
CHAPTER 5

Getting Started with pandas

pandas will be a major tool of interest throughout much of the rest of the book. It
contains data structures and data manipulation tools designed to make data cleaning
and analysis fast and convenient in Python. pandas is often used in tandem with
numerical computing tools like NumPy and SciPy, analytical libraries like statsmo‐
dels and scikit-learn, and data visualization libraries like matplotlib. pandas adopts
significant parts of NumPy’s idiomatic style of array-based computing, especially
array-based functions and a preference for data processing without for loops.

While pandas adopts many coding idioms from NumPy, the biggestabout difference
is that pandas is designed for working with tabular or heterogeneous data. NumPy, by
contrast, is best suited for working with homogeneously typed numerical array data.

Since becoming an open source project in 2010, pandas has matured into a quite
large library that’s applicable in a broad set of real-world use cases. The developer
community has grown to over 2,500 distinct contributors, who’ve been helping build
the project as they used it to solve their day-to-day data problems. The vibrant pandas
developer and user communities have been a key part of its success.

Many people don’t know that I haven’t been actively involved in
day-to-day pandas development since 2013; it has been an entirely
community-managed project since then. Be sure to pass on your
thanks to the core development and all the contributors for their
hard work!

123

Throughout the rest of the book, I use the following import conventions for NumPy
and pandas:

In [1]: import numpy as np

In [2]: import pandas as pd

Thus, whenever you see pd. in code, it’s referring to pandas. You may also find it
easier to import Series and DataFrame into the local namespace since they are so
frequently used:

In [3]: from pandas import Series, DataFrame

5.1 Introduction to pandas Data Structures
To get started with pandas, you will need to get comfortable with its two workhorse
data structures: Series and DataFrame. While they are not a universal solution for
every problem, they provide a solid foundation for a wide variety of data tasks.

Series
A Series is a one-dimensional array-like object containing a sequence of values (of
similar types to NumPy types) of the same type and an associated array of data labels,
called its index. The simplest Series is formed from only an array of data:

In [14]: obj = pd.Series([4, 7, -5, 3])

In [15]: obj
Out[15]:
0 4
1 7
2 -5
3 3
dtype: int64

The string representation of a Series displayed interactively shows the index on the
left and the values on the right. Since we did not specify an index for the data, a
default one consisting of the integers 0 through N - 1 (where N is the length of the
data) is created. You can get the array representation and index object of the Series via
its array and index attributes, respectively:

In [16]: obj.array
Out[16]:
<PandasArray>
[4, 7, -5, 3]
Length: 4, dtype: int64

In [17]: obj.index
Out[17]: RangeIndex(start=0, stop=4, step=1)

124 | Chapter 5: Getting Started with pandas

The result of the .array attribute is a PandasArray which usually wraps a NumPy
array but can also contain special extension array types which will be discussed more
in Section 7.3, “Extension Data Types,” on page 224.

Often, you’ll want to create a Series with an index identifying each data point with a
label:

In [18]: obj2 = pd.Series([4, 7, -5, 3], index=["d", "b", "a", "c"])

In [19]: obj2
Out[19]:
d 4
b 7
a -5
c 3
dtype: int64

In [20]: obj2.index
Out[20]: Index(['d', 'b', 'a', 'c'], dtype='object')

Compared with NumPy arrays, you can use labels in the index when selecting single
values or a set of values:

In [21]: obj2["a"]
Out[21]: -5

In [22]: obj2["d"] = 6

In [23]: obj2[["c", "a", "d"]]
Out[23]:
c 3
a -5
d 6
dtype: int64

Here ["c", "a", "d"] is interpreted as a list of indices, even though it contains
strings instead of integers.

