Check for updates

Tree-Based Methods

In this chapter, we describe tree-based methods for regression and classification. These involve stratifying or segmenting the predictor space into a number of simple regions. In order to make a prediction for a given observation, we typically use the mean or the mode response value for the training observations in the region to which it belongs. Since the set of splitting rules used to segment the predictor space can be summarized in a tree, these types of approaches are known as decision tree methods.

decision tree

Tree-based methods are simple and useful for interpretation. However, they typically are not competitive with the best supervised learning approaches, such as those seen in Chapters 6 and 7, in terms of prediction accuracy. Hence in this chapter we also introduce bagging, random forests, boosting, and Bayesian additive regression trees. Each of these approaches involves producing multiple trees which are then combined to yield a single consensus prediction. We will see that combining a large number of trees can often result in dramatic improvements in prediction accuracy, at the expense of some loss in interpretation.

8.1 The Basics of Decision Trees

Decision trees can be applied to both regression and classification problems. We first consider regression problems, and then move on to classification.

8.1.1 Regression Trees

https://doi.org/10.1007/978-3-031-38747-0 8

In order to motivate regression trees, we begin with a simple example.

regression tree

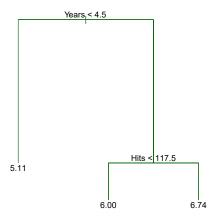


FIGURE 8.1. For the Hitters data, a regression tree for predicting the log salary of a baseball player, based on the number of years that he has played in the major leagues and the number of hits that he made in the previous year. At a given internal node, the label (of the form $X_j < t_k$) indicates the left-hand branch emanating from that split, and the right-hand branch corresponds to $X_j \ge t_k$. For instance, the split at the top of the tree results in two large branches. The left-hand branch corresponds to Years>=4.5. The tree has two internal nodes and three terminal nodes, or leaves. The number in each leaf is the mean of the response for the observations that fall there.

Predicting Baseball Players' Salaries Using Regression Trees

We use the Hitters data set to predict a baseball player's Salary based on Years (the number of years that he has played in the major leagues) and Hits (the number of hits that he made in the previous year). We first remove observations that are missing Salary values, and log-transform Salary so that its distribution has more of a typical bell-shape. (Recall that Salary is measured in thousands of dollars.)

Figure 8.1 shows a regression tree fit to this data. It consists of a series of splitting rules, starting at the top of the tree. The top split assigns observations having Years<4.5 to the left branch. The predicted salary for these players is given by the mean response value for the players in the data set with Years<4.5. For such players, the mean log salary is 5.107, and so we make a prediction of $e^{5.107}$ thousands of dollars, i.e. \$165,174, for these players. Players with Years>=4.5 are assigned to the right branch, and then that group is further subdivided by Hits. Overall, the tree stratifies or segments the players into three regions of predictor space: players who have played for four or fewer years, players who have played for five or more years and who made fewer than 118 hits last year, and players who have played for five or more years and who made at least 118 hits last year. These three regions can be written as $R_1 = \{X \mid \text{Years} < 4.5\}$, $R_2 = \{X \mid \text{Years} > 4.5, \text{Hits} < 117.5\}$, and $R_3 = \{X \mid \text{Years} > 4.5, \text{Hits} > 117.5\}$. Figure 8.2 illustrates

¹Both Years and Hits are integers in these data; the function used to fit this tree labels the splits at the midpoint between two adjacent values.

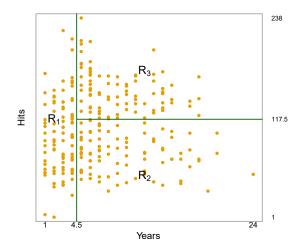


FIGURE 8.2. The three-region partition for the Hitters data set from the regression tree illustrated in Figure 8.1.

the regions as a function of Years and Hits. The predicted salaries for these three groups are $\$1,000 \times e^{5.107} = \$165,174$, $\$1,000 \times e^{5.999} = \$402,834$, and $\$1,000 \times e^{6.740} = \$845,346$ respectively.

In keeping with the *tree* analogy, the regions R_1 , R_2 , and R_3 are known as terminal nodes or leaves of the tree. As is the case for Figure 8.1, decision trees are typically drawn upside down, in the sense that the leaves are at the bottom of the tree. The points along the tree where the predictor space is split are referred to as internal nodes. In Figure 8.1, the two internal nodes are indicated by the text Years<4.5 and Hits<117.5. We refer to the segments of the trees that connect the nodes as branches.

terminal node leaf internal node branch

We might interpret the regression tree displayed in Figure 8.1 as follows: Years is the most important factor in determining Salary, and players with less experience earn lower salaries than more experienced players. Given that a player is less experienced, the number of hits that he made in the previous year seems to play little role in his salary. But among players who have been in the major leagues for five or more years, the number of hits made in the previous year does affect salary, and players who made more hits last year tend to have higher salaries. The regression tree shown in Figure 8.1 is likely an over-simplification of the true relationship between Hits, Years, and Salary. However, it has advantages over other types of regression models (such as those seen in Chapters 3 and 6): it is easier to interpret, and has a nice graphical representation.

Prediction via Stratification of the Feature Space

We now discuss the process of building a regression tree. Roughly speaking, there are two steps.

1. We divide the predictor space — that is, the set of possible values for X_1, X_2, \ldots, X_p — into J distinct and non-overlapping regions, R_1, R_2, \ldots, R_J .

2. For every observation that falls into the region R_j , we make the same prediction, which is simply the mean of the response values for the training observations in R_j .

For instance, suppose that in Step 1 we obtain two regions, R_1 and R_2 , and that the response mean of the training observations in the first region is 10, while the response mean of the training observations in the second region is 20. Then for a given observation X = x, if $x \in R_1$ we will predict a value of 10, and if $x \in R_2$ we will predict a value of 20.

We now elaborate on Step 1 above. How do we construct the regions R_1, \ldots, R_J ? In theory, the regions could have any shape. However, we choose to divide the predictor space into high-dimensional rectangles, or boxes, for simplicity and for ease of interpretation of the resulting predictive model. The goal is to find boxes R_1, \ldots, R_J that minimize the RSS, given by

$$\sum_{j=1}^{J} \sum_{i \in R_j} (y_i - \hat{y}_{R_j})^2, \tag{8.1}$$

where \hat{y}_{R_j} is the mean response for the training observations within the jth box. Unfortunately, it is computationally infeasible to consider every possible partition of the feature space into J boxes. For this reason, we take a top-down, greedy approach that is known as recursive binary splitting. The approach is top-down because it begins at the top of the tree (at which point all observations belong to a single region) and then successively splits the predictor space; each split is indicated via two new branches further down on the tree. It is greedy because at each step of the tree-building process, the best split is made at that particular step, rather than looking ahead and picking a split that will lead to a better tree in some future step.

recursive binary splitting

In order to perform recursive binary splitting, we first select the predictor X_j and the cutpoint s such that splitting the predictor space into the regions $\{X|X_j < s\}$ and $\{X|X_j \geq s\}$ leads to the greatest possible reduction in RSS. (The notation $\{X|X_j < s\}$ means the region of predictor space in which X_j takes on a value less than s.) That is, we consider all predictors X_1, \ldots, X_p , and all possible values of the cutpoint s for each of the predictors, and then choose the predictor and cutpoint such that the resulting tree has the lowest RSS. In greater detail, for any j and s, we define the pair of half-planes

$$R_1(j,s) = \{X | X_j < s\} \text{ and } R_2(j,s) = \{X | X_j \ge s\},$$
 (8.2)

and we seek the value of j and s that minimize the equation

$$\sum_{i: x_i \in R_1(j,s)} (y_i - \hat{y}_{R_1})^2 + \sum_{i: x_i \in R_2(j,s)} (y_i - \hat{y}_{R_2})^2, \tag{8.3}$$

where \hat{y}_{R_1} is the mean response for the training observations in $R_1(j, s)$, and \hat{y}_{R_2} is the mean response for the training observations in $R_2(j, s)$. Finding the values of j and s that minimize (8.3) can be done quite quickly, especially when the number of features p is not too large.

Next, we repeat the process, looking for the best predictor and best cutpoint in order to split the data further so as to minimize the RSS within

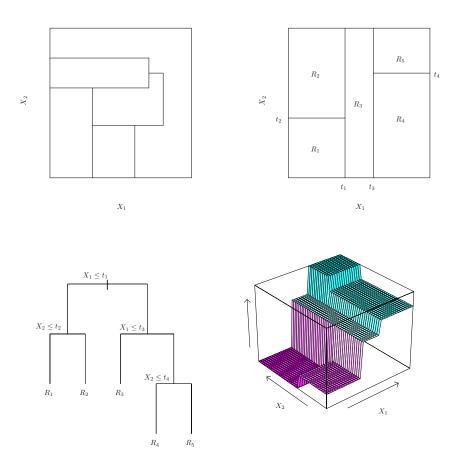


FIGURE 8.3. Top Left: A partition of two-dimensional feature space that could not result from recursive binary splitting. Top Right: The output of recursive binary splitting on a two-dimensional example. Bottom Left: A tree corresponding to the partition in the top right panel. Bottom Right: A perspective plot of the prediction surface corresponding to that tree.

each of the resulting regions. However, this time, instead of splitting the entire predictor space, we split one of the two previously identified regions. We now have three regions. Again, we look to split one of these three regions further, so as to minimize the RSS. The process continues until a stopping criterion is reached; for instance, we may continue until no region contains more than five observations.

Once the regions R_1, \ldots, R_J have been created, we predict the response for a given test observation using the mean of the training observations in the region to which that test observation belongs.

A five-region example of this approach is shown in Figure 8.3.

Tree Pruning

The process described above may produce good predictions on the training set, but is likely to overfit the data, leading to poor test set performance. This is because the resulting tree might be too complex. A smaller tree

with fewer splits (that is, fewer regions R_1, \ldots, R_J) might lead to lower variance and better interpretation at the cost of a little bias. One possible alternative to the process described above is to build the tree only so long as the decrease in the RSS due to each split exceeds some (high) threshold. This strategy will result in smaller trees, but is too short-sighted since a seemingly worthless split early on in the tree might be followed by a very good split—that is, a split that leads to a large reduction in RSS later on.

Therefore, a better strategy is to grow a very large tree T_0 , and then prune it back in order to obtain a subtree. How do we determine the best way to prune the tree? Intuitively, our goal is to select a subtree that leads to the lowest test error rate. Given a subtree, we can estimate its test error using cross-validation or the validation set approach. However, estimating the cross-validation error for every possible subtree would be too cumbersome, since there is an extremely large number of possible subtrees. Instead, we need a way to select a small set of subtrees for consideration.

Cost complexity pruning—also known as weakest link pruning—gives us a way to do just this. Rather than considering every possible subtree, we consider a sequence of trees indexed by a nonnegative tuning parameter α . For each value of α there corresponds a subtree $T \subset T_0$ such that

prune subtree

cost complexity pruning weakest link pruning

$$\sum_{m=1}^{|T|} \sum_{i: x_i \in R_m} (y_i - \hat{y}_{R_m})^2 + \alpha |T|$$
 (8.4)

is as small as possible. Here |T| indicates the number of terminal nodes of the tree T, R_m is the rectangle (i.e. the subset of predictor space) corresponding to the mth terminal node, and \hat{y}_{R_m} is the predicted response associated with R_m —that is, the mean of the training observations in R_m . The tuning parameter α controls a trade-off between the subtree's complexity and its fit to the training data. When $\alpha=0$, then the subtree T will simply equal T_0 , because then (8.4) just measures the training error. However, as α increases, there is a price to pay for having a tree with many terminal nodes, and so the quantity (8.4) will tend to be minimized for a smaller subtree. Equation 8.4 is reminiscent of the lasso (6.7) from Chapter 6, in which a similar formulation was used in order to control the complexity of a linear model.

It turns out that as we increase α from zero in (8.4), branches get pruned from the tree in a nested and predictable fashion, so obtaining the whole sequence of subtrees as a function of α is easy. We can select a value of α using a validation set or using cross-validation. We then return to the full data set and obtain the subtree corresponding to α . This process is summarized in Algorithm 8.1.

Figures 8.4 and 8.5 display the results of fitting and pruning a regression tree on the Hitters data, using nine of the features. First, we randomly divided the data set in half, yielding 132 observations in the training set and 131 observations in the test set. We then built a large regression tree on the training data and varied α in (8.4) in order to create subtrees with different numbers of terminal nodes. Finally, we performed six-fold cross-validation in order to estimate the cross-validated MSE of the trees as

Algorithm 8.1 Building a Regression Tree

- 1. Use recursive binary splitting to grow a large tree on the training data, stopping only when each terminal node has fewer than some minimum number of observations.
- 2. Apply cost complexity pruning to the large tree in order to obtain a sequence of best subtrees, as a function of α .
- 3. Use K-fold cross-validation to choose α . That is, divide the training observations into K folds. For each $k = 1, \ldots, K$:
 - (a) Repeat Steps 1 and 2 on all but the kth fold of the training data.
 - (b) Evaluate the mean squared prediction error on the data in the left-out kth fold, as a function of α .

Average the results for each value of α , and pick α to minimize the average error.

4. Return the subtree from Step 2 that corresponds to the chosen value of α .

a function of α . (We chose to perform six-fold cross-validation because 132 is an exact multiple of six.) The unpruned regression tree is shown in Figure 8.4. The green curve in Figure 8.5 shows the CV error as a function of the number of leaves,² while the orange curve indicates the test error. Also shown are standard error bars around the estimated errors. For reference, the training error curve is shown in black. The CV error is a reasonable approximation of the test error: the CV error takes on its minimum for a three-node tree, while the test error also dips down at the three-node tree (though it takes on its lowest value at the ten-node tree). The pruned tree containing three terminal nodes is shown in Figure 8.1.

8.1.2 Classification Trees

A classification tree is very similar to a regression tree, except that it is used to predict a qualitative response rather than a quantitative one. Recall that for a regression tree, the predicted response for an observation is given by the mean response of the training observations that belong to the same terminal node. In contrast, for a classification tree, we predict that each observation belongs to the most commonly occurring class of training observations in the region to which it belongs. In interpreting the results of a classification tree, we are often interested not only in the class prediction corresponding to a particular terminal node region, but also in the class proportions among the training observations that fall into that region.

The task of growing a classification tree is quite similar to the task of growing a regression tree. Just as in the regression setting, we use recursive

classification

²Although CV error is computed as a function of α , it is convenient to display the result as a function of |T|, the number of leaves; this is based on the relationship between α and |T| in the original tree grown to all the training data.

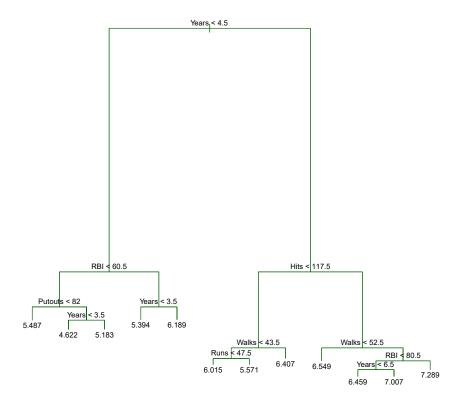


FIGURE 8.4. Regression tree analysis for the Hitters data. The unpruned tree that results from top-down greedy splitting on the training data is shown.

binary splitting to grow a classification tree. However, in the classification setting, RSS cannot be used as a criterion for making the binary splits. A natural alternative to RSS is the *classification error rate*. Since we plan to assign an observation in a given region to the *most commonly occurring class* of training observations in that region, the classification error rate is simply the fraction of the training observations in that region that do not belong to the most common class:

classification

$$E = 1 - \max_{k} (\hat{p}_{mk}). \tag{8.5}$$

Here \hat{p}_{mk} represents the proportion of training observations in the *m*th region that are from the *k*th class. However, it turns out that classification error is not sufficiently sensitive for tree-growing, and in practice two other measures are preferable.

