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Visualization, Insights, and

Results
After exploring machine learning, but not because the topic is less relevant than others, we
are going to illustrate how to create visualizations with Python to enrich your data science
project. Visualization plays an important role in helping you communicate the results and
insights derived from data and the learning process.

In this chapter, you will learn how to do the following:

Use the basic pyplot functions from the matplotlib package
Leverage a pandas DataFrame for Explorative Data Analysis (EDA)
Create beautiful and interactive charts with Seaborn
Visualize the machine learning and optimization processes we discussed
in Chapter 3, The Data Pipeline, and Chapter 4, Machine Learning
Understand and visually communicate variables' importance and their
relationship with the target outcome
Set up a prediction server that uses HTTP to accept and provide predictions as a
service

Introducing the basics of matplotlib
Visualization is a fundamental aspect of data science, allowing data scientists to better and
more effectively communicate their findings to the organization they operate in, to both
data experts and non-experts. Providing the nuts and bolts of the principles behind
communicating information and crafting engaging beautiful visualizations is beyond the
scope of our book, but we can recommend suitable resources if you want to improve your
skills.
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For basic visualization rules, you can visit https:/ /lifehacker. com/ 5909501/ how- to-
choose-the-best- chart- for- your- data. We also recommend the books of Prof. Edward
Tufte on analytic design and visualization.

We can instead provide a fast and to-the-point series of essential recipes that can get you
started on visualization using Python, and  that you can refer to anytime you need to create
a specific graphics chart. Consider all the snippets of code as your visualization building
blocks; you can arrange them with different configurations and features just by using the
large choice of parameters that we are going to present to you.

matplotlib is a Python package for plotting graphics. Created by John Hunter, it has been
developed in order to address a lack of integration between Python and external software
with graphical capabilities, such as MATLAB or gnuplot. Greatly influenced by MATLAB's
way of operating and functions, matplotlib presents a quite similar syntax. In particular,
the matplotlib.pyplot module, perfectly compatible with MATLAB, will be the core of
our essential introduction to all the indispensable graphical tools to represent your data
and analysis. MATLAB is indeed a standard for visualization in the data analysis and
scientific community because of its recognized capabilities when it comes to exploratory
analysis, mainly due to its smooth and easy to use plotting functions.

Each pyplot command makes a change on an initially instantiated figure. Once you set a
figure, all additional commands will operate on it. Thus, it is easy to incrementally improve
and enrich your graphic representation. In order for you to take advantage of the code and
be able to personalize it to your needs, all the following examples are presented together
with commented building blocks so that you can later draft your basic representation, and
then look through this chapter for specific parameters among the examples in order to
improve your chart as you planned it.

With the pyplot.figure() command, you can initialize a new visualization, though it
suffices to call a plotting command to automatically start it. Instead, by using
pyplot.show(), you close the figure that you were operating on, and you can open and
operate on new figures.

Before starting with a few visualization examples, let's import the necessary packages in
order to run all the examples:

In: import numpy as np
    import matplotlib.pyplot as plt
    import matplotlib as mpl

In this way, we can always refer to pyplot, the MATLAB-like module, as plt, and access
the complete matplotlib functionality set with the help of mpl.
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If you are using a Jupyter Notebook (or Jupyter Lab), you can use this line
magic: %matplotlib inline. After writing the command in a cell of the
notebook and running it, you can have your plots drawn directly on the
notebook itself, instead of having the graphics presented in a separate
window (by default, the GUI backend of matplotlib is the TkAgg
backend). If you prefer a different backend such as Qt (www.qt.io), which
is often distributed with Python scientific distributions, you just have to
run this line magic instead: %matplotlib Qt.

Trying curve plotting
Our first problem will require you to draw a function with pyplot. Drawing a function is
quite straightforward; you just have to get a series of x coordinates and map them to the y
axis by using the function that you want to plot. Since the mapping results are stored away
into two vectors, the plot function will deal with the curve representation. The precision of
the representation will be greater if the mapped points are enough (50 points is a good
sampling number):

In: import numpy as np
    import matplotlib.pyplot as plt
    x = np.linspace(0, 5, 50)
    y_cos = np.cos(x)
    y_sin = np.sin(x)

Using the NumPy linspace() function, we will create a series of 50 equally distanced
numbers ranging from 0 to 5. We can use them to map our y to the cosine and sine
functions:

In: plt.figure() # initialize a figure
    plt.plot(x,y_cos) # plot series of coordinates as a line
    plt.plot(x,y_sin)
    plt.xlabel('x') # adds label to x axis
    plt.ylabel('y') # adds label to y axis
    plt.title('title') # adds a title
    plt.show() # close a figure

https://www.qt.io/
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Here is your first plot:

The pyplot.plot command can plot more curves in a sequence, with each curve taking a
different color according to an internal color schema, which can be customized by 
explicating the favored color sequence. To do so, you have to manipulate the list containing
the sequence of colors that matplotlib uses:

In: list(mpl.rcParams['axes.prop_cycle'])

Out: [{'color': '#1f77b4'},
      {'color': '#ff7f0e'},
      {'color': '#2ca02c'},
      {'color': '#d62728'},
      {'color': '#9467bd'},
      {'color': '#8c564b'},
      {'color': '#e377c2'},
      {'color': '#7f7f7f'},
      {'color': '#bcbd22'},
      {'color': '#17becf'}]

#1f77b4, #ff7f0e, #2ca02c, and all the others are all colors expressed in
hexadecimal form. In order to figure out how they look, you can use the
colorhexa website, providing you with useful information on each of
them: https:/ / www. colorhexa. com/ .
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The hack can be done by using the cycler function and feeding it with a list of string
names referring to the colors you want to use in sequence:

In: mpl.rcParams['axes.prop_cycle'] = mpl.cycler('color',
                                                 ['blue', 'red', 'green'])

Moreover, the plot command, if not given any other information, will assume that you are
going to plot a line. Therefore, it will link all the provided points in a curve. If you add a
new parameter such as '.' – that is, plt.plot(x,y_cos,'.') – you signal that you
instead want to plot a series of separated points (the string for a line is '-', but we will
soon show another example).

In this way, if you've customized rcParams['axes.prop_cycle'] as proposed
previously, the next graphs will first have a blue curve, then the second will be red, and the
third green. Then, the color loop will restart. We leave this decision to you. All the
examples in this chapter will just follow the standard color sequence, but you are free to
experiment with better color settings.

Please note that you can also set the title of the graph and label the axis by the title, xlabel,
and ylabel from pyplot.

Using panels for clearer representations
Our second example will demonstrate to you how to create multiple graphics panels and
plot a representation on each of them. We will also try to personalize the drawn curves by
using different colors, sizes, and styles. Here is the example:

In: import matplotlib.pyplot as plt
    # defines 1 row 2 column panel, activates figure 1
    plt.subplot(1,2,1)
    plt.plot(x,y_cos,'r--')
    # adds a title
    plt.title('cos')
    # defines 1 row 2 column panel, activates figure 2
    plt.subplot(1,2,2)
    plt.plot(x,y_sin,'b-')
    plt.title('sin')
    plt.show()
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The plot displays the cosine and sine curves on two distinct graphic panels:

The subplot command accepts the subplot(nrows, ncols, plot_number) parameter
form. Therefore, when instantiated, it reserves a certain amount of space for the
representation based on the nrows and ncols parameters and number of plots on the
plot_number area (starting from area 1 on the left).

