
Chapter 4

Over-Fitting and Model Tuning

Many modern classification and regression models are highly adaptable; they
are capable of modeling complex relationships. However, they can very easily
overemphasize patterns that are not reproducible. Without a methodological
approach to evaluating models, the modeler will not know about the problem
until the next set of samples are predicted.

Over-fitting has been discussed in the fields of forecasting (Clark 2004),
medical research (Simon et al. 2003; Steyerberg 2010), chemometrics (Gowen
et al. 2010; Hawkins 2004; Defernez and Kemsley 1997), meteorology (Hsieh
and Tang 1998), finance (Dwyer 2005), and marital research (Heyman and
Slep 2001) to name a few. These references illustrate that over-fitting is a
concern for any predictive model regardless of field of research. The aim of this
chapter is to explain and illustrate key principles of laying a foundation onto
which trustworthy models can be built and subsequently used for prediction.
More specifically, we will describe strategies that enable us to have confidence
that the model we build will predict new samples with a similar degree of
accuracy on the set of data for which the model was evaluated. Without this
confidence, the model’s predictions are useless.

On a practical note, all model building efforts are constrained by the exist-
ing data. For many problems, the data may have a limited number of samples,
may be of less-than-desirable quality, and/or may be unrepresentative of fu-
ture samples. While there are ways to build predictive models on small data
sets, which we will describe in this chapter, we will assume that data quality
is sufficient and that it is representative of the entire sample population.

Working under these assumptions, we must use the data at hand to find
the best predictive model. Almost all predictive modeling techniques have
tuning parameters that enable the model to flex to find the structure in
the data. Hence, we must use the existing data to identify settings for the
model’s parameters that yield the best and most realistic predictive perfor-
mance (known as model tuning). Traditionally, this has been achieved by
splitting the existing data into training and test sets. The training set is used
to build and tune the model and the test set is used to estimate the model’s

M. Kuhn and K. Johnson, Applied Predictive Modeling,
DOI 10.1007/978-1-4614-6849-3 4,
© Springer Science+Business Media New York 2013

61



62 4 Over-Fitting and Model Tuning

predictive performance. Modern approaches to model building split the data
into multiple training and testing sets, which have been shown to often find
more optimal tuning parameters and give a more accurate representation of
the model’s predictive performance.

To begin this chapter we will illustrate the concept of over-fitting through
an easily visualized example. To avoid over-fitting, we propose a general
model building approach that encompasses model tuning and model evalua-
tion with the ultimate goal of finding the reproducible structure in the data.
This approach entails splitting existing data into distinct sets for the purposes
of tuning model parameters and evaluating model performance. The choice
of data splitting method depends on characteristics of the existing data such
as its size and structure. In Sect. 4.4, we define and explain the most versa-
tile data splitting techniques and explore the advantages and disadvantages
of each. Finally, we end the chapter with a computing section that provides
code for implementing the general model building strategy.

4.1 The Problem of Over-Fitting

There now exist many techniques that can learn the structure of a set of data
so well that when the model is applied to the data on which the model was
built, it correctly predicts every sample. In addition to learning the general
patterns in the data, the model has also learned the characteristics of each
sample’s unique noise. This type of model is said to be over-fit and will usually
have poor accuracy when predicting a new sample. To illustrate over-fitting
and other concepts in this chapter, consider the simple classification example
in Fig. 4.1 that has two predictor variables (i.e., independent variables). These
data contain 208 samples that are designated either as “Class 1” or “Class 2.”
The classes are fairly balanced; there are 111 samples in the first class and 97
in the second. Furthermore, there is a significant overlap between the classes
which is often the case for most applied modeling problems.

One objective for a data set such as this would be to develop a model to
classify new samples. In this two-dimensional example, the classification mod-
els or rules can be represented by boundary lines. Figure 4.2 shows example
class boundaries from two distinct classification models. The lines envelop the
area where each model predicts the data to be the second class (blue squares).
The left-hand panel (“Model #1”) shows a boundary that is complex and at-
tempts to encircle every possible data point. The pattern in this panel is not
likely to generalize to new data. The right-hand panel shows an alternative
model fit where the boundary is fairly smooth and does not overextend itself
to correctly classify every data point in the training set.

To gauge how well the model is classifying samples, one might use the
training set. In doing so, the estimated error rate for the model in the left-
hand panel would be overly optimistic. Estimating the utility of a model



4.1 The Problem of Over-Fitting 63

Predictor A

P
re

di
ct

or
 B

0.0

0.2

0.4

0.6

0.0 0.2 0.4 0.6

Class 1 Class 2

Fig. 4.1: An example of classification data that is used throughout the chapter

Predictor A

P
re

di
ct

or
 B

0.2

0.4

0.6

0.8

0.2 0.4 0.6 0.8

Model #1

0.2 0.4 0.6 0.8

Model #2

Class 1 Class 2

Fig. 4.2: An example of a training set with two classes and two predictors.
The panels show two different classification models and their associated class
boundaries



64 4 Over-Fitting and Model Tuning

by re-predicting the training set is referred to apparent performance of the
model (e.g., the apparent error rate). In two dimensions, it is not difficult to
visualize that one model is over-fitting, but most modeling problems are in
much higher dimensions. In these situations, it is very important to have a
tool for characterizing how much a model is over-fitting the training data.

4.2 Model Tuning

Many models have important parameters which cannot be directly estimated
from the data. For example, in the K-nearest neighbor classification model,
a new sample is predicted based on the K-closest data points in the training
set. An illustration of a 5-nearest neighbor model is shown in Fig. 4.3. Here,
two new samples (denoted by the solid dot and filled triangle) are being
predicted. One sample (•) is near a mixture of the two classes; three of the
five neighbors indicate that the sample should be predicted as the first class.
The other sample (�) has all five points indicating the second class should
be predicted. The question remains as to how many neighbors should be
used. A choice of too few neighbors may over-fit the individual points of the
training set while too many neighbors may not be sensitive enough to yield

Predictor A

P
re

di
ct

or
 B

0.0

0.2

0.4

0.6

0.0 0.2 0.4 0.6

Class 1 Class 2

Fig. 4.3: The K-nearest neighbor classification model. Two new points, sym-
bolized by filled triangle and solid dot, are predicted using the training set



4.2 Model Tuning 65

reasonable performance. This type of model parameter is referred to as a
tuning parameter because there is no analytical formula available to calculate
an appropriate value.

Several models discussed in this text have at least one tuning parameter.
Since many of these parameters control the complexity of the model, poor
choices for the values can result in over-fitting. Figure 4.2 illustrates this
point. A support vector machine (Sect. 13.4) was used to generate the class
boundaries in each panel. One of the tuning parameters for this model sets
the price for misclassified samples in the training set and is generally referred
to as the “cost” parameter. When the cost is large, the model will go to great
lengths to correctly label every point (as in the left panel) while smaller
values produce models that are not as aggressive. The class boundary in
the left panel was created by manually setting the cost parameter to a very
high number. In the right panel, the cost value was determined using cross-
validation (Sect. 4.4).