Using NumPy functions or NumPy-like operations, such as filtering with a Boolean
array, scalar multiplication, or applying math functions, will preserve the index-value
link:

In [24]: obj2[obj2 > 0]
Out[24]:
d 6
b 7
c 3
dtype: int64

In [25]: obj2 * 2
Out[25]:
d 12

5.1 Introduction to pandas Data Structures | 125

b 14
a -10
c 6
dtype: int64

In [26]: import numpy as np

In [27]: np.exp(obj2)
Out[27]:
d 403.428793
b 1096.633158
a 0.006738
c 20.085537
dtype: float64

Another way to think about a Series is as a fixed-length, ordered dictionary, as it is a
mapping of index values to data values. It can be used in many contexts where you
might use a dictionary:

In [28]: "b" in obj2
Out[28]: True

In [29]: "e" in obj2
Out[29]: False

Should you have data contained in a Python dictionary, you can create a Series from
it by passing the dictionary:

In [30]: sdata = {"Ohio": 35000, "Texas": 71000, "Oregon": 16000, "Utah": 5000}

In [31]: obj3 = pd.Series(sdata)

In [32]: obj3
Out[32]:
Ohio 35000
Texas 71000
Oregon 16000
Utah 5000
dtype: int64

A Series can be converted back to a dictionary with its to_dict method:

In [33]: obj3.to_dict()
Out[33]: {'Ohio': 35000, 'Texas': 71000, 'Oregon': 16000, 'Utah': 5000}

When you are only passing a dictionary, the index in the resulting Series will respect
the order of the keys according to the dictionary’s keys method, which depends on
the key insertion order. You can override this by passing an index with the dictionary
keys in the order you want them to appear in the resulting Series:

In [34]: states = ["California", "Ohio", "Oregon", "Texas"]

In [35]: obj4 = pd.Series(sdata, index=states)

126 | Chapter 5: Getting Started with pandas

In [36]: obj4
Out[36]:
California NaN
Ohio 35000.0
Oregon 16000.0
Texas 71000.0
dtype: float64

Here, three values found in sdata were placed in the appropriate locations, but since
no value for "California" was found, it appears as NaN (Not a Number), which is
considered in pandas to mark missing or NA values. Since "Utah" was not included
in states, it is excluded from the resulting object.

I will use the terms “missing,” “NA,” or “null” interchangeably to refer to missing data.
The isna and notna functions in pandas should be used to detect missing data:

In [37]: pd.isna(obj4)
Out[37]:
California True
Ohio False
Oregon False
Texas False
dtype: bool

In [38]: pd.notna(obj4)
Out[38]:
California False
Ohio True
Oregon True
Texas True
dtype: bool

Series also has these as instance methods:

In [39]: obj4.isna()
Out[39]:
California True
Ohio False
Oregon False
Texas False
dtype: bool

I discuss working with missing data in more detail in Chapter 7.

A useful Series feature for many applications is that it automatically aligns by index
label in arithmetic operations:

In [40]: obj3
Out[40]:
Ohio 35000
Texas 71000
Oregon 16000

5.1 Introduction to pandas Data Structures | 127

Utah 5000
dtype: int64

In [41]: obj4
Out[41]:
California NaN
Ohio 35000.0
Oregon 16000.0
Texas 71000.0
dtype: float64

In [42]: obj3 + obj4
Out[42]:
California NaN
Ohio 70000.0
Oregon 32000.0
Texas 142000.0
Utah NaN
dtype: float64

Data alignment features will be addressed in more detail later. If you have experience
with databases, you can think about this as being similar to a join operation.

Both the Series object itself and its index have a name attribute, which integrates with
other areas of pandas functionality:

In [43]: obj4.name = "population"

In [44]: obj4.index.name = "state"

In [45]: obj4
Out[45]:
state
California NaN
Ohio 35000.0
Oregon 16000.0
Texas 71000.0
Name: population, dtype: float64

A Series’s index can be altered in place by assignment:

In [46]: obj
Out[46]:
0 4
1 7
2 -5
3 3
dtype: int64

In [47]: obj.index = ["Bob", "Steve", "Jeff", "Ryan"]

In [48]: obj
Out[48]:

128 | Chapter 5: Getting Started with pandas

Bob 4
Steve 7
Jeff -5
Ryan 3
dtype: int64

DataFrame
A DataFrame represents a rectangular table of data and contains an ordered, named
collection of columns, each of which can be a different value type (numeric, string,
Boolean, etc.). The DataFrame has both a row and column index; it can be thought of
as a dictionary of Series all sharing the same index.

While a DataFrame is physically two-dimensional, you can use it
to represent higher dimensional data in a tabular format using
hierarchical indexing, a subject we will discuss in Chapter 8 and an
ingredient in some of the more advanced data-handling features in
pandas.