You can also accompany the plot command coordinates with another string parameter,
which is useful for the definition of color and the type of the represented curve. The strings
work by combining the codes that you can find on the following links:

https:// matplotlib. org/ api/ lines_ api. html#matplotlib. lines. Line2D. set_
linestyle: Will present the different line styles.
http://matplotlib.org/api/colors_api.html: Offers a complete overview of
the basic built-in colors. The page also points out that you can either use the
color parameter together with the HTML names or hex strings for colors, or
define the color you desire by using an RGB tuple, where each value of the tuple
lies in the range of [0,1]. For instance, a valid parameter is color =
(0.1,0.9,0.9), which will create a color made of 10% red, 90% green, and 90%
blue.
http://matplotlib.org/api/markers_api.html: Lists all the possible marker
styles you can adopt for your points.
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Plotting scatterplots for relationships in data
Scatterplots plot two variables as points on a plane, and they can help you figure out the
relationship between the two variables. They are also quite effective if you want to 
represent groups and clusters. In our example, we will create three data clusters and
represent them in a scatterplot with different shapes and colors:

In: from sklearn.datasets import make_blobs
    import matplotlib.pyplot as plt
    D = make_blobs(n_samples=100, n_features=2,
                   centers=3, random_state=7)
    groups = D[1]
    coordinates = D[0]

Since we have to plot three different groups, we will have to use three distinct plot
commands. Each command specifies a different color and shape (the 'ys', 'm*', 'rD'
strings, where the first letter is the color and the second is the marker). Please also note that
each plot instance is marked by a label parameter, which is used to assign a name to the
group that has to be reported later in a legend:

In: plt.plot(coordinates[groups==0,0],
             coordinates[groups==0,1],
             'ys', label='group 0') # yellow square
    plt.plot(coordinates[groups==1,0],
             coordinates[groups==1,1],
             'm*', label='group 1') # magenta stars
    plt.plot(coordinates[groups==2,0],
             coordinates[groups==2,1],
             'rD', label='group 2') # red diamonds
    plt.ylim(-2,10) # redefines the limits of y axis
    plt.yticks([10,6,2,-2]) # redefines y axis ticks
    plt.xticks([-15,-5,5,-15]) # redefines x axis ticks
    plt.grid() # adds a grid
    plt.annotate('Squares', (-12,2.5)) # prints text at coordinates
    plt.annotate('Stars', (0,6))
    plt.annotate('Diamonds', (10,3))
    plt.legend(loc='lower left', numpoints= 1)
    # places a legend of labelled items
    plt.show()
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The resulting plot will be a scatterplot of the three groups accompanied by their respective
labels:

We have also added a legend (pyplot.legend), fixed a limit for both the axes
(pyplot.xlim and pyplot ylim), and precisely explicated the ticks (plt.xticks and
plt.yticks) that had to be put on them by specifying a list of values. Therefore, the grid
(pyplot.grid) divides the plot exactly into nine quadrants and allows you to have a better
idea of where the groups are positioned. Finally, we printed some text pointing out the
group names (pyplot.annotate).

Histograms
Histograms can effectively represent the distribution of a variable. Here, we will visualize
two normal distributions, both characterized by unit standard deviation, one having a
mean of 0 and the other a mean of 3.0:

In: import numpy as np
    import matplotlib.pyplot as plt
    x = np.random.normal(loc=0.0, scale=1.0, size=500)
    z = np.random.normal(loc=3.0, scale=1.0, size=500)
    plt.hist(np.column_stack((x,z)),
             bins=20,
             histtype='bar',
             color = ['c','b'],
             stacked=True)
    plt.grid()
    plt.show()
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The conjoint distributions can offer a different insight on the data if there is a classification
problem:

There are a few ways to personalize this kind of plot and obtain further insights about the
analyzed distributions. First, by changing the number of bins, you will change how the
distributions are discretized (discretization is the process that transforms continuous
functions or series of values into a reduced, countable set of numbers:
en.wikipedia.org/wiki/Discretization). Generally, 10 to 20 bins offer a good
understanding of the distribution, though it really depends on the size of the dataset as well
as the distribution. For instance, the Freedman-Diaconis rule prescribes that the optimal
number of bins in a histogram in order to meaningfully visualize your data depends on the
bin's width, to be calculated using the interquartile range (IQR) and the number of
observations:

Having calculated h, which is the bin width, the number of bins is computed by dividing
the difference between the maximum and the minimum value by h:

bins=(max-min) / h

http://en.wikipedia.org/wiki/Discretization
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We can also change the type of visualization from bars to steps by changing the parameters
from histtype='bar' to histtype='step'. By changing the stacked Boolean
parameter to False, the curves won't stack into a unique bar in the parts that overlap, but
you will clearly see the separate bars of each one.

Bar graphs
Bar graphs are useful for comparing quantities in different categories. They can be arranged
either horizontally or vertically to present the mean estimate and error bands. They can be
used to present various statistics of your predictors and how they relate to the target
variable.

In our example, we will present the mean and standard deviation for the four variables of
the Iris dataset:

In: from sklearn.datasets import load_iris
    import numpy as np
    import matplotlib.pyplot as plt
    iris = load_iris()
    average = np.mean(iris.data, axis=0)
    std = np.std(iris.data, axis=0)
    range_ = range(np.shape(iris.data)[1])

In our representation, we will prepare two subplots: one with horizontal bars (plt.barh),
and the other with vertical bars (plt.bar). The standard error is represented by an error
bar, and according to the graph orientation, we can use the xerr parameter for horizontal
bars and yerr for vertical ones:

In: plt.subplot(1,2,1) # defines 1 row, 2 columns panel, activates figure 1
    plt.title('Horizontal bars')
    plt.barh(range_,average, color="r",
             xerr=std, alpha=0.4, align="center")
    plt.yticks(range_, iris.feature_names)
    plt.subplot(1,2,2) # defines 1 row 2 column panel, activates figure 2
    plt.title('Vertical bars')
    plt.bar(range_,average, color="b", yerr=std, alpha=0.4, align="center")
    plt.xticks(range_, range_)
    plt.show()
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Horizontal and verticals bars are now together in the same plot:

It is important to note the use of the plt.xticks command (and of plt.yticks for the
ordinate axis). The first parameter informs the command about the number of ticks that
have to be placed on the axis, and the second one explicates the labels that have to be put
on the ticks.

Another interesting parameter to notice is alpha, which has been used to set the
transparency level of the bar. The alpha parameter is a float number ranging from 0.0, fully
transparent, to 1.0, which causes the color to be shown in different levels of opaqueness.