The Gini index is defined by

Gini index

$$G = \sum_{k=1}^{K} \hat{p}_{mk} (1 - \hat{p}_{mk}), \tag{8.6}$$

a measure of total variance across the K classes. It is not hard to see that the Gini index takes on a small value if all of the \hat{p}_{mk} 's are close to zero or one. For this reason the Gini index is referred to as a measure of

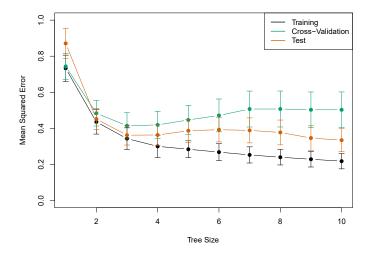


FIGURE 8.5. Regression tree analysis for the Hitters data. The training, cross-validation, and test MSE are shown as a function of the number of terminal nodes in the pruned tree. Standard error bands are displayed. The minimum cross-validation error occurs at a tree size of three.

node *purity*—a small value indicates that a node contains predominantly observations from a single class.

An alternative to the Gini index is *entropy*, given by

entropy

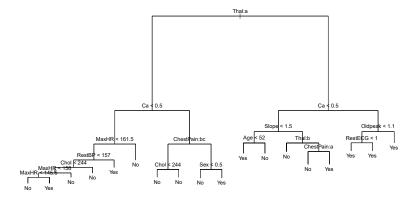
$$D = -\sum_{k=1}^{K} \hat{p}_{mk} \log \hat{p}_{mk}.$$
 (8.7)

Since $0 \le \hat{p}_{mk} \le 1$, it follows that $0 \le -\hat{p}_{mk} \log \hat{p}_{mk}$. One can show that the entropy will take on a value near zero if the \hat{p}_{mk} 's are all near zero or near one. Therefore, like the Gini index, the entropy will take on a small value if the mth node is pure. In fact, it turns out that the Gini index and the entropy are quite similar numerically.

When building a classification tree, either the Gini index or the entropy are typically used to evaluate the quality of a particular split, since these two approaches are more sensitive to node purity than is the classification error rate. Any of these three approaches might be used when *pruning* the tree, but the classification error rate is preferable if prediction accuracy of the final pruned tree is the goal.

Figure 8.6 shows an example on the Heart data set. These data contain a binary outcome HD for 303 patients who presented with chest pain. An outcome value of Yes indicates the presence of heart disease based on an angiographic test, while No means no heart disease. There are 13 predictors including Age, Sex, Cho1 (a cholesterol measurement), and other heart and lung function measurements. Cross-validation results in a tree with six terminal nodes.

In our discussion thus far, we have assumed that the predictor variables take on continuous values. However, decision trees can be constructed even in the presence of qualitative predictor variables. For instance, in the Heart data, some of the predictors, such as Sex, Thal (Thallium stress test),



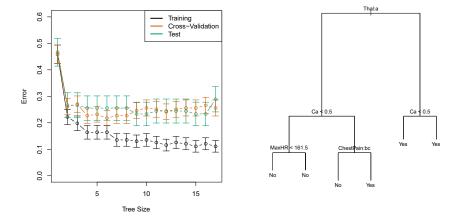


FIGURE 8.6. Heart data. Top: The unpruned tree. Bottom Left: Cross-validation error, training, and test error, for different sizes of the pruned tree. Bottom Right: The pruned tree corresponding to the minimal cross-validation error.

and ChestPain, are qualitative. Therefore, a split on one of these variables amounts to assigning some of the qualitative values to one branch and assigning the remaining to the other branch. In Figure 8.6, some of the internal nodes correspond to splitting qualitative variables. For instance, the top internal node corresponds to splitting Thal. The text Thal:a indicates that the left-hand branch coming out of that node consists of observations with the first value of the Thal variable (normal), and the right-hand node consists of the remaining observations (fixed or reversible defects). The text ChestPain:bc two splits down the tree on the left indicates that the left-hand branch coming out of that node consists of observations with the second and third values of the ChestPain variable, where the possible values are typical angina, atypical angina, non-anginal pain, and asymptomatic.

Figure 8.6 has a surprising characteristic: some of the splits yield two terminal nodes that have the *same predicted value*. For instance, consider the split RestECG<1 near the bottom right of the unpruned tree. Regardless of the value of RestECG, a response value of Yes is predicted for those ob-

servations. Why, then, is the split performed at all? The split is performed because it leads to increased node purity. That is, all 9 of the observations corresponding to the right-hand leaf have a response value of Yes, whereas 7/11 of those corresponding to the left-hand leaf have a response value of Yes. Why is node purity important? Suppose that we have a test observation that belongs to the region given by that right-hand leaf. Then we can be pretty certain that its response value is Yes. In contrast, if a test observation belongs to the region given by the left-hand leaf, then its response value is probably Yes, but we are much less certain. Even though the split RestECG<1 does not reduce the classification error, it improves the Gini index and the entropy, which are more sensitive to node purity.

8.1.3 Trees Versus Linear Models

Regression and classification trees have a very different flavor from the more classical approaches for regression and classification presented in Chapters 3 and 4. In particular, linear regression assumes a model of the form

$$f(X) = \beta_0 + \sum_{j=1}^{p} X_j \beta_j,$$
 (8.8)

whereas regression trees assume a model of the form

$$f(X) = \sum_{m=1}^{M} c_m \cdot 1_{(X \in R_m)}$$
 (8.9)

where R_1, \ldots, R_M represent a partition of feature space, as in Figure 8.3. Which model is better? It depends on the problem at hand. If the relationship between the features and the response is well approximated by a linear model as in (8.8), then an approach such as linear regression will likely work well, and will outperform a method such as a regression tree that does not exploit this linear structure. If instead there is a highly nonlinear and complex relationship between the features and the response as indicated by model (8.9), then decision trees may outperform classical approaches. An illustrative example is displayed in Figure 8.7. The relative performances of tree-based and classical approaches can be assessed by estimating the test error, using either cross-validation or the validation set approach (Chapter 5).

Of course, other considerations beyond simply test error may come into play in selecting a statistical learning method; for instance, in certain settings, prediction using a tree may be preferred for the sake of interpretability and visualization.

8.1.4 Advantages and Disadvantages of Trees

Decision trees for regression and classification have a number of advantages over the more classical approaches seen in Chapters 3 and 4:

▲ Trees are very easy to explain to people. In fact, they are even easier to explain than linear regression!

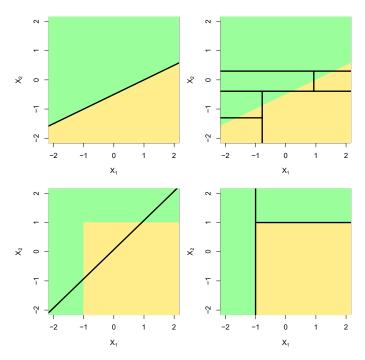


FIGURE 8.7. Top Row: A two-dimensional classification example in which the true decision boundary is linear, and is indicated by the shaded regions. A classical approach that assumes a linear boundary (left) will outperform a decision tree that performs splits parallel to the axes (right). Bottom Row: Here the true decision boundary is non-linear. Here a linear model is unable to capture the true decision boundary (left), whereas a decision tree is successful (right).

- ▲ Some people believe that decision trees more closely mirror human decision-making than do the regression and classification approaches seen in previous chapters.
- ▲ Trees can be displayed graphically, and are easily interpreted even by a non-expert (especially if they are small).
- ▲ Trees can easily handle qualitative predictors without the need to create dummy variables.
- ▼ Unfortunately, trees generally do not have the same level of predictive accuracy as some of the other regression and classification approaches seen in this book.
- ▼ Additionally, trees can be very non-robust. In other words, a small change in the data can cause a large change in the final estimated tree.

However, by aggregating many decision trees, using methods like *bagging*, random forests, and boosting, the predictive performance of trees can be substantially improved. We introduce these concepts in the next section.

8.2 Bagging, Random Forests, Boosting, and Bayesian Additive Regression Trees

An ensemble method is an approach that combines many simple "building block" models in order to obtain a single and potentially very powerful model. These simple building block models are sometimes known as weak learners, since they may lead to mediocre predictions on their own.

nsemble

weak learners

We will now discuss bagging, random forests, boosting, and Bayesian additive regression trees. These are ensemble methods for which the simple building block is a regression or a classification tree.

8.2.1 Bagging

The bootstrap, introduced in Chapter 5, is an extremely powerful idea. It is used in many situations in which it is hard or even impossible to directly compute the standard deviation of a quantity of interest. We see here that the bootstrap can be used in a completely different context, in order to improve statistical learning methods such as decision trees.

The decision trees discussed in Section 8.1 suffer from high variance. This means that if we split the training data into two parts at random, and fit a decision tree to both halves, the results that we get could be quite different. In contrast, a procedure with low variance will yield similar results if applied repeatedly to distinct data sets; linear regression tends to have low variance, if the ratio of n to p is moderately large. Bootstrap aggregation, or bagging, is a general-purpose procedure for reducing the variance of a statistical learning method; we introduce it here because it is particularly useful and frequently used in the context of decision trees.

bagging

Recall that given a set of n independent observations Z_1, \ldots, Z_n , each with variance σ^2 , the variance of the mean \bar{Z} of the observations is given by σ^2/n . In other words, averaging a set of observations reduces variance. Hence a natural way to reduce the variance and increase the test set accuracy of a statistical learning method is to take many training sets from the population, build a separate prediction model using each training set, and average the resulting predictions. In other words, we could calculate $\hat{f}^1(x), \hat{f}^2(x), \ldots, \hat{f}^B(x)$ using B separate training sets, and average them in order to obtain a single low-variance statistical learning model, given by

$$\hat{f}_{\text{avg}}(x) = \frac{1}{B} \sum_{b=1}^{B} \hat{f}^b(x).$$

Of course, this is not practical because we generally do not have access to multiple training sets. Instead, we can bootstrap, by taking repeated samples from the (single) training data set. In this approach we generate B different bootstrapped training data sets. We then train our method on the bth bootstrapped training set in order to get $\hat{f}^{*b}(x)$, and finally average all the predictions, to obtain

$$\hat{f}_{\text{bag}}(x) = \frac{1}{B} \sum_{b=1}^{B} \hat{f}^{*b}(x).$$

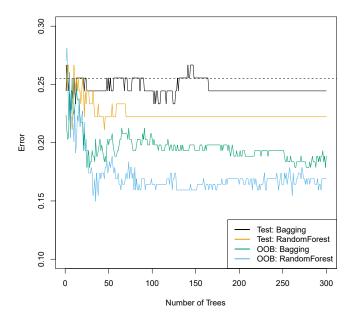


FIGURE 8.8. Bagging and random forest results for the Heart data. The test error (black and orange) is shown as a function of B, the number of bootstrapped training sets used. Random forests were applied with $m=\sqrt{p}$. The dashed line indicates the test error resulting from a single classification tree. The green and blue traces show the OOB error, which in this case is — by chance — considerably lower.

This is called bagging.

While bagging can improve predictions for many regression methods, it is particularly useful for decision trees. To apply bagging to regression trees, we simply construct B regression trees using B bootstrapped training sets, and average the resulting predictions. These trees are grown deep, and are not pruned. Hence each individual tree has high variance, but low bias. Averaging these B trees reduces the variance. Bagging has been demonstrated to give impressive improvements in accuracy by combining together hundreds or even thousands of trees into a single procedure.

Thus far, we have described the bagging procedure in the regression context, to predict a quantitative outcome Y. How can bagging be extended to a classification problem where Y is qualitative? In that situation, there are a few possible approaches, but the simplest is as follows. For a given test observation, we can record the class predicted by each of the B trees, and take a majority vote: the overall prediction is the most commonly occurring class among the B predictions.

majority vote

Figure 8.8 shows the results from bagging trees on the Heart data. The test error rate is shown as a function of B, the number of trees constructed using bootstrapped training data sets. We see that the bagging test error rate is slightly lower in this case than the test error rate obtained from a single tree. The number of trees B is not a critical parameter with bagging; using a very large value of B will not lead to overfitting. In practice we

use a value of B sufficiently large that the error has settled down. Using B=100 is sufficient to achieve good performance in this example.

Out-of-Bag Error Estimation

It turns out that there is a very straightforward way to estimate the test error of a bagged model, without the need to perform cross-validation or the validation set approach. Recall that the key to bagging is that trees are repeatedly fit to bootstrapped subsets of the observations. One can show that on average, each bagged tree makes use of around two-thirds of the observations.³ The remaining one-third of the observations not used to fit a given bagged tree are referred to as the out-of-bag (OOB) observations. We can predict the response for the ith observation using each of the trees in which that observation was OOB. This will yield around B/3 predictions for the ith observation. In order to obtain a single prediction for the ith observation, we can average these predicted responses (if regression is the goal) or can take a majority vote (if classification is the goal). This leads to a single OOB prediction for the ith observation. An OOB prediction can be obtained in this way for each of the n observations, from which the overall OOB MSE (for a regression problem) or classification error (for a classification problem) can be computed. The resulting OOB error is a valid estimate of the test error for the bagged model, since the response for each observation is predicted using only the trees that were not fit using that observation. Figure 8.8 displays the OOB error on the Heart data. It can be shown that with B sufficiently large, OOB error is virtually equivalent to leave-one-out cross-validation error. The OOB approach for estimating the test error is particularly convenient when performing bagging on large data sets for which cross-validation would be computationally onerous.

out-of-bag

Variable Importance Measures

As we have discussed, bagging typically results in improved accuracy over prediction using a single tree. Unfortunately, however, it can be difficult to interpret the resulting model. Recall that one of the advantages of decision trees is the attractive and easily interpreted diagram that results, such as the one displayed in Figure 8.1. However, when we bag a large number of trees, it is no longer possible to represent the resulting statistical learning procedure using a single tree, and it is no longer clear which variables are most important to the procedure. Thus, bagging improves prediction accuracy at the expense of interpretability.

Although the collection of bagged trees is much more difficult to interpret than a single tree, one can obtain an overall summary of the importance of each predictor using the RSS (for bagging regression trees) or the Gini index (for bagging classification trees). In the case of bagging regression trees, we can record the total amount that the RSS (8.1) is decreased due to splits over a given predictor, averaged over all B trees. A large value indicates an important predictor. Similarly, in the context of bagging classification

³This relates to Exercise 2 of Chapter 5.

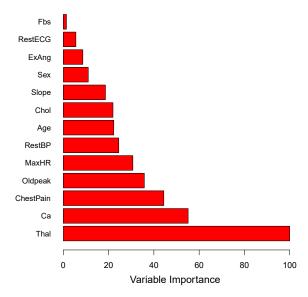


FIGURE 8.9. A variable importance plot for the Heart data. Variable importance is computed using the mean decrease in Gini index, and expressed relative to the maximum.

trees, we can add up the total amount that the Gini index (8.6) is decreased by splits over a given predictor, averaged over all B trees.

A graphical representation of the *variable importances* in the Heart data is shown in Figure 8.9. We see the mean decrease in Gini index for each variable, relative to the largest. The variables with the largest mean decrease in Gini index are Thal, Ca, and ChestPain.

variable importance

8.2.2 Random Forests

Random forests provide an improvement over bagged trees by way of a small tweak that decorrelates the trees. As in bagging, we build a number of decision trees on bootstrapped training samples. But when building these decision trees, each time a split in a tree is considered, a random sample of m predictors is chosen as split candidates from the full set of p predictors. The split is allowed to use only one of those m predictors. A fresh sample of m predictors is taken at each split, and typically we choose $m \approx \sqrt{p}$ —that is, the number of predictors considered at each split is approximately equal to the square root of the total number of predictors (4 out of the 13 for the Heart data).

In other words, in building a random forest, at each split in the tree, the algorithm is not even allowed to consider a majority of the available predictors. This may sound crazy, but it has a clever rationale. Suppose that there is one very strong predictor in the data set, along with a number of other moderately strong predictors. Then in the collection of bagged trees, most or all of the trees will use this strong predictor in the top split. Consequently, all of the bagged trees will look quite similar to each other.

random forest Hence the predictions from the bagged trees will be highly correlated. Unfortunately, averaging many highly correlated quantities does not lead to as large of a reduction in variance as averaging many uncorrelated quantities. In particular, this means that bagging will not lead to a substantial reduction in variance over a single tree in this setting.

Random forests overcome this problem by forcing each split to consider only a subset of the predictors. Therefore, on average (p-m)/p of the splits will not even consider the strong predictor, and so other predictors will have more of a chance. We can think of this process as *decorrelating* the trees, thereby making the average of the resulting trees less variable and hence more reliable.

