
Chapter 11

Measuring Performance in Classification
Models

In the previous part of this book we focused on building and evaluating
models for a continuous response. We now turn our focus to building and
evaluating models for a categorical response. Although many of the regression
modeling techniques can also be used for classification, the way we evaluate
model performance is necessarily very different since metrics like RMSE and
R2 are not appropriate in the context of classification. We begin this part
of the book by discussing metrics for evaluating classification model perfor-
mance. In the first section of this chapter we take an in-depth look at the
different aspects of classification model predictions and how these relate to
the question of interest. The two subsequent sections explore strategies for
evaluating classification models using statistics and visualizations.

11.1 Class Predictions

Classification models usually generate two types of predictions. Like regres-
sion models, classification models produce a continuous valued prediction,
which is usually in the form of a probability (i.e., the predicted values of
class membership for any individual sample are between 0 and 1 and sum
to 1). In addition to a continuous prediction, classification models generate
a predicted class, which comes in the form of a discrete category. For most
practical applications, a discrete category prediction is required in order to
make a decision. Automated spam filtering, for example, requires a definitive
judgement for each e-mail.

Although classification models produce both of these types of predictions,
often the focus is on the discrete prediction rather than the continuous predic-
tion. However, the probability estimates for each class can be very useful for
gauging the model’s confidence about the predicted classification. Returning
to the spam e-mail filter example, an e-mail message with a predicted prob-
ability of being spam of 0.51 would be classified the same as a message with

M. Kuhn and K. Johnson, Applied Predictive Modeling,
DOI 10.1007/978-1-4614-6849-3 11,
© Springer Science+Business Media New York 2013

247

248 11 Measuring Performance in Classification Models

a predicted probability of being spam of 0.99. While both messages would be
treated the same by the filter, we would have more confidence that the sec-
ond message was, in fact, truly spam. As a second example, consider building
a model to classify molecules by their in-vivo safety status (i.e., non-toxic,
weakly toxic, and strongly toxic; e.g., Piersma et al. 2004). A molecule with
predicted probabilities in each respective toxicity category of 0.34, 0.33, and
0.33, would be classified the same as a molecule with respective predicted
probabilities of 0.98, 0.01, and 0.01. However in this case, we are much more
confident that the second molecule is non-toxic as compared to the first.

In some applications, the desired outcome is the predicted class proba-
bilities which are then used as inputs for other calculations. Consider an
insurance company that wants to uncover and prosecute fraudulent claims.
Using historical claims data, a classification model could be built to predict
the probability of claim fraud. This probability would then be combined with
the company’s investigation costs and potential monetary loss to determine
if pursuing the investigation is in the best financial interest of the insurance
company. As another example of classification probabilities as inputs to a sub-
sequent model, consider the customer lifetime value (CLV) calculation which
is defined as the amount of profit associated with a customer over a period
of time (Gupta et al. 2006). To estimate the CLV, several quantities are re-
quired, including the amount paid by a consumer over a given time frame,
the cost of servicing the consumer, and the probability that the consumer
will make a purchase in the time frame.

As mentioned above, most classification models generate predicted class
probabilities. However, when some models are used for classification, like neu-
ral networks and partial least squares, they produce continuous predictions
that do not follow the definition of a probability-the predicted values are not
necessarily between 0 and 1 and do not sum to 1. For example, a partial least
squares classification model (described in more detail in Sect. 12.4) would
create 0/1 dummy variables for each class and simultaneously model these
values as a function of the predictors. When samples are predicted, the model
predictions are not guaranteed to be within 0 and 1. For classification mod-
els like these, a transformation must be used to coerce the predictions into
“probability-like” values so that they can be interpreted and used for classifi-
cation. One such method is the softmax transformation (Bridle 1990) which
is defined as

p̂∗� =
eŷ�

∑C
l=1 e

ŷl

where ŷ� is the numeric model prediction for the �th class and p̂∗� is the
transformed value between 0 and 1. Suppose that an outcome has three classes
and that a PLS model predicts values of ŷ1 = 0.25, ŷ2 = 0.76, and ŷ3 =-0.1.
The softmax function would transform these values to p̂∗1 = 0.30, p̂∗2 = 0.49,
and p̂∗3 = 0.21. To be clear, no probability statement is being created by
this transformation; it merely ensures that the predictions have the same
mathematical qualities as probabilities.

11.1 Class Predictions 249

Well-Calibrated Probabilities

Whether a classification model is used to predict spam e-mail, a molecule’s
toxicity status, or as inputs to insurance fraud or customer lifetime value
calculations, we desire that the estimated class probabilities are reflective of
the true underlying probability of the sample. That is, the predicted class
probability (or probability-like value) needs to be well-calibrated. To be well-
calibrated, the probabilities must effectively reflect the true likelihood of the
event of interest. Returning to the spam filter illustration, if a model produces
a probability or probability-like value of 20% for the likelihood of a particular
e-mail to be spam, then this value would be well-calibrated if similar types
of messages would truly be from that class on average in 1 of 5 samples.

One way to assess the quality of the class probabilities is using a calibration
plot. For a given set of data, this plot shows some measure of the observed
probability of an event versus the predicted class probability. One approach
for creating this visualization is to score a collection of samples with known
outcomes (preferably a test set) using a classification model. The next step
is to bin the data into groups based on their class probabilities. For example,
a set of bins might be [0, 10%], (10%, 20%], . . ., (90%, 100%]. For each
bin, determine the observed event rate. Suppose that 50 samples fell into
the bin for class probabilities less than 10% and there was a single event.
The midpoint of the bin is 5% and the observed event rate would be 2%.
The calibration plot would display the midpoint of the bin on the x-axis and
the observed event rate on the y-axis. If the points fall along a 45◦ line, the
model has produced well-calibrated probabilities.