Image visualization
The last possible visualization that we explore using matplotlib has to do with images.
Resorting to plt.imgshow is useful when you are working with image data. Let's take as
an example the Olivetti dataset, an open source set of images of 40 people who provided 10
images of themselves at different times (and with different expressions, a fact that makes it
more challenging for testing face recognition algorithms). The images from this dataset are
provided as feature vectors of pixel intensities. Therefore, it is important to reshape the
vectors in order to make them resemble a matrix of pixels. Setting the interpolation to
'nearest' helps to smooth the picture:

In: from sklearn.datasets import fetch_olivetti_faces
    import numpy as np
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    import matplotlib.pyplot as plt
    dataset = fetch_olivetti_faces(shuffle=True, random_state=5)
    photo = 1
    for k in range(6):
        plt.subplot(2, 3, k+1)
        plt.imshow(dataset.data[k].reshape(64, 64),
                   cmap=plt.cm.gray,
                   interpolation='nearest')
        plt.title('subject '+str(dataset.target[k]))
        plt.axis('off')
    plt.show()

A complete panel of images will be plotted:

We can also visualize handwritten digits or letters. In our example, we will plot the first
nine digits from the scikit-learn handwritten digit dataset and set the extent of both the axes
(by using the extent parameter and providing a list of minimum and maximum values) to
align the grid to the pixels:

In: from sklearn.datasets import load_digits
    digits = load_digits()
    for number in range(1,10):
        fig = plt.subplot(3, 3, number)
        fig.imshow(digits.images[number],
                   cmap='binary',
                   interpolation='none',
                   extent=[0,8,0,8])
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        fig.set_xticks(np.arange(0, 9, 1))
        fig.set_yticks(np.arange(0, 9, 1))
        fig.grid()
    plt.show()

A simple close-up on a single number can be obtained by printing only one image:

In: plt.imshow(digits.images[0],
               cmap='binary',
               interpolation='none',
               extent=[0,8,0,8])
# Extent defines the images max and min
# of the horizontal and vertical values
plt.grid()
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The resulting image clearly highlights how pixels constitute the image and their gray levels:

Selected graphical examples with pandas
Using appropriately set hyper-parameters, many machine learning algorithms can
optimally learn how to map your data with respect to your target outcome. Yet, their 
predictive performance can be improved further by fixing hidden and subtle problems in
data. It is not simply a matter of detecting any missing or outlying case. Sometimes, it is a
matter of whether there are any groups or unusual distributions in the data (for instance,
multimodal distributions). Clearly drafted data plots can explicate the relationship between
variables, and they can lead to the creation of new and better features in order to predict,
with increased accuracy, your target variable.

The just-described practice is called explorative data analysis (EDA), and it can bring
effective results if it is done accordingly with the following:

It should be fast, allowing you to explore and develop new ideas, and test them,
and restart with a new exploration and fresh ideas
It should be based on graphical representations in order to better describe data as
a whole, no matter how high its dimensionality is



Visualization, Insights, and Results Chapter 5

[ 296 ]

The pandas DataFrame offers many EDA tools that can help you in your explorations.
However, first you have to transform your data into a DataFrame:

In: import pandas as pd
    print ('Your pandas version is: %s' % pd.__version__)
    from sklearn.datasets import load_iris
    iris = load_iris()
    iris_df = pd.DataFrame(iris.data, columns=iris.feature_names)
    groups = list(iris.target)
    iris_df['groups'] = pd.Series([iris.target_names[k] for k in groups])

Out: Your pandas version is: 0.23.1

Please check your version of pandas. We tested the code in the book
under the version 0.23.1 of pandas, and it should also hold for the later
releases.

We will be using the iris_df DataFrame for all the examples presented in the following
paragraphs.

The pandas package actually relies on matplotlib functions for its visualizations. It simply
provides a convenient wrapper around the otherwise complex plotting instructions. This
offers advantages in terms of speed and simplicity, which are the core values of any EDA
process. Instead, if your purpose is to best communicate the findings by using beautiful
visualization, you may notice that it is not so easy to customize the pandas graphical
outputs. Therefore, when it is paramount to create specific graphics outputs, it is better to
start working directly from scratch using matplotlib instructions.

Working with boxplots and histograms
Distributions should always be the first aspect to be inspected in your data. Boxplots draft
the key figures in the distribution and help you spot outliers. Just use the boxplot method
on your DataFrame for a quick overview:

In: boxplots = iris_df.boxplot(return_type='axes')
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Here are the boxplots of all the numeric variables of the dataset:

If you already have groups in your data (from categorical variables, or derived from
unsupervised learning), just point out the variable you need data to be represented in the
boxplot and specify that you need to have it separated by the groups (use the by parameter
followed by the string name of the grouping variable):

In: boxplots = iris_df.boxplot(column='sepal length (cm)',
                               by='groups',
                               return_type='axes')

After running the code, you will get the boxplot by groups:
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In this way, you can quickly know whether the variable is a good discriminator of the
group differences. Anyway, boxplots cannot provide you with a complete view of
distributions as histograms and density plots. For instance, by using histograms and
density plots, you can figure out whether there are distribution peaks or valleys:

In: densityplot = iris_df.plot(kind='density')

The code prints the distributions for all the numeric variables of the dataset:

In: single_distribution = iris_df['petal width (cm)'].plot(kind='hist',
                                                           alpha=0.5)

Here is the resulting distribution represented by a histogram:
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You can obtain both histograms and density plots by using the plot method. This method
allows you to represent the whole dataset, specific groups of variables (you just have to
provide a list of the string names and do some fancy indexing), or even single variables.

Plotting scatterplots
Scatterplots can be used to effectively understand whether the variables are in a nonlinear
relationship, and you can get an idea about their best possible transformations to achieve
linearization. If you are using an algorithm based on linear combinations, such as linear or
logistic regression, figuring out how to render their relationship more linearly will help you
achieve a better predictive power:

In: colors_palette = {0: 'red', 1: 'yellow', 2:'blue'}
    colors = [colors_palette[c] for c in groups]
    simple_scatterplot = iris_df.plot(kind='scatter', x=0, y=1, c=colors)

After running the code, a nicely drawn scatterplot will appear:

Scatterplots can be turned into hexagonal binning plots. In addition, they help you
effectively visualize the point densities, where the points naturally aggregate together
more, thus revealing clusters hidden in your data. For achieving such results, you may use
some of the variables originally present in the dataset, or the dimensions obtained by a
PCA or by another dimensionality reduction algorithm:

In: hexbin = iris_df.plot(kind='hexbin', x=0, y=1, gridsize=10)
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Here is the resulting hexbin plot:

The gridsize parameter indicates how many data points the chart will summarize in a
single grid. A larger number will create large grid cells, whereas a smaller one will create
small cells.

