ROC curve of 0.895, a sensitivity of 84%, and
a specificity of 80.4%. Also, for the reduced set, smaller values of σ produced
better results, although values below 0.001167 did not improve the model fit.

For the polynomial models, a fair amount of trial and error was used
to determine appropriate values for this kernel’s scaling factor. Inappropriate
values would result in numerical difficulties for the models and feasible values
of this parameter depended on the polynomial degree and the cost parameter.
Figure 13.13 shows the results for the holdout set. Models built with the
reduced set of predictors did uniformly better than those utilizing the full
set. Also, the optimal performance for linear and quadratic models was about



350 13 Nonlinear Classification Models

Cost

R
O

C
 (

20
08

 H
ol

d−
O

ut
 D

at
a)

0.78

0.80

0.82

0.84

0.86

0.88

0.90

2^−4 2^−2 2^0 2^2 2^4

Full Set

2^−4 2^−2 2^0 2^2 2^4

Reduced Set

sigma =  0.00023857 sigma =  0.00116699

Fig. 13.12: Tuning parameter profile of the radial basis function SVM model
for the grant data

the same. This suggests that the models are mostly picking up on linear
relationships in the data. Given that many of the predictors are binary, this
makes sense. Of these models, the best area under the ROC curve was 0.898.

Overall, the support vector machine models did not have competitive per-
formance in comparison to models created thus far. Many of the linear models
shown in Chap. 12 had similar (or better) performance; the FDA model in this
chapter, so far, is more effective. However, in our experience, SVM models
tend to be very competitive for most problems.

13.5 K-Nearest Neighbors

We first met the K-nearest neighbors (KNNs) model for classification in
Sect. 4.2 when discussing model tuning and the problem of over-fitting. We
have also learned extensively about KNN in the context of regression in
Sect. 7.4. While many of the ideas from KNN for regression directly apply
here, we will highlight the unique aspects of how this method applies to
classification.

The classification methods discussed thus far search for linear or nonlinear
boundaries that optimally separate the data. These boundaries are then used
to predict the classification of new samples. KNN takes a different approach



13.5 K-Nearest Neighbors 351

Cost

R
O

C
 (

20
08

 H
ol

d−
O

ut
 D

at
a)

0.84

0.85

0.86

0.87

0.88

0.89

0.90

2^−6 2^−5 2^−4 2^−3 2^−2

F
ul

l S
et

Linear
R

ed
uc

ed
 S

et

2^−6 2^−5 2^−4 2^−3 2^−2

0.84

0.85

0.86

0.87

0.88

0.89

0.90
Quadratic

scale =  0.005 scale =  0.010

1 − Specificity

S
en

si
tiv

ity
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

0.0 0.2 0.4 0.6 0.8 1.0

Fig. 13.13: Top: Performance profiles for the quadratic SVM model. Bottom:
The ROC curve for the optimal model (area under the curve: 0.895)

by using a sample’s geographic neighborhood to predict the sample’s classi-
fication. Similar to the regression context, KNN for classification predicts a
new sample using the K-closest samples from the training set. “Closeness” is
determined by a distance metric, like Euclidean and Minkowski (Sect. 7.4),
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and choice of metric depends on predictor characteristics. For any distance
metric, it is important to recall that the original measurement scales of the
predictors affect the resulting distance calculations. This implies that if pre-
dictors are on widely different scales, the distance value between samples will
be biased towards predictors with larger scales. To allow each predictor to
contribute equally to the distance calculation, we recommend centering and
scaling all predictors prior to performing KNN.

As in the regression context, to determine the classification of a new sam-
ple, theK-closest training set samples are determined via the distance metric.
Class probability estimates for the new sample are calculated as the propor-
tion of training set neighbors in each class. The new sample’s predicted class
is the class with the highest probability estimate; if two or more classes are
tied for the highest estimate, then the tie is broken at random or by looking
ahead to the K + 1 closest neighbor.

Any method with tuning parameters can be prone to over-fitting, and
KNN is especially susceptible to this problem as was shown in Fig. 4.2. Too
few neighbors leads to highly localized fitting (i.e., over-fitting), while too
many neighbors leads to boundaries that may not locate necessary separating
structure in the data. Therefore, we must take the usual cross-validation or
resampling approach for determining the optimal value of K.

For the grant data the neighborhood range evaluated for tuning was
between 1 and 451. Figure 13.14 illustrates the tuning profile for area under
the ROC curve for the 2008 holdout data. There is a distinct jump in pre-
dictive performance from 1 to 5 neighbors and a continued steady increase
in performance through the range of tuning. The initial jump in predictive
performance indicates that local geographic information is highly informative
for categorizing samples. The steady incremental increase in predictive per-
formance furthermore implies that neighborhoods of informative information
for categorizing samples are quite large. This pattern is somewhat unusual for
KNN in that as the number of neighbors increases we begin to underfit and a
corresponding decrease in predictive performance occurs like was illustrated
by Fig. 7.10. In most data sets, we are unlikely to use this many neighbors in
the prediction. This example helps to identify a numerical instability problem
with KNN: as the number of neighbor increases, the probability of ties also
increases. For this example, a neighborhood size greater than 451 leads to too
many ties. The optimal area under the ROC curve was 0.81, which occurred
at K = 451. The bottom plot in Fig. 13.14 compares the KNN ROC profile
with those of SVM and FDA. For these data, the predictive ability of KNN
is inferior to the other tuned nonlinear models. While geographic information
is predictive, it is not as useful as models that seek to find global optimal
separating boundaries.
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Fig. 13.14: Top: The parameter tuning profile for the KNN model. Bottom:
The ROC curve for the test set data. The area under the curve was 0.81

13.6 Näıve Bayes

Bayes’ Rule was previously discussed in the context of linear discriminant
analysis in a previous chapter. This section expands on that discussion and
focuses on a specific classification model that, like the previous LDA, QDA,
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and RDA models, is defined in terms of how the multivariate probability
densities are created.

Bayes’ Rule answers the question “based on the predictors that we have
observed, what is the probability that the outcome is class C�?”More math-
ematically, let Y be the class variable and X represent the collection of pre-
dictor variables. We are trying to estimate Pr[Y = C�|X], which is “given
X, what is the probability that the outcome is the �th class?” Bayes’ Rule
provides the machinery to answer this:

Pr[Y = C�|X] =
Pr[Y ]Pr[X|Y = C�]

Pr[X]
(13.5)

Pr[Y = C�|X] is typically referred to as the posterior probability of the class.
The components are:

• Pr[Y ] is the prior probability of the outcome. Essentially, based on what
we know about the problem, what would we expect the probability of
the class to be? For example, when predicting customer churn, companies
typically have a good idea of the overall turnover rate of customers. For
problems related to diseases, this prior would be the disease prevalence
rate in the population (see Sect. 11.2 on p. 254 for a discussion).

• Pr[X] is the probability of the predictor values. For example, if a new
sample is being predicted, how likely is this pattern in comparison to the
training data? Formally, this probability is calculated using a multivariate
probability distribution. In practice, significant assumptions are usually
made to reduce the complexity of this calculation.

• Pr[X|Y = C�] is the conditional probability. For the data associated with
class C�, what is the probability of observing the predictor values? Similar
to Pr[X], this can be a complex calculation unless strict assumptions are
made.

The näıve Bayes model simplifies the probabilities of the predictor values by
assuming that all of the predictors are independent of the others. This is an
extremely strong assumption. For most of the case studies and illustrative
examples in this text, it would be difficult to claim that this assumption
were realistic. However, the assumption of independence yields a significant
reduction in the complexity of the calculations.

For example, to calculate the conditional probability Pr[X|Y = C�], we
would use a product of the probability densities for each individual predictor:

Pr[X|Y = C�] =
P
∏

j=1

Pr[Xj |Y = C�]

The unconditional probability Pr[X] results in a similar formula when assum-
ing independence. To estimate the individual probabilities, an assumption of
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Fig. 13.15: Left: A plot of two class illustrative data where a new sample (the
solid triangle) is being predicted. Right: Conditional density plots of predictor
A created using a nonparametric density estimate. The value of predictor A
for the new sample is shown by the vertical black line

normality might be made for continuous predictors (using the sample mean
and variance from the training set). Other methods, such as nonparametric
kernel density estimators (Hardle et al. 2004), can more flexibly estimate the
probability densities. For categorical predictors, the probability distribution
can be determined with the observed frequencies in the training set data.

For example, Fig. 13.15 shows the familiar two-class illustrative example.
In the left panel, the training data are shown. Clearly, the two predictors
are unlikely to be independent (their correlation is 0.78). Suppose a new
sample (shown as a solid black triangle) requires prediction. To compute the
overall conditional probability Pr[X|Y = C�], each predictor is considered
separately. For predictor A, the two conditional densities are shown in the
right panel of Fig. 13.15 with a vertical black line indicating the value of the
new sample for this predictor. For the training set data, using this predictor
alone, the first class appears to be much more likely.

To produce the class probability Pr[X|Y = C�] for the first class, two
conditional probability values are determined for predictors A and B then
multiplied together to calculate the overall conditional probability for the
class.

For Pr[X] a similar procedure would occur except the probabilities for
predictors A and B would be determined from the entire training set (i.e.,
both classes). For the example in Fig. 13.15, the correlation between the pre-
dictors is fairly strong, which indicates that the new sample is highly unlikely.
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Table 13.1: The frequencies and conditional probabilities Pr[X|Y = C�] for
the day of the week

Day Count Percent of total
Successful Unsuccessful Successful Unsuccessful

Mon 749 803 9.15 9.80
Tues 597 658 7.29 8.03
Wed 588 752 7.18 9.18
Thurs 416 358 5.08 4.37
Fri 606 952 7.40 11.62
Sat 619 861 7.56 10.51
Sun 228 3 2.78 0.04

However, using the assumption of independence, this probability is likely to
be overestimated.

The prior probability allows the modeler to tilt the final probability to-
wards one or more classes. For example, when modeling a rare event, it is
common to selectively sample the data so that the class distribution in the
training set is more balanced. However, the modeler may wish to specify that
the event is indeed rare by assigning it a low prior probability. If no prior is
explicitly given, the convention is to use the observed proportions from the
training set to estimate the prior.

Given such a severe and unrealistic assumption, why would one consider
this model? First, the näıve Bayes model can be computed quickly, even
for large training sets. For example, when the predictors are all categorical,
simple lookup tables with the training set frequency distributions are all that
are required. Secondly, despite such a strong assumption, the model performs
competitively in many cases.

Bayes’ Rule is essentially a probability statement. Class probabilities are
created and the predicted class is the one associated with the largest class
probability. The meat of the model is the determination of the conditional
and unconditional probabilities associated with the predictors. For continu-
ous predictors, one might choose simple distributional assumptions, such as
normality. The nonparametric densities (such as those shown in Fig. 13.16)
can produce more flexible probability estimates. For the grant application
data, the predictor for the numeric day of the year has several time frames
where an inordinate number of grants were submitted. In this figure, the black
curve for the normal distribution is extremely broad and does not capture
the nuances of the data. The red curve is the nonparametric estimate and
appears produce the trends in the data with higher fidelity.

For categorical predictors, the frequency distribution of the predictor in
the training set is used to estimate Pr[X] and Pr[X|Y = C�]. Table 13.1
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Fig. 13.16: Two approaches to estimating the density function Pr[X] for the
day of the year. The blue line is based on a normal distribution while the red
line is generated using a nonparametric density estimator

shows the observed frequencies for the day of the week in which the grant
was submitted. The columns showing the percent of total are the estimates
of Pr[X|Y = C�] for each class. When a new sample is predicted, a simple
lookup on this table is used to estimate the probabilities.

An obvious issue, especially for small samples sizes, occurs when one or
more frequencies are zero. If a predictor has no training set samples for a
specific class, the conditional probability would be zero and, since the prob-
abilities are multiplied together, one predictor would coerce the posterior
probability to be zero. One method for avoiding this issue is to use a Laplace
correction or Laplace smoothing (Niblett 1987; Zadrozny and Elkan 2001;
Provost and Domingos 2003) where the same correction factor, usually be-
tween one and two, is added to the numerator. For the denominator, the
frequencies are increase by the correction factor times the number of val-
ues of the predictor. For example, there are very low frequencies for grants
submitted on Sunday. To correct for the extreme probabilities, a correction
factor of one would changes the observed frequencies to 229 and 4, but the
denominator would be increased by seven. Given the large sample size for
the training set, this correction only has a small impact (the estimated suc-
cess rate on Sunday is increased from 2.78% to 2.79%). However, all of the
three unsuccessful grants in the table were submitted after 2008. Training on
pre-2008 data would generate zero probabilities. In this case, a correction of
value of one would change the probability for grants to 0.02% while a cor-
rection factor of two would increase the value to 0.03%. For smaller training
set sizes, the correction can have a substantial positive effect on the missing
cells in the table.



