
CHAPTER 9

Plotting and Visualization

Making informative visualizations (sometimes called plots) is one of the most impor‐
tant tasks in data analysis. It may be a part of the exploratory process—for example,
to help identify outliers or needed data transformations, or as a way of generating
ideas for models. For others, building an interactive visualization for the web may
be the end goal. Python has many add-on libraries for making static or dynamic
visualizations, but I’ll be mainly focused on matplotlib and libraries that build on top
of it.

matplotlib is a desktop plotting package designed for creating plots and figures
suitable for publication. The project was started by John Hunter in 2002 to enable
a MATLAB-like plotting interface in Python. The matplotlib and IPython commun‐
ities have collaborated to simplify interactive plotting from the IPython shell (and
now, Jupyter notebook). matplotlib supports various GUI backends on all operating
systems and can export visualizations to all of the common vector and raster graphics
formats (PDF, SVG, JPG, PNG, BMP, GIF, etc.). With the exception of a few diagrams,
nearly all of the graphics in this book were produced using matplotlib.

Over time, matplotlib has spawned a number of add-on toolkits for data visualization
that use matplotlib for their underlying plotting. One of these is seaborn, which we
explore later in this chapter.

The simplest way to follow the code examples in the chapter is to output plots in
the Jupyter notebook. To set this up, execute the following statement in a Jupyter
notebook:

%matplotlib inline

281

https://matplotlib.org
http://seaborn.pydata.org

Since this book’s first edition in 2012, many new data visualization
libraries have been created, some of which (like Bokeh and Altair)
take advantage of modern web technology to create interactive
visualizations that integrate well with the Jupyter notebook. Rather
than use multiple visualization tools in this book, I decided to stick
with matplotlib for teaching the fundamentals, in particular since
pandas has good integration with matplotlib. You can adapt the
principles from this chapter to learn how to use other visualization
libraries as well.

9.1 A Brief matplotlib API Primer
With matplotlib, we use the following import convention:

In [13]: import matplotlib.pyplot as plt

After running %matplotlib notebook in Jupyter (or simply %matplotlib in IPy‐
thon), we can try creating a simple plot. If everything is set up right, a line plot like
Figure 9-1 should appear:

In [14]: data = np.arange(10)

In [15]: data
Out[15]: array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])

In [16]: plt.plot(data)

Figure 9-1. Simple line plot

282 | Chapter 9: Plotting and Visualization

While libraries like seaborn and pandas’s built-in plotting functions will deal with
many of the mundane details of making plots, should you wish to customize them
beyond the function options provided, you will need to learn a bit about the matplot‐
lib API.

There is not enough room in the book to give comprehensive
treatment of the breadth and depth of functionality in matplotlib.
It should be enough to teach you the ropes to get up and running.
The matplotlib gallery and documentation are the best resource for
learning advanced features.

Figures and Subplots
Plots in matplotlib reside within a Figure object. You can create a new figure with
plt.figure:

In [17]: fig = plt.figure()

In IPython, if you first run %matplotlib to set up the matplotlib integration, an
empty plot window will appear, but in Jupyter nothing will be shown until we use a
few more commands.

plt.figure has a number of options; notably, figsize will guarantee the figure has a
certain size and aspect ratio if saved to disk.

You can’t make a plot with a blank figure. You have to create one or more subplots
using add_subplot:

In [18]: ax1 = fig.add_subplot(2, 2, 1)

This means that the figure should be 2 × 2 (so up to four plots in total), and we’re
selecting the first of four subplots (numbered from 1). If you create the next two
subplots, you’ll end up with a visualization that looks like Figure 9-2:

In [19]: ax2 = fig.add_subplot(2, 2, 2)

In [20]: ax3 = fig.add_subplot(2, 2, 3)

9.1 A Brief matplotlib API Primer | 283

Figure 9-2. An empty matplotlib figure with three subplots

One nuance of using Jupyter notebooks is that plots are reset after
each cell is evaluated, so you must put all of the plotting commands
in a single notebook cell.

Here we run all of these commands in the same cell:

fig = plt.figure()
ax1 = fig.add_subplot(2, 2, 1)
ax2 = fig.add_subplot(2, 2, 2)
ax3 = fig.add_subplot(2, 2, 3)

These plot axis objects have various methods that create different types of plots,
and it is preferred to use the axis methods over the top-level plotting functions
like plt.plot. For example, we could make a line plot with the plot method (see
Figure 9-3):

In [21]: ax3.plot(np.random.standard_normal(50).cumsum(), color="black",
 : linestyle="dashed")

284 | Chapter 9: Plotting and Visualization

Figure 9-3. Data visualization after a single plot

You may notice output like <matplotlib.lines.Line2D at ...> when you run this.
matplotlib returns objects that reference the plot subcomponent that was just added.
A lot of the time you can safely ignore this output, or you can put a semicolon at the
end of the line to suppress the output.

The additional options instruct matplotlib to plot a black dashed line. The objects
returned by fig.add_subplot here are AxesSubplot objects, on which you can
directly plot on the other empty subplots by calling each one’s instance method (see
Figure 9-4):

In [22]: ax1.hist(np.random.standard_normal(100), bins=20, color="black", alpha=0
.3);
In [23]: ax2.scatter(np.arange(30), np.arange(30) + 3 * np.random.standard_normal
(30));

9.1 A Brief matplotlib API Primer | 285

Figure 9-4. Data visualization after additional plots

The style option alpha=0.3 sets the transparency of the overlaid plot.

You can find a comprehensive catalog of plot types in the matplotlib documentation.

To make creating a grid of subplots more convenient, matplotlib includes a plt.sub
plots method that creates a new figure and returns a NumPy array containing the
created subplot objects:

In [25]: fig, axes = plt.subplots(2, 3)

In [26]: axes
Out[26]:
array([[<AxesSubplot:>, <AxesSubplot:>, <AxesSubplot:>],
 [<AxesSubplot:>, <AxesSubplot:>, <AxesSubplot:>]], dtype=object)

The axes array can then be indexed like a two-dimensional array; for example,
axes[0, 1] refers to the subplot in the top row at the center. You can also indi‐
cate that subplots should have the same x- or y-axis using sharex and sharey,
respectively. This can be useful when you’re comparing data on the same scale;
otherwise, matplotlib autoscales plot limits independently. See Table 9-1 for more on
this method.

286 | Chapter 9: Plotting and Visualization

https://matplotlib.org

Table 9-1. matplotlib.pyplot.subplots options

Argument Description
nrows Number of rows of subplots
ncols Number of columns of subplots
sharex All subplots should use the same x-axis ticks (adjusting the xlim will affect all subplots)
sharey All subplots should use the same y-axis ticks (adjusting the ylim will affect all subplots)
subplot_kw Dictionary of keywords passed to add_subplot call used to create each subplot
**fig_kw Additional keywords to subplots are used when creating the figure, such as plt.subplots(2, 2,

figsize=(8, 6))

Adjusting the spacing around subplots
By default, matplotlib leaves a certain amount of padding around the outside of the
subplots and in spacing between subplots. This spacing is all specified relative to the
height and width of the plot, so that if you resize the plot either programmatically
or manually using the GUI window, the plot will dynamically adjust itself. You can
change the spacing using the subplots_adjust method on Figure objects:

subplots_adjust(left=None, bottom=None, right=None, top=None,
 wspace=None, hspace=None)

wspace and hspace control the percent of the figure width and figure height, respec‐
tively, to use as spacing between subplots. Here is a small example you can execute in
Jupyter where I shrink the spacing all the way to zero (see Figure 9-5):

fig, axes = plt.subplots(2, 2, sharex=True, sharey=True)
for i in range(2):
 for j in range(2):
 axes[i, j].hist(np.random.standard_normal(500), bins=50,
 color="black", alpha=0.5)
fig.subplots_adjust(wspace=0, hspace=0)

9.1 A Brief matplotlib API Primer | 287

Figure 9-5. Data visualization with no inter-subplot spacing

You may notice that the axis labels overlap. matplotlib doesn’t check whether the
labels overlap, so in a case like this you would need to fix the labels yourself by
specifying explicit tick locations and tick labels (we’ll look at how to do this in the
later section “Ticks, Labels, and Legends” on page 290).

Colors, Markers, and Line Styles
matplotlib’s line plot function accepts arrays of x and y coordinates and optional
color styling options. For example, to plot x versus y with green dashes, you would
execute:

ax.plot(x, y, linestyle="--", color="green")

A number of color names are provided for commonly used colors, but you can use
any color on the spectrum by specifying its hex code (e.g., "#CECECE"). You can
see some of the supported line styles by looking at the docstring for plt.plot (use
plt.plot? in IPython or Jupyter). A more comprehensive reference is available in the
online documentation.

Line plots can additionally have markers to highlight the actual data points. Since
matplotlib’s plot function creates a continuous line plot, interpolating between
points, it can occasionally be unclear where the points lie. The marker can be
supplied as an additional styling option (see Figure 9-6):

288 | Chapter 9: Plotting and Visualization

In [31]: ax = fig.add_subplot()

In [32]: ax.plot(np.random.standard_normal(30).cumsum(), color="black",
 : linestyle="dashed", marker="o");

Figure 9-6. Line plot with markers

For line plots, you will notice that subsequent points are linearly interpolated by
default. This can be altered with the drawstyle option (see Figure 9-7):

In [34]: fig = plt.figure()

In [35]: ax = fig.add_subplot()

In [36]: data = np.random.standard_normal(30).cumsum()

In [37]: ax.plot(data, color="black", linestyle="dashed", label="Default");
In [38]: ax.plot(data, color="black", linestyle="dashed",
 : drawstyle="steps-post", label="steps-post");
In [39]: ax.legend()

9.1 A Brief matplotlib API Primer | 289

Figure 9-7. Line plot with different drawstyle options

Here, since we passed the label arguments to plot, we are able to create a plot legend
to identify each line using ax.legend. I discuss legends more in “Ticks, Labels, and
Legends” on page 290.

You must call ax.legend to create the legend, whether or not you
passed the label options when plotting the data.

Ticks, Labels, and Legends
Most kinds of plot decorations can be accessed through methods on matplotlib axes
objects. This includes methods like xlim, xticks, and xticklabels. These control the
plot range, tick locations, and tick labels, respectively. They can be used in two ways:

• Called with no arguments returns the current parameter value (e.g., ax.xlim()•
returns the current x-axis plotting range)

• Called with parameters sets the parameter value (e.g., ax.xlim([0, 10]) sets the•
x-axis range to 0 to 10)

290 | Chapter 9: Plotting and Visualization

All such methods act on the active or most recently created AxesSubplot. Each
corresponds to two methods on the subplot object itself; in the case of xlim, these are
ax.get_xlim and ax.set_xlim.

Setting the title, axis labels, ticks, and tick labels
To illustrate customizing the axes, I’ll create a simple figure and plot of a random
walk (see Figure 9-8):

In [40]: fig, ax = plt.subplots()

In [41]: ax.plot(np.random.standard_normal(1000).cumsum());

Figure 9-8. Simple plot for illustrating xticks (with default labels)

To change the x-axis ticks, it’s easiest to use set_xticks and set_xticklabels. The
former instructs matplotlib where to place the ticks along the data range; by default
these locations will also be the labels. But we can set any other values as the labels
using set_xticklabels:

In [42]: ticks = ax.set_xticks([0, 250, 500, 750, 1000])

In [43]: labels = ax.set_xticklabels(["one", "two", "three", "four", "five"],
 : rotation=30, fontsize=8)

9.1 A Brief matplotlib API Primer | 291

The rotation option sets the x tick labels at a 30-degree rotation. Lastly, set_xlabel
gives a name to the x-axis, and set_title is the subplot title (see Figure 9-9 for the
resulting figure):

In [44]: ax.set_xlabel("Stages")
Out[44]: Text(0.5, 6.666666666666652, 'Stages')

In [45]: ax.set_title("My first matplotlib plot")

Figure 9-9. Simple plot for illustrating custom xticks

Modifying the y-axis consists of the same process, substituting y for x in this example.
The axes class has a set method that allows batch setting of plot properties. From the
prior example, we could also have written:

ax.set(title="My first matplotlib plot", xlabel="Stages")

Adding legends
Legends are another critical element for identifying plot elements. There are a couple
of ways to add one. The easiest is to pass the label argument when adding each piece
of the plot:

In [46]: fig, ax = plt.subplots()

In [47]: ax.plot(np.random.randn(1000).cumsum(), color="black", label="one");
In [48]: ax.plot(np.random.randn(1000).cumsum(), color="black", linestyle="dashed

292 | Chapter 9: Plotting and Visualization

",
 : label="two");
In [49]: ax.plot(np.random.randn(1000).cumsum(), color="black", linestyle="dotted
",
 : label="three");

Once you’ve done this, you can call ax.legend() to automatically create a legend.
The resulting plot is in Figure 9-10:

In [50]: ax.legend()

Figure 9-10. Simple plot with three lines and legend

The legend method has several other choices for the location loc argument. See the
docstring (with ax.legend?) for more information.