Scatterplots are bivariate. Consequently, you'll require a single plot for every variable
combination. If your variables are not so many in number (otherwise, the visualization will
be cluttered), a quick solution is to use the pandas command to draw a matrix of
scatterplots automatically (using the kernel density estimation, 'kde', in order to plot the
distribution of each feature on the diagonal of the chart):

In: from pandas.plotting import scatter_matrix
    colors_palette = {0: "red", 1: "green", 2: "blue"}
    colors = [colors_palette[c] for c in groups]
    matrix_of_scatterplots = scatter_matrix(iris_df,
                                            alpha=0.2,
                                            figsize=(6, 6),
                                            color=colors,
                                            diagonal='kde')
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After running the previous code, you will get a complete matrix of plots (densities on the
diagonal):

A few parameters can control various aspects of the scatterplot matrix. The alpha
parameter controls the amount of transparency, and figsize provides the width and
height of the matrix in inches. Finally, color accepts a list indicating the color of each point
in the plot, thus allowing the depicting of different groups in data. In addition, by selecting
'kde' or 'hist' on your diagonal parameter, you can opt to represent density curves or
histograms of each variable on the diagonal of the scatter matrix.
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Discovering patterns by parallel coordinates
The scatterplot matrix can inform you about the conjoint distributions of your features. It
helps you locate groups in data and verify whether they are distinguishable. Parallel
coordinates are another kind of plot that is helpful in providing you with a hint about the
most group-discriminating variables present in your data.

By plotting all the observations as parallel lines with respect to all the possible variables
(arbitrarily aligned on the abscissa), parallel coordinates will help you spot whether there
are streams of observations grouped as your classes, and understand the variables that best
separate the streams (the most useful predictor variables). Naturally, in order for the chart
to be meaningful, the features in the plot should have the same scale (otherwise, normalize
them) as in the Iris dataset:

In: from pandas.tools.plotting import parallel_coordinates
    pll = parallel_coordinates(iris_df,'groups')

The previous code will output the parallel coordinates:

parallel_coordinates is a pandas function that, in order to work properly, just needs as
parameters the data DataFrame and the string name of the variable containing the groups
whose separability you want to test. For this reason, you should have the group variable
available in your dataset. However, don't forget to remove it after you finish exploring by
using the DataFrame.drop('variable name', axis=1, inplace=True) method.
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Wrapping up matplotlib's commands
As we have seen in the previous paragraph, pandas can speed up exploring data visually
since it wraps up into single commands what would have required an entire code snippet
using matplotlib. The idea behind this is that unless you need to tailor and configure a
special visualization, using a wrapper can allow you to create standard graphics faster.

Apart from pandas, other packages assemble low-level instructions from matplotlib into
more user-friendly commands for specific representations and usage:

Seaborn is a package that extends your visualization capabilities by providing
you with a set of statistical plots useful for finding out trends and discriminating
groups
ggplot is a port of a popular R library, ggplot2 (ggplot2.tidyverse.org),
based on the visualization grammar proposed in Leland Wilkinson's book,
Grammar of Graphics. The R library is continuously developed and it offers
much functionality; the Python porting (ggplot.yhathq.com) features the basics
(ggplot.yhathq.com/docs/index.html) and its complete development is still
underway (github.com/yhat/ggplot).
MPLD3 (mpld3.github.io) leverages the JavaScript library for graphics
manipulation, D3.js, in order to easily transform any matplotlib output into
HTML code, which can be rendered using a browser and a tool such as a Jupyter
Notebook; or within an internet website.
Bokeh (bokeh.pydata.org/en/latest/) is an interactive visualization package
that leverages JavaScript and browser-rendered outputs. It is a great replacement
for D3.js since you just need Python in order to leverage the capabilities of
JavaScript to quickly represent your data in an interactive way.

In the following pages, we will introduce  Seaborn, providing some building blocks for
leveraging their visualizations in your data science projects.

https://ggplot2.tidyverse.org/
http://ggplot.yhathq.com/
http://ggplot.yhathq.com/docs/index.html
https://github.com/yhat/ggpy
http://mpld3.github.io/
https://bokeh.pydata.org/en/latest/
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Introducing Seaborn
Created by Michael Waskom and hosted on the PyData website
(http://seaborn.pydata.org/), Seaborn is a library that wraps up the low-level matplotlib
with the entire pyData stack, allowing integrating charts with data structures from NumPy
and pandas, and with statistical routines from SciPy and StatModels. All that is achieved
with a particular care to aesthetics, thanks to built-in themes, and to color palettes
especially devised to reveal patterns in data.

If you don't have Seaborn presently installed on your system (the Anaconda distributions
provide it by default, for instance), you can easily get it both by pip and conda (reminding
you that the conda version may lag behind the pip version taken directly from PyPI, the
Python Package Index.

$> pip install seaborn
$> conda install seaborn

In these examples, we have used version 0.9 of the Seaborn package.

You can upload the package and set the Seaborn style as the default matplotlib style by the
following:

In: import seaborn as sns
    sns.set()

This is enough to turn all your matplotlib-based representations into more visually
appealing charts:

In: x = np.linspace(0, 5, 50)
    y_cos = np.cos(x)
    y_sin = np.sin(x)
    plt.figure()
    plt.plot(x,y_cos)
    plt.plot(x,y_sin)
    plt.xlabel('x')
    plt.ylabel('y')
    plt.title('sin/cos functions')
    plt.show()

http://seaborn.pydata.org/
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Here is the result:

You can obtain interesting results from any of the previously seen charts, even the ones
generated using graphical methods in pandas (after all, pandas also relies on matplotlib for
creating its explorative plots).

There are five preset themes in Seaborn:

darkgrid

whitegrid

dark

white

ticks
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darkgrid is the default one. You can easily try each one by using the set_style
command and the name of your preferred theme, and then running your plot commands:

In: sns.set_style('whitegrid')

All you have to do is just decide which theme helps you better convey the information on
your chart. You can limit a style to a single representation enclosing it:

In: with sns.axes_style('whitegrid'):
        # Your plot commands here
        pass

Other stylish changes may involve the spines, which are the borders of the chart. Using the
despine command, you can easily remove the top and right borders:

In: sns.despine()

Moreover, you can remove the left border using the left=True parameter, offset the axis
using the offset parameter, and trim it (using trim=True). All these operations were
otherwise not so accessible because of matplotlib commands alone.

Another useful control that Seaborn permits you regards the scale of the chart. A certain
chart scale (involving different thickness of lines, size of fonts, and so on) is called a context,
and the available contexts are self-explicative-paper, notebook, talk, and poster as possible
options. For instance, if your chart has to be displayed on an MS PowerPoint presentation,
just run the following command before creating the graphics:

In: sns.set_context("talk")

Let's see an example of some of such stylish effects on our initial sin/cos chart:

In: sns.set_context("talk")
    with sns.axes_style('whitegrid'):
        plt.figure()
        plt.plot(x,y_cos)
        plt.plot(x,y_sin)
        plt.show()
    sns.set()
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The code will plot the following chart:

Also, choosing the right color cycle or set may help your graphical representation shine. For
this, Seaborn offers the color_palette() command, which won't just tell the current
palette's RBG values (if run with no parameters); it will also accept the name of any palette
offered by Seaborn or any matplotlib colormap. It even accepts custom lists of colors
provided by you in any matplotlib format (RGB tuples, hex color codes, or HTML color
names) in order to create your own palette:

In: current_palette = sns.color_palette()
    print (current_palette)
    sns.palplot(current_palette)

After running the code, you will visualize the current palette both in values and colors:
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There are a few palettes available, as mentioned. First, all Seaborn palettes are the
following:

deep

muted

bright

pastel

dark

colorblind

You also have to add hls, husl, and all the matplotlib colormaps, which can be reversed
by appending _r to their name, or made darker by appending _d.