As an illustration, a data set was simulated in a way that the true event
probabilities are known. For two classes (classes 1 and 2) and two predic-
tors (A and B), the true probability (p) of the event is generated from the
equation:

log

(

p

1− p

)

= −1− 2A− .2A2 + 2B2

Figure 11.1 shows a simulated test set along with the a contour line for
a p = 0.50 event probability. Two models were fit to the training set:
quadratic discriminant analysis (QDA, Sect. 13.1) and a random forest model
(Sect. 14.4). A test set of n = 1000 samples was used to score the model and
create the calibration plot also shown in Fig. 11.1. Both classification mod-
els have similar accuracy for the test set (about 87.1% for either model).
The calibration plot shows that the QDA class probabilities tend to perform
poorly compared to the random forest model. For example, in the bin with
class probabilities ranging from 20 to 30%, the observed percentage of events
for QDA was 4.6%, far lower than the percentage in the random forest model
(35.4%).

The class probabilities can be calibrated to more closely reflect the like-
lihood of the event (or, at least the likelihood seen in the actual data).

250 11 Measuring Performance in Classification Models

Predictor A

P
re

di
ct

or
 B

−4

−2

0

2

4

−2 −1 0 1 2 3
Bin Midpoint

O
bs

er
ve

d
E

ve
nt

 P
er

ce
nt

ag
e

0

20

40

60

80

100

0 20 40 60 80 100

qda rf

Fig. 11.1: Left: A simulated two-class data set with two predictors. The solid
black line denotes the 50% probability contour. Right: A calibration plot
of the test set probabilities for random forest and quadratic discriminant
analysis models

For example, Fig. 11.1 shows a sigmoidal pattern such that the QDA model
under-predicts the event probability when the true likelihood is moderately
high or low. An additional model could be created to adjust for this pattern.
One equation that is consistent with this sigmoidal pattern is the logistic
regression model (described in Sect. 12.2). The class predictions and true
outcome values from the training set can be used to post-process the proba-
bly estimates with the following formula (Platt 2000):

p̂∗ =
1

1 + exp (−β0 − β1p̂)
(11.1)

where the β parameters are estimated by predicting the true classes as a
function of the uncalibrated class probabilities (p̂). For the QDA model, this

process resulted in estimates β̂0 = −5.7 and β̂1 = 11.7. Figure 11.2 shows the
results for the test set samples using this correction method. The results show
improved calibration with the test set data. Alternatively, an application of
Bayes’ Rule (described model is Sect. 13.6) can be similarly applied to recal-
ibrate the predictions. The Bayesian approach also improves the predictions
(Fig. 11.2). Note that, after calibration, the samples must be reclassified to
ensure consistency between the new probabilities and the predicted classes.

11.1 Class Predictions 251

Bin Midpoint

O
bs

er
ve

d
E

ve
nt

 P
er

ce
nt

ag
e

0

20

40

60

80

100

0 20 40 60 80 100

QDA
Bayesian Calibration
Sigmoidal Calibration

Fig. 11.2: The original QDA class probabilities and recalibrated versions using
two different methodologies

Presenting Class Probabilities

Visualizations of the class probabilities are an effective method of commu-
nicating model results. For two classes, histograms of the predicted classes
for each of the true outcomes illustrate the strengths and weaknesses of a
model. In Chap. 4 we introduced the credit scoring example. Two classifi-
cation models were created to predict the quality of a customer’s credit: a
support vector machine (SVM) and logistic regression. Since the performance
of the two models were roughly equivalent, the logistic regression model was
favored due to its simplicity. The top panel of Fig. 11.3 shows histograms of
the test set probabilities for the logistic regression model (the panels indicate
the true credit status). The probability of bad credit for the customers with
good credit shows a skewed distribution where most customers’ probabili-
ties are quite low. In contrast, the probabilities for the customers with bad
credit are flat (or uniformly distributed), reflecting the model’s inability to
distinguish bad credit cases.

This figure also presents a calibration plot for these data. The accuracy of
the probability of bad credit degrades as it becomes larger to the point where
no samples with bad credit were predicted with a probability above 82.7%.
This pattern is indicative of a model that has both poor calibration and poor
performance.

When there are three or more classes, a heat map of the class probabilities
can help gauge the confidence in the predictions. Figure 11.4 shows the test
set results with eight classes (denotes A through I) and 48 samples. The

252 11 Measuring Performance in Classification Models

Probability of Bad Credit

C
ou

nt

0

10

20

30

40

0.0 0.2 0.4 0.6 0.8 1.0

True Outcome: Bad Credit

0.0 0.2 0.4 0.6 0.8 1.0

True Outcome: Good Credit

Bin Midpoint

O
bs

er
ve

d
E

ve
nt

 P
er

ce
nt

ag
e

0

20

40

60

80

100

0 20 40 60 80 100

Fig. 11.3: Top: Histograms for a set of probabilities associated with bad credit.
The two panels split the customers by their true class. Bottom: A calibration
plot for these probabilities

true classes are shown in the rows (along with the sample identifiers) and the
columns reflect the class probabilities. In some cases, such as Sample 20, there
was a clear signal associated with the predicted class (the class C probability
was 78.5%), while in other cases, the situation is murky. Consider Sample 7.
The four largest probabilities (and associated classes) were 19.6% (B), 19.3%
(C), 17.7% (A), and 15% (E). While the model places the highest individual
probability for this sample in the correct class, it is uncertain that it could
also be of class C, A, or E.

11.1 Class Predictions 253

Class Probability

I (Sample48)
I (Sample47)

H (Sample46)
H (Sample45)
G (Sample44)
G (Sample43)
F (Sample42)
F (Sample41)
F (Sample40)
F (Sample39)
E (Sample38)
E (Sample37)
E (Sample36)
E (Sample35)
E (Sample34)
E (Sample33)
E (Sample32)
E (Sample31)
E (Sample30)
E (Sample29)
E (Sample28)
E (Sample27)
C (Sample26)
C (Sample25)
C (Sample24)
C (Sample23)
C (Sample22)
C (Sample21)
C (Sample20)
C (Sample19)
C (Sample18)
C (Sample17)
C (Sample16)
C (Sample15)
C (Sample14)
C (Sample13)
C (Sample12)
B (Sample11)
B (Sample10)
B (Sample09)
B (Sample08)
B (Sample07)
B (Sample06)
B (Sample05)
A (Sample04)
A (Sample03)
A (Sample02)
A (Sample01)