358 13 Nonlinear Classification Models

For the grant data, many of the predictors were counts. Although these
are numbers, they are discrete values and could be treated as categories. In
many cases, the observed frequency distribution is compact. For example, in
the training set, the number of chief investigators in department 2,678 takes
on the four values between 0 and 3 and has a very right-skewed distribution.
Treating such a granular predictor as if it was generated by a symmetric nor-
mal distribution may produce poor probability estimates. For this analysis,
the reduced set of predictors was evaluated such that all predictors with less
than 15 possible values were treated as discrete and their probabilities were
calculated using their frequency distribution (such as the day of the week
shown in Table 13.1. There were 14 predictors with more than 15 unique
values, including the number of successful grants by chief investigators, the
number of A∗ journal papers by chief investigators, and numeric day of the
year.

These predictors were modeled using either a normal distribution or a
nonparametric density (the density type was treated as a tuning parameter),
and a Laplace correction of 2 was used. When using a normal distribution
for the continuous predictors, the area under the curve was estimated to be
0.78, a sensitivity of 58.8%, and a specificity of 79.6%. Using nonparamet-
ric estimation of the probability densities, the area under the ROC curve
improves to 0.81, which corresponding increases in sensitivity (64.4%) and
specificity (82.4%). Unfortunately, the performance for this model is on par
with KNNs, which is substantially below the results of the other models in
this chapter.

Section 11.1 showed that Bayes’ Rule can be used to calibrate class proba-
bility estimates. To do this, the true classes are used as Y , but the class proba-
bility values for the training set are used as the“predictor”and Pr[X|Y = C�]
is determined from the model predictions on the training set. When new sam-
ples are predicted, the class probabilities that are generated by the model are
post-processed using Bayes’ Rule to improve the calibration. Ironically, class
probabilities created by apply Bayes’ Rule in the normal fashion tend not to
be well-calibrated themselves. As the number of predictors increases (rela-
tive to the sample size), the posterior probabilities will become more extreme
(similar to the observation related to linear discriminant analysis shown in
Fig. 12.11). Recall that QDA is based on Bayes’ Rule (using multivariate nor-
mality for the predictors) and the QDA results shown in Fig. 11.1 showed poor
calibration with two predictor variables (but was improved by recalibrating
using another application of Bayes’ Rule).

13.7 Computing

The following R packages are discussed in this chapter: caret, earth, kernlab,
klaR, MASS, mda, nnet, and rrcov. This section also uses the same R objects
created in the last chapter that contain the data (such as the data frame
training).
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Nonlinear Discriminant Analysis

A number of packages are available to perform the varieties of nonlinear
discriminant analysis described earlier in this chapter. QDA is implemented
in the qda function in the MASS as well as an outlier-resistant version in the
QdaCov function in the rrcov package. RDA is available in the rda function in
the klaR package, and MDA can be found in the mda package. The syntax for
these models is very similar and we will demonstrate their usage by fitting
an MDA model to the grant data.

The mda function has a model formula interface. The tuning parameter is
the number of subclasses per class, which do not have to be the same for
each class. For example, to fit an MDA model to the grant data with three
subpopulations per class:

> library(mda)

> mdaModel <- mda(Class ~ .,

+ ## Reduce the data to the relevant predictors and the

+ ## class variable to use the formula shortcut above

+ data = training[pre2008, c("Class", reducedSet)],

+ subclasses = 3)

> mdaModel

Call:
mda(formula = Class ~ ., data = training[pre2008, c("Class",

reducedSet)], subclasses = 3)

Dimension: 5

Percent Between-Group Variance Explained:
v1 v2 v3 v4 v5

72.50 92.57 96.10 98.66 100.00

Degrees of Freedom (per dimension): 253

Training Misclassification Error: 0.18709 ( N = 6633 )

Deviance: 6429.499
> predict(mdaModel,

+ newdata = head(training[-pre2008, reducedSet]))

[1] successful successful successful successful successful successful
Levels: successful unsuccessful

Each of these nonlinear discriminant models can be built and optimal
tuning parameters can be found using the caret package. The trControl option
for the grants data is set as described in Sect. 12.7 and will be used here:

> set.seed(476)

> mdaFit <- train(training[,reducedSet], training$Class,

+ method = "mda",

+ metric = "ROC",

+ tuneGrid = expand.grid(.subclasses = 1:8),

+ trControl = ctrl)
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Similar syntax can be used for RDA (using method = "rda") and QDA (method
values of either "rda" or "QdaCov" for the outlier-resistant version in the rrcov
package).

A penalized version of MDA is also available in the sparseLDA package
with the smda function. See Clemmensen et al. (2011) for more details.

Neural Networks

There are many R packages for neural networks, including nnet, RSNNS, qrnn,
and neuralnet. Two resources for using neural networks in R are Venables and
Ripley (2002) and Sect. 7 of Bergmeir and Benitez (2012).

The analyses here focus on the nnet package. The syntax is extremely
similar to that of the regression models with a few exceptions. The linout

argument should be set to FALSE since most classification models use a sig-
moidal transformation to relate the hidden units to the outputs. The sums
of squared errors or entropy estimates model parameters and the logical ar-
guments softmax and entropy toggle between the two.

The package has both a formula interface and an interface for passing
matrices or data frames for the predictors and the outcome. For the latter,
the outcome cannot be a factor variable and must be converted to a set of C
binary indicators. The package contains a function, class.ind, that is useful
in making this conversion:

> head(class.ind(training$Class))

successful unsuccessful
[1,] 1 0
[2,] 1 0
[3,] 1 0
[4,] 1 0
[5,] 0 1
[6,] 1 0

Using the formula interface to fit a simple model:

> set.seed(800)

> nnetMod <- nnet(Class ~ NumCI + CI.1960,

+ data = training[pre2008,],

+ size = 3, decay = .1)

# weights: 13
initial value 4802.892391
iter 10 value 4595.629073
iter 20 value 4584.893054
iter 30 value 4582.614616
iter 40 value 4581.010289
iter 50 value 4580.866146
iter 60 value 4580.781092
iter 70 value 4580.756342
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final value 4580.756133
converged

> nnetMod

a 2-3-1 network with 13 weights
inputs: NumCI CI.1960
output(s): Class
options were - entropy fitting decay=0.1

> predict(nnetMod, newdata = head(testing))

[,1]
6641 0.5178744
6647 0.5178744
6649 0.5138892
6650 0.5837029
6655 0.4899851
6659 0.5701479

> predict(nnetMod, newdata = head(testing), type = "class")

[1] "unsuccessful" "unsuccessful" "unsuccessful" "unsuccessful"
[5] "successful" "unsuccessful"

When three or more classes are modeled, the basic call to predict produces
columns for each class.

As before, train provides a wrapper to this function to tune the model
over the amount of weight decay and the number of hidden units. The same
model code is used (method = "nnet") and either model interface is available,
although train does allow factor vectors for the classes (using class.ind in-
ternally do encode the dummy variables). Also, as in regression, model av-
eraging can be used via the stand-alone avNNet function or using train (with
method = "avNNet").

The final model for the grant data has the following syntax:

> nnetGrid <- expand.grid(.size = 1:10,

+ .decay = c(0, .1, 1, 2))

> maxSize <- max(nnetGrid$.size)

> numWts <- 1*(maxSize * (length(reducedSet) + 1) + maxSize + 1)

> set.seed(476)

> nnetFit <- train(x = training[,reducedSet],

+ y = training$Class,

+ method = "nnet",

+ metric = "ROC",

+ preProc = c("center", "scale", "spatialSign"),

+ tuneGrid = nnetGrid,

+ trace = FALSE,

+ maxit = 2000,

+ MaxNWts = numWts,

+ ## ctrl was defined in the previous chapter

+ trControl = ctrl)
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Flexible Discriminant Analysis

The mda package contains a function (fda) for building this model. The model
accepts the formula interface and has an option (method) that specifies the
exact method for estimating the regression parameters. To use FDA with
MARS, there are two approaches. method = mars uses the MARS implemen-
tation in the mda package. However, the earth package, previously described
in Sect. 7.5, fits the MARS model with a wider range of options. Here, load
the earth package and then specify method = earth. For example, a simple
FDA model for the grant application data could be created as

> library(mda)

> library(earth)

> fdaModel <- fda(Class ~ Day + NumCI, data = training[pre2008,],

+ method = earth)

Arguments to the earth function, such as nprune, can be specified when calling
fda and are passed through to earth. The MARS model is contained in a sub-
object called fit:

> summary(fdaModel$fit)

Call: earth(x=x, y=Theta, weights=weights)

coefficients
(Intercept) 1.41053449
h(Day-91) -0.01348332
h(Day-202) 0.03259400
h(Day-228) -0.02660477
h(228-Day) -0.00997109
h(Day-282) -0.00831905
h(Day-319) 0.17945773
h(Day-328) -0.51574151
h(Day-332) 0.50725158
h(Day-336) -0.20323060
h(1-NumCI) 0.11782107

Selected 11 of 12 terms, and 2 of 2 predictors
Importance: Day, NumCI
Number of terms at each degree of interaction: 1 10 (additive model)
GCV 0.8660403 RSS 5708.129 GRSq 0.1342208 RSq 0.1394347

Note that the model coefficients shown here have not been post-processed.
The final model coefficients can be found with coef(fdaModel). To predict:

> predict(fdaModel, head(training[-pre2008,]))

[1] successful successful successful successful successful successful
Levels: successful unsuccessful

The train function can be used with method = "fda" to tune this model over
the number of retained terms. Additionally, the varImp function from this
package determines predictor importance in the same manner as for MARS
models (described in Sect. 7.2).
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Support Vector Machines

As discussed in the regression chapter, there are a number of R packages
with implementations for support vector machine and other kernel methods,
including e1071, kernlab, klaR, and svmPath. The most comprehensive of these
is the kernlab package.

The syntax for SVM classification models is largely the same as the re-
gression case. Although the epsilon parameter is only relevant for regression,
a few other parameters are useful for classification:

• The logical prob.model argument triggers ksvm to estimate an additional
set of parameters for a sigmoidal function to translate the SVM decision
values to class probabilities using the method of Platt (2000). If this option
is not set to TRUE, class probabilities cannot be predicted.

• The class.weights argument assigns asymmetric costs to each class (Osuna
et al. 1997). This can be especially important when one or more specific
types of errors are more harmful than others or when there is a severe class
imbalance that biases the model to the majority class (see Chap. 16). The
syntax here is to use a named vector of weights or costs. For example, if
there was a desire to bias the grant model to detect unsuccessful grants,
then the syntax would be

class.weights = c(successful = 1, unsuccessful = 5)

This makes a false-negative error five times more costly than a false-
positive error. Note that the implementation of class weights in ksvm affects
the predicted class, but the class probability model is unaffected by the
weights (in this implementation). This feature is utilized in Chap. 17.

The following code fits a radial basis function to the reduced set of predictors
in the grant data:

> set.seed(202)

> sigmaRangeReduced <- sigest(as.matrix(training[,reducedSet]))

> svmRGridReduced <- expand.grid(.sigma = sigmaRangeReduced[1],

+ .C = 2^(seq(-4, 4)))

> set.seed(476)

> svmRModel <- train(training[,reducedSet], training$Class,

+ method = "svmRadial",

+ metric = "ROC",

+ preProc = c("center", "scale"),

+ tuneGrid = svmRGridReduced,

+ fit = FALSE,

+ trControl = ctrl)

> svmRModel

8190 samples
252 predictors
2 classes: 'successful', 'unsuccessful'
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Pre-processing: centered, scaled
Resampling: Repeated Train/Test Splits (1 reps, 0.75%)

Summary of sample sizes: 6633

Resampling results across tuning parameters:

C ROC Sens Spec
0.0625 0.866 0.775 0.787
0.125 0.88 0.842 0.776
0.25 0.89 0.867 0.772
0.5 0.894 0.851 0.784
1 0.895 0.84 0.804
2 NaN 0.814 0.814
4 0.887 0.814 0.812
8 0.885 0.804 0.814
16 0.882 0.805 0.818

Tuning parameter 'sigma' was held constant at a value of 0.00117
ROC was used to select the optimal model using the largest value.
The final values used for the model were C = 1 and sigma = 0.00117.

When the outcome is a factor, the function automatically uses prob.model =

TRUE.
Other kernel functions can be defined via the kernel and kpar arguments.