The main difference between bagging and random forests is the choice of predictor subset size m. For instance, if a random forest is built using m=p, then this amounts simply to bagging. On the Heart data, random forests using $m=\sqrt{p}$ leads to a reduction in both test error and OOB error over bagging (Figure 8.8).

Using a small value of m in building a random forest will typically be helpful when we have a large number of correlated predictors. We applied random forests to a high-dimensional biological data set consisting of expression measurements of 4,718 genes measured on tissue samples from 349 patients. There are around 20,000 genes in humans, and individual genes have different levels of activity, or expression, in particular cells, tissues, and biological conditions. In this data set, each of the patient samples has a qualitative label with 15 different levels: either normal or 1 of 14 different types of cancer. Our goal was to use random forests to predict cancer type based on the 500 genes that have the largest variance in the training set. We randomly divided the observations into a training and a test set, and applied random forests to the training set for three different values of the number of splitting variables m. The results are shown in Figure 8.10. The error rate of a single tree is 45.7 %, and the null rate is 75.4 %. We see that using 400 trees is sufficient to give good performance, and that the choice $m=\sqrt{p}$ gave a small improvement in test error over bagging (m=p) in this example. As with bagging, random forests will not overfit if we increase B, so in practice we use a value of B sufficiently large for the error rate to have settled down.

8.2.3 Boosting

We now discuss *boosting*, yet another approach for improving the predictions resulting from a decision tree. Like bagging, boosting is a general approach that can be applied to many statistical learning methods for regression or classification. Here we restrict our discussion of boosting to the context of decision trees.

boosting

Recall that bagging involves creating multiple copies of the original training data set using the bootstrap, fitting a separate decision tree to each copy, and then combining all of the trees in order to create a single predic-

⁴The null rate results from simply classifying each observation to the dominant class overall, which is in this case the normal class.

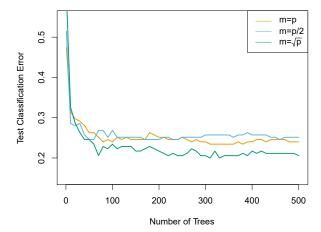


FIGURE 8.10. Results from random forests for the 15-class gene expression data set with p=500 predictors. The test error is displayed as a function of the number of trees. Each colored line corresponds to a different value of m, the number of predictors available for splitting at each interior tree node. Random forests (m < p) lead to a slight improvement over bagging (m = p). A single classification tree has an error rate of 45.7%.

tive model. Notably, each tree is built on a bootstrap data set, independent of the other trees. Boosting works in a similar way, except that the trees are grown sequentially: each tree is grown using information from previously grown trees. Boosting does not involve bootstrap sampling; instead each tree is fit on a modified version of the original data set.

Consider first the regression setting. Like bagging, boosting involves combining a large number of decision trees, $\hat{f}^1, \dots, \hat{f}^B$. Boosting is described in Algorithm 8.2.

What is the idea behind this procedure? Unlike fitting a single large decision tree to the data, which amounts to fitting the data hard and potentially overfitting, the boosting approach instead learns slowly. Given the current model, we fit a decision tree to the residuals from the model. That is, we fit a tree using the current residuals, rather than the outcome Y, as the response. We then add this new decision tree into the fitted function in order to update the residuals. Each of these trees can be rather small, with just a few terminal nodes, determined by the parameter d in the algorithm. By fitting small trees to the residuals, we slowly improve \hat{f} in areas where it does not perform well. The shrinkage parameter λ slows the process down even further, allowing more and different shaped trees to attack the residuals. In general, statistical learning approaches that learn slowly tend to perform well. Note that in boosting, unlike in bagging, the construction of each tree depends strongly on the trees that have already been grown.

We have just described the process of boosting regression trees. Boosting classification trees proceeds in a similar but slightly more complex way, and the details are omitted here.

Algorithm 8.2 Boosting for Regression Trees

- 1. Set $\hat{f}(x) = 0$ and $r_i = y_i$ for all i in the training set.
- 2. For b = 1, 2, ..., B, repeat:
 - (a) Fit a tree \hat{f}^b with d splits (d+1) terminal nodes to the training data (X, r).
 - (b) Update \hat{f} by adding in a shrunken version of the new tree:

$$\hat{f}(x) \leftarrow \hat{f}(x) + \lambda \hat{f}^b(x).$$
 (8.10)

(c) Update the residuals,

$$r_i \leftarrow r_i - \lambda \hat{f}^b(x_i). \tag{8.11}$$

3. Output the boosted model,

$$\hat{f}(x) = \sum_{b=1}^{B} \lambda \hat{f}^b(x).$$
 (8.12)

Boosting has three tuning parameters:

- 1. The number of trees B. Unlike bagging and random forests, boosting can overfit if B is too large, although this overfitting tends to occur slowly if at all. We use cross-validation to select B.
- 2. The shrinkage parameter λ , a small positive number. This controls the rate at which boosting learns. Typical values are 0.01 or 0.001, and the right choice can depend on the problem. Very small λ can require using a very large value of B in order to achieve good performance.
- 3. The number d of splits in each tree, which controls the complexity of the boosted ensemble. Often d=1 works well, in which case each tree is a stump, consisting of a single split. In this case, the boosted ensemble is fitting an additive model, since each term involves only a single variable. More generally d is the $interaction\ depth$, and controls the interaction order of the boosted model, since d splits can involve at most d variables.

stump

interaction depth

In Figure 8.11, we applied boosting to the 15-class cancer gene expression data set, in order to develop a classifier that can distinguish the normal class from the 14 cancer classes. We display the test error as a function of the total number of trees and the interaction depth d. We see that simple stumps with an interaction depth of one perform well if enough of them are included. This model outperforms the depth-two model, and both outperform a random forest. This highlights one difference between boosting and random forests: in boosting, because the growth of a particular tree takes into account the other trees that have already been grown, smaller

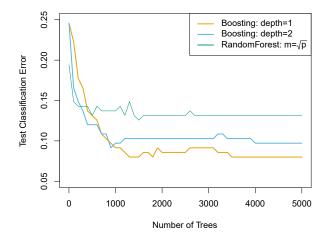


FIGURE 8.11. Results from performing boosting and random forests on the 15-class gene expression data set in order to predict cancer versus normal. The test error is displayed as a function of the number of trees. For the two boosted models, $\lambda = 0.01$. Depth-1 trees slightly outperform depth-2 trees, and both outperform the random forest, although the standard errors are around 0.02, making none of these differences significant. The test error rate for a single tree is 24 %.

trees are typically sufficient. Using smaller trees can aid in interpretability as well; for instance, using stumps leads to an additive model.

8.2.4 Bayesian Additive Regression Trees

Finally, we discuss *Bayesian additive regression trees* (BART), another ensemble method that uses decision trees as its building blocks. For simplicity, we present BART for regression (as opposed to classification).

Bayesian additive regression trees

Recall that bagging and random forests make predictions from an average of regression trees, each of which is built using a random sample of data and/or predictors. Each tree is built separately from the others. By contrast, boosting uses a weighted sum of trees, each of which is constructed by fitting a tree to the residual of the current fit. Thus, each new tree attempts to capture signal that is not yet accounted for by the current set of trees. BART is related to both approaches: each tree is constructed in a random manner as in bagging and random forests, and each tree tries to capture signal not yet accounted for by the current model, as in boosting. The main novelty in BART is the way in which new trees are generated.

Before we introduce the BART algorithm, we define some notation. We let K denote the number of regression trees, and B the number of iterations for which the BART algorithm will be run. The notation $\hat{f}_k^b(x)$ represents the prediction at x for the kth regression tree used in the bth iteration. At the end of each iteration, the K trees from that iteration will be summed, i.e. $\hat{f}^b(x) = \sum_{k=1}^K \hat{f}_k^b(x)$ for $b = 1, \ldots, B$.

In the first iteration of the BART algorithm, all trees are initialized to have a single root node, with $\hat{f}_k^1(x) = \frac{1}{nK} \sum_{i=1}^n y_i$, the mean of the response

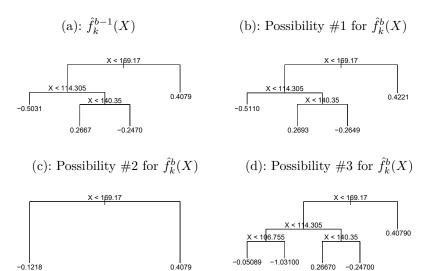


FIGURE 8.12. A schematic of perturbed trees from the BART algorithm. (a): The kth tree at the (b-1)st iteration, $\hat{f}_k^{b-1}(X)$, is displayed. Panels (b)-(d) display three of many possibilities for $\hat{f}_k^b(X)$, given the form of $\hat{f}_k^{b-1}(X)$. (b): One possibility is that $\hat{f}_k^b(X)$ has the same structure as $\hat{f}_k^{b-1}(X)$, but with different predictions at the terminal nodes. (c): Another possibility is that $\hat{f}_k^b(X)$ results from pruning $\hat{f}_k^{b-1}(X)$. (d): Alternatively, $\hat{f}_k^b(X)$ may have more terminal nodes than $\hat{f}_k^{b-1}(X)$.

values divided by the total number of trees. Thus, $\hat{f}^1(x) = \sum_{k=1}^K \hat{f}^1_k(x) = \frac{1}{n} \sum_{i=1}^n y_i$.

In subsequent iterations, BART updates each of the K trees, one at a time. In the bth iteration, to update the kth tree, we subtract from each response value the predictions from all but the kth tree, in order to obtain a $partial\ residual$

$$r_i = y_i - \sum_{k' < k} \hat{f}_{k'}^b(x_i) - \sum_{k' > k} \hat{f}_{k'}^{b-1}(x_i)$$

for the *i*th observation, $i=1,\ldots,n$. Rather than fitting a fresh tree to this partial residual, BART randomly chooses a perturbation to the tree from the previous iteration (\hat{f}_k^{b-1}) from a set of possible perturbations, favoring ones that improve the fit to the partial residual. There are two components to this perturbation:

- 1. We may change the structure of the tree by adding or pruning branches.
- 2. We may change the prediction in each terminal node of the tree.

Figure 8.12 illustrates examples of possible perturbations to a tree. The output of BART is a collection of prediction models,

$$\hat{f}^b(x) = \sum_{k=1}^K \hat{f}_k^b(x)$$
, for $b = 1, 2, \dots, B$.

Algorithm 8.3 Bayesian Additive Regression Trees

- 1. Let $\hat{f}_1^1(x) = \hat{f}_2^1(x) = \dots = \hat{f}_K^1(x) = \frac{1}{nK} \sum_{i=1}^n y_i$.
- 2. Compute $\hat{f}^1(x) = \sum_{k=1}^K \hat{f}^1_k(x) = \frac{1}{n} \sum_{i=1}^n y_i$.
- 3. For b = 2, ..., B:
 - (a) For k = 1, 2, ..., K:
 - i. For i = 1, ..., n, compute the current partial residual

$$r_i = y_i - \sum_{k' < k} \hat{f}_{k'}^b(x_i) - \sum_{k' > k} \hat{f}_{k'}^{b-1}(x_i).$$

- ii. Fit a new tree, $\hat{f}_k^b(x)$, to r_i , by randomly perturbing the kth tree from the previous iteration, $\hat{f}_k^{b-1}(x)$. Perturbations that improve the fit are favored.
- (b) Compute $\hat{f}^b(x) = \sum_{k=1}^{K} \hat{f}^b_k(x)$.
- 4. Compute the mean after L burn-in samples,

$$\hat{f}(x) = \frac{1}{B-L} \sum_{b=L+1}^{B} \hat{f}^b(x).$$

We typically throw away the first few of these prediction models, since models obtained in the earlier iterations — known as the burn-in period — tend not to provide very good results. We can let L denote the number of burn-in iterations; for instance, we might take L=200. Then, to obtain a single prediction, we simply take the average after the burn-in iterations, $\hat{f}(x) = \frac{1}{B-L} \sum_{b=L+1}^{B} \hat{f}^b(x)$. However, it is also possible to compute quantities other than the average: for instance, the percentiles of $\hat{f}^{L+1}(x), \ldots, \hat{f}^B(x)$ provide a measure of uncertainty in the final prediction. The overall BART procedure is summarized in Algorithm 8.3.

A key element of the BART approach is that in Step 3(a)ii., we do *not* fit a fresh tree to the current partial residual: instead, we try to improve the fit to the current partial residual by slightly modifying the tree obtained in the previous iteration (see Figure 8.12). Roughly speaking, this guards against overfitting since it limits how "hard" we fit the data in each iteration. Furthermore, the individual trees are typically quite small. We limit the tree size in order to avoid overfitting the data, which would be more likely to occur if we grew very large trees.

Figure 8.13 shows the result of applying BART to the Heart data, using K=200 trees, as the number of iterations is increased to 10,000. During the initial iterations, the test and training errors jump around a bit. After this initial burn-in period, the error rates settle down. We note that there is only a small difference between the training error and the test error, indicating that the tree perturbation process largely avoids overfitting.

burn-in

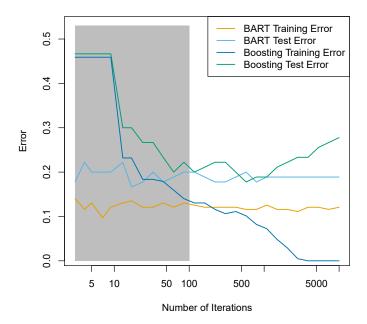


FIGURE 8.13. BART and boosting results for the Heart data. Both training and test errors are displayed. After a burn-in period of 100 iterations (shown in gray), the error rates for BART settle down. Boosting begins to overfit after a few hundred iterations.

The training and test errors for boosting are also displayed in Figure 8.13. We see that the test error for boosting approaches that of BART, but then begins to increase as the number of iterations increases. Furthermore, the training error for boosting decreases as the number of iterations increases, indicating that boosting has overfit the data.

Though the details are outside of the scope of this book, it turns out that the BART method can be viewed as a *Bayesian* approach to fitting an ensemble of trees: each time we randomly perturb a tree in order to fit the residuals, we are in fact drawing a new tree from a *posterior* distribution. (Of course, this Bayesian connection is the motivation for BART's name.) Furthermore, Algorithm 8.3 can be viewed as a *Markov chain Monte Carlo* algorithm for fitting the BART model.

Markov chain Monte

When we apply BART, we must select the number of trees K, the number of iterations B, and the number of burn-in iterations L. We typically choose large values for B and K, and a moderate value for L: for instance, K=200, $B=1{,}000$, and L=100 is a reasonable choice. BART has been shown to have very impressive out-of-box performance — that is, it performs well with minimal tuning.

8.2.5 Summary of Tree Ensemble Methods

Trees are an attractive choice of weak learner for an ensemble method for a number of reasons, including their flexibility and ability to handle predictors of mixed types (i.e. qualitative as well as quantitative). We have now seen four approaches for fitting an ensemble of trees: bagging, random forests, boosting, and BART.

- In *bagging*, the trees are grown independently on random samples of the observations. Consequently, the trees tend to be quite similar to each other. Thus, bagging can get caught in local optima and can fail to thoroughly explore the model space.
- In random forests, the trees are once again grown independently on random samples of the observations. However, each split on each tree is performed using a random subset of the features, thereby decorrelating the trees, and leading to a more thorough exploration of model space relative to bagging.
- In *boosting*, we only use the original data, and do not draw any random samples. The trees are grown successively, using a "slow" learning approach: each new tree is fit to the signal that is left over from the earlier trees, and shrunken down before it is used.
- In *BART*, we once again only make use of the original data, and we grow the trees successively. However, each tree is perturbed in order to avoid local minima and achieve a more thorough exploration of the model space.

8.3 Lab: Tree-Based Methods

We import some of our usual libraries at this top level.

```
In [1]: import numpy as np
  import pandas as pd
  from matplotlib.pyplot import subplots
  from statsmodels.datasets import get_rdataset
  import sklearn.model_selection as skm
  from ISLP import load_data, confusion_table
  from ISLP.models import ModelSpec as MS
```

We also collect the new imports needed for this lab.