A B C E F G H I

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Fig. 11.4: A heat map of a test set with eight classes. The true classes are
shown in the row labels while columns quantify the probabilities for each
category (labeled as A through I)

254 11 Measuring Performance in Classification Models

Table 11.1: The confusion matrix for the two-class problem (“events” and
“nonevents.”The table cells indicate number of the true positives (TP), false
positives (FP), true negatives (TN), and false negatives (FN)

Predicted Observed
Event Nonevent

Event TP FP
Nonevent FN TN

Equivocal Zones

An approach to improving classification performance is to create an equivocal
or indeterminate zone where the class is not formally predicted when the
confidence is not high. For a two-class problem that is nearly balanced in the
response, the equivocal zone could be defined as 0.50± z. If z were 0.10, then
samples with prediction probabilities between 0.40 and 0.60 would be called
“equivocal.” In this case, model performance would be calculated excluding
the samples in the indeterminate zone. The equivocal rate should also be
reported with the performance so that the rate of unpredicted results is well
understood. For data sets with more than 2 classes (C > 2), similar thresholds
can be applied where the largest class probability must be larger than (1/C)+
z to make a definitive prediction. For the data shown in Fig. 11.4, if (1/C)+z
is set to 30%, then 5 samples would be designated as equivocal.

11.2 Evaluating Predicted Classes

A common method for describing the performance of a classification model
is the confusion matrix. This is a simple cross-tabulation of the observed
and predicted classes for the data. Table 11.1 shows an example when the
outcome has two classes. Diagonal cells denote cases where the classes are
correctly predicted while the off-diagonals illustrate the number of errors for
each possible case.

The simplest metric is the overall accuracy rate (or, for pessimists, the
error rate). This reflects the agreement between the observed and predicted
classes and has the most straightforward interpretation. However, there are a
few disadvantages to using this statistic. First, overall accuracy counts make
no distinction about the type of errors being made. In spam filtering, the cost
of erroneous deleting an important email is likely to be higher than incorrectly
allowing a spam email past a filter. In situations where the costs are different,

11.2 Evaluating Predicted Classes 255

accuracy may not measure the important model characteristics. Provost et al.
(1998) provide a comprehensive discussion of this issue, which is examined
further below.

Second, one must consider the natural frequencies of each class. For
example, in the USA, pregnant women routinely have blood drawn for alpha-
fetoprotein testing, which attempts to detect genetic problems such as Down
syndrome. Suppose the rate of this disorder1 in fetuses is approximately 1 in
800 or about one-tenth of one percent. A predictive model can achieve almost
perfect accuracy by predicting all samples to be negative for Down syndrome.

What benchmark accuracy rate should be used to determine whether a
model is performing adequately? The no-information rate is the accuracy
rate that can be achieved without a model. There are various ways to define
this rate. For a data set with C classes, the simplest definition, based on pure
randomness, is 1/C. However, this does not take into account the relative
frequencies of the classes in the training set. For the Down syndrome exam-
ple, if 1,000 random samples are collected from the population who would
receive the test, the expected number of positive samples would be small
(perhaps 1 or 2). A model that simply predicted all samples to be negative
for Down syndrome would easily surpass the no-information rate based on
random guessing (50%). An alternate definition of the no-information rate is
the percentage of the largest class in the training set. Models with accuracy
greater than this rate might be considered reasonable. The effect of severe
class imbalances and some possible remedies are discussed in Chap. 16.

Rather than calculate the overall accuracy and compare it to the no-
information rate, other metrics can be used that take into account the class
distributions of the training set samples. The Kappa statistic (also known as
Cohen’s Kappa) was originally designed to assess the agreement between two
raters (Cohen 1960). Kappa takes into account the accuracy that would be
generated simply by chance. The form of the statistic is

Kappa =
O − E

1− E

where O is the observed accuracy and E is the expected accuracy based on
the marginal totals of the confusion matrix. The statistic can take on val-
ues between −1 and 1; a value of 0 means there is no agreement between
the observed and predicted classes, while a value of 1 indicates perfect con-
cordance of the model prediction and the observed classes. Negative values
indicate that the prediction is in the opposite direction of the truth, but large
negative values seldom occur, if ever, when working with predictive models.2

1 In medical terminology, this rate is referred to as the prevalence of a disease while
in Bayesian statistics it would be the prior distribution of the event.
2 This is true since predictive models seek to find a concordant relationship with
the truth. A large negative Kappa would imply that there is relationship between
the predictors and the response and the predictive model would seek to find the
relationship in the correct direction.

256 11 Measuring Performance in Classification Models

When the class distributions are equivalent, overall accuracy and Kappa are
proportional. Depending on the context, Kappa values within 0.30 to 0.50
indicate reasonable agreement. Suppose the accuracy for a model is high
(90%) but the expected accuracy is also high (85%), the Kappa statistic
would show moderate agreement (Kappa = 1/3) between the observed and
predicted classes.

The Kappa statistic can also be extended to evaluate concordance in prob-
lems with more than two classes. When there is a natural ordering to the
classes (e.g., “low,”“medium,” and “high”), an alternate form of the statistic
called weighted Kappa can be used to enact more substantial penalties on er-
rors that are further away from the true result. For example, a “low” sample
erroneously predicted as “high” would reduce the Kappa statistic more than
an error were “low” was predicted to be “medium.” See (Agresti 2002) for
more details.

Two-Class Problems

Consider the case where there are two classes. Table 11.1 shows the confusion
matrix for generic classes “event” and “nonevent.” The top row of the table
corresponds to samples predicted to be events. Some are predicted correctly
(the true positives, or TP) while others are inaccurately classified (false posi-
tives or FP). Similarly, the second row contains the predicted negatives with
true negatives (TN) and false negatives (FN).