The loc legend option tells matplotlib where to place the plot. The default is "best",
which tries to choose a location that is most out of the way. To exclude one or more
elements from the legend, pass no label or label="_nolegend_".

9.1 A Brief matplotlib API Primer | 293

Annotations and Drawing on a Subplot
In addition to the standard plot types, you may wish to draw your own plot annota‐
tions, which could consist of text, arrows, or other shapes. You can add annotations
and text using the text, arrow, and annotate functions. text draws text at given
coordinates (x, y) on the plot with optional custom styling:

ax.text(x, y, "Hello world!",
 family="monospace", fontsize=10)

Annotations can draw both text and arrows arranged appropriately. As an example,
let’s plot the closing S&P 500 index price since 2007 (obtained from Yahoo! Finance)
and annotate it with some of the important dates from the 2008–2009 financial crisis.
You can run this code example in a single cell in a Jupyter notebook. See Figure 9-11
for the result:

from datetime import datetime

fig, ax = plt.subplots()

data = pd.read_csv("examples/spx.csv", index_col=0, parse_dates=True)
spx = data["SPX"]

spx.plot(ax=ax, color="black")

crisis_data = [
 (datetime(2007, 10, 11), "Peak of bull market"),
 (datetime(2008, 3, 12), "Bear Stearns Fails"),
 (datetime(2008, 9, 15), "Lehman Bankruptcy")
]

for date, label in crisis_data:
 ax.annotate(label, xy=(date, spx.asof(date) + 75),
 xytext=(date, spx.asof(date) + 225),
 arrowprops=dict(facecolor="black", headwidth=4, width=2,
 headlength=4),
 horizontalalignment="left", verticalalignment="top")

Zoom in on 2007-2010
ax.set_xlim(["1/1/2007", "1/1/2011"])
ax.set_ylim([600, 1800])

ax.set_title("Important dates in the 2008-2009 financial crisis")

294 | Chapter 9: Plotting and Visualization

Figure 9-11. Important dates in the 2008–2009 financial crisis

There are a couple of important points to highlight in this plot. The ax.annotate
method can draw labels at the indicated x and y coordinates. We use the set_xlim
and set_ylim methods to manually set the start and end boundaries for the plot
rather than using matplotlib’s default. Lastly, ax.set_title adds a main title to the
plot.

See the online matplotlib gallery for many more annotation examples to learn from.

Drawing shapes requires some more care. matplotlib has objects that represent many
common shapes, referred to as patches. Some of these, like Rectangle and Circle, are
found in matplotlib.pyplot, but the full set is located in matplotlib.patches.

To add a shape to a plot, you create the patch object and add it to a subplot ax by
passing the patch to ax.add_patch (see Figure 9-12):

fig, ax = plt.subplots()

rect = plt.Rectangle((0.2, 0.75), 0.4, 0.15, color="black", alpha=0.3)
circ = plt.Circle((0.7, 0.2), 0.15, color="blue", alpha=0.3)
pgon = plt.Polygon([[0.15, 0.15], [0.35, 0.4], [0.2, 0.6]],
 color="green", alpha=0.5)

ax.add_patch(rect)
ax.add_patch(circ)
ax.add_patch(pgon)

9.1 A Brief matplotlib API Primer | 295

Figure 9-12. Data visualization composed from three different patches

If you look at the implementation of many familiar plot types, you will see that they
are assembled from patches.

Saving Plots to File
You can save the active figure to file using the figure object’s savefig instance
method. For example, to save an SVG version of a figure, you need only type:

fig.savefig("figpath.svg")

The file type is inferred from the file extension. So if you used .pdf instead, you
would get a PDF. One important option that I use frequently for publishing graphics
is dpi, which controls the dots-per-inch resolution. To get the same plot as a PNG at
400 DPI, you would do:

fig.savefig("figpath.png", dpi=400)

See Table 9-2 for a list of some other options for savefig. For a comprehensive
listing, refer to the docstring in IPython or Jupyter.

296 | Chapter 9: Plotting and Visualization

Table 9-2. Some fig.savefig options

Argument Description
fname String containing a filepath or a Python file-like object. The figure format is inferred from the file

extension (e.g., .pdf for PDF or .png for PNG).
dpi The figure resolution in dots per inch; defaults to 100 in IPython or 72 in Jupyter out of the box but can be

configured.
facecolor,

edgecolor

The color of the figure background outside of the subplots; "w" (white), by default.

format The explicit file format to use ("png", "pdf", "svg", "ps", "eps", ...).

matplotlib Configuration
matplotlib comes configured with color schemes and defaults that are geared primar‐
ily toward preparing figures for publication. Fortunately, nearly all of the default
behavior can be customized via global parameters governing figure size, subplot
spacing, colors, font sizes, grid styles, and so on. One way to modify the configuration
programmatically from Python is to use the rc method; for example, to set the global
default figure size to be 10 × 10, you could enter:

plt.rc("figure", figsize=(10, 10))

All of the current configuration settings are found in the plt.rcParams dictionary,
and they can be restored to their default values by calling the plt.rcdefaults()
function.

The first argument to rc is the component you wish to customize, such as "figure",
"axes", "xtick", "ytick", "grid", "legend", or many others. After that can follow a
sequence of keyword arguments indicating the new parameters. A convenient way to
write down the options in your program is as a dictionary:

plt.rc("font", family="monospace", weight="bold", size=8)

For more extensive customization and to see a list of all the options, matplotlib
comes with a configuration file matplotlibrc in the matplotlib/mpl-data directory. If
you customize this file and place it in your home directory titled .matplotlibrc, it will
be loaded each time you use matplotlib.

As we’ll see in the next section, the seaborn package has several built-in plot themes
or styles that use matplotlib’s configuration system internally.

9.1 A Brief matplotlib API Primer | 297

9.2 Plotting with pandas and seaborn
matplotlib can be a fairly low-level tool. You assemble a plot from its base compo‐
nents: the data display (i.e., the type of plot: line, bar, box, scatter, contour, etc.),
legend, title, tick labels, and other annotations.

In pandas, we may have multiple columns of data, along with row and column labels.
pandas itself has built-in methods that simplify creating visualizations from Data‐
Frame and Series objects. Another library is seaborn, a high-level statistical graphics
library built on matplotlib. seaborn simplifies creating many common visualization
types.

Line Plots
Series and DataFrame have a plot attribute for making some basic plot types. By
default, plot() makes line plots (see Figure 9-13):

In [61]: s = pd.Series(np.random.standard_normal(10).cumsum(), index=np.arange(0,
 100, 10))

In [62]: s.plot()

Figure 9-13. Simple Series plot

The Series object’s index is passed to matplotlib for plotting on the x-axis, though
you can disable this by passing use_index=False. The x-axis ticks and limits can be
adjusted with the xticks and xlim options, and the y-axis respectively with yticks

298 | Chapter 9: Plotting and Visualization

https://seaborn.pydata.org

and ylim. See Table 9-3 for a partial listing of plot options. I’ll comment on a few
more of them throughout this section and leave the rest for you to explore.

Table 9-3. Series.plot method arguments

Argument Description
label Label for plot legend
ax matplotlib subplot object to plot on; if nothing passed, uses active matplotlib subplot
style Style string, like "ko--", to be passed to matplotlib
alpha The plot fill opacity (from 0 to 1)
kind Can be "area", "bar", "barh", "density", "hist", "kde", "line", or "pie"; defaults to

"line"

figsize Size of the figure object to create
logx Pass True for logarithmic scaling on the x axis; pass "sym" for symmetric logarithm that permits negative

values
logy Pass True for logarithmic scaling on the y axis; pass "sym" for symmetric logarithm that permits negative

values
title Title to use for the plot
use_index Use the object index for tick labels
rot Rotation of tick labels (0 through 360)
xticks Values to use for x-axis ticks
yticks Values to use for y-axis ticks
xlim x-axis limits (e.g., [0, 10])
ylim y-axis limits
grid Display axis grid (off by default)

Most of pandas’s plotting methods accept an optional ax parameter, which can be a
matplotlib subplot object. This gives you more flexible placement of subplots in a grid
layout.

9.2 Plotting with pandas and seaborn | 299

DataFrame’s plot method plots each of its columns as a different line on the same
subplot, creating a legend automatically (see Figure 9-14):

In [63]: df = pd.DataFrame(np.random.standard_normal((10, 4)).cumsum(0),
 : columns=["A", "B", "C", "D"],
 : index=np.arange(0, 100, 10))

In [64]: plt.style.use('grayscale')

In [65]: df.plot()

Figure 9-14. Simple DataFrame plot

Here I used plt.style.use('grayscale') to switch to a color
scheme more suitable for black and white publication, since some
readers will not be able to see the full color plots.

The plot attribute contains a “family” of methods for different plot types. For exam‐
ple, df.plot() is equivalent to df.plot.line(). We’ll explore some of these methods
next.

Additional keyword arguments to plot are passed through to the
respective matplotlib plotting function, so you can further custom‐
ize these plots by learning more about the matplotlib API.

300 | Chapter 9: Plotting and Visualization

DataFrame has a number of options allowing some flexibility for how the columns
are handled, for example, whether to plot them all on the same subplot or to create
separate subplots. See Table 9-4 for more on these.

Table 9-4. DataFrame-specific plot arguments

Argument Description
subplots Plot each DataFrame column in a separate subplot
layouts 2-tuple (rows, columns) providing layout of subplots
sharex If subplots=True, share the same x-axis, linking ticks and limits
sharey If subplots=True, share the same y-axis
legend Add a subplot legend (True by default)
sort_columns Plot columns in alphabetical order; by default uses existing column order

For time series plotting, see Chapter 11.

Bar Plots
The plot.bar() and plot.barh() make vertical and horizontal bar plots, respec‐
tively. In this case, the Series or DataFrame index will be used as the x (bar) or y
(barh) ticks (see Figure 9-15):

In [66]: fig, axes = plt.subplots(2, 1)

In [67]: data = pd.Series(np.random.uniform(size=16), index=list("abcdefghijklmno
p"))

In [68]: data.plot.bar(ax=axes[0], color="black", alpha=0.7)
Out[68]: <AxesSubplot:>

In [69]: data.plot.barh(ax=axes[1], color="black", alpha=0.7)

9.2 Plotting with pandas and seaborn | 301

Figure 9-15. Horizonal and vertical bar plot

With a DataFrame, bar plots group the values in each row in bars, side by side, for
each value. See Figure 9-16:

In [71]: df = pd.DataFrame(np.random.uniform(size=(6, 4)),
 : index=["one", "two", "three", "four", "five", "six"],
 : columns=pd.Index(["A", "B", "C", "D"], name="Genus"))

In [72]: df
Out[72]:
Genus A B C D
one 0.370670 0.602792 0.229159 0.486744
two 0.420082 0.571653 0.049024 0.880592
three 0.814568 0.277160 0.880316 0.431326
four 0.374020 0.899420 0.460304 0.100843
five 0.433270 0.125107 0.494675 0.961825
six 0.601648 0.478576 0.205690 0.560547

In [73]: df.plot.bar()

302 | Chapter 9: Plotting and Visualization

Figure 9-16. DataFrame bar plot

Note that the name “Genus” on the DataFrame’s columns is used to title the legend.