Prediction of new samples follows the same pattern as other functions:

> library(kernlab)

> predict(svmRModel, newdata = head(training[-pre2008, reducedSet]))

[1] successful successful successful successful successful successful
Levels: successful unsuccessful

> predict(svmRModel, newdata = head(training[-pre2008, reducedSet]),

+ type = "prob")

successful unsuccessful
1 0.9522587 0.04774130
2 0.8510325 0.14896755
3 0.8488238 0.15117620
4 0.9453771 0.05462293
5 0.9537204 0.04627964
6 0.5009338 0.49906620

K-Nearest Neighbors

Fitting a KNN classification model has similar syntax to fitting a regression
model. In this setting, the caret package with method set to "knn" generates
the model. The syntax used to produce the top of Fig. 13.14 is

> set.seed(476)

> knnFit <- train(training[,reducedSet], training$Class,
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+ method = "knn",

+ metric = "ROC",

+ preProc = c("center", "scale"),

+ tuneGrid = data.frame(.k = c(4*(0:5)+1,

+ 20*(1:5)+1,

+ 50*(2:9)+1)),

+ trControl = ctrl)

The following code predicts the test set data and the corresponding ROC
curve:

> knnFit$pred <- merge(knnFit$pred, knnFit$bestTune)

> knnRoc <- roc(response = knnFit$pred$obs,

+ predictor = knnFit$pred$successful,

+ levels = rev(levels(knnFit$pred$obs)))

> plot(knnRoc, legacy.axes = TRUE)

Näıve Bayes

The two main functions for fitting the näıve Bayes models in R are naiveBayes

in the e1071 package and NaiveBayes in the klaR package. Both offer Laplace
corrections, but the version in the klaR package has the option of using con-
ditional density estimates that are more flexible.

Both functions accept the formula and non-formula approaches to specify-
ing the model terms. However, feeding these models binary dummy variables
(instead of a factor variable) is problematic since the individual categories
will be treated as numerical data and the model will estimate the probabil-
ity density function (i.e., Pr[X]) from a continuous distribution, such as the
Gaussian.

To follow the strategy described above where many of the predictors are
converted to factor variables, we create alternate versions of the training and
test sets:

> ## Some predictors are already stored as factors

> factors <- c("SponsorCode", "ContractValueBand", "Month", "Weekday")

> ## Get the other predictors from the reduced set

> nbPredictors <- factorPredictors[factorPredictors %in% reducedSet]

> nbPredictors <- c(nbPredictors, factors)

> ## Leek only those that are needed

> nbTraining <- training[, c("Class", nbPredictors)]

> nbTesting <- testing[, c("Class", nbPredictors)]

> ## Loop through the predictors and convert some to factors

> for(i in nbPredictors)

+ {

+ varLevels <- sort(unique(training[,i]))
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+ if(length(varLevels) <= 15)

+ {

+ nbTraining[, i] <- factor(nbTraining[,i],

+ levels = paste(varLevels))

+ nbTesting[, i] <- factor(nbTesting[,i],

+ levels = paste(varLevels))

+ }

+ }

Now, we can use the NaiveBayes function’s formula interface to create a model:

> library(klaR)

> nBayesFit <- NaiveBayes(Class ~ .,

+ data = nbTraining[pre2008,],

+ ## Should the non-parametric estimate

+ ## be used?

+ usekernel = TRUE,

+ ## Laplace correction value

+ fL = 2)

> predict(nBayesFit, newdata = head(nbTesting))

$class
6641 6647 6649 6650 6655 6659

successful successful successful successful successful successful
Levels: successful unsuccessful

$posterior
successful unsuccessful

6641 0.9937862 6.213817e-03
6647 0.8143309 1.856691e-01
6649 0.9999078 9.222923e-05
6650 0.9992232 7.768286e-04
6655 0.9967181 3.281949e-03
6659 0.9922326 7.767364e-03

In some cases, a warning appears: “Numerical 0 probability for all classes
with observation 1.” The predict function for this model has an argument
called threshold that replaces the zero values with a small, nonzero number
(0.001 by default).

The train function treats the density estimate method (i.e., usekernel)
and the Laplace correction as tuning parameters. By default, the function
evaluates probabilities with the normal distribution and the nonparametric
method (and no Laplace correction).

Exercises

13.1. Use the hepatic injury data from the previous exercise set (Exer-
cise 12.1). Recall that the matrices bio and chem contain the biological assay
and chemical fingerprint predictors for the 281 compounds, while the vector
injury contains the liver damage classification for each compound.
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(a) Work with the same training and testing sets as well as pre-processing
steps as you did in your previous work on these data. Using the same
classification statistic as before, build models described in this chapter
for the biological predictors and separately for the chemical fingerprint
predictors. Which model has the best predictive ability for the biological
predictors and what is the optimal performance? Which model has the
best predictive ability for the chemical predictors and what is the opti-
mal performance? Does the nonlinear structure of these models help to
improve the classification performance?

(b) For the optimal models for both the biological and chemical predictors,
what are the top five important predictors?

(c) Now combine the biological and chemical fingerprint predictors into one
predictor set. Re-train the same set of predictive models you built from
part (a). Which model yields best predictive performance? Is the model
performance better than either of the best models from part (a)? What
are the top 5 important predictors for the optimal model? How do these
compare with the optimal predictors from each individual predictor set?
How do these important predictors compare the predictors from the linear
models?

(d) Which model (either model of individual biology or chemical fingerprints
or the combined predictor model), if any, would you recommend using to
predict compounds’ hepatic toxicity? Explain.

13.2. Use the fatty acid data from the previous exercise set (Exercise 12.2).

(a) Use the same data splitting approach (if any) and pre-processing steps
that you did in the previous chapter. Using the same classification statistic
as before, build models described in this chapter for these data. Which
model has the best predictive ability? How does this optimal model’s
performance compare to the best linear model’s performance? Would you
infer that the data have nonlinear separation boundaries based on this
comparison?

(b) Which oil type does the optimal model most accurately predict? Least
accurately predict?



Chapter 14

Classification Trees and Rule-Based
Models

Classification trees fall within the family of tree-based models and, similar
to regression trees, consist of nested if-then statements. For the familiar
two-class problem shown in the last two chapters, a simple classification tree
might be

if Predictor B >= 0.197 then

| if Predictor A >= 0.13 then Class = 1

| else Class = 2

else Class = 2

In this case, two-dimensional predictor space is cut into three regions (or
terminal nodes) and, within each region, the outcome categorized into either
“Class 1” or “Class 2.” Figure 14.1 presents the tree in the predictor space.
Just like in the regression setting, the nested if-then statements could be
collapsed into rules such as

if Predictor A >= 0.13 and Predictor B >= 0.197 then Class = 1

if Predictor A >= 0.13 and Predictor B < 0.197 then Class = 2

if Predictor A < 0.13 then Class = 2

Clearly, the structure of trees and rules is similar to the structure we saw
in the regression setting. And the benefits and weaknesses of trees in the
classification setting are likewise similar: they can be highly interpretable,
can handle many types of predictors as well as missing data, but suffer from
model instability and may not produce optimal predictive performance. The
process for finding the optimal splits and rules, however, is slightly different
due to a change in the optimization criteria, which will be described below.

Random forests, boosting, and other ensemble methodologies using classi-
fication trees or rules are likewise extended to this setting and are discussed
in Sects. 14.3 through 14.6.

M. Kuhn and K. Johnson, Applied Predictive Modeling,
DOI 10.1007/978-1-4614-6849-3 14,
© Springer Science+Business Media New York 2013
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Fig. 14.1: An example of the predicted classes within regions defined by a
tree-based model

14.1 Basic Classification Trees

As with regression trees, the aim of classification trees is to partition the data
into smaller, more homogeneous groups. Homogeneity in this context means
that the nodes of the split are more pure (i.e., contain a larger proportion
of one class in each node). A simple way to define purity in classification
is by maximizing accuracy or equivalently by minimizing misclassification
error. Accuracy as a measure of purity, however, is a bit misleading since the
measure’s focus is on partitioning the data in a way that minimizes misclas-
sification rather than a focus on partitioning the data in a way that place
samples primarily in one class.

Two alternative measures, the Gini index (Breiman et al. 1984) and cross
entropy, which is also referred to as deviance or information (defined later
in this section), shift the focus from accuracy to purity. For the two-class
problem, the Gini index for a given node is defined as

p1 (1− p1) + p2 (1− p2) , (14.1)

where p1 and p2 are the Class 1 and Class 2 probabilities, respectively. Since
this is a two-class problem p1+p2 = 1, and therefore Eq. 14.1 can equivalently
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be written as 2p1p2. It is easy to see that the Gini index is minimized when
either of the class probabilities is driven towards zero, meaning that the
node is pure with respect to one of the classes. Conversely, the Gini index is
maximized when p1 = p2, the case in which the node is least pure.

When working with a continuous predictor and a categorical response, the
process for finding the optimal split point is similar to the process we saw in
Sect. 8.1. First, the samples are sorted based on their predictor values. The
split points are then the midpoints between each unique predictor value. If
the response is binary, then this process generates a 2×2 contingency table
at each split point. This table can be generally represented as

Class 1 Class 2

> split n11 n12 n+1

≤ split n21 n22 n+2

n1+ n2+ n

The Gini index prior to the split would be

Gini(prior to split) = 2
(n1+

n

)(n2+

n

)

.

And the Gini index can be calculated after the split within each of the new

nodes with values 2
(

n11

n+1

)(

n12

n+1

)

and 2
(

n21

n+2

)(

n22

n+2

)

for greater than and

less than or equal to the split, respectively. These values are combined using
the proportion of samples in each part of the split as weights with

(n+1

n

)

and
(n+2

n

)

representing the respective weights for greater than and less than or
equal to the split. After some simplification, the Gini index to evaluate the
split would be:

Gini(after split) = 2

[

(n11

n

)

(

n12

n+1

)

+
(n21

n

)

(

n22

n+2

)]

.

Now consider the simple example presented in Fig. 14.1, where the contin-
gency table for the Predictor B split is as follows:

Class 1 Class 2

B > 0.197 91 30 121
B ≤ 0.197 20 67 87

The Gini index for the samples in the B > 0.197 split would be 0.373 and for
the samples with B ≤ 0.197 would be 0.354. To determine if this is a good
overall split, these values must be combined which is done by weighting each
purity value by the proportion of samples in the node relative to the total
number of samples in the parent node. In this case, the weight for the B >
0.197 split would be 0.582 and 0.418 when B ≤ 0.197. The overall Gini index
measure for this split would then be (0.582)(0.373) + (0.418)(0.354) = 0.365.
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Here we have evaluated just one possible split point; partitioning algorithms,
however, evaluate nearly all split points1 and select the split point value that
minimizes the purity criterion. The splitting process continues within each
newly created partition, therefore increasing the depth of the tree, until the
stopping criteria is met (such as the minimum number of samples in a node
or the maximum tree depth).

Trees that are constructed to have the maximum depth are notorious for
over-fitting the training data. A more generalizable tree is one that is a pruned
version of the initial tree and can be determined by cost-complexity tuning,
in which the purity criterion is penalized by a factor of the total number of
terminal nodes in the tree. The cost-complexity factor is called the complexity
parameter and can be incorporated into the tuning process so that an optimal
value can be estimated. More details about this process can be found in
Sect. 8.1.

After the tree has been pruned, it can be used for prediction. In classifi-
cation, each terminal node produces a vector of class probabilities based on
the training set which is then used as the prediction for a new sample. In the
simple example above, if a new sample has a value of Predictor B = 0.10,
then predicted class probability vector would be (0.23, 0.77) for Class 1 and
Class 2, respectively.

Similar to regression trees, classification trees can handle missing data. In
tree construction, only samples with non-missing information are considered
for creating the split. In prediction, surrogate splits can be used in place
of the split for which there are missing data. Likewise, variable importance
can be computed for classification trees by assessing the overall improvement
in the optimization criteria for each predictor. See Sect. 8.1 for the parallel
explanation in regression.

When the predictor is continuous, the partitioning process for determining
the optimal split point is straightforward. When the predictor is categorical,
the process can take a couple of equally justifiable paths, one of which dif-
fers from the traditional statistical modeling approach. For example, consider
a logistic regression model which estimates slopes and intercepts associated
with the predictors. For categorical predictors, a set of binary dummy vari-
ables (Sect. 3.6) is created that decomposes the categories to independent bits
of information. Each of these dummy variables is then included separately in
the model. Tree models can also bin categorical predictors. Evaluating pu-
rity for each of these new predictors is then simple, since each predictor has
exactly one split point.

For tree models, the splitting procedure may be able to make more dynamic
splits of the data, such as groups of two or more categories on either side of the
split. However, to do this, the algorithm must treat the categorical predictors
as an ordered set of bits. Therefore, when fitting trees and rule-based models,
the practitioner must make a choice regarding the treatment of categorical
predictor data:

1 See Breiman (1996c) for a discussion of the technical nuances of splitting algorithms.
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1. Each categorical predictor can be entered into the model as a single entity
so that the model decides how to group or split the values. In the text,
this will be referred to as using grouped categories.