For two classes, there are additional statistics that may be relevant when
one class is interpreted as the event of interest (such as Down syndrome in
the previous example). The sensitivity of the model is the rate that the event
of interest is predicted correctly for all samples having the event, or

Sensitivity =
samples with the event and predicted to have the event

samples having the event

The sensitivity is sometimes considered the true positive rate since it measures
the accuracy in the event population. Conversely, the specificity is defined as
the rate that nonevent samples are predicted as nonevents, or

Specificity =
samples without the event and predicted as nonevents

samples without the event

The false-positive rate is defined as one minus the specificity. Assuming a
fixed level of accuracy for the model, there is typically a trade-off to be made
between the sensitivity and specificity. Intuitively, increasing the sensitivity
of a model is likely to incur a loss of specificity, since more samples are being
predicted as events. Potential trade-offs between sensitivity and specificity
may be appropriate when there are different penalties associated with each

11.2 Evaluating Predicted Classes 257

Table 11.2: Test set confusion matrix for the logistic regression model training
with the credit scoring data from Sect. 4.5

Predicted Observed
Bad Good

Bad 24 10
Good 36 130

type of error. In spam filtering, there is usually a focus on specificity; most
people are willing to accept seeing some spam if emails from family members
or coworkers are not deleted. The receiver operating characteristic (ROC)
curve is one technique for evaluating this trade-off and is discussed in the
next section.

In Chap. 4 we introduced the credit scoring example. Two classification
models were created to predict the quality of a customer’s credit: a SVM and
logistic regression. Since the performance of the two models were roughly
equivalent, the logistic regression model was favored due to its simplicity.
Using the previously chosen test set of 200 customers, Table 11.2 shows the
confusion matrix associated with the logistic regression model. The overall
accuracy was 77%, which is slightly better than the no-information rate of
70%. The test set had a Kappa value of 0.375, which suggests moderate
agreement. If we choose the event of interest to be a customer with bad
credit, the sensitivity from this model would be estimated to be 40% and
the specificity to be 92.9%. Clearly, the model has trouble predicting when
customers have bad credit. This is likely due to the imbalance of the classes
and a lack of a strong predictor for bad credit.

Often, there is interest in having a single measure that reflects the false-
positive and false-negative rates. Youden’s J Index (Youden 1950), which is

J = Sensitivity + Specificity − 1

measures the proportions of correctly predicted samples for both the event
and nonevent groups. In some contexts, this may be an appropriate method
for summarizing the magnitude of both types of errors. The most common
method for combining sensitivity and specificity into a single value uses the
receiver operating characteristic (ROC) curve, discussed below.

One often overlooked aspect of sensitivity and specificity is that they are
conditional measures. Sensitivity is the accuracy rate for only the event popu-
lation (and specificity for the nonevents). Using the sensitivity and specificity,
the obstetrician can make statements such as “assuming that the fetus does
not have Down syndrome, the test has an accuracy of 95%.” However, these
statements might not be helpful to a patient since, for new samples, all that

258 11 Measuring Performance in Classification Models

is known is the prediction. The person using the model prediction is typically
interested in unconditional queries such as “what are the chances that the
fetus has the genetic disorder?” This depends on three values: the sensitiv-
ity and specificity of the diagnostic test and the prevalence of the event in
the population. Intuitively, if the event is rare, this should be reflected in
the answer. Taking the prevalence into account, the analog to sensitivity is
the positive predicted value, and the analog to specificity is the negative pre-
dicted value. These values make unconditional evaluations of the data.3 The
positive predicted value answers the question “what is the probability that
this sample is an event?” The formulas are

PPV =
Sensitivity × Prevalence

(Sensitivity × Prevalence) + ((1− Specificity)× (1− Prevalence))

NPV =
Specificity × (1− Prevalence)

(Prevalence× (1− Sensitivity)) + (Specificity × (1− Prevalence))

Clearly, the predictive values are nontrivial combinations of performance
and the rate of events. The top panel in Fig. 11.5 shows the effect of prevalence
on the predictive values when the model has a specificity of 95% and a
sensitivity of either 90% or 99%. Large negative predictive values can be
achieved when the prevalence is low. However, as the event rate becomes high,
the negative predictive value becomes very small. The opposite is true for the
positive predictive values. This figure also shows that a sizable difference in
sensitivity (90% versus 99%) has little effect on the positive predictive values.

The lower panel of Fig. 11.5 shows the positive predictive value as a func-
tion of sensitivity and specificity when the event rate is balanced (50%). In
this case, the positive predicted value would be

PPV =
Sensitivity

Sensitivity(1− Specificity)
=

TP

TP + FP

This figure also shows that the value of the sensitivity has a smaller effect
than specificity. For example, if specificity is high, say ≥90%, a large positive
predicted value can be achieved across a wide range of sensitivities.

Predictive values are not often used to characterize the model. There are
several reasons why, most of which are related to prevalence. First, prevalence
is hard to quantify. Our experience is that very few people, even experts, are
willing to propose an estimate of this quantity based on prior knowledge.
Also, the prevalence is dynamic. For example, the rate of spam emails in-
creases when new schemes are invented but later fall off to baseline levels.
For medical diagnoses, the prevalence of diseases can vary greatly depend-

3 In relation to Bayesian statistics, the sensitivity and specificity are the conditional
probabilities, the prevalence is the prior, and the positive/negative predicted values
are the posterior probabilities.

11.2 Evaluating Predicted Classes 259

Prevalence

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

PPV (Sensitivity = 90%)
PPV (Sensitivity = 99%)
NPV (Specificity = 95%)

Positive Predicted Value

Sensitivity

S
pe

ci
fic

ity

0.5

0.6

0.7

0.8

0.9

1.0

0.5 0.6 0.7 0.8 0.9 1.0

0.5

0.6

0.7

0.8

0.9

1.0

Fig. 11.5: Top: The effect of prevalence on the positive and negative predictive
values. The PPV was computed using a specificity of 95% and two values of
sensitivity. The NPV was computed with 90% sensitivity and 95% specificity.
Bottom: For a fixed prevalence of 50%, positive predictive values are shown
as a function of sensitivity and specificity

ing on the geographic location (e.g., urban versus rural). For example, in a
multicenter clinical trial of a diagnostic test for Neisseria gonorrhoeae, the
prevalence within the patient population varied from 0% to 42.9% across
nine clinical sites (Becton Dickinson and Company 1991).