There are many ways to construct a DataFrame, though one of the most common is
from a dictionary of equal-length lists or NumPy arrays:

data = {"state": ["Ohio", "Ohio", "Ohio", "Nevada", "Nevada", "Nevada"],
 "year": [2000, 2001, 2002, 2001, 2002, 2003],
 "pop": [1.5, 1.7, 3.6, 2.4, 2.9, 3.2]}
frame = pd.DataFrame(data)

The resulting DataFrame will have its index assigned automatically, as with Series,
and the columns are placed according to the order of the keys in data (which
depends on their insertion order in the dictionary):

In [50]: frame
Out[50]:
 state year pop
0 Ohio 2000 1.5
1 Ohio 2001 1.7
2 Ohio 2002 3.6
3 Nevada 2001 2.4
4 Nevada 2002 2.9
5 Nevada 2003 3.2

If you are using the Jupyter notebook, pandas DataFrame objects
will be displayed as a more browser-friendly HTML table. See
Figure 5-1 for an example.

5.1 Introduction to pandas Data Structures | 129

Figure 5-1. How pandas DataFrame objects look in Jupyter

For large DataFrames, the head method selects only the first five rows:

In [51]: frame.head()
Out[51]:
 state year pop
0 Ohio 2000 1.5
1 Ohio 2001 1.7
2 Ohio 2002 3.6
3 Nevada 2001 2.4
4 Nevada 2002 2.9

Similarly, tail returns the last five rows:

In [52]: frame.tail()
Out[52]:
 state year pop
1 Ohio 2001 1.7
2 Ohio 2002 3.6
3 Nevada 2001 2.4
4 Nevada 2002 2.9
5 Nevada 2003 3.2

If you specify a sequence of columns, the DataFrame’s columns will be arranged in
that order:

In [53]: pd.DataFrame(data, columns=["year", "state", "pop"])
Out[53]:
 year state pop
0 2000 Ohio 1.5
1 2001 Ohio 1.7
2 2002 Ohio 3.6
3 2001 Nevada 2.4
4 2002 Nevada 2.9
5 2003 Nevada 3.2

130 | Chapter 5: Getting Started with pandas

If you pass a column that isn’t contained in the dictionary, it will appear with missing
values in the result:

In [54]: frame2 = pd.DataFrame(data, columns=["year", "state", "pop", "debt"])

In [55]: frame2
Out[55]:
 year state pop debt
0 2000 Ohio 1.5 NaN
1 2001 Ohio 1.7 NaN
2 2002 Ohio 3.6 NaN
3 2001 Nevada 2.4 NaN
4 2002 Nevada 2.9 NaN
5 2003 Nevada 3.2 NaN

In [56]: frame2.columns
Out[56]: Index(['year', 'state', 'pop', 'debt'], dtype='object')

A column in a DataFrame can be retrieved as a Series either by dictionary-like
notation or by using the dot attribute notation:

In [57]: frame2["state"]
Out[57]:
0 Ohio
1 Ohio
2 Ohio
3 Nevada
4 Nevada
5 Nevada
Name: state, dtype: object

In [58]: frame2.year
Out[58]:
0 2000
1 2001
2 2002
3 2001
4 2002
5 2003
Name: year, dtype: int64

Attribute-like access (e.g., frame2.year) and tab completion of
column names in IPython are provided as a convenience.
frame2[column] works for any column name, but frame2.column
works only when the column name is a valid Python variable name
and does not conflict with any of the method names in DataFrame.
For example, if a column’s name contains whitespace or symbols
other than underscores, it cannot be accessed with the dot attribute
method.

5.1 Introduction to pandas Data Structures | 131

Note that the returned Series have the same index as the DataFrame, and their name
attribute has been appropriately set.

Rows can also be retrieved by position or name with the special iloc and loc
attributes (more on this later in “Selection on DataFrame with loc and iloc” on page
147):

In [59]: frame2.loc[1]
Out[59]:
year 2001
state Ohio
pop 1.7
debt NaN
Name: 1, dtype: object

In [60]: frame2.iloc[2]
Out[60]:
year 2002
state Ohio
pop 3.6
debt NaN
Name: 2, dtype: object

Columns can be modified by assignment. For example, the empty debt column could
be assigned a scalar value or an array of values:

In [61]: frame2["debt"] = 16.5

In [62]: frame2
Out[62]:
 year state pop debt
0 2000 Ohio 1.5 16.5
1 2001 Ohio 1.7 16.5
2 2002 Ohio 3.6 16.5
3 2001 Nevada 2.4 16.5
4 2002 Nevada 2.9 16.5
5 2003 Nevada 3.2 16.5

In [63]: frame2["debt"] = np.arange(6.)