8.3.1 Fitting Classification Trees

We first use classification trees to analyze the Carseats data set. In these data, Sales is a continuous variable, and so we begin by recoding it as a binary variable. We use the where() function to create a variable, called High, which takes on a value of Yes if the Sales variable exceeds 8, and takes on a value of No otherwise.

```
In [3]:
       Carseats = load_data('Carseats')
       High = np.where(Carseats.Sales > 8,
                        "Yes",
                        "No")
```

We now use DecisionTreeClassifier() to fit a classification tree in order to predict High using all variables but Sales. To do so, we must form a Classifier() model matrix as we did when fitting regression models.

```
In [4]: | model = MS(Carseats.columns.drop('Sales'), intercept=False)
       D = model.fit_transform(Carseats)
       feature_names = list(D.columns)
       X = np.asarray(D)
```

We have converted D from a data frame to an array X, which is needed in some of the analysis below. We also need the feature names for annotating our plots later.

There are several options needed to specify the classifier, such as max_depth (how deep to grow the tree), min_samples_split (minimum number of observations in a node to be eligible for splitting) and criterion (whether to use Gini or cross-entropy as the split criterion). We also set random state for reproducibility; ties in the split criterion are broken at random.

```
In [5]: clf = DTC(criterion='entropy',
                 max_depth=3,
                 random_state=0)
       clf.fit(X, High)
```

```
Out[5]: DecisionTreeClassifier(criterion='entropy', max_depth=3)
```

In our discussion of qualitative features in Section 3.3, we noted that for a linear regression model such a feature could be represented by including a matrix of dummy variables (one-hot-encoding) in the model matrix, using the formula notation of statsmodels. As mentioned in Section 8.1, there is a more natural way to handle qualitative features when building a decision tree, that does not require such dummy variables; each split amounts to partitioning the levels into two groups. However, the sklearn implementation of decision trees does not take advantage of this approach; instead it simply treats the one-hot-encoded levels as separate variables.

```
In [6]: | accuracy_score(High, clf.predict(X))
```

```
Out[6]: 0.7275
```

With only the default arguments, the training error rate is 21%. For classification trees, we can access the value of the deviance using log_loss(),

log_loss()

$$-2\sum_{m}\sum_{k}n_{mk}\log\hat{p}_{mk},$$

where n_{mk} is the number of observations in the mth terminal node that belong to the kth class.

```
In [7]: resid_dev = np.sum(log_loss(High, clf.predict_proba(X)))
    resid_dev
```

```
Out[7]: 0.4711
```

This is closely related to the *entropy*, defined in (8.7). A small deviance indicates a tree that provides a good fit to the (training) data.

One of the most attractive properties of trees is that they can be graphically displayed. Here we use the plot() function to display the tree structure (not shown here).

The most important indicator of Sales appears to be ShelveLoc.

We can see a text representation of the tree using export_text(), which displays the split criterion (e.g. Price <= 92.5</pre>) for each branch. For leaf nodes it shows the overall prediction (Yes or No). We can also see the number of observations in that leaf that take on values of Yes and No by specifying show_weights=True.

export_text()

```
Out[9]: |--- ShelveLoc[Good] <= 0.50</pre>
         |--- Price <= 92.50
            |--- Income <= 57.00
            | |--- weights: [7.00, 3.00] class: No
            |--- Income > 57.00
         | | |--- weights: [7.00, 29.00] class: Yes
         |--- Price > 92.50
         | |--- Advertising <= 13.50
           | |--- weights: [183.00, 41.00] class: No
         | |--- Advertising > 13.50
        | | |--- weights: [20.00, 25.00] class: Yes
      |--- ShelveLoc[Good] > 0.50
        |--- Price <= 135.00
            |--- US[Yes] <= 0.50
                |--- weights: [6.00, 11.00] class: Yes
             |--- US[Yes] > 0.50
            | |--- weights: [2.00, 49.00] class: Yes
         |--- Price > 135.00
            |--- Income <= 46.00
            | |--- weights: [6.00, 0.00] class: No
         | --- Income > 46.00
         | | |--- weights: [5.00, 6.00] class: Yes
```

In order to properly evaluate the performance of a classification tree on these data, we must estimate the test error rather than simply computing the training error. We split the observations into a training set and a test set, build the tree using the training set, and evaluate its performance on the test data. This pattern is similar to that in Chapter 6, with the linear models replaced here by decision trees — the code for validation is almost identical. This approach leads to correct predictions for 68.5% of the locations in the test data set.

Out[10]: array([0.685])

Next, we consider whether pruning the tree might lead to improved classification performance. We first split the data into a training and test set. We will use cross-validation to prune the tree on the training set, and then evaluate the performance of the pruned tree on the test set.

We first refit the full tree on the training set; here we do not set a max_depth parameter, since we will learn that through cross-validation.

```
In [12]: clf = DTC(criterion='entropy', random_state=0)
    clf.fit(X_train, High_train)
    accuracy_score(High_test, clf.predict(X_test))
```

Out[12]: 0.735

Next we use the cost_complexity_pruning_path() method of clf to extract cost-complexity values.

cost_
complexity_
pruning_
path()

This yields a set of impurities and α values from which we can extract an optimal one by cross-validation.

Out[14]: 0.685

Let's take a look at the pruned true.

This is quite a bushy tree. We could count the leaves, or query best_instead.

```
In [16]: best_.tree_.n_leaves
```

Out[16]: 30

The tree with 30 terminal nodes results in the lowest cross-validation error rate, with an accuracy of 68.5%. How well does this pruned tree perform on the test data set? Once again, we apply the predict() function.

Out[17]: 0.72

```
Truth No Yes
Predicted
No 108 61
Yes 10 21
```

Now 72.0% of the test observations are correctly classified, which is slightly worse than the error for the full tree (with 35 leaves). So cross-validation has not helped us much here; it only pruned off 5 leaves, at a cost of a slightly worse error. These results would change if we were to change the random number seeds above; even though cross-validation gives an unbiased approach to model selection, it does have variance.

8.3.2 Fitting Regression Trees

Here we fit a regression tree to the Boston data set. The steps are similar to those for classification trees.

```
In [18]:
    Boston = load_data("Boston")
    model = MS(Boston.columns.drop('medv'), intercept=False)
    D = model.fit_transform(Boston)
    feature_names = list(D.columns)
    X = np.asarray(D)
```

First, we split the data into training and test sets, and fit the tree to the training data. Here we use 30% of the data for the test set.

Having formed our training and test data sets, we fit the regression tree.

The variable <code>lstat</code> measures the percentage of individuals with lower socioeconomic status. The tree indicates that lower values of <code>lstat</code> correspond to more expensive houses. The tree predicts a median house price of \$12,042 for small-sized homes (<code>rm < 6.8</code>), in suburbs in which residents have low socioeconomic status (<code>lstat > 14.4</code>) and the crime-rate is moderate (<code>crim > 5.8</code>).

Now we use the cross-validation function to see whether pruning the tree will improve performance.

In keeping with the cross-validation results, we use the pruned tree to make predictions on the test set.

```
In [22]: best_ = grid.best_estimator_
    np.mean((y_test - best_.predict(X_test))**2)
```

Out[22]: 28.07

In other words, the test set MSE associated with the regression tree is 28.07. The square root of the MSE is therefore around 5.30, indicating that this model leads to test predictions that are within around \$5300 of the true median home value for the suburb.

Let's plot the best tree to see how interpretable it is.

8.3.3 Bagging and Random Forests

Here we apply bagging and random forests to the Boston data, using the RandomForestRegressor() from the sklearn.ensemble package. Recall that bagging is simply a special case of a random forest with m = p. Therefore, the RandomForestRegressor() function can be used to perform both bagging sklearn. and random forests. We start with bagging.

RandomForest Regressor() ensemble

```
In [24]: bag_boston = RF(max_features=X_train.shape[1], random_state=0)
        bag_boston.fit(X_train, y_train)
```

```
Out[24]: RandomForestRegressor(max_features=12, random_state=0)
```

The argument max_features indicates that all 12 predictors should be considered for each split of the tree — in other words, that bagging should be done. How well does this bagged model perform on the test set?

```
In [25]: ax = subplots(figsize=(8,8))[1]
       y_hat_bag = bag_boston.predict(X_test)
        ax.scatter(y_hat_bag, y_test)
       np.mean((y_test - y_hat_bag)**2)
```

Out[25]: 14.63

The test set MSE associated with the bagged regression tree is 14.63, about half that obtained using an optimally-pruned single tree. We could change the number of trees grown from the default of 100 by using the n_estimators argument:

```
In [26]: bag_boston = RF(max_features=X_train.shape[1],
                        n_estimators=500,
                        random_state=0).fit(X_train, y_train)
       y_hat_bag = bag_boston.predict(X_test)
       np.mean((y_test - y_hat_bag)**2)
```

Out[26]: 14.61

There is not much change. Bagging and random forests cannot overfit by increasing the number of trees, but can underfit if the number is too small.

Growing a random forest proceeds in exactly the same way, except that we use a smaller value of the max_features argument. By default, RandomForestRegressor() uses p variables when building a random forest of regression trees (i.e. it defaults to bagging), and RandomForestClassifier() uses \sqrt{p} variables when building a random forest of classification trees. Here we use max_features=6.

```
In [27]: RF_boston = RF(max_features=6,
                      random_state=0).fit(X_train, y_train)
       y_hat_RF = RF_boston.predict(X_test)
       np.mean((y_test - y_hat_RF)**2)
```

Out[27]: 20.04

The test set MSE is 20.04: this indicates that random forests did somewhat worse than bagging in this case. Extracting the feature importances values from the fitted model, we can view the importance of each variable.

```
In [28]: | feature_imp = pd.DataFrame(
            {'importance': RF_boston.feature_importances_},
            index=feature_names)
        feature_imp.sort_values(by='importance', ascending=False)
```

```
Out[28]:
               importance
                0.368683
         lstat
                 0.333842
           rm
       ptratio
                 0.057306
        indus
                 0.053303
                0.052426
          crim
          dis
                0.042493
                 0.034410
          nox
                0.024327
           age
                0.022368
           tax
                0.005048
          rad
                 0.003238
           zn
                 0.002557
          chas
```

This is a relative measure of the total decrease in node impurity that results from splits over that variable, averaged over all trees (this was plotted in Figure 8.9 for a model fit to the Heart data).

The results indicate that across all of the trees considered in the random forest, the wealth level of the community (lstat) and the house size (rm) are by far the two most important variables.

8.3.4 Boosting

Here we use GradientBoostingRegressor() from sklearn.ensemble to fit boosted regression trees to the Boston data set. For classification we would Boosting use GradientBoostingClassifier(). The argument n_estimators=5000 indi- Regressor() cates that we want 5000 trees, and the option max_depth=3 limits the depth Gradient of each tree. The argument learning_rate is the λ mentioned earlier in the Boosting description of boosting.

Classifier()

```
In [29]: boost_boston = GBR(n_estimators=5000,
                           learning_rate=0.001,
                           max_depth=3,
                           random_state=0)
        boost_boston.fit(X_train, y_train)
```

We can see how the training error decreases with the train_score_ attribute. To get an idea of how the test error decreases we can use the staged_predict() method to get the predicted values along the path.

```
In [30]: | test_error = np.zeros_like(boost_boston.train_score_)
       for idx, y_ in enumerate(boost_boston.staged_predict(X_test)):
           test_error[idx] = np.mean((y_test - y_)**2)
       plot_idx = np.arange(boost_boston.train_score_.shape[0])
        ax = subplots(figsize=(8,8))[1]
       ax.plot(plot_idx,
                boost_boston.train_score_,
                label='Training')
```

We now use the boosted model to predict med on the test set:

```
In [31]: y_hat_boost = boost_boston.predict(X_test);
   np.mean((y_test - y_hat_boost)**2)
```

Out[31]: 14.48

The test MSE obtained is 14.48, similar to the test MSE for bagging. If we want to, we can perform boosting with a different value of the shrinkage parameter λ in (8.10). The default value is 0.001, but this is easily modified. Here we take $\lambda = 0.2$.

Out[32]: 14.50

In this case, using $\lambda=0.2$ leads to a almost the same test MSE as when using $\lambda=0.001$.

8.3.5 Bayesian Additive Regression Trees

In this section we demonstrate a Python implementation of BART found in the ISLP.bart package. We fit a model to the Boston housing data set. This BART() estimator is designed for quantitative outcome variables, though other implementations are available for fitting logistic and probit models to categorical outcomes.

BART()

```
In [33]: bart_boston = BART(random_state=0, burnin=5, ndraw=15)
bart_boston.fit(X_train, y_train)
```

```
Out[33]: BART(burnin=5, ndraw=15, random_state=0)
```

On this data set, with this split into test and training, we see that the test error of BART is similar to that of random forest.

```
In [34]: yhat_test = bart_boston.predict(X_test.astype(np.float32))
    np.mean((y_test - yhat_test)**2)
```

Out[34]: 20.92

We can check how many times each variable appeared in the collection of trees. This gives a summary similar to the variable importance plot for boosting and random forests.

```
Out[35]:
                    25.333333
           crim
                    27.000000
             zn
          indus
                    21.266667
                    20.466667
           chas
                    25.400000
            nox
                    32.400000
             rm
                    26.133333
            age
                    25.666667
            dis
            rad
                    24.666667
                    23.933333
                    25.000000
        ptratio
          lstat
                    31.866667
        dtype: float64
```

8.4 Exercises

Conceptual

1. Draw an example (of your own invention) of a partition of twodimensional feature space that could result from recursive binary splitting. Your example should contain at least six regions. Draw a decision tree corresponding to this partition. Be sure to label all aspects of your figures, including the regions R_1, R_2, \ldots , the cutpoints t_1, t_2, \ldots , and so forth.

Hint: Your result should look something like Figures 8.1 and 8.2.

2. It is mentioned in Section 8.2.3 that boosting using depth-one trees (or *stumps*) leads to an *additive* model: that is, a model of the form

$$f(X) = \sum_{j=1}^{p} f_j(X_j).$$

Explain why this is the case. You can begin with (8.12) in Algorithm 8.2.

3. Consider the Gini index, classification error, and entropy in a simple classification setting with two classes. Create a single plot that displays each of these quantities as a function of \hat{p}_{m1} . The x-axis should display \hat{p}_{m1} , ranging from 0 to 1, and the y-axis should display the value of the Gini index, classification error, and entropy.

Hint: In a setting with two classes, $\hat{p}_{m1} = 1 - \hat{p}_{m2}$. You could make this plot by hand, but it will be much easier to make in \mathbb{R} .

4. This question relates to the plots in Figure 8.14.

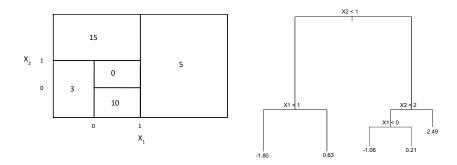


FIGURE 8.14. Left: A partition of the predictor space corresponding to Exercise 4a. Right: A tree corresponding to Exercise 4b.

- (a) Sketch the tree corresponding to the partition of the predictor space illustrated in the left-hand panel of Figure 8.14. The numbers inside the boxes indicate the mean of Y within each region.
- (b) Create a diagram similar to the left-hand panel of Figure 8.14, using the tree illustrated in the right-hand panel of the same figure. You should divide up the predictor space into the correct regions, and indicate the mean for each region.
- 5. Suppose we produce ten bootstrapped samples from a data set containing red and green classes. We then apply a classification tree to each bootstrapped sample and, for a specific value of X, produce 10 estimates of P(Class is Red|X):

$$0.1, 0.15, 0.2, 0.2, 0.55, 0.6, 0.6, 0.65, 0.7,$$
 and 0.75 .

There are two common ways to combine these results together into a single class prediction. One is the majority vote approach discussed in this chapter. The second approach is to classify based on the average probability. In this example, what is the final classification under each of these two approaches?

6. Provide a detailed explanation of the algorithm that is used to fit a regression tree.

Applied

- 7. In Section 8.3.3, we applied random forests to the Boston data using max_features = 6 and using n_estimators = 100 and n_estimators = 500. Create a plot displaying the test error resulting from random forests on this data set for a more comprehensive range of values for max_features and n_estimators. You can model your plot after Figure 8.10. Describe the results obtained.
- 8. In the lab, a classification tree was applied to the Carseats data set after converting Sales into a qualitative response variable. Now we will seek to predict Sales using regression trees and related approaches, treating the response as a quantitative variable.