260 11 Measuring Performance in Classification Models

Table 11.3: The confusion matrix and profit costs/benefits for the direct mail-
ing example of Larose (2006)

Predicted Observed Observed
Response Nonresponse Response Nonresponse

Response TP FP $26.40 −$2.00
Nonresponse FN TN −$28.40 –

Non-Accuracy-Based Criteria

For many commercial applications of predictive models, accuracy is not the
primary goal for the model. Often, the purpose of the model might be to:

• Predict investment opportunities that maximize return
• Improve customer satisfaction by market segmentation
• Lower inventory costs by improving product demand forecasts or
• Reduce costs associated with fraudulent transactions

While accuracy is important, it only describes how well the model predicts
the data. If the model is fit for purpose, other more direct metrics of per-
formance should be considered. These metrics quantify the consequences of
correct and incorrect predictions (i.e., the benefits and costs). For example,
in fraud detection, a model might be used to quantify the likelihood that a
transaction is fraudulent. Suppose that fraud is the event of interest. Any
model predictions of fraud (correct or not) have an associated cost for a more
in-depth review of the case. For true positives, there is also a quantifiable
benefit to catching bad transactions. Likewise, a false negative results in a
loss of income.

Consider the direct marketing application in Larose (2006, Chap. 7) where
a clothing company is interested in offering promotions by mail to its cus-
tomers. Using existing customer data on shopping habits, they wish to predict
who would respond (i.e., the two classes and “responders” and “nonrespon-
ders”). The 2×2 table of possible outcomes is shown in Table 11.3 where the
type of decisions is presented on the left and the revenue or cost per deci-
sion is on the right. For example, if the model were to accurately predict a
responder, the average profit when the customer responds to the promotion
is estimated to be $28.40. There is a small $2.00 cost for mailing the pro-
motion, so the net profit of a correct decision is $26.40. If we inaccurately
predict that a customer will respond (a false positive), the only loss is the
cost of the promotion ($2.00).

11.2 Evaluating Predicted Classes 261

Table 11.4: Left: A hypothetical test confusion matrix for a predictive model
with a sensitivity of 75% and a specificity of 94.4%. Right: The confusion
matrix when a mass mailing is used for all customers

Predicted Observed Observed
Response Nonresponse Response Nonresponse

Response 1, 500 1, 000 2,000 18,000
Nonresponse 500 17, 000 0 0

If the model accurately predicts a nonresponse, there is no gain or loss since
they would not have made a purchase and the mailer was not sent.4 However,
incorrectly predicting that a true responder would not respond means that
a potential $28.40 was lost, so this is the cost of a false-negative. The total
profit for a particular model is then

profit = $26.40TP − $2.00FP − $28.40FN (11.2)

However, the prevalence of the classes should be taken into account. The
response rate in direct marketing is often very low (Ling and Li 1998) so
the expected profit for a given marketing application may be driven by the
false-negative costs since this value is likely to be larger than the other two
in Eq. 11.2.

Table 11.4 shows hypothetical confusion matrices for 20,000 customers
with a 10% response rate. The table on the left is the result of a predicted
model with a sensitivity of 75% and a specificity of 94.4%. The total profit
would be $23,400 or $1.17 per customer. Suppose another model had the same
sensitivity but 100% specificity. In this case, the total profit would increase
to $25,400, a marginal gain given a significant increase in model performance
(mostly due to the low cost of mailing the promotion).

The right side of Table 11.4 shows the results when a mass mailing for all
the customers is used. This approach has perfect sensitivity and the worst
possible specificity. Here, due to the low costs, the profit is $16,800 or $0.84
per customer. This should be considered the baseline performance for any
predictive model to beat. The models could alternatively be characterized
using the profit gain or lift, estimated as the model profit above and beyond
the profit from a mass mailing.

With two classes, a general outline for incorporating unequal costs with
performance measures is given by Drummond and Holte (2000). They define
the probability-cost function (PCF) as

4 This depends on a few assumptions which may or may not be true. Section 20.1
discusses this aspect of the example in more detail in the context of net lift modeling.

262 11 Measuring Performance in Classification Models

PCF =
P × C(+|−)

P × C(−|+) + (1− P)× C(+|−)

where P is the (prior) probability of the event, C(−|+) is the cost associated
with incorrectly predicting an event (+) as a nonevent, and C(+|−) is the
cost of incorrectly predicting a nonevent. The PCF is the proportion of the
total costs associated with a false-positive sample. They suggest using the
normalized expected cost (NEC) function to characterize the model

NEC = PCF × (1− TP) + (1− PCF)× FP

for a specific set of costs. Essentially, the NEC takes into account the preva-
lence of the event, model performance, and the costs and scales the total
cost to be between 0 and 1. Note that this approach only assigns costs to
the two types of errors and might not be appropriate for problems where
there are other cost or benefits (such as the direct marketing costs shown in
Table 11.3).

11.3 Evaluating Class Probabilities

Class probabilities potentially offer more information about model predictions
than the simple class value. This section discussed several approaches to using
the probabilities to compare models.

Receiver Operating Characteristic (ROC) Curves

ROC curves (Altman and Bland 1994; Brown and Davis 2006; Fawcett 2006)
were designed as a general method that, given a collection of continuous data
points, determine an effective threshold such that values above the threshold
are indicative of a specific event. This tool will be examined in this context
in Chap. 19, but here, we describe how the ROC curve can be used for
determining alternate cutoffs for class probabilities.

For the credit model test set previously discussed, the sensitivity was poor
for the logistic regression model (40%), while the specificity was fairly high
(92.9%). These values were calculated from classes that were determined with
the default 50% probability threshold. Can we improve the sensitivity by
lowering the threshold5 to capture more true positives? Lowering the thresh-
old for classifying bad credit to 30% results in a model with improved sensi-

5 In this analysis, we have used the test set to investigate the effects of alternative
thresholds. Generally, a new threshold should be derived from a separate data set
than those used to train the model or evaluate performance.