In [64]: frame2
Out[64]:
 year state pop debt
0 2000 Ohio 1.5 0.0
1 2001 Ohio 1.7 1.0
2 2002 Ohio 3.6 2.0
3 2001 Nevada 2.4 3.0
4 2002 Nevada 2.9 4.0
5 2003 Nevada 3.2 5.0

132 | Chapter 5: Getting Started with pandas

When you are assigning lists or arrays to a column, the value’s length must match the
length of the DataFrame. If you assign a Series, its labels will be realigned exactly to
the DataFrame’s index, inserting missing values in any index values not present:

In [65]: val = pd.Series([-1.2, -1.5, -1.7], index=["two", "four", "five"])

In [66]: frame2["debt"] = val

In [67]: frame2
Out[67]:
 year state pop debt
0 2000 Ohio 1.5 NaN
1 2001 Ohio 1.7 NaN
2 2002 Ohio 3.6 NaN
3 2001 Nevada 2.4 NaN
4 2002 Nevada 2.9 NaN
5 2003 Nevada 3.2 NaN

Assigning a column that doesn’t exist will create a new column.

The del keyword will delete columns like with a dictionary. As an example, I first add
a new column of Boolean values where the state column equals "Ohio":

In [68]: frame2["eastern"] = frame2["state"] == "Ohio"

In [69]: frame2
Out[69]:
 year state pop debt eastern
0 2000 Ohio 1.5 NaN True
1 2001 Ohio 1.7 NaN True
2 2002 Ohio 3.6 NaN True
3 2001 Nevada 2.4 NaN False
4 2002 Nevada 2.9 NaN False
5 2003 Nevada 3.2 NaN False

New columns cannot be created with the frame2.eastern dot
attribute notation.

The del method can then be used to remove this column:

In [70]: del frame2["eastern"]

In [71]: frame2.columns
Out[71]: Index(['year', 'state', 'pop', 'debt'], dtype='object')

5.1 Introduction to pandas Data Structures | 133

The column returned from indexing a DataFrame is a view on the
underlying data, not a copy. Thus, any in-place modifications to
the Series will be reflected in the DataFrame. The column can be
explicitly copied with the Series’s copy method.

Another common form of data is a nested dictionary of dictionaries:

In [72]: populations = {"Ohio": {2000: 1.5, 2001: 1.7, 2002: 3.6},
 : "Nevada": {2001: 2.4, 2002: 2.9}}

If the nested dictionary is passed to the DataFrame, pandas will interpret the outer
dictionary keys as the columns, and the inner keys as the row indices:

In [73]: frame3 = pd.DataFrame(populations)

In [74]: frame3
Out[74]:
 Ohio Nevada
2000 1.5 NaN
2001 1.7 2.4
2002 3.6 2.9

You can transpose the DataFrame (swap rows and columns) with similar syntax to a
NumPy array:

In [75]: frame3.T
Out[75]:
 2000 2001 2002
Ohio 1.5 1.7 3.6
Nevada NaN 2.4 2.9

Note that transposing discards the column data types if the col‐
umns do not all have the same data type, so transposing and then
transposing back may lose the previous type information. The col‐
umns become arrays of pure Python objects in this case.

The keys in the inner dictionaries are combined to form the index in the result. This
isn’t true if an explicit index is specified:

In [76]: pd.DataFrame(populations, index=[2001, 2002, 2003])
Out[76]:
 Ohio Nevada
2001 1.7 2.4
2002 3.6 2.9
2003 NaN NaN

Dictionaries of Series are treated in much the same way:

In [77]: pdata = {"Ohio": frame3["Ohio"][:-1],
 : "Nevada": frame3["Nevada"][:2]}

134 | Chapter 5: Getting Started with pandas

In [78]: pd.DataFrame(pdata)
Out[78]:
 Ohio Nevada
2000 1.5 NaN
2001 1.7 2.4

For a list of many of the things you can pass to the DataFrame constructor, see
Table 5-1.

