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Preface

Machine learning is an integral part of many commercial applications and research
projects today, in areas ranging from medical diagnosis and treatment to finding your
friends on social networks. Many people think that machine learning can only be
applied by large companies with extensive research teams. In this book, we want to
show you how easy it can be to build machine learning solutions yourself, and how to
best go about it. With the knowledge in this book, you can build your own system for
finding out how people feel on Twitter, or making predictions about global warming.
The applications of machine learning are endless and, with the amount of data avail‐
able today, mostly limited by your imagination.

Who Should Read This Book
This book is for current and aspiring machine learning practitioners looking to
implement solutions to real-world machine learning problems. This is an introduc‐
tory book requiring no previous knowledge of machine learning or artificial intelli‐
gence (AI). We focus on using Python and the scikit-learn library, and work
through all the steps to create a successful machine learning application. The meth‐
ods we introduce will be helpful for scientists and researchers, as well as data scien‐
tists working on commercial applications. You will get the most out of the book if you
are somewhat familiar with Python and the NumPy and matplotlib libraries.

We made a conscious effort not to focus too much on the math, but rather on the
practical aspects of using machine learning algorithms. As mathematics (probability
theory, in particular) is the foundation upon which machine learning is built, we
won’t go into the analysis of the algorithms in great detail. If you are interested in the
mathematics of machine learning algorithms, we recommend the book The Elements
of Statistical Learning (Springer) by Trevor Hastie, Robert Tibshirani, and Jerome
Friedman, which is available for free at the authors’ website. We will also not describe
how to write machine learning algorithms from scratch, and will instead focus on
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how to use the large array of models already implemented in scikit-learn and other
libraries.

Why We Wrote This Book
There are many books on machine learning and AI. However, all of them are meant
for graduate students or PhD students in computer science, and they’re full of
advanced mathematics. This is in stark contrast with how machine learning is being
used, as a commodity tool in research and commercial applications. Today, applying
machine learning does not require a PhD. However, there are few resources out there
that fully cover all the important aspects of implementing machine learning in prac‐
tice, without requiring you to take advanced math courses. We hope this book will
help people who want to apply machine learning without reading up on years’ worth
of calculus, linear algebra, and probability theory.

Navigating This Book
This book is organized roughly as follows:

• Chapter 1 introduces the fundamental concepts of machine learning and its
applications, and describes the setup we will be using throughout the book.

• Chapters 2 and 3 describe the actual machine learning algorithms that are most
widely used in practice, and discuss their advantages and shortcomings.

• Chapter 4 discusses the importance of how we represent data that is processed by
machine learning, and what aspects of the data to pay attention to.

• Chapter 5 covers advanced methods for model evaluation and parameter tuning,
with a particular focus on cross-validation and grid search.

• Chapter 6 explains the concept of pipelines for chaining models and encapsulat‐
ing your workflow.

• Chapter 7 shows how to apply the methods described in earlier chapters to text
data, and introduces some text-specific processing techniques.

• Chapter 8 offers a high-level overview, and includes references to more advanced
topics.

While Chapters 2 and 3 provide the actual algorithms, understanding all of these
algorithms might not be necessary for a beginner. If you need to build a machine
learning system ASAP, we suggest starting with Chapter 1 and the opening sections of
Chapter 2, which introduce all the core concepts. You can then skip to “Summary and
Outlook” on page 127 in Chapter 2, which includes a list of all the supervised models
that we cover. Choose the model that best fits your needs and flip back to read the
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section devoted to it for details. Then you can use the techniques in Chapter 5 to eval‐
uate and tune your model.

Online Resources
While studying this book, definitely refer to the scikit-learn website for more in-
depth documentation of the classes and functions, and many examples. There is also
a video course created by Andreas Müller, “Advanced Machine Learning with scikit-
learn,” that supplements this book. You can find it at http://bit.ly/
advanced_machine_learning_scikit-learn.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program ele‐
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords. Also used for commands and module and
package names.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

This element signifies a tip or suggestion.

This element signifies a general note.
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This icon indicates a warning or caution.

Using Code Examples
Supplemental material (code examples, IPython notebooks, etc.) is available for
download at https://github.com/amueller/introduction_to_ml_with_python.

This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not
need to contact us for permission unless you’re reproducing a significant portion of
the code. For example, writing a program that uses several chunks of code from this
book does not require permission. Selling or distributing a CD-ROM of examples
from O’Reilly books does require permission. Answering a question by citing this
book and quoting example code does not require permission. Incorporating a signifi‐
cant amount of example code from this book into your product’s documentation does
require permission.

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: “An Introduction to Machine Learning
with Python by Andreas C. Müller and Sarah Guido (O’Reilly). Copyright 2017 Sarah
Guido and Andreas Müller, 978-1-449-36941-5.”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

Safari® Books Online
Safari Books Online is an on-demand digital library that deliv‐
ers expert content in both book and video form from the
world’s leading authors in technology and business.

Technology professionals, software developers, web designers, and business and crea‐
tive professionals use Safari Books Online as their primary resource for research,
problem solving, learning, and certification training.

Safari Books Online offers a range of plans and pricing for enterprise, government,
education, and individuals.

Members have access to thousands of books, training videos, and prepublication
manuscripts in one fully searchable database from publishers like O’Reilly Media,
Prentice Hall Professional, Addison-Wesley Professional, Microsoft Press, Sams, Que,
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Peachpit Press, Focal Press, Cisco Press, John Wiley & Sons, Syngress, Morgan Kauf‐
mann, IBM Redbooks, Packt, Adobe Press, FT Press, Apress, Manning, New Riders,
McGraw-Hill, Jones & Bartlett, Course Technology, and hundreds more. For more
information about Safari Books Online, please visit us online.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://bit.ly/intro-machine-learning-python.

To comment or ask technical questions about this book, send email to bookques‐
tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our web‐
site at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia
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CHAPTER 1

Introduction

Machine learning is about extracting knowledge from data. It is a research field at the
intersection of statistics, artificial intelligence, and computer science and is also
known as predictive analytics or statistical learning. The application of machine
learning methods has in recent years become ubiquitous in everyday life. From auto‐
matic recommendations of which movies to watch, to what food to order or which
products to buy, to personalized online radio and recognizing your friends in your
photos, many modern websites and devices have machine learning algorithms at their
core. When you look at a complex website like Facebook, Amazon, or Netflix, it is
very likely that every part of the site contains multiple machine learning models.

Outside of commercial applications, machine learning has had a tremendous influ‐
ence on the way data-driven research is done today. The tools introduced in this book
have been applied to diverse scientific problems such as understanding stars, finding
distant planets, discovering new particles, analyzing DNA sequences, and providing
personalized cancer treatments.

Your application doesn’t need to be as large-scale or world-changing as these exam‐
ples in order to benefit from machine learning, though. In this chapter, we will
explain why machine learning has become so popular and discuss what kinds of
problems can be solved using machine learning. Then, we will show you how to build
your first machine learning model, introducing important concepts along the way.

Why Machine Learning?
In the early days of “intelligent” applications, many systems used handcoded rules of
“if ” and “else” decisions to process data or adjust to user input. Think of a spam filter
whose job is to move the appropriate incoming email messages to a spam folder. You
could make up a blacklist of words that would result in an email being marked as

1



spam. This would be an example of using an expert-designed rule system to design an
“intelligent” application. Manually crafting decision rules is feasible for some applica‐
tions, particularly those in which humans have a good understanding of the process
to model. However, using handcoded rules to make decisions has two major disad‐
vantages:

• The logic required to make a decision is specific to a single domain and task.
Changing the task even slightly might require a rewrite of the whole system.

• Designing rules requires a deep understanding of how a decision should be made
by a human expert.

One example of where this handcoded approach will fail is in detecting faces in
images. Today, every smartphone can detect a face in an image. However, face detec‐
tion was an unsolved problem until as recently as 2001. The main problem is that the
way in which pixels (which make up an image in a computer) are “perceived” by the
computer is very different from how humans perceive a face. This difference in repre‐
sentation makes it basically impossible for a human to come up with a good set of
rules to describe what constitutes a face in a digital image.

Using machine learning, however, simply presenting a program with a large collec‐
tion of images of faces is enough for an algorithm to determine what characteristics
are needed to identify a face.

Problems Machine Learning Can Solve
The most successful kinds of machine learning algorithms are those that automate
decision-making processes by generalizing from known examples. In this setting,
which is known as supervised learning, the user provides the algorithm with pairs of
inputs and desired outputs, and the algorithm finds a way to produce the desired out‐
put given an input. In particular, the algorithm is able to create an output for an input
it has never seen before without any help from a human. Going back to our example
of spam classification, using machine learning, the user provides the algorithm with a
large number of emails (which are the input), together with information about
whether any of these emails are spam (which is the desired output). Given a new
email, the algorithm will then produce a prediction as to whether the new email is
spam.

Machine learning algorithms that learn from input/output pairs are called supervised
learning algorithms because a “teacher” provides supervision to the algorithms in the
form of the desired outputs for each example that they learn from. While creating a
dataset of inputs and outputs is often a laborious manual process, supervised learning
algorithms are well understood and their performance is easy to measure. If your
application can be formulated as a supervised learning problem, and you are able to
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create a dataset that includes the desired outcome, machine learning will likely be
able to solve your problem.

Examples of supervised machine learning tasks include:

Identifying the zip code from handwritten digits on an envelope
Here the input is a scan of the handwriting, and the desired output is the actual
digits in the zip code. To create a dataset for building a machine learning model,
you need to collect many envelopes. Then you can read the zip codes yourself
and store the digits as your desired outcomes.

Determining whether a tumor is benign based on a medical image
Here the input is the image, and the output is whether the tumor is benign. To
create a dataset for building a model, you need a database of medical images. You
also need an expert opinion, so a doctor needs to look at all of the images and
decide which tumors are benign and which are not. It might even be necessary to
do additional diagnosis beyond the content of the image to determine whether
the tumor in the image is cancerous or not.

Detecting fraudulent activity in credit card transactions
Here the input is a record of the credit card transaction, and the output is
whether it is likely to be fraudulent or not. Assuming that you are the entity dis‐
tributing the credit cards, collecting a dataset means storing all transactions and
recording if a user reports any transaction as fraudulent.

An interesting thing to note about these examples is that although the inputs and out‐
puts look fairly straightforward, the data collection process for these three tasks is
vastly different. While reading envelopes is laborious, it is easy and cheap. Obtaining
medical imaging and diagnoses, on the other hand, requires not only expensive
machinery but also rare and expensive expert knowledge, not to mention the ethical
concerns and privacy issues. In the example of detecting credit card fraud, data col‐
lection is much simpler. Your customers will provide you with the desired output, as
they will report fraud. All you have to do to obtain the input/output pairs of fraudu‐
lent and nonfraudulent activity is wait.

Unsupervised algorithms are the other type of algorithm that we will cover in this
book. In unsupervised learning, only the input data is known, and no known output
data is given to the algorithm. While there are many successful applications of these
methods, they are usually harder to understand and evaluate.

Examples of unsupervised learning include:

Identifying topics in a set of blog posts
If you have a large collection of text data, you might want to summarize it and
find prevalent themes in it. You might not know beforehand what these topics
are, or how many topics there might be. Therefore, there are no known outputs.
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Segmenting customers into groups with similar preferences
Given a set of customer records, you might want to identify which customers are
similar, and whether there are groups of customers with similar preferences. For
a shopping site, these might be “parents,” “bookworms,” or “gamers.” Because you
don’t know in advance what these groups might be, or even how many there are,
you have no known outputs.

Detecting abnormal access patterns to a website
To identify abuse or bugs, it is often helpful to find access patterns that are differ‐
ent from the norm. Each abnormal pattern might be very different, and you
might not have any recorded instances of abnormal behavior. Because in this
example you only observe traffic, and you don’t know what constitutes normal
and abnormal behavior, this is an unsupervised problem.

For both supervised and unsupervised learning tasks, it is important to have a repre‐
sentation of your input data that a computer can understand. Often it is helpful to
think of your data as a table. Each data point that you want to reason about (each
email, each customer, each transaction) is a row, and each property that describes that
data point (say, the age of a customer or the amount or location of a transaction) is a
column. You might describe users by their age, their gender, when they created an
account, and how often they have bought from your online shop. You might describe
the image of a tumor by the grayscale values of each pixel, or maybe by using the size,
shape, and color of the tumor.

Each entity or row here is known as a sample (or data point) in machine learning,
while the columns—the properties that describe these entities—are called features.

Later in this book we will go into more detail on the topic of building a good repre‐
sentation of your data, which is called feature extraction or feature engineering. You
should keep in mind, however, that no machine learning algorithm will be able to
make a prediction on data for which it has no information. For example, if the only
feature that you have for a patient is their last name, no algorithm will be able to pre‐
dict their gender. This information is simply not contained in your data. If you add
another feature that contains the patient’s first name, you will have much better luck,
as it is often possible to tell the gender by a person’s first name.

Knowing Your Task and Knowing Your Data
Quite possibly the most important part in the machine learning process is under‐
standing the data you are working with and how it relates to the task you want to
solve. It will not be effective to randomly choose an algorithm and throw your data at
it. It is necessary to understand what is going on in your dataset before you begin
building a model. Each algorithm is different in terms of what kind of data and what
problem setting it works best for. While you are building a machine learning solution,
you should answer, or at least keep in mind, the following questions:
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• What question(s) am I trying to answer? Do I think the data collected can answer
that question?

• What is the best way to phrase my question(s) as a machine learning problem?
• Have I collected enough data to represent the problem I want to solve?
• What features of the data did I extract, and will these enable the right

predictions?
• How will I measure success in my application?
• How will the machine learning solution interact with other parts of my research

or business product?

In a larger context, the algorithms and methods in machine learning are only one
part of a greater process to solve a particular problem, and it is good to keep the big
picture in mind at all times. Many people spend a lot of time building complex
machine learning solutions, only to find out they don’t solve the right problem.

When going deep into the technical aspects of machine learning (as we will in this
book), it is easy to lose sight of the ultimate goals. While we will not discuss the ques‐
tions listed here in detail, we still encourage you to keep in mind all the assumptions
that you might be making, explicitly or implicitly, when you start building machine
learning models.

Why Python?
Python has become the lingua franca for many data science applications. It combines
the power of general-purpose programming languages with the ease of use of
domain-specific scripting languages like MATLAB or R. Python has libraries for data
loading, visualization, statistics, natural language processing, image processing, and
more. This vast toolbox provides data scientists with a large array of general- and
special-purpose functionality. One of the main advantages of using Python is the abil‐
ity to interact directly with the code, using a terminal or other tools like the Jupyter
Notebook, which we’ll look at shortly. Machine learning and data analysis are funda‐
mentally iterative processes, in which the data drives the analysis. It is essential for
these processes to have tools that allow quick iteration and easy interaction.

As a general-purpose programming language, Python also allows for the creation of
complex graphical user interfaces (GUIs) and web services, and for integration into
existing systems.

scikit-learn
scikit-learn is an open source project, meaning that it is free to use and distribute,
and anyone can easily obtain the source code to see what is going on behind the
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scenes. The scikit-learn project is constantly being developed and improved, and it
has a very active user community. It contains a number of state-of-the-art machine
learning algorithms, as well as comprehensive documentation about each algorithm.
scikit-learn is a very popular tool, and the most prominent Python library for
machine learning. It is widely used in industry and academia, and a wealth of tutori‐
als and code snippets are available online. scikit-learn works well with a number of
other scientific Python tools, which we will discuss later in this chapter.

While reading this, we recommend that you also browse the scikit-learn user guide 
and API documentation for additional details on and many more options for each
algorithm. The online documentation is very thorough, and this book will provide
you with all the prerequisites in machine learning to understand it in detail.

Installing scikit-learn
scikit-learn depends on two other Python packages, NumPy and SciPy. For plot‐
ting and interactive development, you should also install matplotlib, IPython, and
the Jupyter Notebook. We recommend using one of the following prepackaged
Python distributions, which will provide the necessary packages:

Anaconda
A Python distribution made for large-scale data processing, predictive analytics,
and scientific computing. Anaconda comes with NumPy, SciPy, matplotlib,
pandas, IPython, Jupyter Notebook, and scikit-learn. Available on Mac OS,
Windows, and Linux, it is a very convenient solution and is the one we suggest
for people without an existing installation of the scientific Python packages. Ana‐
conda now also includes the commercial Intel MKL library for free. Using MKL
(which is done automatically when Anaconda is installed) can give significant
speed improvements for many algorithms in scikit-learn.

Enthought Canopy
Another Python distribution for scientific computing. This comes with NumPy,
SciPy, matplotlib, pandas, and IPython, but the free version does not come with
scikit-learn. If you are part of an academic, degree-granting institution, you
can request an academic license and get free access to the paid subscription ver‐
sion of Enthought Canopy. Enthought Canopy is available for Python 2.7.x, and
works on Mac OS, Windows, and Linux.

Python(x,y)
A free Python distribution for scientific computing, specifically for Windows.
Python(x,y) comes with NumPy, SciPy, matplotlib, pandas, IPython, and
scikit-learn.
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1 If you are unfamiliar with NumPy or matplotlib, we recommend reading the first chapter of the SciPy Lec‐
ture Notes.

If you already have a Python installation set up, you can use pip to install all of these
packages:

$ pip install numpy scipy matplotlib ipython scikit-learn pandas

Essential Libraries and Tools
Understanding what scikit-learn is and how to use it is important, but there are a
few other libraries that will enhance your experience. scikit-learn is built on top of
the NumPy and SciPy scientific Python libraries. In addition to NumPy and SciPy, we
will be using pandas and matplotlib. We will also introduce the Jupyter Notebook,
which is a browser-based interactive programming environment. Briefly, here is what
you should know about these tools in order to get the most out of scikit-learn.1

Jupyter Notebook
The Jupyter Notebook is an interactive environment for running code in the browser.
It is a great tool for exploratory data analysis and is widely used by data scientists.
While the Jupyter Notebook supports many programming languages, we only need
the Python support. The Jupyter Notebook makes it easy to incorporate code, text,
and images, and all of this book was in fact written as a Jupyter Notebook. All of the
code examples we include can be downloaded from GitHub.

NumPy
NumPy is one of the fundamental packages for scientific computing in Python. It
contains functionality for multidimensional arrays, high-level mathematical func‐
tions such as linear algebra operations and the Fourier transform, and pseudorandom
number generators.

In scikit-learn, the NumPy array is the fundamental data structure. scikit-learn
takes in data in the form of NumPy arrays. Any data you’re using will have to be con‐
verted to a NumPy array. The core functionality of NumPy is the ndarray class, a
multidimensional (n-dimensional) array. All elements of the array must be of the
same type. A NumPy array looks like this:

In[2]:

import numpy as np

x = np.array([[1, 2, 3], [4, 5, 6]])
print("x:\n{}".format(x))
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Out[2]:

x:
[[1 2 3]
 [4 5 6]]

We will be using NumPy a lot in this book, and we will refer to objects of the NumPy
ndarray class as “NumPy arrays” or just “arrays.”

SciPy
SciPy is a collection of functions for scientific computing in Python. It provides,
among other functionality, advanced linear algebra routines, mathematical function
optimization, signal processing, special mathematical functions, and statistical distri‐
butions. scikit-learn draws from SciPy’s collection of functions for implementing
its algorithms. The most important part of SciPy for us is scipy.sparse: this provides
sparse matrices, which are another representation that is used for data in scikit-
learn. Sparse matrices are used whenever we want to store a 2D array that contains
mostly zeros:

In[3]:

from scipy import sparse

# Create a 2D NumPy array with a diagonal of ones, and zeros everywhere else
eye = np.eye(4)
print("NumPy array:\n{}".format(eye))

Out[3]:

NumPy array:
[[ 1.  0.  0.  0.]
 [ 0.  1.  0.  0.]
 [ 0.  0.  1.  0.]
 [ 0.  0.  0.  1.]]

In[4]:

# Convert the NumPy array to a SciPy sparse matrix in CSR format
# Only the nonzero entries are stored
sparse_matrix = sparse.csr_matrix(eye)
print("\nSciPy sparse CSR matrix:\n{}".format(sparse_matrix))

Out[4]:

SciPy sparse CSR matrix:
  (0, 0)    1.0
  (1, 1)    1.0
  (2, 2)    1.0
  (3, 3)    1.0
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Usually it is not possible to create dense representations of sparse data (as they would
not fit into memory), so we need to create sparse representations directly. Here is a
way to create the same sparse matrix as before, using the COO format:

In[5]:

data = np.ones(4)
row_indices = np.arange(4)
col_indices = np.arange(4)
eye_coo = sparse.coo_matrix((data, (row_indices, col_indices)))
print("COO representation:\n{}".format(eye_coo))

Out[5]:

COO representation:
  (0, 0)    1.0
  (1, 1)    1.0
  (2, 2)    1.0
  (3, 3)    1.0

More details on SciPy sparse matrices can be found in the SciPy Lecture Notes.

matplotlib
matplotlib is the primary scientific plotting library in Python. It provides functions
for making publication-quality visualizations such as line charts, histograms, scatter
plots, and so on. Visualizing your data and different aspects of your analysis can give
you important insights, and we will be using matplotlib for all our visualizations.
When working inside the Jupyter Notebook, you can show figures directly in the
browser by using the %matplotlib notebook and %matplotlib inline commands.
We recommend using %matplotlib notebook, which provides an interactive envi‐
ronment (though we are using %matplotlib inline to produce this book). For
example, this code produces the plot in Figure 1-1:

In[6]:

%matplotlib inline
import matplotlib.pyplot as plt

# Generate a sequence of numbers from -10 to 10 with 100 steps in between
x = np.linspace(-10, 10, 100)
# Create a second array using sine
y = np.sin(x)
# The plot function makes a line chart of one array against another
plt.plot(x, y, marker="x")
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Figure 1-1. Simple line plot of the sine function using matplotlib

pandas
pandas is a Python library for data wrangling and analysis. It is built around a data
structure called the DataFrame that is modeled after the R DataFrame. Simply put, a
pandas DataFrame is a table, similar to an Excel spreadsheet. pandas provides a great
range of methods to modify and operate on this table; in particular, it allows SQL-like
queries and joins of tables. In contrast to NumPy, which requires that all entries in an
array be of the same type, pandas allows each column to have a separate type (for
example, integers, dates, floating-point numbers, and strings). Another valuable tool
provided by pandas is its ability to ingest from a great variety of file formats and data‐
bases, like SQL, Excel files, and comma-separated values (CSV) files. Going into
detail about the functionality of pandas is out of the scope of this book. However,
Python for Data Analysis by Wes McKinney (O’Reilly, 2012) provides a great guide.
Here is a small example of creating a DataFrame using a dictionary:

In[7]:

import pandas as pd

# create a simple dataset of people
data = {'Name': ["John", "Anna", "Peter", "Linda"],
        'Location' : ["New York", "Paris", "Berlin", "London"],
        'Age' : [24, 13, 53, 33]
       }

data_pandas = pd.DataFrame(data)
# IPython.display allows "pretty printing" of dataframes
# in the Jupyter notebook
display(data_pandas)
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This produces the following output:

Age Location Name
0 24 New York John

1 13 Paris Anna

2 53 Berlin Peter

3 33 London Linda

There are several possible ways to query this table. For example:

In[8]:

# Select all rows that have an age column greater than 30
display(data_pandas[data_pandas.Age > 30])

This produces the following result:

Age Location Name
2 53 Berlin Peter

3 33 London Linda

mglearn
This book comes with accompanying code, which you can find on GitHub. The
accompanying code includes not only all the examples shown in this book, but also
the mglearn library. This is a library of utility functions we wrote for this book, so
that we don’t clutter up our code listings with details of plotting and data loading. If
you’re interested, you can look up all the functions in the repository, but the details of
the mglearn module are not really important to the material in this book. If you see a
call to mglearn in the code, it is usually a way to make a pretty picture quickly, or to
get our hands on some interesting data.