11.3 Evaluating Class Probabilities 263

1 − Specificity

S
en

si
tiv

ity

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.0 0.2 0.4 0.6 0.8 1.0

0.500 (Spec = 0.929, Sens = 0.400)

0.300 (Spec = 0.786, Sens = 0.600)

Fig. 11.6: A receiver operator characteristic (ROC) curve for the logistic
regression model results for the credit model. The dot indicates the value
corresponding to a cutoff of 50% while the green square corresponds to a
cutoff of 30% (i.e., probabilities greater than 0.30 are called events)

tivity (60%) but decrease specificity (79.3%). Referring to Fig. 11.3, we see
that decreasing the threshold begins to capture more of the customers with
bad credit but also begins to encroach on the bulk of the customers with
good credit.

The ROC curve is created by evaluating the class probabilities for the
model across a continuum of thresholds. For each candidate threshold, the
resulting true-positive rate (i.e., the sensitivity) and the false-positive rate
(one minus the specificity) are plotted against each other. Figure 11.6 shows
the results of this process for the credit data. The solid black point is the de-
fault 50% threshold while the green square corresponds to the performance
characteristics for a threshold of 30%. In this figure, the numbers in paren-
theses are (specificity, sensitivity). Note that the trajectory of the curve
between (0, 0) and the 50% threshold is steep, indicating that the sensitivity
is increasing at a greater rate than the decrease in specificity. However, when
the sensitivity is greater than 70%, there is a more significant decrease in
specificity than the gain in sensitivity.

This plot is a helpful tool for choosing a threshold that appropriately
maximizes the trade-off between sensitivity and specificity. However, altering
the threshold only has the effect of making samples more positive (or negative

264 11 Measuring Performance in Classification Models

as the case may be). In the confusion matrix, it cannot move samples out
of both off-diagonal table cells. There is almost always a decrease in either
sensitivity or specificity as 1 is increased.

The ROC curve can also be used for a quantitative assessment of the model.
A perfect model that completely separates the two classes would have 100%
sensitivity and specificity. Graphically, the ROC curve would be a single step
between (0, 0) and (0, 1) and remain constant from (0, 1) to (1, 1). The area
under the ROC curve for such a model would be one. A completely ineffective
model would result in an ROC curve that closely follows the 45◦ diagonal
line and would have an area under the ROC curve of approximately 0.50. To
visually compare different models, their ROC curves can be superimposed
on the same graph. Comparing ROC curves can be useful in contrasting two
or more models with different predictor sets (for the same model), different
tuning parameters (i.e., within model comparisons), or complete different
classifiers (i.e., between models).

The optimal model should be shifted towards the upper left corner of the
plot. Alternatively, the model with the largest area under the ROC curve
would be the most effective. For the credit data, the logistic model had an
estimated area under the ROC curve of 0.78 with a 95% confidence inter-
val of (0.7, 0.85) determined using the bootstrap confidence interval method
(Hall et al. 2004). There is a considerable amount of research on methods
to formally compare multiple ROC curves. See Hanley and McNeil (1982),
DeLong et al. (1988), Venkatraman (2000), and Pepe et al. (2009) for more
information.

One advantage of using ROC curves to characterize models is that, since it
is a function of sensitivity and specificity, the curve is insensitive to disparities
in the class proportions (Provost et al. 1998; Fawcett 2006). A disadvantage
of using the area under the curve to evaluate models is that it obscures
information. For example, when comparing models, it is common that no
individual ROC curve is uniformly better than another (i.e., the curves cross).
By summarizing these curves, there is a loss of information, especially if
one particular area of the curve is of interest. For example, one model may
produce a steep ROC curve slope on the left but have a lower AUC than
another model. If the lower end of the ROC curve was of primary interest,
then AUC would not identify the best model. The partial area under the
ROC curve (McClish 1989) is an alternative that focuses on specific parts of
the curve.

The ROC curve is only defined for two-class problems but has been ex-
tended to handle three or more classes. Hand and Till (2001), Lachiche and
Flach (2003), and Li and Fine (2008) use different approaches extending the
definition of the ROC curve with more than two classes.

11.3 Evaluating Class Probabilities 265

Lift Charts

Lift charts (Ling and Li 1998) are a visualization tool for assessing the ability
of a model to detect events in a data set with two classes. Suppose a group
of samples with M events is scored using the event class probability. When
ordered by the class probability, one would hope that the events are ranked
higher than the nonevents. Lift charts do just this: rank the samples by
their scores and determine the cumulative event rate as more samples are
evaluated. In the optimal case, the M highest-ranked samples would contain
all M events. When the model is non-informative, the highest-ranked X%
of the data would contain, on average, X events. The lift is the number of
samples detected by a model above a completely random selection of samples.

To construct the lift chart we would take the following steps:

1. Predict a set of samples that were not used in the model building process
but have known outcomes.

2. Determine the baseline event rate, i.e., the percent of true events in the
entire data set.

3. Order the data by the classification probability of the event of interest.
4. For each unique class probability value, calculate the percent of true events

in all samples below the probability value.
5. Divide the percent of true events for each probability threshold by the

baseline event rate.

The lift chart plots the cumulative gain/lift against the cumulative percentage
of samples that have been screened. Figure 11.7 shows the best and worse
case lift curves for a data set with a 50% event rate. The non-informative
model has a curve that is close to the 45◦ reference line, meaning that the
model has no benefit for ranking samples. The other curve is indicative of
a model that can perfectly separate two classes. At the 50% point on the
x-axis, all of the events have been captured by the model.

Like ROC curves, the lift curves for different models can be compared to
find the most appropriate model and the area under the curve can be used as
a quantitative measure of performance. Also like ROC curves, some parts of
the lift curve are of more interest than others. For example, the section of the
curve associated with the highest-ranked samples should have an enriched
true-positive rate and is likely to be the most important part of the curve.

Consider the direct marketing application. Using this curve, a quasi-
threshold can be determined for a model. Again, suppose there is a 10%
response rate and that most of the responders are found in the top 7% of
model predictions. Sending the promotions to this subset of customers effec-
tively imposes a new threshold for customer response since samples below
the threshold will not be acted on.

In this application, recall that a predictive model would have to generate
more profit than the baseline profit associated with sending the promotion

266 11 Measuring Performance in Classification Models

% Samples Tested

%
 E

ve
nt

s
F

ou
nd

0

20

40

60

80

100

0 20 40 60 80 100

Random Perfect

Fig. 11.7: An example lift plot with two models: one that perfectly separates
two classes and another that is completely non-informative

to all customers. Using the lift plot, the expected profit can be calculated
for each point on the curve to determine if the lift is sufficient to beat the
baseline profit.