2. Categorical predictors are first decomposed into binary dummy variables.
In this way, the resulting dummy variables are considered independently,
forcing binary splits for the categories. In effect, splitting on a binary
dummy variable prior to modeling imposes a “one-versus-all” split of the
categories. This approach will be labelled as using independent categories.

Which approach is more appropriate depends on the data and the model.
For example, if a subset of the categories are highly predictive of the out-
come, the first approach is probably best. However, as we will see later, this
choice can have a significant effect on the complexity of the model and, as
a consequence, the performance. In the following sections, models will be
created using both approaches described above to assess which approach is
model advantageous. A summary of the differences in the two approaches are
summarized in Fig. 14.14 on p. 402 of this chapter.

To illustrate the partitioning process for a categorical predictor, consider
the CART model of the grant data illustrated in Fig. 14.3. The first split
for these data is on contract value band, which has 17 possible categories,
and places values I, J, P, and Unknown into one partition and the remaining
categories in the other. From a combinatorial standpoint, as the number
of possible categories increase, the number of possible category orderings
increases factorially. The algorithmic approach must therefore take a rational
but greedy path to ordering the categories prior to determining the optimal
split. One approach is to order the categories based on the proportion of
samples in a selected class. The top plot in Fig. 14.2 displays the probability
of successful grant application within each contract value band, ordered from
least successful to most successful. To calculate the Gini index, the split points
are the divisions between each of the ordered categories, with the categories
to the left placed into one group and the categories to the right placed into
the other group. The results from these sequential partitions are presented
in the bottom plot. Clearly, adding samples from the Unknown category to
the samples from categories P and J greatly reduces the Gini index. While
it is difficult to see from the figure, the minimum value occurs at the split
point between categories I and M. Therefore, the algorithm chooses to place
samples from contract value band I, J, P, and Unknown into one partition
and the remaining samples into the other. Using only this split, the model
would classify a new sample as unsuccessful if it had a contract value band
of I, J, P, or Unknown and successful otherwise.

Continuing the tree building process treating the predictors as grouped
categories and pruning via cost complexity produces the tree in Fig. 14.3.
Because the predictors are encoded, it is difficult to interpret the tree
without an in-depth knowledge of the data. However, it is still possible to
use the tree structure to gain insight to the relevance of the predictors to the
response. We can also see that grouped category variables such as sponsor
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Fig. 14.2: Top: A scatter plot of the ordered probability of success (y-axis) for
each contract value band. Bottom: The Gini index profile across each ordered
split. The Gini index for the split points between categories Unknown, I, M, O,
and B are nearly equivalent, with the minimum occurring between categories
I and M

code, weekday, and month are relevant to the success of grant funding. The
grouped categories model has an area under the ROC curve of 0.91 using 16
terminal nodes.

A CART model was also built using independent category predictors.
Because this approach creates many more predictors, we would expect that
the pruned tree would have more terminal nodes. Counter to intuition, the
final pruned tree has 16 nodes and is illustrated in Fig. 14.4. This tree has
an AUC of 0.912, and Fig. 14.5 compares its performance with the grouped
category predictors. For classification trees using CART, there is no prac-
tical difference in predictive performance when using grouped categories or
independent categories predictors for the grant data.

A comparison of Figs. 14.3 and 14.4 highlights a few interesting similarities
and differences between how a tree model handles grouped category versus
independent predictors. First, notice that the upper levels of the trees are gen-
erally the same with each selecting contract value band, sponsor code, and



14.1 Basic Classification Trees 375

F
ig
.
1
4
.3
:
T
h
e
fi
n
a
l
C
A
R
T

m
o
d
el

fo
r
th
e
g
ra
n
t
d
a
ta

u
si
n
g
g
ro
u
p
ed

ca
te
g
o
ry

p
re
d
ic
to
rs



376 14 Classification Trees and Rule-Based Models

F
ig
.
1
4
.4
:
T
h
e
fi
n
a
l
C
A
R
T

m
o
d
el

fo
r
th
e
g
ra
n
t
d
a
ta

u
si
n
g
in
d
ep

en
d
en
t
ca
te
g
o
ry

p
re
d
ic
to
rs



14.1 Basic Classification Trees 377
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Fig. 14.5: The CART ROC curves for the holdout data. When using grouped
categories, the area under the curve was 0.89. With independent categories,
the AUC was also 0.89

number of unsuccessful and successful grants by chief investigators within the
first four levels. Although the trees are identifying similarly important infor-
mation, the independent category tree is much easier to interpret than the
grouped category tree. For example, while the contract value band predictor
is chosen as the first split in each tree, the independent category tree indicates
that the value of Unknown is most critical for creating subsequent nodes that
are more pure. Without producing a purity plot of the ordered categories, the
importance of the Unknown band is masked within the grouping of bands I, J,
P, and Unknown for the grouped category tree. Similar contrasts can be made
with predictors of Month and Weekday, where the independent category tree
provides further insight into the importance of specific months and weekdays.
In the case of trees, therefore, creating independent category predictors may
provide valuable interpretation about the relationship between predictors and
the response that is not readily available when treating predictors as grouped
categories.

Another approach for classification trees is the C4.5 model (Quinlan
1993b). Here, the splitting criteria is based on information theory (Wallace
2005; Cover and Thomas 2006). Suppose we want to communicate some piece
of information, such as the probability distribution of the classes in the ter-
minal node of a tree, in a series of messages. If the probability distribution is
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extremely unbalanced, there is a high likelihood of the sample belonging to
the majority class, thus less uncertainty when guessing. However, if the class
probabilities in the node were even, there is high uncertainty of a sample’s
true class. If we were trying to communicate the content of the probability
distribution in a series of messages, on average, more information needs to be
conveyed when there is a high degree of uncertainty in the message. Shannon
(1948) and others developed a theory for the communication of information.
The quantity that they call the information statistic represents the average
number of bits needed to communicate in a message.

In our context, suppose there are C = 2 classes and the probability of the
first class is p. The formal definition of the information statistic is

info = −[p log2p+ (1− p) log2(1− p)].

When p = 0, it is customary to have 0 log2(0) = 0. As previously mentioned,
the units are called bits.

For the two class data shown in Fig. 14.1, the classes are almost even. If
p is the proportion of samples in the first class, then p = 0.53. From this,
the average number of bits of information to guess the true class (i.e., the
information) would be 0.997. Now consider an unbalanced situation where
fewer of the samples were in class 1 (p = 0.10). In this case, the information
would be 0.46 bits, which is smaller because the class imbalance makes it
easier to randomly guess the true class.2 This metric has been previously
discussed twice: as an objective function for neural networks (Eq. 13.3) and
logistic regression (in Eq. 12.1 with a single data point).

How does this relate to determining splits? Using the general contingency
table notation from above, the total information content of the data prior to
splitting would be

info(prior to split) = −
[n1+

n
× log2

(n1+

n

)]

−
[n2+

n
× log2

(n2+

n

)]

.

Again, when n1+ = 0 or n2+ = 0, it is traditional to set the terms inside the
brackets to zero.

We can measure the improvement in the information criteria that would
be induced by creating splits in a classification tree. The information gain3

(or simply the gain) would be

gain(split) = info(prior to split)− info(after split).

2 An alternate way to think of this is in terms of entropy, a measure of uncertainty.
When the classes are balanced 50/50, we have no real ability to guess the outcome:
it is as uncertain as possible. However, if ten samples were in class 1, we would have
less uncertainty since it is more likely that a random data point would be in class 1.
3 Also known as the mutual information statistic. This statistic is discussed again in
Chap. 18.
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Splits with larger information gains are more attractive than those with
smaller gains.

For the binary split shown in the table above, the information after the
split would be the sum of the information values from each of the resulting
partitions. For example, the information for the data with values greater than
the split value is

info(greater) = −
[

n11

n+1
× log2

(

n11

n+1

)]

−
[

n12

n+1
× log2

(

n12

n+1

)]

.

The formula for the data on the other side of the split is analogous. The total
information after the split is a weighted average of these values where the
weights are related to the number of samples in the leaves of the split

info(after split) =
n+1

n
info(greater) +

n+2

n
info(less than).

Going back to the two class data, consider the predictor B split at a value of
0.197. The information when B > 0.197 is 0.808 and, on the other side of the
split, the value is 0.778 when weighted by the proportion of samples on each
side of the split, the total information is 0.795, a gain of 0.997−0.795 = 0.201
Suppose, on the other hand, another split chosen that was completely non-
informative, the information after the split would be the same as prior to the
split, so the gain would be zero.

For continuous predictors, a tree could be constructed by searching for the
predictor and single split that maximizes the information gain.4 For these
data, this gain is the largest when splitting predictor B at 0.197 and this is
the split shown in Fig. 14.1. It also turns out that this split is also the best
split for the Gini criterion used by CART.

There is one issue with this strategy. Since the predictors might have differ-
ent numbers of possible values, the information gain criteria is biased against
predictors that have a large number of possible outcomes (i.e., would fa-
vor categorical predictors with only a few distinct values over continuous
predictors). This phenomenon is similar to the previously discussed bias for
regression trees in Sect. 8.1. In this case, the bias is related to the ability
of the algorithm to split the categorical predictors many ways (instead of
a binary split on continuous predictors). The multi-way splits are likely to
have larger gains. To correct for the bias, the gain ratio is used, which di-
vides the gain by a measure of the amount of information in the split itself.
Quinlan (1993b) shows additional examples of these calculations while Quin-
lan (1996b) describes refinements to this procedure for continuous predictors
using the minimum description length (MDL) principle.

4 By default, C4.5 uses simple binary split of continuous predictors. However, Quinlan
(1993b) also describes a technique called soft thresholding that treats values near the
split point differently. For brevity, this is not discussed further here.
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When evaluating splits of categorical predictors, one strategy is to repre-
sent the predictor using multi-way splits such that there is a separate split for
each category. When a predictor has a large number of possible values, this
can lead to overly complex trees. For example, the sponsor code predictor
in the grant data have 298 unique values. If this predictor were considered
important, an initial 298-way split of the data would be created (prior to
pruning). After the pruning process described below, some of these splits are
likely to be combined and simplified.

Chapter 7 of Quinlan (1993b) describes a modified approach for creat-
ing multi-way splits that have the ability to group two or more categories.
Prior to evaluating a categorical predictor as a split variable, the model first
enumerates the gain ratio when the predictor is represented as:

• A multi-way split with as many splits as distinct values (i.e., the default
approach where each category is a separate split).

• Multi-way splits for all possible combinations when two categories are
grouped together and the others are split separately.

Based on the results of these representations of the predictor, a greedy al-
gorithm is used to find the best categories to merge. As a result, there are
many possible representations of the categorical predictor. Once the model
constructs the final groupings, the gain ratio is calculated for this configura-
tion. The ratio is compared to the other predictors when searching for the
best split variable. This process is repeated each time the model conducts
a search for a new split variable. This option is computationally expensive
and may have a minimal impact on the tree if the categorical predictors
have only a few possible levels. Unfortunately, this option is not available in
the implementation of C4.5 that is currently available (in the Weka software
suite under the name J48). The effect of this option on the data cannot be
directly demonstrated here, but will be shown later when describing C5.0 (the
descendent of C4.5). Since this can have a profound impact on the model, we
will label this version of C4.5 as J48 to differentiate the versions.

When constructing trees with training sets containing missing predictor
values, C4.5 makes several adjustments to the training process:

• When calculating the information gain, the information statistics are calcu-
lated using the non-missing data then scaled by the fraction of non-missing
data at the split.

• Recall that C4.5 deals with selection bias by adjusting the gain statistic
by the information value for the predictor. When the predictor contains
missing values, the number of branches is increased by one; missing data
are treated as an “extra” category or value of the predictor.

• Finally, when the class distribution is determined for the resulting splits,
missing predictor values contribute fractionally to each class. The frac-
tional contribution of the data points are based on the class distribution
of the non-missing values. For example, suppose 11 samples are being split
and one value was missing. If three samples are Class #1 and the rest are
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Class #2, the missing value would contribute 0.30 to Class #1 and 0.70
to Class #2 (on both sides of the split).

Because of this accounting, the class frequency distribution in each node may
not contain whole numbers. Also, the number of errors in the terminal node
can be fractional.

Like CART, C4.5 builds a large tree that is likely to over-fit the data then
prunes the tree back with two different strategies:

• Simple elimination of a sub-tree.
• Raising a sub-tree so that it replaces a node further up the tree.