Both the names and examples of matplotlib colormaps can be found at
this web page: http:/ / matplotlib. org/examples/ color/ colormaps_
reference. html.

The hls color space is an automatic transformation in the RGB scale of values, which may
or may not work for your representations since colors have different intensities (for
instance, yellow and green colors are perceived as brighter whereas blue is perceived as
darker).

As an alternative to hsl, you can use the husl palette, which is friendlier for the human
eye, as explained by http://www.hsluv.org/.

Finally, you can just create a personalized palette using the Color Brewer tool, which can be
both found online (http:/ / www. personal. psu.edu/ cab38/ ColorBrewer/ ColorBrewer_
intro.html) or required in an app from your Jupyter Notebook. In a notebook cell, using
the choose_colorbrewer_palette command will make an interactive tool appear. For
everything to work, it is essential that you specify as a parameter the data_type, a string
explicating the nature of your palette related to the data you intend to represent:

Sequential if you want to represent continuity
Diverging for representing contrasts
Qualitative when you just want to discriminate between different classes

Let's see how to create a custom sequential palette, and use it:

In: your_palette = sns.choose_colorbrewer_palette('sequential')

http://matplotlib.org/examples/color/colormaps_reference.html
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A complete dashboard will appear: 

After setting the colors, your_palette will turn into a list of the RGB values:

In: print(your_palette)

Out:[(0.91109573770971852, 0.90574395025477683, 0.94832756940056306),
     (0.7764706015586853, 0.77908498048782349, 0.88235294818878174),
     (0.61776242186041452, 0.60213766261643054, 0.78345253116944269),
     (0.47320263584454858, 0.43267974257469177, 0.69934642314910889),
     (0.35681661753093497, 0.20525952297098493, 0.58569783322951374)]

When you are done with your choice, you can just call
sns.set_palette(your_palette) and have the colors used when drawing all your
charts.

If you need just to operate on a chart with some specific colors, using a with statement and
nesting the chart snippet under it will suffice, as we have seen for the themes before.
Instead, if you definitely need to set a certain palette, use set_palette.

The color palette is made up of six colors, helping you distinguish at least six trends or
classes. If you need to distinguish more, you simply can operate with the hls palette and
point out the number of colors you need to cycle:

In: new_palette=sns.color_palette('hls', 10)
    sns.palplot(new_palette)

Here is the resulting palette:
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Finally, closing our section about themes and colors, since Seaborn is another, smarter way
to use functions offered by matplotlib, we remind you that the resulting charts can be
modified further using any basic command coming from matplotlib itself. Or, they can be
further transformed by packages such as MPLD3 or Bokeh into JavaScript.

Enhancing your EDA capabilities
Seaborn doesn't just make your charts more beautiful and easily controlled in their aspect;
it also provides you with new tools for EDA that helps you discover distributions and
relationships between variables.

Before proceeding, let's reload the package and have both the Iris and Boston datasets
ready in pandas DataFrame format:

In: import seaborn as sns
    sns.set()

    from sklearn.datasets import load_iris
    iris = load_iris()
    X_iris, y_iris = iris.data, iris.target
    features_iris = [a[:-5].replace(' ','_') for a in iris.feature_names]
    target_labels = {j: flower \
                        for j, flower in enumerate(iris.target_names)}
    df_iris = pd.DataFrame(X_iris, columns=features_iris)
    df_iris['target'] = [target_labels[y] for y in y_iris]

    from sklearn.datasets import load_boston
    boston = load_boston()
    X_boston, y_boston = boston.data, boston.target
    features_boston = np.array(['V'+'_'.join([str(b), a])
                                for a,b in zip(boston.feature_names,
                                range(len(boston.feature_names)))])
    df_boston = pd.DataFrame(X_boston, columns=features_boston)
    df_boston['target'] = y_boston
    df_boston['target_level'] = pd.qcut(y_boston,3)

As for as the Iris dataset, the target variable has been converted into a descriptive text of the
Iris species. For the Boston dataset, the continuous target variable, the median value of
owner-occupied homes, has been divided into three equal parts, representing lower,
median, and high prices (using the pandas function, qcut).
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Seaborn can first help your data exploration with figuring out how discretely valued or
categorical variables are related to numeric ones. This is achieved using the catplot
function:

In: with sns.axes_style('ticks'):
        sns.catplot(data=df_boston, x='V8_RAD', y='target', kind='point')

You will find it insightful exploring similar plots, since they explicit the target level and its
variance:

In our example, in the Boston dataset, the index of accessibility to radial highways, which is
discretely valued, is compared with the target in order to check both the functional form of
its relationships and the associated variance at each level.

In the case, instead, the comparison is between numeric variables; Seaborn offers an
enhanced scatterplot with a regression fitted curve trend incorporated, which can clue you
in to possible data transformations when the relationship is not linear:

In: with sns.axes_style("whitegrid"):
        sns.regplot(data=df_boston, x='V12_LSTAT', y="target", order=3)
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The fitting line is promptly displayed:

regplot in Seaborn can visualize regression plots of any order (we displayed a second-
degree polynomial fit). Among the available regression plots, you can use a standard linear
regression, a robust regression or even a logistic regression if one of the inspected features
is binary.

Where it is necessary to consider distributions too, jointplot will provide additional plots
on the side of the scatterplot:

In: with sns.axes_style("whitegrid"):
        sns.jointplot("V4_NOX", "V7_DIS",
                      data=df_boston, kind='reg',
                      order=3)
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jointplot produces the following chart:

Ideal for representing bivariate relationships by acting on the kind parameter, jointplot
can also represent simple scatterplots or densities (kind=scatter or kind=kde).

When the purpose is to discover what discriminates classes, FacetGrid can arrange
different plots in a comparable way and help you understand where there are differences.
For instance, we can inspect the scatterplot of Iris species in order to figure out whether
they occupy different parts of the feature state:

In: with sns.axes_style("darkgrid"):
        chart = sns.FacetGrid(df_iris, col="target_level")
        chart.map(plt.scatter, "sepal_length", "petal_length")
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The code will nicely print a panel representing the comparisons based on groups:

Similar comparisons can be made using distributions (sns.distplot) or regression slopes
(sns.regplot):

In: with sns.axes_style("darkgrid"):
        chart = sns.FacetGrid(df_iris, col="target")
        chart.map(sns.distplot, "sepal_length")

The first comparison is based on distributions:
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The subsequent comparison is based on fitting a linear regression line:

In: with sns.axes_style("darkgrid"):
        chart = sns.FacetGrid(df_boston, col="target_level")
        chart.map(sns.regplot, "V4_NOX", "V7_DIS")

Here is the regression-based comparison:

As for evaluating data distributions across classes, Seaborn offers an alternative tool, which
is the violin plot (https:/ / medium. com/ @bioturing/ 5-reasons- you- should- use- a-
violin-graph-31a9cdf2d0c6). A violin plot is simply a boxplot whose box is shaped based
on density estimation, thus visually conveying information that is more intuitive:

In: with sns.axes_style("whitegrid"):
        ax = sns.violinplot(x="target", y="sepal_length",
                            data=df_iris, palette="pastel")
        sns.despine(offset=10, trim=True)
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The violin plot produced by the previous code can provide interesting insights into the
dataset:

Finally, Seaborn offers a much better way of creating a matrix of scatterplots by using the
pairplot command and allowing you to define group colors (parameter hue) and how to
populate the diagonal row. This is by using the diag_kind parameter, which can be a
histogram ('hist') or kernel density estimation ('kde'):

In: with sns.axes_style("whitegrid"):
        chart = sns.pairplot(data=df_iris, hue="target", diag_kind="hist")
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The previous code will output a complete matrix of scatterplots for the dataset:
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Advanced data learning representation
Some useful representations can be derived from the data science process. That is, the
representation is not done directly from the data, but is achieved by using machine learning
procedures, which inform us about how the algorithms operate and offer us a more precise
overview of the role of each predictor in the predictions obtained. In particular, learning
curves can provide a quick diagnosis to improve your models. This helps you figure out
whether you need more observations, or need to enrich your variables.

Learning curves
A learning curve is a useful diagnostic graphic that depicts the behavior of your machine
learning algorithm (your hypothesis) with respect to the available quantity of observations.
The idea is to compare how the training performance (the error or accuracy of the in-
sample cases) behaves with respect to the cross-validation (usually tenfold) using different
in-sample sizes.

As far as the training error is concerned, you should expect it to be high at the start and
then decrease. However, depending on the bias and variance level of the hypothesis, you
will notice different behaviors:

A high-bias hypothesis tends to start with average error performances, decreases
rapidly on being exposed to more complex data, and then remains at the same
level of performance no matter how many cases you further add.
A low-bias learners tend to generalize better in the presence of many cases, but
they are limited in their capability to approximate complex data structures, hence
their limited performance.
A high-variance hypothesis tends to start high in error performance and then
slowly decreases as you add more cases. It tends to decrease slowly because it
has a high capacity of recording the in-sample characteristics.

As for cross-validation, we can notice two behaviors:

High-bias hypothesis tends to start with low performance, but it grows very
rapidly until it reaches almost the same performance as that of the training. Then,
it stops growing.
High-variance hypothesis tends to start with very low performance. Then,
steadily but slowly, it improves as more cases help generalize. It hardly reads the
in-sample performances, and there is always a gap between them.
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Being able to estimate whether your machine learning solution is behaving as a high-bias or
high-variance hypothesis immediately helps you in deciding how to improve your data
science project. Scikit-learn makes it simpler to calculate all the statistics that are necessary
for the drawing of the visualization thanks to the learning_curve class, although 
visualizing them properly requires a few further calculations and commands:

In: import numpy as np
    from sklearn.learning_curve import learning_curve, validation_curve
    from sklearn.datasets import load_digits
    from sklearn.linear_model import SGDClassifier

    digits = load_digits()
    X, y = digits.data, digits.target
    hypothesis = SGDClassifier(loss='log', shuffle=True,
                               n_iter=5, penalty='l2',
                               alpha=0.0001, random_state=3)
    train_size, train_scores, test_scores = learning_curve(hypothesis, X,
                              y, train_sizes=np.linspace(0.1,1.0,5), cv=10,
                               scoring='accuracy',
                               exploit_incremental_learning=False,
                               n_jobs=-1)
    mean_train  = np.mean(train_scores,axis=1)
    upper_train = np.clip(mean_train + np.std(train_scores,axis=1),0,1)
    lower_train = np.clip(mean_train - np.std(train_scores,axis=1),0,1)
    mean_test = np.mean(test_scores,axis=1)
    upper_test = np.clip(mean_test + np.std(test_scores,axis=1),0,1)
    lower_test = np.clip(mean_test - np.std(test_scores,axis=1),0,1)
    plt.plot(train_size,mean_train,'ro-', label='Training')
    plt.fill_between(train_size, upper_train,
                     lower_train, alpha=0.1, color='r')
    plt.plot(train_size,mean_test,'bo-', label='Cross-validation')
    plt.fill_between(train_size, upper_test, lower_test,
                     alpha=0.1, color='b')
    plt.grid()
    plt.xlabel('sample size') # adds label to x axis
    plt.ylabel('accuracy') # adds label to y axis
    plt.legend(loc='lower right', numpoints= 1)
    plt.show()
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Based on different sample sizes, you soon get a learning curve plot:

The learning_curve class requires the following as an input:

A series of training sizes stored in a list
An indication of the number of folds to use, and the error measure
Your machine learning algorithm to test (parameter estimator)
The predictors (parameter X) and the target outcome (parameter y)

As a result, the class will produce three arrays; the first one containing the effective training
sizes, the second presenting the training scores obtained at each cross-validation iteration,
and the last one carrying the cross-validation scores.

By applying the mean and the standard deviation for both training and cross-validation, it
is possible to display in the graph both the curve trends and their variation. You can also
provide information about the stability of the recorded performances.
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Validation curves
As learning curves operate on different sample sizes, validation curves estimate the
training and cross-validation performance with respect to the values that a hyper-
parameter can take. As in learning curves, similar considerations can be applied, though
this particular visualization will grant you further insight about the optimization behavior
of your parameter, visually suggesting to you the part of the hyper-parameter space that
you should concentrate your search on:

In: from sklearn.learning_curve import validation_curve
    testing_range = np.logspace(-5,2,8)
    hypothesis = SGDClassifier(loss='log', shuffle=True,
                               n_iter=5, penalty='l2',
                               alpha=0.0001, random_state=3)
    train_scores, test_scores = validation_curve(hypothesis, X, y,
                                 param_name='alpha',
                                 param_range=testing_range,
                                 cv=10, scoring='accuracy', n_jobs=-1)
    mean_train  = np.mean(train_scores,axis=1)
    upper_train = np.clip(mean_train + np.std(train_scores,axis=1),0,1)
    lower_train = np.clip(mean_train - np.std(train_scores,axis=1),0,1)
    mean_test = np.mean(test_scores,axis=1)
    upper_test = np.clip(mean_test + np.std(test_scores,axis=1),0,1)
    lower_test = np.clip(mean_test - np.std(test_scores,axis=1),0,1)
    plt.semilogx(testing_range,mean_train,'ro-', label='Training')
    plt.fill_between(testing_range, upper_train, lower_train,
                     alpha=0.1, color='r')
    plt.fill_between(testing_range, upper_train, lower_train,
                     alpha=0.1, color='r')
    plt.semilogx(testing_range,mean_test,'bo-', label='Cross-validation')
    plt.fill_between(testing_range, upper_test, lower_test,
                     alpha=0.1, color='b')
    plt.grid()
    plt.xlabel('alpha parameter') # adds label to x axis
    plt.ylabel('accuracy') # adds label to y axis
    plt.ylim(0.8,1.0)
    plt.legend(loc='lower left', numpoints= 1)
    plt.show()
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After some computations, you will get a representation of the validation curve for the
parameter:

The syntax of the validation_curve class is similar to that of the previously seen
learning_curve but for the param_name and param_range parameters, which should be
provided respectively with the hyper-parameter and the range that has to be tested. As for
the results, the training and test results are returned in arrays.