There are different approaches to searching for the best parameters. A gen-
eral approach that can be applied to almost any model is to define a set of
candidate values, generate reliable estimates of model utility across the can-
didates values, then choose the optimal settings. A flowchart of this process
is shown in Fig. 4.4.

Once a candidate set of parameter values has been selected, then we must
obtain trustworthy estimates of model performance. The performance on the
hold-out samples is then aggregated into a performance profile which is then
used to determine the final tuning parameters. We then build a final model
with all of the training data using the selected tuning parameters. Using
the K-nearest neighbor example to illustrate the procedure of Fig. 4.4, the
candidate set might include all odd values of K between 1 and 9 (odd values
are used in the two-class situation to avoid ties). The training data would then
be resampled and evaluated many times for each tuning parameter value.
These results would then be aggregated to find the optimal value of K.

The procedure defined in Fig. 4.4 uses a set of candidate models that are
defined by the tuning parameters. Other approaches such as genetic algo-
rithms (Mitchell 1998) or simplex search methods (Olsson and Nelson 1975)
can also find optimal tuning parameters. These procedures algorithmically
determine appropriate values for tuning parameters and iterate until they ar-
rive at parameter settings with optimal performance. These techniques tend
to evaluate a large number of candidate models and can be superior to a
defined set of tuning parameters when model performance can be efficiently
calculated. Cohen et al. (2005) provides a comparison of search routines for
tuning a support vector machine model.

A more difficult problem is obtaining trustworthy estimates of model per-
formance for these candidate models. As previously discussed, the apparent
error rate can produce extremely optimistic performance estimates. A bet-
ter approach is to test the model on samples that were not used for training.



66 4 Over-Fitting and Model Tuning

Define a set of candidate
values for tuning

parameter(s)

For each candidate set:

Resample
Data

Fit
Model

Predict
Hold–outs

Aggregate the resampling
into a performance profile

Determine the final
tuning parameters

Using the final tuning
parameters, refit the
model with the entire

training set

Fig. 4.4: A schematic of the parameter tuning process. An example of a
candidate set of tuning parameter values for K-nearest neighbors might be
odd numbers between 1 and 9. For each of these values, the data would be
resampled multiple times to assess model performance for each value

Evaluating the model on a test set is the obvious choice, but, to get reasonable
precision of the performance values, the size of the test set may need to be
large.

An alternate approach to evaluating a model on a single test set is to
resample the training set. This process uses several modified versions of the
training set to build multiple models and then uses statistical methods to
provide honest estimates of model performance (i.e., not overly optimistic).
Section 4.4 illustrates several resampling techniques, and Sect. 4.6 discusses
approaches to choose the final parameters using the resampling results.



4.3 Data Splitting 67

4.3 Data Splitting

Now that we have outlined the general procedure for finding optimal tuning
parameters, we turn to discussing the heart of the process: data splitting.
A few of the common steps in model building are:

• Pre-processing the predictor data
• Estimating model parameters
• Selecting predictors for the model
• Evaluating model performance
• Fine tuning class prediction rules (via ROC curves, etc.)

Given a fixed amount of data, the modeler must decide how to “spend” their
data points to accommodate these activities.

One of the first decisions to make when modeling is to decide which samples
will be used to evaluate performance. Ideally, the model should be evaluated
on samples that were not used to build or fine-tune the model, so that they
provide an unbiased sense of model effectiveness. When a large amount of
data is at hand, a set of samples can be set aside to evaluate the final model.
The “training” data set is the general term for the samples used to create the
model, while the“test”or“validation”data set is used to qualify performance.

However, when the number of samples is not large, a strong case can
be made that a test set should be avoided because every sample may be
needed for model building. Additionally, the size of the test set may not
have sufficient power or precision to make reasonable judgements. Several
researchers (Molinaro 2005; Martin and Hirschberg 1996; Hawkins et al. 2003)
show that validation using a single test set can be a poor choice. Hawkins
et al. (2003) concisely summarize this point:“holdout samples of tolerable size
[. . . ] do not match the cross-validation itself for reliability in assessing model
fit and are hard to motivate.” Resampling methods, such as cross-validation,
can be used to produce appropriate estimates of model performance using the
training set. These are discussed in length in Sect. 4.4. Although resampling
techniques can be misapplied, such as the example shown in Ambroise and
McLachlan (2002), they often produce performance estimates superior to a
single test set because they evaluate many alternate versions of the data.

If a test set is deemed necessary, there are several methods for splitting
the samples. Nonrandom approaches to splitting the data are sometimes
appropriate. For example,

• If a model was being used to predict patient outcomes, the model may be
created using certain patient sets (e.g., from the same clinical site or disease
stage), and then tested on a different sample population to understand how
well the model generalizes.

• In chemical modeling for drug discovery, new“chemical space”is constantly
being explored. We are most interested in accurate predictions in the chem-
ical space that is currently being investigated rather than the space that



68 4 Over-Fitting and Model Tuning

was evaluated years prior. The same could be said for spam filtering; it
is more important for the model to catch the new spamming techniques
rather than prior spamming schemes.

However, in most cases, there is the desire to make the training and test sets
as homogeneous as possible. Random sampling methods can be used to create
similar data sets.

The simplest way to split the data into a training and test set is to take a
simple random sample. This does not control for any of the data attributes,
such as the percentage of data in the classes. When one class has a dispro-
portionately small frequency compared to the others, there is a chance that
the distribution of the outcomes may be substantially different between the
training and test sets.

To account for the outcome when splitting the data, stratified random
sampling applies random sampling within subgroups (such as the classes).
In this way, there is a higher likelihood that the outcome distributions will
match. When the outcome is a number, a similar strategy can be used; the
numeric values are broken into similar groups (e.g., low, medium, and high)
and the randomization is executed within these groups.

Alternatively, the data can be split on the basis of the predictor values.
Willett (1999) and Clark (1997) propose data splitting based on maximum
dissimilarity sampling. Dissimilarity between two samples can be measured
in a number of ways. The simplest method is to use the distance between
the predictor values for two samples. If the distance is small, the points are
in close proximity. Larger distances between points are indicative of dissim-
ilarity. To use dissimilarity as a tool for data splitting, suppose the test set
is initialized with a single sample. The dissimilarity between this initial sam-
ple and the unallocated samples can be calculated. The unallocated sample
that is most dissimilar would then be added to the test set. To allocate more
samples to the test set, a method is needed to determine the dissimilarities
between groups of points (i.e., the two in the test set and the unallocated
points). One approach is to use the average or minimum of the dissimilari-
ties. For example, to measure the dissimilarities between the two samples in
the test set and a single unallocated point, we can determine the two dissim-
ilarities and average them. The third point added to the test set would be
chosen as having the maximum average dissimilarity to the existing set. This
process would continue until the targeted test set size is achieved.