Throughout the book we make ample use of NumPy, matplotlib
and pandas. All the code will assume the following imports:

import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
import mglearn

We also assume that you will run the code in a Jupyter Notebook
with the %matplotlib notebook or %matplotlib inline magic
enabled to show plots. If you are not using the notebook or these
magic commands, you will have to call plt.show to actually show
any of the figures.
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2 The six package can be very handy for that.

Python 2 Versus Python 3
There are two major versions of Python that are widely used at the moment: Python 2
(more precisely, 2.7) and Python 3 (with the latest release being 3.5 at the time of
writing). This sometimes leads to some confusion. Python 2 is no longer actively
developed, but because Python 3 contains major changes, Python 2 code usually does
not run on Python 3. If you are new to Python, or are starting a new project from
scratch, we highly recommend using the latest version of Python 3 without changes.
If you have a large codebase that you rely on that is written for Python 2, you are
excused from upgrading for now. However, you should try to migrate to Python 3 as
soon as possible. When writing any new code, it is for the most part quite easy to
write code that runs under Python 2 and Python 3.2 If you don’t have to interface with
legacy software, you should definitely use Python 3. All the code in this book is writ‐
ten in a way that works for both versions. However, the exact output might differ
slightly under Python 2.

Versions Used in this Book
We are using the following versions of the previously mentioned libraries in this
book:

In[9]:

import sys
print("Python version: {}".format(sys.version))

import pandas as pd
print("pandas version: {}".format(pd.__version__))

import matplotlib
print("matplotlib version: {}".format(matplotlib.__version__))

import numpy as np
print("NumPy version: {}".format(np.__version__))

import scipy as sp
print("SciPy version: {}".format(sp.__version__))

import IPython
print("IPython version: {}".format(IPython.__version__))

import sklearn
print("scikit-learn version: {}".format(sklearn.__version__))
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Out[9]:

Python version: 3.5.2 |Anaconda 4.1.1 (64-bit)| (default, Jul  2 2016, 17:53:06)
[GCC 4.4.7 20120313 (Red Hat 4.4.7-1)]
pandas version: 0.18.1
matplotlib version: 1.5.1
NumPy version: 1.11.1
SciPy version: 0.17.1
IPython version: 5.1.0
scikit-learn version: 0.18

While it is not important to match these versions exactly, you should have a version
of scikit-learn that is as least as recent as the one we used.

Now that we have everything set up, let’s dive into our first application of machine
learning.

This book assumes that you have version 0.18 or later of scikit-
learn. The model_selection module was added in 0.18, and if you
use an earlier version of scikit-learn, you will need to adjust the
imports from this module.

A First Application: Classifying Iris Species
In this section, we will go through a simple machine learning application and create
our first model. In the process, we will introduce some core concepts and terms.

Let’s assume that a hobby botanist is interested in distinguishing the species of some
iris flowers that she has found. She has collected some measurements associated with
each iris: the length and width of the petals and the length and width of the sepals, all
measured in centimeters (see Figure 1-2).

She also has the measurements of some irises that have been previously identified by
an expert botanist as belonging to the species setosa, versicolor, or virginica. For these
measurements, she can be certain of which species each iris belongs to. Let’s assume
that these are the only species our hobby botanist will encounter in the wild.

Our goal is to build a machine learning model that can learn from the measurements
of these irises whose species is known, so that we can predict the species for a new
iris.
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Figure 1-2. Parts of the iris flower

Because we have measurements for which we know the correct species of iris, this is a
supervised learning problem. In this problem, we want to predict one of several
options (the species of iris). This is an example of a classification problem. The possi‐
ble outputs (different species of irises) are called classes. Every iris in the dataset
belongs to one of three classes, so this problem is a three-class classification problem.

The desired output for a single data point (an iris) is the species of this flower. For a
particular data point, the species it belongs to is called its label.

Meet the Data
The data we will use for this example is the Iris dataset, a classical dataset in machine
learning and statistics. It is included in scikit-learn in the datasets module. We
can load it by calling the load_iris function:

In[10]:

from sklearn.datasets import load_iris
iris_dataset = load_iris()

The iris object that is returned by load_iris is a Bunch object, which is very similar
to a dictionary. It contains keys and values:
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In[11]:

print("Keys of iris_dataset: \n{}".format(iris_dataset.keys()))

Out[11]:

Keys of iris_dataset:
dict_keys(['target_names', 'feature_names', 'DESCR', 'data', 'target'])

The value of the key DESCR is a short description of the dataset. We show the begin‐
ning of the description here (feel free to look up the rest yourself):

In[12]:

print(iris_dataset['DESCR'][:193] + "\n...")

Out[12]:

Iris Plants Database
====================

Notes
----
Data Set Characteristics:
    :Number of Instances: 150 (50 in each of three classes)
    :Number of Attributes: 4 numeric, predictive att
...
----

The value of the key target_names is an array of strings, containing the species of
flower that we want to predict:

In[13]:

print("Target names: {}".format(iris_dataset['target_names']))

Out[13]:

Target names: ['setosa' 'versicolor' 'virginica']

The value of feature_names is a list of strings, giving the description of each feature:

In[14]:

print("Feature names: \n{}".format(iris_dataset['feature_names']))

Out[14]:

Feature names:
['sepal length (cm)', 'sepal width (cm)', 'petal length (cm)',
 'petal width (cm)']

The data itself is contained in the target and data fields. data contains the numeric
measurements of sepal length, sepal width, petal length, and petal width in a NumPy
array:
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In[15]:

print("Type of data: {}".format(type(iris_dataset['data'])))

Out[15]:

Type of data: <class 'numpy.ndarray'>

The rows in the data array correspond to flowers, while the columns represent the
four measurements that were taken for each flower:

In[16]:

print("Shape of data: {}".format(iris_dataset['data'].shape))

Out[16]:

Shape of data: (150, 4)

We see that the array contains measurements for 150 different flowers. Remember
that the individual items are called samples in machine learning, and their properties
are called features. The shape of the data array is the number of samples multiplied by
the number of features. This is a convention in scikit-learn, and your data will
always be assumed to be in this shape. Here are the feature values for the first five
samples:

In[17]:

print("First five columns of data:\n{}".format(iris_dataset['data'][:5]))

Out[17]:

First five columns of data:
[[ 5.1  3.5  1.4  0.2]
 [ 4.9  3.   1.4  0.2]
 [ 4.7  3.2  1.3  0.2]
 [ 4.6  3.1  1.5  0.2]
 [ 5.   3.6  1.4  0.2]]

From this data, we can see that all of the first five flowers have a petal width of 0.2 cm
and that the first flower has the longest sepal, at 5.1 cm.

The target array contains the species of each of the flowers that were measured, also
as a NumPy array:

In[18]:

print("Type of target: {}".format(type(iris_dataset['target'])))

Out[18]:

Type of target: <class 'numpy.ndarray'>

target is a one-dimensional array, with one entry per flower:
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In[19]:

print("Shape of target: {}".format(iris_dataset['target'].shape))

Out[19]:

Shape of target: (150,)

The species are encoded as integers from 0 to 2:

In[20]:

print("Target:\n{}".format(iris_dataset['target']))

Out[20]:

Target:
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2
 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
 2 2]

The meanings of the numbers are given by the iris['target_names'] array:
0 means setosa, 1 means versicolor, and 2 means virginica.

Measuring Success: Training and Testing Data
We want to build a machine learning model from this data that can predict the spe‐
cies of iris for a new set of measurements. But before we can apply our model to new
measurements, we need to know whether it actually works—that is, whether we
should trust its predictions.

Unfortunately, we cannot use the data we used to build the model to evaluate it. This
is because our model can always simply remember the whole training set, and will
therefore always predict the correct label for any point in the training set. This
“remembering” does not indicate to us whether our model will generalize well (in
other words, whether it will also perform well on new data).

To assess the model’s performance, we show it new data (data that it hasn’t seen
before) for which we have labels. This is usually done by splitting the labeled data we
have collected (here, our 150 flower measurements) into two parts. One part of the
data is used to build our machine learning model, and is called the training data or
training set. The rest of the data will be used to assess how well the model works; this
is called the test data, test set, or hold-out set.

scikit-learn contains a function that shuffles the dataset and splits it for you: the
train_test_split function. This function extracts 75% of the rows in the data as the
training set, together with the corresponding labels for this data. The remaining 25%
of the data, together with the remaining labels, is declared as the test set. Deciding
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how much data you want to put into the training and the test set respectively is some‐
what arbitrary, but using a test set containing 25% of the data is a good rule of thumb.

In scikit-learn, data is usually denoted with a capital X, while labels are denoted by
a lowercase y. This is inspired by the standard formulation f(x)=y in mathematics,
where x is the input to a function and y is the output. Following more conventions
from mathematics, we use a capital X because the data is a two-dimensional array (a
matrix) and a lowercase y because the target is a one-dimensional array (a vector).

Let’s call train_test_split on our data and assign the outputs using this nomencla‐
ture:

In[21]:

from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(
    iris_dataset['data'], iris_dataset['target'], random_state=0)

Before making the split, the train_test_split function shuffles the dataset using a
pseudorandom number generator. If we just took the last 25% of the data as a test set,
all the data points would have the label 2, as the data points are sorted by the label
(see the output for iris['target'] shown earlier). Using a test set containing only
one of the three classes would not tell us much about how well our model generalizes,
so we shuffle our data to make sure the test data contains data from all classes.

To make sure that we will get the same output if we run the same function several
times, we provide the pseudorandom number generator with a fixed seed using the
random_state parameter. This will make the outcome deterministic, so this line will
always have the same outcome. We will always fix the random_state in this way when
using randomized procedures in this book.

The output of the train_test_split function is X_train, X_test, y_train, and
y_test, which are all NumPy arrays. X_train contains 75% of the rows of the dataset,
and X_test contains the remaining 25%:

In[22]:

print("X_train shape: {}".format(X_train.shape))
print("y_train shape: {}".format(y_train.shape))

Out[22]:

X_train shape: (112, 4)
y_train shape: (112,)
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In[23]:

print("X_test shape: {}".format(X_test.shape))
print("y_test shape: {}".format(y_test.shape))

Out[23]:

X_test shape: (38, 4)
y_test shape: (38,)

First Things First: Look at Your Data
Before building a machine learning model it is often a good idea to inspect the data,
to see if the task is easily solvable without machine learning, or if the desired infor‐
mation might not be contained in the data.

Additionally, inspecting your data is a good way to find abnormalities and peculiari‐
ties. Maybe some of your irises were measured using inches and not centimeters, for
example. In the real world, inconsistencies in the data and unexpected measurements
are very common.

One of the best ways to inspect data is to visualize it. One way to do this is by using a
scatter plot. A scatter plot of the data puts one feature along the x-axis and another
along the y-axis, and draws a dot for each data point. Unfortunately, computer
screens have only two dimensions, which allows us to plot only two (or maybe three)
features at a time. It is difficult to plot datasets with more than three features this way.
One way around this problem is to do a pair plot, which looks at all possible pairs of
features. If you have a small number of features, such as the four we have here, this is
quite reasonable. You should keep in mind, however, that a pair plot does not show
the interaction of all of features at once, so some interesting aspects of the data may
not be revealed when visualizing it this way.

Figure 1-3 is a pair plot of the features in the training set. The data points are colored
according to the species the iris belongs to. To create the plot, we first convert the
NumPy array into a pandas DataFrame. pandas has a function to create pair plots
called scatter_matrix. The diagonal of this matrix is filled with histograms of each
feature:

In[24]:

# create dataframe from data in X_train
# label the columns using the strings in iris_dataset.feature_names
iris_dataframe = pd.DataFrame(X_train, columns=iris_dataset.feature_names)
# create a scatter matrix from the dataframe, color by y_train
grr = pd.scatter_matrix(iris_dataframe, c=y_train, figsize=(15, 15), marker='o',
                        hist_kwds={'bins': 20}, s=60, alpha=.8, cmap=mglearn.cm3)
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Figure 1-3. Pair plot of the Iris dataset, colored by class label

From the plots, we can see that the three classes seem to be relatively well separated
using the sepal and petal measurements. This means that a machine learning model
will likely be able to learn to separate them.

Building Your First Model: k-Nearest Neighbors
Now we can start building the actual machine learning model. There are many classi‐
fication algorithms in scikit-learn that we could use. Here we will use a k-nearest
neighbors classifier, which is easy to understand. Building this model only consists of
storing the training set. To make a prediction for a new data point, the algorithm
finds the point in the training set that is closest to the new point. Then it assigns the
label of this training point to the new data point.
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The k in k-nearest neighbors signifies that instead of using only the closest neighbor
to the new data point, we can consider any fixed number k of neighbors in the train‐
ing (for example, the closest three or five neighbors). Then, we can make a prediction
using the majority class among these neighbors. We will go into more detail about
this in Chapter 2; for now, we’ll use only a single neighbor.

All machine learning models in scikit-learn are implemented in their own classes,
which are called Estimator classes. The k-nearest neighbors classification algorithm
is implemented in the KNeighborsClassifier class in the neighbors module. Before
we can use the model, we need to instantiate the class into an object. This is when we
will set any parameters of the model. The most important parameter of KNeighbor
sClassifier is the number of neighbors, which we will set to 1:

In[25]:

from sklearn.neighbors import KNeighborsClassifier
knn = KNeighborsClassifier(n_neighbors=1)

The knn object encapsulates the algorithm that will be used to build the model from
the training data, as well the algorithm to make predictions on new data points. It will
also hold the information that the algorithm has extracted from the training data. In
the case of KNeighborsClassifier, it will just store the training set.

To build the model on the training set, we call the fit method of the knn object,
which takes as arguments the NumPy array X_train containing the training data and
the NumPy array y_train of the corresponding training labels:

In[26]:

knn.fit(X_train, y_train)

Out[26]:

KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski',
           metric_params=None, n_jobs=1, n_neighbors=1, p=2,
           weights='uniform')

The fit method returns the knn object itself (and modifies it in place), so we get a
string representation of our classifier. The representation shows us which parameters
were used in creating the model. Nearly all of them are the default values, but you can
also find n_neighbors=1, which is the parameter that we passed. Most models in
scikit-learn have many parameters, but the majority of them are either speed opti‐
mizations or for very special use cases. You don’t have to worry about the other
parameters shown in this representation. Printing a scikit-learn model can yield
very long strings, but don’t be intimidated by these. We will cover all the important
parameters in Chapter 2. In the remainder of this book, we will not show the output
of fit because it doesn’t contain any new information.
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Making Predictions
We can now make predictions using this model on new data for which we might not
know the correct labels. Imagine we found an iris in the wild with a sepal length of
5 cm, a sepal width of 2.9 cm, a petal length of 1 cm, and a petal width of 0.2 cm.
What species of iris would this be? We can put this data into a NumPy array, again by
calculating the shape—that is, the number of samples (1) multiplied by the number of
features (4):

In[27]:

X_new = np.array([[5, 2.9, 1, 0.2]])
print("X_new.shape: {}".format(X_new.shape))

Out[27]:

X_new.shape: (1, 4)

Note that we made the measurements of this single flower into a row in a two-
dimensional NumPy array, as scikit-learn always expects two-dimensional arrays
for the data.

To make a prediction, we call the predict method of the knn object:

In[28]:

prediction = knn.predict(X_new)
print("Prediction: {}".format(prediction))
print("Predicted target name: {}".format(
       iris_dataset['target_names'][prediction]))

Out[28]:

Prediction: [0]
Predicted target name: ['setosa']

Our model predicts that this new iris belongs to the class 0, meaning its species is
setosa. But how do we know whether we can trust our model? We don’t know the cor‐
rect species of this sample, which is the whole point of building the model!

Evaluating the Model
This is where the test set that we created earlier comes in. This data was not used to
build the model, but we do know what the correct species is for each iris in the test
set.

Therefore, we can make a prediction for each iris in the test data and compare it
against its label (the known species). We can measure how well the model works by
computing the accuracy, which is the fraction of flowers for which the right species
was predicted:
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In[29]:

y_pred = knn.predict(X_test)
print("Test set predictions:\n {}".format(y_pred))

Out[29]:

Test set predictions:
 [2 1 0 2 0 2 0 1 1 1 2 1 1 1 1 0 1 1 0 0 2 1 0 0 2 0 0 1 1 0 2 1 0 2 2 1 0 2]

In[30]:

print("Test set score: {:.2f}".format(np.mean(y_pred == y_test)))

Out[30]:

Test set score: 0.97

We can also use the score method of the knn object, which will compute the test set
accuracy for us:

In[31]:

print("Test set score: {:.2f}".format(knn.score(X_test, y_test)))

Out[31]:

Test set score: 0.97

For this model, the test set accuracy is about 0.97, which means we made the right
prediction for 97% of the irises in the test set. Under some mathematical assump‐
tions, this means that we can expect our model to be correct 97% of the time for new
irises. For our hobby botanist application, this high level of accuracy means that our
model may be trustworthy enough to use. In later chapters we will discuss how we
can improve performance, and what caveats there are in tuning a model.

Summary and Outlook
Let’s summarize what we learned in this chapter. We started with a brief introduction
to machine learning and its applications, then discussed the distinction between
supervised and unsupervised learning and gave an overview of the tools we’ll be
using in this book. Then, we formulated the task of predicting which species of iris a
particular flower belongs to by using physical measurements of the flower. We used a
dataset of measurements that was annotated by an expert with the correct species to
build our model, making this a supervised learning task. There were three possible
species, setosa, versicolor, or virginica, which made the task a three-class classification
problem. The possible species are called classes in the classification problem, and the
species of a single iris is called its label.

The Iris dataset consists of two NumPy arrays: one containing the data, which is
referred to as X in scikit-learn, and one containing the correct or desired outputs,
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which is called y. The array X is a two-dimensional array of features, with one row per
data point and one column per feature. The array y is a one-dimensional array, which
here contains one class label, an integer ranging from 0 to 2, for each of the samples.

We split our dataset into a training set, to build our model, and a test set, to evaluate
how well our model will generalize to new, previously unseen data.

We chose the k-nearest neighbors classification algorithm, which makes predictions
for a new data point by considering its closest neighbor(s) in the training set. This is
implemented in the KNeighborsClassifier class, which contains the algorithm that
builds the model as well as the algorithm that makes a prediction using the model.
We instantiated the class, setting parameters. Then we built the model by calling the
fit method, passing the training data (X_train) and training outputs (y_train) as
parameters. We evaluated the model using the score method, which computes the
accuracy of the model. We applied the score method to the test set data and the test
set labels and found that our model is about 97% accurate, meaning it is correct 97%
of the time on the test set.

This gave us the confidence to apply the model to new data (in our example, new
flower measurements) and trust that the model will be correct about 97% of the time.

Here is a summary of the code needed for the whole training and evaluation
procedure:

In[32]:

X_train, X_test, y_train, y_test = train_test_split(
    iris_dataset['data'], iris_dataset['target'], random_state=0)

knn = KNeighborsClassifier(n_neighbors=1)
knn.fit(X_train, y_train)

print("Test set score: {:.2f}".format(knn.score(X_test, y_test)))

Out[32]:

Test set score: 0.97

This snippet contains the core code for applying any machine learning algorithm
using scikit-learn. The fit, predict, and score methods are the common inter‐
face to supervised models in scikit-learn, and with the concepts introduced in this
chapter, you can apply these models to many machine learning tasks. In the next
chapter, we will go into more depth about the different kinds of supervised models in
scikit-learn and how to apply them successfully.
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CHAPTER 2

Supervised Learning

As we mentioned earlier, supervised machine learning is one of the most commonly
used and successful types of machine learning. In this chapter, we will describe super‐
vised learning in more detail and explain several popular supervised learning algo‐
rithms. We already saw an application of supervised machine learning in Chapter 1:
classifying iris flowers into several species using physical measurements of the
flowers.

Remember that supervised learning is used whenever we want to predict a certain
outcome from a given input, and we have examples of input/output pairs. We build a
machine learning model from these input/output pairs, which comprise our training
set. Our goal is to make accurate predictions for new, never-before-seen data. Super‐
vised learning often requires human effort to build the training set, but afterward
automates and often speeds up an otherwise laborious or infeasible task.

Classification and Regression
There are two major types of supervised machine learning problems, called classifica‐
tion and regression.

In classification, the goal is to predict a class label, which is a choice from a predefined
list of possibilities. In Chapter 1 we used the example of classifying irises into one of
three possible species. Classification is sometimes separated into binary classification,
which is the special case of distinguishing between exactly two classes, and multiclass
classification, which is classification between more than two classes. You can think of
binary classification as trying to answer a yes/no question. Classifying emails as
either spam or not spam is an example of a binary classification problem. In this
binary classification task, the yes/no question being asked would be “Is this email
spam?”
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1 We ask linguists to excuse the simplified presentation of languages as distinct and fixed entities.

In binary classification we often speak of one class being the posi‐
tive class and the other class being the negative class. Here, positive
doesn’t represent having benefit or value, but rather what the object
of the study is. So, when looking for spam, “positive” could mean
the spam class. Which of the two classes is called positive is often a
subjective matter, and specific to the domain.

The iris example, on the other hand, is an example of a multiclass classification prob‐
lem. Another example is predicting what language a website is in from the text on the
website. The classes here would be a pre-defined list of possible languages.

For regression tasks, the goal is to predict a continuous number, or a floating-point
number in programming terms (or real number in mathematical terms). Predicting a
person’s annual income from their education, their age, and where they live is an
example of a regression task. When predicting income, the predicted value is an
amount, and can be any number in a given range. Another example of a regression
task is predicting the yield of a corn farm given attributes such as previous yields,
weather, and number of employees working on the farm. The yield again can be an
arbitrary number.

An easy way to distinguish between classification and regression tasks is to ask
whether there is some kind of continuity in the output. If there is continuity between
possible outcomes, then the problem is a regression problem. Think about predicting
annual income. There is a clear continuity in the output. Whether a person makes
$40,000 or $40,001 a year does not make a tangible difference, even though these are
different amounts of money; if our algorithm predicts $39,999 or $40,001 when it
should have predicted $40,000, we don’t mind that much.

By contrast, for the task of recognizing the language of a website (which is a classifi‐
cation problem), there is no matter of degree. A website is in one language, or it is in
another. There is no continuity between languages, and there is no language that is
between English and French.1

Generalization, Overfitting, and Underfitting
In supervised learning, we want to build a model on the training data and then be
able to make accurate predictions on new, unseen data that has the same characteris‐
tics as the training set that we used. If a model is able to make accurate predictions on
unseen data, we say it is able to generalize from the training set to the test set. We
want to build a model that is able to generalize as accurately as possible.
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2 In the real world, this is actually a tricky problem. While we know that the other customers haven’t bought a
boat from us yet, they might have bought one from someone else, or they may still be saving and plan to buy
one in the future.

Usually we build a model in such a way that it can make accurate predictions on the
training set. If the training and test sets have enough in common, we expect the
model to also be accurate on the test set. However, there are some cases where this
can go wrong. For example, if we allow ourselves to build very complex models, we
can always be as accurate as we like on the training set.

Let’s take a look at a made-up example to illustrate this point. Say a novice data scien‐
tist wants to predict whether a customer will buy a boat, given records of previous
boat buyers and customers who we know are not interested in buying a boat.2 The
goal is to send out promotional emails to people who are likely to actually make a
purchase, but not bother those customers who won’t be interested.