Feature importance for RandomForests
As discussed in the conclusion of Chapter 3, The Data Pipeline, selecting the right variables
can improve your learning process by reducing noise, the variance of estimates, and the
burden of too many computations. Ensemble methods, such as RandomForest in particular,
can provide you with a different view of the role played by a variable when working
together with other ones in your dataset.
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Here, we show you how to extract the importance of RandomForest and Extra-Tree models.
Importance is calculated in the fashion originally described in the book Classification and
Regression Trees by Breiman, Friedman et al. in 1984. It was a true classic that laid solid
foundations for classification trees. In the book, importance is described in terms of gini
importance or mean decrease impurity, which is the total decrement in node impurity due to a
specific variable averaged over all trees of the ensemble. In other words, mean decrease
impurity is the total error reduction of nodes split on that variable multiplied by the
number of samples that were routed to each of the nodes. Noticeably, accordingly to this
importance calculation method, not only does error reduction depend on the error
measure-Gini or Entropy for classification, and MSE for regression, but also splits at the
head of the tree are deemed more important because they involve dealing with more
examples.

In a few steps, we'll learn how to obtain such information and project it onto a clear
visualization:

In: from sklearn.datasets import load_boston
    boston = load_boston()
    X, y = boston.data, boston.target
    feature_names = np.array([' '.join([str(b), a]) for a,b in
                              zip(boston.feature_names,range(
                              len(boston.feature_names)))])
    from sklearn.ensemble import RandomForestRegressor
    RF = RandomForestRegressor(n_estimators=100,
                               random_state=101).fit(X, y)
    importance = np.mean([tree.feature_importances_ for tree in
                          RF.estimators_],axis=0)
    std = np.std([tree.feature_importances_ for tree in
                  RF.estimators_],axis=0)
    indices = np.argsort(importance)
    range_ = range(len(importance))
    plt.figure()
    plt.title("Random Forest importance")
    plt.barh(range_,importance[indices],
             color="r", xerr=std[indices], alpha=0.4, align="center")
    plt.yticks(range(len(importance)), feature_names[indices])
    plt.ylim([-1, len(importance)])
    plt.xlim([0.0, 0.65])
    plt.show()
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The code will produce the following chart highlighting important features of the model:

For each of the estimators (in our case, we have 100 models), the algorithm estimated a
score to rank each variable's importance. The RandomForest model is made up of decision
trees that can be made up of many branches, since the algorithm tries to obtain very small
terminal leaves. One of its variables is deemed important if, after casually permuting its
original values, the resulting predictions of the permuted model are very different in terms
of accuracy as compared to the predictions of the original model.

The importance vectors are averaged over the number of estimators, and the standard
deviation of the estimations is computed by a list comprehension (the assignment of
variables importance and std). Now, sorted according to the importance score (the vector
indices), the results are projected onto a bar graph with an error bar provided by the
standard deviation.

In our LSTAT analysis, the percentage of the lower status population in the area and RM,
which is the average number of rooms per dwelling, are pointed out as the most decisive
variables in our RandomForest model.
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Gradient Boosting Trees partial dependence
plotting
The estimate of the importance of a feature is a piece of information that can help you
operate on the best choices to determine the features to be used. Sometimes, you may need
to understand better why a variable is important in predicting a certain outcome. Gradient
Boosting Trees, by controlling the effect of all the other variables involved in the analysis,
provide you with a clear point of view of the relationship of a variable with respect to the
predicted results. Such information can provide you with more insights into causation
dynamics than what you may have obtained by using a very effective EDA:

In: from sklearn.ensemble.partial_dependence import
    plot_partial_dependence
    from sklearn.ensemble import GradientBoostingRegressor
    GBM = GradientBoostingRegressor(n_estimators=100,
                                    random_state=101).fit(X, y)
    features = [5,12,(5,12)]
    fig, axis = plot_partial_dependence(GBM, X, features,
                                        feature_names=feature_names)

As an output, you get three plots, which constitute the partial plots of RM and LSTAT
features:



Visualization, Insights, and Results Chapter 5

[ 326 ]

The plot_partial_dependence class will automatically provide you with the
visualization after you provide an analysis plan on your part. You need to present a list of
indexes of the features to be plotted singularly, and the tuples of the indexes of those that
you would like to plot on a heat map (the features are the axis, and the heat value
corresponds to the outcome).

In the preceding example, both the average number of rooms and the percentage of
the lower status population have been represented, thus displaying an expected behavior.
Interestingly, the heat map, which explains how they together contribute to the value of the
outcome, reveals that they do not interact in any particular way (it is single hill-climbing).
However, it is also revealed that LSTAT is a strong delimiter of the resulting housing
values when it is above 5.

Creating a prediction server with machine-
learning-as-a-service
Many times, during your working career as a data scientist, you'll find yourself having
need of a predictor decoupled from the code you're currently working on; for example, as
follows:

You're developing an app for your phone, and you want to save on memory
You're coding in a non-Python programming language (Java, Scala, C, C++, and
so on) and you need to call the predictor you've developed in Python
You're operating on big data, and the model is trained in the same remote
location where the data is stored

In all these cases, it would be nice to have a service over HTTP that does predictions-as-a-
service, or generically, any machine-learning-as-a-service (ML-AAS).

Bottle, a Python web framework, is the starting point for micro apps over HTTP. It is a very
simple library for Python, providing the essential objects and functions to create a web app.
Also, it can be paired with all the other libraries available in Python. Before going into the
prediction-as-a-service, let's see how a basic Hello World program is built with Bottle.
Please note that the following listings are meant for Python REPL, as a script, and not for a
Jupyter Notebook:

# File: bottle1.py

from bottle import route, run, template

port = 9099
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@route('/personal/<name>')
def homepage(name):
    return template('Hi <b>{{name}}</b>!', name=name)

print("Try going to http://localhost:{}/personal/Tom".format(port))
print("Try going to http://localhost:{}/personal/Carl".format(port))

run(host='localhost', port=port)

Let's analyze the code line by line before executing it:

We started importing the functions and the classes that we need from the Bottle1.
module.
Then, we specified the port that the HTTP server would listen to.2.
In the example, we selected port 9099; feel free to change it to another one, but3.
first check whether any other service is using it (remember that HTTP is on top of
TCP).
The next step is the definition of the API endpoint. The route decorator applies4.
the function defined after it when an HTTP call to the path specified as an
argument is performed. Note that in the path, it says name, and that is the
argument of the coming function. That means name is a parameter of the call; you
can select whatsoever string you like in the HTTP call, and your selection will be
passed to the function as the parameter name.
Then, inside the function home page, a template with an HTML code was5.
returned. In a simpler way, think of it as the template function creating the
page you'll see from your browser.

Template, is this example, is just a plain HTML page, but it can be more
complex (it can actually be a template page with some blanks to fill in). A
complete description of templates is out of the scope of this section since
we will be using the framework just for a simple, plain output. If you need
additional information, surf the Bottle help pages.