Whereas CART uses cost complexity pruning, pessimistic pruning evaluates
whether the tree should be simplified. Consider the case where a sub-tree is
a candidate for removal. Pessimistic pruning estimates the number of errors
with and without the sub-tree. However, it is well-known that the apparent
error rate is extremely optimistic. To counteract this, pessimistic pruning
calculates an upper confidence bound on the number of errors—this is the
pessimistic estimate of the number of errors. This is computed with and
without the sub-tree. If the estimated number of errors without the sub-tree
is lower than the tree that includes it, the sub-tree is pruned from the model.

When determining the estimated error rate, C4.5 uses a default confidence
level for the interval of 0.25 (called the confidence factor). This can be con-
sidered a tuning parameter for the model, as increasing the confidence factor
leads larger trees. While intuitive, this approach stands on shaky statistical
grounds, Quinlan (1993b) acknowledges this, saying that the approach

“does violence to statistical notions of sampling and confidence limits, so the
reasoning should be taken with a grain of salt.”

That said, this technique can be very effective and is more computationally
efficient than using cross-validation to determine the appropriate size of the
tree.

Once the tree has been grown and pruned, a new sample is classified by
moving down the appropriate path until it reaches the terminal node. Here,
the majority class for the training set data falling into the terminal node is
used to predict a new sample. A confidence value, similar to a class proba-
bility, can also be calculated on the basis of the class frequencies associated
with the terminal nodes. Quinlan (1993b) describes how upper and lower
ranges for the confidence factors can be derived from calculations similar to
the pessimistic pruning algorithm described above.

When predicting a sample with one or more missing values, the sample is
again treated fractionally. When a split is encountered for a variable that is
missing in the data, each possible path down the tree is determined. Ordinar-
ily, the predicted class would be based on the class with the largest frequency
from a single terminal node. Since the missing value could have possibly
landed in more than one terminal node, each class receives a weighted vote
to determine the final predicted class. The class weights for all the relevant
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Fig. 14.6: The J48 ROC curves for the holdout data using two different ap-
proaches for handling categorical predictors. The symbols (filled circle and
plus) represent the 50% probability cutoff. The areas under the curves were
0.835 when using grouped categories and 0.842 when using independent cat-
egories. The grey line corresponds to the previous CART model

terminal nodes are aggregated and the class associated with the largest total
weight is used to predict the sample. In this way, each terminal node with
possible associations with the sample contributes to the overall prediction.

J48 trees were created for the grant application data. Although the confi-
dence factor could be treated as a tuning parameter, our experience is that
the default value (0.25) works well. Two models were fit using the two differ-
ent approaches for representing the categorical predictors. Based on the prior
discussion, there is the expectation that treating the categories as a cohesive
set will results in a much larger tree than one using independent categories.
This is exactly the case for these data. Grouping the categories resulted in
a pruned tree with 2,918 terminal nodes. This was primarily due to a large
number of splits using the sponsor code; 2,384 splits out of 2,918 (82%) in-
volve this predictor. When using independent categories, the tree was much
smaller (821 terminal nodes).

The area under the ROC curve for the large model was 0.835, compared
to 0.842 when using independent categories. Figure 14.6 shows the two ROC
curves and the points on each curve corresponding to the default 50% prob-
ability cutoff. From this, it is clear that the specificities are about the same
for each approach (81.7% for the larger model vs. 83.8%), but there is a
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significant difference in the sensitivity of the models; the more complex model
resulted in a sensitivity of 83.9% while the independent category model
had relatively poor ability to predict successful grants (with a sensitivity
of 76.8%). However, these statistics are based on the nominal 50% cutoff for
success. The curves overlap considerably and alternate cutoffs would produce
almost identical results (see Sect. 16.4).

While CART and C4.5 classification trees are the most widely used, there
has been extensive research in this area and many other proposals for tree-
based models. For example, as discussed in the section on regression trees,
conditional inference trees (Hothorn et al. 2006) avoid selection bias during
splitting. Also, several techniques exist (Frank et al. 1998; Loh 2002; Chan and
Loh 2004; Zeileis et al. 2008) that use more complex models in the terminal
nodes, similar to M5 and Cubist. Other types of splits can be employed. For
example, Breiman et al. (1984) introduced the idea of splitting on a linear
combination of the predictors. These oblique trees may be beneficial when
the classes are linearly separable, which traditional splits have a difficult
time approximating. Menze et al. (2011) discusses tree ensemble models with
oblique trees.

14.2 Rule-Based Models

As previously discussed, rule-based models consist of one or more independent
conditional statements. Unlike trees, a sample may be predicted from a set
of rules. Rules have a long history as classifiers and this section will discuss
approaches for creating classification rules.

C4.5Rules

There are several different philosophies and algorithms for creating rule-based
models from classification trees. Some of the first were described by Quinlan
(1987) and Quinlan (1993b). This model, called C4.5Rules, builds on the C4.5
tree methodology described in the last section. To start, an unpruned tree is
created, then each path through the tree is collapsed into an individual rule.

Given this initial set, each rule is evaluated individually to assess whether
it can be generalized by eliminating terms in the conditional statement. The
pruning process here is similar to the one used to prune C4.5 trees. For a rule,
the model first calculates a baseline pessimistic error rate, then removes each
condition in the rule in isolation. Once a condition is removed, the pessimistic
error rate is recomputed. If any error rate is smaller than the baseline, the
condition associated with the smallest error rate is removed. The process is
repeated until all conditions are above the baseline rate or all conditions are



384 14 Classification Trees and Rule-Based Models

removed. In the latter case, the rule is completely pruned from the model.
The table below shows the pruning process with a five condition rule for the
grant data:

Pessimistic error rate
Condition Pass 1 Pass 2 Pass 3

Baseline 14.9 5.8 5.2
First day of year 12.9 5.2
Zero unsuccessful grants (CI) 77.3 53.5 50.7
Number of CI 42.0 21.6 19.7
Number of SCI 18.0 8.1 7.3
Zero successful grants (CI) 5.8

On the first pass, removing the condition associated with zero successful
grants by a chief investigator has the least impact on the error rate, so this
condition is deleted from the rule. Three passes of pruning were needed until
none of the error rates were below the baseline rate. Also, note that the
pessimistic error rate decreases with each iteration. Finally, the condition
related to zero unsuccessful grants for a chief investigator appears to have
the most importance to the rule since the error rate is the largest when the
condition is removed from the rule.

After the conditions have been pruned within each rule, the set of rules
associated with each class are processed separately to reduce and order the
rules. First, redundant or ineffective rules are removed using the MDL princi-
ple [see Quinlan and Rivest (1989) and Chap. 5 of Quinlan (1993b)]. An MDL
metric is created that encapsulates a ruleset’s performance and complexity—
for two rulesets with equivalent performance, the simpler collection of rules is
favored by the metric. Within each class, an initial group of groups is assem-
bled such that every training set sample is covered by at least one rule. These
are combined into the initial ruleset. Starting with this set, search methods
(such as greedy hill climbing or simulated annealing) are used to add and
remove rules until no further improvements can be made on the ruleset. The
second major operation within a class is to order the rules from most to least
accurate.

Once the rulesets within each class have been finalized, the classes are
ordered based on accuracy and a default class is chosen for samples that have
no relevant rules. When predicting a new sample, each rule is evaluated in
order until one is satisfied. The predicted class corresponds to the class for
the first active rule.
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1 repeat

2 Create a pruned classification tree

3 Determine the path through the tree with the largest coverage

4 Add this path as a rule to the rule set

5 Remove the training set samples covered by the rule

6 until all training set samples are covered by a rule

Algorithm 14.1: The PART algorithm for constructing rule-based
models (Frank and Witten 1998)

PART

C4.5Rules follows the philosophy that the initial set of candidate rules are
developed simultaneously then post-processed into an improved model. Al-
ternatively, rules can be created incrementally. In this way, a new rule can
adapt to the previous set of rules and may more effectively capture important
trends in the data.

Frank and Witten (1998) describe another rule model called PART shown
in Algorithm 14.1. Here, a pruned C4.5 tree is created from the data and the
path through the tree that covers the most samples is retained as a rule. The
samples covered by the rule are discarded from the data set and the process
is repeated until all samples are covered by at least one rule. Although the
model uses trees to create the rules, each rule is created separately and has
more potential freedom to adapt to the data.

The PART model for the grant data slightly favored the grouped category
model. For this model, the results do not show an improvement above and
beyond the previous models: the estimated sensitivity was 77.9%, the speci-
ficity was 80.2%, and the area under the ROC curve (not shown) was 0.809.
The model contained 360 rules. Of these, 181 classify grants as successful
while the other 179 classify grants as unsuccessful. Here, the five most pro-
lific predictors were sponsor code (332 rules), contract value band (30 rules),
the number of unsuccessful grants by chief investigators (27 rules), the num-
ber of successful grants by chief investigators (26 rules), and the number of
chief investigators (23 rules).

14.3 Bagged Trees

Bagging for classification is a simple modification to bagging for regression
(Sect. 8.4). Specifically, the regression tree in Algorithm 8.1 is replaced with
an unpruned classification tree for modeling C classes. Like the regression
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Table 14.1: The 2008 holdout set confusion matrix for the random forest
model

Observed class
Successful Unsuccessful

Successful 491 144
Unsuccessful 79 843

This model had an overall accuracy of 85.7%, a sensitivity of 86.1%, and a
specificity of 85.4%

setting, each model in the ensemble is used to predict the class of the new
sample. Since each model has equal weight in the ensemble, each model can
be thought of as casting a vote for the class it thinks the new sample belongs
to. The total number of votes within each class are then divided by the total
number of models in the ensemble (M) to produce a predicted probability
vector for the sample. The new sample is then classified into the group that
has the most votes, and therefore the highest probability.

For the grant data, bagging models were built using both strategies for
categorical predictors. As discussed in the regression trees chapter, bagging
performance often plateaus with about 50 trees, so 50 was selected as the
number of trees for each of these models. Figure 14.7 illustrates the bagging
ensemble performance using either independent or grouped categories. Both
of these ROC curves are smoother than curves produced with classification
trees or J48, which is an indication of bagging’s ability to reduce variance via
the ensemble. Additionally, both bagging models have better AUCs (0.92 for
both) than either of the previous models. For these data, there seems to be
no obvious difference in performance for bagging when using either indepen-
dent or grouped categories; the ROC curves, sensitivities, and specificities
are all nearly identical. The holdout set performance in Fig. 14.7 shows an
improvement over the J48 results (Fig. 14.6).

Similar to the regression setting, variable importance measures can be cal-
culated by aggregating variable importance values from the individual trees in
the ensemble. Variable importance of the top 16 predictors for both the inde-
pendent and grouped category bagged models set are presented in Fig. 14.15,
and a comparison of these results is left to the reader in Exercise 14.1.

14.4 Random Forests

Random forests for classification requires a simple tweak to the random forest
regression algorithm (Algorithm 8.2): a classification tree is used in place of
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Fig. 14.7: The ROC curves for the bagged classification tree model. The area
under the curves for both models was 0.92. The sensitivities and specificities
were 82.98 and 85.71, respectively

a regression tree. As with bagging, each tree in the forest casts a vote for
the classification of a new sample, and the proportion of votes in each class
across the ensemble is the predicted probability vector.

While the type of tree changes in the algorithm, the tuning parameter
of number of randomly selected predictors to choose from at each split is
the same (denoted as mtry). As in regression, the idea behind randomly
sampling predictors during training is to de-correlate the trees in the forest.
For classification problems, Breiman (2001) recommends setting mtry to the
square root of the number of predictors. To tunemtry, we recommend starting
with five values that are somewhat evenly spaced across the range from 2 to
P , where P is the number of predictors. We likewise recommend starting with
an ensemble of 1,000 trees and increasing that number if performance is not
yet close to a plateau.

For the most part, random forest for classification has very similar prop-
erties to the regression analog discussed previously, including:

• The model is relatively insensitive to values of mtry.
• As with most trees, the data pre-processing requirements are minimal.
• Out-of-bag measures of performance can be calculated, including accuracy,

sensitivity, specificity, and confusion matrices.
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Fig. 14.8: The ROC curves for the random forest model. The area under the
curve for independent categories was 0.92 and for the grouped category model
the AUC was 0.9

One difference is the ability to weight classes differentially. This aspect of the
model is discussed more in Chap. 16.

Random forest models were built on both independent and grouped cat-
egory models. The tuning parameter, mtry, was evaluated at values rang-
ing from 5 to 1,000. For independent categories, the optimal tuned value of
mtry was 100, and for grouped categories the value was also 250. Figure 14.8
presents the results, and in this case the independent categories have a slightly
higher AUC (0.92) than the grouped category approach (0.9). The binary pre-
dictor model also has better sensitivity (86.1% vs. 84.7%) but slightly worse
specificity (85.4% vs. 87.2%).