- (a) Split the data set into a training set and a test set.
- (b) Fit a regression tree to the training set. Plot the tree, and interpret the results. What test MSE do you obtain?
- (c) Use cross-validation in order to determine the optimal level of tree complexity. Does pruning the tree improve the test MSE?
- (d) Use the bagging approach in order to analyze this data. What test MSE do you obtain? Use the feature_importance_ values to determine which variables are most important.
- (e) Use random forests to analyze this data. What test MSE do you obtain? Use the feature_importance_ values to determine which variables are most important. Describe the effect of m, the number of variables considered at each split, on the error rate obtained.
- (f) Now analyze the data using BART, and report your results.
- This problem involves the OJ data set which is part of the ISLP package.
 - (a) Create a training set containing a random sample of 800 observations, and a test set containing the remaining observations.
 - (b) Fit a tree to the training data, with Purchase as the response and the other variables as predictors. What is the training error rate?
 - (c) Create a plot of the tree, and interpret the results. How many terminal nodes does the tree have?
 - (d) Use the **export_tree()** function to produce a text summary of the fitted tree. Pick one of the terminal nodes, and interpret the information displayed.
 - (e) Predict the response on the test data, and produce a confusion matrix comparing the test labels to the predicted test labels. What is the test error rate?
 - (f) Use cross-validation on the training set in order to determine the optimal tree size.
 - (g) Produce a plot with tree size on the x-axis and cross-validated classification error rate on the y-axis.
 - (h) Which tree size corresponds to the lowest cross-validated classification error rate?
 - (i) Produce a pruned tree corresponding to the optimal tree size obtained using cross-validation. If cross-validation does not lead to selection of a pruned tree, then create a pruned tree with five terminal nodes.
 - (j) Compare the training error rates between the pruned and unpruned trees. Which is higher?
 - (k) Compare the test error rates between the pruned and unpruned trees. Which is higher?

- 10. We now use boosting to predict Salary in the Hitters data set.
 - (a) Remove the observations for whom the salary information is unknown, and then log-transform the salaries.
 - (b) Create a training set consisting of the first 200 observations, and a test set consisting of the remaining observations.
 - (c) Perform boosting on the training set with 1,000 trees for a range of values of the shrinkage parameter λ . Produce a plot with different shrinkage values on the x-axis and the corresponding training set MSE on the y-axis.
 - (d) Produce a plot with different shrinkage values on the x-axis and the corresponding test set MSE on the y-axis.
 - (e) Compare the test MSE of boosting to the test MSE that results from applying two of the regression approaches seen in Chapters 3 and 6.
 - (f) Which variables appear to be the most important predictors in the boosted model?
 - (g) Now apply bagging to the training set. What is the test set MSE for this approach?
- 11. This question uses the Caravan data set.
 - (a) Create a training set consisting of the first 1,000 observations, and a test set consisting of the remaining observations.
 - (b) Fit a boosting model to the training set with Purchase as the response and the other variables as predictors. Use 1,000 trees, and a shrinkage value of 0.01. Which predictors appear to be the most important?
 - (c) Use the boosting model to predict the response on the test data. Predict that a person will make a purchase if the estimated probability of purchase is greater than 20%. Form a confusion matrix. What fraction of the people predicted to make a purchase do in fact make one? How does this compare with the results obtained from applying KNN or logistic regression to this data set?
- 12. Apply boosting, bagging, random forests, and BART to a data set of your choice. Be sure to fit the models on a training set and to evaluate their performance on a test set. How accurate are the results compared to simple methods like linear or logistic regression? Which of these approaches yields the best performance?

Support Vector Machines

In this chapter, we discuss the *support vector machine* (SVM), an approach for classification that was developed in the computer science community in the 1990s and that has grown in popularity since then. SVMs have been shown to perform well in a variety of settings, and are often considered one of the best "out of the box" classifiers.

The support vector machine is a generalization of a simple and intuitive classifier called the *maximal margin classifier*, which we introduce in Section 9.1. Though it is elegant and simple, we will see that this classifier unfortunately cannot be applied to most data sets, since it requires that the classes be separable by a linear boundary. In Section 9.2, we introduce the *support vector classifier*, an extension of the maximal margin classifier that can be applied in a broader range of cases. Section 9.3 introduces the *support vector machine*, which is a further extension of the support vector classifier in order to accommodate non-linear class boundaries. Support vector machines are intended for the binary classification setting in which there are two classes; in Section 9.4 we discuss extensions of support vector machines to the case of more than two classes. In Section 9.5 we discuss the close connections between support vector machines and other statistical methods such as logistic regression.

People often loosely refer to the maximal margin classifier, the support vector classifier, and the support vector machine as "support vector machines". To avoid confusion, we will carefully distinguish between these three notions in this chapter.

9.1 Maximal Margin Classifier

In this section, we define a hyperplane and introduce the concept of an optimal separating hyperplane.

9.1.1 What Is a Hyperplane?

In a p-dimensional space, a hyperplane is a flat affine subspace of dimension p-1. For instance, in two dimensions, a hyperplane is a flat one-dimensional subspace—in other words, a line. In three dimensions, a hyperplane is a flat two-dimensional subspace—that is, a plane. In p>3 dimensions, it can be hard to visualize a hyperplane, but the notion of a (p-1)-dimensional flat subspace still applies.

The mathematical definition of a hyperplane is quite simple. In two dimensions, a hyperplane is defined by the equation

$$\beta_0 + \beta_1 X_1 + \beta_2 X_2 = 0 \tag{9.1}$$

for parameters β_0, β_1 , and β_2 . When we say that (9.1) "defines" the hyperplane, we mean that any $X = (X_1, X_2)^T$ for which (9.1) holds is a point on the hyperplane. Note that (9.1) is simply the equation of a line, since indeed in two dimensions a hyperplane is a line.

Equation 9.1 can be easily extended to the p-dimensional setting:

$$\beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_p X_p = 0 \tag{9.2}$$

defines a p-dimensional hyperplane, again in the sense that if a point $X = (X_1, X_2, \ldots, X_p)^T$ in p-dimensional space (i.e. a vector of length p) satisfies (9.2), then X lies on the hyperplane.

Now, suppose that X does not satisfy (9.2); rather.

$$\beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_p X_p > 0. \tag{9.3}$$

Then this tells us that X lies to one side of the hyperplane. On the other hand, if

$$\beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_p X_p < 0, \tag{9.4}$$

then X lies on the other side of the hyperplane. So we can think of the hyperplane as dividing p-dimensional space into two halves. One can easily determine on which side of the hyperplane a point lies by simply calculating the sign of the left-hand side of (9.2). A hyperplane in two-dimensional space is shown in Figure 9.1.

9.1.2 Classification Using a Separating Hyperplane

Now suppose that we have an $n \times p$ data matrix **X** that consists of n training observations in p-dimensional space,

$$x_1 = \begin{pmatrix} x_{11} \\ \vdots \\ x_{1p} \end{pmatrix}, \dots, x_n = \begin{pmatrix} x_{n1} \\ \vdots \\ x_{np} \end{pmatrix}, \tag{9.5}$$

and that these observations fall into two classes—that is, $y_1, \ldots, y_n \in \{-1, 1\}$ where -1 represents one class and 1 the other class. We also have a

hyperplane

¹The word affine indicates that the subspace need not pass through the origin.

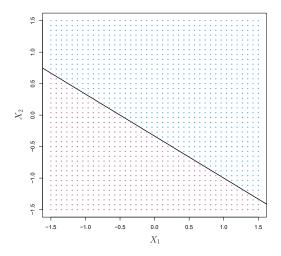


FIGURE 9.1. The hyperplane $1 + 2X_1 + 3X_2 = 0$ is shown. The blue region is the set of points for which $1 + 2X_1 + 3X_2 > 0$, and the purple region is the set of points for which $1 + 2X_1 + 3X_2 < 0$.

test observation, a p-vector of observed features $x^* = \begin{pmatrix} x_1^* & \dots & x_p^* \end{pmatrix}^T$. Our goal is to develop a classifier based on the training data that will correctly classify the test observation using its feature measurements. We have seen a number of approaches for this task, such as linear discriminant analysis and logistic regression in Chapter 4, and classification trees, bagging, and boosting in Chapter 8. We will now see a new approach that is based upon the concept of a separating hyperplane.

separating hyperplane

Suppose that it is possible to construct a hyperplane that separates the training observations perfectly according to their class labels. Examples of three such separating hyperplanes are shown in the left-hand panel of Figure 9.2. We can label the observations from the blue class as $y_i = 1$ and those from the purple class as $y_i = -1$. Then a separating hyperplane has the property that

$$\beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_p x_{ip} > 0 \text{ if } y_i = 1,$$
 (9.6)

and

$$\beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_p x_{ip} < 0 \text{ if } y_i = -1.$$
 (9.7)

Equivalently, a separating hyperplane has the property that

$$y_i(\beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_p x_{ip}) > 0$$
 (9.8)

for all $i = 1, \ldots, n$.

If a separating hyperplane exists, we can use it to construct a very natural classifier: a test observation is assigned a class depending on which side of the hyperplane it is located. The right-hand panel of Figure 9.2 shows an example of such a classifier. That is, we classify the test observation x^* based on the sign of $f(x^*) = \beta_0 + \beta_1 x_1^* + \beta_2 x_2^* + \cdots + \beta_p x_p^*$. If $f(x^*)$ is positive, then we assign the test observation to class 1, and if $f(x^*)$ is negative, then we assign it to class -1. We can also make use of the magnitude of $f(x^*)$. If

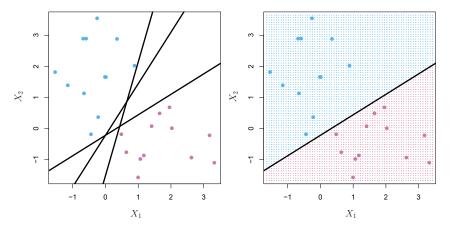


FIGURE 9.2. Left: There are two classes of observations, shown in blue and in purple, each of which has measurements on two variables. Three separating hyperplanes, out of many possible, are shown in black. Right: A separating hyperplane is shown in black. The blue and purple grid indicates the decision rule made by a classifier based on this separating hyperplane: a test observation that falls in the blue portion of the grid will be assigned to the blue class, and a test observation that falls into the purple portion of the grid will be assigned to the purple class.

 $f(x^*)$ is far from zero, then this means that x^* lies far from the hyperplane, and so we can be confident about our class assignment for x^* . On the other hand, if $f(x^*)$ is close to zero, then x^* is located near the hyperplane, and so we are less certain about the class assignment for x^* . Not surprisingly, and as we see in Figure 9.2, a classifier that is based on a separating hyperplane leads to a linear decision boundary.

9.1.3 The Maximal Margin Classifier

In general, if our data can be perfectly separated using a hyperplane, then there will in fact exist an infinite number of such hyperplanes. This is because a given separating hyperplane can usually be shifted a tiny bit up or down, or rotated, without coming into contact with any of the observations. Three possible separating hyperplanes are shown in the left-hand panel of Figure 9.2. In order to construct a classifier based upon a separating hyperplane, we must have a reasonable way to decide which of the infinite possible separating hyperplanes to use.

A natural choice is the maximal margin hyperplane (also known as the optimal separating hyperplane), which is the separating hyperplane that is farthest from the training observations. That is, we can compute the (perpendicular) distance from each training observation to a given separating hyperplane; the smallest such distance is the minimal distance from the observations to the hyperplane, and is known as the margin. The maximal margin hyperplane is the separating hyperplane for which the margin is largest—that is, it is the hyperplane that has the farthest minimum distance to the training observations. We can then classify a test observation based on which side of the maximal margin hyperplane it lies. This is known

maximal margin hyperplane optimal separating hyperplane margin

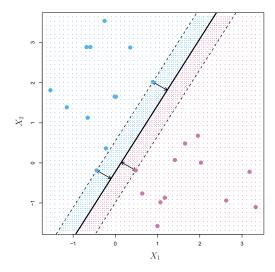


FIGURE 9.3. There are two classes of observations, shown in blue and in purple. The maximal margin hyperplane is shown as a solid line. The margin is the distance from the solid line to either of the dashed lines. The two blue points and the purple point that lie on the dashed lines are the support vectors, and the distance from those points to the hyperplane is indicated by arrows. The purple and blue grid indicates the decision rule made by a classifier based on this separating hyperplane.

as the maximal margin classifier. We hope that a classifier that has a large margin on the training data will also have a large margin on the test data, $\frac{1}{1}$ margin and hence will classify the test observations correctly. Although the maximal margin classifier is often successful, it can also lead to overfitting when p is large.

classifier

If $\beta_0, \beta_1, \ldots, \beta_p$ are the coefficients of the maximal margin hyperplane, then the maximal margin classifier classifies the test observation x^* based on the sign of $f(x^*) = \beta_0 + \beta_1 x_1^* + \beta_2 x_2^* + \dots + \beta_p x_p^*$.

Figure 9.3 shows the maximal margin hyperplane on the data set of Figure 9.2. Comparing the right-hand panel of Figure 9.2 to Figure 9.3, we see that the maximal margin hyperplane shown in Figure 9.3 does indeed result in a greater minimal distance between the observations and the separating hyperplane—that is, a larger margin. In a sense, the maximal margin hyperplane represents the mid-line of the widest "slab" that we can insert between the two classes.

Examining Figure 9.3, we see that three training observations are equidistant from the maximal margin hyperplane and lie along the dashed lines indicating the width of the margin. These three observations are known as support vectors, since they are vectors in p-dimensional space (in Figure 9.3, p=2) and they "support" the maximal margin hyperplane in the sense that if these points were moved slightly then the maximal margin hyperplane would move as well. Interestingly, the maximal margin hyperplane depends directly on the support vectors, but not on the other observations: a movement to any of the other observations would not affect the separating hyperplane, provided that the observation's movement does not cause it to

cross the boundary set by the margin. The fact that the maximal margin hyperplane depends directly on only a small subset of the observations is an important property that will arise later in this chapter when we discuss the support vector classifier and support vector machines.

9.1.4 Construction of the Maximal Margin Classifier

We now consider the task of constructing the maximal margin hyperplane based on a set of n training observations $x_1, \ldots, x_n \in \mathbb{R}^p$ and associated class labels $y_1, \ldots, y_n \in \{-1, 1\}$. Briefly, the maximal margin hyperplane is the solution to the optimization problem

$$\underset{\beta_0,\beta_1,\dots,\beta_p,M}{\text{maximize}} M \tag{9.9}$$

subject to
$$\sum_{j=1}^{p} \beta_{j}^{2} = 1$$
, (9.10)

$$y_i(\beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_p x_{ip}) \ge M \ \forall i = 1, \dots, n.$$
 (9.11)

This optimization problem (9.9)–(9.11) is actually simpler than it looks. First of all, the constraint in (9.11) that

$$y_i(\beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_n x_{in}) \ge M \ \forall i = 1, \dots, n$$

guarantees that each observation will be on the correct side of the hyperplane, provided that M is positive. (Actually, for each observation to be on the correct side of the hyperplane we would simply need $y_i(\beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \cdots + \beta_p x_{ip}) > 0$, so the constraint in (9.11) in fact requires that each observation be on the correct side of the hyperplane, with some cushion, provided that M is positive.)

Second, note that (9.10) is not really a constraint on the hyperplane, since if $\beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \cdots + \beta_p x_{ip} = 0$ defines a hyperplane, then so does $k(\beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \cdots + \beta_p x_{ip}) = 0$ for any $k \neq 0$. However, (9.10) adds meaning to (9.11); one can show that with this constraint the perpendicular distance from the *i*th observation to the hyperplane is given by

$$y_i(\beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_p x_{ip}).$$

Therefore, the constraints (9.10) and (9.11) ensure that each observation is on the correct side of the hyperplane and at least a distance M from the hyperplane. Hence, M represents the margin of our hyperplane, and the optimization problem chooses $\beta_0, \beta_1, \ldots, \beta_p$ to maximize M. This is exactly the definition of the maximal margin hyperplane! The problem (9.9)-(9.11) can be solved efficiently, but details of this optimization are outside of the scope of this book.