11.4 Computing

The R packages AppliedPredictiveModeling, caret, klaR, MASS, pROC, and
randomForest will be utilized in this section.

For illustration, the simulated data set shown in Fig. 11.1 will be used in
this section. To create these data, the quadBoundaryFunc function in the Ap-
pliedPredictiveModeling package is used to generate the predictors and out-
comes:

> library(AppliedPredictiveModeling)

> set.seed(975)

> simulatedTrain <- quadBoundaryFunc(500)

> simulatedTest <- quadBoundaryFunc(1000)

> head(simulatedTrain)

X1 X2 prob class
1 2.4685709 2.28742015 0.9647251 Class1
2 -0.1889407 -1.63949455 0.9913938 Class1

11.4 Computing 267

3 -1.9101460 -2.89194964 1.0000000 Class1
4 0.3481279 0.06707434 0.1529697 Class1
5 0.1401153 0.86900555 0.5563062 Class1
6 0.7717148 -0.91504835 0.2713248 Class2

The random forest and quadratic discriminant models will be fit to the data:

> library(randomForest)

> rfModel <- randomForest(class ~ X1 + X2,

+ data = simulatedTrain,

+ ntree = 2000)

> library(MASS) ## for the qda() function

> qdaModel <- qda(class ~ X1 + X2, data = simulatedTrain)

The output of the predict function for qda objects includes both the predicted
classes (in a slot called class) and the associated probabilities are in a matrix
called posterior. For the QDA model, predictions will be created for the
training and test sets. Later in this section, the training set probabilities
will be used in an additional model to calibrate the class probabilities. The
calibration will then be applied to the test set probabilities:

> qdaTrainPred <- predict(qdaModel, simulatedTrain)

> names(qdaTrainPred)

[1] "class" "posterior"
> head(qdaTrainPred$class)

[1] Class1 Class1 Class1 Class2 Class1 Class2
Levels: Class1 Class2

> head(qdaTrainPred$posterior)

Class1 Class2
1 0.7313136 0.268686374
2 0.8083861 0.191613899
3 0.9985019 0.001498068
4 0.3549247 0.645075330
5 0.5264952 0.473504846
6 0.3604055 0.639594534

> qdaTestPred <- predict(qdaModel, simulatedTest)

> simulatedTrain$QDAprob <- qdaTrainPred$posterior[,"Class1"]

> simulatedTest$QDAprob <- qdaTestPred$posterior[,"Class1"]

The random forest model requires two calls to the predict function to get the
predicted classes and the class probabilities:

> rfTestPred <- predict(rfModel, simulatedTest, type = "prob")

> head(rfTestPred)

Class1 Class2
1 0.4300 0.5700
2 0.5185 0.4815
3 0.9970 0.0030
4 0.9395 0.0605
5 0.0205 0.9795
6 0.2840 0.7160

> simulatedTest$RFprob <- rfTestPred[,"Class1"]

> simulatedTest$RFclass <- predict(rfModel, simulatedTest)

268 11 Measuring Performance in Classification Models

Sensitivity and Specificity

caret has functions for computing sensitivity and specificity. These functions
require the user to indicate the role of each of the classes:

> # Class 1 will be used as the event of interest

> sensitivity(data = simulatedTest$RFclass,

+ reference = simulatedTest$class,

+ positive = "Class1")

[1] 0.8278867
> specificity(data = simulatedTest$RFclass,

+ reference = simulatedTest$class,

+ negative = "Class2")

[1] 0.8946396

Predictive values can also be computed either by using the prevalence found
in the data set (46%) or by using prior judgement:

> posPredValue(data = simulatedTest$RFclass,

+ reference = simulatedTest$class,

+ positive = "Class1")

[1] 0.8695652
> negPredValue(data = simulatedTest$RFclass,

+ reference = simulatedTest$class,

+ positive = "Class2")

[1] 0.8596803
> # Change the prevalence manually

> posPredValue(data = simulatedTest$RFclass,

+ reference = simulatedTest$class,

+ positive = "Class1",

+ prevalence = .9)

[1] 0.9860567

Confusion Matrix

There are several functions in R to create the confusion matrix. The
confusionMatrix function in the caret package produces the table and associ-
ated statistics:

> confusionMatrix(data = simulatedTest$RFclass,

+ reference = simulatedTest$class,

+ positive = "Class1")

Confusion Matrix and Statistics

Reference
Prediction Class1 Class2

Class1 380 57
Class2 79 484

11.4 Computing 269

Accuracy : 0.864
95% CI : (0.8412, 0.8846)

No Information Rate : 0.541
P-Value [Acc > NIR] : < 2e-16

Kappa : 0.7252
Mcnemar's Test P-Value : 0.07174

Sensitivity : 0.8279
Specificity : 0.8946

Pos Pred Value : 0.8696
Neg Pred Value : 0.8597

Prevalence : 0.4590
Detection Rate : 0.3800

Detection Prevalence : 0.4370

'Positive' Class : Class1

There is also an option in this function to manually set the prevalence. If there
were more than two classes, the sensitivity, specificity, and similar statistics
are calculated on a “one-versus-all” basis (e.g., the first class versus a pool of
classes two and three).

Receiver Operating Characteristic Curves

The pROC package (Robin et al. 2011) can create the curve and derive various
statistics.6 First, an R object must be created that contains the relevant
information using the pROC function roc. The resulting object is then used
to generate the ROC curve or calculate the area under the curve. For example,

> library(pROC)

> rocCurve <- roc(response = simulatedTest$class,

+ predictor = simulatedTest$RFprob,

+ ## This function assumes that the second

+ ## class is the event of interest, so we

+ ## reverse the labels.

