
CHAPTER 5

Support Vector Machines

A support vector machine (SVM) is a powerful and versatile machine learning model,
capable of performing linear or nonlinear classification, regression, and even novelty
detection. SVMs shine with small to medium-sized nonlinear datasets (i.e., hundreds
to thousands of instances), especially for classification tasks. However, they don’t scale
very well to very large datasets, as you will see.

This chapter will explain the core concepts of SVMs, how to use them, and how they
work. Let’s jump right in!

Linear SVM Classification
The fundamental idea behind SVMs is best explained with some visuals. Figure 5-1
shows part of the iris dataset that was introduced at the end of Chapter 4. The two
classes can clearly be separated easily with a straight line (they are linearly separable).
The left plot shows the decision boundaries of three possible linear classifiers. The
model whose decision boundary is represented by the dashed line is so bad that it
does not even separate the classes properly. The other two models work perfectly
on this training set, but their decision boundaries come so close to the instances
that these models will probably not perform as well on new instances. In contrast,
the solid line in the plot on the right represents the decision boundary of an SVM
classifier; this line not only separates the two classes but also stays as far away from
the closest training instances as possible. You can think of an SVM classifier as
fitting the widest possible street (represented by the parallel dashed lines) between the
classes. This is called large margin classification.

175

Figure 5-1. Large margin classification

Notice that adding more training instances “off the street” will not affect the decision
boundary at all: it is fully determined (or “supported”) by the instances located on the
edge of the street. These instances are called the support vectors (they are circled in
Figure 5-1).

SVMs are sensitive to the feature scales, as you can see in Fig‐
ure 5-2. In the left plot, the vertical scale is much larger than the
horizontal scale, so the widest possible street is close to horizontal.
After feature scaling (e.g., using Scikit-Learn’s StandardScaler),
the decision boundary in the right plot looks much better.

Figure 5-2. Sensitivity to feature scales

Soft Margin Classification
If we strictly impose that all instances must be off the street and on the correct
side, this is called hard margin classification. There are two main issues with hard
margin classification. First, it only works if the data is linearly separable. Second, it is
sensitive to outliers. Figure 5-3 shows the iris dataset with just one additional outlier:
on the left, it is impossible to find a hard margin; on the right, the decision boundary
ends up very different from the one we saw in Figure 5-1 without the outlier, and the
model will probably not generalize as well.

176 | Chapter 5: Support Vector Machines

Figure 5-3. Hard margin sensitivity to outliers

To avoid these issues, we need to use a more flexible model. The objective is to find a
good balance between keeping the street as large as possible and limiting the margin
violations (i.e., instances that end up in the middle of the street or even on the wrong
side). This is called soft margin classification.

When creating an SVM model using Scikit-Learn, you can specify several hyperpara‐
meters, including the regularization hyperparameter C. If you set it to a low value,
then you end up with the model on the left of Figure 5-4. With a high value, you get
the model on the right. As you can see, reducing C makes the street larger, but it also
leads to more margin violations. In other words, reducing C results in more instances
supporting the street, so there’s less risk of overfitting. But if you reduce it too much,
then the model ends up underfitting, as seems to be the case here: the model with
C=100 looks like it will generalize better than the one with C=1.

Figure 5-4. Large margin (left) versus fewer margin violations (right)

If your SVM model is overfitting, you can try regularizing it by
reducing C.

The following Scikit-Learn code loads the iris dataset and trains a linear SVM classi‐
fier to detect Iris virginica flowers. The pipeline first scales the features, then uses a
LinearSVC with C=1:

Linear SVM Classification | 177

from sklearn.datasets import load_iris
from sklearn.pipeline import make_pipeline
from sklearn.preprocessing import StandardScaler
from sklearn.svm import LinearSVC

iris = load_iris(as_frame=True)
X = iris.data[["petal length (cm)", "petal width (cm)"]].values
y = (iris.target == 2) # Iris virginica

svm_clf = make_pipeline(StandardScaler(),
 LinearSVC(C=1, random_state=42))
svm_clf.fit(X, y)

The resulting model is represented on the left in Figure 5-4.

Then, as usual, you can use the model to make predictions:

>>> X_new = [[5.5, 1.7], [5.0, 1.5]]
>>> svm_clf.predict(X_new)
array([True, False])

The first plant is classified as an Iris virginica, while the second is not. Let’s look at
the scores that the SVM used to make these predictions. These measure the signed
distance between each instance and the decision boundary:

>>> svm_clf.decision_function(X_new)
array([0.66163411, -0.22036063])

Unlike LogisticRegression, LinearSVC doesn’t have a predict_proba() method to
estimate the class probabilities. That said, if you use the SVC class (discussed shortly)
instead of LinearSVC, and if you set its probability hyperparameter to True, then
the model will fit an extra model at the end of training to map the SVM decision
function scores to estimated probabilities. Under the hood, this requires using 5-fold
cross-validation to generate out-of-sample predictions for every instance in the train‐
ing set, then training a LogisticRegression model, so it will slow down training
considerably. After that, the predict_proba() and predict_log_proba() methods
will be available.

Nonlinear SVM Classification
Although linear SVM classifiers are efficient and often work surprisingly well, many
datasets are not even close to being linearly separable. One approach to handling
nonlinear datasets is to add more features, such as polynomial features (as we did in
Chapter 4); in some cases this can result in a linearly separable dataset. Consider the
lefthand plot in Figure 5-5: it represents a simple dataset with just one feature, x1.
This dataset is not linearly separable, as you can see. But if you add a second feature
x2 = (x1)2, the resulting 2D dataset is perfectly linearly separable.

178 | Chapter 5: Support Vector Machines

Figure 5-5. Adding features to make a dataset linearly separable

To implement this idea using Scikit-Learn, you can create a pipeline containing a
PolynomialFeatures transformer (discussed in “Polynomial Regression” on page
149), followed by a StandardScaler and a LinearSVC classifier. Let’s test this on the
moons dataset, a toy dataset for binary classification in which the data points are
shaped as two interleaving crescent moons (see Figure 5-6). You can generate this
dataset using the make_moons() function:

from sklearn.datasets import make_moons
from sklearn.preprocessing import PolynomialFeatures

X, y = make_moons(n_samples=100, noise=0.15, random_state=42)

polynomial_svm_clf = make_pipeline(
 PolynomialFeatures(degree=3),
 StandardScaler(),
 LinearSVC(C=10, max_iter=10_000, random_state=42)
)
polynomial_svm_clf.fit(X, y)

Figure 5-6. Linear SVM classifier using polynomial features

Nonlinear SVM Classification | 179

Polynomial Kernel
Adding polynomial features is simple to implement and can work great with all sorts
of machine learning algorithms (not just SVMs). That said, at a low polynomial
degree this method cannot deal with very complex datasets, and with a high polyno‐
mial degree it creates a huge number of features, making the model too slow.