For single trees, variable importance can be determined by aggregating
the improvement in the optimization objective for each predictor. For ran-
dom forests, the improvement criteria (default is typically the Gini index) is
aggregated across the ensemble to generate an overall variable importance
measure. Alternatively, predictors’ impact on the ensemble can be calculated
using a permutation approach (Breiman 2000) as discussed in Sect. 8.5. Vari-
able importance values based on aggregated improvement have been com-
puted for the grant data for both types of predictors and the most important
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predictors are presented in Fig. 14.15. The interpretation is left to the reader
in Exercise 14.1.

Conditional inference trees can also be used as the base learner for random
forests. But current implementations of the methodology are computation-
ally burdensome for problems that are the relative size of the grant data.
A comparison of the performance of random forests using CART trees and
conditional inference trees is explored in Exercise 14.3.

14.5 Boosting

Although we have already discussed boosting in the regression setting, the
method was originally developed for classification problems (Valiant 1984;
Kearns and Valiant 1989), in which many weak classifiers (e.g., a classifier
that predicts marginally better than random) were combined into a strong
classifier. There are many species of boosting algorithms, and here we discuss
the major ones.

AdaBoost

In the early 1990s several boosting algorithms appeared (Schapire 1990; Fre-
und 1995) to implement the original theory. Freund and Schapire (1996)
finally provided the first practical implementation of boosting theory in
their famous AdaBoost algorithm; an intuitive version is provided in Al-
gorithm 14.2.

To summarize the algorithm, AdaBoost generates a sequence of weak clas-
sifiers, where at each iteration the algorithm finds the best classifier based on
the current sample weights. Samples that are incorrectly classified in the kth
iteration receive more weight in the (k + 1)st iteration, while samples that
are correctly classified receive less weight in the subsequent iteration. This
means that samples that are difficult to classify receive increasingly larger
weights until the algorithm identifies a model that correctly classifies these
samples. Therefore, each iteration of the algorithm is required to learn a dif-
ferent aspect of the data, focusing on regions that contain difficult-to-classify
samples. At each iteration, a stage weight is computed based on the error rate
at that iteration. The nature of the stage weight described in Algorithm 14.2
implies that more accurate models have higher positive values and less ac-
curate models have lower negative values.5 The overall sequence of weighted
classifiers is then combined into an ensemble and has a strong potential to
classify better than any of the individual classifiers.

5 Because a weak classifier is used, the stage values are often close to zero.
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1 Let one class be represented with a value of +1 and the other with a
value of -1

2 Let each sample have the same starting weight (1/n)
3 for k = 1 to K do

4 Fit a weak classifier using the weighted samples and compute
the kth model’s misclassification error (errk)

5 Compute the kth stage value as ln ((1− errk) /errk).

6 Update the sample weights giving more weight to incorrectly
predicted samples and less weight to correctly predicted samples

7 end

8 Compute the boosted classifier’s prediction for each sample by
multiplying the kth stage value by the kth model prediction and
adding these quantities across k. If this sum is positive, then classify
the sample in the +1 class, otherwise the -1 class.

Algorithm 14.2: AdaBoost algorithm for two-class problems

Boosting can be applied to any classification technique, but classification
trees are a popular method for boosting since these can be made into weak
learners by restricting the tree depth to create trees with few splits (also
known as stumps). Breiman (1998) gives an explanation for why classifica-
tion trees work particularly well for boosting. Since classification trees are a
low bias/high variance technique, the ensemble of trees helps to drive down
variance, producing a result that has low bias and low variance. Working
through the lens of the AdaBoost algorithm, Johnson and Rayens (2007)
showed that low variance methods cannot be greatly improved through boost-
ing. Therefore, boosting methods such as LDA or KNN will not show as
much improvement as boosting methods such as neural networks (Freund
and Schapire 1996) or näıve Bayes (Bauer and Kohavi 1999).

Stochastic Gradient Boosting

As mentioned in Sect. 8.6, Friedman et al. (2000) worked to provide statis-
tical insight of the AdaBoost algorithm. For the classification problem, they
showed that it could be interpreted as a forward stagewise additive model that
minimizes an exponential loss function. This framework led to algorithmic
generalizations such as Real AdaBoost, Gentle AdaBoost, and LogitBoost.
Subsequently, these generalizations were put into a unifying framework called
gradient boosting machines which was previously discussed in the regression
trees chapter.
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1 Initialized all predictions to the sample log-odds: f
(0)
i = log p̂

1−p̂ .

2 for iteration j = 1 . . .M do

3 Compute the residual (i.e. gradient) zi = yi − p̂i

4 Randomly sample the training data

5 Train a tree model on the random subset using the residuals as
the outcome

6 Compute the terminal node estimates of the Pearson residuals:

ri =
1/n

∑n
i (yi−p̂i)

1/n
∑n

i p̂i(1−p̂i)

7 Update the current model using fi = fi + λf
(j)
i

8 end

Algorithm 14.3: Simple gradient boosting for classification (2-class)

Akin to the regression setting, when trees are used as the base learner,
basic gradient boosting has two tuning parameters: tree depth (or interac-
tion depth) and number of iterations. One formulation of stochastic gradient
boosting models an event probability, similar to what we saw in logistic re-
gression, by

p̂i =
1

1 + exp [−f(x)]
,

where f(x) is a model prediction in the range of [−∞,∞]. For example, an

initial estimate of the model could be the sample log odds, f
(0)
i = log p̂

1−p̂ ,
where p is the sample proportion of one class from the training set.

Using the Bernoulli distribution, the algorithm for stochastic gradient
boosting for two classes is shown in Algorithm 14.3.

The user can tailor the algorithm more specifically by selecting an appro-
priate loss function and corresponding gradient (Hastie et al. 2008). Shrinkage
can be implemented in the final step of Algorithm 14.3. Furthermore, this al-
gorithm can be placed into the stochastic gradient boosting framework by
adding a random sampling scheme prior to the first step in the inner For

loop. Details about this process can be found in Sect. 8.6.
For the grant data a tuning parameter grid was constructed where inter-

action depth ranged from 1 to 9, number of trees ranged from 100 to 2,000,
and shrinkage ranged from 0.01 to 0.1. This grid was applied to constructing
a boosting model where the categorical variables were treated as indepen-
dent categories and separately as grouped categories. For the independent
category model, the optimal area under the ROC curve was 0.94, with an
interaction depth of 9, number of trees 1,300, and shrinkage 0.01. For the
grouped category model, the optimal area under the ROC curve was 0.92,
with an interaction depth of 7, number of trees 100, and shrinkage 0.01 (see
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Fig. 14.9). In this case, the independent category model performs better than
the grouped category model on the basis of ROC. However, the number of
trees in each model was substantially different, which logically follows since
the binary predictor set is larger than the grouped categories.

An examination of the tuning parameter profiles for the grouped category
and independent category predictors displayed in Figs. 14.10 and 14.11 reveals
some interesting contrasts. First, boosting independent category predictors
has almost uniformly better predictive performance across tuning parame-
ter settings relative to boosting grouped category predictors. This pattern is
likely because only one value for many of the important grouped category
predictors contains meaningful predictive information. Therefore, trees using
the independent category predictors are more easily able to find that infor-
mation quickly which then drives the boosting process. Within the grouped
category predictors, increasing the shrinkage parameter almost uniformly de-
grades predictive performance across tree depth. These results imply that for
the grouped category predictors, boosting obtains most of its predictive infor-
mation from a moderately sized initial tree, which is evidenced by comparable
AUCs between a single tree (0.89) and the optimal boosted tree (0.92).

Boosting independent category predictors shows that as the number of
trees increases, model performance improves for low values of shrinkage and
degrades for higher values of shrinkage. But, whether a lower or higher value
of shrinkage is selected, each approach finds peak predictive performance
at an ROC of approximately 0.94. This result implies, for these data, that
boosting can find an optimal setting fairly quickly without the need for too
much shrinkage.

Variable importance for boosting in the classification setting is calculated
in a similar manner to the regression setting: within each tree in the ensemble,
the improvement based on the splitting criteria for each predictor is aggre-
gated. These importance values are then averaged across the entire boosting
ensemble.

14.6 C5.0

C5.0 is a more advanced version of Quinlan’s C4.5 classification model that
has additional features, such as boosting and unequal costs for different types
of errors. Like C4.5, it has tree- and rule-based versions and shares much of
its core algorithms with its predecessor. Unlike C4.5 or Cubist, there is very
little literature on the improvements and our description comes largely from
evaluating the program source code, which was made available to the public
in 2011.

The model has many features and options and our discussion is broken
down into four separate areas: creating a single classification tree, the cor-
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Fig. 14.11: Tuning parameter profiles for the boosted tree model using inde-
pendent categories

responding rule-based model, C5.0’s boosting procedure, and miscellaneous
features of the algorithm (e.g., variable importance etc).

Classification Trees

C5.0 trees have several basic improvements that are likely to generate smaller
trees. For example, the algorithm will combine nonoccurring conditions for
splits with several categories. It also conducts a final global pruning proce-
dure that attempts to remove the sub-trees with a cost-complexity approach.
Here, sub-trees are removed until the error rate exceeds one standard error
of the baseline rate (i.e., no pruning). Initial experimentation suggests that
these additional procedures tend to create simpler trees than the previous
algorithm.

The nominal C5.0 tree was fit to the grant data with the categorical pre-
dictors treated as cohesive sets. The tree had 86 terminal nodes and resulted
in an area under the ROC curve of 0.685. The five most prolific predictors in
the tree were contract value band (six splits), numeric day of the year (six
splits), sponsor code (five splits), category code (four splits), and day of the
week (four splits). Recall that the analogous J48 tree had many more terminal
nodes (2,918), which was primarily due to how splits were made on categor-
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ical variables with many possible values, such as the sponsor code. The C5.0
tree avoids this issue using the heuristic algorithm described in Sect. 14.1 that
attempts to consolidate the categories into two or more smaller groups. If this
option is turned off in C5.0, the tree is much larger (213 terminal nodes) due
to the categorical predictors. However, the area under the ROC curve for the
larger tree (0.685) is nearly the same as the smaller tree.

Neither C5.0 model approaches the size of the previously described J48
tree. For J48 and C5.0 (without grouping), categorical predictors with many
values are used in more splits, and, at each split, they tend to result in more
than two branches when the grouping option is not used.

Classification Rules

The process used for creating rules is similar to C4.5; an initial tree is grown,
collapsed into rules, then the individual rules are simplified via pruning and a
global procedure is used on the entire set to potentially reduce the number of
constituent rules. The process for pruning conditions within a rule and sim-
plifying the ruleset follows C4.5, but C5.0 does not order the rules. Instead,
when predicting new samples, C5.0 uses all active rules, each of which votes
for the most likely class. The votes for each class are weighted by the confi-
dence values and the class associated with the highest vote is used. However,
the predicted confidence value is the one associated with the most specific
active rule. Recall that C4.5 sorts the rules, and uses the first active rule for
prediction.

The grant data were analyzed with this algorithm. The rule-based model
consists of 22 rules with an estimated area under the ROC curve of 0.675.
The complexity of the model is much simpler than PART. When ordered by
the confidence value of the rule, the top three rules to predict a successful
grant are:

1. (First day of the year)
2. (The number of chief investigators > 0) and (the number of principal

supervisors ≤ 0) and (the number of student chief investigators ≤ 0) and
(the number of unsuccessful grants by chief investigators ≤ 0) and (SEO
code �= 730106) and (numeric day of the year ≤ 209)

3. (The number of external chief investigators ≤ 0) and (the number of chief
investigators born around 1975 ≤ 0) and (the number of successful grants
by chief investigators ≤ 0) and (numeric day of the year > 109) and (un-
known category code) and (day of the week in Tues, Fri, Mon, Wed, Thurs)

Similarly, the top three rules for unsuccessful grants are:

1. (The number of unsuccessful grants by chief investigators > 0) and (nu-
meric day of the year > 327) and (sponsor code in 2B, 4D, 24D, 60D,
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90B, 32D, 176D, 7C, 173A, 269A) and (contract value band in Unk, J)
and (CategoryCode in 10A, 30B, 30D, 30C)

2. (The number of chief investigators ≤ 1) and (the number of unsuccessful
grants by chief investigators > 0) and (the number of B journal papers
by chief investigators > 3) and (sponsor code = 4D) and (contract value
band in B, Unk, J) and (Month in Nov, Dec, Feb, Mar, May, Jun)

3. (The number of chief investigators > 0) and (the number of chief inves-
tigators born around 1945 ≤ 0) and (the number of successful grants by
chief investigators ≤ 0) and (numeric day of the year > 209) and (sponsor
code in 21A, 60D, 172D, 53A, 103C, 150B, 175C, 93A, 207C, 294B)

There were 11 rules to predict successful grants and 11 for unsuccessful
outcomes. The predictors involved in the most rules were the number of
unsuccessful grants by chief investigators (11 rules), contract value band (9
rules), category code (8 rules), numeric day of the year (8 rules), and Month
(5 rules).