Suppose we have the customer records shown in Table 2-1.

Table 2-1. Example data about customers

Age Number of 
cars owned

Owns house Number of children Marital status Owns a dog Bought a boat

66 1 yes 2 widowed no yes

52 2 yes 3 married no yes

22 0 no 0 married yes no

25 1 no 1 single no no

44 0 no 2 divorced yes no

39 1 yes 2 married yes no

26 1 no 2 single no no

40 3 yes 1 married yes no

53 2 yes 2 divorced no yes

64 2 yes 3 divorced no no

58 2 yes 2 married yes yes

33 1 no 1 single no no

After looking at the data for a while, our novice data scientist comes up with the fol‐
lowing rule: “If the customer is older than 45, and has less than 3 children or is not
divorced, then they want to buy a boat.” When asked how well this rule of his does,
our data scientist answers, “It’s 100 percent accurate!” And indeed, on the data that is
in the table, the rule is perfectly accurate. There are many possible rules we could
come up with that would explain perfectly if someone in this dataset wants to buy a
boat. No age appears twice in the data, so we could say people who are 66, 52, 53, or
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3 And also provably, with the right math.

58 years old want to buy a boat, while all others don’t. While we can make up many
rules that work well on this data, remember that we are not interested in making pre‐
dictions for this dataset; we already know the answers for these customers. We want
to know if new customers are likely to buy a boat. We therefore want to find a rule that
will work well for new customers, and achieving 100 percent accuracy on the training
set does not help us there. We might not expect that the rule our data scientist came
up with will work very well on new customers. It seems too complex, and it is sup‐
ported by very little data. For example, the “or is not divorced” part of the rule hinges
on a single customer.

The only measure of whether an algorithm will perform well on new data is the eval‐
uation on the test set. However, intuitively3 we expect simple models to generalize
better to new data. If the rule was “People older than 50 want to buy a boat,” and this
would explain the behavior of all the customers, we would trust it more than the rule
involving children and marital status in addition to age. Therefore, we always want to
find the simplest model. Building a model that is too complex for the amount of
information we have, as our novice data scientist did, is called overfitting. Overfitting
occurs when you fit a model too closely to the particularities of the training set and
obtain a model that works well on the training set but is not able to generalize to new
data. On the other hand, if your model is too simple—say, “Everybody who owns a
house buys a boat”—then you might not be able to capture all the aspects of and vari‐
ability in the data, and your model will do badly even on the training set. Choosing
too simple a model is called underfitting.

The more complex we allow our model to be, the better we will be able to predict on
the training data. However, if our model becomes too complex, we start focusing too
much on each individual data point in our training set, and the model will not gener‐
alize well to new data.

There is a sweet spot in between that will yield the best generalization performance.
This is the model we want to find.

The trade-off between overfitting and underfitting is illustrated in Figure 2-1.
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Figure 2-1. Trade-off of model complexity against training and test accuracy

Relation of Model Complexity to Dataset Size
It’s important to note that model complexity is intimately tied to the variation of
inputs contained in your training dataset: the larger variety of data points your data‐
set contains, the more complex a model you can use without overfitting. Usually, col‐
lecting more data points will yield more variety, so larger datasets allow building
more complex models. However, simply duplicating the same data points or collect‐
ing very similar data will not help.

Going back to the boat selling example, if we saw 10,000 more rows of customer data,
and all of them complied with the rule “If the customer is older than 45, and has less
than 3 children or is not divorced, then they want to buy a boat,” we would be much
more likely to believe this to be a good rule than when it was developed using only
the 12 rows in Table 2-1.

Having more data and building appropriately more complex models can often work
wonders for supervised learning tasks. In this book, we will focus on working with
datasets of fixed sizes. In the real world, you often have the ability to decide how
much data to collect, which might be more beneficial than tweaking and tuning your
model. Never underestimate the power of more data.

Supervised Machine Learning Algorithms
We will now review the most popular machine learning algorithms and explain how
they learn from data and how they make predictions. We will also discuss how the
concept of model complexity plays out for each of these models, and provide an over‐
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4 Discussing all of them is beyond the scope of the book, and we refer you to the scikit-learn documentation
for more details.

view of how each algorithm builds a model. We will examine the strengths and weak‐
nesses of each algorithm, and what kind of data they can best be applied to. We will
also explain the meaning of the most important parameters and options.4 Many algo‐
rithms have a classification and a regression variant, and we will describe both.

It is not necessary to read through the descriptions of each algorithm in detail, but
understanding the models will give you a better feeling for the different ways
machine learning algorithms can work. This chapter can also be used as a reference
guide, and you can come back to it when you are unsure about the workings of any of
the algorithms.

Some Sample Datasets
We will use several datasets to illustrate the different algorithms. Some of the datasets
will be small and synthetic (meaning made-up), designed to highlight particular
aspects of the algorithms. Other datasets will be large, real-world examples.

An example of a synthetic two-class classification dataset is the forge dataset, which
has two features. The following code creates a scatter plot (Figure 2-2) visualizing all
of the data points in this dataset. The plot has the first feature on the x-axis and the
second feature on the y-axis. As is always the case in scatter plots, each data point is
represented as one dot. The color and shape of the dot indicates its class:

In[2]:

# generate dataset
X, y = mglearn.datasets.make_forge()
# plot dataset
mglearn.discrete_scatter(X[:, 0], X[:, 1], y)
plt.legend(["Class 0", "Class 1"], loc=4)
plt.xlabel("First feature")
plt.ylabel("Second feature")
print("X.shape: {}".format(X.shape))

Out[2]:

X.shape: (26, 2)
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Figure 2-2. Scatter plot of the forge dataset

As you can see from X.shape, this dataset consists of 26 data points, with 2 features.

To illustrate regression algorithms, we will use the synthetic wave dataset. The wave
dataset has a single input feature and a continuous target variable (or response) that
we want to model. The plot created here (Figure 2-3) shows the single feature on the
x-axis and the regression target (the output) on the y-axis:

In[3]:

X, y = mglearn.datasets.make_wave(n_samples=40)
plt.plot(X, y, 'o')
plt.ylim(-3, 3)
plt.xlabel("Feature")
plt.ylabel("Target")
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Figure 2-3. Plot of the wave dataset, with the x-axis showing the feature and the y-axis
showing the regression target

We are using these very simple, low-dimensional datasets because we can easily visu‐
alize them—a printed page has two dimensions, so data with more than two features
is hard to show. Any intuition derived from datasets with few features (also called
low-dimensional datasets) might not hold in datasets with many features (high-
dimensional datasets). As long as you keep that in mind, inspecting algorithms on
low-dimensional datasets can be very instructive.

We will complement these small synthetic datasets with two real-world datasets that
are included in scikit-learn. One is the Wisconsin Breast Cancer dataset (cancer,
for short), which records clinical measurements of breast cancer tumors. Each tumor
is labeled as “benign” (for harmless tumors) or “malignant” (for cancerous tumors),
and the task is to learn to predict whether a tumor is malignant based on the meas‐
urements of the tissue.

The data can be loaded using the load_breast_cancer function from scikit-learn:

In[4]:

from sklearn.datasets import load_breast_cancer
cancer = load_breast_cancer()
print("cancer.keys(): \n{}".format(cancer.keys()))
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Out[4]:

cancer.keys():
dict_keys(['feature_names', 'data', 'DESCR', 'target', 'target_names'])

Datasets that are included in scikit-learn are usually stored as
Bunch objects, which contain some information about the dataset
as well as the actual data. All you need to know about Bunch objects
is that they behave like dictionaries, with the added benefit that you
can access values using a dot (as in bunch.key instead of
bunch['key']).

The dataset consists of 569 data points, with 30 features each:

In[5]:

print("Shape of cancer data: {}".format(cancer.data.shape))

Out[5]:

Shape of cancer data: (569, 30)

Of these 569 data points, 212 are labeled as malignant and 357 as benign:

In[6]:

print("Sample counts per class:\n{}".format(
      {n: v for n, v in zip(cancer.target_names, np.bincount(cancer.target))}))

Out[6]:

Sample counts per class:
{'benign': 357, 'malignant': 212}

To get a description of the semantic meaning of each feature, we can have a look at
the feature_names attribute:

In[7]:

print("Feature names:\n{}".format(cancer.feature_names))

Out[7]:

Feature names:
['mean radius' 'mean texture' 'mean perimeter' 'mean area'
 'mean smoothness' 'mean compactness' 'mean concavity'
 'mean concave points' 'mean symmetry' 'mean fractal dimension'
 'radius error' 'texture error' 'perimeter error' 'area error'
 'smoothness error' 'compactness error' 'concavity error'
 'concave points error' 'symmetry error' 'fractal dimension error'
 'worst radius' 'worst texture' 'worst perimeter' 'worst area'
 'worst smoothness' 'worst compactness' 'worst concavity'
 'worst concave points' 'worst symmetry' 'worst fractal dimension']
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5 This is called the binomial coefficient, which is the number of combinations of k elements that can be selected

from a set of n elements. Often this is written as n
k  and spoken as “n choose k”—in this case, “13 choose 2.”

You can find out more about the data by reading cancer.DESCR if you are interested.

We will also be using a real-world regression dataset, the Boston Housing dataset.
The task associated with this dataset is to predict the median value of homes in sev‐
eral Boston neighborhoods in the 1970s, using information such as crime rate, prox‐
imity to the Charles River, highway accessibility, and so on. The dataset contains 506
data points, described by 13 features:

In[8]:

from sklearn.datasets import load_boston
boston = load_boston()
print("Data shape: {}".format(boston.data.shape))

Out[8]:

Data shape: (506, 13)

Again, you can get more information about the dataset by reading the DESCR attribute
of boston. For our purposes here, we will actually expand this dataset by not only
considering these 13 measurements as input features, but also looking at all products
(also called interactions) between features. In other words, we will not only consider
crime rate and highway accessibility as features, but also the product of crime rate
and highway accessibility. Including derived feature like these is called feature engi‐
neering, which we will discuss in more detail in Chapter 4. This derived dataset can be
loaded using the load_extended_boston function:

In[9]:

X, y = mglearn.datasets.load_extended_boston()
print("X.shape: {}".format(X.shape))

Out[9]:

X.shape: (506, 104)

The resulting 104 features are the 13 original features together with the 91 possible
combinations of two features within those 13.5

We will use these datasets to explain and illustrate the properties of the different
machine learning algorithms. But for now, let’s get to the algorithms themselves.
First, we will revisit the k-nearest neighbors (k-NN) algorithm that we saw in the pre‐
vious chapter.
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k-Nearest Neighbors
The k-NN algorithm is arguably the simplest machine learning algorithm. Building
the model consists only of storing the training dataset. To make a prediction for a
new data point, the algorithm finds the closest data points in the training dataset—its
“nearest neighbors.”

k-Neighbors classification
In its simplest version, the k-NN algorithm only considers exactly one nearest neigh‐
bor, which is the closest training data point to the point we want to make a prediction
for. The prediction is then simply the known output for this training point. Figure 2-4
illustrates this for the case of classification on the forge dataset:

In[10]:

mglearn.plots.plot_knn_classification(n_neighbors=1)

Figure 2-4. Predictions made by the one-nearest-neighbor model on the forge dataset

Here, we added three new data points, shown as stars. For each of them, we marked
the closest point in the training set. The prediction of the one-nearest-neighbor algo‐
rithm is the label of that point (shown by the color of the cross).

Supervised Machine Learning Algorithms | 35



Instead of considering only the closest neighbor, we can also consider an arbitrary
number, k, of neighbors. This is where the name of the k-nearest neighbors algorithm
comes from. When considering more than one neighbor, we use voting to assign a
label. This means that for each test point, we count how many neighbors belong to
class 0 and how many neighbors belong to class 1. We then assign the class that is
more frequent: in other words, the majority class among the k-nearest neighbors. The
following example (Figure 2-5) uses the three closest neighbors:

In[11]:

mglearn.plots.plot_knn_classification(n_neighbors=3)

Figure 2-5. Predictions made by the three-nearest-neighbors model on the forge dataset

Again, the prediction is shown as the color of the cross. You can see that the predic‐
tion for the new data point at the top left is not the same as the prediction when we
used only one neighbor.

While this illustration is for a binary classification problem, this method can be
applied to datasets with any number of classes. For more classes, we count how many
neighbors belong to each class and again predict the most common class.

Now let’s look at how we can apply the k-nearest neighbors algorithm using scikit-
learn. First, we split our data into a training and a test set so we can evaluate general‐
ization performance, as discussed in Chapter 1:
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In[12]:

from sklearn.model_selection import train_test_split
X, y = mglearn.datasets.make_forge()

X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0)

Next, we import and instantiate the class. This is when we can set parameters, like the
number of neighbors to use. Here, we set it to 3:

In[13]:

from sklearn.neighbors import KNeighborsClassifier
clf = KNeighborsClassifier(n_neighbors=3)

Now, we fit the classifier using the training set. For KNeighborsClassifier this
means storing the dataset, so we can compute neighbors during prediction:

In[14]:

clf.fit(X_train, y_train)

To make predictions on the test data, we call the predict method. For each data point
in the test set, this computes its nearest neighbors in the training set and finds the
most common class among these:

In[15]:

print("Test set predictions: {}".format(clf.predict(X_test)))

Out[15]:

Test set predictions: [1 0 1 0 1 0 0]

To evaluate how well our model generalizes, we can call the score method with the
test data together with the test labels:

In[16]:

print("Test set accuracy: {:.2f}".format(clf.score(X_test, y_test)))

Out[16]:

Test set accuracy: 0.86

We see that our model is about 86% accurate, meaning the model predicted the class
correctly for 86% of the samples in the test dataset.

Analyzing KNeighborsClassifier
For two-dimensional datasets, we can also illustrate the prediction for all possible test
points in the xy-plane. We color the plane according to the class that would be
assigned to a point in this region. This lets us view the decision boundary, which is the
divide between where the algorithm assigns class 0 versus where it assigns class 1.

Supervised Machine Learning Algorithms | 37



The following code produces the visualizations of the decision boundaries for one,
three, and nine neighbors shown in Figure 2-6:

In[17]:

fig, axes = plt.subplots(1, 3, figsize=(10, 3))

for n_neighbors, ax in zip([1, 3, 9], axes):
    # the fit method returns the object self, so we can instantiate
    # and fit in one line
    clf = KNeighborsClassifier(n_neighbors=n_neighbors).fit(X, y)
    mglearn.plots.plot_2d_separator(clf, X, fill=True, eps=0.5, ax=ax, alpha=.4)
    mglearn.discrete_scatter(X[:, 0], X[:, 1], y, ax=ax)
    ax.set_title("{} neighbor(s)".format(n_neighbors))
    ax.set_xlabel("feature 0")
    ax.set_ylabel("feature 1")
axes[0].legend(loc=3)

Figure 2-6. Decision boundaries created by the nearest neighbors model for different val‐
ues of n_neighbors

As you can see on the left in the figure, using a single neighbor results in a decision
boundary that follows the training data closely. Considering more and more neigh‐
bors leads to a smoother decision boundary. A smoother boundary corresponds to a
simpler model. In other words, using few neighbors corresponds to high model com‐
plexity (as shown on the right side of Figure 2-1), and using many neighbors corre‐
sponds to low model complexity (as shown on the left side of Figure 2-1). If you
consider the extreme case where the number of neighbors is the number of all data
points in the training set, each test point would have exactly the same neighbors (all
training points) and all predictions would be the same: the class that is most frequent
in the training set.

Let’s investigate whether we can confirm the connection between model complexity
and generalization that we discussed earlier. We will do this on the real-world Breast
Cancer dataset. We begin by splitting the dataset into a training and a test set. Then
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we evaluate training and test set performance with different numbers of neighbors.
The results are shown in Figure 2-7:

In[18]:

from sklearn.datasets import load_breast_cancer

cancer = load_breast_cancer()
X_train, X_test, y_train, y_test = train_test_split(
    cancer.data, cancer.target, stratify=cancer.target, random_state=66)

training_accuracy = []
test_accuracy = []
# try n_neighbors from 1 to 10
neighbors_settings = range(1, 11)

for n_neighbors in neighbors_settings:
    # build the model
    clf = KNeighborsClassifier(n_neighbors=n_neighbors)
    clf.fit(X_train, y_train)
    # record training set accuracy
    training_accuracy.append(clf.score(X_train, y_train))
    # record generalization accuracy
    test_accuracy.append(clf.score(X_test, y_test))

plt.plot(neighbors_settings, training_accuracy, label="training accuracy")
plt.plot(neighbors_settings, test_accuracy, label="test accuracy")
plt.ylabel("Accuracy")
plt.xlabel("n_neighbors")
plt.legend()

The plot shows the training and test set accuracy on the y-axis against the setting of
n_neighbors on the x-axis. While real-world plots are rarely very smooth, we can still
recognize some of the characteristics of overfitting and underfitting (note that
because considering fewer neighbors corresponds to a more complex model, the plot
is horizontally flipped relative to the illustration in Figure 2-1). Considering a single
nearest neighbor, the prediction on the training set is perfect. But when more neigh‐
bors are considered, the model becomes simpler and the training accuracy drops. The
test set accuracy for using a single neighbor is lower than when using more neigh‐
bors, indicating that using the single nearest neighbor leads to a model that is too
complex. On the other hand, when considering 10 neighbors, the model is too simple
and performance is even worse. The best performance is somewhere in the middle,
using around six neighbors. Still, it is good to keep the scale of the plot in mind. The
worst performance is around 88% accuracy, which might still be acceptable.
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Figure 2-7. Comparison of training and test accuracy as a function of n_neighbors

k-neighbors regression
There is also a regression variant of the k-nearest neighbors algorithm. Again, let’s
start by using the single nearest neighbor, this time using the wave dataset. We’ve
added three test data points as green stars on the x-axis. The prediction using a single
neighbor is just the target value of the nearest neighbor. These are shown as blue stars
in Figure 2-8:

In[19]:

mglearn.plots.plot_knn_regression(n_neighbors=1)
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Figure 2-8. Predictions made by one-nearest-neighbor regression on the wave dataset

Again, we can use more than the single closest neighbor for regression. When using
multiple nearest neighbors, the prediction is the average, or mean, of the relevant
neighbors (Figure 2-9):

In[20]:

mglearn.plots.plot_knn_regression(n_neighbors=3)
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Figure 2-9. Predictions made by three-nearest-neighbors regression on the wave dataset

The k-nearest neighbors algorithm for regression is implemented in the KNeighbors
Regressor class in scikit-learn. It’s used similarly to KNeighborsClassifier:

In[21]:

from sklearn.neighbors import KNeighborsRegressor

X, y = mglearn.datasets.make_wave(n_samples=40)

# split the wave dataset into a training and a test set
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0)

# instantiate the model and set the number of neighbors to consider to 3
reg = KNeighborsRegressor(n_neighbors=3)
# fit the model using the training data and training targets
reg.fit(X_train, y_train)

Now we can make predictions on the test set:

In[22]:

print("Test set predictions:\n{}".format(reg.predict(X_test)))
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Out[22]:

Test set predictions:
[-0.054  0.357  1.137 -1.894 -1.139 -1.631  0.357  0.912 -0.447 -1.139]

We can also evaluate the model using the score method, which for regressors returns
the R2 score. The R2 score, also known as the coefficient of determination, is a meas‐
ure of goodness of a prediction for a regression model, and yields a score between 0
and 1. A value of 1 corresponds to a perfect prediction, and a value of 0 corresponds
to a constant model that just predicts the mean of the training set responses, y_train:

In[23]:

print("Test set R^2: {:.2f}".format(reg.score(X_test, y_test)))

Out[23]:

Test set R^2: 0.83

Here, the score is 0.83, which indicates a relatively good model fit.

Analyzing KNeighborsRegressor
For our one-dimensional dataset, we can see what the predictions look like for all
possible feature values (Figure 2-10). To do this, we create a test dataset consisting of
many points on the line:

In[24]:

fig, axes = plt.subplots(1, 3, figsize=(15, 4))
# create 1,000 data points, evenly spaced between -3 and 3
line = np.linspace(-3, 3, 1000).reshape(-1, 1)
for n_neighbors, ax in zip([1, 3, 9], axes):
    # make predictions using 1, 3, or 9 neighbors
    reg = KNeighborsRegressor(n_neighbors=n_neighbors)
    reg.fit(X_train, y_train)
    ax.plot(line, reg.predict(line))
    ax.plot(X_train, y_train, '^', c=mglearn.cm2(0), markersize=8)
    ax.plot(X_test, y_test, 'v', c=mglearn.cm2(1), markersize=8)

    ax.set_title(
        "{} neighbor(s)\n train score: {:.2f} test score: {:.2f}".format(
            n_neighbors, reg.score(X_train, y_train),
            reg.score(X_test, y_test)))
    ax.set_xlabel("Feature")
    ax.set_ylabel("Target")
axes[0].legend(["Model predictions", "Training data/target",
                "Test data/target"], loc="best")
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Figure 2-10. Comparing predictions made by nearest neighbors regression for different
values of n_neighbors

As we can see from the plot, using only a single neighbor, each point in the training
set has an obvious influence on the predictions, and the predicted values go through
all of the data points. This leads to a very unsteady prediction. Considering more
neighbors leads to smoother predictions, but these do not fit the training data as well.

Strengths, weaknesses, and parameters

In principle, there are two important parameters to the KNeighbors classifier: the
number of neighbors and how you measure distance between data points. In practice,
using a small number of neighbors like three or five often works well, but you should
certainly adjust this parameter. Choosing the right distance measure is somewhat
beyond the scope of this book. By default, Euclidean distance is used, which works
well in many settings.

One of the strengths of k-NN is that the model is very easy to understand, and often
gives reasonable performance without a lot of adjustments. Using this algorithm is a
good baseline method to try before considering more advanced techniques. Building
the nearest neighbors model is usually very fast, but when your training set is very
large (either in number of features or in number of samples) prediction can be slow.
When using the k-NN algorithm, it’s important to preprocess your data (see Chap‐
ter 3). This approach often does not perform well on datasets with many features
(hundreds or more), and it does particularly badly with datasets where most features
are 0 most of the time (so-called sparse datasets).

So, while the nearest k-neighbors algorithm is easy to understand, it is not often used
in practice, due to prediction being slow and its inability to handle many features.
The method we discuss next has neither of these drawbacks.
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Linear Models
Linear models are a class of models that are widely used in practice and have been
studied extensively in the last few decades, with roots going back over a hundred
years. Linear models make a prediction using a linear function of the input features,
which we will explain shortly.

Linear models for regression
For regression, the general prediction formula for a linear model looks as follows:

ŷ = w[0] * x[0] + w[1] * x[1] + ... + w[p] * x[p] + b

Here, x[0] to x[p] denotes the features (in this example, the number of features is p)
of a single data point, w and b are parameters of the model that are learned, and ŷ is
the prediction the model makes. For a dataset with a single feature, this is:

ŷ = w[0] * x[0] + b

which you might remember from high school mathematics as the equation for a line.
Here, w[0] is the slope and b is the y-axis offset. For more features, w contains the
slopes along each feature axis. Alternatively, you can think of the predicted response
as being a weighted sum of the input features, with weights (which can be negative)
given by the entries of w.

Trying to learn the parameters w[0] and b on our one-dimensional wave dataset
might lead to the following line (see Figure 2-11):

In[25]:

mglearn.plots.plot_linear_regression_wave()

Out[25]:

w[0]: 0.393906  b: -0.031804
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Figure 2-11. Predictions of a linear model on the wave dataset

We added a coordinate cross into the plot to make it easier to understand the line.
Looking at w[0] we see that the slope should be around 0.4, which we can confirm
visually in the plot. The intercept is where the prediction line should cross the y-axis:
this is slightly below zero, which you can also confirm in the image.