Fortunately, when using SVMs you can apply an almost miraculous mathematical
technique called the kernel trick (which is explained later in this chapter). The kernel
trick makes it possible to get the same result as if you had added many polynomial
features, even with a very high degree, without actually having to add them. This
means there’s no combinatorial explosion of the number of features. This trick is
implemented by the SVC class. Let’s test it on the moons dataset:

from sklearn.svm import SVC

poly_kernel_svm_clf = make_pipeline(StandardScaler(),
 SVC(kernel="poly", degree=3, coef0=1, C=5))
poly_kernel_svm_clf.fit(X, y)

This code trains an SVM classifier using a third-degree polynomial kernel, repre‐
sented on the left in Figure 5-7. On the right is another SVM classifier using a
10th-degree polynomial kernel. Obviously, if your model is overfitting, you might
want to reduce the polynomial degree. Conversely, if it is underfitting, you can try
increasing it. The hyperparameter coef0 controls how much the model is influenced
by high-degree terms versus low-degree terms.

Figure 5-7. SVM classifiers with a polynomial kernel

Although hyperparameters will generally be tuned automatically
(e.g., using randomized search), it’s good to have a sense of what
each hyperparameter actually does and how it may interact with
other hyperparameters: this way, you can narrow the search to a
much smaller space.

180 | Chapter 5: Support Vector Machines

Similarity Features
Another technique to tackle nonlinear problems is to add features computed using a
similarity function, which measures how much each instance resembles a particular
landmark, as we did in Chapter 2 when we added the geographic similarity features.
For example, let’s take the 1D dataset from earlier and add two landmarks to it at x1 =
–2 and x1 = 1 (see the left plot in Figure 5-8). Next, we’ll define the similarity function
to be the Gaussian RBF with γ = 0.3. This is a bell-shaped function varying from 0
(very far away from the landmark) to 1 (at the landmark).

Now we are ready to compute the new features. For example, let’s look at the instance
x1 = –1: it is located at a distance of 1 from the first landmark and 2 from the second
landmark. Therefore, its new features are x2 = exp(–0.3 × 12) ≈ 0.74 and x3 = exp(–0.3
× 22) ≈ 0.30. The plot on the right in Figure 5-8 shows the transformed dataset
(dropping the original features). As you can see, it is now linearly separable.

Figure 5-8. Similarity features using the Gaussian RBF

You may wonder how to select the landmarks. The simplest approach is to create a
landmark at the location of each and every instance in the dataset. Doing that creates
many dimensions and thus increases the chances that the transformed training set
will be linearly separable. The downside is that a training set with m instances and
n features gets transformed into a training set with m instances and m features
(assuming you drop the original features). If your training set is very large, you end
up with an equally large number of features.

Gaussian RBF Kernel
Just like the polynomial features method, the similarity features method can be useful
with any machine learning algorithm, but it may be computationally expensive to
compute all the additional features (especially on large training sets). Once again the
kernel trick does its SVM magic, making it possible to obtain a similar result as if you

Nonlinear SVM Classification | 181

had added many similarity features, but without actually doing so. Let’s try the SVC
class with the Gaussian RBF kernel:

rbf_kernel_svm_clf = make_pipeline(StandardScaler(),
 SVC(kernel="rbf", gamma=5, C=0.001))
rbf_kernel_svm_clf.fit(X, y)

This model is represented at the bottom left in Figure 5-9. The other plots show
models trained with different values of hyperparameters gamma (γ) and C. Increasing
gamma makes the bell-shaped curve narrower (see the lefthand plots in Figure 5-8).
As a result, each instance’s range of influence is smaller: the decision boundary ends
up being more irregular, wiggling around individual instances. Conversely, a small
gamma value makes the bell-shaped curve wider: instances have a larger range of influ‐
ence, and the decision boundary ends up smoother. So γ acts like a regularization
hyperparameter: if your model is overfitting, you should reduce γ; if it is underfitting,
you should increase γ (similar to the C hyperparameter).

Figure 5-9. SVM classifiers using an RBF kernel

Other kernels exist but are used much more rarely. Some kernels are specialized
for specific data structures. String kernels are sometimes used when classifying text
documents or DNA sequences (e.g., using the string subsequence kernel or kernels
based on the Levenshtein distance).

182 | Chapter 5: Support Vector Machines

1 Chih-Jen Lin et al., “A Dual Coordinate Descent Method for Large-Scale Linear SVM”, Proceedings of the 25th
International Conference on Machine Learning (2008): 408–415.

2 John Platt, “Sequential Minimal Optimization: A Fast Algorithm for Training Support Vector Machines”
(Microsoft Research technical report, April 21, 1998).

With so many kernels to choose from, how can you decide
which one to use? As a rule of thumb, you should always try
the linear kernel first. The LinearSVC class is much faster than
SVC(kernel="linear"), especially if the training set is very large.
If it is not too large, you should also try kernelized SVMs, starting
with the Gaussian RBF kernel; it often works really well. Then, if
you have spare time and computing power, you can experiment
with a few other kernels using hyperparameter search. If there are
kernels specialized for your training set’s data structure, make sure
to give them a try too.

SVM Classes and Computational Complexity
The LinearSVC class is based on the liblinear library, which implements an opti‐
mized algorithm for linear SVMs.1 It does not support the kernel trick, but it scales
almost linearly with the number of training instances and the number of features.
Its training time complexity is roughly O(m × n). The algorithm takes longer if you
require very high precision. This is controlled by the tolerance hyperparameter ϵ
(called tol in Scikit-Learn). In most classification tasks, the default tolerance is fine.

The SVC class is based on the libsvm library, which implements an algorithm that
supports the kernel trick.2 The training time complexity is usually between O(m2 ×
n) and O(m3 × n). Unfortunately, this means that it gets dreadfully slow when the
number of training instances gets large (e.g., hundreds of thousands of instances), so
this algorithm is best for small or medium-sized nonlinear training sets. It scales well
with the number of features, especially with sparse features (i.e., when each instance
has few nonzero features). In this case, the algorithm scales roughly with the average
number of nonzero features per instance.

The SGDClassifier class also performs large margin classification by default, and its
hyperparameters–especially the regularization hyperparameters (alpha and penalty)
and the learning_rate–can be adjusted to produce similar results as the linear
SVMs. For training it uses stochastic gradient descent (see Chapter 4), which allows
incremental learning and uses little memory, so you can use it to train a model on
a large dataset that does not fit in RAM (i.e., for out-of-core learning). Moreover, it
scales very well, as its computational complexity is O(m × n). Table 5-1 compares
Scikit-Learn’s SVM classification classes.

Nonlinear SVM Classification | 183

https://homl.info/13
https://homl.info/13
https://homl.info/14
https://homl.info/14

Table 5-1. Comparison of Scikit-Learn classes for SVM classification

Class Time complexity Out-of-core support Scaling required Kernel trick

LinearSVC O(m × n) No Yes No

SVC O(m² × n) to O(m³ × n) No Yes Yes

SGDClassifier O(m × n) Yes Yes No

Now let’s see how the SVM algorithms can also be used for linear and nonlinear
regression.