9.1.5 The Non-separable Case

The maximal margin classifier is a very natural way to perform classification, if a separating hyperplane exists. However, as we have hinted, in many cases no separating hyperplane exists, and so there is no maximal

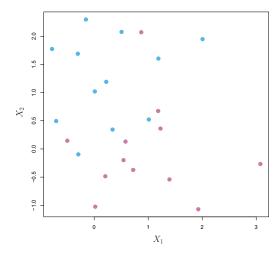


FIGURE 9.4. There are two classes of observations, shown in blue and in purple. In this case, the two classes are not separable by a hyperplane, and so the maximal margin classifier cannot be used.

margin classifier. In this case, the optimization problem (9.9)–(9.11) has no solution with M>0. An example is shown in Figure 9.4. In this case, we cannot exactly separate the two classes. However, as we will see in the next section, we can extend the concept of a separating hyperplane in order to develop a hyperplane that almost separates the classes, using a so-called soft margin. The generalization of the maximal margin classifier to the non-separable case is known as the support vector classifier.

9.2 Support Vector Classifiers

9.2.1 Overview of the Support Vector Classifier

In Figure 9.4, we see that observations that belong to two classes are not necessarily separable by a hyperplane. In fact, even if a separating hyperplane does exist, then there are instances in which a classifier based on a separating hyperplane might not be desirable. A classifier based on a separating hyperplane will necessarily perfectly classify all of the training observations; this can lead to sensitivity to individual observations. An example is shown in Figure 9.5. The addition of a single observation in the right-hand panel of Figure 9.5 leads to a dramatic change in the maximal margin hyperplane. The resulting maximal margin hyperplane is not satisfactory—for one thing, it has only a tiny margin. This is problematic because as discussed previously, the distance of an observation from the hyperplane can be seen as a measure of our confidence that the observation was correctly classified. Moreover, the fact that the maximal margin hyperplane is extremely sensitive to a change in a single observation suggests that it may have overfit the training data.

In this case, we might be willing to consider a classifier based on a hyperplane that does *not* perfectly separate the two classes, in the interest of

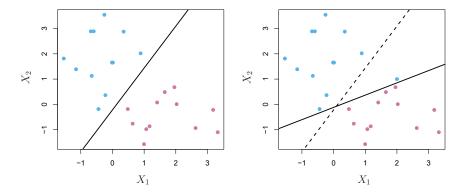


FIGURE 9.5. Left: Two classes of observations are shown in blue and in purple, along with the maximal margin hyperplane. Right: An additional blue observation has been added, leading to a dramatic shift in the maximal margin hyperplane shown as a solid line. The dashed line indicates the maximal margin hyperplane that was obtained in the absence of this additional point.

- Greater robustness to individual observations, and
- Better classification of *most* of the training observations.

That is, it could be worthwhile to misclassify a few training observations in order to do a better job in classifying the remaining observations.

The support vector classifier, sometimes called a soft margin classifier, does exactly this. Rather than seeking the largest possible margin so that vector every observation is not only on the correct side of the hyperplane but classifier also on the correct side of the margin, we instead allow some observations soft margin to be on the incorrect side of the margin, or even the incorrect side of the hyperplane. (The margin is soft because it can be violated by some of the training observations.) An example is shown in the left-hand panel of Figure 9.6. Most of the observations are on the correct side of the margin. However, a small subset of the observations are on the wrong side of the margin.

An observation can be not only on the wrong side of the margin, but also on the wrong side of the hyperplane. In fact, when there is no separating hyperplane, such a situation is inevitable. Observations on the wrong side of the hyperplane correspond to training observations that are misclassified by the support vector classifier. The right-hand panel of Figure 9.6 illustrates such a scenario.

Details of the Support Vector Classifier

The support vector classifier classifies a test observation depending on which side of a hyperplane it lies. The hyperplane is chosen to correctly separate most of the training observations into the two classes, but may

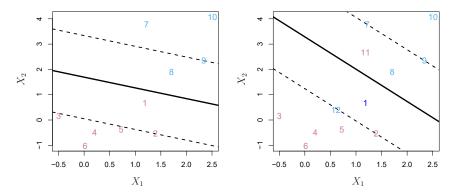


FIGURE 9.6. Left: A support vector classifier was fit to a small data set. The hyperplane is shown as a solid line and the margins are shown as dashed lines. Purple observations: Observations 3,4,5, and 6 are on the correct side of the margin, observation 2 is on the margin, and observation 1 is on the wrong side of the margin. Blue observations: Observations 7 and 10 are on the correct side of the margin, observation 9 is on the margin, and observation 8 is on the wrong side of the margin. No observations are on the wrong side of the hyperplane. Right: Same as left panel with two additional points, 11 and 12. These two observations are on the wrong side of the hyperplane and the wrong side of the margin.

misclassify a few observations. It is the solution to the optimization problem

$$\underset{\beta_0,\beta_1,\dots,\beta_p,\epsilon_1,\dots,\epsilon_n,M}{\text{maximize}} M \tag{9.12}$$

subject to
$$\sum_{j=1}^{p} \beta_{j}^{2} = 1,$$
 (9.13)

$$y_i(\beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_p x_{ip}) \ge M(1 - \epsilon_i),$$
 (9.14)

$$\epsilon_i \ge 0, \quad \sum_{i=1}^n \epsilon_i \le C,$$
(9.15)

where C is a nonnegative tuning parameter. As in (9.11), M is the width of the margin; we seek to make this quantity as large as possible. In (9.14), $\epsilon_1, \ldots, \epsilon_n$ are slack variables that allow individual observations to be on the wrong side of the margin or the hyperplane; we will explain them in greater detail momentarily. Once we have solved (9.12)–(9.15), we classify a test observation x^* as before, by simply determining on which side of the hyperplane it lies. That is, we classify the test observation based on the sign of $f(x^*) = \beta_0 + \beta_1 x_1^* + \cdots + \beta_p x_p^*$.

slack variable

The problem (9.12)-(9.15) seems complex, but insight into its behavior can be made through a series of simple observations presented below. First of all, the slack variable ϵ_i tells us where the *i*th observation is located, relative to the hyperplane and relative to the margin. If $\epsilon_i = 0$ then the *i*th observation is on the correct side of the margin, as we saw in Section 9.1.4. If $\epsilon_i > 0$ then the *i*th observation is on the wrong side of the margin, and we say that the *i*th observation has *violated* the margin. If $\epsilon_i > 1$ then it is on the wrong side of the hyperplane.

We now consider the role of the tuning parameter C. In (9.15), C bounds the sum of the ϵ_i 's, and so it determines the number and severity of the violations to the margin (and to the hyperplane) that we will tolerate. We can think of C as a budget for the amount that the margin can be violated by the n observations. If C = 0 then there is no budget for violations to the margin, and it must be the case that $\epsilon_1 = \cdots = \epsilon_n = 0$, in which case (9.12)-(9.15) simply amounts to the maximal margin hyperplane optimization problem (9.9)-(9.11). (Of course, a maximal margin hyperplane exists only if the two classes are separable.) For C > 0 no more than C observations can be on the wrong side of the hyperplane, because if an observation is on the wrong side of the hyperplane then $\epsilon_i > 1$, and (9.15) requires that $\sum_{i=1}^n \epsilon_i \leq C$. As the budget C increases, we become more tolerant of violations to the margin, and so the margin will widen. Conversely, as C decreases, we become less tolerant of violations to the margin and so the margin narrows. An example is shown in Figure 9.7.

In practice, C is treated as a tuning parameter that is generally chosen via cross-validation. As with the tuning parameters that we have seen throughout this book, C controls the bias-variance trade-off of the statistical learning technique. When C is small, we seek narrow margins that are rarely violated; this amounts to a classifier that is highly fit to the data, which may have low bias but high variance. On the other hand, when C is larger, the margin is wider and we allow more violations to it; this amounts to fitting the data less hard and obtaining a classifier that is potentially more biased but may have lower variance.

The optimization problem (9.12)–(9.15) has a very interesting property: it turns out that only observations that either lie on the margin or that violate the margin will affect the hyperplane, and hence the classifier obtained. In other words, an observation that lies strictly on the correct side of the margin does not affect the support vector classifier! Changing the position of that observation would not change the classifier at all, provided that its position remains on the correct side of the margin. Observations that lie directly on the margin, or on the wrong side of the margin for their class, are known as *support vectors*. These observations do affect the support vector classifier.

The fact that only support vectors affect the classifier is in line with our previous assertion that C controls the bias-variance trade-off of the support vector classifier. When the tuning parameter C is large, then the margin is wide, many observations violate the margin, and so there are many support vectors. In this case, many observations are involved in determining the hyperplane. The top left panel in Figure 9.7 illustrates this setting: this classifier has low variance (since many observations are support vectors) but potentially high bias. In contrast, if C is small, then there will be fewer support vectors and hence the resulting classifier will have low bias but high variance. The bottom right panel in Figure 9.7 illustrates this setting, with only eight support vectors.

The fact that the support vector classifier's decision rule is based only on a potentially small subset of the training observations (the support vectors) means that it is quite robust to the behavior of observations that are far away from the hyperplane. This property is distinct from some of

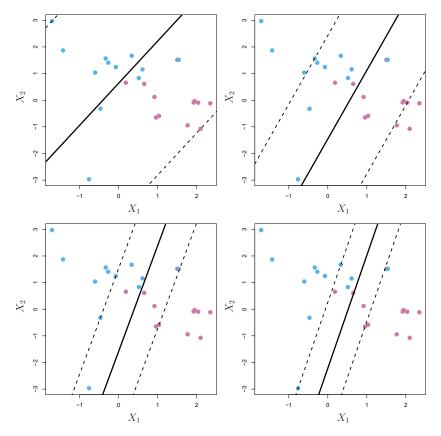


FIGURE 9.7. A support vector classifier was fit using four different values of the tuning parameter C in (9.12)–(9.15). The largest value of C was used in the top left panel, and smaller values were used in the top right, bottom left, and bottom right panels. When C is large, then there is a high tolerance for observations being on the wrong side of the margin, and so the margin will be large. As C decreases, the tolerance for observations being on the wrong side of the margin decreases, and the margin narrows.

the other classification methods that we have seen in preceding chapters, such as linear discriminant analysis. Recall that the LDA classification rule depends on the mean of *all* of the observations within each class, as well as the within-class covariance matrix computed using *all* of the observations. In contrast, logistic regression, unlike LDA, has very low sensitivity to observations far from the decision boundary. In fact we will see in Section 9.5 that the support vector classifier and logistic regression are closely related.

9.3 Support Vector Machines

We first discuss a general mechanism for converting a linear classifier into one that produces non-linear decision boundaries. We then introduce the support vector machine, which does this in an automatic way.

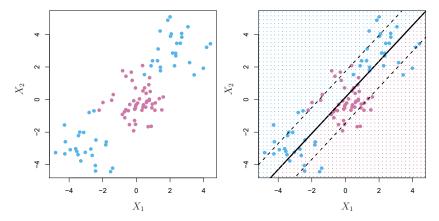


FIGURE 9.8. Left: The observations fall into two classes, with a non-linear boundary between them. Right: The support vector classifier seeks a linear boundary, and consequently performs very poorly.

9.3.1 Classification with Non-Linear Decision Boundaries

The support vector classifier is a natural approach for classification in the two-class setting, if the boundary between the two classes is linear. However, in practice we are sometimes faced with non-linear class boundaries. For instance, consider the data in the left-hand panel of Figure 9.8. It is clear that a support vector classifier or any linear classifier will perform poorly here. Indeed, the support vector classifier shown in the right-hand panel of Figure 9.8 is useless here.

In Chapter 7, we are faced with an analogous situation. We see there that the performance of linear regression can suffer when there is a non-linear relationship between the predictors and the outcome. In that case, we consider enlarging the feature space using functions of the predictors, such as quadratic and cubic terms, in order to address this non-linearity. In the case of the support vector classifier, we could address the problem of possibly non-linear boundaries between classes in a similar way, by enlarging the feature space using quadratic, cubic, and even higher-order polynomial functions of the predictors. For instance, rather than fitting a support vector classifier using p features

$$X_1, X_2, \ldots, X_p,$$

we could instead fit a support vector classifier using 2p features

$$X_1, X_1^2, X_2, X_2^2, \dots, X_p, X_p^2$$
.

Then (9.12)–(9.15) would become

$$\max_{\beta_0,\beta_{11},\beta_{12},\dots,\beta_{p1},\beta_{p2},\epsilon_1,\dots,\epsilon_n,M} \max_{\beta_0,\beta_{11},\beta_{12},\dots,\beta_{p1},\beta_{p2},\epsilon_1,\dots,\epsilon_n,M} M \qquad (9.16)$$
subject to $y_i \left(\beta_0 + \sum_{j=1}^p \beta_{j1} x_{ij} + \sum_{j=1}^p \beta_{j2} x_{ij}^2\right) \ge M(1 - \epsilon_i),$

$$\sum_{i=1}^n \epsilon_i \le C, \quad \epsilon_i \ge 0, \quad \sum_{j=1}^p \sum_{k=1}^2 \beta_{jk}^2 = 1.$$

Why does this lead to a non-linear decision boundary? In the enlarged feature space, the decision boundary that results from (9.16) is in fact linear. But in the original feature space, the decision boundary is of the form q(x) = 0, where q is a quadratic polynomial, and its solutions are generally non-linear. One might additionally want to enlarge the feature space with higher-order polynomial terms, or with interaction terms of the form $X_j X_{j'}$ for $j \neq j'$. Alternatively, other functions of the predictors could be considered rather than polynomials. It is not hard to see that there are many possible ways to enlarge the feature space, and that unless we are careful, we could end up with a huge number of features. Then computations would become unmanageable. The support vector machine, which we present next, allows us to enlarge the feature space used by the support vector classifier in a way that leads to efficient computations.

9.3.2 The Support Vector Machine

The support vector machine (SVM) is an extension of the support vector classifier that results from enlarging the feature space in a specific way, vector using kernels. We will now discuss this extension, the details of which are machine somewhat complex and beyond the scope of this book. However, the main kernel idea is described in Section 9.3.1: we may want to enlarge our feature space in order to accommodate a non-linear boundary between the classes. The kernel approach that we describe here is simply an efficient computational approach for enacting this idea.

We have not discussed exactly how the support vector classifier is computed because the details become somewhat technical. However, it turns out that the solution to the support vector classifier problem (9.12)–(9.15)involves only the *inner products* of the observations (as opposed to the observations themselves). The inner product of two r-vectors a and b is defined as $\langle a,b\rangle = \sum_{i=1}^r a_i b_i$. Thus the inner product of two observations $x_i, x_{i'}$ is given by

$$\langle x_i, x_{i'} \rangle = \sum_{i=1}^p x_{ij} x_{i'j}. \tag{9.17}$$

It can be shown that

• The linear support vector classifier can be represented as

$$f(x) = \beta_0 + \sum_{i=1}^{n} \alpha_i \langle x, x_i \rangle, \tag{9.18}$$

where there are n parameters α_i , i = 1, ..., n, one per training observation.

• To estimate the parameters $\alpha_1, \ldots, \alpha_n$ and β_0 , all we need are the $\binom{n}{2}$ inner products $\langle x_i, x_{i'} \rangle$ between all pairs of training observations. (The notation $\binom{n}{2}$ means n(n-1)/2, and gives the number of pairs among a set of n items.)

Notice that in (9.18), in order to evaluate the function f(x), we need to compute the inner product between the new point x and each of the training points x_i . However, it turns out that α_i is nonzero only for the support vectors in the solution—that is, if a training observation is not a support vector, then its α_i equals zero. So if \mathcal{S} is the collection of indices of these support points, we can rewrite any solution function of the form (9.18) as

$$f(x) = \beta_0 + \sum_{i \in \mathcal{S}} \alpha_i \langle x, x_i \rangle, \tag{9.19}$$

which typically involves far fewer terms than in (9.18).²

To summarize, in representing the linear classifier f(x), and in computing its coefficients, all we need are inner products.

Now suppose that every time the inner product (9.17) appears in the representation (9.18), or in a calculation of the solution for the support vector classifier, we replace it with a *generalization* of the inner product of the form

$$K(x_i, x_{i'}), (9.20)$$

where K is some function that we will refer to as a kernel. A kernel is a function that quantifies the similarity of two observations. For instance, we could simply take

kernel

$$K(x_i, x_{i'}) = \sum_{j=1}^{p} x_{ij} x_{i'j},$$
 (9.21)

which would just give us back the support vector classifier. Equation 9.21 is known as a *linear* kernel because the support vector classifier is linear in the features; the linear kernel essentially quantifies the similarity of a pair of observations using Pearson (standard) correlation. But one could instead choose another form for (9.20). For instance, one could replace every instance of $\sum_{j=1}^{p} x_{ij} x_{i'j}$ with the quantity

$$K(x_i, x_{i'}) = \left(1 + \sum_{j=1}^{p} x_{ij} x_{i'j}\right)^d. \tag{9.22}$$

This is known as a polynomial kernel of degree d, where d is a positive integer. Using such a kernel with d > 1, instead of the standard linear kernel (9.21), in the support vector classifier algorithm leads to a much more flexible decision boundary. It essentially amounts to fitting a support vector

polynomial kernel

²By expanding each of the inner products in (9.19), it is easy to see that f(x) is a linear function of the coordinates of x. Doing so also establishes the correspondence between the α_i and the original parameters β_j .