Linear models for regression can be characterized as regression models for which the
prediction is a line for a single feature, a plane when using two features, or a hyper‐
plane in higher dimensions (that is, when using more features).

If you compare the predictions made by the straight line with those made by the
KNeighborsRegressor in Figure 2-10, using a straight line to make predictions seems
very restrictive. It looks like all the fine details of the data are lost. In a sense, this is
true. It is a strong (and somewhat unrealistic) assumption that our target y is a linear
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6 This is easy to see if you know some linear algebra.

combination of the features. But looking at one-dimensional data gives a somewhat
skewed perspective. For datasets with many features, linear models can be very pow‐
erful. In particular, if you have more features than training data points, any target y
can be perfectly modeled (on the training set) as a linear function.6

There are many different linear models for regression. The difference between these
models lies in how the model parameters w and b are learned from the training data,
and how model complexity can be controlled. We will now take a look at the most
popular linear models for regression.

Linear regression (aka ordinary least squares)
Linear regression, or ordinary least squares (OLS), is the simplest and most classic lin‐
ear method for regression. Linear regression finds the parameters w and b that mini‐
mize the mean squared error between predictions and the true regression targets, y,
on the training set. The mean squared error is the sum of the squared differences
between the predictions and the true values. Linear regression has no parameters,
which is a benefit, but it also has no way to control model complexity.

Here is the code that produces the model you can see in Figure 2-11:

In[26]:

from sklearn.linear_model import LinearRegression
X, y = mglearn.datasets.make_wave(n_samples=60)
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=42)

lr = LinearRegression().fit(X_train, y_train)

The “slope” parameters (w), also called weights or coefficients, are stored in the coef_
attribute, while the offset or intercept (b) is stored in the intercept_ attribute:

In[27]:

print("lr.coef_: {}".format(lr.coef_))
print("lr.intercept_: {}".format(lr.intercept_))

Out[27]:

lr.coef_: [ 0.394]
lr.intercept_: -0.031804343026759746
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You might notice the strange-looking trailing underscore at the end
of coef_ and intercept_. scikit-learn always stores anything
that is derived from the training data in attributes that end with a
trailing underscore. That is to separate them from parameters that
are set by the user.

The intercept_ attribute is always a single float number, while the coef_ attribute is
a NumPy array with one entry per input feature. As we only have a single input fea‐
ture in the wave dataset, lr.coef_ only has a single entry.

Let’s look at the training set and test set performance:

In[28]:

print("Training set score: {:.2f}".format(lr.score(X_train, y_train)))
print("Test set score: {:.2f}".format(lr.score(X_test, y_test)))

Out[28]:

Training set score: 0.67
Test set score: 0.66

An R2 of around 0.66 is not very good, but we can see that the scores on the training
and test sets are very close together. This means we are likely underfitting, not over‐
fitting. For this one-dimensional dataset, there is little danger of overfitting, as the
model is very simple (or restricted). However, with higher-dimensional datasets
(meaning datasets with a large number of features), linear models become more pow‐
erful, and there is a higher chance of overfitting. Let’s take a look at how LinearRe
gression performs on a more complex dataset, like the Boston Housing dataset.
Remember that this dataset has 506 samples and 105 derived features. First, we load
the dataset and split it into a training and a test set. Then we build the linear regres‐
sion model as before:

In[29]:

X, y = mglearn.datasets.load_extended_boston()

X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0)
lr = LinearRegression().fit(X_train, y_train)

When comparing training set and test set scores, we find that we predict very accu‐
rately on the training set, but the R2 on the test set is much worse:

In[30]:

print("Training set score: {:.2f}".format(lr.score(X_train, y_train)))
print("Test set score: {:.2f}".format(lr.score(X_test, y_test)))
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7 Mathematically, Ridge penalizes the L2 norm of the coefficients, or the Euclidean length of w.

Out[30]:

Training set score: 0.95
Test set score: 0.61

This discrepancy between performance on the training set and the test set is a clear
sign of overfitting, and therefore we should try to find a model that allows us to con‐
trol complexity. One of the most commonly used alternatives to standard linear
regression is ridge regression, which we will look into next.

Ridge regression
Ridge regression is also a linear model for regression, so the formula it uses to make
predictions is the same one used for ordinary least squares. In ridge regression,
though, the coefficients (w) are chosen not only so that they predict well on the train‐
ing data, but also to fit an additional constraint. We also want the magnitude of coef‐
ficients to be as small as possible; in other words, all entries of w should be close to
zero. Intuitively, this means each feature should have as little effect on the outcome as
possible (which translates to having a small slope), while still predicting well. This
constraint is an example of what is called regularization. Regularization means explic‐
itly restricting a model to avoid overfitting. The particular kind used by ridge regres‐
sion is known as L2 regularization.7

Ridge regression is implemented in linear_model.Ridge. Let’s see how well it does
on the extended Boston Housing dataset:

In[31]:

from sklearn.linear_model import Ridge

ridge = Ridge().fit(X_train, y_train)
print("Training set score: {:.2f}".format(ridge.score(X_train, y_train)))
print("Test set score: {:.2f}".format(ridge.score(X_test, y_test)))

Out[31]:

Training set score: 0.89
Test set score: 0.75

As you can see, the training set score of Ridge is lower than for LinearRegression,
while the test set score is higher. This is consistent with our expectation. With linear
regression, we were overfitting our data. Ridge is a more restricted model, so we are
less likely to overfit. A less complex model means worse performance on the training
set, but better generalization. As we are only interested in generalization perfor‐
mance, we should choose the Ridge model over the LinearRegression model.
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The Ridge model makes a trade-off between the simplicity of the model (near-zero
coefficients) and its performance on the training set. How much importance the
model places on simplicity versus training set performance can be specified by the
user, using the alpha parameter. In the previous example, we used the default param‐
eter alpha=1.0. There is no reason why this will give us the best trade-off, though.
The optimum setting of alpha depends on the particular dataset we are using.
Increasing alpha forces coefficients to move more toward zero, which decreases
training set performance but might help generalization. For example:

In[32]:

ridge10 = Ridge(alpha=10).fit(X_train, y_train)
print("Training set score: {:.2f}".format(ridge10.score(X_train, y_train)))
print("Test set score: {:.2f}".format(ridge10.score(X_test, y_test)))

Out[32]:

Training set score: 0.79
Test set score: 0.64

Decreasing alpha allows the coefficients to be less restricted, meaning we move right
in Figure 2-1. For very small values of alpha, coefficients are barely restricted at all,
and we end up with a model that resembles LinearRegression:

In[33]:

ridge01 = Ridge(alpha=0.1).fit(X_train, y_train)
print("Training set score: {:.2f}".format(ridge01.score(X_train, y_train)))
print("Test set score: {:.2f}".format(ridge01.score(X_test, y_test)))

Out[33]:

Training set score: 0.93
Test set score: 0.77

Here, alpha=0.1 seems to be working well. We could try decreasing alpha even more
to improve generalization. For now, notice how the parameter alpha corresponds to
the model complexity as shown in Figure 2-1. We will discuss methods to properly
select parameters in Chapter 5.

We can also get a more qualitative insight into how the alpha parameter changes the
model by inspecting the coef_ attribute of models with different values of alpha. A
higher alpha means a more restricted model, so we expect the entries of coef_ to
have smaller magnitude for a high value of alpha than for a low value of alpha. This
is confirmed in the plot in Figure 2-12:
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In[34]:

plt.plot(ridge.coef_, 's', label="Ridge alpha=1")
plt.plot(ridge10.coef_, '^', label="Ridge alpha=10")
plt.plot(ridge01.coef_, 'v', label="Ridge alpha=0.1")

plt.plot(lr.coef_, 'o', label="LinearRegression")
plt.xlabel("Coefficient index")
plt.ylabel("Coefficient magnitude")
plt.hlines(0, 0, len(lr.coef_))
plt.ylim(-25, 25)
plt.legend()

Figure 2-12. Comparing coefficient magnitudes for ridge regression with different values
of alpha and linear regression

Here, the x-axis enumerates the entries of coef_: x=0 shows the coefficient associated
with the first feature, x=1 the coefficient associated with the second feature, and so on
up to x=100. The y-axis shows the numeric values of the corresponding values of the
coefficients. The main takeaway here is that for alpha=10, the coefficients are mostly
between around –3 and 3. The coefficients for the Ridge model with alpha=1 are
somewhat larger. The dots corresponding to alpha=0.1 have larger magnitude still,
and many of the dots corresponding to linear regression without any regularization
(which would be alpha=0) are so large they are outside of the chart.
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Another way to understand the influence of regularization is to fix a value of alpha
but vary the amount of training data available. For Figure 2-13, we subsampled the
Boston Housing dataset and evaluated LinearRegression and Ridge(alpha=1) on
subsets of increasing size (plots that show model performance as a function of dataset
size are called learning curves):

In[35]:

mglearn.plots.plot_ridge_n_samples()

Figure 2-13. Learning curves for ridge regression and linear regression on the Boston
Housing dataset

As one would expect, the training score is higher than the test score for all dataset
sizes, for both ridge and linear regression. Because ridge is regularized, the training
score of ridge is lower than the training score for linear regression across the board.
However, the test score for ridge is better, particularly for small subsets of the data.
For less than 400 data points, linear regression is not able to learn anything. As more
and more data becomes available to the model, both models improve, and linear
regression catches up with ridge in the end. The lesson here is that with enough train‐
ing data, regularization becomes less important, and given enough data, ridge and
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8 The lasso penalizes the L1 norm of the coefficient vector—or in other words, the sum of the absolute values of
the coefficients.

linear regression will have the same performance (the fact that this happens here
when using the full dataset is just by chance). Another interesting aspect of
Figure 2-13 is the decrease in training performance for linear regression. If more data
is added, it becomes harder for a model to overfit, or memorize the data.

Lasso

An alternative to Ridge for regularizing linear regression is Lasso. As with ridge
regression, using the lasso also restricts coefficients to be close to zero, but in a
slightly different way, called L1 regularization.8 The consequence of L1 regularization
is that when using the lasso, some coefficients are exactly zero. This means some fea‐
tures are entirely ignored by the model. This can be seen as a form of automatic fea‐
ture selection. Having some coefficients be exactly zero often makes a model easier to
interpret, and can reveal the most important features of your model.

Let’s apply the lasso to the extended Boston Housing dataset:

In[36]:

from sklearn.linear_model import Lasso

lasso = Lasso().fit(X_train, y_train)
print("Training set score: {:.2f}".format(lasso.score(X_train, y_train)))
print("Test set score: {:.2f}".format(lasso.score(X_test, y_test)))
print("Number of features used: {}".format(np.sum(lasso.coef_ != 0)))

Out[36]:

Training set score: 0.29
Test set score: 0.21
Number of features used: 4

As you can see, Lasso does quite badly, both on the training and the test set. This
indicates that we are underfitting, and we find that it used only 4 of the 105 features.
Similarly to Ridge, the Lasso also has a regularization parameter, alpha, that controls
how strongly coefficients are pushed toward zero. In the previous example, we used
the default of alpha=1.0. To reduce underfitting, let’s try decreasing alpha. When we
do this, we also need to increase the default setting of max_iter (the maximum num‐
ber of iterations to run):
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In[37]:

# we increase the default setting of "max_iter",
# otherwise the model would warn us that we should increase max_iter.
lasso001 = Lasso(alpha=0.01, max_iter=100000).fit(X_train, y_train)
print("Training set score: {:.2f}".format(lasso001.score(X_train, y_train)))
print("Test set score: {:.2f}".format(lasso001.score(X_test, y_test)))
print("Number of features used: {}".format(np.sum(lasso001.coef_ != 0)))

Out[37]:

Training set score: 0.90
Test set score: 0.77
Number of features used: 33

A lower alpha allowed us to fit a more complex model, which worked better on the
training and test data. The performance is slightly better than using Ridge, and we are
using only 33 of the 105 features. This makes this model potentially easier to under‐
stand.

If we set alpha too low, however, we again remove the effect of regularization and end
up overfitting, with a result similar to LinearRegression:

In[38]:

lasso00001 = Lasso(alpha=0.0001, max_iter=100000).fit(X_train, y_train)
print("Training set score: {:.2f}".format(lasso00001.score(X_train, y_train)))
print("Test set score: {:.2f}".format(lasso00001.score(X_test, y_test)))
print("Number of features used: {}".format(np.sum(lasso00001.coef_ != 0)))

Out[38]:

Training set score: 0.95
Test set score: 0.64
Number of features used: 94

Again, we can plot the coefficients of the different models, similarly to Figure 2-12.
The result is shown in Figure 2-14:

In[39]:

plt.plot(lasso.coef_, 's', label="Lasso alpha=1")
plt.plot(lasso001.coef_, '^', label="Lasso alpha=0.01")
plt.plot(lasso00001.coef_, 'v', label="Lasso alpha=0.0001")

plt.plot(ridge01.coef_, 'o', label="Ridge alpha=0.1")
plt.legend(ncol=2, loc=(0, 1.05))
plt.ylim(-25, 25)
plt.xlabel("Coefficient index")
plt.ylabel("Coefficient magnitude")
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Figure 2-14. Comparing coefficient magnitudes for lasso regression with different values
of alpha and ridge regression

For alpha=1, we not only see that most of the coefficients are zero (which we already
knew), but that the remaining coefficients are also small in magnitude. Decreasing
alpha to 0.01, we obtain the solution shown as the green dots, which causes most
features to be exactly zero. Using alpha=0.00001, we get a model that is quite unregu‐
larized, with most coefficients nonzero and of large magnitude. For comparison, the
best Ridge solution is shown in teal. The Ridge model with alpha=0.1 has similar
predictive performance as the lasso model with alpha=0.01, but using Ridge, all coef‐
ficients are nonzero.

In practice, ridge regression is usually the first choice between these two models.
However, if you have a large amount of features and expect only a few of them to be
important, Lasso might be a better choice. Similarly, if you would like to have a
model that is easy to interpret, Lasso will provide a model that is easier to under‐
stand, as it will select only a subset of the input features. scikit-learn also provides
the ElasticNet class, which combines the penalties of Lasso and Ridge. In practice,
this combination works best, though at the price of having two parameters to adjust:
one for the L1 regularization, and one for the L2 regularization.
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Linear models for classification
Linear models are also extensively used for classification. Let’s look at binary classifi‐
cation first. In this case, a prediction is made using the following formula:

ŷ = w[0] * x[0] + w[1] * x[1] + ... + w[p] * x[p] + b > 0

The formula looks very similar to the one for linear regression, but instead of just
returning the weighted sum of the features, we threshold the predicted value at zero.
If the function is smaller than zero, we predict the class –1; if it is larger than zero, we
predict the class +1. This prediction rule is common to all linear models for classifica‐
tion. Again, there are many different ways to find the coefficients (w) and the inter‐
cept (b).

For linear models for regression, the output, ŷ, is a linear function of the features: a
line, plane, or hyperplane (in higher dimensions). For linear models for classification,
the decision boundary is a linear function of the input. In other words, a (binary) lin‐
ear classifier is a classifier that separates two classes using a line, a plane, or a hyper‐
plane. We will see examples of that in this section.

There are many algorithms for learning linear models. These algorithms all differ in
the following two ways:

• The way in which they measure how well a particular combination of coefficients
and intercept fits the training data

• If and what kind of regularization they use

Different algorithms choose different ways to measure what “fitting the training set
well” means. For technical mathematical reasons, it is not possible to adjust w and b
to minimize the number of misclassifications the algorithms produce, as one might
hope. For our purposes, and many applications, the different choices for item 1 in the
preceding list (called loss functions) are of little significance.

The two most common linear classification algorithms are logistic regression, imple‐
mented in linear_model.LogisticRegression, and linear support vector machines
(linear SVMs), implemented in svm.LinearSVC (SVC stands for support vector classi‐
fier). Despite its name, LogisticRegression is a classification algorithm and not a
regression algorithm, and it should not be confused with LinearRegression.

We can apply the LogisticRegression and LinearSVC models to the forge dataset,
and visualize the decision boundary as found by the linear models (Figure 2-15):
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In[40]:

from sklearn.linear_model import LogisticRegression
from sklearn.svm import LinearSVC

X, y = mglearn.datasets.make_forge()

fig, axes = plt.subplots(1, 2, figsize=(10, 3))

for model, ax in zip([LinearSVC(), LogisticRegression()], axes):
    clf = model.fit(X, y)
    mglearn.plots.plot_2d_separator(clf, X, fill=False, eps=0.5,
                                    ax=ax, alpha=.7)
    mglearn.discrete_scatter(X[:, 0], X[:, 1], y, ax=ax)
    ax.set_title("{}".format(clf.__class__.__name__))
    ax.set_xlabel("Feature 0")
    ax.set_ylabel("Feature 1")
axes[0].legend()

Figure 2-15. Decision boundaries of a linear SVM and logistic regression on the forge
dataset with the default parameters

In this figure, we have the first feature of the forge dataset on the x-axis and the sec‐
ond feature on the y-axis, as before. We display the decision boundaries found by
LinearSVC and LogisticRegression respectively as straight lines, separating the area
classified as class 1 on the top from the area classified as class 0 on the bottom. In
other words, any new data point that lies above the black line will be classified as class
1 by the respective classifier, while any point that lies below the black line will be clas‐
sified as class 0.

The two models come up with similar decision boundaries. Note that both misclas‐
sify two of the points. By default, both models apply an L2 regularization, in the same
way that Ridge does for regression.

For LogisticRegression and LinearSVC the trade-off parameter that determines the
strength of the regularization is called C, and higher values of C correspond to less
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regularization. In other words, when you use a high value for the parameter C, Logis
ticRegression and LinearSVC try to fit the training set as best as possible, while with
low values of the parameter C, the models put more emphasis on finding a coefficient
vector (w) that is close to zero.

There is another interesting aspect of how the parameter C acts. Using low values of C
will cause the algorithms to try to adjust to the “majority” of data points, while using
a higher value of C stresses the importance that each individual data point be classi‐
fied correctly. Here is an illustration using LinearSVC (Figure 2-16):

In[41]:

mglearn.plots.plot_linear_svc_regularization()

Figure 2-16. Decision boundaries of a linear SVM on the forge dataset for different
values of C

On the lefthand side, we have a very small C corresponding to a lot of regularization.
Most of the points in class 0 are at the top, and most of the points in class 1 are at the
bottom. The strongly regularized model chooses a relatively horizontal line, misclas‐
sifying two points. In the center plot, C is slightly higher, and the model focuses more
on the two misclassified samples, tilting the decision boundary. Finally, on the right‐
hand side, the very high value of C in the model tilts the decision boundary a lot, now
correctly classifying all points in class 0. One of the points in class 1 is still misclassi‐
fied, as it is not possible to correctly classify all points in this dataset using a straight
line. The model illustrated on the righthand side tries hard to correctly classify all
points, but might not capture the overall layout of the classes well. In other words,
this model is likely overfitting.

Similarly to the case of regression, linear models for classification might seem very
restrictive in low-dimensional spaces, only allowing for decision boundaries that are
straight lines or planes. Again, in high dimensions, linear models for classification
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become very powerful, and guarding against overfitting becomes increasingly impor‐
tant when considering more features.

Let’s analyze LinearLogistic in more detail on the Breast Cancer dataset:

In[42]:

from sklearn.datasets import load_breast_cancer
cancer = load_breast_cancer()
X_train, X_test, y_train, y_test = train_test_split(
    cancer.data, cancer.target, stratify=cancer.target, random_state=42)
logreg = LogisticRegression().fit(X_train, y_train)
print("Training set score: {:.3f}".format(logreg.score(X_train, y_train)))
print("Test set score: {:.3f}".format(logreg.score(X_test, y_test)))

Out[42]:

Training set score: 0.953
Test set score: 0.958

The default value of C=1 provides quite good performance, with 95% accuracy on
both the training and the test set. But as training and test set performance are very
close, it is likely that we are underfitting. Let’s try to increase C to fit a more flexible
model:

In[43]:

logreg100 = LogisticRegression(C=100).fit(X_train, y_train)
print("Training set score: {:.3f}".format(logreg100.score(X_train, y_train)))
print("Test set score: {:.3f}".format(logreg100.score(X_test, y_test)))

Out[43]:

Training set score: 0.972
Test set score: 0.965

Using C=100 results in higher training set accuracy, and also a slightly increased test
set accuracy, confirming our intuition that a more complex model should perform
better.

We can also investigate what happens if we use an even more regularized model than
the default of C=1, by setting C=0.01:

In[44]:

logreg001 = LogisticRegression(C=0.01).fit(X_train, y_train)
print("Training set score: {:.3f}".format(logreg001.score(X_train, y_train)))
print("Test set score: {:.3f}".format(logreg001.score(X_test, y_test)))

Out[44]:

Training set score: 0.934
Test set score: 0.930
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As expected, when moving more to the left along the scale shown in Figure 2-1 from
an already underfit model, both training and test set accuracy decrease relative to the
default parameters.

Finally, let’s look at the coefficients learned by the models with the three different set‐
tings of the regularization parameter C (Figure 2-17):

In[45]:

plt.plot(logreg.coef_.T, 'o', label="C=1")
plt.plot(logreg100.coef_.T, '^', label="C=100")
plt.plot(logreg001.coef_.T, 'v', label="C=0.001")
plt.xticks(range(cancer.data.shape[1]), cancer.feature_names, rotation=90)
plt.hlines(0, 0, cancer.data.shape[1])
plt.ylim(-5, 5)
plt.xlabel("Coefficient index")
plt.ylabel("Coefficient magnitude")
plt.legend()

As LogisticRegression applies an L2 regularization by default,
the result looks similar to that produced by Ridge in Figure 2-12.
Stronger regularization pushes coefficients more and more toward
zero, though coefficients never become exactly zero. Inspecting the
plot more closely, we can also see an interesting effect in the third
coefficient, for “mean perimeter.” For C=100 and C=1, the coefficient
is negative, while for C=0.001, the coefficient is positive, with a
magnitude that is even larger than for C=1. Interpreting a model
like this, one might think the coefficient tells us which class a fea‐
ture is associated with. For example, one might think that a high
“texture error” feature is related to a sample being “malignant.”
However, the change of sign in the coefficient for “mean perimeter”
means that depending on which model we look at, a high “mean
perimeter” could be taken as being either indicative of “benign” or
indicative of “malignant.” This illustrates that interpretations of
coefficients of linear models should always be taken with a grain of
salt.
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Figure 2-17. Coefficients learned by logistic regression on the Breast Cancer dataset for
different values of C
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If we desire a more interpretable model, using L1 regularization might help, as it lim‐
its the model to using only a few features. Here is the coefficient plot and classifica‐
tion accuracies for L1 regularization (Figure 2-18):

In[46]:

for C, marker in zip([0.001, 1, 100], ['o', '^', 'v']):
    lr_l1 = LogisticRegression(C=C, penalty="l1").fit(X_train, y_train)
    print("Training accuracy of l1 logreg with C={:.3f}: {:.2f}".format(
          C, lr_l1.score(X_train, y_train)))
    print("Test accuracy of l1 logreg with C={:.3f}: {:.2f}".format(
          C, lr_l1.score(X_test, y_test)))
    plt.plot(lr_l1.coef_.T, marker, label="C={:.3f}".format(C))

plt.xticks(range(cancer.data.shape[1]), cancer.feature_names, rotation=90)
plt.hlines(0, 0, cancer.data.shape[1])
plt.xlabel("Coefficient index")
plt.ylabel("Coefficient magnitude")

plt.ylim(-5, 5)
plt.legend(loc=3)

Out[46]:

Training accuracy of l1 logreg with C=0.001: 0.91
Test accuracy of l1 logreg with C=0.001: 0.92
Training accuracy of l1 logreg with C=1.000: 0.96
Test accuracy of l1 logreg with C=1.000: 0.96
Training accuracy of l1 logreg with C=100.000: 0.99
Test accuracy of l1 logreg with C=100.000: 0.98

As you can see, there are many parallels between linear models for binary classifica‐
tion and linear models for regression. As in regression, the main difference between
the models is the penalty parameter, which influences the regularization and
whether the model will use all available features or select only a subset.
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Figure 2-18. Coefficients learned by logistic regression with L1 penalty on the Breast
Cancer dataset for different values of C

Linear models for multiclass classification
Many linear classification models are for binary classification only, and don’t extend
naturally to the multiclass case (with the exception of logistic regression). A common
technique to extend a binary classification algorithm to a multiclass classification
algorithm is the one-vs.-rest approach. In the one-vs.-rest approach, a binary model is
learned for each class that tries to separate that class from all of the other classes,
resulting in as many binary models as there are classes. To make a prediction, all
binary classifiers are run on a test point. The classifier that has the highest score on its
single class “wins,” and this class label is returned as the prediction.
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Having one binary classifier per class results in having one vector of coefficients (w)
and one intercept (b) for each class. The class for which the result of the classification
confidence formula given here is highest is the assigned class label:

w[0] * x[0] + w[1] * x[1] + ... + w[p] * x[p] + b

The mathematics behind multiclass logistic regression differ somewhat from the one-
vs.-rest approach, but they also result in one coefficient vector and intercept per class,
and the same method of making a prediction is applied.