Figure 4.5 illustrates this process for the example classification data. Dis-
similarity sampling was conducted separately within each class. First, a sam-
ple within each class was chosen to start the process (designated as � and
• in the figure). The dissimilarity of the initial sample to the unallocated
samples within the class was computed and the most dissimilar point was
added to the test set. For the first class, the most dissimilar point was in the
extreme Southwest of the initial sample. On the second round, the dissimilar-
ities were aggregated using the minimum (as opposed to the average). Again,



4.4 Resampling Techniques 69

Predictor A

P
re

di
ct

or
 B

0.0

0.2

0.4

0.6

0.0 0.2 0.4 0.6

Class 1 Class 2

Predictor A
P

re
di

ct
or

 B

0.0

0.2

0.4

0.6

0.0 0.2 0.4 0.6

1

2

3

4

56

7

8
9

10

11

12

13

14
1

2

3

4

5

6

7

8

9

10
11

12 13

14

Class 1 Class 2

Fig. 4.5: An example of maximum dissimilarity sampling to create a test set.
After choosing an initial sample within a class, 14 more samples were added

for the first class, the chosen point was far in the Northeast of the predictor
space. As the sampling proceeds, samples were selected on the periphery of
the data then work inward.

Martin et al. (2012) compares different methods of splitting data, including
random sampling, dissimilarity sampling, and other methods.

4.4 Resampling Techniques

Generally, resampling techniques for estimating model performance operate
similarly: a subset of samples are used to fit a model and the remaining sam-
ples are used to estimate the efficacy of the model. This process is repeated
multiple times and the results are aggregated and summarized. The differ-
ences in techniques usually center around the method in which subsamples
are chosen. We will consider the main flavors of resampling in the next few
subsections.

k-Fold Cross-Validation

The samples are randomly partitioned into k sets of roughly equal size. A
model is fit using the all samples except the first subset (called the first
fold). The held-out samples are predicted by this model and used to estimate
performance measures. The first subset is returned to the training set and



70 4 Over-Fitting and Model Tuning

procedure repeats with the second subset held out, and so on. The k resam-
pled estimates of performance are summarized (usually with the mean and
standard error) and used to understand the relationship between the tuning
parameter(s) and model utility. The cross-validation process with k = 3 is
depicted in Fig. 4.6.

A slight variant of this method is to select the k partitions in a way that
makes the folds balanced with respect to the outcome (Kohavi 1995). Strati-
fied random sampling, previously discussed in Sect. 4.3, creates balance with
respect to the outcome.

Another version, leave-one-out cross-validation (LOOCV), is the special
case where k is the number of samples. In this case, since only one sam-
ple is held-out at a time, the final performance is calculated from the k in-
dividual held-out predictions. Additionally, repeated k-fold cross-validation
replicates the procedure in Fig. 4.6 multiple times. For example, if 10-fold
cross-validation was repeated five times, 50 different held-out sets would be
used to estimate model efficacy.

The choice of k is usually 5 or 10, but there is no formal rule. As k gets
larger, the difference in size between the training set and the resampling
subsets gets smaller. As this difference decreases, the bias of the technique
becomes smaller (i.e., the bias is smaller for k = 10 than k = 5). In this
context, the bias is the difference between the estimated and true values of
performance.

Another important aspect of a resampling technique is the uncertainty
(i.e., variance or noise). An unbiased method may be estimating the correct
value (e.g., the true theoretical performance) but may pay a high price in
uncertainty. This means that repeating the resampling procedure may pro-
duce a very different value (but done enough times, it will estimate the true
value). k-fold cross-validation generally has high variance compared to other
methods and, for this reason, might not be attractive. It should be said that
for large training sets, the potential issues with variance and bias become
negligible.

From a practical viewpoint, larger values of k are more computationally
burdensome. In the extreme, LOOCV is most computationally taxing because
it requires as many model fits as data points and each model fit uses a subset
that is nearly the same size of the training set. Molinaro (2005) found that
leave-one-out and k =10-fold cross-validation yielded similar results, indicat-
ing that k = 10 is more attractive from the perspective of computational
efficiency. Also, small values of k, say 2 or 3, have high bias but are very
computationally efficient. However, the bias that comes with small values of
k is about the same as the bias produced by the bootstrap (see below), but
with much larger variance.

Research (Molinaro 2005; Kim 2009) indicates that repeating k-fold cross-
validation can be used to effectively increase the precision of the estimates
while still maintaining a small bias.



4.4 Resampling Techniques 71

Fig. 4.6: A schematic of threefold cross-validation. Twelve training set sam-
ples are represented as symbols and are allocated to three groups. These
groups are left out in turn as models are fit. Performance estimates, such as
the error rate orR2 are calculated from each set of held-out samples. The aver-
age of the three performance estimates would be the cross-validation estimate
of model performance. In practice, the number of samples in the held-out sub-
sets can vary but are roughly equal size

Generalized Cross-Validation

For linear regression models, there is a formula for approximating the leave-
one-out error rate. The generalized cross-validation (GCV) statistic (Golub
et al. 1979) does not require iterative refitting of the model to different data
subsets. The formula for this statistic is the ith training set outcome

GCV =
1

n

n
∑

i=1

(

yi − ŷi
1− df/n

)2

,

where yi is the ith in the training set set outcome, ŷi is the model prediction
of that outcome, and df is the degrees of freedom of the model. The degrees
of freedom are an accounting of how many parameters are estimated by the
model and, by extension, a measure of complexity for linear regression models.
Based on this equation, two models with the same sums of square errors (the
numerator) would have different GCV values if the complexities of the models
were different.

Repeated Training/Test Splits

Repeated training/test splits is also known as “leave-group-out cross-
validation” or “Monte Carlo cross-validation.” This technique simply creates
multiple splits of the data into modeling and prediction sets (see Fig. 4.7).
The proportion of the data going into each subset is controlled by the prac-
titioner as is the number of repetitions. As previously discussed, the bias



72 4 Over-Fitting and Model Tuning

Fig. 4.7: A schematic of B repeated training and test set partitions. Twelve
training set samples are represented as symbols and are allocated to B subsets
that are 2/3 of the original training set. One difference between this procedure
and k-fold cross-validation are that samples can be represented in multiple
held-out subsets. Also, the number of repetitions is usually larger than in
k-fold cross-validation

of the resampling technique decreases as the amount of data in the subset
approaches the amount in the modeling set. A good rule of thumb is about
75–80%. Higher proportions are a good idea if the number of repetitions
is large.

The number of repetitions is important. Increasing the number of subsets
has the effect of decreasing the uncertainty of the performance estimates.
For example, to get a gross estimate of model performance, 25 repetitions will
be adequate if the user is willing to accept some instability in the resulting
values. However, to get stable estimates of performance, it is suggested to
choose a larger number of repetitions (say 50–200). This is also a function
of the proportion of samples being randomly allocated to the prediction set;
the larger the percentage, the more repetitions are needed to reduce the
uncertainty in the performance estimates.

The Bootstrap

A bootstrap sample is a random sample of the data taken with replace-
ment (Efron and Tibshirani 1986). This means that, after a data point is
selected for the subset, it is still available for further selection. The bootstrap
sample is the same size as the original data set. As a result, some samples
will be represented multiple times in the bootstrap sample while others will
not be selected at all. The samples not selected are usually referred to as the
“out-of-bag” samples. For a given iteration of bootstrap resampling, a model
is built on the selected samples and is used to predict the out-of-bag samples
(Fig. 4.8).