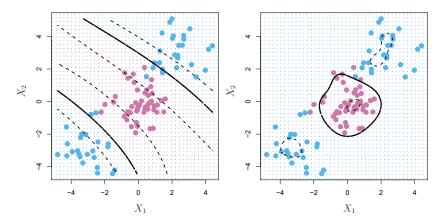


FIGURE 9.9. Left: An SVM with a polynomial kernel of degree 3 is applied to the non-linear data from Figure 9.8, resulting in a far more appropriate decision rule. Right: An SVM with a radial kernel is applied. In this example, either kernel is capable of capturing the decision boundary.

classifier in a higher-dimensional space involving polynomials of degree d, rather than in the original feature space. When the support vector classifier is combined with a non-linear kernel such as (9.22), the resulting classifier is known as a support vector machine. Note that in this case the (non-linear) function has the form

$$f(x) = \beta_0 + \sum_{i \in \mathcal{S}} \alpha_i K(x, x_i). \tag{9.23}$$

The left-hand panel of Figure 9.9 shows an example of an SVM with a polynomial kernel applied to the non-linear data from Figure 9.8. The fit is a substantial improvement over the linear support vector classifier. When d=1, then the SVM reduces to the support vector classifier seen earlier in this chapter.

The polynomial kernel shown in (9.22) is one example of a possible non-linear kernel, but alternatives abound. Another popular choice is the *radial kernel*, which takes the form

radial kernel

$$K(x_i, x_{i'}) = \exp(-\gamma \sum_{j=1}^{p} (x_{ij} - x_{i'j})^2).$$
 (9.24)

In (9.24), γ is a positive constant. The right-hand panel of Figure 9.9 shows an example of an SVM with a radial kernel on this non-linear data; it also does a good job in separating the two classes.

How does the radial kernel (9.24) actually work? If a given test observation $x^* = (x_1^*, \dots, x_p^*)^T$ is far from a training observation x_i in terms of Euclidean distance, then $\sum_{j=1}^p (x_j^* - x_{ij})^2$ will be large, and so $K(x^*, x_i) = \exp(-\gamma \sum_{j=1}^p (x_j^* - x_{ij})^2)$ will be tiny. This means that in (9.23), x_i will play virtually no role in $f(x^*)$. Recall that the predicted class label for the test observation x^* is based on the sign of $f(x^*)$. In other words, training observations that are far from x^* will play essentially no role in the predicted class label for x^* . This means that the radial kernel has very local

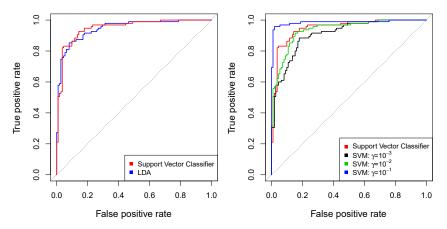


FIGURE 9.10. ROC curves for the Heart data training set. Left: The support vector classifier and LDA are compared. Right: The support vector classifier is compared to an SVM using a radial basis kernel with $\gamma = 10^{-3}$, 10^{-2} , and 10^{-1} .

behavior, in the sense that only nearby training observations have an effect on the class label of a test observation.

What is the advantage of using a kernel rather than simply enlarging the feature space using functions of the original features, as in (9.16)? One advantage is computational, and it amounts to the fact that using kernels, one need only compute $K(x_i, x_i')$ for all $\binom{n}{2}$ distinct pairs i, i'. This can be done without explicitly working in the enlarged feature space. This is important because in many applications of SVMs, the enlarged feature space is so large that computations are intractable. For some kernels, such as the radial kernel (9.24), the feature space is *implicit* and infinite-dimensional, so we could never do the computations there anyway!

9.3.3 An Application to the Heart Disease Data

In Chapter 8 we apply decision trees and related methods to the **Heart** data. The aim is to use 13 predictors such as **Age**, **Sex**, and **Cho1** in order to predict whether an individual has heart disease. We now investigate how an SVM compares to LDA on this data. After removing 6 missing observations, the data consist of 297 subjects, which we randomly split into 207 training and 90 test observations.

We first fit LDA and the support vector classifier to the training data. Note that the support vector classifier is equivalent to an SVM using a polynomial kernel of degree d=1. The left-hand panel of Figure 9.10 displays ROC curves (described in Section 4.4.2) for the training set predictions for both LDA and the support vector classifier. Both classifiers compute scores of the form $\hat{f}(X) = \hat{\beta}_0 + \hat{\beta}_1 X_1 + \hat{\beta}_2 X_2 + \cdots + \hat{\beta}_p X_p$ for each observation. For any given cutoff t, we classify observations into the heart disease or no heart disease categories depending on whether $\hat{f}(X) < t$ or $\hat{f}(X) \ge t$. The ROC curve is obtained by forming these predictions and computing the false positive and true positive rates for a range of values of t. An optimal classifier will hug the top left corner of the ROC plot. In this instance



FIGURE 9.11. ROC curves for the test set of the Heart data. Left: The support vector classifier and LDA are compared. Right: The support vector classifier is compared to an SVM using a radial basis kernel with $\gamma = 10^{-3}$, 10^{-2} , and 10^{-1} .

LDA and the support vector classifier both perform well, though there is a suggestion that the support vector classifier may be slightly superior.

The right-hand panel of Figure 9.10 displays ROC curves for SVMs using a radial kernel, with various values of γ . As γ increases and the fit becomes more non-linear, the ROC curves improve. Using $\gamma = 10^{-1}$ appears to give an almost perfect ROC curve. However, these curves represent training error rates, which can be misleading in terms of performance on new test data. Figure 9.11 displays ROC curves computed on the 90 test observations. We observe some differences from the training ROC curves. In the left-hand panel of Figure 9.11, the support vector classifier appears to have a small advantage over LDA (although these differences are not statistically significant). In the right-hand panel, the SVM using $\gamma = 10^{-1}$, which showed the best results on the training data, produces the worst estimates on the test data. This is once again evidence that while a more flexible method will often produce lower training error rates, this does not necessarily lead to improved performance on test data. The SVMs with $\gamma = 10^{-2}$ and $\gamma = 10^{-3}$ perform comparably to the support vector classifier, and all three outperform the SVM with $\gamma = 10^{-1}$.

9.4 SVMs with More than Two Classes

So far, our discussion has been limited to the case of binary classification: that is, classification in the two-class setting. How can we extend SVMs to the more general case where we have some arbitrary number of classes? It turns out that the concept of separating hyperplanes upon which SVMs are based does not lend itself naturally to more than two classes. Though a number of proposals for extending SVMs to the K-class case have been made, the two most popular are the one-versus-one and one-versus-all approaches. We briefly discuss those two approaches here.

One-Versus-One Classification

Suppose that we would like to perform classification using SVMs, and there are K > 2 classes. A one-versus-one or all-pairs approach constructs $\binom{K}{2}$ SVMs, each of which compares a pair of classes. For example, one such one SVM might compare the kth class, coded as +1, to the k'th class, coded as -1. We classify a test observation using each of the $\binom{K}{2}$ classifiers, and we tally the number of times that the test observation is assigned to each of the K classes. The final classification is performed by assigning the test observation to the class to which it was most frequently assigned in these $\binom{K}{2}$ pairwise classifications.

One-Versus-All Classification

The one-versus-all approach (also referred to as one-versus-rest) is an alternative procedure for applying SVMs in the case of K > 2 classes. We all fit K SVMs, each time comparing one of the K classes to the remaining one-versus-K-1 classes. Let $\beta_{0k}, \beta_{1k}, \ldots, \beta_{pk}$ denote the parameters that result from fitting an SVM comparing the kth class (coded as +1) to the others (coded as -1). Let x^* denote a test observation. We assign the observation to the class for which $\beta_{0k} + \beta_{1k}x_1^* + \beta_{2k}x_2^* + \cdots + \beta_{pk}x_p^*$ is largest, as this amounts to a high level of confidence that the test observation belongs to the kth class rather than to any of the other classes.

Relationship to Logistic Regression 9.5

When SVMs were first introduced in the mid-1990s, they made quite a splash in the statistical and machine learning communities. This was due in part to their good performance, good marketing, and also to the fact that the underlying approach seemed both novel and mysterious. The idea of finding a hyperplane that separates the data as well as possible, while allowing some violations to this separation, seemed distinctly different from classical approaches for classification, such as logistic regression and linear discriminant analysis. Moreover, the idea of using a kernel to expand the feature space in order to accommodate non-linear class boundaries appeared to be a unique and valuable characteristic.

However, since that time, deep connections between SVMs and other more classical statistical methods have emerged. It turns out that one can rewrite the criterion (9.12)–(9.15) for fitting the support vector classifier $f(X) = \beta_0 + \beta_1 X_1 + \dots + \beta_p X_p$ as

$$\underset{\beta_0, \beta_1, ..., \beta_p}{\text{minimize}} \left\{ \sum_{i=1}^n \max \left[0, 1 - y_i f(x_i) \right] + \lambda \sum_{j=1}^p \beta_j^2 \right\}, \tag{9.25}$$

where λ is a nonnegative tuning parameter. When λ is large then β_1, \ldots, β_p are small, more violations to the margin are tolerated, and a low-variance but high-bias classifier will result. When λ is small then few violations to the margin will occur; this amounts to a high-variance but low-bias classifier. Thus, a small value of λ in (9.25) amounts to a small value of C in (9.15). Note that the $\lambda \sum_{j=1}^p \beta_j^2$ term in (9.25) is the ridge penalty term from Section 6.2.1, and plays a similar role in controlling the bias-variance trade-off for the support vector classifier.

Now (9.25) takes the "Loss + Penalty" form that we have seen repeatedly throughout this book:

$$\underset{\beta_0,\beta_1,\dots,\beta_p}{\text{minimize}} \left\{ L(\mathbf{X}, \mathbf{y}, \beta) + \lambda P(\beta) \right\}.$$
(9.26)

In (9.26), $L(\mathbf{X}, \mathbf{y}, \beta)$ is some loss function quantifying the extent to which the model, parametrized by β , fits the data (\mathbf{X}, \mathbf{y}) , and $P(\beta)$ is a penalty function on the parameter vector β whose effect is controlled by a nonnegative tuning parameter λ . For instance, ridge regression and the lasso both take this form with

$$L(\mathbf{X}, \mathbf{y}, \beta) = \sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} x_{ij} \beta_j \right)^2$$

and with $P(\beta) = \sum_{j=1}^p \beta_j^2$ for ridge regression and $P(\beta) = \sum_{j=1}^p |\beta_j|$ for the lasso. In the case of (9.25) the loss function instead takes the form

$$L(\mathbf{X}, \mathbf{y}, \beta) = \sum_{i=1}^{n} \max \left[0, 1 - y_i (\beta_0 + \beta_1 x_{i1} + \dots + \beta_p x_{ip}) \right].$$

This is known as *hinge loss*, and is depicted in Figure 9.12. However, it turns out that the hinge loss function is closely related to the loss function used in logistic regression, also shown in Figure 9.12.

hinge loss

An interesting characteristic of the support vector classifier is that only support vectors play a role in the classifier obtained; observations on the correct side of the margin do not affect it. This is due to the fact that the loss function shown in Figure 9.12 is exactly zero for observations for which $y_i(\beta_0 + \beta_1 x_{i1} + \cdots + \beta_p x_{ip}) \geq 1$; these correspond to observations that are on the correct side of the margin.³ In contrast, the loss function for logistic regression shown in Figure 9.12 is not exactly zero anywhere. But it is very small for observations that are far from the decision boundary. Due to the similarities between their loss functions, logistic regression and the support vector classifier often give very similar results. When the classes are well separated, SVMs tend to behave better than logistic regression; in more overlapping regimes, logistic regression is often preferred.

When the support vector classifier and SVM were first introduced, it was thought that the tuning parameter C in (9.15) was an unimportant "nuisance" parameter that could be set to some default value, like 1. However, the "Loss + Penalty" formulation (9.25) for the support vector classifier indicates that this is not the case. The choice of tuning parameter is very important and determines the extent to which the model underfits or overfits the data, as illustrated, for example, in Figure 9.7.

³With this hinge-loss + penalty representation, the margin corresponds to the value one, and the width of the margin is determined by $\sum \beta_j^2$.

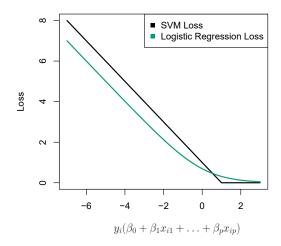


FIGURE 9.12. The SVM and logistic regression loss functions are compared, as a function of $y_i(\beta_0 + \beta_1 x_{i1} + \cdots + \beta_p x_{ip})$. When $y_i(\beta_0 + \beta_1 x_{i1} + \cdots + \beta_p x_{ip})$ is greater than 1, then the SVM loss is zero, since this corresponds to an observation that is on the correct side of the margin. Overall, the two loss functions have quite similar behavior.

We have established that the support vector classifier is closely related to logistic regression and other preexisting statistical methods. Is the SVM unique in its use of kernels to enlarge the feature space to accommodate non-linear class boundaries? The answer to this question is "no". We could just as well perform logistic regression or many of the other classification methods seen in this book using non-linear kernels; this is closely related to some of the non-linear approaches seen in Chapter 7. However, for historical reasons, the use of non-linear kernels is much more widespread in the context of SVMs than in the context of logistic regression or other methods.

Though we have not addressed it here, there is in fact an extension of the SVM for regression (i.e. for a quantitative rather than a qualitative response), called support vector regression. In Chapter 3, we saw that least squares regression seeks coefficients $\beta_0, \beta_1, \ldots, \beta_p$ such that the sum of squared residuals is as small as possible. (Recall from Chapter 3 that residuals are defined as $y_i - \beta_0 - \beta_1 x_{i1} - \cdots - \beta_p x_{ip}$.) Support vector regression instead seeks coefficients that minimize a different type of loss, where only residuals larger in absolute value than some positive constant contribute to the loss function. This is an extension of the margin used in support vector classifiers to the regression setting.

support vector regression

9.6 Lab: Support Vector Machines

In this lab, we use the **sklearn.svm** library to demonstrate the support vector classifier and the support vector machine.

We import some of our usual libraries.

```
In [1]: import numpy as np
  from matplotlib.pyplot import subplots, cm
  import sklearn.model_selection as skm
  from ISLP import load_data, confusion_table
```

We also collect the new imports needed for this lab.

```
In[2]:
    from sklearn.svm import SVC
    from ISLP.svm import plot as plot_svm
    from sklearn.metrics import RocCurveDisplay
```

We will use the function RocCurveDisplay.from_estimator() to produce several ROC plots, using a shorthand roc_curve.

RocCurve
Display.from_
estimator()

```
In [3]: roc_curve = RocCurveDisplay.from_estimator # shorthand
```

9.6.1 Support Vector Classifier

We now use the SupportVectorClassifier() function (abbreviated SVC()) from sklearn to fit the support vector classifier for a given value of the parameter C. The C argument allows us to specify the cost of a violation to the margin. When the cost argument is small, then the margins will be wide and many support vectors will be on the margin or will violate the margin. When the C argument is large, then the margins will be narrow and there will be few support vectors on the margin or violating the margin.

SupportVector
Classifier()

Here we demonstrate the use of SVC() on a two-dimensional example, so that we can plot the resulting decision boundary. We begin by generating the observations, which belong to two classes, and checking whether the classes are linearly separable.

They are not. We now fit the classifier.

```
In [5]: svm_linear = SVC(C=10, kernel='linear')
svm_linear.fit(X, y)
```

```
Out[5]: SVC(C=10, kernel='linear')
```

The support vector classifier with two features can be visualized by plotting values of its *decision function*. We have included a function for this in the ISLP package (inspired by a similar example in the sklearn docs).

decision function

The decision boundary between the two classes is linear (because we used the argument kernel='linear'). The support vectors are marked with + and the remaining observations are plotted as circles.