SVM Regression
To use SVMs for regression instead of classification, the trick is to tweak the objec‐
tive: instead of trying to fit the largest possible street between two classes while
limiting margin violations, SVM regression tries to fit as many instances as possible
on the street while limiting margin violations (i.e., instances off the street). The width
of the street is controlled by a hyperparameter, ϵ. Figure 5-10 shows two linear SVM
regression models trained on some linear data, one with a small margin (ϵ = 0.5) and
the other with a larger margin (ϵ = 1.2).

Figure 5-10. SVM regression

Reducing ϵ increases the number of support vectors, which regularizes the model.
Moreover, if you add more training instances within the margin, it will not affect the
model’s predictions; thus, the model is said to be ϵ-insensitive.

You can use Scikit-Learn’s LinearSVR class to perform linear SVM regression. The
following code produces the model represented on the left in Figure 5-10:

184 | Chapter 5: Support Vector Machines

from sklearn.svm import LinearSVR

X, y = [...] # a linear dataset
svm_reg = make_pipeline(StandardScaler(),
 LinearSVR(epsilon=0.5, random_state=42))
svm_reg.fit(X, y)

To tackle nonlinear regression tasks, you can use a kernelized SVM model. Fig‐
ure 5-11 shows SVM regression on a random quadratic training set, using a second-
degree polynomial kernel. There is some regularization in the left plot (i.e., a small C
value), and much less in the right plot (i.e., a large C value).

Figure 5-11. SVM regression using a second-degree polynomial kernel

The following code uses Scikit-Learn’s SVR class (which supports the kernel trick) to
produce the model represented on the left in Figure 5-11:

from sklearn.svm import SVR

X, y = [...] # a quadratic dataset
svm_poly_reg = make_pipeline(StandardScaler(),
 SVR(kernel="poly", degree=2, C=0.01, epsilon=0.1))
svm_poly_reg.fit(X, y)

The SVR class is the regression equivalent of the SVC class, and the LinearSVR class is
the regression equivalent of the LinearSVC class. The LinearSVR class scales linearly
with the size of the training set (just like the LinearSVC class), while the SVR class gets
much too slow when the training set grows very large (just like the SVC class).

SVMs can also be used for novelty detection, as you will see in
Chapter 9.

SVM Regression | 185

The rest of this chapter explains how SVMs make predictions and how their training
algorithms work, starting with linear SVM classifiers. If you are just getting started
with machine learning, you can safely skip this and go straight to the exercises
at the end of this chapter, and come back later when you want to get a deeper
understanding of SVMs.

Under the Hood of Linear SVM Classifiers
A linear SVM classifier predicts the class of a new instance x by first computing the
decision function θ⊺ x = θ0 x0 + ⋯ + θn xn, where x0 is the bias feature (always equal to
1). If the result is positive, then the predicted class ŷ is the positive class (1); otherwise
it is the negative class (0). This is exactly like LogisticRegression (discussed in
Chapter 4).

Up to now, I have used the convention of putting all the model
parameters in one vector θ, including the bias term θ0 and the
input feature weights θ1 to θn. This required adding a bias input
x0 = 1 to all instances. Another very common convention is to
separate the bias term b (equal to θ0) and the feature weights vector
w (containing θ1 to θn). In this case, no bias feature needs to be
added to the input feature vectors, and the linear SVM’s decision
function is equal to w⊺ x + b = w1 x1 + ⋯ + wn xn + b. I will use this
convention throughout the rest of this book.

So, making predictions with a linear SVM classifier is quite straightforward. How
about training? This requires finding the weights vector w and the bias term b that
make the street, or margin, as wide as possible while limiting the number of margin
violations. Let’s start with the width of the street: to make it larger, we need to make w
smaller. This may be easier to visualize in 2D, as shown in Figure 5-12. Let’s define the
borders of the street as the points where the decision function is equal to –1 or +1. In
the left plot the weight w1 is 1, so the points at which w1 x1 = –1 or +1 are x1 = –1 and
+1: therefore the margin’s size is 2. In the right plot the weight is 0.5, so the points at
which w1 x1 = –1 or +1 are x1 = –2 and +2: the margin’s size is 4. So, we need to keep
w as small as possible. Note that the bias term b has no influence on the size of the
margin: tweaking it just shifts the margin around, without affecting its size.

186 | Chapter 5: Support Vector Machines

Figure 5-12. A smaller weight vector results in a larger margin

We also want to avoid margin violations, so we need the decision function to be
greater than 1 for all positive training instances and lower than –1 for negative
training instances. If we define t(i) = –1 for negative instances (when y(i) = 0) and t(i) =
1 for positive instances (when y(i) = 1), then we can write this constraint as t(i)(w⊺ x(i) +
b) ≥ 1 for all instances.

We can therefore express the hard margin linear SVM classifier objective as the
constrained optimization problem in Equation 5-1.

Equation 5-1. Hard margin linear SVM classifier objective

minimize
w, b

1
2w

⊺w

subject to t i w⊺x i + b ≥ 1 for i = 1, 2,⋯,m

We are minimizing ½ w⊺ w, which is equal to ½∥ w ∥2, rather than
minimizing ∥ w ∥ (the norm of w). Indeed, ½∥ w ∥2 has a nice,
simple derivative (it is just w), while ∥ w ∥ is not differentiable
at w = 0. Optimization algorithms often work much better on
differentiable functions.

Under the Hood of Linear SVM Classifiers | 187

3 Zeta (ζ) is the sixth letter of the Greek alphabet.
4 To learn more about quadratic programming, you can start by reading Stephen Boyd and Lieven Vandenber‐

ghe’s book Convex Optimization (Cambridge University Press) or watching Richard Brown’s series of video
lectures.

To get the soft margin objective, we need to introduce a slack variable ζ(i) ≥ 0 for each
instance:3 ζ(i) measures how much the ith instance is allowed to violate the margin.
We now have two conflicting objectives: make the slack variables as small as possible
to reduce the margin violations, and make ½ w⊺ w as small as possible to increase
the margin. This is where the C hyperparameter comes in: it allows us to define the
trade-off between these two objectives. This gives us the constrained optimization
problem in Equation 5-2.