In general, bootstrap error rates tend to have less uncertainty than k-fold
cross-validation (Efron 1983). However, on average, 63.2% of the data points
the bootstrap sample are represented at least once, so this technique has bias



4.5 Case Study: Credit Scoring 73

Fig. 4.8: A schematic of bootstrap resampling. Twelve training set samples
are represented as symbols and are allocated to B subsets. Each subset is
the same size as the original and can contain multiple instances of the same
data point. Samples not selected by the bootstrap are predicted and used to
estimate model performance

similar to k-fold cross-validation when k ≈ 2. If the training set size is small,
this bias may be problematic, but will decrease as the training set sample
size becomes larger.

A few modifications of the simple bootstrap procedure have been devised
to eliminate this bias. The “632 method” (Efron 1983) addresses this issue by
creating a performance estimate that is a combination of the simple boot-
strap estimate and the estimate from re-predicting the training set (e.g., the
apparent error rate). For example, if a classification model was characterized
by its error rate, the 632 method would use

(0.632× simple bootstrap estimate) + (0.368× apparent error rate).

The modified bootstrap estimate reduces the bias, but can be unstable with
small samples sizes. This estimate can also result in unduly optimistic results
when the model severely over-fits the data, since the apparent error rate will
be close to zero. Efron and Tibshirani (1997) discuss another technique, called
the “632+ method,” for adjusting the bootstrap estimates.

4.5 Case Study: Credit Scoring

A straightforward application of predictive models is credit scoring. Existing
data can be used to create a model to predict the probability that applicants
have good credit. This information can be used to quantify the risk to the
lender.

The German credit data set is a popular tool for benchmarking machine
learning algorithms. It contains 1,000 samples that have been given labels
of good and bad credit. In the data set, 70% were rated as having good



74 4 Over-Fitting and Model Tuning

credit. As discussed in Sect. 11.2, when evaluating the accuracy of a model,
the baseline accuracy rate to beat would be 70% (which we could achieve by
simply predicting all samples to have good credit).

Along with these outcomes, data were collected related to credit history,
employment, account status, and so on. Some predictors are numeric, such as
the loan amount. However, most of the predictors are categorical in nature,
such as the purpose of the loan, gender, or marital status. The categorical
predictors were converted to “dummy variables” that related to a single cat-
egory. For example, the applicant’s residence information was categorized as
either “rent,”“own,” or “free housing.” This predictor would be converted to
three yes/no bits of information for each category. For example, one predic-
tor would have a value of one if the applicant rented and is zero otherwise.
Creation of dummy variables is discussed at length in Sect. 3.6. In all, there
were 41 predictors used to model the credit status of an individual.

We will use these data to demonstrate the process of tuning models us-
ing resampling, as defined in Fig. 4.4. For illustration, we took a stratified
random sample of 800 customers to use for training models. The remaining
samples will be used as a test set to verify performance when a final model is
determined. Section 11.2 will discuss the results of the test set in more detail.

4.6 Choosing Final Tuning Parameters

Once model performance has been quantified across sets of tuning parame-
ters, there are several philosophies on how to choose the final settings. The
simplest approach is to pick the settings associated with the numerically best
performance estimates.

For the credit scoring example, a nonlinear support vector machine model1

was evaluated over cost values ranging from 2−2 to 27. Each model was eval-
uated using five repeats of 10-fold cross-validation. Figure 4.9 and Table 4.1
show the accuracy profile across the candidate values of the cost parameter.
For each model, cross-validation generated 50 different estimates of the accu-
racy; the solid points in Fig. 4.9 are the average of these estimates. The bars
reflect the average plus/minus two-standard errors of the mean. The pro-
file shows an increase in accuracy until the cost value is one. Models with
cost values between 1 and 16 are relatively constant; after which, the accu-
racy decreases (likely due to over-fitting). The numerically optimal value of
the cost parameter is 8, with a corresponding accuracy rate of 75%. Notice
that the apparent accuracy rate, determined by re-predicting the training set
samples, indicates that the model improves as the cost is increased, although
more complex models over-fit the training set.

1 This model uses a radial basis function kernel, defined in Sect. 13.4. Although not
explored here, we used the analytical approach discussed later for determining the
kernel parameter and fixed this value for all resampling techniques.



4.6 Choosing Final Tuning Parameters 75

Cost

E
st

im
at

ed
 A

cc
ur

ac
y

0.70

0.75

0.80

0.85

0.90

0.95

1.00

2^−2 2^0 2^2 2^4 2^6

Apparent Cross−Validated

Fig. 4.9: The performance profile of a radial basis function support vec-
tor machine for the credit scoring example over different values of the cost
parameter. The vertical lines indicate ± two-standard errors of the accuracy

In general, it may be a good idea to favor simpler models over more
complex ones and choosing the tuning parameters based on the numerically
optimal value may lead to models that are overly complicated. Other schemes
for choosing less complex models should be investigated as they might lead
to simpler models that provide acceptable performance (relative to the nu-
merically optimal settings).

The“one-standard error”method for choosing simpler models finds the nu-
merically optimal value and its corresponding standard error and then seeks
the simplest model whose performance is within a single standard error of
the numerically best value. This procedure originated with classification and
regression trees (Breiman et al. (1984) and Sects. 8.1 and 14.1). In Fig. 4.10,
the standard error of the accuracy values when the cost is 8 is about 0.7%.
This technique would find the simplest tuning parameter settings associated
with accuracy no less than 74.3% (75%–0.7%). This procedure would choose
a value of 2 for the cost parameter.

Another approach is to choose a simpler model that is within a certain
tolerance of the numerically best value. The percent decrease in performance
could be quantified by (X −O)/O where X is the performance value and O
is the numerically optimal value. For example, in Fig. 4.9, the best accuracy
value across the profile was 75%. If a 4% loss in accuracy was acceptable as
a trade-off for a simpler model, accuracy values greater than 71.2% would



76 4 Over-Fitting and Model Tuning

Table 4.1: Repeated cross-validation accuracy results for the support vector
machine model

Resampled accuracy (%)
Cost Mean Std. error % Tolerance

0.25 70.0 0.0 −6.67
0.50 71.3 0.2 −4.90
1.00 74.0 0.5 −1.33
2.00 74.5 0.7 −0.63
4.00 74.1 0.7 −1.20
8.00 75.0 0.7 0.00
16.00 74.9 0.8 −0.13
32.00 72.5 0.7 −3.40
64.00 72.0 0.8 −4.07

128.00 72.0 0.8 −4.07

The one-standard error rule would select the simplest model with accuracy no less
than 74.3% (75%–0.7%). This corresponds to a cost value of 2. The “pick-the-best”
solution is shown in bold

be acceptable. For the profile in Fig. 4.9, a cost value of 1 would be chosen
using this approach.

As an illustration, additional resampling methods were applied to the same
data: repeated 10-fold cross-validation, LOOCV, the bootstrap (with and
without the 632 adjustment), and repeated training/test splits (with 20%
held-out). The latter two methods used 50 resamples to estimate performance.

The results are shown in Fig. 4.10. A common pattern within the cross-
validation methods is seen where accuracy peaks at cost values between 4
and 16 and stays roughly constant within this window.