Let’s apply the one-vs.-rest method to a simple three-class classification dataset. We
use a two-dimensional dataset, where each class is given by data sampled from a
Gaussian distribution (see Figure 2-19):

In[47]:

from sklearn.datasets import make_blobs

X, y = make_blobs(random_state=42)
mglearn.discrete_scatter(X[:, 0], X[:, 1], y)
plt.xlabel("Feature 0")
plt.ylabel("Feature 1")
plt.legend(["Class 0", "Class 1", "Class 2"])

Figure 2-19. Two-dimensional toy dataset containing three classes
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Now, we train a LinearSVC classifier on the dataset:

In[48]:

linear_svm = LinearSVC().fit(X, y)
print("Coefficient shape: ", linear_svm.coef_.shape)
print("Intercept shape: ", linear_svm.intercept_.shape)

Out[48]:

Coefficient shape:  (3, 2)
Intercept shape:  (3,)

We see that the shape of the coef_ is (3, 2), meaning that each row of coef_ con‐
tains the coefficient vector for one of the three classes and each column holds the
coefficient value for a specific feature (there are two in this dataset). The intercept_
is now a one-dimensional array, storing the intercepts for each class.

Let’s visualize the lines given by the three binary classifiers (Figure 2-20):

In[49]:

mglearn.discrete_scatter(X[:, 0], X[:, 1], y)
line = np.linspace(-15, 15)
for coef, intercept, color in zip(linear_svm.coef_, linear_svm.intercept_,
                                  ['b', 'r', 'g']):
    plt.plot(line, -(line * coef[0] + intercept) / coef[1], c=color)
plt.ylim(-10, 15)
plt.xlim(-10, 8)
plt.xlabel("Feature 0")
plt.ylabel("Feature 1")
plt.legend(['Class 0', 'Class 1', 'Class 2', 'Line class 0', 'Line class 1',
            'Line class 2'], loc=(1.01, 0.3))

You can see that all the points belonging to class 0 in the training data are above the
line corresponding to class 0, which means they are on the “class 0” side of this binary
classifier. The points in class 0 are above the line corresponding to class 2, which
means they are classified as “rest” by the binary classifier for class 2. The points
belonging to class 0 are to the left of the line corresponding to class 1, which means
the binary classifier for class 1 also classifies them as “rest.” Therefore, any point in
this area will be classified as class 0 by the final classifier (the result of the classifica‐
tion confidence formula for classifier 0 is greater than zero, while it is smaller than
zero for the other two classes).

But what about the triangle in the middle of the plot? All three binary classifiers clas‐
sify points there as “rest.” Which class would a point there be assigned to? The answer
is the one with the highest value for the classification formula: the class of the closest
line.
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Figure 2-20. Decision boundaries learned by the three one-vs.-rest classifiers

The following example (Figure 2-21) shows the predictions for all regions of the 2D
space:

In[50]:

mglearn.plots.plot_2d_classification(linear_svm, X, fill=True, alpha=.7)
mglearn.discrete_scatter(X[:, 0], X[:, 1], y)
line = np.linspace(-15, 15)
for coef, intercept, color in zip(linear_svm.coef_, linear_svm.intercept_,
                                  ['b', 'r', 'g']):
    plt.plot(line, -(line * coef[0] + intercept) / coef[1], c=color)
plt.legend(['Class 0', 'Class 1', 'Class 2', 'Line class 0', 'Line class 1',
            'Line class 2'], loc=(1.01, 0.3))
plt.xlabel("Feature 0")
plt.ylabel("Feature 1")
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Figure 2-21. Multiclass decision boundaries derived from the three one-vs.-rest classifiers

Strengths, weaknesses, and parameters

The main parameter of linear models is the regularization parameter, called alpha in
the regression models and C in LinearSVC and LogisticRegression. Large values for
alpha or small values for C mean simple models. In particular for the regression mod‐
els, tuning these parameters is quite important. Usually C and alpha are searched for
on a logarithmic scale. The other decision you have to make is whether you want to
use L1 regularization or L2 regularization. If you assume that only a few of your fea‐
tures are actually important, you should use L1. Otherwise, you should default to L2.
L1 can also be useful if interpretability of the model is important. As L1 will use only
a few features, it is easier to explain which features are important to the model, and
what the effects of these features are.

Linear models are very fast to train, and also fast to predict. They scale to very large
datasets and work well with sparse data. If your data consists of hundreds of thou‐
sands or millions of samples, you might want to investigate using the solver='sag'
option in LogisticRegression and Ridge, which can be faster than the default on
large datasets. Other options are the SGDClassifier class and the SGDRegressor
class, which implement even more scalable versions of the linear models described
here.

Another strength of linear models is that they make it relatively easy to understand
how a prediction is made, using the formulas we saw earlier for regression and classi‐
fication. Unfortunately, it is often not entirely clear why coefficients are the way they
are. This is particularly true if your dataset has highly correlated features; in these
cases, the coefficients might be hard to interpret.
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Linear models often perform well when the number of features is large compared to
the number of samples. They are also often used on very large datasets, simply
because it’s not feasible to train other models. However, in lower-dimensional spaces,
other models might yield better generalization performance. We will look at some
examples in which linear models fail in “Kernelized Support Vector Machines” on
page 92.

Method Chaining
The fit method of all scikit-learn models returns self. This allows you to write
code like the following, which we’ve already used extensively in this chapter:

In[51]:

# instantiate model and fit it in one line
logreg = LogisticRegression().fit(X_train, y_train)

Here, we used the return value of fit (which is self) to assign the trained model to
the variable logreg. This concatenation of method calls (here __init__ and then fit)
is known as method chaining. Another common application of method chaining in
scikit-learn is to fit and predict in one line:

In[52]:

logreg = LogisticRegression()
y_pred = logreg.fit(X_train, y_train).predict(X_test)

Finally, you can even do model instantiation, fitting, and predicting in one line:

In[53]:

y_pred = LogisticRegression().fit(X_train, y_train).predict(X_test)

This very short variant is not ideal, though. A lot is happening in a single line, which
might make the code hard to read. Additionally, the fitted logistic regression model
isn’t stored in any variable, so we can’t inspect it or use it to predict on any other data.

Naive Bayes Classifiers
Naive Bayes classifiers are a family of classifiers that are quite similar to the linear
models discussed in the previous section. However, they tend to be even faster in
training. The price paid for this efficiency is that naive Bayes models often provide
generalization performance that is slightly worse than that of linear classifiers like
LogisticRegression and LinearSVC.

The reason that naive Bayes models are so efficient is that they learn parameters by
looking at each feature individually and collect simple per-class statistics from each
feature. There are three kinds of naive Bayes classifiers implemented in scikit-
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learn: GaussianNB, BernoulliNB, and MultinomialNB. GaussianNB can be applied to
any continuous data, while BernoulliNB assumes binary data and MultinomialNB
assumes count data (that is, that each feature represents an integer count of some‐
thing, like how often a word appears in a sentence). BernoulliNB and MultinomialNB
are mostly used in text data classification.

The BernoulliNB classifier counts how often every feature of each class is not zero.
This is most easily understood with an example:

In[54]:

X = np.array([[0, 1, 0, 1],
              [1, 0, 1, 1],
              [0, 0, 0, 1],
              [1, 0, 1, 0]])
y = np.array([0, 1, 0, 1])

Here, we have four data points, with four binary features each. There are two classes,
0 and 1. For class 0 (the first and third data points), the first feature is zero two times
and nonzero zero times, the second feature is zero one time and nonzero one time,
and so on. These same counts are then calculated for the data points in the second
class. Counting the nonzero entries per class in essence looks like this:

In[55]:

counts = {}
for label in np.unique(y):
    # iterate over each class
    # count (sum) entries of 1 per feature
    counts[label] = X[y == label].sum(axis=0)
print("Feature counts:\n{}".format(counts))

Out[55]:

Feature counts:
{0: array([0, 1, 0, 2]), 1: array([2, 0, 2, 1])}

The other two naive Bayes models, MultinomialNB and GaussianNB, are slightly dif‐
ferent in what kinds of statistics they compute. MultinomialNB takes into account the
average value of each feature for each class, while GaussianNB stores the average value
as well as the standard deviation of each feature for each class.

To make a prediction, a data point is compared to the statistics for each of the classes,
and the best matching class is predicted. Interestingly, for both MultinomialNB and
BernoulliNB, this leads to a prediction formula that is of the same form as in the lin‐
ear models (see “Linear models for classification” on page 56). Unfortunately, coef_
for the naive Bayes models has a somewhat different meaning than in the linear mod‐
els, in that coef_ is not the same as w.
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Strengths, weaknesses, and parameters

MultinomialNB and BernoulliNB have a single parameter, alpha, which controls
model complexity. The way alpha works is that the algorithm adds to the data alpha
many virtual data points that have positive values for all the features. This results in a
“smoothing” of the statistics. A large alpha means more smoothing, resulting in less
complex models. The algorithm’s performance is relatively robust to the setting of
alpha, meaning that setting alpha is not critical for good performance. However,
tuning it usually improves accuracy somewhat.

GaussianNB is mostly used on very high-dimensional data, while the other two var‐
iants of naive Bayes are widely used for sparse count data such as text. MultinomialNB
usually performs better than BinaryNB, particularly on datasets with a relatively large
number of nonzero features (i.e., large documents).

The naive Bayes models share many of the strengths and weaknesses of the linear
models. They are very fast to train and to predict, and the training procedure is easy
to understand. The models work very well with high-dimensional sparse data and are
relatively robust to the parameters. Naive Bayes models are great baseline models and
are often used on very large datasets, where training even a linear model might take
too long.

Decision Trees
Decision trees are widely used models for classification and regression tasks. Essen‐
tially, they learn a hierarchy of if/else questions, leading to a decision.

These questions are similar to the questions you might ask in a game of 20 Questions.
Imagine you want to distinguish between the following four animals: bears, hawks,
penguins, and dolphins. Your goal is to get to the right answer by asking as few if/else
questions as possible. You might start off by asking whether the animal has feathers, a
question that narrows down your possible animals to just two. If the answer is “yes,”
you can ask another question that could help you distinguish between hawks and
penguins. For example, you could ask whether the animal can fly. If the animal
doesn’t have feathers, your possible animal choices are dolphins and bears, and you
will need to ask a question to distinguish between these two animals—for example,
asking whether the animal has fins.

This series of questions can be expressed as a decision tree, as shown in Figure 2-22.

In[56]:

mglearn.plots.plot_animal_tree()
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Figure 2-22. A decision tree to distinguish among several animals

In this illustration, each node in the tree either represents a question or a terminal
node (also called a leaf) that contains the answer. The edges connect the answers to a
question with the next question you would ask.

In machine learning parlance, we built a model to distinguish between four classes of
animals (hawks, penguins, dolphins, and bears) using the three features “has feath‐
ers,” “can fly,” and “has fins.” Instead of building these models by hand, we can learn
them from data using supervised learning.

Building decision trees
Let’s go through the process of building a decision tree for the 2D classification data‐
set shown in Figure 2-23. The dataset consists of two half-moon shapes, with each
class consisting of 75 data points. We will refer to this dataset as two_moons.

Learning a decision tree means learning the sequence of if/else questions that gets us
to the true answer most quickly. In the machine learning setting, these questions are
called tests (not to be confused with the test set, which is the data we use to test to see
how generalizable our model is). Usually data does not come in the form of binary
yes/no features as in the animal example, but is instead represented as continuous
features such as in the 2D dataset shown in Figure 2-23. The tests that are used on
continuous data are of the form “Is feature i larger than value a?”
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Figure 2-23. Two-moons dataset on which the decision tree will be built

To build a tree, the algorithm searches over all possible tests and finds the one that is
most informative about the target variable. Figure 2-24 shows the first test that is
picked. Splitting the dataset vertically at x[1]=0.0596 yields the most information; it
best separates the points in class 1 from the points in class 2. The top node, also called
the root, represents the whole dataset, consisting of 75 points belonging to class 0 and
75 points belonging to class 1. The split is done by testing whether x[1] <= 0.0596,
indicated by a black line. If the test is true, a point is assigned to the left node, which
contains 2 points belonging to class 0 and 32 points belonging to class 1. Otherwise
the point is assigned to the right node, which contains 48 points belonging to class 0
and 18 points belonging to class 1. These two nodes correspond to the top and bot‐
tom regions shown in Figure 2-24. Even though the first split did a good job of sepa‐
rating the two classes, the bottom region still contains points belonging to class 0, and
the top region still contains points belonging to class 1. We can build a more accurate
model by repeating the process of looking for the best test in both regions.
Figure 2-25 shows that the most informative next split for the left and the right region
is based on x[0].
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Figure 2-24. Decision boundary of tree with depth 1 (left) and corresponding tree (right)

Figure 2-25. Decision boundary of tree with depth 2 (left) and corresponding decision
tree (right)

This recursive process yields a binary tree of decisions, with each node containing a
test. Alternatively, you can think of each test as splitting the part of the data that is
currently being considered along one axis. This yields a view of the algorithm as
building a hierarchical partition. As each test concerns only a single feature, the
regions in the resulting partition always have axis-parallel boundaries.

The recursive partitioning of the data is repeated until each region in the partition
(each leaf in the decision tree) only contains a single target value (a single class or a
single regression value). A leaf of the tree that contains data points that all share the
same target value is called pure. The final partitioning for this dataset is shown in
Figure 2-26.
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Figure 2-26. Decision boundary of tree with depth 9 (left) and part of the corresponding
tree (right); the full tree is quite large and hard to visualize

A prediction on a new data point is made by checking which region of the partition
of the feature space the point lies in, and then predicting the majority target (or the
single target in the case of pure leaves) in that region. The region can be found by
traversing the tree from the root and going left or right, depending on whether the
test is fulfilled or not.

It is also possible to use trees for regression tasks, using exactly the same technique.
To make a prediction, we traverse the tree based on the tests in each node and find
the leaf the new data point falls into. The output for this data point is the mean target
of the training points in this leaf.

Controlling complexity of decision trees
Typically, building a tree as described here and continuing until all leaves are pure
leads to models that are very complex and highly overfit to the training data. The
presence of pure leaves mean that a tree is 100% accurate on the training set; each
data point in the training set is in a leaf that has the correct majority class. The over‐
fitting can be seen on the left of Figure 2-26. You can see the regions determined to
belong to class 1 in the middle of all the points belonging to class 0. On the other
hand, there is a small strip predicted as class 0 around the point belonging to class 0
to the very right. This is not how one would imagine the decision boundary to look,
and the decision boundary focuses a lot on single outlier points that are far away
from the other points in that class.

There are two common strategies to prevent overfitting: stopping the creation of the
tree early (also called pre-pruning), or building the tree but then removing or collaps‐
ing nodes that contain little information (also called post-pruning or just pruning).
Possible criteria for pre-pruning include limiting the maximum depth of the tree,
limiting the maximum number of leaves, or requiring a minimum number of points
in a node to keep splitting it.
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Decision trees in scikit-learn are implemented in the DecisionTreeRegressor and
DecisionTreeClassifier classes. scikit-learn only implements pre-pruning, not
post-pruning.

Let’s look at the effect of pre-pruning in more detail on the Breast Cancer dataset. As
always, we import the dataset and split it into a training and a test part. Then we build
a model using the default setting of fully developing the tree (growing the tree until
all leaves are pure). We fix the random_state in the tree, which is used for tie-
breaking internally:

In[58]:

from sklearn.tree import DecisionTreeClassifier

cancer = load_breast_cancer()
X_train, X_test, y_train, y_test = train_test_split(
    cancer.data, cancer.target, stratify=cancer.target, random_state=42)
tree = DecisionTreeClassifier(random_state=0)
tree.fit(X_train, y_train)
print("Accuracy on training set: {:.3f}".format(tree.score(X_train, y_train)))
print("Accuracy on test set: {:.3f}".format(tree.score(X_test, y_test)))

Out[58]:

Accuracy on training set: 1.000
Accuracy on test set: 0.937

As expected, the accuracy on the training set is 100%—because the leaves are pure,
the tree was grown deep enough that it could perfectly memorize all the labels on the
training data. The test set accuracy is slightly worse than for the linear models we
looked at previously, which had around 95% accuracy.

If we don’t restrict the depth of a decision tree, the tree can become arbitrarily deep
and complex. Unpruned trees are therefore prone to overfitting and not generalizing
well to new data. Now let’s apply pre-pruning to the tree, which will stop developing
the tree before we perfectly fit to the training data. One option is to stop building the
tree after a certain depth has been reached. Here we set max_depth=4, meaning only
four consecutive questions can be asked (cf. Figures 2-24 and 2-26). Limiting the
depth of the tree decreases overfitting. This leads to a lower accuracy on the training
set, but an improvement on the test set:

In[59]:

tree = DecisionTreeClassifier(max_depth=4, random_state=0)
tree.fit(X_train, y_train)

print("Accuracy on training set: {:.3f}".format(tree.score(X_train, y_train)))
print("Accuracy on test set: {:.3f}".format(tree.score(X_test, y_test)))
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Out[59]:

Accuracy on training set: 0.988
Accuracy on test set: 0.951

Analyzing decision trees

We can visualize the tree using the export_graphviz function from the tree module.
This writes a file in the .dot file format, which is a text file format for storing graphs.
We set an option to color the nodes to reflect the majority class in each node and pass
the class and features names so the tree can be properly labeled:

In[61]:

from sklearn.tree import export_graphviz
export_graphviz(tree, out_file="tree.dot", class_names=["malignant", "benign"],
                feature_names=cancer.feature_names, impurity=False, filled=True)

We can read this file and visualize it, as seen in Figure 2-27, using the graphviz mod‐
ule (or you can use any program that can read .dot files):

In[61]:

import graphviz

with open("tree.dot") as f:
    dot_graph = f.read()
graphviz.Source(dot_graph)

Figure 2-27. Visualization of the decision tree built on the Breast Cancer dataset
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The visualization of the tree provides a great in-depth view of how the algorithm
makes predictions, and is a good example of a machine learning algorithm that is
easily explained to nonexperts. However, even with a tree of depth four, as seen here,
the tree can become a bit overwhelming. Deeper trees (a depth of 10 is not uncom‐
mon) are even harder to grasp. One method of inspecting the tree that may be helpful
is to find out which path most of the data actually takes. The n_samples shown in
each node in Figure 2-27 gives the number of samples in that node, while value pro‐
vides the number of samples per class. Following the branches to the right, we see
that worst radius <= 16.795 creates a node that contains only 8 benign but 134
malignant samples. The rest of this side of the tree then uses some finer distinctions
to split off these 8 remaining benign samples. Of the 142 samples that went to the
right in the initial split, nearly all of them (132) end up in the leaf to the very right.

Taking a left at the root, for worst radius > 16.795 we end up with 25 malignant
and 259 benign samples. Nearly all of the benign samples end up in the second leaf
from the right, with most of the other leaves containing very few samples.

Feature importance in trees
Instead of looking at the whole tree, which can be taxing, there are some useful prop‐
erties that we can derive to summarize the workings of the tree. The most commonly
used summary is feature importance, which rates how important each feature is for
the decision a tree makes. It is a number between 0 and 1 for each feature, where 0
means “not used at all” and 1 means “perfectly predicts the target.” The feature
importances always sum to 1:

In[62]:

print("Feature importances:\n{}".format(tree.feature_importances_))

Out[62]:

Feature importances:
[ 0.     0.     0.     0.     0.     0.     0.     0.     0.     0.     0.01
  0.048  0.     0.     0.002  0.     0.     0.     0.     0.     0.727  0.046
  0.     0.     0.014  0.     0.018  0.122  0.012  0.   ]

We can visualize the feature importances in a way that is similar to the way we visual‐
ize the coefficients in the linear model (Figure 2-28):

In[63]:

def plot_feature_importances_cancer(model):
    n_features = cancer.data.shape[1]
    plt.barh(range(n_features), model.feature_importances_, align='center')
    plt.yticks(np.arange(n_features), cancer.feature_names)
    plt.xlabel("Feature importance")
    plt.ylabel("Feature")

plot_feature_importances_cancer(tree)
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Figure 2-28. Feature importances computed from a decision tree learned on the Breast
Cancer dataset

Here we see that the feature used in the top split (“worst radius”) is by far the most
important feature. This confirms our observation in analyzing the tree that the first
level already separates the two classes fairly well.

However, if a feature has a low feature_importance, it doesn’t mean that this feature
is uninformative. It only means that the feature was not picked by the tree, likely
because another feature encodes the same information.

In contrast to the coefficients in linear models, feature importances are always posi‐
tive, and don’t encode which class a feature is indicative of. The feature importances
tell us that “worst radius” is important, but not whether a high radius is indicative of a
sample being benign or malignant. In fact, there might not be such a simple relation‐
ship between features and class, as you can see in the following example (Figures 2-29
and 2-30):

In[64]:

tree = mglearn.plots.plot_tree_not_monotone()
display(tree)

Out[64]:

Feature importances: [ 0.  1.]
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Figure 2-29. A two-dimensional dataset in which the feature on the y-axis has a nonmo‐
notonous relationship with the class label, and the decision boundaries found by a deci‐
sion tree

Figure 2-30. Decision tree learned on the data shown in Figure 2-29

The plot shows a dataset with two features and two classes. Here, all the information
is contained in X[1], and X[0] is not used at all. But the relation between X[1] and
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the output class is not monotonous, meaning we cannot say “a high value of X[0]
means class 0, and a low value means class 1” (or vice versa).

While we focused our discussion here on decision trees for classification, all that was
said is similarly true for decision trees for regression, as implemented in Decision
TreeRegressor. The usage and analysis of regression trees is very similar to that of
classification trees. There is one particular property of using tree-based models for
regression that we want to point out, though. The DecisionTreeRegressor (and all
other tree-based regression models) is not able to extrapolate, or make predictions
outside of the range of the training data.