Table 5-1. Possible data inputs to the DataFrame constructor

Type Notes
2D ndarray A matrix of data, passing optional row and column labels

Dictionary of arrays, lists, or
tuples

Each sequence becomes a column in the DataFrame; all sequences must be the same length

NumPy structured/record
array

Treated as the “dictionary of arrays” case

Dictionary of Series Each value becomes a column; indexes from each Series are unioned together to form the
result’s row index if no explicit index is passed

Dictionary of dictionaries Each inner dictionary becomes a column; keys are unioned to form the row index as in the
“dictionary of Series” case

List of dictionaries or Series Each item becomes a row in the DataFrame; unions of dictionary keys or Series indexes
become the DataFrame’s column labels

List of lists or tuples Treated as the “2D ndarray” case

Another DataFrame The DataFrame’s indexes are used unless different ones are passed

NumPy MaskedArray Like the “2D ndarray” case except masked values are missing in the DataFrame result

If a DataFrame’s index and columns have their name attributes set, these will also be
displayed:

In [79]: frame3.index.name = "year"

In [80]: frame3.columns.name = "state"

In [81]: frame3
Out[81]:
state Ohio Nevada
year
2000 1.5 NaN
2001 1.7 2.4
2002 3.6 2.9

Unlike Series, DataFrame does not have a name attribute. DataFrame’s to_numpy
method returns the data contained in the DataFrame as a two-dimensional ndarray:

In [82]: frame3.to_numpy()
Out[82]:
array([[1.5, nan],

5.1 Introduction to pandas Data Structures | 135

 [1.7, 2.4],
 [3.6, 2.9]])

If the DataFrame’s columns are different data types, the data type of the returned
array will be chosen to accommodate all of the columns:

In [83]: frame2.to_numpy()
Out[83]:
array([[2000, 'Ohio', 1.5, nan],
 [2001, 'Ohio', 1.7, nan],
 [2002, 'Ohio', 3.6, nan],
 [2001, 'Nevada', 2.4, nan],
 [2002, 'Nevada', 2.9, nan],
 [2003, 'Nevada', 3.2, nan]], dtype=object)

Index Objects
pandas’s Index objects are responsible for holding the axis labels (including a Data‐
Frame’s column names) and other metadata (like the axis name or names). Any array
or other sequence of labels you use when constructing a Series or DataFrame is
internally converted to an Index:

In [84]: obj = pd.Series(np.arange(3), index=["a", "b", "c"])

In [85]: index = obj.index

In [86]: index
Out[86]: Index(['a', 'b', 'c'], dtype='object')

In [87]: index[1:]
Out[87]: Index(['b', 'c'], dtype='object')

Index objects are immutable and thus can’t be modified by the user:

index[1] = "d" # TypeError

Immutability makes it safer to share Index objects among data structures:

In [88]: labels = pd.Index(np.arange(3))

In [89]: labels
Out[89]: Int64Index([0, 1, 2], dtype='int64')

In [90]: obj2 = pd.Series([1.5, -2.5, 0], index=labels)

In [91]: obj2
Out[91]:
0 1.5
1 -2.5
2 0.0
dtype: float64

136 | Chapter 5: Getting Started with pandas

In [92]: obj2.index is labels
Out[92]: True

Some users will not often take advantage of the capabilities pro‐
vided by an Index, but because some operations will yield results
containing indexed data, it’s important to understand how they
work.

In addition to being array-like, an Index also behaves like a fixed-size set:

In [93]: frame3
Out[93]:
state Ohio Nevada
year
2000 1.5 NaN
2001 1.7 2.4
2002 3.6 2.9

In [94]: frame3.columns
Out[94]: Index(['Ohio', 'Nevada'], dtype='object', name='state')

In [95]: "Ohio" in frame3.columns
Out[95]: True

In [96]: 2003 in frame3.index
Out[96]: False

Unlike Python sets, a pandas Index can contain duplicate labels:

In [97]: pd.Index(["foo", "foo", "bar", "bar"])
Out[97]: Index(['foo', 'foo', 'bar', 'bar'], dtype='object')

Selections with duplicate labels will select all occurrences of that label.

Each Index has a number of methods and properties for set logic, which answer other
common questions about the data it contains. Some useful ones are summarized in
Table 5-2.