9.2 Plotting with pandas and seaborn | 303

We create stacked bar plots from a DataFrame by passing stacked=True, resulting in
the value in each row being stacked together horizontally (see Figure 9-17):

In [75]: df.plot.barh(stacked=True, alpha=0.5)

Figure 9-17. DataFrame stacked bar plot

A useful recipe for bar plots is to visualize a Series’s value frequency
using value_counts: s.value_counts().plot.bar().

Let’s have a look at an example dataset about restaurant tipping. Suppose we wanted
to make a stacked bar plot showing the percentage of data points for each party size
for each day. I load the data using read_csv and make a cross-tabulation by day and
party size. The pandas.crosstab function is a convenient way to compute a simple
frequency table from two DataFrame columns:

In [77]: tips = pd.read_csv("examples/tips.csv")

In [78]: tips.head()
Out[78]:
 total_bill tip smoker day time size
0 16.99 1.01 No Sun Dinner 2
1 10.34 1.66 No Sun Dinner 3
2 21.01 3.50 No Sun Dinner 3
3 23.68 3.31 No Sun Dinner 2
4 24.59 3.61 No Sun Dinner 4

304 | Chapter 9: Plotting and Visualization

In [79]: party_counts = pd.crosstab(tips["day"], tips["size"])

In [80]: party_counts = party_counts.reindex(index=["Thur", "Fri", "Sat", "Sun"])

In [81]: party_counts
Out[81]:
size 1 2 3 4 5 6
day
Thur 1 48 4 5 1 3
Fri 1 16 1 1 0 0
Sat 2 53 18 13 1 0
Sun 0 39 15 18 3 1

Since there are not many one- and six-person parties, I remove them here:

In [82]: party_counts = party_counts.loc[:, 2:5]

Then, normalize so that each row sums to 1, and make the plot (see Figure 9-18):

Normalize to sum to 1
In [83]: party_pcts = party_counts.div(party_counts.sum(axis="columns"),
 : axis="index")

In [84]: party_pcts
Out[84]:
size 2 3 4 5
day
Thur 0.827586 0.068966 0.086207 0.017241
Fri 0.888889 0.055556 0.055556 0.000000
Sat 0.623529 0.211765 0.152941 0.011765
Sun 0.520000 0.200000 0.240000 0.040000

In [85]: party_pcts.plot.bar(stacked=True)

9.2 Plotting with pandas and seaborn | 305

Figure 9-18. Fraction of parties by size within each day

So you can see that party sizes appear to increase on the weekend in this dataset.

With data that requires aggregation or summarization before making a plot, using the
seaborn package can make things much simpler (install it with conda install sea
born). Let’s look now at the tipping percentage by day with seaborn (see Figure 9-19
for the resulting plot):

In [87]: import seaborn as sns

In [88]: tips["tip_pct"] = tips["tip"] / (tips["total_bill"] - tips["tip"])

In [89]: tips.head()
Out[89]:
 total_bill tip smoker day time size tip_pct
0 16.99 1.01 No Sun Dinner 2 0.063204
1 10.34 1.66 No Sun Dinner 3 0.191244
2 21.01 3.50 No Sun Dinner 3 0.199886
3 23.68 3.31 No Sun Dinner 2 0.162494
4 24.59 3.61 No Sun Dinner 4 0.172069

In [90]: sns.barplot(x="tip_pct", y="day", data=tips, orient="h")

306 | Chapter 9: Plotting and Visualization

Figure 9-19. Tipping percentage by day with error bars

Plotting functions in seaborn take a data argument, which can be a pandas Data‐
Frame. The other arguments refer to column names. Because there are multiple
observations for each value in the day, the bars are the average value of tip_pct.
The black lines drawn on the bars represent the 95% confidence interval (this can be
configured through optional arguments).

9.2 Plotting with pandas and seaborn | 307

seaborn.barplot has a hue option that enables us to split by an additional categorical
value (see Figure 9-20):

In [92]: sns.barplot(x="tip_pct", y="day", hue="time", data=tips, orient="h")

Figure 9-20. Tipping percentage by day and time

Notice that seaborn has automatically changed the aesthetics of plots: the default
color palette, plot background, and grid line colors. You can switch between different
plot appearances using seaborn.set_style:

In [94]: sns.set_style("whitegrid")

When producing plots for black-and-white print medium, you may find it useful to
set a greyscale color palette, like so:

sns.set_palette("Greys_r")

308 | Chapter 9: Plotting and Visualization

Histograms and Density Plots
A histogram is a kind of bar plot that gives a discretized display of value frequency.
The data points are split into discrete, evenly spaced bins, and the number of data
points in each bin is plotted. Using the tipping data from before, we can make a
histogram of tip percentages of the total bill using the plot.hist method on the
Series (see Figure 9-21):

In [96]: tips["tip_pct"].plot.hist(bins=50)

Figure 9-21. Histogram of tip percentages

A related plot type is a density plot, which is formed by computing an estimate of a
continuous probability distribution that might have generated the observed data. The
usual procedure is to approximate this distribution as a mixture of “kernels”—that is,
simpler distributions like the normal distribution. Thus, density plots are also known
as kernel density estimate (KDE) plots. Using plot.density makes a density plot
using the conventional mixture-of-normals estimate (see Figure 9-22):

In [98]: tips["tip_pct"].plot.density()

9.2 Plotting with pandas and seaborn | 309

Figure 9-22. Density plot of tip percentages

This kind of plot requires SciPy, so if you do not have it installed already, you can
pause and do that now:

conda install scipy

seaborn makes histograms and density plots even easier through its histplot
method, which can plot both a histogram and a continuous density estimate simulta‐
neously. As an example, consider a bimodal distribution consisting of draws from
two different standard normal distributions (see Figure 9-23):

In [100]: comp1 = np.random.standard_normal(200)

In [101]: comp2 = 10 + 2 * np.random.standard_normal(200)

In [102]: values = pd.Series(np.concatenate([comp1, comp2]))

In [103]: sns.histplot(values, bins=100, color="black")

310 | Chapter 9: Plotting and Visualization

Figure 9-23. Normalized histogram of normal mixture

Scatter or Point Plots
Point plots or scatter plots can be a useful way of examining the relationship between
two one-dimensional data series. For example, here we load the macrodata dataset
from the statsmodels project, select a few variables, then compute log differences:

In [104]: macro = pd.read_csv("examples/macrodata.csv")

In [105]: data = macro[["cpi", "m1", "tbilrate", "unemp"]]

In [106]: trans_data = np.log(data).diff().dropna()

In [107]: trans_data.tail()
Out[107]:
 cpi m1 tbilrate unemp
198 -0.007904 0.045361 -0.396881 0.105361
199 -0.021979 0.066753 -2.277267 0.139762
200 0.002340 0.010286 0.606136 0.160343
201 0.008419 0.037461 -0.200671 0.127339
202 0.008894 0.012202 -0.405465 0.042560

9.2 Plotting with pandas and seaborn | 311

We can then use seaborn’s regplot method, which makes a scatter plot and fits a
linear regression line (see Figure 9-24):

In [109]: ax = sns.regplot(x="m1", y="unemp", data=trans_data)

In [110]: ax.title("Changes in log(m1) versus log(unemp)")

Figure 9-24. A seaborn regression/scatter plot

In exploratory data analysis, it’s helpful to be able to look at all the scatter plots
among a group of variables; this is known as a pairs plot or scatter plot matrix. Mak‐
ing such a plot from scratch is a bit of work, so seaborn has a convenient pairplot
function that supports placing histograms or density estimates of each variable along
the diagonal (see Figure 9-25 for the resulting plot):

In [111]: sns.pairplot(trans_data, diag_kind="kde", plot_kws={"alpha": 0.2})

312 | Chapter 9: Plotting and Visualization

Figure 9-25. Pair plot matrix of statsmodels macro data

You may notice the plot_kws argument. This enables us to pass down configuration
options to the individual plotting calls on the off-diagonal elements. Check out the
seaborn.pairplot docstring for more granular configuration options.

9.2 Plotting with pandas and seaborn | 313

Facet Grids and Categorical Data
What about datasets where we have additional grouping dimensions? One way to
visualize data with many categorical variables is to use a facet grid, which is a two-
dimensional layout of plots where the data is split across the plots on each axis based
on the distinct values of a certain variable. seaborn has a useful built-in function cat
plot that simplifies making many kinds of faceted plots split by categorical variables
(see Figure 9-26 for the resulting plot):

In [112]: sns.catplot(x="day", y="tip_pct", hue="time", col="smoker",
 : kind="bar", data=tips[tips.tip_pct < 1])

Figure 9-26. Tipping percentage by day/time/smoker

Instead of grouping by "time" by different bar colors within a facet, we can also
expand the facet grid by adding one row per time value (see Figure 9-27):

In [113]: sns.catplot(x="day", y="tip_pct", row="time",
 : col="smoker",
 : kind="bar", data=tips[tips.tip_pct < 1])

314 | Chapter 9: Plotting and Visualization

Figure 9-27. Tipping percentage by day split by time/smoker

catplot supports other plot types that may be useful depending on what you are
trying to display. For example, box plots (which show the median, quartiles, and
outliers) can be an effective visualization type (see Figure 9-28):

In [114]: sns.catplot(x="tip_pct", y="day", kind="box",
 : data=tips[tips.tip_pct < 0.5])

9.2 Plotting with pandas and seaborn | 315

Figure 9-28. Box plot of tipping percentage by day

You can create your own facet grid plots using the more general seaborn.FacetGrid
class. See the seaborn documentation for more.

316 | Chapter 9: Plotting and Visualization

https://seaborn.pydata.org/

9.3 Other Python Visualization Tools
As is common with open source, there many options for creating graphics in Python
(too many to list). Since 2010, much development effort has been focused on creating
interactive graphics for publication on the web. With tools like Altair, Bokeh, and
Plotly, it’s now possible to specify dynamic, interactive graphics in Python that are
intended for use with web browsers.

For creating static graphics for print or web, I recommend using matplotlib and
libraries that build on matplotlib, like pandas and seaborn, for your needs. For other
data visualization requirements, it may be useful to learn how to use one of the other
available tools. I encourage you to explore the ecosystem as it continues to evolve and
innovate into the future.

An excellent book on data visualization is Fundamentals of Data Visualization by
Claus O. Wilke (O’Reilly), which is available in print or on Claus’s website at https://
clauswilke.com/dataviz.

9.4 Conclusion
The goal of this chapter was to get your feet wet with some basic data visualization
using pandas, matplotlib, and seaborn. If visually communicating the results of data
analysis is important in your work, I encourage you to seek out resources to learn
more about effective data visualization. It is an active field of research, and you can
practice with many excellent learning resources available online and in print.

In the next chapter, we turn our attention to data aggregation and group operations
with pandas.

9.3 Other Python Visualization Tools | 317

https://altair-viz.github.io
http://bokeh.pydata.org
https://plotly.com/python
https://clauswilke.com/dataviz
https://clauswilke.com/dataviz

CHAPTER 10

Data Aggregation and Group Operations

Categorizing a dataset and applying a function to each group, whether an aggregation
or transformation, can be a critical component of a data analysis workflow. After
loading, merging, and preparing a dataset, you may need to compute group statistics
or possibly pivot tables for reporting or visualization purposes. pandas provides a
versatile groupby interface, enabling you to slice, dice, and summarize datasets in a
natural way.

One reason for the popularity of relational databases and SQL (which stands for
“structured query language”) is the ease with which data can be joined, filtered,
transformed, and aggregated. However, query languages like SQL impose certain
limitations on the kinds of group operations that can be performed. As you will see,
with the expressiveness of Python and pandas, we can perform quite complex group
operations by expressing them as custom Python functions that manipulate the data
associated with each group. In this chapter, you will learn how to:

• Split a pandas object into pieces using one or more keys (in the form of func‐•
tions, arrays, or DataFrame column names)

• Calculate group summary statistics, like count, mean, or standard deviation, or a•
user-defined function

• Apply within-group transformations or other manipulations, like normalization,•
linear regression, rank, or subset selection

• Compute pivot tables and cross-tabulations•
• Perform quantile analysis and other statistical group analyses•

319

Time-based aggregation of time series data, a special use case of
groupby, is referred to as resampling in this book and will receive
separate treatment in Chapter 11.