Let’s look into this in more detail, using a dataset of historical computer memory
(RAM) prices. Figure 2-31 shows the dataset, with the date on the x-axis and the price
of one megabyte of RAM in that year on the y-axis:

In[65]:

import pandas as pd
ram_prices = pd.read_csv("data/ram_price.csv")

plt.semilogy(ram_prices.date, ram_prices.price)
plt.xlabel("Year")
plt.ylabel("Price in $/Mbyte")

Figure 2-31. Historical development of the price of RAM, plotted on a log scale
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Note the logarithmic scale of the y-axis. When plotting logarithmically, the relation
seems to be quite linear and so should be relatively easy to predict, apart from some
bumps.

We will make a forecast for the years after 2000 using the historical data up to that
point, with the date as our only feature. We will compare two simple models: a
DecisionTreeRegressor and LinearRegression. We rescale the prices using a loga‐
rithm, so that the relationship is relatively linear. This doesn’t make a difference for
the DecisionTreeRegressor, but it makes a big difference for LinearRegression (we
will discuss this in more depth in Chapter 4). After training the models and making
predictions, we apply the exponential map to undo the logarithm transform. We
make predictions on the whole dataset for visualization purposes here, but for a
quantitative evaluation we would only consider the test dataset:

In[66]:

from sklearn.tree import DecisionTreeRegressor
# use historical data to forecast prices after the year 2000
data_train = ram_prices[ram_prices.date < 2000]
data_test = ram_prices[ram_prices.date >= 2000]

# predict prices based on date
X_train = data_train.date[:, np.newaxis]
# we use a log-transform to get a simpler relationship of data to target
y_train = np.log(data_train.price)

tree = DecisionTreeRegressor().fit(X_train, y_train)
linear_reg = LinearRegression().fit(X_train, y_train)

# predict on all data
X_all = ram_prices.date[:, np.newaxis]

pred_tree = tree.predict(X_all)
pred_lr = linear_reg.predict(X_all)

# undo log-transform
price_tree = np.exp(pred_tree)
price_lr = np.exp(pred_lr)

Figure 2-32, created here, compares the predictions of the decision tree and the linear
regression model with the ground truth:

In[67]:

plt.semilogy(data_train.date, data_train.price, label="Training data")
plt.semilogy(data_test.date, data_test.price, label="Test data")
plt.semilogy(ram_prices.date, price_tree, label="Tree prediction")
plt.semilogy(ram_prices.date, price_lr, label="Linear prediction")
plt.legend()
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9 It is actually possible to make very good forecasts with tree-based models (for example, when trying to predict
whether a price will go up or down). The point of this example was not to show that trees are a bad model for
time series, but to illustrate a particular property of how trees make predictions.

Figure 2-32. Comparison of predictions made by a linear model and predictions made
by a regression tree on the RAM price data

The difference between the models is quite striking. The linear model approximates
the data with a line, as we knew it would. This line provides quite a good forecast for
the test data (the years after 2000), while glossing over some of the finer variations in
both the training and the test data. The tree model, on the other hand, makes perfect
predictions on the training data; we did not restrict the complexity of the tree, so it
learned the whole dataset by heart. However, once we leave the data range for which
the model has data, the model simply keeps predicting the last known point. The tree
has no ability to generate “new” responses, outside of what was seen in the training
data. This shortcoming applies to all models based on trees.9

Strengths, weaknesses, and parameters
As discussed earlier, the parameters that control model complexity in decision trees
are the pre-pruning parameters that stop the building of the tree before it is fully
developed. Usually, picking one of the pre-pruning strategies—setting either
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max_depth, max_leaf_nodes, or min_samples_leaf—is sufficient to prevent overfit‐
ting.

Decision trees have two advantages over many of the algorithms we’ve discussed so
far: the resulting model can easily be visualized and understood by nonexperts (at
least for smaller trees), and the algorithms are completely invariant to scaling of the
data. As each feature is processed separately, and the possible splits of the data don’t
depend on scaling, no preprocessing like normalization or standardization of features
is needed for decision tree algorithms. In particular, decision trees work well when
you have features that are on completely different scales, or a mix of binary and con‐
tinuous features.

The main downside of decision trees is that even with the use of pre-pruning, they
tend to overfit and provide poor generalization performance. Therefore, in most
applications, the ensemble methods we discuss next are usually used in place of a sin‐
gle decision tree.

Ensembles of Decision Trees
Ensembles are methods that combine multiple machine learning models to create
more powerful models. There are many models in the machine learning literature
that belong to this category, but there are two ensemble models that have proven to
be effective on a wide range of datasets for classification and regression, both of
which use decision trees as their building blocks: random forests and gradient boos‐
ted decision trees.

Random forests
As we just observed, a main drawback of decision trees is that they tend to overfit the
training data. Random forests are one way to address this problem. A random forest
is essentially a collection of decision trees, where each tree is slightly different from
the others. The idea behind random forests is that each tree might do a relatively
good job of predicting, but will likely overfit on part of the data. If we build many
trees, all of which work well and overfit in different ways, we can reduce the amount
of overfitting by averaging their results. This reduction in overfitting, while retaining
the predictive power of the trees, can be shown using rigorous mathematics.

To implement this strategy, we need to build many decision trees. Each tree should do
an acceptable job of predicting the target, and should also be different from the other
trees. Random forests get their name from injecting randomness into the tree build‐
ing to ensure each tree is different. There are two ways in which the trees in a random
forest are randomized: by selecting the data points used to build a tree and by select‐
ing the features in each split test. Let’s go into this process in more detail.
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Building random forests.    To build a random forest model, you need to decide on the
number of trees to build (the n_estimators parameter of RandomForestRegressor or
RandomForestClassifier). Let’s say we want to build 10 trees. These trees will be
built completely independently from each other, and the algorithm will make differ‐
ent random choices for each tree to make sure the trees are distinct. To build a tree,
we first take what is called a bootstrap sample of our data. That is, from our n_samples
data points, we repeatedly draw an example randomly with replacement (meaning the
same sample can be picked multiple times), n_samples times. This will create a data‐
set that is as big as the original dataset, but some data points will be missing from it
(approximately one third), and some will be repeated.

To illustrate, let’s say we want to create a bootstrap sample of the list ['a', 'b',
'c', 'd']. A possible bootstrap sample would be ['b', 'd', 'd', 'c']. Another
possible sample would be ['d', 'a', 'd', 'a'].

Next, a decision tree is built based on this newly created dataset. However, the algo‐
rithm we described for the decision tree is slightly modified. Instead of looking for
the best test for each node, in each node the algorithm randomly selects a subset of
the features, and it looks for the best possible test involving one of these features. The
number of features that are selected is controlled by the max_features parameter.
This selection of a subset of features is repeated separately in each node, so that each
node in a tree can make a decision using a different subset of the features.

The bootstrap sampling leads to each decision tree in the random forest being built
on a slightly different dataset. Because of the selection of features in each node, each
split in each tree operates on a different subset of features. Together, these two mech‐
anisms ensure that all the trees in the random forest are different.

A critical parameter in this process is max_features. If we set max_features to n_fea
tures, that means that each split can look at all features in the dataset, and no ran‐
domness will be injected in the feature selection (the randomness due to the
bootstrapping remains, though). If we set max_features to 1, that means that the
splits have no choice at all on which feature to test, and can only search over different
thresholds for the feature that was selected randomly. Therefore, a high max_fea
tures means that the trees in the random forest will be quite similar, and they will be
able to fit the data easily, using the most distinctive features. A low max_features
means that the trees in the random forest will be quite different, and that each tree
might need to be very deep in order to fit the data well.

To make a prediction using the random forest, the algorithm first makes a prediction
for every tree in the forest. For regression, we can average these results to get our final
prediction. For classification, a “soft voting” strategy is used. This means each algo‐
rithm makes a “soft” prediction, providing a probability for each possible output

84 | Chapter 2: Supervised Learning



label. The probabilities predicted by all the trees are averaged, and the class with the
highest probability is predicted.

Analyzing random forests.    Let’s apply a random forest consisting of five trees to the
two_moons dataset we studied earlier:

In[68]:

from sklearn.ensemble import RandomForestClassifier
from sklearn.datasets import make_moons

X, y = make_moons(n_samples=100, noise=0.25, random_state=3)
X_train, X_test, y_train, y_test = train_test_split(X, y, stratify=y,
                                                    random_state=42)

forest = RandomForestClassifier(n_estimators=5, random_state=2)
forest.fit(X_train, y_train)

The trees that are built as part of the random forest are stored in the estimator_
attribute. Let’s visualize the decision boundaries learned by each tree, together with
their aggregate prediction as made by the forest (Figure 2-33):

In[69]:

fig, axes = plt.subplots(2, 3, figsize=(20, 10))
for i, (ax, tree) in enumerate(zip(axes.ravel(), forest.estimators_)):
    ax.set_title("Tree {}".format(i))
    mglearn.plots.plot_tree_partition(X_train, y_train, tree, ax=ax)

mglearn.plots.plot_2d_separator(forest, X_train, fill=True, ax=axes[-1, -1],
                                alpha=.4)
axes[-1, -1].set_title("Random Forest")
mglearn.discrete_scatter(X_train[:, 0], X_train[:, 1], y_train)

You can clearly see that the decision boundaries learned by the five trees are quite dif‐
ferent. Each of them makes some mistakes, as some of the training points that are
plotted here were not actually included in the training sets of the trees, due to the
bootstrap sampling.

The random forest overfits less than any of the trees individually, and provides a
much more intuitive decision boundary. In any real application, we would use many
more trees (often hundreds or thousands), leading to even smoother boundaries.
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Figure 2-33. Decision boundaries found by five randomized decision trees and the deci‐
sion boundary obtained by averaging their predicted probabilities

As another example, let’s apply a random forest consisting of 100 trees on the Breast
Cancer dataset:

In[70]:

X_train, X_test, y_train, y_test = train_test_split(
    cancer.data, cancer.target, random_state=0)
forest = RandomForestClassifier(n_estimators=100, random_state=0)
forest.fit(X_train, y_train)

print("Accuracy on training set: {:.3f}".format(forest.score(X_train, y_train)))
print("Accuracy on test set: {:.3f}".format(forest.score(X_test, y_test)))

Out[70]:

Accuracy on training set: 1.000
Accuracy on test set: 0.972

The random forest gives us an accuracy of 97%, better than the linear models or a
single decision tree, without tuning any parameters. We could adjust the max_fea
tures setting, or apply pre-pruning as we did for the single decision tree. However,
often the default parameters of the random forest already work quite well.

Similarly to the decision tree, the random forest provides feature importances, which
are computed by aggregating the feature importances over the trees in the forest. Typ‐
ically, the feature importances provided by the random forest are more reliable than
the ones provided by a single tree. Take a look at Figure 2-34.
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In[71]:

plot_feature_importances_cancer(forest)

Figure 2-34. Feature importances computed from a random forest that was fit to the
Breast Cancer dataset

As you can see, the random forest gives nonzero importance to many more features
than the single tree. Similarly to the single decision tree, the random forest also gives
a lot of importance to the “worst radius” feature, but it actually chooses “worst perim‐
eter” to be the most informative feature overall. The randomness in building the ran‐
dom forest forces the algorithm to consider many possible explanations, the result
being that the random forest captures a much broader picture of the data than a sin‐
gle tree.

Strengths, weaknesses, and parameters.    Random forests for regression and classifica‐
tion are currently among the most widely used machine learning methods. They are
very powerful, often work well without heavy tuning of the parameters, and don’t
require scaling of the data.

Essentially, random forests share all of the benefits of decision trees, while making up
for some of their deficiencies. One reason to still use decision trees is if you need a
compact representation of the decision-making process. It is basically impossible to
interpret tens or hundreds of trees in detail, and trees in random forests tend to be
deeper than decision trees (because of the use of feature subsets). Therefore, if you
need to summarize the prediction making in a visual way to nonexperts, a single
decision tree might be a better choice. While building random forests on large data‐
sets might be somewhat time consuming, it can be parallelized across multiple CPU
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cores within a computer easily. If you are using a multi-core processor (as nearly all
modern computers do), you can use the n_jobs parameter to adjust the number of
cores to use. Using more CPU cores will result in linear speed-ups (using two cores,
the training of the random forest will be twice as fast), but specifying n_jobs larger
than the number of cores will not help. You can set n_jobs=-1 to use all the cores in
your computer.

You should keep in mind that random forests, by their nature, are random, and set‐
ting different random states (or not setting the random_state at all) can drastically
change the model that is built. The more trees there are in the forest, the more robust
it will be against the choice of random state. If you want to have reproducible results,
it is important to fix the random_state.

Random forests don’t tend to perform well on very high dimensional, sparse data,
such as text data. For this kind of data, linear models might be more appropriate.
Random forests usually work well even on very large datasets, and training can easily
be parallelized over many CPU cores within a powerful computer. However, random
forests require more memory and are slower to train and to predict than linear mod‐
els. If time and memory are important in an application, it might make sense to use a
linear model instead.

The important parameters to adjust are n_estimators, max_features, and possibly
pre-pruning options like max_depth. For n_estimators, larger is always better. Aver‐
aging more trees will yield a more robust ensemble by reducing overfitting. However,
there are diminishing returns, and more trees need more memory and more time to
train. A common rule of thumb is to build “as many as you have time/memory for.”

As described earlier, max_features determines how random each tree is, and a
smaller max_features reduces overfitting. In general, it’s a good rule of thumb to use
the default values: max_features=sqrt(n_features) for classification and max_fea
tures=log2(n_features) for regression. Adding max_features or max_leaf_nodes
might sometimes improve performance. It can also drastically reduce space and time
requirements for training and prediction.

Gradient boosted regression trees (gradient boosting machines)
The gradient boosted regression tree is another ensemble method that combines mul‐
tiple decision trees to create a more powerful model. Despite the “regression” in the
name, these models can be used for regression and classification. In contrast to the
random forest approach, gradient boosting works by building trees in a serial man‐
ner, where each tree tries to correct the mistakes of the previous one. By default, there
is no randomization in gradient boosted regression trees; instead, strong pre-pruning
is used. Gradient boosted trees often use very shallow trees, of depth one to five,
which makes the model smaller in terms of memory and makes predictions faster.
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The main idea behind gradient boosting is to combine many simple models (in this
context known as weak learners), like shallow trees. Each tree can only provide good
predictions on part of the data, and so more and more trees are added to iteratively
improve performance.

Gradient boosted trees are frequently the winning entries in machine learning com‐
petitions, and are widely used in industry. They are generally a bit more sensitive to
parameter settings than random forests, but can provide better accuracy if the param‐
eters are set correctly.

Apart from the pre-pruning and the number of trees in the ensemble, another impor‐
tant parameter of gradient boosting is the learning_rate, which controls how
strongly each tree tries to correct the mistakes of the previous trees. A higher learning
rate means each tree can make stronger corrections, allowing for more complex mod‐
els. Adding more trees to the ensemble, which can be accomplished by increasing
n_estimators, also increases the model complexity, as the model has more chances
to correct mistakes on the training set.

Here is an example of using GradientBoostingClassifier on the Breast Cancer
dataset. By default, 100 trees of maximum depth 3 and a learning rate of 0.1 are used:

In[72]:

from sklearn.ensemble import GradientBoostingClassifier

X_train, X_test, y_train, y_test = train_test_split(
    cancer.data, cancer.target, random_state=0)

gbrt = GradientBoostingClassifier(random_state=0)
gbrt.fit(X_train, y_train)

print("Accuracy on training set: {:.3f}".format(gbrt.score(X_train, y_train)))
print("Accuracy on test set: {:.3f}".format(gbrt.score(X_test, y_test)))

Out[72]:

Accuracy on training set: 1.000
Accuracy on test set: 0.958

As the training set accuracy is 100%, we are likely to be overfitting. To reduce overfit‐
ting, we could either apply stronger pre-pruning by limiting the maximum depth or
lower the learning rate:
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In[73]:

gbrt = GradientBoostingClassifier(random_state=0, max_depth=1)
gbrt.fit(X_train, y_train)

print("Accuracy on training set: {:.3f}".format(gbrt.score(X_train, y_train)))
print("Accuracy on test set: {:.3f}".format(gbrt.score(X_test, y_test)))

Out[73]:

Accuracy on training set: 0.991
Accuracy on test set: 0.972

In[74]:

gbrt = GradientBoostingClassifier(random_state=0, learning_rate=0.01)
gbrt.fit(X_train, y_train)

print("Accuracy on training set: {:.3f}".format(gbrt.score(X_train, y_train)))
print("Accuracy on test set: {:.3f}".format(gbrt.score(X_test, y_test)))

Out[74]:

Accuracy on training set: 0.988
Accuracy on test set: 0.965

Both methods of decreasing the model complexity reduced the training set accuracy,
as expected. In this case, lowering the maximum depth of the trees provided a signifi‐
cant improvement of the model, while lowering the learning rate only increased the
generalization performance slightly.

As for the other decision tree–based models, we can again visualize the feature
importances to get more insight into our model (Figure 2-35). As we used 100 trees, it
is impractical to inspect them all, even if they are all of depth 1:

In[75]:

gbrt = GradientBoostingClassifier(random_state=0, max_depth=1)
gbrt.fit(X_train, y_train)

plot_feature_importances_cancer(gbrt)
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Figure 2-35. Feature importances computed from a gradient boosting classifier that was
fit to the Breast Cancer dataset

We can see that the feature importances of the gradient boosted trees are somewhat
similar to the feature importances of the random forests, though the gradient boost‐
ing completely ignored some of the features.

As both gradient boosting and random forests perform well on similar kinds of data,
a common approach is to first try random forests, which work quite robustly. If ran‐
dom forests work well but prediction time is at a premium, or it is important to
squeeze out the last percentage of accuracy from the machine learning model, mov‐
ing to gradient boosting often helps.

If you want to apply gradient boosting to a large-scale problem, it might be worth
looking into the xgboost package and its Python interface, which at the time of writ‐
ing is faster (and sometimes easier to tune) than the scikit-learn implementation of
gradient boosting on many datasets.

Strengths, weaknesses, and parameters.    Gradient boosted decision trees are among the
most powerful and widely used models for supervised learning. Their main drawback
is that they require careful tuning of the parameters and may take a long time to
train. Similarly to other tree-based models, the algorithm works well without scaling
and on a mixture of binary and continuous features. As with other tree-based models,
it also often does not work well on high-dimensional sparse data.

The main parameters of gradient boosted tree models are the number of trees, n_esti
mators, and the learning_rate, which controls the degree to which each tree is
allowed to correct the mistakes of the previous trees. These two parameters are highly
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interconnected, as a lower learning_rate means that more trees are needed to build
a model of similar complexity. In contrast to random forests, where a higher n_esti
mators value is always better, increasing n_estimators in gradient boosting leads to a
more complex model, which may lead to overfitting. A common practice is to fit
n_estimators depending on the time and memory budget, and then search over dif‐
ferent learning_rates.

Another important parameter is max_depth (or alternatively max_leaf_nodes), to
reduce the complexity of each tree. Usually max_depth is set very low for gradient
boosted models, often not deeper than five splits.

Kernelized Support Vector Machines
The next type of supervised model we will discuss is kernelized support vector
machines. We explored the use of linear support vector machines for classification in
“Linear models for classification” on page 56. Kernelized support vector machines
(often just referred to as SVMs) are an extension that allows for more complex mod‐
els that are not defined simply by hyperplanes in the input space. While there are sup‐
port vector machines for classification and regression, we will restrict ourselves to the
classification case, as implemented in SVC. Similar concepts apply to support vector
regression, as implemented in SVR.

The math behind kernelized support vector machines is a bit involved, and is beyond
the scope of this book. You can find the details in Chapter 1 of Hastie, Tibshirani, and
Friedman’s The Elements of Statistical Learning. However, we will try to give you some
sense of the idea behind the method.

Linear models and nonlinear features
As you saw in Figure 2-15, linear models can be quite limiting in low-dimensional
spaces, as lines and hyperplanes have limited flexibility. One way to make a linear
model more flexible is by adding more features—for example, by adding interactions
or polynomials of the input features.

Let’s look at the synthetic dataset we used in “Feature importance in trees” on page 77
(see Figure 2-29):

In[76]:

X, y = make_blobs(centers=4, random_state=8)
y = y % 2

mglearn.discrete_scatter(X[:, 0], X[:, 1], y)
plt.xlabel("Feature 0")
plt.ylabel("Feature 1")
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10 We picked this particular feature to add for illustration purposes. The choice is not particularly important.

Figure 2-36. Two-class classification dataset in which classes are not linearly separable

A linear model for classification can only separate points using a line, and will not be
able to do a very good job on this dataset (see Figure 2-37):

In[77]:

from sklearn.svm import LinearSVC
linear_svm = LinearSVC().fit(X, y)

mglearn.plots.plot_2d_separator(linear_svm, X)
mglearn.discrete_scatter(X[:, 0], X[:, 1], y)
plt.xlabel("Feature 0")
plt.ylabel("Feature 1")

Now let’s expand the set of input features, say by also adding feature1 ** 2, the
square of the second feature, as a new feature. Instead of representing each data point
as a two-dimensional point, (feature0, feature1), we now represent it as a three-
dimensional point, (feature0, feature1, feature1 ** 2).10 This new representa‐
tion is illustrated in Figure 2-38 in a three-dimensional scatter plot:
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Figure 2-37. Decision boundary found by a linear SVM

In[78]:

# add the squared first feature
X_new = np.hstack([X, X[:, 1:] ** 2])

from mpl_toolkits.mplot3d import Axes3D, axes3d
figure = plt.figure()
# visualize in 3D
ax = Axes3D(figure, elev=-152, azim=-26)
# plot first all the points with y == 0, then all with y == 1
mask = y == 0
ax.scatter(X_new[mask, 0], X_new[mask, 1], X_new[mask, 2], c='b',
           cmap=mglearn.cm2, s=60)
ax.scatter(X_new[~mask, 0], X_new[~mask, 1], X_new[~mask, 2], c='r', marker='^',
           cmap=mglearn.cm2, s=60)
ax.set_xlabel("feature0")
ax.set_ylabel("feature1")
ax.set_zlabel("feature1 ** 2")

94 | Chapter 2: Supervised Learning



Figure 2-38. Expansion of the dataset shown in Figure 2-37, created by adding a third
feature derived from feature1

In the new representation of the data, it is now indeed possible to separate the two
classes using a linear model, a plane in three dimensions. We can confirm this by fit‐
ting a linear model to the augmented data (see Figure 2-39):

In[79]:

linear_svm_3d = LinearSVC().fit(X_new, y)
coef, intercept = linear_svm_3d.coef_.ravel(), linear_svm_3d.intercept_

# show linear decision boundary
figure = plt.figure()
ax = Axes3D(figure, elev=-152, azim=-26)
xx = np.linspace(X_new[:, 0].min() - 2, X_new[:, 0].max() + 2, 50)
yy = np.linspace(X_new[:, 1].min() - 2, X_new[:, 1].max() + 2, 50)

XX, YY = np.meshgrid(xx, yy)
ZZ = (coef[0] * XX + coef[1] * YY + intercept) / -coef[2]
ax.plot_surface(XX, YY, ZZ, rstride=8, cstride=8, alpha=0.3)
ax.scatter(X_new[mask, 0], X_new[mask, 1], X_new[mask, 2], c='b',
           cmap=mglearn.cm2, s=60)
ax.scatter(X_new[~mask, 0], X_new[~mask, 1], X_new[~mask, 2], c='r', marker='^',
           cmap=mglearn.cm2, s=60)

ax.set_xlabel("feature0")
ax.set_ylabel("feature1")
ax.set_zlabel("feature0 ** 2")

Supervised Machine Learning Algorithms | 95



Figure 2-39. Decision boundary found by a linear SVM on the expanded three-
dimensional dataset

As a function of the original features, the linear SVM model is not actually linear any‐
more. It is not a line, but more of an ellipse, as you can see from the plot created here
(Figure 2-40):

In[80]:

ZZ = YY ** 2
dec = linear_svm_3d.decision_function(np.c_[XX.ravel(), YY.ravel(), ZZ.ravel()])
plt.contourf(XX, YY, dec.reshape(XX.shape), levels=[dec.min(), 0, dec.max()],
             cmap=mglearn.cm2, alpha=0.5)
mglearn.discrete_scatter(X[:, 0], X[:, 1], y)
plt.xlabel("Feature 0")
plt.ylabel("Feature 1")
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Figure 2-40. The decision boundary from Figure 2-39 as a function of the original two
features

The kernel trick
The lesson here is that adding nonlinear features to the representation of our data can
make linear models much more powerful. However, often we don’t know which fea‐
tures to add, and adding many features (like all possible interactions in a 100-
dimensional feature space) might make computation very expensive. Luckily, there is
a clever mathematical trick that allows us to learn a classifier in a higher-dimensional
space without actually computing the new, possibly very large representation. This is
known as the kernel trick, and it works by directly computing the distance (more pre‐
cisely, the scalar products) of the data points for the expanded feature representation,
without ever actually computing the expansion.