Table 5-2. Some Index methods and properties

Method/Property Description
append() Concatenate with additional Index objects, producing a new Index
difference() Compute set difference as an Index
intersection() Compute set intersection
union() Compute set union
isin() Compute Boolean array indicating whether each value is contained in the passed collection
delete() Compute new Index with element at Index i deleted
drop() Compute new Index by deleting passed values
insert() Compute new Index by inserting element at Index i

5.1 Introduction to pandas Data Structures | 137

Method/Property Description
is_monotonic Returns True if each element is greater than or equal to the previous element
is_unique Returns True if the Index has no duplicate values
unique() Compute the array of unique values in the Index

5.2 Essential Functionality
This section will walk you through the fundamental mechanics of interacting with
the data contained in a Series or DataFrame. In the chapters to come, we will delve
more deeply into data analysis and manipulation topics using pandas. This book is
not intended to serve as exhaustive documentation for the pandas library; instead,
we’ll focus on familiarizing you with heavily used features, leaving the less common
(i.e., more esoteric) things for you to learn more about by reading the online pandas
documentation.

Reindexing
An important method on pandas objects is reindex, which means to create a new
object with the values rearranged to align with the new index. Consider an example:

In [98]: obj = pd.Series([4.5, 7.2, -5.3, 3.6], index=["d", "b", "a", "c"])

In [99]: obj
Out[99]:
d 4.5
b 7.2
a -5.3
c 3.6
dtype: float64

Calling reindex on this Series rearranges the data according to the new index,
introducing missing values if any index values were not already present:

In [100]: obj2 = obj.reindex(["a", "b", "c", "d", "e"])

In [101]: obj2
Out[101]:
a -5.3
b 7.2
c 3.6
d 4.5
e NaN
dtype: float64

For ordered data like time series, you may want to do some interpolation or filling of
values when reindexing. The method option allows us to do this, using a method such
as ffill, which forward-fills the values:

138 | Chapter 5: Getting Started with pandas

In [102]: obj3 = pd.Series(["blue", "purple", "yellow"], index=[0, 2, 4])

In [103]: obj3
Out[103]:
0 blue
2 purple
4 yellow
dtype: object

In [104]: obj3.reindex(np.arange(6), method="ffill")
Out[104]:
0 blue
1 blue
2 purple
3 purple
4 yellow
5 yellow
dtype: object

With DataFrame, reindex can alter the (row) index, columns, or both. When passed
only a sequence, it reindexes the rows in the result:

In [105]: frame = pd.DataFrame(np.arange(9).reshape((3, 3)),
 : index=["a", "c", "d"],
 : columns=["Ohio", "Texas", "California"])

In [106]: frame
Out[106]:
 Ohio Texas California
a 0 1 2
c 3 4 5
d 6 7 8

In [107]: frame2 = frame.reindex(index=["a", "b", "c", "d"])

In [108]: frame2
Out[108]:
 Ohio Texas California
a 0.0 1.0 2.0
b NaN NaN NaN
c 3.0 4.0 5.0
d 6.0 7.0 8.0

The columns can be reindexed with the columns keyword:

In [109]: states = ["Texas", "Utah", "California"]

In [110]: frame.reindex(columns=states)
Out[110]:
 Texas Utah California
a 1 NaN 2
c 4 NaN 5
d 7 NaN 8

5.2 Essential Functionality | 139

Because "Ohio" was not in states, the data for that column is dropped from the
result.

Another way to reindex a particular axis is to pass the new axis labels as a positional
argument and then specify the axis to reindex with the axis keyword:

In [111]: frame.reindex(states, axis="columns")
Out[111]:
 Texas Utah California
a 1 NaN 2
c 4 NaN 5
d 7 NaN 8

See Table 5-3 for more about the arguments to reindex.

Table 5-3. reindex function arguments

Argument Description
labels New sequence to use as an index. Can be Index instance or any other sequence-like Python data structure.

An Index will be used exactly as is without any copying.
index Use the passed sequence as the new index labels.
columns Use the passed sequence as the new column labels.
axis The axis to reindex, whether "index" (rows) or "columns". The default is "index". You can

alternately do reindex(index=new_labels) or reindex(columns=new_labels).
method Interpolation (fill) method; "ffill" fills forward, while "bfill" fills backward.
fill_value Substitute value to use when introducing missing data by reindexing. Use fill_value="missing"

(the default behavior) when you want absent labels to have null values in the result.
limit When forward filling or backfilling, the maximum size gap (in number of elements) to fill.
tolerance When forward filling or backfilling, the maximum size gap (in absolute numeric distance) to fill for inexact

matches.
level Match simple Index on level of MultiIndex; otherwise select subset of.
copy If True, always copy underlying data even if the new index is equivalent to the old index; if False, do not

copy the data when the indexes are equivalent.