C5.0 has other features for rule-based models. For example, the model can
create utility bands. Here, the utility is measured as the increase in error that
occurs when the rule is removed from the set. The rules are ordered with
an iterative algorithm: the model removes the rule with the smallest utility
and recomputes the utilities for the other rules. The sequence in which the
rules are removed defines their importance. For example, the first rule that is
removed is associated with the lowest utility and the last rule with the highest
utility. The bands are groups of rules of roughly equal size based on the utility
order (highest to smallest). The relationship between the cumulative error
rate can be profiled as the groups of rules are added to the model.

Boosting

C5.0’s boosting procedure is similar to the previously described AdaBoost
algorithm in the basic sense: models are fit sequentially and each iteration
adjusts the case weights based on the accuracy of a sample’s prediction. There
are, however, some notable differences. First, C5.0 attempts to create trees
that are about the same size as the first tree by coercing the trees to have
about the same number of terminal nodes per case as the initial tree. Previ-
ous boosting techniques treated the tree complexity as a tuning parameter.
Secondly, the model combines the predictions from the constituent trees dif-
ferently than AdaBoost. Each boosted model calculates the confidence values
for each class as described above and a simple average of these values is cal-
culated. The class with the largest confidence value is selected. Stage weights
are not calculated during the model training process. Third, C5.0 conducts
two sorts of “futility analysis” during model training. The model will auto-
matically stop boosting if the model is very effective (i.e., the sum of the
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weights for the misclassified samples is less than 0.10) or if it is highly inef-
fective (e.g., the average weight of incorrect samples is greater than 50%).
Also, after half of the requested boosting iterations, each sample is assessed
to determine if a correct prediction is possible. If it is not, the case is dropped
from further computations.

Finally, C5.0 uses a different weighting scheme during model training.
First, some notation:

N = training set size

N− = number of incorrectly classified samples

wk = case weight for sample at the kth boosting iteration

S+ = sum of weights for correctly classified samples

S− = sum of weights for incorrectly classified samples

The algorithm begins by determining the midpoint between the sum of the
weights for misclassified samples and half of the overall sum of the weights

midpoint =
1

2

[

1

2
(S− + S+)− S−

]

=
1

4
(S+ − S−).

From this, the correctly classified samples are adjusted with the equation

wk = wk−1 × S+ −midpoint

S+

and the misclassified samples are updated using

wk = wk−1 +
midpoint

N−
.

This updating scheme gives a large positive jump in the weights when a
sample is incorrectly predicted. When a sample is correctly predicted, the
multiplicative nature of the equation makes the weights drop more slowly
and with a decreasing rate as the sample continues to be correctly predicted.
Figure 14.12 shows an example of the change in weights for a single sample
over several boosting iterations.

Quinlan (1996a) describes several experiments with boosting and bagging
tree-based models including several where boosting C4.5 resulted in a less
effective model.

Other Aspects of the Model

C5.0 measures predictor importance by determining the percentage of
training set samples that fall into all the terminal nodes after the split. For
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Fig. 14.12: An example of the sample weighting scheme using C5.0 when
boosting

example, the predictor in the first split automatically has an importance mea-
surement of 100% since all samples are affected by this split. Other predictors
may be used frequently in splits, but if the terminal nodes cover only a hand-
ful of training set samples, the importance scores may be close to zero. The
same strategy is applied to rule-based models and boosted versions of the
model.

C5.0 also has an option to winnow or remove predictors: an initial algo-
rithm uncovers which predictors have a relationship with the outcome, and
the final model is created from only the important predictors. To do this, the
training set is randomly split in half and a tree is created for the purpose of
evaluating the utility of the predictors (call this the “winnowing tree”). Two
procedures characterize the importance of each predictor to the model:

1. Predictors are considered unimportant if they are not in any split in the
winnowing tree.

2. The half of the training set samples not included to create the winnowing
tree are used to estimate the error rate of the tree. The error rate is also
estimated without each predictor and compared to the error rate when all
the predictors are used. If the error rate improves without the predictor,
it is deemed to be irrelevant and is provisionally removed.

Once the tentative list of non-informative predictors is established, C5.0 recre-
ates the tree. If the error rate has become worse, the winnowing process is
disabled and no predictors are excluded.
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After the important predictors are established (if any), the conventional
C5.0 training process is used with the full training set but with only the
predictors that survived the winnowing procedure.

For example, C5.0 split the grant data into roughly equal parts, built a tree
on one-half of the data, and used the second half to estimate the error rate to
be about 14.6%. When the predictor related to the number of student chief
investigators was excluded, the error rate decreased slightly to 14.2%. Given
this, the number of student chief investigators was excluded from further
consideration. Conversely, when the contract value band was excluded, the
error rate rose to 24.8%. This predictor was retained for subsequent C5.0
models.

Grant Data

For the grant data, several variations of the C5.0 model were evaluated:

• Single tree- and rule-based models
• Tree and rules with boosting (up to 100 iterations)
• All predictors and the winnowed set
• The two previously described approaches for handling categorical predic-

tors

For the last set of model conditions, there was very little difference in the
models. Figure 14.13 shows the ROC curves for the two methods of encoding
the categorical predictors. The curves are almost identical.

The top panel of Fig. 14.13 shows the tuning profile for the C5.0 models
with grouped categories. There was a slight decrease in performance when
the winnowing algorithm was applied, although this is likely to be within the
experimental noise of the data. Boosting clearly had a positive effect for these
models and there is marginal improvement after about 50 iterations. Although
single rules did worse than single trees, boosting showed the largest impact
on the rule-based models, which ended up having superior performance. The
optimal area under the ROC curve for this model was 0.942, the best seen
among the models.

What predictors were used in the model? First, it may be helpful to know
how often each predictor was used in a rule across all iterations of boosting.
The vast majority of the predictors were used rarely; 99% of the predictors
were used in less than 0.71% of the rules. The ten most frequent predictors
were: contract value band (9.2%), the number of unsuccessful grants by chief
investigators (8.3%), the number of successful grants by chief investigators
(7.1%), numeric day of the year (6.3%), category code (6%), Month (3.5%),
day of the week (3.1%), sponsor code (2.8%), the number of external chief
investigators (1.1%), and the number of C journal papers by chief investiga-
tors (0.9%). As previously described, the predictors can be ranked by their
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importance values, as measured by the aggregate percentage of samples cov-
ered by the predictor. With boosting, this metric is less informative since
the predictor in the first split is calculated to have 100% importance. In this
model, where a significant number of boosting iterations were used, 40 pre-
dictors had importance values of 100%. This model only used 357 predictors
(24%).

14.7 Comparing Two Encodings of Categorical
Predictors

All of the models fit in this chapter used two methods for encoding cate-
gorical predictors. Figure 14.14 shows the results of the holdout set for each
model and approach. In general, large differences in the area under the ROC
curve were not seen between the two encodings. J48 saw a loss in sensitiv-
ity with separate binary dummy variables, while stochastic gradient boosting
and PART have losses in specificity when using grouped variables. In some
cases, the encodings did have an effect on the complexity of the model. For
the boosted trees, the choice of encodings resulted in very different tuning
profiles, as demonstrated in Figs. 14.10 and 14.11. It is difficult to extrapolate
these findings to other models and other data sets, and, for this reason, it
may be worthwhile to try both encodings during the model training phase.

14.8 Computing

This section uses functions from the following packages: C50, caret, gbm, ipred,
partykit, pROC, randomForest, and RWeka. This section also uses the same R
objects created in Sect. 12.7 that contain the Grant Applications data (such
as the data frame training).

In addition to the sets of dummy variables described in Sect. 12.7, sev-
eral of the categorical predictors are encoded as R factors: SponsorCode,
ContractValueBand, CategoryCode, and Weekday. When fitting models with inde-
pendent categories for these predictors, the character vector fullSet is used.
When treating the categorical predictors as a cohesive set, an alternate list of
predictors is contained in the vector factorPredictors, which contains the fac-
tor versions of the relevant data. Additionally, the character string factorForm

is an R formula created using all the predictors contained in factorPredictors

(and is quite long).
A good deal of the syntax shown in this section is similar to other comput-

ing sections, especially the previous one related to regression trees. The focus
here will be on the nuances of individual model functions and interpreting
their output. Some code is shown to recreate the analyses in this chapter.
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Fig. 14.14: The effect of different methods of representing categorical predic-
tors in tree- and rule-based models. “Grouped” indicates that the categories
for a predictor were treated as a cohesive set, while “independent” indicates
that the categories were converted to independent dummy variables prior to
modeling

A comprehensive program for the models shown is contained in the Chapter

directory of the AppliedPredictiveModeling package.

Classification Trees

There are a number of R packages to build single classification trees. The
primary package is rpart. As discussed in regression, the function takes only
the formula method for specifying the exact form of the model.

There are a large number of predictors for the grant data, and, as previ-
ously mentioned, an R formula was created programmatically to model the
classes for grouped categories. The following syntax fits a CART model to
these predictors with our data splitting strategy:

> library(rpart)

> cartModel <- rpart(factorForm, data = training[pre2008,])

This automatically grows and prunes the tree using the internal cross-
validation procedure. One important argument for classification is parms.
Here, several alterations to the model training process can be declared, such
as the prior probabilities of the outcome and the type of splitting (either
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the Gini coefficient or the information statistic). These values should be in a
list.6 See ?rpart for the details. Also, the control argument can customize the
fitting procedure in terms of the numerical methods (such as the tree depth).

The model output is somewhat different than in regression trees. To show
this we generate a smaller model with two predictors:

> rpart(Class ~ NumCI + Weekday, data = training[pre2008,])

n= 6633

node), split, n, loss, yval, (yprob)
* denotes terminal node

1) root 6633 3200 unsuccessful (0.49 0.51)
2) Weekday=Sun 223 0 successful (1.00 0.00) *
3) Weekday=Fri,Mon,Sat,Thurs,Tues,Wed 6410 3000 unsuccessful (0.47 0.53)

6) Weekday=Mon,Thurs,Tues 2342 1000 successful (0.57 0.43) *
7) Weekday=Fri,Sat,Wed 4068 1700 unsuccessful (0.41 0.59) *

The output shows the split variable/value, along with how many samples
were partitioned into the branch (223 for the second node in the output
above). The majority class is also printed (successful for node 2) and the
predicted class probabilities for samples that terminate in this node.

Prediction syntax is nearly the same as other models in R. The predict

function, by default, produces probabilities for each class. Using
predict(object, type = "class") generates a factor vector of the winning
class.

The R implementation of C4.5 is in the RWeka package in a function called
J48. The function also takes a model formula:

> library(RWeka)

> J48(Class ~ NumCI + Weekday, data = training[pre2008,])

J48 pruned tree
------------------

Weekday = Fri: unsuccessful (1422.0/542.0)
Weekday = Mon: successful (1089.0/455.0)
Weekday = Sat
| NumCI <= 1: unsuccessful (1037.0/395.0)
| NumCI > 1
| | NumCI <= 3: unsuccessful (378.0/185.0)
| | NumCI > 3: successful (61.0/26.0)
Weekday = Sun: successful (223.0)
Weekday = Thurs
| NumCI <= 0: unsuccessful (47.0/21.0)
| NumCI > 0: successful (520.0/220.0)
Weekday = Tues
| NumCI <= 2
| | NumCI <= 0: unsuccessful (45.0/21.0)
| | NumCI > 0: successful (585.0/251.0)

6 An example of this type of argument is shown in Sect. 16.9 where rpart is fit using
with differential costs for different types of errors.
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| NumCI > 2: unsuccessful (56.0/22.0)
Weekday = Wed: unsuccessful (1170.0/521.0)

Number of Leaves : 12

Size of the tree : 18

Recall that this implementation of C4.5 does not attempt to group the
categories prior to pruning. The prediction function automatically pro-
duces the winning classes and the class probabilities can be obtained from
predict(object, type = "prob").

When visualizing CART or J48 trees, the plot function from the partykit
package can create detailed displays. The objects must be converted to the
appropriate class with as.party, followed by the plot function.