In each case, performance rapidly increases with the cost value and then,
after the peak, decreases at a slower rate as over-fitting begins to occur.
The cross-validation techniques estimate the accuracy to be between 74.5%
and 76.6%. Compared to the other methods, the simple bootstrap is slightly
pessimistic, estimating the accuracy to be 74.2% while the 632 rule appears
to overcompensate for the bias and estimates the accuracy to be 82.3%.
Note that the standard error bands of the simple 10-fold cross-validation
technique are larger than the other methods, mostly because the standard
error is a function of the number of resamples used (10 versus the 50 used by
the bootstrap or repeated splitting).

The computational times varied considerably. The fastest was 10-fold
cross-validation, which clocked in at 0.82min. Repeated cross-validation, the
bootstrap, and repeated training-test splits fit the same number of models
and, on average, took about 5-fold more time to finish. LOOCV, which fits
as many models as there are samples in the training set, took 86-fold longer
and should only be considered when the number of samples is very small.



4.7 Data Splitting Recommendations 77

Cost

R
es

am
pl

ed
 A

cc
ur

ac
y

0.70

0.75

0.80

Bootstrap

2^−2 2^0 2^2 2^4 2^6

Bootstrap 632

10-fold Cross−Validation

0.70

0.75

0.80

Repeated 10-fold Cross−Validation

0.70

0.75

0.80

2^−2 2^0 2^2 2^4 2^6

Leave One Out Cross Validation Repeated Training/Test Splits

Fig. 4.10: The performance profile of nonlinear support vector machine over
different values of the cost parameter for the credit scoring example using
several different resampling procedures. The vertical lines indicate ± two-
standard errors of the accuracy

4.7 Data Splitting Recommendations

As previously discussed, there is a strong technical case to be made against
a single, independent test set:

• A test set is a single evaluation of the model and has limited ability to
characterize the uncertainty in the results.



78 4 Over-Fitting and Model Tuning

• Proportionally large test sets divide the data in a way that increases bias
in the performance estimates.

• With small sample sizes:

– The model may need every possible data point to adequately determine
model values.

– The uncertainty of the test set can be considerably large to the point
where different test sets may produce very different results.

• Resampling methods can produce reasonable predictions of how well the
model will perform on future samples.

No resampling method is uniformly better than another; the choice should
be made while considering several factors. If the samples size is small, we
recommend repeated 10-fold cross-validation for several reasons: the bias and
variance properties are good and, given the sample size, the computational
costs are not large. If the goal is to choose between models, as opposed to
getting the best indicator of performance, a strong case can be made for
using one of the bootstrap procedures since these have very low variance.
For large sample sizes, the differences between resampling methods become
less pronounced, and computational efficiency increases in importance. Here,
simple 10-fold cross-validation should provide acceptable variance, low bias,
and is relatively quick to compute.

Varma and Simon (2006) and Boulesteix and Strobl (2009) note that there
is a potential bias that can occur when estimating model performance during
parameter tuning. Suppose that the final model is chosen to correspond to the
tuning parameter value associated with the smallest error rate. This error rate
has the potential to be optimistic since it is a random quantity that is chosen
from a potentially large set of tuning parameters. Their research is focused on
scenarios with a small number of samples and a large number of predictors,
which exacerbates the problem. However, for moderately large training sets,
our experience is that this bias is small. In later sections, comparisons are
made between resampled estimates of performance and those derived from a
test set. For these particular data sets, the optimization bias is insubstantial.

4.8 Choosing Between Models

Once the settings for the tuning parameters have been determined for each
model, the question remains: how do we choose between multiple models?
Again, this largely depends on the characteristics of the data and the type
of questions being answered. However, predicting which model is most fit
for purpose can be difficult. Given this, we suggest the following scheme for
finalizing the type of model:



4.8 Choosing Between Models 79

1. Start with several models that are the least interpretable and most flexible,
such as boosted trees or support vector machines. Across many problem
domains, these models have a high likelihood of producing the empirically
optimum results (i.e., most accurate).

2. Investigate simpler models that are less opaque (e.g., not complete black
boxes), such as multivariate adaptive regression splines (MARS), partial
least squares, generalized additive models, or näıve Bayes models.

3. Consider using the simplest model that reasonably approximates the per-
formance of the more complex methods.

Using this methodology, the modeler can discover the “performance ceiling”
for the data set before settling on a model. In many cases, a range of models
will be equivalent in terms of performance so the practitioner can weight the
benefits of different methodologies (e.g., computational complexity, easy of
prediction, interpretability). For example, a nonlinear support vector machine
or random forest model might have superior accuracy, but the complexity
and scope of the prediction equation may prohibit exporting the prediction
equation to a production system. However, if a more interpretable model,
such as a MARS model, yielded similar accuracy, the implementation of the
prediction equation would be trivial and would also have superior execution
time.

Consider the credit scoring support vector machine classification model
that was characterized using resampling in Sect. 4.6. Using repeated 10-fold
cross-validation, the accuracy for this model was estimated to be 75% with
most of the resampling results between 66% and 82%.

Logistic regression (Sect. 12.2) is a more simplistic technique than the non-
linear support vector machine model for estimating a classification boundary.
It has no tuning parameters and its prediction equation is simple and easy to
implement using most software. Using the same cross-validation scheme, the
estimated accuracy for this model was 74.9% with most of the resampling
results between 66% and 82%.

The same 50 resamples were used to evaluate each model. Figure 4.11 uses
box plots to illustrate the distribution of the resampled accuracy estimates.
Clearly, there is no performance loss by using a more straightforward model
for these data.

Hothorn et al. (2005) and Eugster et al. (2008) describe statistical methods
for comparing methodologies based on resampling results. Since the accura-
cies were measured using identically resampled data sets, statistical methods
for paired comparisons can be used to determine if the differences between
models are statistically significant. A paired t-test can be used to evaluate
the hypothesis that the models have equivalent accuracies (on average) or,
analogously, that the mean difference in accuracy for the resampled data sets
is zero. For these two models, the average difference in model accuracy was
0.1%, with the logistic regression supplying the better results. The 95% con-
fidence interval for this difference was (−1.2%, 1%), indicating that there



80 4 Over-Fitting and Model Tuning

Accuracy

Logistic

SVM

0.65 0.70 0.75 0.80 0.85

Fig. 4.11: A comparison of the cross-validated accuracy estimates from a
support vector machine model and a logistic regression model for the credit
scoring data described in Sect. 4.5

is no evidence to support the idea that the accuracy for either model is
significantly better. This makes intuitive sense; the resampled accuracies in
Fig. 4.11 range from 61.3% to 85%; given this amount of variation in the
results, a 0.1% improvement of accuracy is not meaningful.

When a model is characterized in multiple ways, there is a possibility that
comparisons between models can lead to different conclusions. For example,
if a model is created to predict two classes, sensitivity and specificity may
be used to characterize the efficacy of models (see Chap. 11). If the data
set includes more events than nonevents, the sensitivity can be estimated
with greater precision than the specificity. With increased precision, there is
a higher likelihood that models can be differentiated in terms of sensitivity
than for specificity.

4.9 Computing

The R language is used to demonstrate modeling techniques. A concise review
of R and its basic usage are found in Appendix B. Those new to R should
review these materials prior to proceeding. The following sections will refer-
ence functions from the AppliedPredictiveModeling, caret, Design, e1071, ipred
and MASS packages. Syntax will be demonstrated using the simple two-class
example shown in Figs. 4.2 and 4.3 and the data from the credit scoring case
study.