Equation 5-2. Soft margin linear SVM classifier objective

minimize
w, b, ζ

1
2w

⊺w + C ∑
i = 1

m
ζ
i

subject to t i w⊺x i + b ≥ 1 − ζ i and ζ
i ≥ 0 for i = 1, 2,⋯,m

The hard margin and soft margin problems are both convex quadratic optimization
problems with linear constraints. Such problems are known as quadratic program‐
ming (QP) problems. Many off-the-shelf solvers are available to solve QP problems by
using a variety of techniques that are outside the scope of this book.4

Using a QP solver is one way to train an SVM. Another is to use gradient descent to
minimize the hinge loss or the squared hinge loss (see Figure 5-13). Given an instance
x of the positive class (i.e., with t = 1), the loss is 0 if the output s of the decision
function (s = w⊺ x + b) is greater than or equal to 1. This happens when the instance
is off the street and on the positive side. Given an instance of the negative class (i.e.,
with t = –1), the loss is 0 if s ≤ –1. This happens when the instance is off the street
and on the negative side. The further away an instance is from the correct side of the
margin, the higher the loss: it grows linearly for the hinge loss, and quadratically for
the squared hinge loss. This makes the squared hinge loss more sensitive to outliers.
However, if the dataset is clean, it tends to converge faster. By default, LinearSVC uses
the squared hinge loss, while SGDClassifier uses the hinge loss. Both classes let you
choose the loss by setting the loss hyperparameter to "hinge" or "squared_hinge".
The SVC class’s optimization algorithm finds a similar solution as minimizing the
hinge loss.

188 | Chapter 5: Support Vector Machines

https://homl.info/15
https://homl.info/16
https://homl.info/16

5 The objective function is convex, and the inequality constraints are continuously differentiable and convex
functions.

Figure 5-13. The hinge loss (left) and the squared hinge loss (right)

Next, we’ll look at yet another way to train a linear SVM classifier: solving the dual
problem.

The Dual Problem
Given a constrained optimization problem, known as the primal problem, it is possi‐
ble to express a different but closely related problem, called its dual problem. The
solution to the dual problem typically gives a lower bound to the solution of the
primal problem, but under some conditions it can have the same solution as the
primal problem. Luckily, the SVM problem happens to meet these conditions,5 so you
can choose to solve the primal problem or the dual problem; both will have the same
solution. Equation 5-3 shows the dual form of the linear SVM objective. If you are
interested in knowing how to derive the dual problem from the primal problem, see
the extra material section in this chapter’s notebook.

Equation 5-3. Dual form of the linear SVM objective

minimize
α

 1
2 ∑
i = 1

m

∑
j = 1

m
α i α j t i t j x i

⊺
x j − ∑

i = 1

m
α i

subject to α i ≥ 0 for all i = 1, 2, …,m and ∑
i = 1

m
α i t i = 0

The Dual Problem | 189

https://homl.info/colab3

6 As explained in Chapter 4, the dot product of two vectors a and b is normally noted a · b. However, in
machine learning, vectors are frequently represented as column vectors (i.e., single-column matrices), so the
dot product is achieved by computing a⊺b. To remain consistent with the rest of the book, we will use this
notation here, ignoring the fact that this technically results in a single-cell matrix rather than a scalar value.

Once you find the vector α that minimizes this equation (using a QP solver), use
Equation 5-4 to compute the w and b that minimize the primal problem. In this
equation, ns represents the number of support vectors.

Equation 5-4. From the dual solution to the primal solution

w = ∑
i = 1

m
α
i
t i x i

b = 1
ns

∑
i = 1
α
i > 0

m
t i − w⊺x i

The dual problem is faster to solve than the primal one when the number of training
instances is smaller than the number of features. More importantly, the dual problem
makes the kernel trick possible, while the primal problem does not. So what is this
kernel trick, anyway?

Kernelized SVMs
Suppose you want to apply a second-degree polynomial transformation to a two-
dimensional training set (such as the moons training set), then train a linear SVM
classifier on the transformed training set. Equation 5-5 shows the second-degree
polynomial mapping function ϕ that you want to apply.

Equation 5-5. Second-degree polynomial mapping

ϕ x = ϕ
x1

x2
=

x1
2

2 x1x2

x2
2

Notice that the transformed vector is 3D instead of 2D. Now let’s look at what
happens to a couple of 2D vectors, a and b, if we apply this second-degree polynomial
mapping and then compute the dot product6 of the transformed vectors (see Equa‐
tion 5-6).

190 | Chapter 5: Support Vector Machines

Equation 5-6. Kernel trick for a second-degree polynomial mapping

ϕ a
⊺
ϕ b =

a1
2

2 a1a2

a2
2

⊺
b1

2

2 b1b2

b2
2

= a1
2b1

2 + 2a1b1a2b2 + a2
2b2

2

= a1b1 + a2b2
2 =

a1

a2

⊺ b1

b2

2

= a⊺b
2

How about that? The dot product of the transformed vectors is equal to the square of
the dot product of the original vectors: ϕ(a)⊺ ϕ(b) = (a⊺ b)2.

Here is the key insight: if you apply the transformation ϕ to all training instances,
then the dual problem (see Equation 5-3) will contain the dot product ϕ(x(i))⊺ ϕ(x(j)).
But if ϕ is the second-degree polynomial transformation defined in Equation 5-5,

then you can replace this dot product of transformed vectors simply by x i ⊺x j
2
.

So, you don’t need to transform the training instances at all; just replace the dot
product by its square in Equation 5-3. The result will be strictly the same as if you
had gone through the trouble of transforming the training set and then fitting a linear
SVM algorithm, but this trick makes the whole process much more computationally
efficient.

The function K(a, b) = (a⊺ b)2 is a second-degree polynomial kernel. In machine
learning, a kernel is a function capable of computing the dot product ϕ(a)⊺ ϕ(b),
based only on the original vectors a and b, without having to compute (or even to
know about) the transformation ϕ. Equation 5-7 lists some of the most commonly
used kernels.

Equation 5-7. Common kernels

Linear: K a,b = a⊺b

Polynomial: K a,b = γa⊺b + r d

Gaussian RBF: K a,b = exp −γ∥ a − b ∥2

Sigmoid: K a,b = tanh γa⊺b + r

The Dual Problem | 191

Mercer’s Theorem
According to Mercer’s theorem, if a function K(a, b) respects a few mathematical
conditions called Mercer’s conditions (e.g., K must be continuous and symmetric in its
arguments so that K(a, b) = K(b, a), etc.), then there exists a function ϕ that maps a
and b into another space (possibly with much higher dimensions) such that K(a, b)
= ϕ(a)⊺ ϕ(b). You can use K as a kernel because you know ϕ exists, even if you don’t
know what ϕ is. In the case of the Gaussian RBF kernel, it can be shown that ϕ maps
each training instance to an infinite-dimensional space, so it’s a good thing you don’t
need to actually perform the mapping!

Note that some frequently used kernels (such as the sigmoid kernel) don’t respect all
of Mercer’s conditions, yet they generally work well in practice.

There is still one loose end we must tie up. Equation 5-4 shows how to go from
the dual solution to the primal solution in the case of a linear SVM classifier. But
if you apply the kernel trick, you end up with equations that include ϕ(x(i)). In fact,
w must have the same number of dimensions as ϕ(x(i)), which may be huge or even
infinite, so you can’t compute it. But how can you make predictions without knowing
w? Well, the good news is that you can plug the formula for w from Equation 5-4
into the decision function for a new instance x(n), and you get an equation with only
dot products between input vectors. This makes it possible to use the kernel trick
(Equation 5-8).