There are two ways to map your data into a higher-dimensional space that are com‐
monly used with support vector machines: the polynomial kernel, which computes all
possible polynomials up to a certain degree of the original features (like feature1 **
2 * feature2 ** 5); and the radial basis function (RBF) kernel, also known as the
Gaussian kernel. The Gaussian kernel is a bit harder to explain, as it corresponds to
an infinite-dimensional feature space. One way to explain the Gaussian kernel is that
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11 This follows from the Taylor expansion of the exponential map.

it considers all possible polynomials of all degrees, but the importance of the features
decreases for higher degrees.11

In practice, the mathematical details behind the kernel SVM are not that important,
though, and how an SVM with an RBF kernel makes a decision can be summarized
quite easily—we’ll do so in the next section.

Understanding SVMs
During training, the SVM learns how important each of the training data points is to
represent the decision boundary between the two classes. Typically only a subset of
the training points matter for defining the decision boundary: the ones that lie on the
border between the classes. These are called support vectors and give the support vec‐
tor machine its name.

To make a prediction for a new point, the distance to each of the support vectors is
measured. A classification decision is made based on the distances to the support vec‐
tor, and the importance of the support vectors that was learned during training
(stored in the dual_coef_ attribute of SVC).

The distance between data points is measured by the Gaussian kernel:

krbf(x1, x2) = exp (ɣǁx1 - x2ǁ
2)

Here, x1 and x2 are data points, ǁ x1 - x2 ǁ denotes Euclidean distance, and ɣ (gamma)
is a parameter that controls the width of the Gaussian kernel.

Figure 2-41 shows the result of training a support vector machine on a two-
dimensional two-class dataset. The decision boundary is shown in black, and the sup‐
port vectors are larger points with the wide outline. The following code creates this
plot by training an SVM on the forge dataset:

In[81]:

from sklearn.svm import SVC
X, y = mglearn.tools.make_handcrafted_dataset()
svm = SVC(kernel='rbf', C=10, gamma=0.1).fit(X, y)
mglearn.plots.plot_2d_separator(svm, X, eps=.5)
mglearn.discrete_scatter(X[:, 0], X[:, 1], y)
# plot support vectors
sv = svm.support_vectors_
# class labels of support vectors are given by the sign of the dual coefficients
sv_labels = svm.dual_coef_.ravel() > 0
mglearn.discrete_scatter(sv[:, 0], sv[:, 1], sv_labels, s=15, markeredgewidth=3)
plt.xlabel("Feature 0")
plt.ylabel("Feature 1")
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Figure 2-41. Decision boundary and support vectors found by an SVM with RBF kernel

In this case, the SVM yields a very smooth and nonlinear (not a straight line) bound‐
ary. We adjusted two parameters here: the C parameter and the gamma parameter,
which we will now discuss in detail.

Tuning SVM parameters

The gamma parameter is the one shown in the formula given in the previous section,
which controls the width of the Gaussian kernel. It determines the scale of what it
means for points to be close together. The C parameter is a regularization parameter,
similar to that used in the linear models. It limits the importance of each point (or
more precisely, their dual_coef_).

Let’s have a look at what happens when we vary these parameters (Figure 2-42):

In[82]:

fig, axes = plt.subplots(3, 3, figsize=(15, 10))

for ax, C in zip(axes, [-1, 0, 3]):
    for a, gamma in zip(ax, range(-1, 2)):
        mglearn.plots.plot_svm(log_C=C, log_gamma=gamma, ax=a)

axes[0, 0].legend(["class 0", "class 1", "sv class 0", "sv class 1"],
                  ncol=4, loc=(.9, 1.2))
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Figure 2-42. Decision boundaries and support vectors for different settings of the param‐
eters C and gamma

Going from left to right, we increase the value of the parameter gamma from 0.1 to 10.
A small gamma means a large radius for the Gaussian kernel, which means that many
points are considered close by. This is reflected in very smooth decision boundaries
on the left, and boundaries that focus more on single points further to the right. A
low value of gamma means that the decision boundary will vary slowly, which yields a
model of low complexity, while a high value of gamma yields a more complex model.

Going from top to bottom, we increase the C parameter from 0.1 to 1000. As with the
linear models, a small C means a very restricted model, where each data point can
only have very limited influence. You can see that at the top left the decision bound‐
ary looks nearly linear, with the misclassified points barely having any influence on
the line. Increasing C, as shown on the bottom right, allows these points to have a
stronger influence on the model and makes the decision boundary bend to correctly
classify them.
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Let’s apply the RBF kernel SVM to the Breast Cancer dataset. By default, C=1 and
gamma=1/n_features:

In[83]:

X_train, X_test, y_train, y_test = train_test_split(
    cancer.data, cancer.target, random_state=0)

svc = SVC()
svc.fit(X_train, y_train)

print("Accuracy on training set: {:.2f}".format(svc.score(X_train, y_train)))
print("Accuracy on test set: {:.2f}".format(svc.score(X_test, y_test)))

Out[83]:

Accuracy on training set: 1.00
Accuracy on test set: 0.63

The model overfits quite substantially, with a perfect score on the training set and
only 63% accuracy on the test set. While SVMs often perform quite well, they are
very sensitive to the settings of the parameters and to the scaling of the data. In par‐
ticular, they require all the features to vary on a similar scale. Let’s look at the mini‐
mum and maximum values for each feature, plotted in log-space (Figure 2-43):

In[84]:

plt.plot(X_train.min(axis=0), 'o', label="min")
plt.plot(X_train.max(axis=0), '^', label="max")
plt.legend(loc=4)
plt.xlabel("Feature index")
plt.ylabel("Feature magnitude")
plt.yscale("log")

From this plot we can determine that features in the Breast Cancer dataset are of
completely different orders of magnitude. This can be somewhat of a problem for
other models (like linear models), but it has devastating effects for the kernel SVM.
Let’s examine some ways to deal with this issue.
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Figure 2-43. Feature ranges for the Breast Cancer dataset (note that the y axis has a log‐
arithmic scale)

Preprocessing data for SVMs
One way to resolve this problem is by rescaling each feature so that they are all
approximately on the same scale. A common rescaling method for kernel SVMs is to
scale the data such that all features are between 0 and 1. We will see how to do this
using the MinMaxScaler preprocessing method in Chapter 3, where we’ll give more
details. For now, let’s do this “by hand”:

In[85]:

# compute the minimum value per feature on the training set
min_on_training = X_train.min(axis=0)
# compute the range of each feature (max - min) on the training set
range_on_training = (X_train - min_on_training).max(axis=0)

# subtract the min, and divide by range
# afterward, min=0 and max=1 for each feature
X_train_scaled = (X_train - min_on_training) / range_on_training
print("Minimum for each feature\n{}".format(X_train_scaled.min(axis=0)))
print("Maximum for each feature\n {}".format(X_train_scaled.max(axis=0)))
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Out[85]:

Minimum for each feature
[ 0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.
  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.]
Maximum for each feature
 [ 1.  1.  1.  1.  1.  1.  1.  1.  1.  1.  1.  1.  1.  1.  1.  1.  1.  1.
   1.  1.  1.  1.  1.  1.  1.  1.  1.  1.  1.  1.]

In[86]:

# use THE SAME transformation on the test set,
# using min and range of the training set (see Chapter 3 for details)
X_test_scaled = (X_test - min_on_training) / range_on_training

In[87]:

svc = SVC()
svc.fit(X_train_scaled, y_train)

print("Accuracy on training set: {:.3f}".format(
    svc.score(X_train_scaled, y_train)))
print("Accuracy on test set: {:.3f}".format(svc.score(X_test_scaled, y_test)))

Out[87]:

Accuracy on training set: 0.948
Accuracy on test set: 0.951

Scaling the data made a huge difference! Now we are actually in an underfitting
regime, where training and test set performance are quite similar but less close to
100% accuracy. From here, we can try increasing either C or gamma to fit a more com‐
plex model. For example:

In[88]:

svc = SVC(C=1000)
svc.fit(X_train_scaled, y_train)

print("Accuracy on training set: {:.3f}".format(
    svc.score(X_train_scaled, y_train)))
print("Accuracy on test set: {:.3f}".format(svc.score(X_test_scaled, y_test)))

Out[88]:

Accuracy on training set: 0.988
Accuracy on test set: 0.972

Here, increasing C allows us to improve the model significantly, resulting in 97.2%
accuracy.
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Strengths, weaknesses, and parameters
Kernelized support vector machines are powerful models and perform well on a vari‐
ety of datasets. SVMs allow for complex decision boundaries, even if the data has only
a few features. They work well on low-dimensional and high-dimensional data (i.e.,
few and many features), but don’t scale very well with the number of samples. Run‐
ning an SVM on data with up to 10,000 samples might work well, but working with
datasets of size 100,000 or more can become challenging in terms of runtime and
memory usage.

Another downside of SVMs is that they require careful preprocessing of the data and
tuning of the parameters. This is why, these days, most people instead use tree-based
models such as random forests or gradient boosting (which require little or no pre‐
processing) in many applications. Furthermore, SVM models are hard to inspect; it
can be difficult to understand why a particular prediction was made, and it might be
tricky to explain the model to a nonexpert.

Still, it might be worth trying SVMs, particularly if all of your features represent
measurements in similar units (e.g., all are pixel intensities) and they are on similar
scales.

The important parameters in kernel SVMs are the regularization parameter C, the
choice of the kernel, and the kernel-specific parameters. Although we primarily
focused on the RBF kernel, other choices are available in scikit-learn. The RBF
kernel has only one parameter, gamma, which is the inverse of the width of the Gaus‐
sian kernel. gamma and C both control the complexity of the model, with large values
in either resulting in a more complex model. Therefore, good settings for the two
parameters are usually strongly correlated, and C and gamma should be adjusted
together.

Neural Networks (Deep Learning)
A family of algorithms known as neural networks has recently seen a revival under
the name “deep learning.” While deep learning shows great promise in many machine
learning applications, deep learning algorithms are often tailored very carefully to a
specific use case. Here, we will only discuss some relatively simple methods, namely
multilayer perceptrons for classification and regression, that can serve as a starting
point for more involved deep learning methods. Multilayer perceptrons (MLPs) are
also known as (vanilla) feed-forward neural networks, or sometimes just neural
networks.

The neural network model
MLPs can be viewed as generalizations of linear models that perform multiple stages
of processing to come to a decision.
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Remember that the prediction by a linear regressor is given as:

ŷ = w[0] * x[0] + w[1] * x[1] + ... + w[p] * x[p] + b

In plain English, ŷ is a weighted sum of the input features x[0] to x[p], weighted by
the learned coefficients w[0] to w[p]. We could visualize this graphically as shown in
Figure 2-44:

In[89]:

display(mglearn.plots.plot_logistic_regression_graph())

Figure 2-44. Visualization of logistic regression, where input features and predictions are
shown as nodes, and the coefficients are connections between the nodes

Here, each node on the left represents an input feature, the connecting lines represent
the learned coefficients, and the node on the right represents the output, which is a
weighted sum of the inputs.

In an MLP this process of computing weighted sums is repeated multiple times, first
computing hidden units that represent an intermediate processing step, which are
again combined using weighted sums to yield the final result (Figure 2-45):

In[90]:

display(mglearn.plots.plot_single_hidden_layer_graph())
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Figure 2-45. Illustration of a multilayer perceptron with a single hidden layer

This model has a lot more coefficients (also called weights) to learn: there is one
between every input and every hidden unit (which make up the hidden layer), and
one between every unit in the hidden layer and the output.

Computing a series of weighted sums is mathematically the same as computing just
one weighted sum, so to make this model truly more powerful than a linear model,
we need one extra trick. After computing a weighted sum for each hidden unit, a
nonlinear function is applied to the result—usually the rectifying nonlinearity (also
known as rectified linear unit or relu) or the tangens hyperbolicus (tanh). The result of
this function is then used in the weighted sum that computes the output, ŷ. The two
functions are visualized in Figure 2-46. The relu cuts off values below zero, while tanh
saturates to –1 for low input values and +1 for high input values. Either nonlinear
function allows the neural network to learn much more complicated functions than a
linear model could:

In[91]:

line = np.linspace(-3, 3, 100)
plt.plot(line, np.tanh(line), label="tanh")
plt.plot(line, np.maximum(line, 0), label="relu")
plt.legend(loc="best")
plt.xlabel("x")
plt.ylabel("relu(x), tanh(x)")
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Figure 2-46. The hyperbolic tangent activation function and the rectified linear activa‐
tion function

For the small neural network pictured in Figure 2-45, the full formula for computing
ŷ in the case of regression would be (when using a tanh nonlinearity):

h[0] = tanh(w[0, 0] * x[0] + w[1, 0] * x[1] + w[2, 0] * x[2] + w[3, 0] * x[3])
h[1] = tanh(w[0, 0] * x[0] + w[1, 0] * x[1] + w[2, 0] * x[2] + w[3, 0] * x[3])
h[2] = tanh(w[0, 0] * x[0] + w[1, 0] * x[1] + w[2, 0] * x[2] + w[3, 0] * x[3])
ŷ = v[0] * h[0] + v[1] * h[1] + v[2] * h[2]

Here, w are the weights between the input x and the hidden layer h, and v are the
weights between the hidden layer h and the output ŷ. The weights v and w are learned
from data, x are the input features, ŷ is the computed output, and h are intermediate
computations. An important parameter that needs to be set by the user is the number
of nodes in the hidden layer. This can be as small as 10 for very small or simple data‐
sets and as big as 10,000 for very complex data. It is also possible to add additional
hidden layers, as shown in Figure 2-47:
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In[92]:

mglearn.plots.plot_two_hidden_layer_graph()

Figure 2-47. A multilayer perceptron with two hidden layers

Having large neural networks made up of many of these layers of computation is
what inspired the term “deep learning.”

Tuning neural networks

Let’s look into the workings of the MLP by applying the MLPClassifier to the
two_moons dataset we used earlier in this chapter. The results are shown in
Figure 2-48:

In[93]:

from sklearn.neural_network import MLPClassifier
from sklearn.datasets import make_moons

X, y = make_moons(n_samples=100, noise=0.25, random_state=3)

X_train, X_test, y_train, y_test = train_test_split(X, y, stratify=y,
                                                    random_state=42)

mlp = MLPClassifier(algorithm='l-bfgs', random_state=0).fit(X_train, y_train)
mglearn.plots.plot_2d_separator(mlp, X_train, fill=True, alpha=.3)
mglearn.discrete_scatter(X_train[:, 0], X_train[:, 1], y_train)
plt.xlabel("Feature 0")
plt.ylabel("Feature 1")
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Figure 2-48. Decision boundary learned by a neural network with 100 hidden units on
the two_moons dataset

As you can see, the neural network learned a very nonlinear but relatively smooth
decision boundary. We used algorithm='l-bfgs', which we will discuss later.

By default, the MLP uses 100 hidden nodes, which is quite a lot for this small dataset.
We can reduce the number (which reduces the complexity of the model) and still get
a good result (Figure 2-49):

In[94]:

mlp = MLPClassifier(algorithm='l-bfgs', random_state=0, hidden_layer_sizes=[10])
mlp.fit(X_train, y_train)
mglearn.plots.plot_2d_separator(mlp, X_train, fill=True, alpha=.3)
mglearn.discrete_scatter(X_train[:, 0], X_train[:, 1], y_train)
plt.xlabel("Feature 0")
plt.ylabel("Feature 1")
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Figure 2-49. Decision boundary learned by a neural network with 10 hidden units on
the two_moons dataset

With only 10 hidden units, the decision boundary looks somewhat more ragged. The
default nonlinearity is relu, shown in Figure 2-46. With a single hidden layer, this
means the decision function will be made up of 10 straight line segments. If we want
a smoother decision boundary, we could add more hidden units (as in Figure 2-49),
add a second hidden layer (Figure 2-50), or use the tanh nonlinearity (Figure 2-51):

In[95]:

# using two hidden layers, with 10 units each
mlp = MLPClassifier(algorithm='l-bfgs', random_state=0,
                    hidden_layer_sizes=[10, 10])
mlp.fit(X_train, y_train)
mglearn.plots.plot_2d_separator(mlp, X_train, fill=True, alpha=.3)
mglearn.discrete_scatter(X_train[:, 0], X_train[:, 1], y_train)
plt.xlabel("Feature 0")
plt.ylabel("Feature 1")
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In[96]:

# using two hidden layers, with 10 units each, now with tanh nonlinearity
mlp = MLPClassifier(algorithm='l-bfgs', activation='tanh',
                    random_state=0, hidden_layer_sizes=[10, 10])
mlp.fit(X_train, y_train)
mglearn.plots.plot_2d_separator(mlp, X_train, fill=True, alpha=.3)
mglearn.discrete_scatter(X_train[:, 0], X_train[:, 1], y_train)
plt.xlabel("Feature 0")
plt.ylabel("Feature 1")

Figure 2-50. Decision boundary learned using 2 hidden layers with 10 hidden units
each, with rect activation function
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Figure 2-51. Decision boundary learned using 2 hidden layers with 10 hidden units
each, with tanh activation function

Finally, we can also control the complexity of a neural network by using an l2 penalty
to shrink the weights toward zero, as we did in ridge regression and the linear classifi‐
ers. The parameter for this in the MLPClassifier is alpha (as in the linear regression
models), and it’s set to a very low value (little regularization) by default. Figure 2-52
shows the effect of different values of alpha on the two_moons dataset, using two hid‐
den layers of 10 or 100 units each:

In[97]:

fig, axes = plt.subplots(2, 4, figsize=(20, 8))
for axx, n_hidden_nodes in zip(axes, [10, 100]):
    for ax, alpha in zip(axx, [0.0001, 0.01, 0.1, 1]):
        mlp = MLPClassifier(algorithm='l-bfgs', random_state=0,
                            hidden_layer_sizes=[n_hidden_nodes, n_hidden_nodes],
                            alpha=alpha)
        mlp.fit(X_train, y_train)
        mglearn.plots.plot_2d_separator(mlp, X_train, fill=True, alpha=.3, ax=ax)
        mglearn.discrete_scatter(X_train[:, 0], X_train[:, 1], y_train, ax=ax)
        ax.set_title("n_hidden=[{}, {}]\nalpha={:.4f}".format(
                      n_hidden_nodes, n_hidden_nodes, alpha))
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Figure 2-52. Decision functions for different numbers of hidden units and different set‐
tings of the alpha parameter

As you probably have realized by now, there are many ways to control the complexity
of a neural network: the number of hidden layers, the number of units in each hidden
layer, and the regularization (alpha). There are actually even more, which we won’t
go into here.

An important property of neural networks is that their weights are set randomly
before learning is started, and this random initialization affects the model that is
learned. That means that even when using exactly the same parameters, we can
obtain very different models when using different random seeds. If the networks are
large, and their complexity is chosen properly, this should not affect accuracy too
much, but it is worth keeping in mind (particularly for smaller networks).
Figure 2-53 shows plots of several models, all learned with the same settings of the
parameters:

In[98]:

fig, axes = plt.subplots(2, 4, figsize=(20, 8))
for i, ax in enumerate(axes.ravel()):
    mlp = MLPClassifier(algorithm='l-bfgs', random_state=i,
                        hidden_layer_sizes=[100, 100])
    mlp.fit(X_train, y_train)
    mglearn.plots.plot_2d_separator(mlp, X_train, fill=True, alpha=.3, ax=ax)
    mglearn.discrete_scatter(X_train[:, 0], X_train[:, 1], y_train, ax=ax)
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Figure 2-53. Decision functions learned with the same parameters but different random
initializations

To get a better understanding of neural networks on real-world data, let’s apply the
MLPClassifier to the Breast Cancer dataset. We start with the default parameters:

In[99]:

print("Cancer data per-feature maxima:\n{}".format(cancer.data.max(axis=0)))

Out[99]:

Cancer data per-feature maxima:
[   28.110    39.280   188.500  2501.000     0.163     0.345     0.427
     0.201     0.304     0.097     2.873     4.885    21.980   542.200
     0.031     0.135     0.396     0.053     0.079     0.030    36.040
    49.540   251.200  4254.000     0.223     1.058     1.252     0.291
     0.664     0.207]

In[100]:

X_train, X_test, y_train, y_test = train_test_split(
    cancer.data, cancer.target, random_state=0)

mlp = MLPClassifier(random_state=42)
mlp.fit(X_train, y_train)

print("Accuracy on training set: {:.2f}".format(mlp.score(X_train, y_train)))
print("Accuracy on test set: {:.2f}".format(mlp.score(X_test, y_test)))

Out[100]:

Accuracy on training set: 0.92
Accuracy on test set: 0.90

The accuracy of the MLP is quite good, but not as good as the other models. As in the
earlier SVC example, this is likely due to scaling of the data. Neural networks also
expect all input features to vary in a similar way, and ideally to have a mean of 0, and
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a variance of 1. We must rescale our data so that it fulfills these requirements. Again,
we will do this by hand here, but we’ll introduce the StandardScaler to do this auto‐
matically in Chapter 3:

In[101]:

# compute the mean value per feature on the training set
mean_on_train = X_train.mean(axis=0)
# compute the standard deviation of each feature on the training set
std_on_train = X_train.std(axis=0)

# subtract the mean, and scale by inverse standard deviation
# afterward, mean=0 and std=1
X_train_scaled = (X_train - mean_on_train) / std_on_train
# use THE SAME transformation (using training mean and std) on the test set
X_test_scaled = (X_test - mean_on_train) / std_on_train

mlp = MLPClassifier(random_state=0)
mlp.fit(X_train_scaled, y_train)

print("Accuracy on training set: {:.3f}".format(
    mlp.score(X_train_scaled, y_train)))
print("Accuracy on test set: {:.3f}".format(mlp.score(X_test_scaled, y_test)))

Out[101]:

Accuracy on training set: 0.991
Accuracy on test set: 0.965

ConvergenceWarning:
    Stochastic Optimizer: Maximum iterations reached and the optimization
    hasn't converged yet.

The results are much better after scaling, and already quite competitive. We got a
warning from the model, though, that tells us that the maximum number of iterations
has been reached. This is part of the adam algorithm for learning the model, and tells
us that we should increase the number of iterations:

In[102]:

mlp = MLPClassifier(max_iter=1000, random_state=0)
mlp.fit(X_train_scaled, y_train)

print("Accuracy on training set: {:.3f}".format(
    mlp.score(X_train_scaled, y_train)))
print("Accuracy on test set: {:.3f}".format(mlp.score(X_test_scaled, y_test)))

Out[102]:

Accuracy on training set: 0.995
Accuracy on test set: 0.965
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12 You might have noticed at this point that many of the well-performing models achieved exactly the same
accuracy of 0.972. This means that all of the models make exactly the same number of mistakes, which is four.
If you compare the actual predictions, you can even see that they make exactly the same mistakes! This might
be a consequence of the dataset being very small, or it may be because these points are really different from
the rest.