4.9 Computing 81

Data Splitting

The two-class data shown in Fig. 4.1 are contained in the AppliedPredictive-
Modeling package and can be obtained using

> library(AppliedPredictiveModeling)

> data(twoClassData)

The predictors for the example data are stored in a data frame called
predictors. There are two columns for the predictors and 208 samples in
rows. The outcome classes are contained in a factor vector called classes.

> str(predictors)

'data.frame': 208 obs. of 2 variables:
$ PredictorA: num 0.158 0.655 0.706 0.199 0.395 ...
$ PredictorB: num 0.1609 0.4918 0.6333 0.0881 0.4152 ...

> str(classes)

Factor w/ 2 levels "Class1","Class2": 2 2 2 2 2 2 2 2 2 2 ...

The base R function sample can create simple random splits of the data.
To create stratified random splits of the data (based on the classes), the
createDataPartition function in the caret package can be used. The percent
of data that will be allocated to the training set should be specified.

> # Set the random number seed so we can reproduce the results

> set.seed(1)

> # By default, the numbers are returned as a list. Using

> # list = FALSE, a matrix of row numbers is generated.

> # These samples are allocated to the training set.

> trainingRows <- createDataPartition(classes,

+ p = .80,

+ list= FALSE)

> head(trainingRows)

Resample1
[1,] 99
[2,] 100
[3,] 101
[4,] 102
[5,] 103
[6,] 104

> # Subset the data into objects for training using

> # integer sub-setting.

> trainPredictors <- predictors[trainingRows, ]

> trainClasses <- classes[trainingRows]

> # Do the same for the test set using negative integers.

> testPredictors <- predictors[-trainingRows, ]

> testClasses <- classes[-trainingRows]

> str(trainPredictors)



82 4 Over-Fitting and Model Tuning

'data.frame': 167 obs. of 2 variables:
$ PredictorA: num 0.226 0.262 0.52 0.577 0.426 ...
$ PredictorB: num 0.291 0.225 0.547 0.553 0.321 ...

> str(testPredictors)

'data.frame': 41 obs. of 2 variables:
$ PredictorA: num 0.0658 0.1056 0.2909 0.4129 0.0472 ...
$ PredictorB: num 0.1786 0.0801 0.3021 0.2869 0.0414 ...

To generate a test set using maximum dissimilarity sampling, the caret func-
tion maxdissim can be used to sequentially sample the data.

Resampling

The caret package has various functions for data splitting. For example, to
use repeated training/test splits, the function createDataPartition could be
used again with an additional argument named times to generate multiple
splits.

> set.seed(1)

> # For illustration, generate the information needed for three

> # resampled versions of the training set.

> repeatedSplits <- createDataPartition(trainClasses, p = .80,

+ times = 3)

> str(repeatedSplits)

List of 3
$ Resample1: int [1:135] 1 2 3 4 5 6 7 9 11 12 ...
$ Resample2: int [1:135] 4 6 7 8 9 10 11 12 13 14 ...
$ Resample3: int [1:135] 2 3 4 6 7 8 9 10 11 12 ...

Similarly, the caret package has functions createResamples (for bootstrapping),
createFolds (for k-old cross-validation) and createMultiFolds (for repeated
cross-validation). To create indicators for 10-fold cross-validation,

> set.seed(1)

> cvSplits <- createFolds(trainClasses, k = 10,

+ returnTrain = TRUE)

> str(cvSplits)

List of 10
$ Fold01: int [1:151] 1 2 3 4 5 6 7 8 9 11 ...
$ Fold02: int [1:150] 1 2 3 4 5 6 8 9 10 12 ...
$ Fold03: int [1:150] 1 2 3 4 6 7 8 10 11 13 ...
$ Fold04: int [1:151] 1 2 3 4 5 6 7 8 9 10 ...
$ Fold05: int [1:150] 1 2 3 4 5 7 8 9 10 11 ...
$ Fold06: int [1:150] 2 4 5 6 7 8 9 10 11 12 ...
$ Fold07: int [1:150] 1 2 3 4 5 6 7 8 9 10 ...
$ Fold08: int [1:151] 1 2 3 4 5 6 7 8 9 10 ...
$ Fold09: int [1:150] 1 3 4 5 6 7 9 10 11 12 ...
$ Fold10: int [1:150] 1 2 3 5 6 7 8 9 10 11 ...

> # Get the first set of row numbers from the list.

> fold1 <- cvSplits[[1]]



4.9 Computing 83

To get the first 90% of the data (the first fold):

> cvPredictors1 <- trainPredictors[fold1,]

> cvClasses1 <- trainClasses[fold1]

> nrow(trainPredictors)

[1] 167
> nrow(cvPredictors1)

[1] 151

In practice, functions discussed in the next section can be used to automati-
cally create the resampled data sets, fit the models, and evaluate performance.

Basic Model Building in R

Now that we have training and test sets, we could fit a 5-nearest neighbor
classification model (Fig. 4.3) to the training data and use it to predict the test
set. There are multiple R functions for building this model: the knn function
in the MASS package, the ipredknn function in the ipred package, and the knn3

function in caret. The knn3 function can produce class predictions as well as
the proportion of neighbors for each class.

There are two main conventions for specifying models in R: the formula
interface and the non-formula (or “matrix”) interface. For the former, the
predictors are explicitly listed. A basic R formula has two sides: the left-hand
side denotes the outcome and the right-hand side describes how the predictors
are used. These are separated with a tilde (∼). For example, the formula

> modelFunction(price ~ numBedrooms + numBaths + acres,

+ data = housingData)

would predict the closing price of a house using three quantitative character-
istics. The formula y ∼ . can be used to indicate that all of the columns in the
data set (except y) should be used as a predictor. The formula interface has
many conveniences. For example, transformations such as log(acres) can be
specified in-line. Unfortunately, R does not efficiently store the information
about the formula. Using this interface with data sets that contain a large
number of predictors may unnecessarily slow the computations.

The non-formula interface specifies the predictors for the model using a
matrix or data frame (all the predictors in the object are used in the model).
The outcome data are usually passed into the model as a vector object.
For example,

> modelFunction(x = housePredictors, y = price)

Note that not all R functions have both interfaces.



84 4 Over-Fitting and Model Tuning

For knn3, we can estimate the 5-nearest neighbor model with

> trainPredictors <- as.matrix(trainPredictors)

> knnFit <- knn3(x = trainPredictors, y = trainClasses, k = 5)

> knnFit

5-nearest neighbor classification model

Call:
knn3.matrix(x = trainPredictors, y = trainClasses, k = 5)

Training set class distribution:

Class1 Class2
89 78

At this point, the knn3 object is ready to predict new samples. To assign
new samples to classes, the predict method is used with the model object.
The standard convention is

> testPredictions <- predict(knnFit, newdata = testPredictors,

+ type = "class")

> head(testPredictions)

[1] Class2 Class2 Class1 Class1 Class2 Class2
Levels: Class1 Class2

> str(testPredictions)

Factor w/ 2 levels "Class1","Class2": 2 2 1 1 2 2 2 2 2 2 ...