Finally, after the print functions, there's the core run function. It's a blocking6.
function and will set up the web server on the host and port provided as
arguments. When you run the code in the listing, once that function is executed,
you can open your browser and point it to
http://localhost:9099/personal/Carl, and you'll find the following text:
Hi Carl!

Of course, changing the name in the HTTP call from Carl to Tom or any other name will
result in a different page, containing the name specified in the call.
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Please note that in this dummy example, we just defined the
/personal/<name> route. Any other call will result in Error 404,
unless defined in the code.

To turn it off, we need to press Ctrl + C in the command line (remember that the run
function is blocking).

Let's now create a service that is more data science-oriented; we will create an HTML page
with a form asking for the sepal length and width, and the petal length and width, to 
classify the iris sample. For this example, we will use the iris dataset to train our scikit-learn
classifier. Then, for each prediction, we simply call the predict function on the classifier,
sending back the prediction:

# File: bottle2.py

from sklearn.datasets import load_iris
from sklearn.linear_model import LogisticRegression
from bottle import run, request, get, post
import numpy as np

port = 9099

@get('/predict')
def predict():
    return '''
        <form action="/prediction" method="post">
            Sepal length [cm]: <input name="sl" type="text" /><br/>
            Sepal width [cm]: <input name="sw" type="text" /><br/>
            Petal length [cm]: <input name="pl" type="text" /><br/>
            Petal width [cm]: <input name="pw" type="text" /><br/>
            <input value="Predict" type="submit" />
        </form>
    '''

@post('/prediction')
def do_prediction():

    try:
        sample = [float(request.POST.get('sl')),
                  float(request.POST.get('sw')),
                  float(request.POST.get('pl')),
                  float(request.POST.get('pw'))]

        pred = classifier.predict(np.matrix(sample))[0]
        return "<p>The predictor says it's a <b>{}</b></p>"\
               .format(iris['target_names'][pred])
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    except:
        return "<p>Error, values should be all numbers</p>"

iris = load_iris()
classifier = LogisticRegression()
classifier.fit(iris.data, iris.target)

print("Try going to http://localhost:{}/predict".format(port))
run(host='localhost', port=port)

# Try insert the following values:
# [ 5.1, 3.5, 1.4, 0.2] -> setosa
# [ 7.0  3.2, 4.7, 1.4] -> versicolor
# [ 6.3, 3.3, 6.0, 2.5] -> virginica

After some imports, here we use the get decorator, specifying a route valid only for HTTP
GET calls. The decorator, as well as the function following, has no parameters since all the
features should be inserted into the HTML form, defined in the predict function. The
form, when submitted, is passed to the /prediction page using an HTTP POST.

Now, we need to create a route for this call, and that's what we do in the do_prediction
function. Its decorator is post (that is, opposite to get; it defines only POST routes) on the
/prediction page. Data is parsed and transformed into a double (default parameters are
strings), and then the feature vector is fed into the classifier global variable to obtain a
prediction. This is returned using a simple template. The object request contains all the
parameters passed to the service, including the entire variable we POST-ed to the route.
Finally, it seems we just need to define the global variable classifier – that is, a classifier
trained on the iris dataset – and lastly, we can call the run function.

For this dummy example, we've used a logistic regressor as a classifier and trained on the
full Iris dataset, leaving all the parameters as default. In a real case, here you would tune
your classifier as best as possible.

When this code is run, if everything works well, you can point your browser to
http://localhost:9099/predict and you'll see the form:
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Inserting the values (5.1, 3.5, 1.4, 0.2) after clicking on the Predict button, you should be
redirected to http://localhost:9099/prediction, where the The predictor says
it's a setosa string should be displayed. Also, note that if you insert invalid entries in
the form (for example, leaving it empty or inserting a string instead of a number), you'll get
an HTML page that says that there's an error.

We're halfway through this section, and we've already seen how easy and quick it is to
create an HTTP endpoint with Bottle. Now, let's try to create a prediction-as-a-service that
can be called in any program. We will submit the feature vector as a get call, and the
returned prediction will be in JSON format. Here's the code for this solution:

# File: bottle3.py

from sklearn.datasets import load_iris
from sklearn.linear_model import LogisticRegression
from bottle import run, request, get, response
import numpy as np
import json

port = 9099

@get('/prediction')
def do_prediction():

    pred = {}

    try:
        sample = [float(request.GET.get('sl')),
                  float(request.GET.get('sw')),
                  float(request.GET.get('pl')),
                  float(request.GET.get('pw'))]

        pred['predicted_label'] =
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             iris['target_names']
[classifier.predict(np.matrix(sample))[0]]
        pred['status'] = "OK"
    except:
        pred['status'] = "ERROR"

    response.content_type = 'application/json'
    return json.dumps(pred)

iris = load_iris()
classifier = LogisticRegression()
classifier.fit(iris.data, iris.target)

print("Try going to http://localhost:{}/prediction\
       sl=5.1&sw=3.5&pl=1.4&pw=0.2".format(port))
print("Try going to http://localhost:{}/prediction\
       sl=A&sw=B&pl=C&pw=D".format(port))
run(host='localhost', port=port)

The solution is pretty straightforward and easy; still, let's analyze it step by step. The entry
point of the feature is defined by the get decorator on the /prediction path. In there, we
will access the GET values to extract the predictions (note that if your classifier needs many
features, it may be better to use a POST call here). Exactly as in the previous example, the
prediction is generated; finally, the value is inserted in a Python dictionary, altogether with
the OK value for the status key. If an exception is raised in this function, there will be no
prediction, but an ERROR string in the status key. Then, we set the output application
format to JSON, and we serialize the Python dictionary to a JSON string.

When it runs, we can access the URL, localhost:9099/prediction, followed by the
feature values, and we will get back the prediction as JSON. Note that we don't need a
browser to interpret the returned HTTP response since it's a JSON. Therefore, we can call
the endpoint from different applications (wget, browser, or curl) or any programming
language (including Python itself). To see it working, start it and point your browser to (or
request the URL in any way)
http://localhost:9099/prediction?sl=5.1&sw=3.5&pl=1.4&pw=0.2. You'll get
back the valid JSON: {"predicted_label": "setosa", "status": "OK"}. Also, if
something goes wrong in the parsing of the parameters, you'll get this JSON: {"status":
"ERROR"}. And that's your first ML-AAS!

Although simple and quick, Bottle has many other functions to be explored. It's not as
complete as other frameworks, however. If your application needs some extraordinary
functionality, check out Flask or Django modules.
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Summary
This chapter provided an overview of essential data science by providing examples of both
basic and advanced graphical representations of data, machine learning processes, and
results. We explored the pylab module from matplotlib, which gives the easiest and fastest
access to the graphical capabilities of the package. We used pandas for EDA, and tested the
graphical utilities provided by scikit-learn. All examples were like building blocks, and
they are all easily customizable in order to provide you with a fast template for
visualization.

In the next chapter, you'll be introduced to graphs, which are an interesting deviation from
the predictors/target flat matrices. They are quite a hot topic in data science now. Expect to
delve into very complex and intricate networks.
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