Equation 5-8. Making predictions with a kernelized SVM

ℎw, b ϕ x
n = w⊺ϕ x n + b = ∑

i = 1

m
α
i
t i ϕ x i

⊺

ϕ x n + b

= ∑
i = 1

m
α
i
t i ϕ x i

⊺
ϕ x n + b

= ∑
i = 1
α
i > 0

m
α
i
t i K x i , x n + b

Note that since α(i) ≠ 0 only for support vectors, making predictions involves comput‐
ing the dot product of the new input vector x(n) with only the support vectors, not all
the training instances. Of course, you need to use the same trick to compute the bias
term b (Equation 5-9).

192 | Chapter 5: Support Vector Machines

7 Gert Cauwenberghs and Tomaso Poggio, “Incremental and Decremental Support Vector Machine Learning”,
Proceedings of the 13th International Conference on Neural Information Processing Systems (2000): 388–394.

8 Antoine Bordes et al., “Fast Kernel Classifiers with Online and Active Learning”, Journal of Machine Learning
Research 6 (2005): 1579–1619.

Equation 5-9. Using the kernel trick to compute the bias term

b = 1
ns

∑
i = 1
α
i > 0

m
t i − w⊺ϕ x i = 1

ns
∑
i = 1
α
i > 0

m
t i − ∑

j = 1

m
α
j
t j ϕ x j

⊺

ϕ x i

= 1
ns

∑
i = 1
α
i > 0

m
t i − ∑

j = 1
α
j > 0

m
α
j
t j K x i , x j

If you are starting to get a headache, that’s perfectly normal: it’s an unfortunate side
effect of the kernel trick.

It is also possible to implement online kernelized SVMs, capable of
incremental learning, as described in the papers “Incremental and
Decremental Support Vector Machine Learning”7 and “Fast Kernel
Classifiers with Online and Active Learning”.8 These kernelized
SVMs are implemented in Matlab and C++. But for large-scale
nonlinear problems, you may want to consider using random for‐
ests (see Chapter 7) or neural networks (see Part II).

Exercises
1. What is the fundamental idea behind support vector machines?1.
2. What is a support vector?2.
3. Why is it important to scale the inputs when using SVMs?3.
4. Can an SVM classifier output a confidence score when it classifies an instance?4.

What about a probability?
5. How can you choose between LinearSVC, SVC, and SGDClassifier?5.
6. Say you’ve trained an SVM classifier with an RBF kernel, but it seems to underfit6.

the training set. Should you increase or decrease γ (gamma)? What about C?
7. What does it mean for a model to be ϵ-insensitive?7.
8. What is the point of using the kernel trick?8.

Exercises | 193

https://homl.info/17
https://homl.info/17
https://homl.info/18
https://homl.info/18

9. Train a LinearSVC on a linearly separable dataset. Then train an SVC and a9.
SGDClassifier on the same dataset. See if you can get them to produce roughly
the same model.

10. Train an SVM classifier on the wine dataset, which you can load using10.
sklearn.datasets.load_wine(). This dataset contains the chemical analyses
of 178 wine samples produced by 3 different cultivators: the goal is to train
a classification model capable of predicting the cultivator based on the wine’s
chemical analysis. Since SVM classifiers are binary classifiers, you will need to
use one-versus-all to classify all three classes. What accuracy can you reach?

11. Train and fine-tune an SVM regressor on the California housing dataset. You can11.
use the original dataset rather than the tweaked version we used in Chapter 2,
which you can load using sklearn.datasets.fetch_california_housing().
The targets represent hundreds of thousands of dollars. Since there are over
20,000 instances, SVMs can be slow, so for hyperparameter tuning you should
use far fewer instances (e.g., 2,000) to test many more hyperparameter combina‐
tions. What is your best model’s RMSE?

Solutions to these exercises are available at the end of this chapter’s notebook, at
https://homl.info/colab3.

194 | Chapter 5: Support Vector Machines

https://homl.info/colab3

CHAPTER 6

Decision Trees

Decision trees are versatile machine learning algorithms that can perform both clas‐
sification and regression tasks, and even multioutput tasks. They are powerful algo‐
rithms, capable of fitting complex datasets. For example, in Chapter 2 you trained a
DecisionTreeRegressor model on the California housing dataset, fitting it perfectly
(actually, overfitting it).

Decision trees are also the fundamental components of random forests (see Chap‐
ter 7), which are among the most powerful machine learning algorithms available
today.

In this chapter we will start by discussing how to train, visualize, and make predic‐
tions with decision trees. Then we will go through the CART training algorithm
used by Scikit-Learn, and we will explore how to regularize trees and use them for
regression tasks. Finally, we will discuss some of the limitations of decision trees.

Training and Visualizing a Decision Tree
To understand decision trees, let’s build one and take a look at how it makes predic‐
tions. The following code trains a DecisionTreeClassifier on the iris dataset (see
Chapter 4):

from sklearn.datasets import load_iris
from sklearn.tree import DecisionTreeClassifier

iris = load_iris(as_frame=True)
X_iris = iris.data[["petal length (cm)", "petal width (cm)"]].values
y_iris = iris.target

tree_clf = DecisionTreeClassifier(max_depth=2, random_state=42)
tree_clf.fit(X_iris, y_iris)

195

You can visualize the trained decision tree by first using the export_graphviz()
function to output a graph definition file called iris_tree.dot:

from sklearn.tree import export_graphviz

export_graphviz(
 tree_clf,
 out_file="iris_tree.dot",
 feature_names=["petal length (cm)", "petal width (cm)"],
 class_names=iris.target_names,
 rounded=True,
 filled=True
)

Then you can use graphviz.Source.from_file() to load and display the file in a
Jupyter notebook:

from graphviz import Source

Source.from_file("iris_tree.dot")

Graphviz is an open source graph visualization software package. It also includes a
dot command-line tool to convert .dot files to a variety of formats, such as PDF or
PNG.

Your first decision tree looks like Figure 6-1.

Figure 6-1. Iris decision tree

196 | Chapter 6: Decision Trees

https://graphviz.org

Making Predictions
Let’s see how the tree represented in Figure 6-1 makes predictions. Suppose you find
an iris flower and you want to classify it based on its petals. You start at the root node
(depth 0, at the top): this node asks whether the flower’s petal length is smaller than
2.45 cm. If it is, then you move down to the root’s left child node (depth 1, left). In
this case, it is a leaf node (i.e., it does not have any child nodes), so it does not ask
any questions: simply look at the predicted class for that node, and the decision tree
predicts that your flower is an Iris setosa (class=setosa).