Increasing the number of iterations only increased the training set performance, not
the generalization performance. Still, the model is performing quite well. As there is
some gap between the training and the test performance, we might try to decrease the
model’s complexity to get better generalization performance. Here, we choose to
increase the alpha parameter (quite aggressively, from 0.0001 to 1) to add stronger
regularization of the weights:

In[103]:

mlp = MLPClassifier(max_iter=1000, alpha=1, random_state=0)
mlp.fit(X_train_scaled, y_train)

print("Accuracy on training set: {:.3f}".format(
    mlp.score(X_train_scaled, y_train)))
print("Accuracy on test set: {:.3f}".format(mlp.score(X_test_scaled, y_test)))

Out[103]:

Accuracy on training set: 0.988
Accuracy on test set: 0.972

This leads to a performance on par with the best models so far.12

While it is possible to analyze what a neural network has learned, this is usually much
trickier than analyzing a linear model or a tree-based model. One way to introspect
what was learned is to look at the weights in the model. You can see an example of
this in the scikit-learn example gallery. For the Breast Cancer dataset, this might
be a bit hard to understand. The following plot (Figure 2-54) shows the weights that
were learned connecting the input to the first hidden layer. The rows in this plot cor‐
respond to the 30 input features, while the columns correspond to the 100 hidden
units. Light colors represent large positive values, while dark colors represent nega‐
tive values:

In[104]:

plt.figure(figsize=(20, 5))
plt.imshow(mlp.coefs_[0], interpolation='none', cmap='viridis')
plt.yticks(range(30), cancer.feature_names)
plt.xlabel("Columns in weight matrix")
plt.ylabel("Input feature")
plt.colorbar()
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Figure 2-54. Heat map of the first layer weights in a neural network learned on the
Breast Cancer dataset

One possible inference we can make is that features that have very small weights for
all of the hidden units are “less important” to the model. We can see that “mean
smoothness” and “mean compactness,” in addition to the features found between
“smoothness error” and “fractal dimension error,” have relatively low weights com‐
pared to other features. This could mean that these are less important features or pos‐
sibly that we didn’t represent them in a way that the neural network could use.

We could also visualize the weights connecting the hidden layer to the output layer,
but those are even harder to interpret.

While the MLPClassifier and MLPRegressor provide easy-to-use interfaces for the
most common neural network architectures, they only capture a small subset of what
is possible with neural networks. If you are interested in working with more flexible
or larger models, we encourage you to look beyond scikit-learn into the fantastic
deep learning libraries that are out there. For Python users, the most well-established
are keras, lasagna, and tensor-flow. lasagna builds on the theano library, while
keras can use either tensor-flow or theano. These libraries provide a much more
flexible interface to build neural networks and track the rapid progress in deep learn‐
ing research. All of the popular deep learning libraries also allow the use of high-
performance graphics processing units (GPUs), which scikit-learn does not
support. Using GPUs allows us to accelerate computations by factors of 10x to 100x,
and they are essential for applying deep learning methods to large-scale datasets.

Strengths, weaknesses, and parameters
Neural networks have reemerged as state-of-the-art models in many applications of
machine learning. One of their main advantages is that they are able to capture infor‐
mation contained in large amounts of data and build incredibly complex models.
Given enough computation time, data, and careful tuning of the parameters, neural
networks often beat other machine learning algorithms (for classification and regres‐
sion tasks).
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This brings us to the downsides. Neural networks—particularly the large and power‐
ful ones—often take a long time to train. They also require careful preprocessing of
the data, as we saw here. Similarly to SVMs, they work best with “homogeneous”
data, where all the features have similar meanings. For data that has very different
kinds of features, tree-based models might work better. Tuning neural network
parameters is also an art unto itself. In our experiments, we barely scratched the sur‐
face of possible ways to adjust neural network models and how to train them.

Estimating complexity in neural networks.    The most important parameters are the num‐
ber of layers and the number of hidden units per layer. You should start with one or
two hidden layers, and possibly expand from there. The number of nodes per hidden
layer is often similar to the number of input features, but rarely higher than in the low
to mid-thousands.

A helpful measure when thinking about the model complexity of a neural network is
the number of weights or coefficients that are learned. If you have a binary classifica‐
tion dataset with 100 features, and you have 100 hidden units, then there are 100 *
100 = 10,000 weights between the input and the first hidden layer. There are also
100 * 1 = 100 weights between the hidden layer and the output layer, for a total of
around 10,100 weights. If you add a second hidden layer with 100 hidden units, there
will be another 100 * 100 = 10,000 weights from the first hidden layer to the second
hidden layer, resulting in a total of 20,100 weights. If instead you use one layer with
1,000 hidden units, you are learning 100 * 1,000 = 100,000 weights from the input to
the hidden layer and 1,000 x 1 weights from the hidden layer to the output layer, for a
total of 101,000. If you add a second hidden layer you add 1,000 * 1,000 = 1,000,000
weights, for a whopping total of 1,101,000—50 times larger than the model with two
hidden layers of size 100.

A common way to adjust parameters in a neural network is to first create a network
that is large enough to overfit, making sure that the task can actually be learned by
the network. Then, once you know the training data can be learned, either shrink the
network or increase alpha to add regularization, which will improve generalization
performance.

In our experiments, we focused mostly on the definition of the model: the number of
layers and nodes per layer, the regularization, and the nonlinearity. These define the
model we want to learn. There is also the question of how to learn the model, or the
algorithm that is used for learning the parameters, which is set using the algorithm
parameter. There are two easy-to-use choices for algorithm. The default is 'adam',
which works well in most situations but is quite sensitive to the scaling of the data (so
it is important to always scale your data to 0 mean and unit variance). The other one
is 'l-bfgs', which is quite robust but might take a long time on larger models or
larger datasets. There is also the more advanced 'sgd' option, which is what many
deep learning researchers use. The 'sgd' option comes with many additional param‐
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eters that need to be tuned for best results. You can find all of these parameters and
their definitions in the user guide. When starting to work with MLPs, we recommend
sticking to 'adam' and 'l-bfgs'.

fit Resets a Model

An important property of scikit-learn models is that calling fit
will always reset everything a model previously learned. So if you
build a model on one dataset, and then call fit again on a different
dataset, the model will “forget” everything it learned from the first
dataset. You can call fit as often as you like on a model, and the
outcome will be the same as calling fit on a “new” model.

Uncertainty Estimates from Classifiers
Another useful part of the scikit-learn interface that we haven’t talked about yet is
the ability of classifiers to provide uncertainty estimates of predictions. Often, you are
not only interested in which class a classifier predicts for a certain test point, but also
how certain it is that this is the right class. In practice, different kinds of mistakes lead
to very different outcomes in real-world applications. Imagine a medical application
testing for cancer. Making a false positive prediction might lead to a patient undergo‐
ing additional tests, while a false negative prediction might lead to a serious disease
not being treated. We will go into this topic in more detail in Chapter 6.

There are two different functions in scikit-learn that can be used to obtain uncer‐
tainty estimates from classifiers: decision_function and predict_proba. Most (but
not all) classifiers have at least one of them, and many classifiers have both. Let’s look
at what these two functions do on a synthetic two-dimensional dataset, when build‐
ing a GradientBoostingClassifier classifier, which has both a decision_function
and a predict_proba method:

In[105]:

from sklearn.ensemble import GradientBoostingClassifier
from sklearn.datasets import make_blobs, make_circles
X, y = make_circles(noise=0.25, factor=0.5, random_state=1)

# we rename the classes "blue" and "red" for illustration purposes
y_named = np.array(["blue", "red"])[y]

# we can call train_test_split with arbitrarily many arrays;
# all will be split in a consistent manner
X_train, X_test, y_train_named, y_test_named, y_train, y_test = \
    train_test_split(X, y_named, y, random_state=0)

# build the gradient boosting model
gbrt = GradientBoostingClassifier(random_state=0)
gbrt.fit(X_train, y_train_named)
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The Decision Function
In the binary classification case, the return value of decision_function is of shape
(n_samples,), and it returns one floating-point number for each sample:

In[106]:

print("X_test.shape: {}".format(X_test.shape))
print("Decision function shape: {}".format(
    gbrt.decision_function(X_test).shape))

Out[106]:

X_test.shape: (25, 2)
Decision function shape: (25,)

This value encodes how strongly the model believes a data point to belong to the
“positive” class, in this case class 1. Positive values indicate a preference for the posi‐
tive class, and negative values indicate a preference for the “negative” (other) class:

In[107]:

# show the first few entries of decision_function
print("Decision function:\n{}".format(gbrt.decision_function(X_test)[:6]))

Out[107]:

Decision function:
[ 4.136 -1.683 -3.951 -3.626  4.29   3.662]

We can recover the prediction by looking only at the sign of the decision function:

In[108]:

print("Thresholded decision function:\n{}".format(
    gbrt.decision_function(X_test) > 0))
print("Predictions:\n{}".format(gbrt.predict(X_test)))

Out[108]:

Thresholded decision function:
[ True False False False  True  True False  True  True  True False  True
  True False  True False False False  True  True  True  True  True False
  False]
Predictions:
['red' 'blue' 'blue' 'blue' 'red' 'red' 'blue' 'red' 'red' 'red' 'blue'
 'red' 'red' 'blue' 'red' 'blue' 'blue' 'blue' 'red' 'red' 'red' 'red'
 'red' 'blue' 'blue']

For binary classification, the “negative” class is always the first entry of the classes_
attribute, and the “positive” class is the second entry of classes_. So if you want to
fully recover the output of predict, you need to make use of the classes_ attribute:

120 | Chapter 2: Supervised Learning



In[109]:

# make the boolean True/False into 0 and 1
greater_zero = (gbrt.decision_function(X_test) > 0).astype(int)
# use 0 and 1 as indices into classes_
pred = gbrt.classes_[greater_zero]
# pred is the same as the output of gbrt.predict
print("pred is equal to predictions: {}".format(
    np.all(pred == gbrt.predict(X_test))))

Out[109]:

pred is equal to predictions: True

The range of decision_function can be arbitrary, and depends on the data and the
model parameters:

In[110]:

decision_function = gbrt.decision_function(X_test)
print("Decision function minimum: {:.2f} maximum: {:.2f}".format(
    np.min(decision_function), np.max(decision_function)))

Out[110]:

Decision function minimum: -7.69 maximum: 4.29

This arbitrary scaling makes the output of decision_function often hard to
interpret.

In the following example we plot the decision_function for all points in the 2D
plane using a color coding, next to a visualization of the decision boundary, as we saw
earlier. We show training points as circles and test data as triangles (Figure 2-55):

In[111]:

fig, axes = plt.subplots(1, 2, figsize=(13, 5))
mglearn.tools.plot_2d_separator(gbrt, X, ax=axes[0], alpha=.4,
                                fill=True, cm=mglearn.cm2)
scores_image = mglearn.tools.plot_2d_scores(gbrt, X, ax=axes[1],
                                            alpha=.4, cm=mglearn.ReBl)

for ax in axes:
    # plot training and test points
    mglearn.discrete_scatter(X_test[:, 0], X_test[:, 1], y_test,
                             markers='^', ax=ax)
    mglearn.discrete_scatter(X_train[:, 0], X_train[:, 1], y_train,
                             markers='o', ax=ax)
    ax.set_xlabel("Feature 0")
    ax.set_ylabel("Feature 1")
cbar = plt.colorbar(scores_image, ax=axes.tolist())
axes[0].legend(["Test class 0", "Test class 1", "Train class 0",
                "Train class 1"], ncol=4, loc=(.1, 1.1))
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Figure 2-55. Decision boundary (left) and decision function (right) for a gradient boost‐
ing model on a two-dimensional toy dataset

Encoding not only the predicted outcome but also how certain the classifier is pro‐
vides additional information. However, in this visualization, it is hard to make out the
boundary between the two classes.

Predicting Probabilities
The output of predict_proba is a probability for each class, and is often more easily
understood than the output of decision_function. It is always of shape (n_samples,
2) for binary classification:

In[112]:

print("Shape of probabilities: {}".format(gbrt.predict_proba(X_test).shape))

Out[112]:

Shape of probabilities: (25, 2)

The first entry in each row is the estimated probability of the first class, and the sec‐
ond entry is the estimated probability of the second class. Because it is a probability,
the output of predict_proba is always between 0 and 1, and the sum of the entries
for both classes is always 1:

In[113]:

# show the first few entries of predict_proba
print("Predicted probabilities:\n{}".format(
    gbrt.predict_proba(X_test[:6])))
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13 Because the probabilities are floating-point numbers, it is unlikely that they will both be exactly 0.500. How‐
ever, if that happens, the prediction is made at random.

Out[113]:

Predicted probabilities:
[[ 0.016  0.984]
 [ 0.843  0.157]
 [ 0.981  0.019]
 [ 0.974  0.026]
 [ 0.014  0.986]
 [ 0.025  0.975]]

Because the probabilities for the two classes sum to 1, exactly one of the classes will
be above 50% certainty. That class is the one that is predicted.13

You can see in the previous output that the classifier is relatively certain for most
points. How well the uncertainty actually reflects uncertainty in the data depends on
the model and the parameters. A model that is more overfitted tends to make more
certain predictions, even if they might be wrong. A model with less complexity usu‐
ally has more uncertainty in its predictions. A model is called calibrated if the
reported uncertainty actually matches how correct it is—in a calibrated model, a pre‐
diction made with 70% certainty would be correct 70% of the time.

In the following example (Figure 2-56) we again show the decision boundary on the
dataset, next to the class probabilities for the class 1:

In[114]:

fig, axes = plt.subplots(1, 2, figsize=(13, 5))

mglearn.tools.plot_2d_separator(
    gbrt, X, ax=axes[0], alpha=.4, fill=True, cm=mglearn.cm2)
scores_image = mglearn.tools.plot_2d_scores(
    gbrt, X, ax=axes[1], alpha=.5, cm=mglearn.ReBl, function='predict_proba')

for ax in axes:
    # plot training and test points
    mglearn.discrete_scatter(X_test[:, 0], X_test[:, 1], y_test,
                             markers='^', ax=ax)
    mglearn.discrete_scatter(X_train[:, 0], X_train[:, 1], y_train,
                             markers='o', ax=ax)
    ax.set_xlabel("Feature 0")
    ax.set_ylabel("Feature 1")
cbar = plt.colorbar(scores_image, ax=axes.tolist())
axes[0].legend(["Test class 0", "Test class 1", "Train class 0",
                "Train class 1"], ncol=4, loc=(.1, 1.1))
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Figure 2-56. Decision boundary (left) and predicted probabilities for the gradient boost‐
ing model shown in Figure 2-55

The boundaries in this plot are much more well-defined, and the small areas of
uncertainty are clearly visible.

The scikit-learn website has a great comparison of many models and what their
uncertainty estimates look like. We’ve reproduced this in Figure 2-57, and we encour‐
age you to go though the example there.

Figure 2-57. Comparison of several classifiers in scikit-learn on synthetic datasets (image
courtesy http://scikit-learn.org)

Uncertainty in Multiclass Classification
So far, we’ve only talked about uncertainty estimates in binary classification. But the
decision_function and predict_proba methods also work in the multiclass setting.
Let’s apply them on the Iris dataset, which is a three-class classification dataset:
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In[115]:

from sklearn.datasets import load_iris

iris = load_iris()
X_train, X_test, y_train, y_test = train_test_split(
    iris.data, iris.target, random_state=42)

gbrt = GradientBoostingClassifier(learning_rate=0.01, random_state=0)
gbrt.fit(X_train, y_train)

In[116]:

print("Decision function shape: {}".format(gbrt.decision_function(X_test).shape))
# plot the first few entries of the decision function
print("Decision function:\n{}".format(gbrt.decision_function(X_test)[:6, :]))

Out[116]:

Decision function shape: (38, 3)
Decision function:
[[-0.529  1.466 -0.504]
 [ 1.512 -0.496 -0.503]
 [-0.524 -0.468  1.52 ]
 [-0.529  1.466 -0.504]
 [-0.531  1.282  0.215]
 [ 1.512 -0.496 -0.503]]

In the multiclass case, the decision_function has the shape (n_samples,

n_classes) and each column provides a “certainty score” for each class, where a large
score means that a class is more likely and a small score means the class is less likely.
You can recover the predictions from these scores by finding the maximum entry for
each data point:

In[117]:

print("Argmax of decision function:\n{}".format(
      np.argmax(gbrt.decision_function(X_test), axis=1)))
print("Predictions:\n{}".format(gbrt.predict(X_test)))

Out[117]:

Argmax of decision function:
[1 0 2 1 1 0 1 2 1 1 2 0 0 0 0 1 2 1 1 2 0 2 0 2 2 2 2 2 0 0 0 0 1 0 0 2 1 0]
Predictions:
[1 0 2 1 1 0 1 2 1 1 2 0 0 0 0 1 2 1 1 2 0 2 0 2 2 2 2 2 0 0 0 0 1 0 0 2 1 0]

The output of predict_proba has the same shape, (n_samples, n_classes). Again,
the probabilities for the possible classes for each data point sum to 1:
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In[118]:

# show the first few entries of predict_proba
print("Predicted probabilities:\n{}".format(gbrt.predict_proba(X_test)[:6]))
# show that sums across rows are one
print("Sums: {}".format(gbrt.predict_proba(X_test)[:6].sum(axis=1)))

Out[118]:

Predicted probabilities:
[[ 0.107  0.784  0.109]
 [ 0.789  0.106  0.105]
 [ 0.102  0.108  0.789]
 [ 0.107  0.784  0.109]
 [ 0.108  0.663  0.228]
 [ 0.789  0.106  0.105]]
Sums: [ 1.  1.  1.  1.  1.  1.]

We can again recover the predictions by computing the argmax of predict_proba:

In[119]:

print("Argmax of predicted probabilities:\n{}".format(
    np.argmax(gbrt.predict_proba(X_test), axis=1)))
print("Predictions:\n{}".format(gbrt.predict(X_test)))

Out[119]:

Argmax of predicted probabilities:
[1 0 2 1 1 0 1 2 1 1 2 0 0 0 0 1 2 1 1 2 0 2 0 2 2 2 2 2 0 0 0 0 1 0 0 2 1 0]
Predictions:
[1 0 2 1 1 0 1 2 1 1 2 0 0 0 0 1 2 1 1 2 0 2 0 2 2 2 2 2 0 0 0 0 1 0 0 2 1 0]

To summarize, predict_proba and decision_function always have shape (n_sam
ples, n_classes)—apart from decision_function in the special binary case. In the
binary case, decision_function only has one column, corresponding to the “posi‐
tive” class classes_[1]. This is mostly for historical reasons.

You can recover the prediction when there are n_classes many columns by comput‐
ing the argmax across columns. Be careful, though, if your classes are strings, or you
use integers but they are not consecutive and starting from 0. If you want to compare
results obtained with predict to results obtained via decision_function or pre
dict_proba, make sure to use the classes_ attribute of the classifier to get the actual
class names:
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In[120]:

logreg = LogisticRegression()

# represent each target by its class name in the iris dataset
named_target = iris.target_names[y_train]
logreg.fit(X_train, named_target)
print("unique classes in training data: {}".format(logreg.classes_))
print("predictions: {}".format(logreg.predict(X_test)[:10]))
argmax_dec_func = np.argmax(logreg.decision_function(X_test), axis=1)
print("argmax of decision function: {}".format(argmax_dec_func[:10]))
print("argmax combined with classes_: {}".format(
        logreg.classes_[argmax_dec_func][:10]))

Out[120]:

unique classes in training data: ['setosa' 'versicolor' 'virginica']
predictions: ['versicolor' 'setosa' 'virginica' 'versicolor' 'versicolor'
 'setosa' 'versicolor' 'virginica' 'versicolor' 'versicolor']
argmax of decision function: [1 0 2 1 1 0 1 2 1 1]
argmax combined with classes_: ['versicolor' 'setosa' 'virginica' 'versicolor'
 'versicolor' 'setosa' 'versicolor' 'virginica' 'versicolor' 'versicolor']

Summary and Outlook
We started this chapter with a discussion of model complexity, then discussed gener‐
alization, or learning a model that is able to perform well on new, previously unseen
data. This led us to the concepts of underfitting, which describes a model that cannot
capture the variations present in the training data, and overfitting, which describes a
model that focuses too much on the training data and is not able to generalize to new
data very well.

We then discussed a wide array of machine learning models for classification and
regression, what their advantages and disadvantages are, and how to control model
complexity for each of them. We saw that for many of the algorithms, setting the right
parameters is important for good performance. Some of the algorithms are also sensi‐
tive to how we represent the input data, and in particular to how the features are
scaled. Therefore, blindly applying an algorithm to a dataset without understanding
the assumptions the model makes and the meanings of the parameter settings will
rarely lead to an accurate model.

This chapter contains a lot of information about the algorithms, and it is not neces‐
sary for you to remember all of these details for the following chapters. However,
some knowledge of the models described here—and which to use in a specific situa‐
tion—is important for successfully applying machine learning in practice. Here is a
quick summary of when to use each model:
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Nearest neighbors
For small datasets, good as a baseline, easy to explain.

Linear models
Go-to as a first algorithm to try, good for very large datasets, good for very high-
dimensional data.

Naive Bayes
Only for classification. Even faster than linear models, good for very large data‐
sets and high-dimensional data. Often less accurate than linear models.

Decision trees
Very fast, don’t need scaling of the data, can be visualized and easily explained.

Random forests
Nearly always perform better than a single decision tree, very robust and power‐
ful. Don’t need scaling of data. Not good for very high-dimensional sparse data.

Gradient boosted decision trees
Often slightly more accurate than random forests. Slower to train but faster to
predict than random forests, and smaller in memory. Need more parameter tun‐
ing than random forests.

Support vector machines
Powerful for medium-sized datasets of features with similar meaning. Require
scaling of data, sensitive to parameters.

Neural networks
Can build very complex models, particularly for large datasets. Sensitive to scal‐
ing of the data and to the choice of parameters. Large models need a long time to
train.

When working with a new dataset, it is in general a good idea to start with a simple
model, such as a linear model or a naive Bayes or nearest neighbors classifier, and see
how far you can get. After understanding more about the data, you can consider
moving to an algorithm that can build more complex models, such as random forests,
gradient boosted decision trees, SVMs, or neural networks.

You should now be in a position where you have some idea of how to apply, tune, and
analyze the models we discussed here. In this chapter, we focused on the binary clas‐
sification case, as this is usually easiest to understand. Most of the algorithms presen‐
ted have classification and regression variants, however, and all of the classification
algorithms support both binary and multiclass classification. Try applying any of
these algorithms to the built-in datasets in scikit-learn, like the boston_housing or
diabetes datasets for regression, or the digits dataset for multiclass classification.
Playing around with the algorithms on different datasets will give you a better feel for
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how long they need to train, how easy it is to analyze the models, and how sensitive
they are to the representation of the data.

While we analyzed the consequences of different parameter settings for the algo‐
rithms we investigated, building a model that actually generalizes well to new data in
production is a bit trickier than that. We will see how to properly adjust parameters
and how to find good parameters automatically in Chapter 6.

First, though, we will dive in more detail into unsupervised learning and preprocess‐
ing in the next chapter.
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