What if we instead used a smaller value of the cost parameter?

With a smaller value of the cost parameter, we obtain a larger number of support vectors, because the margin is now wider. For linear kernels, we can extract the coefficients of the linear decision boundary as follows:

```
In [8]: svm_linear.coef_
```

Out[8]: array([[1.173 , 0.7734]])

Since the support vector machine is an estimator in **sklearn**, we can use the usual machinery to tune it.

Out[9]: {'C': 1}

We can easily access the cross-validation errors for each of these models in <code>grid.cv_results_</code>. This prints out a lot of detail, so we extract the accuracy results only.

```
In [10]: grid.cv_results_[('mean_test_score')]
```

```
Out[10]: array([0.46, 0.46, 0.72, 0.74, 0.74, 0.74, 0.74])
```

We see that C=1 results in the highest cross-validation accuracy of 0.74, though the accuracy is the same for several values of C. The classifier grid.best_estimator_ can be used to predict the class label on a set of test observations. Let's generate a test data set.

```
In[11]: X_test = rng.standard_normal((20, 2))
y_test = np.array([-1]*10+[1]*10)
X_test[y_test==1] += 1
```

Now we predict the class labels of these test observations. Here we use the best model selected by cross-validation in order to make the predictions.

```
In [12]: best_ = grid.best_estimator_
    y_test_hat = best_.predict(X_test)
    confusion_table(y_test_hat, y_test)
```

```
Out[12]: Truth -1 1
Predicted
-1 8 4
1 2 6
```

Thus, with this value of C, 70% of the test observations are correctly classified. What if we had instead used C=0.001?

```
Out[13]: Truth -1 1
Predicted
-1 2 0
1 8 10
```

In this case 60% of test observations are correctly classified.

We now consider a situation in which the two classes are linearly separable. Then we can find an optimal separating hyperplane using the SVC() estimator. We first further separate the two classes in our simulated data so that they are linearly separable:

```
In [14]: X[y==1] += 1.9;
fig, ax = subplots(figsize=(8,8))
ax.scatter(X[:,0], X[:,1], c=y, cmap=cm.coolwarm);
```

Now the observations are just barely linearly separable.

```
In [15]: svm_ = SVC(C=1e5, kernel='linear').fit(X, y)
y_hat = svm_.predict(X)
confusion_table(y_hat, y)
```

We fit the support vector classifier and plot the resulting hyperplane, using a very large value of **C** so that no observations are misclassified.

Indeed no training errors were made and only three support vectors were used. In fact, the large value of ${\tt C}$ also means that these three support points are *on the margin*, and define it. One may wonder how good the classifier could be on test data that depends on only three data points! We now try a smaller value of ${\tt C}$.

```
In [17]: svm_ = SVC(C=0.1, kernel='linear').fit(X, y)
y_hat = svm_.predict(X)
confusion_table(y_hat, y)
```

```
Out[17]: Truth -1 1
Predicted
-1 25 0
1 0 25
```

Using C=0.1, we again do not misclassify any training observations, but we also obtain a much wider margin and make use of twelve support vectors. These jointly define the orientation of the decision boundary, and since there are more of them, it is more stable. It seems possible that this model will perform better on test data than the model with C=1e5 (and indeed, a simple experiment with a large test set would bear this out).

9.6.2 Support Vector Machine

In order to fit an SVM using a non-linear kernel, we once again use the SVC() estimator. However, now we use a different value of the parameter kernel. To fit an SVM with a polynomial kernel we use kernel="poly", and to fit an SVM with a radial kernel we use kernel="rbf". In the former case we also use the degree argument to specify a degree for the polynomial kernel (this is d in (9.22)), and in the latter case we use gamma to specify a value of γ for the radial basis kernel (9.24).

We first generate some data with a non-linear class boundary, as follows:

```
In [19]: X = rng.standard_normal((200, 2))
X[:100] += 2
X[100:150] -= 2
y = np.array([1]*150+[2]*50)
```

Plotting the data makes it clear that the class boundary is indeed nonlinear.

```
Out[20]: <matplotlib.collections.PathCollection at 0x7faa9ba52eb0>
```

The data is randomly split into training and testing groups. We then fit the training data using the SVC() estimator with a radial kernel and $\gamma = 1$:

The plot shows that the resulting SVM has a decidedly non-linear boundary.

We can see from the figure that there are a fair number of training errors in this SVM fit. If we increase the value of C, we can reduce the number of training errors. However, this comes at the price of a more irregular decision boundary that seems to be at risk of overfitting the data.

We can perform cross-validation using skm.GridSearchCV() to select the best choice of γ and \mathbb{C} for an SVM with a radial kernel:

```
Out[24]: {'C': 100, 'gamma': 1}
```

The best choice of parameters under five-fold CV is achieved at C=1 and gamma=0.5, though several other values also achieve the same value.

```
In [25]: best_svm = grid.best_estimator_
fig, ax = subplots(figsize=(8,8))
plot_svm(X_train,
```

```
y_train,
    best_svm,
    ax=ax)

y_hat_test = best_svm.predict(X_test)
confusion_table(y_hat_test, y_test)
```

```
Out[25]: Truth 1 2
Predicted
1 69 6
2 6 19
```

With these parameters, 12% of test observations are misclassified by this SVM.

9.6.3 ROC Curves

SVMs and support vector classifiers output class labels for each observation. However, it is also possible to obtain *fitted values* for each observation, which are the numerical scores used to obtain the class labels. For instance, in the case of a support vector classifier, the fitted value for an observation $X = (X_1, X_2, \dots, X_p)^T$ takes the form $\hat{\beta}_0 + \hat{\beta}_1 X_1 + \hat{\beta}_2 X_2 + \dots + \hat{\beta}_p X_p$. For an SVM with a non-linear kernel, the equation that yields the fitted value is given in (9.23). The sign of the fitted value determines on which side of the decision boundary the observation lies. Therefore, the relationship between the fitted value and the class prediction for a given observation is simple: if the fitted value exceeds zero then the observation is assigned to one class, and if it is less than zero then it is assigned to the other. By changing this threshold from zero to some positive value, we skew the classifications in favor of one class versus the other. By considering a range of these thresholds, positive and negative, we produce the ingredients for a ROC plot. We can access these values by calling the decision_function() method of a fitted SVM estimator.

.function_
decision()

roc_curve()

The function ROCCurveDisplay.from_estimator() (which we have abbreviated to $roc_curve()$) will produce a plot of a ROC curve. It takes a fitted estimator as its first argument, followed by a model matrix X and labels y. The argument name is used in the legend, while color is used for the color of the line. Results are plotted on our axis object ax.

In this example, the SVM appears to provide accurate predictions. By increasing γ we can produce a more flexible fit and generate further improvements in accuracy.

However, these ROC curves are all on the training data. We are really more interested in the level of prediction accuracy on the test data. When we compute the ROC curves on the test data, the model with $\gamma=0.5$ appears to provide the most accurate results.

Let's look at our tuned SVM.

9.6.4 SVM with Multiple Classes

If the response is a factor containing more than two levels, then the SVC() function will perform multi-class classification using either the one-versus-one approach (when decision_function_shape=='ovo') or one-versus-rest⁴ (when decision_function_shape=='ovo'). We explore that setting briefly here by generating a third class of observations.

```
In [30]: rng = np.random.default_rng(123)
    X = np.vstack([X, rng.standard_normal((50, 2))])
    y = np.hstack([y, [0]*50])
    X[y==0,1] += 2
    fig, ax = subplots(figsize=(8,8))
    ax.scatter(X[:,0], X[:,1], c=y, cmap=cm.coolwarm);
```

 $^{^4{}m One\text{-}versus\text{-}rest}$ is also known as one-versus-all.

We now fit an SVM to the data:

The sklearn.svm library can also be used to perform support vector regression with a numerical response using the estimator SupportVector-Regression().

SupportVector
Regression()

9.6.5 Application to Gene Expression Data

We now examine the Khan data set, which consists of a number of tissue samples corresponding to four distinct types of small round blue cell tumors. For each tissue sample, gene expression measurements are available. The data set consists of training data, xtrain and ytrain, and testing data, xtest and ytest.

We examine the dimension of the data:

```
In [32]: Khan = load_data('Khan')
Khan['xtrain'].shape, Khan['xtest'].shape
```

```
Out[32]: ((63, 2308), (20, 2308))
```

This data set consists of expression measurements for 2,308 genes. The training and test sets consist of 63 and 20 observations, respectively.

We will use a support vector approach to predict cancer subtype using gene expression measurements. In this data set, there is a very large number of features relative to the number of observations. This suggests that we should use a linear kernel, because the additional flexibility that will result from using a polynomial or radial kernel is unnecessary.

```
Out[33]:
           Truth
                           2
       Predicted
                1
                           0
                                0
                2
                       0
                         23
                              0
                                    0
                3
                       0
                                    0
                           0 12
                           0
                                0
                                   20
```

We see that there are *no* training errors. In fact, this is not surprising, because the large number of variables relative to the number of observations implies that it is easy to find hyperplanes that fully separate the classes.

We are more interested in the support vector classifier's performance on the test observations.

We see that using C=10 yields two test set errors on these data.

9.7 Exercises

Conceptual

- 1. This problem involves hyperplanes in two dimensions.
 - (a) Sketch the hyperplane $1 + 3X_1 X_2 = 0$. Indicate the set of points for which $1 + 3X_1 X_2 > 0$, as well as the set of points for which $1 + 3X_1 X_2 < 0$.
 - (b) On the same plot, sketch the hyperplane $-2 + X_1 + 2X_2 = 0$. Indicate the set of points for which $-2 + X_1 + 2X_2 > 0$, as well as the set of points for which $-2 + X_1 + 2X_2 < 0$.
- 2. We have seen that in p=2 dimensions, a linear decision boundary takes the form $\beta_0 + \beta_1 X_1 + \beta_2 X_2 = 0$. We now investigate a non-linear decision boundary.
 - (a) Sketch the curve

$$(1+X_1)^2 + (2-X_2)^2 = 4.$$

(b) On your sketch, indicate the set of points for which

$$(1+X_1)^2 + (2-X_2)^2 > 4,$$

as well as the set of points for which

$$(1+X_1)^2 + (2-X_2)^2 \le 4.$$

(c) Suppose that a classifier assigns an observation to the blue class if

$$(1+X_1)^2 + (2-X_2)^2 > 4$$

and to the red class otherwise. To what class is the observation (0,0) classified? (-1,1)? (2,2)? (3,8)?

(d) Argue that while the decision boundary in (c) is not linear in terms of X_1 and X_2 , it is linear in terms of X_1 , X_1^2 , X_2 , and X_2^2 .

- 3. Here we explore the maximal margin classifier on a toy data set.
 - (a) We are given n = 7 observations in p = 2 dimensions. For each observation, there is an associated class label.

Obs.	X_1	X_2	\overline{Y}
1	3	4	Red
2	2	2	Red
3	4	4	Red
4	1	4	Red
5	2	1	Blue
6	4	3	Blue
7	4	1	Blue

Sketch the observations.

- (b) Sketch the optimal separating hyperplane, and provide the equation for this hyperplane (of the form (9.1)).
- (c) Describe the classification rule for the maximal margin classifier. It should be something along the lines of "Classify to Red if $\beta_0 + \beta_1 X_1 + \beta_2 X_2 > 0$, and classify to Blue otherwise." Provide the values for β_0 , β_1 , and β_2 .
- (d) On your sketch, indicate the margin for the maximal margin hyperplane.
- (e) Indicate the support vectors for the maximal margin classifier.
- (f) Argue that a slight movement of the seventh observation would not affect the maximal margin hyperplane.
- (g) Sketch a hyperplane that is *not* the optimal separating hyperplane, and provide the equation for this hyperplane.
- (h) Draw an additional observation on the plot so that the two classes are no longer separable by a hyperplane.

Applied

- 4. Generate a simulated two-class data set with 100 observations and two features in which there is a visible but non-linear separation between the two classes. Show that in this setting, a support vector machine with a polynomial kernel (with degree greater than 1) or a radial kernel will outperform a support vector classifier on the training data. Which technique performs best on the test data? Make plots and report training and test error rates in order to back up your assertions.
- 5. We have seen that we can fit an SVM with a non-linear kernel in order to perform classification using a non-linear decision boundary. We will now see that we can also obtain a non-linear decision boundary by performing logistic regression using non-linear transformations of the features.

(a) Generate a data set with n = 500 and p = 2, such that the observations belong to two classes with a quadratic decision boundary between them. For instance, you can do this as follows:

```
rng = np.random.default_rng(5)
x1 = rng.uniform(size=500) - 0.5
x2 = rng.uniform(size=500) - 0.5
y = x1**2 - x2**2 > 0
```

- (b) Plot the observations, colored according to their class labels. Your plot should display X_1 on the x-axis, and X_2 on the y-axis
- (c) Fit a logistic regression model to the data, using X_1 and X_2 as predictors.
- (d) Apply this model to the *training data* in order to obtain a predicted class label for each training observation. Plot the observations, colored according to the *predicted* class labels. The decision boundary should be linear.
- (e) Now fit a logistic regression model to the data using non-linear functions of X_1 and X_2 as predictors (e.g. X_1^2 , $X_1 \times X_2$, $\log(X_2)$, and so forth).
- (f) Apply this model to the *training data* in order to obtain a predicted class label for each training observation. Plot the observations, colored according to the *predicted* class labels. The decision boundary should be obviously non-linear. If it is not, then repeat (a)–(e) until you come up with an example in which the predicted class labels are obviously non-linear.
- (g) Fit a support vector classifier to the data with X_1 and X_2 as predictors. Obtain a class prediction for each training observation. Plot the observations, colored according to the *predicted class labels*.
- (h) Fit a SVM using a non-linear kernel to the data. Obtain a class prediction for each training observation. Plot the observations, colored according to the *predicted class labels*.
- (i) Comment on your results.
- 6. At the end of Section 9.6.1, it is claimed that in the case of data that is just barely linearly separable, a support vector classifier with a small value of C that misclassifies a couple of training observations may perform better on test data than one with a huge value of C that does not misclassify any training observations. You will now investigate this claim.
 - (a) Generate two-class data with p=2 in such a way that the classes are just barely linearly separable.
 - (b) Compute the cross-validation error rates for support vector classifiers with a range of C values. How many training observations are misclassified for each value of C considered, and how does this relate to the cross-validation errors obtained?

- (c) Generate an appropriate test data set, and compute the test errors corresponding to each of the values of C considered. Which value of C leads to the fewest test errors, and how does this compare to the values of C that yield the fewest training errors and the fewest cross-validation errors?
- (d) Discuss your results.
- 7. In this problem, you will use support vector approaches in order to predict whether a given car gets high or low gas mileage based on the Auto data set.
 - (a) Create a binary variable that takes on a 1 for cars with gas mileage above the median, and a 0 for cars with gas mileage below the median.
 - (b) Fit a support vector classifier to the data with various values of C, in order to predict whether a car gets high or low gas mileage. Report the cross-validation errors associated with different values of this parameter. Comment on your results. Note you will need to fit the classifier without the gas mileage variable to produce sensible results.
 - (c) Now repeat (b), this time using SVMs with radial and polynomial basis kernels, with different values of gamma and degree and
 Comment on your results.
 - (d) Make some plots to back up your assertions in (b) and (c).

Hint: In the lab, we used the $plot_sym()$ function for fitted SVMs. When p > 2, you can use the keyword argument features to create plots displaying pairs of variables at a time.

- 8. This problem involves the OJ data set which is part of the ISLP package.
 - (a) Create a training set containing a random sample of 800 observations, and a test set containing the remaining observations.
 - (b) Fit a support vector classifier to the training data using C = 0.01, with Purchase as the response and the other variables as predictors. How many support points are there?
 - (c) What are the training and test error rates?
 - (d) Use cross-validation to select an optimal C. Consider values in the range 0.01 to 10.
 - (e) Compute the training and test error rates using this new value for C.
 - (f) Repeat parts (b) through (e) using a support vector machine with a radial kernel. Use the default value for gamma.
 - (g) Repeat parts (b) through (e) using a support vector machine with a polynomial kernel. Set degree = 2.
 - (h) Overall, which approach seems to give the best results on this data?