The value of the type argument varies across different modeling functions.

Determination of Tuning Parameters

To choose tuning parameters using resampling, sets of candidate values are
evaluated using different resamples of the data. A profile can be created to
understand the relationship between performance and the parameter values.
R has several functions and packages for this task. The e1071 package contains
the tune function, which can evaluate four types of models across a range of
parameters. Similarly, the errorest function in the ipred package can resample
single models. The train function in the caret package has built-in modules
for 144 models and includes capabilities for different resampling methods,
performances measures, and algorithms for choosing the best model from the
profile. This function also has capabilities for parallel processing so that the
resampled model fits can be executed across multiple computers or processors.
Our focus will be on the train function.

Section 4.6 illustrated parameter tuning for a support vector machine using
the credit scoring data. Using resampling, a value of the cost parameter was
estimated. As discussed in later chapters, the SVM model is characterized



4.9 Computing 85

by what type of kernel function the model uses. For example, the linear
kernel function specifies a linear relationship between the predictors and the
outcome. For the credit scoring data, a radial basis function (RBF) kernel
function was used. This kernel function has an additional tuning parameter
associated with it denoted as σ, which impacts the smoothness of the decision
boundary. Normally, several combinations of both tuning parameters would
be evaluated using resampling. However, Caputo et al. (2002) describe an
analytical formula that can be used to get reasonable estimates of σ. The
caret function train uses this approach to estimate the kernel parameter,
leaving only the cost parameter for tuning.

To tune an SVM model using the credit scoring training set samples, the
train function can be used. Both the training set predictors and outcome are
contained in an R data frame called GermanCreditTrain.

> library(caret)

> data(GermanCredit)

The chapters directory of the AppliedPredictiveModeling package contains
the code for creating the training and test sets. These data sets are contained
in the data frames GermanCreditTrain and GermanCreditTest, respectively.

We will use all the predictors to model the outcome. To do this, we use
the formula interface with the formula Class ∼ . the classes are stored in the
data frame column called class. The most basic function call would be
> set.seed(1056)

> svmFit <- train(Class ~ .,

> data = GermanCreditTrain,

> # The "method" argument indicates the model type.

> # See ?train for a list of available models.

> method = "svmRadial")

However, we would like to tailor the computations by overriding several of
the default values. First, we would like to pre-process the predictor data by
centering and scaling their values. To do this, the preProc argument can be
used:
> set.seed(1056)

> svmFit <- train(Class ~ .,

> data = GermanCreditTrain,

> method = "svmRadial",

> preProc = c("center", "scale"))

Also, for this function, the user can specify the exact cost values to investigate.
In addition, the function has algorithms to determine reasonable values for
many models. Using the option tuneLength = 10, the cost values 2−2, 2−2

. . . 27 are evaluated.
> set.seed(1056)

> svmFit <- train(Class ~ .,

> data = GermanCreditTrain,

> method = "svmRadial",

> preProc = c("center", "scale"),

> tuneLength = 10)



86 4 Over-Fitting and Model Tuning

By default, the basic bootstrap will be used to calculate performance mea-
sures. Repeated 10-fold cross-validation can be specified with the trainControl

function. The final syntax is then
> set.seed(1056)

> svmFit <- train(Class ~ .,

> data = GermanCreditTrain,

> method = "svmRadial",

> preProc = c("center", "scale"),

> tuneLength = 10,

> trControl = trainControl(method = "repeatedcv",

> repeats = 5,

> classProbs = TRUE))

> svmFit

800 samples
41 predictors
2 classes: 'Bad', 'Good'

Pre-processing: centered, scaled
Resampling: Cross-Validation (10-fold, repeated 5 times)

Summary of sample sizes: 720, 720, 720, 720, 720, 720, ...

Resampling results across tuning parameters:

C Accuracy Kappa Accuracy SD Kappa SD
0.25 0.7 0 0 0
0.5 0.724 0.141 0.0218 0.0752
1 0.75 0.326 0.0385 0.106
2 0.75 0.363 0.0404 0.0984
4 0.754 0.39 0.0359 0.0857
8 0.738 0.361 0.0404 0.0887
16 0.738 0.361 0.0458 0.1
32 0.732 0.35 0.043 0.0928
64 0.732 0.352 0.0453 0.0961
128 0.731 0.349 0.0451 0.0936

Tuning parameter 'sigma' was held constant at a value of 0.0202
Accuracy was used to select the optimal model using the largest value.
The final values used for the model were C = 4 and sigma = 0.0202.

A different random number seed and set of cost values were used in the
original analysis, so the results are not exactly the same as those shown in
Sect. 4.6. Using a “pick the best” approach, a final model was fit to all 800
training set samples with a σ value of 0.0202 and a cost value of 4. The plot

method can be used to visualize the performance profile. Figure 4.12 shows
an example visualization created from the syntax

> # A line plot of the average performance

> plot(svmFit, scales = list(x = list(log = 2)))

To predict new samples with this model, the predict method is called

> predictedClasses <- predict(svmFit, GermanCreditTest)

> str(predictedClasses)



4.9 Computing 87

Cost

A
cc

ur
ac

y 
(R

ep
ea

te
d 

C
ro

ss
−

V
al

id
at

io
n)

0.70

0.71

0.72

0.73

0.74

0.75

2^−2 2^0 2^2 2^4 2^6

Fig. 4.12: A visualization of the average performance profile of an SVM clas-
sification model produced from the plot method for the train class

Factor w/ 2 levels "Bad","Good": 1 1 2 2 1 2 2 2 1 1 ...

> # Use the "type" option to get class probabilities

> predictedProbs <- predict(svmFit, newdata = GermanCreditTest,

+ type = "prob")

> head(predictedProbs)

Bad Good
1 0.5351870 0.4648130
2 0.5084049 0.4915951
3 0.3377344 0.6622656
4 0.1092243 0.8907757
5 0.6024404 0.3975596
6 0.1339467 0.8660533

There are other R packages that can estimate performance via resampling.
The validate function in the Design package and the errorest function in the
ipred package can be used to estimate performance for a model with a single
candidate set of tuning parameters. The tune function of the e1071 package
can also determine parameter settings using resampling.

Between-Model Comparisons

In Sect. 4.6, the SVM model was contrasted with a logistic regression model.
While basic logistic regression has no tuning parameters, resampling can still
be used to characterize the performance of the model. The train function is



88 4 Over-Fitting and Model Tuning

once again used, with a different method argument of "glm" (for generalized
linear models). The same resampling specification is used and, since the ran-
dom number seed is set prior to modeling, the resamples are exactly the same
as those in the SVM model.

> set.seed(1056)

> logisticReg <- train(Class ~ .,

+ data = GermanCreditTrain,

+ method = "glm",

+ trControl = trainControl(method = "repeatedcv",

+ repeats = 5))

> logisticReg

800 samples
41 predictors
2 classes: 'Bad', 'Good'

No pre-processing
Resampling: Cross-Validation (10-fold, repeated 5 times)

Summary of sample sizes: 720, 720, 720, 720, 720, 720, ...