As with the rest of the chapters, we start by importing NumPy and pandas:

In [12]: import numpy as np

In [13]: import pandas as pd

10.1 How to Think About Group Operations
Hadley Wickham, an author of many popular packages for the R programming
language, coined the term split-apply-combine for describing group operations. In the
first stage of the process, data contained in a pandas object, whether a Series, Data‐
Frame, or otherwise, is split into groups based on one or more keys that you provide.
The splitting is performed on a particular axis of an object. For example, a DataFrame
can be grouped on its rows (axis="index") or its columns (axis="columns"). Once
this is done, a function is applied to each group, producing a new value. Finally,
the results of all those function applications are combined into a result object. The
form of the resulting object will usually depend on what’s being done to the data. See
Figure 10-1 for a mockup of a simple group aggregation.

Each grouping key can take many forms, and the keys do not have to be all of the
same type:

• A list or array of values that is the same length as the axis being grouped•
• A value indicating a column name in a DataFrame•
• A dictionary or Series giving a correspondence between the values on the axis•

being grouped and the group names
• A function to be invoked on the axis index or the individual labels in the index•

320 | Chapter 10: Data Aggregation and Group Operations

Figure 10-1. Illustration of a group aggregation

Note that the latter three methods are shortcuts for producing an array of values to
be used to split up the object. Don’t worry if this all seems abstract. Throughout this
chapter, I will give many examples of all these methods. To get started, here is a small
tabular dataset as a DataFrame:

In [14]: df = pd.DataFrame({"key1" : ["a", "a", None, "b", "b", "a", None],
 : "key2" : pd.Series([1, 2, 1, 2, 1, None, 1], dtype="I
nt64"),
 : "data1" : np.random.standard_normal(7),
 : "data2" : np.random.standard_normal(7)})

In [15]: df
Out[15]:
 key1 key2 data1 data2
0 a 1 -0.204708 0.281746
1 a 2 0.478943 0.769023
2 None 1 -0.519439 1.246435
3 b 2 -0.555730 1.007189
4 b 1 1.965781 -1.296221
5 a <NA> 1.393406 0.274992
6 None 1 0.092908 0.228913

10.1 How to Think About Group Operations | 321

Suppose you wanted to compute the mean of the data1 column using the labels from
key1. There are a number of ways to do this. One is to access data1 and call groupby
with the column (a Series) at key1:

In [16]: grouped = df["data1"].groupby(df["key1"])

In [17]: grouped
Out[17]: <pandas.core.groupby.generic.SeriesGroupBy object at 0x7fa9270e0a00>

This grouped variable is now a special “GroupBy” object. It has not actually computed
anything yet except for some intermediate data about the group key df["key1"].
The idea is that this object has all of the information needed to then apply some
operation to each of the groups. For example, to compute group means we can call
the GroupBy’s mean method:

In [18]: grouped.mean()
Out[18]:
key1
a 0.555881
b 0.705025
Name: data1, dtype: float64

Later in Section 10.2, “Data Aggregation,” on page 329, I’ll explain more about what
happens when you call .mean(). The important thing here is that the data (a Series)
has been aggregated by splitting the data on the group key, producing a new Series
that is now indexed by the unique values in the key1 column. The result index has the
name "key1" because the DataFrame column df["key1"] did.

If instead we had passed multiple arrays as a list, we’d get something different:

In [19]: means = df["data1"].groupby([df["key1"], df["key2"]]).mean()

In [20]: means
Out[20]:
key1 key2
a 1 -0.204708
 2 0.478943
b 1 1.965781
 2 -0.555730
Name: data1, dtype: float64

Here we grouped the data using two keys, and the resulting Series now has a hier‐
archical index consisting of the unique pairs of keys observed:

In [21]: means.unstack()
Out[21]:
key2 1 2
key1
a -0.204708 0.478943
b 1.965781 -0.555730

322 | Chapter 10: Data Aggregation and Group Operations

In this example, the group keys are all Series, though they could be any arrays of the
right length:

In [22]: states = np.array(["OH", "CA", "CA", "OH", "OH", "CA", "OH"])

In [23]: years = [2005, 2005, 2006, 2005, 2006, 2005, 2006]

In [24]: df["data1"].groupby([states, years]).mean()
Out[24]:
CA 2005 0.936175
 2006 -0.519439
OH 2005 -0.380219
 2006 1.029344
Name: data1, dtype: float64

Frequently, the grouping information is found in the same DataFrame as the data you
want to work on. In that case, you can pass column names (whether those are strings,
numbers, or other Python objects) as the group keys:

In [25]: df.groupby("key1").mean()
Out[25]:
 key2 data1 data2
key1
a 1.5 0.555881 0.441920
b 1.5 0.705025 -0.144516

In [26]: df.groupby("key2").mean()
Out[26]:
 data1 data2
key2
1 0.333636 0.115218
2 -0.038393 0.888106

In [27]: df.groupby(["key1", "key2"]).mean()
Out[27]:
 data1 data2
key1 key2
a 1 -0.204708 0.281746
 2 0.478943 0.769023
b 1 1.965781 -1.296221
 2 -0.555730 1.007189

You may have noticed in the second case, df.groupby("key2").mean(), that there is
no key1 column in the result. Because df["key1"] is not numeric data, it is said to
be a nuisance column, which is therefore automatically excluded from the result. By
default, all of the numeric columns are aggregated, though it is possible to filter down
to a subset, as you’ll see soon.

Regardless of the objective in using groupby, a generally useful GroupBy method is
size, which returns a Series containing group sizes:

10.1 How to Think About Group Operations | 323

In [28]: df.groupby(["key1", "key2"]).size()
Out[28]:
key1 key2
a 1 1
 2 1
b 1 1
 2 1
dtype: int64

Note that any missing values in a group key are excluded from the result by default.
This behavior can be disabled by passing dropna=False to groupby:

In [29]: df.groupby("key1", dropna=False).size()
Out[29]:
key1
a 3
b 2
NaN 2
dtype: int64

In [30]: df.groupby(["key1", "key2"], dropna=False).size()
Out[30]:
key1 key2
a 1 1
 2 1
 <NA> 1
b 1 1
 2 1
NaN 1 2
dtype: int64

A group function similar in spirit to size is count, which computes the number of
nonnull values in each group:

In [31]: df.groupby("key1").count()
Out[31]:
 key2 data1 data2
key1
a 2 3 3
b 2 2 2

Iterating over Groups
The object returned by groupby supports iteration, generating a sequence of 2-tuples
containing the group name along with the chunk of data. Consider the following:

In [32]: for name, group in df.groupby("key1"):
 : print(name)
 : print(group)
 :
a
 key1 key2 data1 data2
0 a 1 -0.204708 0.281746

324 | Chapter 10: Data Aggregation and Group Operations

1 a 2 0.478943 0.769023
5 a <NA> 1.393406 0.274992
b
 key1 key2 data1 data2
3 b 2 -0.555730 1.007189
4 b 1 1.965781 -1.296221

In the case of multiple keys, the first element in the tuple will be a tuple of key values:

In [33]: for (k1, k2), group in df.groupby(["key1", "key2"]):
 : print((k1, k2))
 : print(group)
 :
('a', 1)
 key1 key2 data1 data2
0 a 1 -0.204708 0.281746
('a', 2)
 key1 key2 data1 data2
1 a 2 0.478943 0.769023
('b', 1)
 key1 key2 data1 data2
4 b 1 1.965781 -1.296221
('b', 2)
 key1 key2 data1 data2
3 b 2 -0.55573 1.007189

Of course, you can choose to do whatever you want with the pieces of data. A recipe
you may find useful is computing a dictionary of the data pieces as a one-liner:

In [34]: pieces = {name: group for name, group in df.groupby("key1")}

In [35]: pieces["b"]
Out[35]:
 key1 key2 data1 data2
3 b 2 -0.555730 1.007189
4 b 1 1.965781 -1.296221

By default groupby groups on axis="index", but you can group on any of the other
axes. For example, we could group the columns of our example df here by whether
they start with "key" or "data":

In [36]: grouped = df.groupby({"key1": "key", "key2": "key",
 : "data1": "data", "data2": "data"}, axis="columns")

We can print out the groups like so:

In [37]: for group_key, group_values in grouped:
 : print(group_key)
 : print(group_values)
 :
data
 data1 data2
0 -0.204708 0.281746
1 0.478943 0.769023

10.1 How to Think About Group Operations | 325

2 -0.519439 1.246435
3 -0.555730 1.007189
4 1.965781 -1.296221
5 1.393406 0.274992
6 0.092908 0.228913
key
 key1 key2
0 a 1
1 a 2
2 None 1
3 b 2
4 b 1
5 a <NA>
6 None 1

Selecting a Column or Subset of Columns
Indexing a GroupBy object created from a DataFrame with a column name or array
of column names has the effect of column subsetting for aggregation. This means
that:

df.groupby("key1")["data1"]
df.groupby("key1")[["data2"]]

are conveniences for:

df["data1"].groupby(df["key1"])
df[["data2"]].groupby(df["key1"])

Especially for large datasets, it may be desirable to aggregate only a few columns. For
example, in the preceding dataset, to compute the means for just the data2 column
and get the result as a DataFrame, we could write:

In [38]: df.groupby(["key1", "key2"])[["data2"]].mean()
Out[38]:
 data2
key1 key2
a 1 0.281746
 2 0.769023
b 1 -1.296221
 2 1.007189

The object returned by this indexing operation is a grouped DataFrame if a list or
array is passed, or a grouped Series if only a single column name is passed as a scalar:

In [39]: s_grouped = df.groupby(["key1", "key2"])["data2"]

In [40]: s_grouped
Out[40]: <pandas.core.groupby.generic.SeriesGroupBy object at 0x7fa9270e3520>

In [41]: s_grouped.mean()
Out[41]:
key1 key2

326 | Chapter 10: Data Aggregation and Group Operations

a 1 0.281746
 2 0.769023
b 1 -1.296221
 2 1.007189
Name: data2, dtype: float64

Grouping with Dictionaries and Series
Grouping information may exist in a form other than an array. Let’s consider another
example DataFrame:

In [42]: people = pd.DataFrame(np.random.standard_normal((5, 5)),
 : columns=["a", "b", "c", "d", "e"],
 : index=["Joe", "Steve", "Wanda", "Jill", "Trey"])

In [43]: people.iloc[2:3, [1, 2]] = np.nan # Add a few NA values

In [44]: people
Out[44]:
 a b c d e
Joe 1.352917 0.886429 -2.001637 -0.371843 1.669025
Steve -0.438570 -0.539741 0.476985 3.248944 -1.021228
Wanda -0.577087 NaN NaN 0.523772 0.000940
Jill 1.343810 -0.713544 -0.831154 -2.370232 -1.860761
Trey -0.860757 0.560145 -1.265934 0.119827 -1.063512

Now, suppose I have a group correspondence for the columns and want to sum the
columns by group:

In [45]: mapping = {"a": "red", "b": "red", "c": "blue",
 : "d": "blue", "e": "red", "f" : "orange"}

Now, you could construct an array from this dictionary to pass to groupby, but
instead we can just pass the dictionary (I included the key "f" to highlight that
unused grouping keys are OK):

In [46]: by_column = people.groupby(mapping, axis="columns")

In [47]: by_column.sum()
Out[47]:
 blue red
Joe -2.373480 3.908371
Steve 3.725929 -1.999539
Wanda 0.523772 -0.576147
Jill -3.201385 -1.230495
Trey -1.146107 -1.364125

The same functionality holds for Series, which can be viewed as a fixed-size mapping:

In [48]: map_series = pd.Series(mapping)

In [49]: map_series
Out[49]:

10.1 How to Think About Group Operations | 327

a red
b red
c blue
d blue
e red
f orange
dtype: object

In [50]: people.groupby(map_series, axis="columns").count()
Out[50]:
 blue red
Joe 2 3
Steve 2 3
Wanda 1 2
Jill 2 3
Trey 2 3

Grouping with Functions
Using Python functions is a more generic way of defining a group mapping compared
with a dictionary or Series. Any function passed as a group key will be called once
per index value (or once per column value if using axis="columns"), with the
return values being used as the group names. More concretely, consider the example
DataFrame from the previous section, which has people’s first names as index values.
Suppose you wanted to group by name length. While you could compute an array of
string lengths, it’s simpler to just pass the len function:

In [51]: people.groupby(len).sum()
Out[51]:
 a b c d e
3 1.352917 0.886429 -2.001637 -0.371843 1.669025
4 0.483052 -0.153399 -2.097088 -2.250405 -2.924273
5 -1.015657 -0.539741 0.476985 3.772716 -1.020287

Mixing functions with arrays, dictionaries, or Series is not a problem, as everything
gets converted to arrays internally:

In [52]: key_list = ["one", "one", "one", "two", "two"]

In [53]: people.groupby([len, key_list]).min()
Out[53]:
 a b c d e
3 one 1.352917 0.886429 -2.001637 -0.371843 1.669025
4 two -0.860757 -0.713544 -1.265934 -2.370232 -1.860761
5 one -0.577087 -0.539741 0.476985 0.523772 -1.021228

Grouping by Index Levels
A final convenience for hierarchically indexed datasets is the ability to aggregate
using one of the levels of an axis index. Let’s look at an example:

328 | Chapter 10: Data Aggregation and Group Operations

In [54]: columns = pd.MultiIndex.from_arrays([["US", "US", "US", "JP", "JP"],
 : [1, 3, 5, 1, 3]],
 : names=["cty", "tenor"])

In [55]: hier_df = pd.DataFrame(np.random.standard_normal((4, 5)), columns=column
s)

In [56]: hier_df
Out[56]:
cty US JP
tenor 1 3 5 1 3
0 0.332883 -2.359419 -0.199543 -1.541996 -0.970736
1 -1.307030 0.286350 0.377984 -0.753887 0.331286
2 1.349742 0.069877 0.246674 -0.011862 1.004812
3 1.327195 -0.919262 -1.549106 0.022185 0.758363

To group by level, pass the level number or name using the level keyword:

In [57]: hier_df.groupby(level="cty", axis="columns").count()
Out[57]:
cty JP US
0 2 3
1 2 3
2 2 3
3 2 3

10.2 Data Aggregation
Aggregations refer to any data transformation that produces scalar values from arrays.
The preceding examples have used several of them, including mean, count, min, and
sum. You may wonder what is going on when you invoke mean() on a GroupBy
object. Many common aggregations, such as those found in Table 10-1, have opti‐
mized implementations. However, you are not limited to only this set of methods.

Table 10-1. Optimized groupby methods

Function name Description
any, all Return True if any (one or more values) or all non-NA values are “truthy”
count Number of non-NA values
cummin, cummax Cumulative minimum and maximum of non-NA values
cumsum Cumulative sum of non-NA values
cumprod Cumulative product of non-NA values
first, last First and last non-NA values
mean Mean of non-NA values
median Arithmetic median of non-NA values
min, max Minimum and maximum of non-NA values
nth Retrieve value that would appear at position n with the data in sorted order
ohlc Compute four “open-high-low-close” statistics for time series-like data

10.2 Data Aggregation | 329

Function name Description
prod Product of non-NA values
quantile Compute sample quantile
rank Ordinal ranks of non-NA values, like calling Series.rank
size Compute group sizes, returning result as a Series
sum Sum of non-NA values
std, var Sample standard deviation and variance

You can use aggregations of your own devising and additionally call any method
that is also defined on the object being grouped. For example, the nsmallest
Series method selects the smallest requested number of values from the data.
While nsmallest is not explicitly implemented for GroupBy, we can still use it
with a nonoptimized implementation. Internally, GroupBy slices up the Series, calls
piece.nsmallest(n) for each piece, and then assembles those results into the result
object:

In [58]: df
Out[58]:
 key1 key2 data1 data2
0 a 1 -0.204708 0.281746
1 a 2 0.478943 0.769023
2 None 1 -0.519439 1.246435
3 b 2 -0.555730 1.007189
4 b 1 1.965781 -1.296221
5 a <NA> 1.393406 0.274992
6 None 1 0.092908 0.228913

In [59]: grouped = df.groupby("key1")

In [60]: grouped["data1"].nsmallest(2)
Out[60]:
key1
a 0 -0.204708
 1 0.478943
b 3 -0.555730
 4 1.965781
Name: data1, dtype: float64

To use your own aggregation functions, pass any function that aggregates an array to
the aggregate method or its short alias agg:

In [61]: def peak_to_peak(arr):
 : return arr.max() - arr.min()

In [62]: grouped.agg(peak_to_peak)
Out[62]:
 key2 data1 data2
key1

330 | Chapter 10: Data Aggregation and Group Operations

a 1 1.598113 0.494031
b 1 2.521511 2.303410

You may notice that some methods, like describe, also work, even though they are
not aggregations, strictly speaking:

In [63]: grouped.describe()
Out[63]:
 key2 data1 ... \
 count mean std min 25% 50% 75% max count mean ...
key1 ...
a 2.0 1.5 0.707107 1.0 1.25 1.5 1.75 2.0 3.0 0.555881 ...
b 2.0 1.5 0.707107 1.0 1.25 1.5 1.75 2.0 2.0 0.705025 ...
 data2 \
 75% max count mean std min 25%
key1
a 0.936175 1.393406 3.0 0.441920 0.283299 0.274992 0.278369
b 1.335403 1.965781 2.0 -0.144516 1.628757 -1.296221 -0.720368

 50% 75% max
key1
a 0.281746 0.525384 0.769023
b -0.144516 0.431337 1.007189
[2 rows x 24 columns]

I will explain in more detail what has happened here in Section 10.3, “Apply: General
split-apply-combine,” on page 335.

Custom aggregation functions are generally much slower than the
optimized functions found in Table 10-1. This is because there
is some extra overhead (function calls, data rearrangement) in
constructing the intermediate group data chunks.

Column-Wise and Multiple Function Application
Let’s return to the tipping dataset used in the last chapter. After loading it with
pandas.read_csv, we add a tipping percentage column:

In [64]: tips = pd.read_csv("examples/tips.csv")

In [65]: tips.head()
Out[65]:
 total_bill tip smoker day time size
0 16.99 1.01 No Sun Dinner 2
1 10.34 1.66 No Sun Dinner 3
2 21.01 3.50 No Sun Dinner 3
3 23.68 3.31 No Sun Dinner 2
4 24.59 3.61 No Sun Dinner 4

10.2 Data Aggregation | 331

Now I will add a tip_pct column with the tip percentage of the total bill:

In [66]: tips["tip_pct"] = tips["tip"] / tips["total_bill"]

In [67]: tips.head()
Out[67]:
 total_bill tip smoker day time size tip_pct
0 16.99 1.01 No Sun Dinner 2 0.059447
1 10.34 1.66 No Sun Dinner 3 0.160542
2 21.01 3.50 No Sun Dinner 3 0.166587
3 23.68 3.31 No Sun Dinner 2 0.139780
4 24.59 3.61 No Sun Dinner 4 0.146808

As you’ve already seen, aggregating a Series or all of the columns of a DataFrame is
a matter of using aggregate (or agg) with the desired function or calling a method
like mean or std. However, you may want to aggregate using a different function,
depending on the column, or multiple functions at once. Fortunately, this is possible
to do, which I’ll illustrate through a number of examples. First, I’ll group the tips by
day and smoker:

In [68]: grouped = tips.groupby(["day", "smoker"])

Note that for descriptive statistics like those in Table 10-1, you can pass the name of
the function as a string:

In [69]: grouped_pct = grouped["tip_pct"]

In [70]: grouped_pct.agg("mean")
Out[70]:
day smoker
Fri No 0.151650
 Yes 0.174783
Sat No 0.158048
 Yes 0.147906
Sun No 0.160113
 Yes 0.187250
Thur No 0.160298
 Yes 0.163863
Name: tip_pct, dtype: float64

If you pass a list of functions or function names instead, you get back a DataFrame
with column names taken from the functions:

In [71]: grouped_pct.agg(["mean", "std", peak_to_peak])
Out[71]:
 mean std peak_to_peak
day smoker
Fri No 0.151650 0.028123 0.067349
 Yes 0.174783 0.051293 0.159925
Sat No 0.158048 0.039767 0.235193
 Yes 0.147906 0.061375 0.290095
Sun No 0.160113 0.042347 0.193226

332 | Chapter 10: Data Aggregation and Group Operations

 Yes 0.187250 0.154134 0.644685
Thur No 0.160298 0.038774 0.193350
 Yes 0.163863 0.039389 0.151240

Here we passed a list of aggregation functions to agg to evaluate independently on the
data groups.

You don’t need to accept the names that GroupBy gives to the columns; notably,
lambda functions have the name "<lambda>", which makes them hard to identify
(you can see for yourself by looking at a function’s __name__ attribute). Thus, if you
pass a list of (name, function) tuples, the first element of each tuple will be used
as the DataFrame column names (you can think of a list of 2-tuples as an ordered
mapping):

In [72]: grouped_pct.agg([("average", "mean"), ("stdev", np.std)])
Out[72]:
 average stdev
day smoker
Fri No 0.151650 0.028123
 Yes 0.174783 0.051293
Sat No 0.158048 0.039767
 Yes 0.147906 0.061375
Sun No 0.160113 0.042347
 Yes 0.187250 0.154134
Thur No 0.160298 0.038774
 Yes 0.163863 0.039389

With a DataFrame you have more options, as you can specify a list of functions
to apply to all of the columns or different functions per column. To start, suppose
we wanted to compute the same three statistics for the tip_pct and total_bill
columns:

In [73]: functions = ["count", "mean", "max"]

In [74]: result = grouped[["tip_pct", "total_bill"]].agg(functions)

In [75]: result
Out[75]:
 tip_pct total_bill
 count mean max count mean max
day smoker
Fri No 4 0.151650 0.187735 4 18.420000 22.75
 Yes 15 0.174783 0.263480 15 16.813333 40.17
Sat No 45 0.158048 0.291990 45 19.661778 48.33
 Yes 42 0.147906 0.325733 42 21.276667 50.81
Sun No 57 0.160113 0.252672 57 20.506667 48.17
 Yes 19 0.187250 0.710345 19 24.120000 45.35
Thur No 45 0.160298 0.266312 45 17.113111 41.19
 Yes 17 0.163863 0.241255 17 19.190588 43.11

10.2 Data Aggregation | 333

As you can see, the resulting DataFrame has hierarchical columns, the same as you
would get aggregating each column separately and using concat to glue the results
together using the column names as the keys argument:

In [76]: result["tip_pct"]
Out[76]:
 count mean max
day smoker
Fri No 4 0.151650 0.187735
 Yes 15 0.174783 0.263480
Sat No 45 0.158048 0.291990
 Yes 42 0.147906 0.325733
Sun No 57 0.160113 0.252672
 Yes 19 0.187250 0.710345
Thur No 45 0.160298 0.266312
 Yes 17 0.163863 0.241255

As before, a list of tuples with custom names can be passed:

In [77]: ftuples = [("Average", "mean"), ("Variance", np.var)]

In [78]: grouped[["tip_pct", "total_bill"]].agg(ftuples)
Out[78]:
 tip_pct total_bill
 Average Variance Average Variance
day smoker
Fri No 0.151650 0.000791 18.420000 25.596333
 Yes 0.174783 0.002631 16.813333 82.562438
Sat No 0.158048 0.001581 19.661778 79.908965
 Yes 0.147906 0.003767 21.276667 101.387535
Sun No 0.160113 0.001793 20.506667 66.099980
 Yes 0.187250 0.023757 24.120000 109.046044
Thur No 0.160298 0.001503 17.113111 59.625081
 Yes 0.163863 0.001551 19.190588 69.808518

Now, suppose you wanted to apply potentially different functions to one or more of
the columns. To do this, pass a dictionary to agg that contains a mapping of column
names to any of the function specifications listed so far:

In [79]: grouped.agg({"tip" : np.max, "size" : "sum"})
Out[79]:
 tip size
day smoker
Fri No 3.50 9
 Yes 4.73 31
Sat No 9.00 115
 Yes 10.00 104
Sun No 6.00 167
 Yes 6.50 49
Thur No 6.70 112
 Yes 5.00 40

In [80]: grouped.agg({"tip_pct" : ["min", "max", "mean", "std"],

334 | Chapter 10: Data Aggregation and Group Operations

 : "size" : "sum"})
Out[80]:
 tip_pct size
 min max mean std sum
day smoker
Fri No 0.120385 0.187735 0.151650 0.028123 9
 Yes 0.103555 0.263480 0.174783 0.051293 31
Sat No 0.056797 0.291990 0.158048 0.039767 115
 Yes 0.035638 0.325733 0.147906 0.061375 104
Sun No 0.059447 0.252672 0.160113 0.042347 167
 Yes 0.065660 0.710345 0.187250 0.154134 49
Thur No 0.072961 0.266312 0.160298 0.038774 112
 Yes 0.090014 0.241255 0.163863 0.039389 40

A DataFrame will have hierarchical columns only if multiple functions are applied to
at least one column.