A single C5.0 tree can be created from the C50 package:

> library(C50)

> C5tree <- C5.0(Class ~ NumCI + Weekday, data = training[pre2008,])

> C5tree

Call:
C5.0.formula(formula = Class ~ NumCI + Weekday, data
= training[pre2008, ])

Classification Tree
Number of samples: 6633
Number of predictors: 2

Tree size: 2

Non-standard options: attempt to group attributes
> summary(C5tree)

Call:
C5.0.formula(formula = Class ~ NumCI + Weekday, data
= training[pre2008, ])

C5.0 [Release 2.07 GPL Edition] Thu Dec 6 13:53:14 2012
-------------------------------

Class specified by attribute `outcome'

Read 6633 cases (3 attributes) from undefined.data

Decision tree:

Weekday in Tues,Mon,Thurs,Sun: successful (2565/1010)
Weekday in Fri,Wed,Sat: unsuccessful (4068/1678)

Evaluation on training data (6633 cases):

Decision Tree
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----------------
Size Errors

2 2688(40.5%) <<

(a) (b) <-classified as
---- ----
1555 1678 (a): class successful
1010 2390 (b): class unsuccessful

Attribute usage:

100.00% Weekday

Time: 0.0 secs

Note that, unlike J48, this function is able to split the weekday values from
groups of values. The control function for this model (C5.0Control) turns this
feature off (subset = FALSE). Other options are available here, such as win-
nowing and the confidence factor for splitting. Like J48, the default prediction
function produces classes and type = "prob" produces the probabilities.

There are wrappers for these models using the caret function train. For
example, to fit the grouped category model for CART, we used:

> set.seed(476)

> rpartGrouped <- train(x = training[,factorPredictors],

+ y = training$Class,

+ method = "rpart",

+ tuneLength = 30,

+ metric = "ROC",

+ trControl = ctrl)

Recall that the ctrl object specifies which data are in the holdout set and
what performance measures should be calculated (e.g., sensitivity, specificity,
and the area under the ROC curve). The model codes for J48 and C5.0 trees
are J48 and C5.0Tree, respectively. The main differences here between train

and the original model function are a unified interface to the models and the
ability to tune the models with alternative metrics, such as the area under
the ROC curve.

Note that rpart, C5.0, and J48 use the formula method differently than
most other functions. Usually, the formula method automatically decomposes
any categorical predictors to a set of binary dummy variables. These func-
tions respect the categorical nature of the data and treat these predictors as
grouped sets of categories (unless the data are already converted to dummy
variables). The train function follows the more common convention in R,
which is to create dummy variables prior to modeling. This is the main rea-
son the code snippet above is written with the non-formula method when
invoking train.



406 14 Classification Trees and Rule-Based Models

Rules

There are several rule-based models in the RWeka package. The PART function
creates models based on Frank and Witten (1998). Its syntax is similar to
J48:

> PART(Class ~ NumCI + Weekday, data = training[pre2008,])

PART decision list
------------------

Weekday = Fri: unsuccessful (1422.0/542.0)

Weekday = Sat AND
NumCI <= 1: unsuccessful (1037.0/395.0)

Weekday = Mon: successful (1089.0/455.0)

Weekday = Thurs AND
NumCI > 0: successful (520.0/220.0)

Weekday = Wed: unsuccessful (1170.0/521.0)

Weekday = Tues AND
NumCI <= 2 AND
NumCI > 0: successful (585.0/251.0)

Weekday = Sat AND
NumCI <= 3: unsuccessful (378.0/185.0)

Weekday = Sun: successful (223.0)

Weekday = Tues: unsuccessful (101.0/43.0)

Weekday = Sat: successful (61.0/26.0)

: unsuccessful (47.0/21.0)

Number of Rules : 11

Other RWeka functions for rules can be found on the help page ?Weka_

classifier_rules.
C5.0 rules are created using the C5.0 function in the same manner as trees,

but with the rules = TRUE option:

> C5rules <- C5.0(Class ~ NumCI + Weekday, data = training[pre2008,],

+ rules = TRUE)

> C5rules

Call:
C5.0.formula(formula = Class ~ NumCI + Weekday, data
= training[pre2008, ], rules = TRUE)

Rule-Based Model
Number of samples: 6633
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Number of predictors: 2

Number of Rules: 2

Non-standard options: attempt to group attributes
> summary(C5rules)

Call:
C5.0.formula(formula = Class ~ NumCI + Weekday, data
= training[pre2008, ], rules = TRUE)

C5.0 [Release 2.07 GPL Edition] Thu Dec 6 13:53:14 2012
-------------------------------

Class specified by attribute `outcome'

Read 6633 cases (3 attributes) from undefined.data

Rules:

Rule 1: (2565/1010, lift 1.2)
Weekday in Tues, Mon, Thurs, Sun
-> class successful [0.606]

Rule 2: (4068/1678, lift 1.1)
Weekday in Fri, Wed, Sat
-> class unsuccessful [0.587]

Default class: unsuccessful

Evaluation on training data (6633 cases):

Rules
----------------

No Errors

2 2688(40.5%) <<

(a) (b) <-classified as
---- ----
1555 1678 (a): class successful
1010 2390 (b): class unsuccessful

Attribute usage:

100.00% Weekday

Time: 0.0 secs
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Prediction follows the same syntax as above. The variable importance scores
for C5.0 trees and rules is calculated using the C5imp function or the varImp

function in the caret package.
When working with the train function, model codes C5.0Rules and PART

are available.
Other packages for single trees include party (conditional inference trees),

tree (CART trees), oblique.tree (oblique trees), partDSA (for the model of
Molinaro et al. (2010)), and evtree (trees developed using genetic algorithms).
Another class of partitioning methods not discussed here called Logic Regression
(Ruczinski et al. 2003) are implemented in several packages, including Logi-
cReg.

Bagged Trees

The primary tree bagging package is ipred. The bagging function creates
bagged versions of rpart trees using the formula method (another function,
ipredbagg, uses the non-formula method). The syntax is familiar:

> bagging(Class ~ Weekday + NumCI, data = training[pre2008,])

The argument nbagg controls how many trees are in the ensemble (25 by
default). The default for the standard predict method is to determine the
winning class and type = "prob" will produce the probabilities.

Another function in the caret package, called bag, creates bag models more
generally (i.e., models other than trees).

Random Forest

The R port of the original random forest program is contained in the ran-
domForest package and its basic syntax is identical to the regression tree
code shown on p. 215. The default value of mtry ≈ √

p is different than in
regression. One option, cutoff, is specific to classification and controls the
voting cutoff(s) for determining the winning class from the ensemble of trees.
This particular option is also available when using random forest’s predict

function.
The model takes the formula and non-formula syntax. In either case, any

categorical predictors encoded as R factor variables are treated as a group.
The predict syntax defaults to generating the winning class, but the type

argument allows for predicting other quantities such as the class probabilities
(type = "prob") or the actual vote counts type = "votes".

A basic example for the grant data, with output, is:
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> library(randomForest)

> randomForest(Class ~ NumCI + Weekday, data = training[pre2008,])

Call:
randomForest(formula = Class ~ NumCI + Weekday, data = training[pre2008, ])

Type of random forest: classification
Number of trees: 500

No. of variables tried at each split: 1

OOB estimate of error rate: 40.06%
Confusion matrix:

successful unsuccessful class.error
successful 1455 1778 0.5499536
unsuccessful 879 2521 0.2585294

Since only two predictors are included, only a single predictor is randomly
selected at each split.

The function prints the out-of-bag error estimate, as well as the analogous
confusion matrix. Out-of-bag estimates of the sensitivity and the false positive
rate (i.e., 1—specificity) are shown under the column class.error.

The model code for tuning a random forest model with train is "rf".
Other random forests functions are cforest (in the party package), obliqueRF

(forests from oblique trees in the obliqueRF package), rFerns (for the random
fern model of Ozuysal et al. (2010) in the rFerns package), and RRF (regularized
random forest models in the RRF package).

Boosted Trees

The primary boosted tree package in R is gbm, which implements stochas-
tic gradient boosting. The primary difference between boosting regression
and classification trees is the choice of the distribution of the data. The gbm

function can only accommodate two class problems and using distribution =

"bernoulli" is an appropriate choice here. Another option is distribution =

"adaboost" to replicate the loss function used by that methodology.
One complication when using gbm for classification is that it expects that

the outcome is coded as 0/1. An example of a simple model for the grant
data would be

> library(gbm)

> forGBM <- training

> forGBM$Class <- ifelse(forGBM$Class == "successful", 1, 0)

> gbmModel <- gbm(Class ~ NumCI + Weekday,

+ data = forGBM[pre2008,],

+ distribution = "bernoulli",

+ interaction.depth = 9,

+ n.trees = 1400,

+ shrinkage = 0.01,

+ ## The function produces copious amounts
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+ ## of output by default.

+ verbose = FALSE)

The prediction function for this model does not predict the winning class. Us-
ing predict(gbmModel, type = "response") will calculate the class probability
for the class encoded as a 1 (in our example, a successful grant was encoded
as a 1). This can be converted to a factor variable with the winning class:

> gbmPred <- predict(gbmModel,

+ newdata = head(training[-pre2008,]),

+ type = "response",

+ ## The number of trees must be

+ ## explicitly set

+ n.trees = 1400)

> gbmPred

[1] 0.5697346 0.5688882 0.5688882 0.5688882 0.5697346 0.5688882
> gbmClass <- ifelse(gbmPred > .5, "successful", "unsuccessful")

> gbmClass <- factor(gbmClass, levels = levels(training$Class))

> gbmClass

[1] successful successful successful successful successful successful
Levels: successful unsuccessful

Fitting this model with train simplifies the process considerably. For exam-
ple, a factor variable can be used as the outcome format (train automatically
does the conversion). When predicting the winning class, a factor is produced.
If the class probabilities are required, then specify predict(object, type =

"prob") (train’s prediction function automatically uses the number of trees
that were found to be optimal during model tuning).

The original AdaBoost algorithm is available in the ada package. Another
function for boosting trees is blackboost in the mboost package. This package
also contains functions for boosting other types of models (such as logistic
regression) as does the bst package.

To train boosted versions of C5.0, the trials argument is used (with values
between 1 and 100).

> library(C50)

> C5Boost <- C5.0(Class ~ NumCI + Weekday, data = training[pre2008,],

+ trials = 10)

> C5Boost

Call:
C5.0.formula(formula = Class ~ NumCI + Weekday, data
= training[pre2008, ], trials = 10)

Classification Tree
Number of samples: 6633
Number of predictors: 2

Number of boosting iterations: 10 requested; 6 used due to early stopping
Average tree size: 2.5

Non-standard options: attempt to group attributes
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By default, the algorithm has internal tests that assess whether the boost-
ing is effective and will halt the model training when it diagnoses that it is
no longer effective (note the message that ten iterations were requested but
only six were used due to early stopping). This feature can be negated using
C5.0Control(earlyStopping = FALSE).

These models can be tuned by train using method values of gbm, ada, or
C5.0.

Exercises

14.1. Variable importance for the bagging, random forests, and boosting has
been computed for both the independent categories and the factor model
predictors. The top 16 important predictors for each method and predictor
set are presented in Fig. 14.15.

(a) Within each modeling technique, which factors are in common between
the independent category and factor models?

(b) How do these results compare with the most prolific predictors found in
the PART model results discussed in Sect. 14.2?

14.2. For the churn data described in Exercise 12.3:

(a) Fit a few basic trees to the training set. Should the area code be encoded
as independent dummy variables or as a grouped set of values?

(b) Does bagging improve the performance of the trees? What about boost-
ing?

(c) Apply rule-based models to the data. How is the performance? Do the
rules make any sense?

(d) Use lift charts to compare tree or rule models to the best techniques from
previous chapters.

14.3. Exercise 12.1 gives a detailed description of the hepatic injury data
set, where the primary scientific objective for these data is to construct a
model to predict hepatic injury status. Recall that random forests can be
performed with CART trees or conditional inference trees. Start R and use
these commands to load the data:

> library(AppliedPredictiveModeling)

> data(hepatic)

(a) Fit a random forest model using both CART trees and conditional infer-
ence trees to the chemistry predictors, using the Kappa statistic as the
metric as follows:
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Fig. 14.15: A comparison of variable importance for the ensemble methods of
bagging, random forests, and boosting for both the independent categories
and grouped categories predictors
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> library(caret)

> set.seed(714)

> indx <- createFolds(injury, returnTrain = TRUE)

> ctrl <- trainControl(method = "cv", index = indx)

> mtryValues <- c(5, 10, 25, 50, 75, 100)

> rfCART <- train(chem, injury,

+ method = "rf",

+ metric = "Kappa",

+ ntree = 1000,

+ tuneGrid = data.frame(.mtry = mtryValues))

> rfcForest <- train(chem, injury,

+ method = "cforest",

+ metric = "Kappa",

+ tuneGrid = data.frame(.mtry = mtryValues))

Which model has better performance, and what are the corresponding
tuning parameters?

(b) Use the following syntax to obtain the computation time for each model:

> rfCART$times$everything

> rfcForest$times$everything

Which model takes less computation time? Given the trade-off between
performance and computation time, which model do you prefer?

(c) Use the following syntax to obtain the variable importance for the top
ten predictors for each model:

> varImp(rfCART)

> varImp(rfcForest)

Are there noticeable differences in variable importance between the top
ten predictors for each model? Explain possible reasons for the differences.
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