Now suppose you find another flower, and this time the petal length is greater than
2.45 cm. You again start at the root but now move down to its right child node (depth
1, right). This is not a leaf node, it’s a split node, so it asks another question: is the
petal width smaller than 1.75 cm? If it is, then your flower is most likely an Iris
versicolor (depth 2, left). If not, it is likely an Iris virginica (depth 2, right). It’s really
that simple.

One of the many qualities of decision trees is that they require very
little data preparation. In fact, they don’t require feature scaling or
centering at all.

A node’s samples attribute counts how many training instances it applies to. For
example, 100 training instances have a petal length greater than 2.45 cm (depth 1,
right), and of those 100, 54 have a petal width smaller than 1.75 cm (depth 2, left). A
node’s value attribute tells you how many training instances of each class this node
applies to: for example, the bottom-right node applies to 0 Iris setosa, 1 Iris versicolor,
and 45 Iris virginica. Finally, a node’s gini attribute measures its Gini impurity: a node
is “pure” (gini=0) if all training instances it applies to belong to the same class. For
example, since the depth-1 left node applies only to Iris setosa training instances, it
is pure and its Gini impurity is 0. Equation 6-1 shows how the training algorithm
computes the Gini impurity Gi of the ith node. The depth-2 left node has a Gini
impurity equal to 1 – (0/54)2 – (49/54)2 – (5/54)2 ≈ 0.168.

Equation 6-1. Gini impurity

Gi = 1 − ∑
k = 1

n
pi, k

2

Making Predictions | 197

In this equation:

• Gi is the Gini impurity of the ith node.•
• pi,k is the ratio of class k instances among the training instances in the ith node.•

Scikit-Learn uses the CART algorithm, which produces only binary
trees, meaning trees where split nodes always have exactly two
children (i.e., questions only have yes/no answers). However, other
algorithms, such as ID3, can produce decision trees with nodes that
have more than two children.

Figure 6-2 shows this decision tree’s decision boundaries. The thick vertical line
represents the decision boundary of the root node (depth 0): petal length = 2.45
cm. Since the lefthand area is pure (only Iris setosa), it cannot be split any further.
However, the righthand area is impure, so the depth-1 right node splits it at petal
width = 1.75 cm (represented by the dashed line). Since max_depth was set to 2, the
decision tree stops right there. If you set max_depth to 3, then the two depth-2 nodes
would each add another decision boundary (represented by the two vertical dotted
lines).

Figure 6-2. Decision tree decision boundaries

The tree structure, including all the information shown in Fig‐
ure 6-1, is available via the classifier’s tree_ attribute. Type
help(tree_clf.tree_) for details, and see the this chapter’s note‐
book for an example.

198 | Chapter 6: Decision Trees

https://homl.info/colab3
https://homl.info/colab3

Model Interpretation: White Box Versus Black Box
Decision trees are intuitive, and their decisions are easy to interpret. Such models are
often called white box models. In contrast, as you will see, random forests and neural
networks are generally considered black box models. They make great predictions,
and you can easily check the calculations that they performed to make these predic‐
tions; nevertheless, it is usually hard to explain in simple terms why the predictions
were made. For example, if a neural network says that a particular person appears in
a picture, it is hard to know what contributed to this prediction: Did the model recog‐
nize that person’s eyes? Their mouth? Their nose? Their shoes? Or even the couch
that they were sitting on? Conversely, decision trees provide nice, simple classification
rules that can even be applied manually if need be (e.g., for flower classification). The
field of interpretable ML aims at creating ML systems that can explain their decisions
in a way humans can understand. This is important in many domains—for example,
to ensure the system does not make unfair decisions.

Estimating Class Probabilities
A decision tree can also estimate the probability that an instance belongs to a partic‐
ular class k. First it traverses the tree to find the leaf node for this instance, and
then it returns the ratio of training instances of class k in this node. For example,
suppose you have found a flower whose petals are 5 cm long and 1.5 cm wide. The
corresponding leaf node is the depth-2 left node, so the decision tree outputs the
following probabilities: 0% for Iris setosa (0/54), 90.7% for Iris versicolor (49/54), and
9.3% for Iris virginica (5/54). And if you ask it to predict the class, it outputs Iris
versicolor (class 1) because it has the highest probability. Let’s check this:

>>> tree_clf.predict_proba([[5, 1.5]]).round(3)
array([[0. , 0.907, 0.093]])
>>> tree_clf.predict([[5, 1.5]])
array([1])

Perfect! Notice that the estimated probabilities would be identical anywhere else in
the bottom-right rectangle of Figure 6-2—for example, if the petals were 6 cm long
and 1.5 cm wide (even though it seems obvious that it would most likely be an Iris
virginica in this case).

The CART Training Algorithm
Scikit-Learn uses the Classification and Regression Tree (CART) algorithm to train
decision trees (also called “growing” trees). The algorithm works by first splitting
the training set into two subsets using a single feature k and a threshold tk (e.g.,
“petal length ≤ 2.45 cm”). How does it choose k and tk? It searches for the pair (k, tk)

Estimating Class Probabilities | 199

1 P is the set of problems that can be solved in polynomial time (i.e., a polynomial of the dataset size). NP is
the set of problems whose solutions can be verified in polynomial time. An NP-hard problem is a problem
that can be reduced to a known NP-hard problem in polynomial time. An NP-complete problem is both NP
and NP-hard. A major open mathematical question is whether or not P = NP. If P ≠ NP (which seems likely),
then no polynomial algorithm will ever be found for any NP-complete problem (except perhaps one day on a
quantum computer).

that produces the purest subsets, weighted by their size. Equation 6-2 gives the cost
function that the algorithm tries to minimize.

Equation 6-2. CART cost function for classification

J k, tk =
mleft
m
Gleft +

mright
m

Gright

where
Gleft/right measures the impurity of the left/right subset
mleft/right is the number of instances in the left/right subset

Once the CART algorithm has successfully split the training set in two, it splits
the subsets using the same logic, then the sub-subsets, and so on, recursively. It
stops recursing once it reaches the maximum depth (defined by the max_depth
hyperparameter), or if it cannot find a split that will reduce impurity. A few
other hyperparameters (described in a moment) control additional stopping con‐
ditions: min_samples_split, min_samples_leaf, min_weight_fraction_leaf, and
max_leaf_nodes.

As you can see, the CART algorithm is a greedy algorithm: it greed‐
ily searches for an optimum split at the top level, then repeats
the process at each subsequent level. It does not check whether
or not the split will lead to the lowest possible impurity several
levels down. A greedy algorithm often produces a solution that’s
reasonably good but not guaranteed to be optimal.
Unfortunately, finding the optimal tree is known to be an NP-
complete problem.1 It requires O(exp(m)) time, making the prob‐
lem intractable even for small training sets. This is why we must
settle for a “reasonably good” solution when training decision trees.