Returning Aggregated Data Without Row Indexes
In all of the examples up until now, the aggregated data comes back with an index,
potentially hierarchical, composed from the unique group key combinations. Since
this isn’t always desirable, you can disable this behavior in most cases by passing
as_index=False to groupby:

In [81]: tips.groupby(["day", "smoker"], as_index=False).mean()
Out[81]:
 day smoker total_bill tip size tip_pct
0 Fri No 18.420000 2.812500 2.250000 0.151650
1 Fri Yes 16.813333 2.714000 2.066667 0.174783
2 Sat No 19.661778 3.102889 2.555556 0.158048
3 Sat Yes 21.276667 2.875476 2.476190 0.147906
4 Sun No 20.506667 3.167895 2.929825 0.160113
5 Sun Yes 24.120000 3.516842 2.578947 0.187250
6 Thur No 17.113111 2.673778 2.488889 0.160298
7 Thur Yes 19.190588 3.030000 2.352941 0.163863

Of course, it’s always possible to obtain the result in this format by calling
reset_index on the result. Using the as_index=False argument avoids some unnec‐
essary computations.

10.3 Apply: General split-apply-combine
The most general-purpose GroupBy method is apply, which is the subject of this
section. apply splits the object being manipulated into pieces, invokes the passed
function on each piece, and then attempts to concatenate the pieces.

Returning to the tipping dataset from before, suppose you wanted to select the top
five tip_pct values by group. First, write a function that selects the rows with the
largest values in a particular column:

10.3 Apply: General split-apply-combine | 335

In [82]: def top(df, n=5, column="tip_pct"):
 : return df.sort_values(column, ascending=False)[:n]

In [83]: top(tips, n=6)
Out[83]:
 total_bill tip smoker day time size tip_pct
172 7.25 5.15 Yes Sun Dinner 2 0.710345
178 9.60 4.00 Yes Sun Dinner 2 0.416667
67 3.07 1.00 Yes Sat Dinner 1 0.325733
232 11.61 3.39 No Sat Dinner 2 0.291990
183 23.17 6.50 Yes Sun Dinner 4 0.280535
109 14.31 4.00 Yes Sat Dinner 2 0.279525

Now, if we group by smoker, say, and call apply with this function, we get the
following:

In [84]: tips.groupby("smoker").apply(top)
Out[84]:
 total_bill tip smoker day time size tip_pct
smoker
No 232 11.61 3.39 No Sat Dinner 2 0.291990
 149 7.51 2.00 No Thur Lunch 2 0.266312
 51 10.29 2.60 No Sun Dinner 2 0.252672
 185 20.69 5.00 No Sun Dinner 5 0.241663
 88 24.71 5.85 No Thur Lunch 2 0.236746
Yes 172 7.25 5.15 Yes Sun Dinner 2 0.710345
 178 9.60 4.00 Yes Sun Dinner 2 0.416667
 67 3.07 1.00 Yes Sat Dinner 1 0.325733
 183 23.17 6.50 Yes Sun Dinner 4 0.280535
 109 14.31 4.00 Yes Sat Dinner 2 0.279525

What has happened here? First, the tips DataFrame is split into groups based on the
value of smoker. Then the top function is called on each group, and the results of
each function call are glued together using pandas.concat, labeling the pieces with
the group names. The result therefore has a hierarchical index with an inner level that
contains index values from the original DataFrame.

If you pass a function to apply that takes other arguments or keywords, you can pass
these after the function:

In [85]: tips.groupby(["smoker", "day"]).apply(top, n=1, column="total_bill")
Out[85]:
 total_bill tip smoker day time size tip_pct
smoker day
No Fri 94 22.75 3.25 No Fri Dinner 2 0.142857
 Sat 212 48.33 9.00 No Sat Dinner 4 0.186220
 Sun 156 48.17 5.00 No Sun Dinner 6 0.103799
 Thur 142 41.19 5.00 No Thur Lunch 5 0.121389
Yes Fri 95 40.17 4.73 Yes Fri Dinner 4 0.117750
 Sat 170 50.81 10.00 Yes Sat Dinner 3 0.196812
 Sun 182 45.35 3.50 Yes Sun Dinner 3 0.077178
 Thur 197 43.11 5.00 Yes Thur Lunch 4 0.115982

336 | Chapter 10: Data Aggregation and Group Operations

Beyond these basic usage mechanics, getting the most out of apply may require some
creativity. What occurs inside the function passed is up to you; it must either return
a pandas object or a scalar value. The rest of this chapter will consist mainly of
examples showing you how to solve various problems using groupby.

For example, you may recall that I earlier called describe on a GroupBy object:

In [86]: result = tips.groupby("smoker")["tip_pct"].describe()

In [87]: result
Out[87]:
 count mean std min 25% 50% 75% \
smoker
No 151.0 0.159328 0.039910 0.056797 0.136906 0.155625 0.185014
Yes 93.0 0.163196 0.085119 0.035638 0.106771 0.153846 0.195059
 max
smoker
No 0.291990
Yes 0.710345

In [88]: result.unstack("smoker")
Out[88]:
 smoker
count No 151.000000
 Yes 93.000000
mean No 0.159328
 Yes 0.163196
std No 0.039910
 Yes 0.085119
min No 0.056797
 Yes 0.035638
25% No 0.136906
 Yes 0.106771
50% No 0.155625
 Yes 0.153846
75% No 0.185014
 Yes 0.195059
max No 0.291990
 Yes 0.710345
dtype: float64

Inside GroupBy, when you invoke a method like describe, it is actually just a
shortcut for:

def f(group):
 return group.describe()

grouped.apply(f)

10.3 Apply: General split-apply-combine | 337

Suppressing the Group Keys
In the preceding examples, you see that the resulting object has a hierarchical index
formed from the group keys, along with the indexes of each piece of the original
object. You can disable this by passing group_keys=False to groupby:

In [89]: tips.groupby("smoker", group_keys=False).apply(top)
Out[89]:
 total_bill tip smoker day time size tip_pct
232 11.61 3.39 No Sat Dinner 2 0.291990
149 7.51 2.00 No Thur Lunch 2 0.266312
51 10.29 2.60 No Sun Dinner 2 0.252672
185 20.69 5.00 No Sun Dinner 5 0.241663
88 24.71 5.85 No Thur Lunch 2 0.236746
172 7.25 5.15 Yes Sun Dinner 2 0.710345
178 9.60 4.00 Yes Sun Dinner 2 0.416667
67 3.07 1.00 Yes Sat Dinner 1 0.325733
183 23.17 6.50 Yes Sun Dinner 4 0.280535
109 14.31 4.00 Yes Sat Dinner 2 0.279525

Quantile and Bucket Analysis
As you may recall from Chapter 8, pandas has some tools, in particular pandas.cut
and pandas.qcut, for slicing data up into buckets with bins of your choosing, or by
sample quantiles. Combining these functions with groupby makes it convenient to
perform bucket or quantile analysis on a dataset. Consider a simple random dataset
and an equal-length bucket categorization using pandas.cut:

In [90]: frame = pd.DataFrame({"data1": np.random.standard_normal(1000),
 : "data2": np.random.standard_normal(1000)})

In [91]: frame.head()
Out[91]:
 data1 data2
0 -0.660524 -0.612905
1 0.862580 0.316447
2 -0.010032 0.838295
3 0.050009 -1.034423
4 0.670216 0.434304

In [92]: quartiles = pd.cut(frame["data1"], 4)

In [93]: quartiles.head(10)
Out[93]:
0 (-1.23, 0.489]
1 (0.489, 2.208]
2 (-1.23, 0.489]
3 (-1.23, 0.489]
4 (0.489, 2.208]
5 (0.489, 2.208]
6 (-1.23, 0.489]

338 | Chapter 10: Data Aggregation and Group Operations

7 (-1.23, 0.489]
8 (-2.956, -1.23]
9 (-1.23, 0.489]
Name: data1, dtype: category
Categories (4, interval[float64, right]): [(-2.956, -1.23] < (-1.23, 0.489] < (0.
489, 2.208] <
 (2.208, 3.928]]

The Categorical object returned by cut can be passed directly to groupby. So we
could compute a set of group statistics for the quartiles, like so:

In [94]: def get_stats(group):
 : return pd.DataFrame(
 : {"min": group.min(), "max": group.max(),
 : "count": group.count(), "mean": group.mean()}
 :)

In [95]: grouped = frame.groupby(quartiles)

In [96]: grouped.apply(get_stats)
Out[96]:
 min max count mean
data1
(-2.956, -1.23] data1 -2.949343 -1.230179 94 -1.658818
 data2 -3.399312 1.670835 94 -0.033333
(-1.23, 0.489] data1 -1.228918 0.488675 598 -0.329524
 data2 -2.989741 3.260383 598 -0.002622
(0.489, 2.208] data1 0.489965 2.200997 298 1.065727
 data2 -3.745356 2.954439 298 0.078249
(2.208, 3.928] data1 2.212303 3.927528 10 2.644253
 data2 -1.929776 1.765640 10 0.024750

Keep in mind the same result could have been computed more simply with:

In [97]: grouped.agg(["min", "max", "count", "mean"])
Out[97]:
 data1 data2 \
 min max count mean min max count
data1
(-2.956, -1.23] -2.949343 -1.230179 94 -1.658818 -3.399312 1.670835 94
(-1.23, 0.489] -1.228918 0.488675 598 -0.329524 -2.989741 3.260383 598
(0.489, 2.208] 0.489965 2.200997 298 1.065727 -3.745356 2.954439 298
(2.208, 3.928] 2.212303 3.927528 10 2.644253 -1.929776 1.765640 10

 mean
data1
(-2.956, -1.23] -0.033333
(-1.23, 0.489] -0.002622
(0.489, 2.208] 0.078249
(2.208, 3.928] 0.024750

These were equal-length buckets; to compute equal-size buckets based on sample
quantiles, use pandas.qcut. We can pass 4 as the number of bucket compute sam‐

10.3 Apply: General split-apply-combine | 339

ple quartiles, and pass labels=False to obtain just the quartile indices instead of
intervals:

In [98]: quartiles_samp = pd.qcut(frame["data1"], 4, labels=False)

In [99]: quartiles_samp.head()
Out[99]:
0 1
1 3
2 2
3 2
4 3
Name: data1, dtype: int64

In [100]: grouped = frame.groupby(quartiles_samp)

In [101]: grouped.apply(get_stats)
Out[101]:
 min max count mean
data1
0 data1 -2.949343 -0.685484 250 -1.212173
 data2 -3.399312 2.628441 250 -0.027045
1 data1 -0.683066 -0.030280 250 -0.368334
 data2 -2.630247 3.260383 250 -0.027845
2 data1 -0.027734 0.618965 250 0.295812
 data2 -3.056990 2.458842 250 0.014450
3 data1 0.623587 3.927528 250 1.248875
 data2 -3.745356 2.954439 250 0.115899

Example: Filling Missing Values with Group-Specific Values
When cleaning up missing data, in some cases you will remove data observations
using dropna, but in others you may want to fill in the null (NA) values using a
fixed value or some value derived from the data. fillna is the right tool to use; for
example, here I fill in the null values with the mean:

In [102]: s = pd.Series(np.random.standard_normal(6))

In [103]: s[::2] = np.nan

In [104]: s
Out[104]:
0 NaN
1 0.227290
2 NaN
3 -2.153545
4 NaN
5 -0.375842
dtype: float64

In [105]: s.fillna(s.mean())