+ levels = rev(levels(simulatedTest$class)))

From this object, we can produce statistics (such as the area under the ROC
curve and its confidence interval):

> auc(rocCurve)

Area under the curve: 0.9328
> ci.roc(rocCurve)

95% CI: 0.9176-0.948 (DeLong)

6 R has a number of packages that can compute the ROC curve, including ROCR,
caTools, PresenceAbsence, and others.

270 11 Measuring Performance in Classification Models

1 − Specificity

S
en

si
tiv

ity

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.0 0.2 0.4 0.6 0.8 1.0

Fig. 11.8: An example of an ROC curve produced using the roc and plot.roc

functions in the pROC package

We can also use the plot function to produce the ROC curve itself:

> plot(rocCurve, legacy.axes = TRUE)

> ## By default, the x-axis goes backwards, used

> ## the option legacy.axes = TRUE to get 1-spec

> ## on the x-axis moving from 0 to 1

>

> ## Also, another curve can be added using

> ## add = TRUE the next time plot.auc is used.

Figure 11.8 shows the results of this function call.

Lift Charts

The lift curve can be created using the lift function in the caret package.
It takes a formula as the input where the true class is on the left-hand side
of the formula, and one or more columns for model class probabilities are on
the right. For example, to produce a lift plot for the random forest and QDA
test set probabilities,

11.4 Computing 271

> labs <- c(RFprob = "Random Forest",

+ QDAprob = "Quadratic Discriminant Analysis")

> liftCurve <- lift(class ~ RFprob + QDAprob, data = simulatedTest,

+ labels = labs)

> liftCurve

Call:
lift.formula(x = class ~ RFprob + QDAprob, data = simulatedTest, labels
= labs)

Models: Random Forest, Quadratic Discriminant Analysis
Event: Class1 (45.9%)

To plot two lift curves, the xyplot function is used to create a lattice plot:

> ## Add lattice options to produce a legend on top

> xyplot(liftCurve,

+ auto.key = list(columns = 2,

+ lines = TRUE,

+ points = FALSE))

See Fig. 11.9.

Calibrating Probabilities

Calibration plots as described above are available in the calibration.plot

function in the PresenceAbsence package and in the caret function calibration

(details below). The syntax for the calibration function is similar to the lift

function:

> calCurve <- calibration(class ~ RFprob + QDAprob, data = simulatedTest)

> calCurve

Call:
calibration.formula(x = class ~ RFprob + QDAprob, data = simulatedTest)

Models: RFprob, QDAprob
Event: Class1
Cuts: 11

> xyplot(calCurve, auto.key = list(columns = 2))

Figure 11.9 also shows this plot. An entirely different approach to calibration
plots that model the observed event rate as a function of the class probabilities
can be found in the calibrate.plot function of the gbm package.

To recalibrate the QDA probabilities, a post-processing model is created
that models the true outcome as a function of the class probability. To fit
a sigmoidal function, a logistic regression model is used (see Sect. 12.2 for
more details) via the glm function in base R. This function is an interface
to a broad set of methods called generalized linear models (Dobson 2002),
which includes logistic regression. To fit the model, the function requires the

272 11 Measuring Performance in Classification Models

% Samples Tested

%
 S

am
pl

es
 F

ou
nd

0

20

40

60

80

100

0 20 40 60 80 100

Random Forest
Quadratic Discriminant Analysis

Bin Midpoint

O
bs

er
ve

d
E

ve
nt

 P
er

ce
nt

ag
e

0

20

40

60

80

100

0 20 40 60 80 100

RFprob
QDAprob

Fig. 11.9: Examples of lift and calibration curves for the random forest and
QDA models

family argument to specify the type of outcome data being modeled. Since
our outcome is a discrete category, the binomial distribution is selected:

> ## The glm() function models the probability of the second factor

> ## level, so the function relevel() is used to temporarily reverse the

> ## factors levels.

11.4 Computing 273

> sigmoidalCal <- glm(relevel(class, ref = "Class2") ~ QDAprob,

+ data = simulatedTrain,

+ family = binomial)

> coef(summary(sigmoidalCal))

Estimate Std. Error z value Pr(>|z|)
(Intercept) -5.701055 0.5005652 -11.38924 4.731132e-30
QDAprob 11.717292 1.0705197 10.94542 6.989017e-28

The corrected probabilities are created by taking the original model and
applying Eq. 11.1 with the estimated slope and intercept. In R, the predict

function can be used:

> sigmoidProbs <- predict(sigmoidalCal,

+ newdata = simulatedTest[,"QDAprob", drop = FALSE],

+ type = "response")

> simulatedTest$QDAsigmoid <- sigmoidProbs

The Bayesian approach for calibration is to treat the training set class prob-
abilities to estimate the probabilities Pr[X] and Pr[X|Y = C�] (see Eq. 13.5
on page 354). In R, the näıve Bayes model function NaiveBayes in the klaR
package can be used for the computations:

> BayesCal <- NaiveBayes(class ~ QDAprob, data = simulatedTrain,

+ usekernel = TRUE)

> ## Like qda(), the predict function for this model creates

> ## both the classes and the probabilities

> BayesProbs <- predict(BayesCal,

+ newdata = simulatedTest[, "QDAprob", drop = FALSE])

> simulatedTest$QDABayes <- BayesProbs$posterior[, "Class1"]

> ## The probability values before and after calibration

> head(simulatedTest[, c(5:6, 8, 9)])

QDAprob RFprob QDAsigmoid QDABayes
1 0.3830767 0.4300 0.22927068 0.2515696
2 0.5440393 0.5185 0.66231139 0.6383383
3 0.9846107 0.9970 0.99708776 0.9995061
4 0.5463540 0.9395 0.66835048 0.6430232
5 0.2426705 0.0205 0.05428903 0.0566883
6 0.4823296 0.2840 0.48763794 0.5109129

The option usekernel = TRUE allows a flexible function to model the probabil-
ity distribution of the class probabilities.

These new probabilities are evaluated using another plot:

> calCurve2 <- calibration(class ~ QDAprob + QDABayes + QDAsigmoid,

+ data = simulatedTest)

> xyplot(calCurve2)

	Part III Classification Models
	11 Measuring Performance in Classification Models
	11.1 Class Predictions
	11.2 Evaluating Predicted Classes
	11.3 Evaluating Class Probabilities
	11.4 Computing