Computational Complexity
Making predictions requires traversing the decision tree from the root to a leaf.
Decision trees generally are approximately balanced, so traversing the decision tree
requires going through roughly O(log2(m)) nodes, where log2(m) is the binary loga‐
rithm of m, equal to log(m) / log(2). Since each node only requires checking the

200 | Chapter 6: Decision Trees

2 See Sebastian Raschka’s interesting analysis for more details.

value of one feature, the overall prediction complexity is O(log2(m)), independent of
the number of features. So predictions are very fast, even when dealing with large
training sets.

The training algorithm compares all features (or less if max_features is set) on all
samples at each node. Comparing all features on all samples at each node results in a
training complexity of O(n × m log2(m)).

Gini Impurity or Entropy?
By default, the DecisionTreeClassifier class uses the Gini impurity measure, but
you can select the entropy impurity measure instead by setting the criterion hyper‐
parameter to "entropy". The concept of entropy originated in thermodynamics as
a measure of molecular disorder: entropy approaches zero when molecules are still
and well ordered. Entropy later spread to a wide variety of domains, including in
Shannon’s information theory, where it measures the average information content of
a message, as we saw in Chapter 4. Entropy is zero when all messages are identical. In
machine learning, entropy is frequently used as an impurity measure: a set’s entropy
is zero when it contains instances of only one class. Equation 6-3 shows the definition
of the entropy of the ith node. For example, the depth-2 left node in Figure 6-1 has an
entropy equal to –(49/54) log2 (49/54) – (5/54) log2 (5/54) ≈ 0.445.

Equation 6-3. Entropy

H i = − ∑
k = 1
pi, k ≠ 0

n
pi, k log2 pi, k

So, should you use Gini impurity or entropy? The truth is, most of the time it does
not make a big difference: they lead to similar trees. Gini impurity is slightly faster to
compute, so it is a good default. However, when they differ, Gini impurity tends to
isolate the most frequent class in its own branch of the tree, while entropy tends to
produce slightly more balanced trees.2

Regularization Hyperparameters
Decision trees make very few assumptions about the training data (as opposed to lin‐
ear models, which assume that the data is linear, for example). If left unconstrained,
the tree structure will adapt itself to the training data, fitting it very closely—indeed,
most likely overfitting it. Such a model is often called a nonparametric model, not

Gini Impurity or Entropy? | 201

https://homl.info/19

because it does not have any parameters (it often has a lot) but because the number
of parameters is not determined prior to training, so the model structure is free to
stick closely to the data. In contrast, a parametric model, such as a linear model, has
a predetermined number of parameters, so its degree of freedom is limited, reducing
the risk of overfitting (but increasing the risk of underfitting).

To avoid overfitting the training data, you need to restrict the decision tree’s freedom
during training. As you know by now, this is called regularization. The regulariza‐
tion hyperparameters depend on the algorithm used, but generally you can at least
restrict the maximum depth of the decision tree. In Scikit-Learn, this is controlled
by the max_depth hyperparameter. The default value is None, which means unlimited.
Reducing max_depth will regularize the model and thus reduce the risk of overfitting.

The DecisionTreeClassifier class has a few other parameters that similarly restrict
the shape of the decision tree:

max_features

Maximum number of features that are evaluated for splitting at each node

max_leaf_nodes

Maximum number of leaf nodes

min_samples_split

Minimum number of samples a node must have before it can be split

min_samples_leaf

Minimum number of samples a leaf node must have to be created

min_weight_fraction_leaf

Same as min_samples_leaf but expressed as a fraction of the total number of
weighted instances

Increasing min_* hyperparameters or reducing max_* hyperparameters will regularize
the model.

Other algorithms work by first training the decision tree without
restrictions, then pruning (deleting) unnecessary nodes. A node
whose children are all leaf nodes is considered unnecessary if
the purity improvement it provides is not statistically significant.
Standard statistical tests, such as the χ2 test (chi-squared test), are
used to estimate the probability that the improvement is purely
the result of chance (which is called the null hypothesis). If this
probability, called the p-value, is higher than a given threshold
(typically 5%, controlled by a hyperparameter), then the node is
considered unnecessary and its children are deleted. The pruning
continues until all unnecessary nodes have been pruned.

202 | Chapter 6: Decision Trees

Let’s test regularization on the moons dataset, introduced in Chapter 5. We’ll train
one decision tree without regularization, and another with min_samples_leaf=5.
Here’s the code; Figure 6-3 shows the decision boundaries of each tree:

from sklearn.datasets import make_moons

X_moons, y_moons = make_moons(n_samples=150, noise=0.2, random_state=42)

tree_clf1 = DecisionTreeClassifier(random_state=42)
tree_clf2 = DecisionTreeClassifier(min_samples_leaf=5, random_state=42)
tree_clf1.fit(X_moons, y_moons)
tree_clf2.fit(X_moons, y_moons)

Figure 6-3. Decision boundaries of an unregularized tree (left) and a regularized tree
(right)

The unregularized model on the left is clearly overfitting, and the regularized model
on the right will probably generalize better. We can verify this by evaluating both
trees on a test set generated using a different random seed:

>>> X_moons_test, y_moons_test = make_moons(n_samples=1000, noise=0.2,
... random_state=43)
...
>>> tree_clf1.score(X_moons_test, y_moons_test)
0.898
>>> tree_clf2.score(X_moons_test, y_moons_test)
0.92

Indeed, the second tree has a better accuracy on the test set.

Regularization Hyperparameters | 203

Regression
Decision trees are also capable of performing regression tasks. Let’s build a regression
tree using Scikit-Learn’s DecisionTreeRegressor class, training it on a noisy quad‐
ratic dataset with max_depth=2:

import numpy as np
from sklearn.tree import DecisionTreeRegressor

np.random.seed(42)
X_quad = np.random.rand(200, 1) - 0.5 # a single random input feature
y_quad = X_quad ** 2 + 0.025 * np.random.randn(200, 1)

tree_reg = DecisionTreeRegressor(max_depth=2, random_state=42)
tree_reg.fit(X_quad, y_quad)

The resulting tree is represented in Figure 6-4.

Figure 6-4. A decision tree for regression

This tree looks very similar to the classification tree you built earlier. The main
difference is that instead of predicting a class in each node, it predicts a value. For
example, suppose you want to make a prediction for a new instance with x1 = 0.2. The
root node asks whether x1 ≤ 0.197. Since it is not, the algorithm goes to the right child
node, which asks whether x1 ≤ 0.772. Since it is, the algorithm goes to the left child
node. This is a leaf node, and it predicts value=0.111. This prediction is the average
target value of the 110 training instances associated with this leaf node, and it results
in a mean squared error equal to 0.015 over these 110 instances.

204 | Chapter 6: Decision Trees

This model’s predictions are represented on the left in Figure 6-5. If you set
max_depth=3, you get the predictions represented on the right. Notice how the
predicted value for each region is always the average target value of the instances
in that region. The algorithm splits each region in a way that makes most training
instances as close as possible to that predicted value.