340 | Chapter 10: Data Aggregation and Group Operations

Out[105]:
0 -0.767366
1 0.227290
2 -0.767366
3 -2.153545
4 -0.767366
5 -0.375842
dtype: float64

Suppose you need the fill value to vary by group. One way to do this is to group the
data and use apply with a function that calls fillna on each data chunk. Here is
some sample data on US states divided into eastern and western regions:

In [106]: states = ["Ohio", "New York", "Vermont", "Florida",
 : "Oregon", "Nevada", "California", "Idaho"]

In [107]: group_key = ["East", "East", "East", "East",
 : "West", "West", "West", "West"]

In [108]: data = pd.Series(np.random.standard_normal(8), index=states)

In [109]: data
Out[109]:
Ohio 0.329939
New York 0.981994
Vermont 1.105913
Florida -1.613716
Oregon 1.561587
Nevada 0.406510
California 0.359244
Idaho -0.614436
dtype: float64

Let’s set some values in the data to be missing:

In [110]: data[["Vermont", "Nevada", "Idaho"]] = np.nan

In [111]: data
Out[111]:
Ohio 0.329939
New York 0.981994
Vermont NaN
Florida -1.613716
Oregon 1.561587
Nevada NaN
California 0.359244
Idaho NaN
dtype: float64

In [112]: data.groupby(group_key).size()
Out[112]:
East 4
West 4

10.3 Apply: General split-apply-combine | 341

dtype: int64

In [113]: data.groupby(group_key).count()
Out[113]:
East 3
West 2
dtype: int64

In [114]: data.groupby(group_key).mean()
Out[114]:
East -0.100594
West 0.960416
dtype: float64

We can fill the NA values using the group means, like so:

In [115]: def fill_mean(group):
 : return group.fillna(group.mean())

In [116]: data.groupby(group_key).apply(fill_mean)
Out[116]:
Ohio 0.329939
New York 0.981994
Vermont -0.100594
Florida -1.613716
Oregon 1.561587
Nevada 0.960416
California 0.359244
Idaho 0.960416
dtype: float64

In another case, you might have predefined fill values in your code that vary by
group. Since the groups have a name attribute set internally, we can use that:

In [117]: fill_values = {"East": 0.5, "West": -1}

In [118]: def fill_func(group):
 : return group.fillna(fill_values[group.name])

In [119]: data.groupby(group_key).apply(fill_func)
Out[119]:
Ohio 0.329939
New York 0.981994
Vermont 0.500000
Florida -1.613716
Oregon 1.561587
Nevada -1.000000
California 0.359244
Idaho -1.000000
dtype: float64

342 | Chapter 10: Data Aggregation and Group Operations

Example: Random Sampling and Permutation
Suppose you wanted to draw a random sample (with or without replacement) from a
large dataset for Monte Carlo simulation purposes or some other application. There
are a number of ways to perform the “draws”; here we use the sample method for
Series.

To demonstrate, here’s a way to construct a deck of English-style playing cards:

suits = ["H", "S", "C", "D"] # Hearts, Spades, Clubs, Diamonds
card_val = (list(range(1, 11)) + [10] * 3) * 4
base_names = ["A"] + list(range(2, 11)) + ["J", "K", "Q"]
cards = []
for suit in suits:
 cards.extend(str(num) + suit for num in base_names)

deck = pd.Series(card_val, index=cards)

Now we have a Series of length 52 whose index contains card names, and values are
the ones used in blackjack and other games (to keep things simple, I let the ace "A"
be 1):

In [121]: deck.head(13)
Out[121]:
AH 1
2H 2
3H 3
4H 4
5H 5
6H 6
7H 7
8H 8
9H 9
10H 10
JH 10
KH 10
QH 10
dtype: int64

Now, based on what I said before, drawing a hand of five cards from the deck could
be written as:

In [122]: def draw(deck, n=5):
 : return deck.sample(n)

In [123]: draw(deck)
Out[123]:
4D 4
QH 10
8S 8
7D 7

10.3 Apply: General split-apply-combine | 343

9C 9
dtype: int64

Suppose you wanted two random cards from each suit. Because the suit is the last
character of each card name, we can group based on this and use apply:

In [124]: def get_suit(card):
 : # last letter is suit
 : return card[-1]

In [125]: deck.groupby(get_suit).apply(draw, n=2)
Out[125]:
C 6C 6
 KC 10
D 7D 7
 3D 3
H 7H 7
 9H 9
S 2S 2
 QS 10
dtype: int64

Alternatively, we could pass group_keys=False to drop the outer suit index, leaving
in just the selected cards:

In [126]: deck.groupby(get_suit, group_keys=False).apply(draw, n=2)
Out[126]:
AC 1
3C 3
5D 5
4D 4
10H 10
7H 7
QS 10
7S 7
dtype: int64

Example: Group Weighted Average and Correlation
Under the split-apply-combine paradigm of groupby, operations between columns in
a DataFrame or two Series, such as a group weighted average, are possible. As an
example, take this dataset containing group keys, values, and some weights:

In [127]: df = pd.DataFrame({"category": ["a", "a", "a", "a",
 : "b", "b", "b", "b"],
 : "data": np.random.standard_normal(8),
 : "weights": np.random.uniform(size=8)})

In [128]: df
Out[128]:
 category data weights
0 a -1.691656 0.955905

344 | Chapter 10: Data Aggregation and Group Operations

1 a 0.511622 0.012745
2 a -0.401675 0.137009
3 a 0.968578 0.763037
4 b -1.818215 0.492472
5 b 0.279963 0.832908
6 b -0.200819 0.658331
7 b -0.217221 0.612009

The weighted average by category would then be:

In [129]: grouped = df.groupby("category")

In [130]: def get_wavg(group):
 : return np.average(group["data"], weights=group["weights"])

In [131]: grouped.apply(get_wavg)
Out[131]:
category
a -0.495807
b -0.357273
dtype: float64

As another example, consider a financial dataset originally obtained from Yahoo!
Finance containing end-of-day prices for a few stocks and the S&P 500 index (the SPX
symbol):

In [132]: close_px = pd.read_csv("examples/stock_px.csv", parse_dates=True,
 : index_col=0)

In [133]: close_px.info()
<class 'pandas.core.frame.DataFrame'>
DatetimeIndex: 2214 entries, 2003-01-02 to 2011-10-14
Data columns (total 4 columns):
 # Column Non-Null Count Dtype
--- ------ -------------- -----
 0 AAPL 2214 non-null float64
 1 MSFT 2214 non-null float64
 2 XOM 2214 non-null float64
 3 SPX 2214 non-null float64
dtypes: float64(4)
memory usage: 86.5 KB

In [134]: close_px.tail(4)
Out[134]:
 AAPL MSFT XOM SPX
2011-10-11 400.29 27.00 76.27 1195.54
2011-10-12 402.19 26.96 77.16 1207.25
2011-10-13 408.43 27.18 76.37 1203.66
2011-10-14 422.00 27.27 78.11 1224.58

The DataFrame info() method here is a convenient way to get an overview of the
contents of a DataFrame.

10.3 Apply: General split-apply-combine | 345

One task of interest might be to compute a DataFrame consisting of the yearly
correlations of daily returns (computed from percent changes) with SPX. As one way
to do this, we first create a function that computes the pair-wise correlation of each
column with the "SPX" column:

In [135]: def spx_corr(group):
 : return group.corrwith(group["SPX"])

Next, we compute percent change on close_px using pct_change:

In [136]: rets = close_px.pct_change().dropna()

Lastly, we group these percent changes by year, which can be extracted from each row
label with a one-line function that returns the year attribute of each datetime label:

In [137]: def get_year(x):
 : return x.year

In [138]: by_year = rets.groupby(get_year)

In [139]: by_year.apply(spx_corr)
Out[139]:
 AAPL MSFT XOM SPX
2003 0.541124 0.745174 0.661265 1.0
2004 0.374283 0.588531 0.557742 1.0
2005 0.467540 0.562374 0.631010 1.0
2006 0.428267 0.406126 0.518514 1.0
2007 0.508118 0.658770 0.786264 1.0
2008 0.681434 0.804626 0.828303 1.0
2009 0.707103 0.654902 0.797921 1.0
2010 0.710105 0.730118 0.839057 1.0
2011 0.691931 0.800996 0.859975 1.0

You could also compute intercolumn correlations. Here we compute the annual
correlation between Apple and Microsoft:

In [140]: def corr_aapl_msft(group):
 : return group["AAPL"].corr(group["MSFT"])

In [141]: by_year.apply(corr_aapl_msft)
Out[141]:
2003 0.480868
2004 0.259024
2005 0.300093
2006 0.161735
2007 0.417738
2008 0.611901
2009 0.432738
2010 0.571946
2011 0.581987
dtype: float64

346 | Chapter 10: Data Aggregation and Group Operations

Example: Group-Wise Linear Regression
In the same theme as the previous example, you can use groupby to perform more
complex group-wise statistical analysis, as long as the function returns a pandas
object or scalar value. For example, I can define the following regress function
(using the statsmodels econometrics library), which executes an ordinary least
squares (OLS) regression on each chunk of data:

import statsmodels.api as sm
def regress(data, yvar=None, xvars=None):
 Y = data[yvar]
 X = data[xvars]
 X["intercept"] = 1.
 result = sm.OLS(Y, X).fit()
 return result.params

You can install statsmodels with conda if you don’t have it already:

conda install statsmodels

Now, to run a yearly linear regression of AAPL on SPX returns, execute:

In [143]: by_year.apply(regress, yvar="AAPL", xvars=["SPX"])
Out[143]:
 SPX intercept
2003 1.195406 0.000710
2004 1.363463 0.004201
2005 1.766415 0.003246
2006 1.645496 0.000080
2007 1.198761 0.003438
2008 0.968016 -0.001110
2009 0.879103 0.002954
2010 1.052608 0.001261
2011 0.806605 0.001514

10.4 Group Transforms and “Unwrapped” GroupBys
In Section 10.3, “Apply: General split-apply-combine,” on page 335, we looked at
the apply method in grouped operations for performing transformations. There is
another built-in method called transform, which is similar to apply but imposes
more constraints on the kind of function you can use:

• It can produce a scalar value to be broadcast to the shape of the group.•
• It can produce an object of the same shape as the input group.•
• It must not mutate its input.•

Let’s consider a simple example for illustration:

10.4 Group Transforms and “Unwrapped” GroupBys | 347

In [144]: df = pd.DataFrame({'key': ['a', 'b', 'c'] * 4,
 : 'value': np.arange(12.)})

In [145]: df
Out[145]:
 key value
0 a 0.0
1 b 1.0
2 c 2.0
3 a 3.0
4 b 4.0
5 c 5.0
6 a 6.0
7 b 7.0
8 c 8.0
9 a 9.0
10 b 10.0
11 c 11.0

Here are the group means by key:

In [146]: g = df.groupby('key')['value']

In [147]: g.mean()
Out[147]:
key
a 4.5
b 5.5
c 6.5
Name: value, dtype: float64

Suppose instead we wanted to produce a Series of the same shape as df['value'] but
with values replaced by the average grouped by 'key'. We can pass a function that
computes the mean of a single group to transform:

In [148]: def get_mean(group):
 : return group.mean()

In [149]: g.transform(get_mean)
Out[149]:
0 4.5
1 5.5
2 6.5
3 4.5
4 5.5
5 6.5
6 4.5
7 5.5
8 6.5
9 4.5
10 5.5
11 6.5
Name: value, dtype: float64

348 | Chapter 10: Data Aggregation and Group Operations

For built-in aggregation functions, we can pass a string alias as with the GroupBy agg
method:

In [150]: g.transform('mean')
Out[150]:
0 4.5
1 5.5
2 6.5
3 4.5
4 5.5
5 6.5
6 4.5
7 5.5
8 6.5
9 4.5
10 5.5
11 6.5
Name: value, dtype: float64

Like apply, transform works with functions that return Series, but the result must
be the same size as the input. For example, we can multiply each group by 2 using a
helper function:

In [151]: def times_two(group):
 : return group * 2

In [152]: g.transform(times_two)
Out[152]:
0 0.0
1 2.0
2 4.0
3 6.0
4 8.0
5 10.0
6 12.0
7 14.0
8 16.0
9 18.0
10 20.0
11 22.0
Name: value, dtype: float64