Resampling results

Accuracy Kappa Accuracy SD Kappa SD
0.749 0.365 0.0516 0.122

To compare these two models based on their cross-validation statistics,
the resamples function can be used with models that share a common set of
resampled data sets. Since the random number seed was initialized prior to
running the SVM and logistic models, paired accuracy measurements exist
for each data set. First, we create a resamples object from the models:

> resamp <- resamples(list(SVM = svmFit, Logistic = logisticReg))

> summary(resamp)

Call:
summary.resamples(object = resamp)

Models: SVM, Logistic
Number of resamples: 50

Accuracy
Min. 1st Qu. Median Mean 3rd Qu. Max. NA's

SVM 0.6500 0.7375 0.7500 0.754 0.7625 0.85 0
Logistic 0.6125 0.7250 0.7562 0.749 0.7844 0.85 0

Kappa
Min. 1st Qu. Median Mean 3rd Qu. Max. NA's

SVM 0.18920 0.3519 0.3902 0.3897 0.4252 0.5946 0
Logistic 0.07534 0.2831 0.3750 0.3648 0.4504 0.6250 0



4.9 Computing 89

The summary indicates that the performance distributions are very similar.
The NA column corresponds to cases where the resampled models failed (usu-
ally due to numerical issues). The resamples class has several methods for
visualizing the paired values (see ?xyplot.resamples for a list of plot types).
To assess possible differences between the models, the diff method is used:

> modelDifferences <- diff(resamp)

> summary(modelDifferences)

Call:
summary.diff.resamples(object = modelDifferences)

p-value adjustment: bonferroni
Upper diagonal: estimates of the difference
Lower diagonal: p-value for H0: difference = 0

Accuracy
SVM Logistic

SVM 0.005
Logistic 0.5921

Kappa
SVM Logistic

SVM 0.02498
Logistic 0.2687

The p-values for the model comparisons are large (0.592 for accuracy and
0.269 for Kappa), which indicates that the models fail to show any difference
in performance.

Exercises

4.1. Consider the music genre data set described in Sect. 1.4. The objective
for these data is to use the predictors to classify music samples into the
appropriate music genre.

(a) What data splitting method(s) would you use for these data? Explain.
(b) Using tools described in this chapter, provide code for implementing your

approach(es).

4.2. Consider the permeability data set described in Sect. 1.4. The objective
for these data is to use the predictors to model compounds’ permeability.

(a) What data splitting method(s) would you use for these data? Explain.
(b) Using tools described in this chapter, provide code for implementing your

approach(es).

4.3. Partial least squares (Sect. 6.3) was used to model the yield of a chemical
manufacturing process (Sect. 1.4). The data can be found in the AppliedPre-
dictiveModeling package and can be loaded using



90 4 Over-Fitting and Model Tuning

Resampled R2

Components Mean Std. Error

1 0.444 0.0272
2 0.500 0.0298
3 0.533 0.0302
4 0.545 0.0308
5 0.542 0.0322
6 0.537 0.0327
7 0.534 0.0333
8 0.534 0.0330
9 0.520 0.0326
10 0.507 0.0324

> library(AppliedPredictiveModeling)

> data(ChemicalManufacturingProcess)

The objective of this analysis is to find the number of PLS components
that yields the optimal R2 value (Sect. 5.1). PLS models with 1 through 10
components were each evaluated using five repeats of 10-fold cross-validation
and the results are presented in the following table:

(a) Using the“one-standard error”method, what number of PLS components
provides the most parsimonious model?

(b) Compute the tolerance values for this example. If a 10% loss in R2 is
acceptable, then what is the optimal number of PLS components?

(c) Several other models (discussed in Part II) with varying degrees of com-
plexity were trained and tuned and the results are presented in Fig. 4.13.
If the goal is to select the model that optimizes R2, then which model(s)
would you choose, and why?

(d) Prediction time, as well as model complexity (Sect. 4.8) are other factors
to consider when selecting the optimal model(s). Given each model’s pre-
diction time, model complexity, and R2 estimates, which model(s) would
you choose, and why?

4.4. Brodnjak-Vonina et al. (2005) develop a methodology for food laborato-
ries to determine the type of oil from a sample. In their procedure, they used
a gas chromatograph (an instrument that separate chemicals in a sample) to
measure seven different fatty acids in an oil. These measurements would then
be used to predict the type of oil in a food samples. To create their model,
they used 96 samples2 of seven types of oils.

These data can be found in the caret package using data(oil). The oil
types are contained in a factor variable called oilType. The types are pumpkin

2 The authors state that there are 95 samples of known oils. However, we count 96
in their Table 1 (pp. 33–35 of the article).



4.9 Computing 91

Resampled R Squared with 95% CI

P
re

di
ct

io
n 

T
im

e 
(s

ec
) 

fo
r 

50
0K

 S
am

pl
es

50

100

150

200

0.4 0.5 0.6 0.7

Boosted Linear Regression
Knn
Linear Regression
PLS

Random Forests
Regression Tree
SVM

Fig. 4.13: A plot of the estimated model performance against the time to
predict 500,000 new samples using the chemical manufacturing data

(coded as A), sunflower (B), peanut (C), olive (D), soybean (E), rapeseed (F)
and corn (G). In R,

> data(oil)

> str(oilType)

Factor w/ 7 levels "A","B","C","D",..: 1 1 1 1 1 1 1 1 1 1 ...
> table(oilType)

oilType
A B C D E F G

37 26 3 7 11 10 2

(a) Use the sample function in base R to create a completely random sample
of 60 oils. How closely do the frequencies of the random sample match
the original samples? Repeat this procedure several times of understand
the variation in the sampling process.

(b) Use the caret package function createDataPartition to create a stratified
random sample. How does this compare to the completely random sam-
ples?



92 4 Over-Fitting and Model Tuning

(c) With such a small samples size, what are the options for determining
performance of the model? Should a test set be used?

(d) One method for understanding the uncertainty of a test set is to use a
confidence interval. To obtain a confidence interval for the overall accu-
racy, the based R function binom.test can be used. It requires the user
to input the number of samples and the number correctly classified to
calculate the interval. For example, suppose a test set sample of 20 oil
samples was set aside and 76 were used for model training. For this test
set size and a model that is about 80% accurate (16 out of 20 correct),
the confidence interval would be computed using

> binom.test(16, 20)

Exact binomial test

data: 16 and 20
number of successes = 16, number of trials = 20, p-value = 0.01182
alternative hypothesis: true probability of success is not equal to 0.5
95 percent confidence interval:
0.563386 0.942666
sample estimates:
probability of success

0.8

In this case, the width of the 95% confidence interval is 37.9%. Try
different samples sizes and accuracy rates to understand the trade-off
between the uncertainty in the results, the model performance, and the
test set size.


	Part I General Strategies
	4 Over-Fitting and Model Tuning
	4.1 The Problem of Over-Fitting
	4.2 Model Tuning
	4.3 Data Splitting
	4.4 Resampling Techniques
	4.5 Case Study: Credit Scoring
	4.6 Choosing Final Tuning Parameters
	4.7 Data Splitting Recommendations
	4.8 Choosing Between Models
	4.9 Computing
	Exercises