Figure 6-5. Predictions of two decision tree regression models

The CART algorithm works as described earlier, except that instead of trying to split
the training set in a way that minimizes impurity, it now tries to split the training
set in a way that minimizes the MSE. Equation 6-4 shows the cost function that the
algorithm tries to minimize.

Equation 6-4. CART cost function for regression

J k, tk =
mleft
m

MSEleft +
mright
m

MSEright where
MSEnode =

∑i ∈ node ynode − y i 2

mnode

ynode =
∑i ∈ nodey

i

mnode

Just like for classification tasks, decision trees are prone to overfitting when dealing
with regression tasks. Without any regularization (i.e., using the default hyperpara‐
meters), you get the predictions on the left in Figure 6-6. These predictions are
obviously overfitting the training set very badly. Just setting min_samples_leaf=10
results in a much more reasonable model, represented on the right in Figure 6-6.

Regression | 205

Figure 6-6. Predictions of an unregularized regression tree (left) and a regularized tree
(right)

Sensitivity to Axis Orientation
Hopefully by now you are convinced that decision trees have a lot going for them:
they are relatively easy to understand and interpret, simple to use, versatile, and
powerful. However, they do have a few limitations. First, as you may have noticed,
decision trees love orthogonal decision boundaries (all splits are perpendicular to an
axis), which makes them sensitive to the data’s orientation. For example, Figure 6-7
shows a simple linearly separable dataset: on the left, a decision tree can split it easily,
while on the right, after the dataset is rotated by 45°, the decision boundary looks
unnecessarily convoluted. Although both decision trees fit the training set perfectly, it
is very likely that the model on the right will not generalize well.

Figure 6-7. Sensitivity to training set rotation

One way to limit this problem is to scale the data, then apply a principal component
analysis transformation. We will look at PCA in detail in Chapter 8, but for now

206 | Chapter 6: Decision Trees

you only need to know that it rotates the data in a way that reduces the correlation
between the features, which often (not always) makes things easier for trees.

Let’s create a small pipeline that scales the data and rotates it using PCA, then train a
DecisionTreeClassifier on that data. Figure 6-8 shows the decision boundaries of
that tree: as you can see, the rotation makes it possible to fit the dataset pretty well
using only one feature, z1, which is a linear function of the original petal length and
width. Here’s the code:

from sklearn.decomposition import PCA
from sklearn.pipeline import make_pipeline
from sklearn.preprocessing import StandardScaler

pca_pipeline = make_pipeline(StandardScaler(), PCA())
X_iris_rotated = pca_pipeline.fit_transform(X_iris)
tree_clf_pca = DecisionTreeClassifier(max_depth=2, random_state=42)
tree_clf_pca.fit(X_iris_rotated, y_iris)

Figure 6-8. A tree’s decision boundaries on the scaled and PCA-rotated iris dataset

Decision Trees Have a High Variance
More generally, the main issue with decision trees is that they have quite a high
variance: small changes to the hyperparameters or to the data may produce very
different models. In fact, since the training algorithm used by Scikit-Learn is stochas‐
tic—it randomly selects the set of features to evaluate at each node—even retraining
the same decision tree on the exact same data may produce a very different model,
such as the one represented in Figure 6-9 (unless you set the random_state hyper‐
parameter). As you can see, it looks very different from the previous decision tree
(Figure 6-2).

Decision Trees Have a High Variance | 207

Figure 6-9. Retraining the same model on the same data may produce a very different
model

Luckily, by averaging predictions over many trees, it’s possible to reduce variance
significantly. Such an ensemble of trees is called a random forest, and it’s one of the
most powerful types of models available today, as you will see in the next chapter.

Exercises
1. What is the approximate depth of a decision tree trained (without restrictions)1.

on a training set with one million instances?
2. Is a node’s Gini impurity generally lower or higher than its parent’s? Is it generally2.

lower/higher, or always lower/higher?
3. If a decision tree is overfitting the training set, is it a good idea to try decreasing3.

max_depth?
4. If a decision tree is underfitting the training set, is it a good idea to try scaling the4.

input features?
5. If it takes one hour to train a decision tree on a training set containing one5.

million instances, roughly how much time will it take to train another decision
tree on a training set containing ten million instances? Hint: consider the CART
algorithm’s computational complexity.

6. If it takes one hour to train a decision tree on a given training set, roughly how6.
much time will it take if you double the number of features?

7. Train and fine-tune a decision tree for the moons dataset by following these7.
steps:

208 | Chapter 6: Decision Trees

a. Use make_moons(n_samples=10000, noise=0.4) to generate a moons dataset.a.
b. Use train_test_split() to split the dataset into a training set and a test set.b.
c. Use grid search with cross-validation (with the help of the GridSearchCVc.

class) to find good hyperparameter values for a DecisionTreeClassifier.
Hint: try various values for max_leaf_nodes.

d. Train it on the full training set using these hyperparameters, and measured.
your model’s performance on the test set. You should get roughly 85% to 87%
accuracy.

8. Grow a forest by following these steps:8.
a. Continuing the previous exercise, generate 1,000 subsets of the training set,a.

each containing 100 instances selected randomly. Hint: you can use Scikit-
Learn’s ShuffleSplit class for this.

b. Train one decision tree on each subset, using the best hyperparameter valuesb.
found in the previous exercise. Evaluate these 1,000 decision trees on the test
set. Since they were trained on smaller sets, these decision trees will likely
perform worse than the first decision tree, achieving only about 80% accuracy.

c. Now comes the magic. For each test set instance, generate the predictions ofc.
the 1,000 decision trees, and keep only the most frequent prediction (you can
use SciPy’s mode() function for this). This approach gives you majority-vote
predictions over the test set.

d. Evaluate these predictions on the test set: you should obtain a slightly higherd.
accuracy than your first model (about 0.5 to 1.5% higher). Congratulations,
you have trained a random forest classifier!

Solutions to these exercises are available at the end of this chapter’s notebook, at
https://homl.info/colab3.

Exercises | 209

https://homl.info/colab3

	Part I. The Fundamentals of Machine Learning
	Chapter 5. Support Vector Machines
	Linear SVM Classification
	Soft Margin Classification

	Nonlinear SVM Classification
	Polynomial Kernel
	Similarity Features
	Gaussian RBF Kernel
	SVM Classes and Computational Complexity

	SVM Regression
	Under the Hood of Linear SVM Classifiers
	The Dual Problem
	Kernelized SVMs

	Exercises

	Chapter 6. Decision Trees
	Training and Visualizing a Decision Tree
	Making Predictions
	Estimating Class Probabilities
	The CART Training Algorithm
	Computational Complexity
	Gini Impurity or Entropy?
	Regularization Hyperparameters
	Regression
	Sensitivity to Axis Orientation
	Decision Trees Have a High Variance
	Exercises