As a more complicated example, we can compute the ranks in descending order for
each group:

In [153]: def get_ranks(group):
 : return group.rank(ascending=False)

In [154]: g.transform(get_ranks)
Out[154]:
0 4.0
1 4.0
2 4.0

10.4 Group Transforms and “Unwrapped” GroupBys | 349

3 3.0
4 3.0
5 3.0
6 2.0
7 2.0
8 2.0
9 1.0
10 1.0
11 1.0
Name: value, dtype: float64

Consider a group transformation function composed from simple aggregations:

In [155]: def normalize(x):
 : return (x - x.mean()) / x.std()

We can obtain equivalent results in this case using either transform or apply:

In [156]: g.transform(normalize)
Out[156]:
0 -1.161895
1 -1.161895
2 -1.161895
3 -0.387298
4 -0.387298
5 -0.387298
6 0.387298
7 0.387298
8 0.387298
9 1.161895
10 1.161895
11 1.161895
Name: value, dtype: float64

In [157]: g.apply(normalize)
Out[157]:
0 -1.161895
1 -1.161895
2 -1.161895
3 -0.387298
4 -0.387298
5 -0.387298
6 0.387298
7 0.387298
8 0.387298
9 1.161895
10 1.161895
11 1.161895
Name: value, dtype: float64

Built-in aggregate functions like 'mean' or 'sum' are often much faster than a general
apply function. These also have a “fast path” when used with transform. This allows
us to perform what is called an unwrapped group operation:

350 | Chapter 10: Data Aggregation and Group Operations

In [158]: g.transform('mean')
Out[158]:
0 4.5
1 5.5
2 6.5
3 4.5
4 5.5
5 6.5
6 4.5
7 5.5
8 6.5
9 4.5
10 5.5
11 6.5
Name: value, dtype: float64

In [159]: normalized = (df['value'] - g.transform('mean')) / g.transform('std')

In [160]: normalized
Out[160]:
0 -1.161895
1 -1.161895
2 -1.161895
3 -0.387298
4 -0.387298
5 -0.387298
6 0.387298
7 0.387298
8 0.387298
9 1.161895
10 1.161895
11 1.161895
Name: value, dtype: float64

Here, we are doing arithmetic between the outputs of multiple GroupBy operations
instead of writing a function and passing it to groupby(...).apply. That is what is
meant by “unwrapped.”

While an unwrapped group operation may involve multiple group aggregations, the
overall benefit of vectorized operations often outweighs this.

10.5 Pivot Tables and Cross-Tabulation
A pivot table is a data summarization tool frequently found in spreadsheet programs
and other data analysis software. It aggregates a table of data by one or more keys,
arranging the data in a rectangle with some of the group keys along the rows and
some along the columns. Pivot tables in Python with pandas are made possible
through the groupby facility described in this chapter, combined with reshape opera‐
tions utilizing hierarchical indexing. DataFrame also has a pivot_table method, and

10.5 Pivot Tables and Cross-Tabulation | 351

there is also a top-level pandas.pivot_table function. In addition to providing a
convenience interface to groupby, pivot_table can add partial totals, also known as
margins.

Returning to the tipping dataset, suppose you wanted to compute a table of group
means (the default pivot_table aggregation type) arranged by day and smoker on
the rows:

In [161]: tips.head()
Out[161]:
 total_bill tip smoker day time size tip_pct
0 16.99 1.01 No Sun Dinner 2 0.059447
1 10.34 1.66 No Sun Dinner 3 0.160542
2 21.01 3.50 No Sun Dinner 3 0.166587
3 23.68 3.31 No Sun Dinner 2 0.139780
4 24.59 3.61 No Sun Dinner 4 0.146808

In [162]: tips.pivot_table(index=["day", "smoker"])
Out[162]:
 size tip tip_pct total_bill
day smoker
Fri No 2.250000 2.812500 0.151650 18.420000
 Yes 2.066667 2.714000 0.174783 16.813333
Sat No 2.555556 3.102889 0.158048 19.661778
 Yes 2.476190 2.875476 0.147906 21.276667
Sun No 2.929825 3.167895 0.160113 20.506667
 Yes 2.578947 3.516842 0.187250 24.120000
Thur No 2.488889 2.673778 0.160298 17.113111
 Yes 2.352941 3.030000 0.163863 19.190588

This could have been produced with groupby directly, using tips.groupby(["day",
"smoker"]).mean(). Now, suppose we want to take the average of only tip_pct and
size, and additionally group by time. I’ll put smoker in the table columns and time
and day in the rows:

In [163]: tips.pivot_table(index=["time", "day"], columns="smoker",
 : values=["tip_pct", "size"])
Out[163]:
 size tip_pct
smoker No Yes No Yes
time day
Dinner Fri 2.000000 2.222222 0.139622 0.165347
 Sat 2.555556 2.476190 0.158048 0.147906
 Sun 2.929825 2.578947 0.160113 0.187250
 Thur 2.000000 NaN 0.159744 NaN
Lunch Fri 3.000000 1.833333 0.187735 0.188937
 Thur 2.500000 2.352941 0.160311 0.163863

We could augment this table to include partial totals by passing margins=True. This
has the effect of adding All row and column labels, with corresponding values being
the group statistics for all the data within a single tier:

352 | Chapter 10: Data Aggregation and Group Operations

In [164]: tips.pivot_table(index=["time", "day"], columns="smoker",
 : values=["tip_pct", "size"], margins=True)
Out[164]:
 size tip_pct
smoker No Yes All No Yes All
time day
Dinner Fri 2.000000 2.222222 2.166667 0.139622 0.165347 0.158916
 Sat 2.555556 2.476190 2.517241 0.158048 0.147906 0.153152
 Sun 2.929825 2.578947 2.842105 0.160113 0.187250 0.166897
 Thur 2.000000 NaN 2.000000 0.159744 NaN 0.159744
Lunch Fri 3.000000 1.833333 2.000000 0.187735 0.188937 0.188765
 Thur 2.500000 2.352941 2.459016 0.160311 0.163863 0.161301
All 2.668874 2.408602 2.569672 0.159328 0.163196 0.160803

Here, the All values are means without taking into account smoker versus non-
smoker (the All columns) or any of the two levels of grouping on the rows (the All
row).

To use an aggregation function other than mean, pass it to the aggfunc keyword
argument. For example, "count" or len will give you a cross-tabulation (count or
frequency) of group sizes (though "count" will exclude null values from the count
within data groups, while len will not):

In [165]: tips.pivot_table(index=["time", "smoker"], columns="day",
 : values="tip_pct", aggfunc=len, margins=True)
Out[165]:
day Fri Sat Sun Thur All
time smoker
Dinner No 3.0 45.0 57.0 1.0 106
 Yes 9.0 42.0 19.0 NaN 70
Lunch No 1.0 NaN NaN 44.0 45
 Yes 6.0 NaN NaN 17.0 23
All 19.0 87.0 76.0 62.0 244

If some combinations are empty (or otherwise NA), you may wish to pass a
fill_value:

In [166]: tips.pivot_table(index=["time", "size", "smoker"], columns="day",
 : values="tip_pct", fill_value=0)
Out[166]:
day Fri Sat Sun Thur
time size smoker
Dinner 1 No 0.000000 0.137931 0.000000 0.000000
 Yes 0.000000 0.325733 0.000000 0.000000
 2 No 0.139622 0.162705 0.168859 0.159744
 Yes 0.171297 0.148668 0.207893 0.000000
 3 No 0.000000 0.154661 0.152663 0.000000
...
Lunch 3 Yes 0.000000 0.000000 0.000000 0.204952
 4 No 0.000000 0.000000 0.000000 0.138919
 Yes 0.000000 0.000000 0.000000 0.155410
 5 No 0.000000 0.000000 0.000000 0.121389

10.5 Pivot Tables and Cross-Tabulation | 353

 6 No 0.000000 0.000000 0.000000 0.173706
[21 rows x 4 columns]

See Table 10-2 for a summary of pivot_table options.

Table 10-2. pivot_table options

Argument Description
values Column name or names to aggregate; by default, aggregates all numeric columns
index Column names or other group keys to group on the rows of the resulting pivot table
columns Column names or other group keys to group on the columns of the resulting pivot table
aggfunc Aggregation function or list of functions ("mean" by default); can be any function valid in a groupby

context
fill_value Replace missing values in the result table
dropna If True, do not include columns whose entries are all NA
margins Add row/column subtotals and grand total (False by default)
margins_name Name to use for the margin row/column labels when passing margins=True; defaults to "All"
observed With Categorical group keys, if True, show only the observed category values in the keys rather than all

categories

Cross-Tabulations: Crosstab
A cross-tabulation (or crosstab for short) is a special case of a pivot table that com‐
putes group frequencies. Here is an example:

In [167]: from io import StringIO

In [168]: data = """Sample Nationality Handedness
 : 1 USA Right-handed
 : 2 Japan Left-handed
 : 3 USA Right-handed
 : 4 Japan Right-handed
 : 5 Japan Left-handed
 : 6 Japan Right-handed
 : 7 USA Right-handed
 : 8 USA Left-handed
 : 9 Japan Right-handed
 : 10 USA Right-handed"""
 :

In [169]: data = pd.read_table(StringIO(data), sep="\s+")

In [170]: data
Out[170]:
 Sample Nationality Handedness
0 1 USA Right-handed
1 2 Japan Left-handed
2 3 USA Right-handed
3 4 Japan Right-handed
4 5 Japan Left-handed

354 | Chapter 10: Data Aggregation and Group Operations

5 6 Japan Right-handed
6 7 USA Right-handed
7 8 USA Left-handed
8 9 Japan Right-handed
9 10 USA Right-handed

As part of some survey analysis, we might want to summarize this data by nationality
and handedness. You could use pivot_table to do this, but the pandas.crosstab
function can be more convenient:

In [171]: pd.crosstab(data["Nationality"], data["Handedness"], margins=True)
Out[171]:
Handedness Left-handed Right-handed All
Nationality
Japan 2 3 5
USA 1 4 5
All 3 7 10

The first two arguments to crosstab can each be an array or Series or a list of arrays.
As in the tips data:

In [172]: pd.crosstab([tips["time"], tips["day"]], tips["smoker"], margins=True)
Out[172]:
smoker No Yes All
time day
Dinner Fri 3 9 12
 Sat 45 42 87
 Sun 57 19 76
 Thur 1 0 1
Lunch Fri 1 6 7
 Thur 44 17 61
All 151 93 244

10.6 Conclusion
Mastering pandas’s data grouping tools can help with data cleaning and modeling or
statistical analysis work. In Chapter 13 we will look at several more example use cases
for groupby on real data.

In the next chapter, we turn our attention to time series data.

10.6 Conclusion | 355

	Chapter 9. Plotting and Visualization
	9.1 A Brief matplotlib API Primer
	Figures and Subplots
	Colors, Markers, and Line Styles
	Ticks, Labels, and Legends
	Annotations and Drawing on a Subplot
	Saving Plots to File
	matplotlib Configuration

	9.2 Plotting with pandas and seaborn
	Line Plots
	Bar Plots
	Histograms and Density Plots
	Scatter or Point Plots
	Facet Grids and Categorical Data

	9.3 Other Python Visualization Tools
	9.4 Conclusion

	Chapter 10. Data Aggregation and Group
 Operations
	10.1 How to Think About Group Operations
	Iterating over Groups
	Selecting a Column or Subset of Columns
	Grouping with Dictionaries and Series
	Grouping with Functions
	Grouping by Index Levels

	10.2 Data Aggregation
	Column-Wise and Multiple Function Application
	Returning Aggregated Data Without Row Indexes

	10.3 Apply: General split-apply-combine
	Suppressing the Group Keys
	Quantile and Bucket Analysis
	Example: Filling Missing Values with Group-Specific
 Values
	Example: Random Sampling and Permutation
	Example: Group Weighted Average and Correlation
	Example: Group-Wise Linear Regression

	10.4 Group Transforms and “Unwrapped” GroupBys
	10.5 Pivot Tables and Cross-Tabulation
	Cross-Tabulations: Crosstab

	10.6 Conclusion