As we’ll explore later in “Selection on DataFrame with loc and iloc” on page 147, you
can also reindex by using the loc operator, and many users prefer to always do it this
way. This works only if all of the new index labels already exist in the DataFrame
(whereas reindex will insert missing data for new labels):

In [112]: frame.loc[["a", "d", "c"], ["California", "Texas"]]
Out[112]:
 California Texas
a 2 1
d 8 7
c 5 4

140 | Chapter 5: Getting Started with pandas

Dropping Entries from an Axis
Dropping one or more entries from an axis is simple if you already have an index
array or list without those entries, since you can use the reindex method or .loc-
based indexing. As that can require a bit of munging and set logic, the drop method
will return a new object with the indicated value or values deleted from an axis:

In [113]: obj = pd.Series(np.arange(5.), index=["a", "b", "c", "d", "e"])

In [114]: obj
Out[114]:
a 0.0
b 1.0
c 2.0
d 3.0
e 4.0
dtype: float64

In [115]: new_obj = obj.drop("c")

In [116]: new_obj
Out[116]:
a 0.0
b 1.0
d 3.0
e 4.0
dtype: float64

In [117]: obj.drop(["d", "c"])
Out[117]:
a 0.0
b 1.0
e 4.0
dtype: float64

With DataFrame, index values can be deleted from either axis. To illustrate this, we
first create an example DataFrame:

In [118]: data = pd.DataFrame(np.arange(16).reshape((4, 4)),
 : index=["Ohio", "Colorado", "Utah", "New York"],
 : columns=["one", "two", "three", "four"])

In [119]: data
Out[119]:
 one two three four
Ohio 0 1 2 3
Colorado 4 5 6 7
Utah 8 9 10 11
New York 12 13 14 15

5.2 Essential Functionality | 141

Calling drop with a sequence of labels will drop values from the row labels (axis 0):

In [120]: data.drop(index=["Colorado", "Ohio"])
Out[120]:
 one two three four
Utah 8 9 10 11
New York 12 13 14 15

To drop labels from the columns, instead use the columns keyword:

In [121]: data.drop(columns=["two"])
Out[121]:
 one three four
Ohio 0 2 3
Colorado 4 6 7
Utah 8 10 11
New York 12 14 15

You can also drop values from the columns by passing axis=1 (which is like NumPy)
or axis="columns":

In [122]: data.drop("two", axis=1)
Out[122]:
 one three four
Ohio 0 2 3
Colorado 4 6 7
Utah 8 10 11
New York 12 14 15

In [123]: data.drop(["two", "four"], axis="columns")
Out[123]:
 one three
Ohio 0 2
Colorado 4 6
Utah 8 10
New York 12 14

Indexing, Selection, and Filtering
Series indexing (obj[...]) works analogously to NumPy array indexing, except you
can use the Series’s index values instead of only integers. Here are some examples of
this:

In [124]: obj = pd.Series(np.arange(4.), index=["a", "b", "c", "d"])

In [125]: obj
Out[125]:
a 0.0
b 1.0
c 2.0
d 3.0
dtype: float64

142 | Chapter 5: Getting Started with pandas

In [126]: obj["b"]
Out[126]: 1.0

In [127]: obj[1]
Out[127]: 1.0

In [128]: obj[2:4]
Out[128]:
c 2.0
d 3.0
dtype: float64

In [129]: obj[["b", "a", "d"]]
Out[129]:
b 1.0
a 0.0
d 3.0
dtype: float64

In [130]: obj[[1, 3]]
Out[130]:
b 1.0
d 3.0
dtype: float64

In [131]: obj[obj < 2]
Out[131]:
a 0.0
b 1.0
dtype: float64

While you can select data by label this way, the preferred way to select index values is
with the special loc operator:

In [132]: obj.loc[["b", "a", "d"]]
Out[132]:
b 1.0
a 0.0
d 3.0
dtype: float64

The reason to prefer loc is because of the different treatment of integers when
indexing with []. Regular []-based indexing will treat integers as labels if the index
contains integers, so the behavior differs depending on the data type of the index. For
example:

In [133]: obj1 = pd.Series([1, 2, 3], index=[2, 0, 1])

In [134]: obj2 = pd.Series([1, 2, 3], index=["a", "b", "c"])

In [135]: obj1
Out[135]:

5.2 Essential Functionality | 143

2 1
0 2
1 3
dtype: int64

In [136]: obj2
Out[136]:
a 1
b 2
c 3
dtype: int64

In [137]: obj1[[0, 1, 2]]
Out[137]:
0 2
1 3
2 1
dtype: int64

In [138]: obj2[[0, 1, 2]]
Out[138]:
a 1
b 2
c 3
dtype: int64

When using loc, the expression obj.loc[[0, 1, 2]] will fail when the index does
not contain integers:

In [134]: obj2.loc[[0, 1]]

KeyError Traceback (most recent call last)
/tmp/ipykernel_804589/4185657903.py in <module>
----> 1 obj2.loc[[0, 1]]

^ LONG EXCEPTION ABBREVIATED ^

KeyError: "None of [Int64Index([0, 1], dtype="int64")] are in the [index]"

Since loc operator indexes exclusively with labels, there is also an iloc operator
that indexes exclusively with integers to work consistently whether or not the index
contains integers:

In [139]: obj1.iloc[[0, 1, 2]]
Out[139]:
2 1
0 2
1 3
dtype: int64

In [140]: obj2.iloc[[0, 1, 2]]
Out[140]:
a 1

144 | Chapter 5: Getting Started with pandas

b 2
c 3
dtype: int64

You can also slice with labels, but it works differently from normal
Python slicing in that the endpoint is inclusive:

In [141]: obj2.loc["b":"c"]
Out[141]:
b 2
c 3
dtype: int64

Assigning values using these methods modifies the corresponding section of the
Series:

In [142]: obj2.loc["b":"c"] = 5

In [143]: obj2
Out[143]:
a 1
b 5
c 5
dtype: int64

It can be a common newbie error to try to call loc or iloc like
functions rather than “indexing into” them with square brackets.
The square bracket notation is used to enable slice operations and
to allow for indexing on multiple axes with DataFrame objects.

Indexing into a DataFrame retrieves one or more columns either with a single value
or sequence:

In [144]: data = pd.DataFrame(np.arange(16).reshape((4, 4)),
 : index=["Ohio", "Colorado", "Utah", "New York"],
 : columns=["one", "two", "three", "four"])

In [145]: data
Out[145]:
 one two three four
Ohio 0 1 2 3
Colorado 4 5 6 7
Utah 8 9 10 11
New York 12 13 14 15

In [146]: data["two"]
Out[146]:
Ohio 1
Colorado 5
Utah 9

5.2 Essential Functionality | 145

New York 13
Name: two, dtype: int64

In [147]: data[["three", "one"]]
Out[147]:
 three one
Ohio 2 0
Colorado 6 4
Utah 10 8
New York 14 12

Indexing like this has a few special cases. The first is slicing or selecting data with a
Boolean array:

In [148]: data[:2]
Out[148]:
 one two three four
Ohio 0 1 2 3
Colorado 4 5 6 7

In [149]: data[data["three"] > 5]
Out[149]:
 one two three four
Colorado 4 5 6 7
Utah 8 9 10 11
New York 12 13 14 15

The row selection syntax data[:2] is provided as a convenience. Passing a single
element or a list to the [] operator selects columns.

Another use case is indexing with a Boolean DataFrame, such as one produced by
a scalar comparison. Consider a DataFrame with all Boolean values produced by
comparing with a scalar value:

In [150]: data < 5
Out[150]:
 one two three four
Ohio True True True True
Colorado True False False False
Utah False False False False
New York False False False False

We can use this DataFrame to assign the value 0 to each location with the value True,
like so:

In [151]: data[data < 5] = 0

In [152]: data
Out[152]:
 one two three four
Ohio 0 0 0 0
Colorado 0 5 6 7

146 | Chapter 5: Getting Started with pandas

Utah 8 9 10 11
New York 12 13 14 15

Selection on DataFrame with loc and iloc

Like Series, DataFrame has special attributes loc and iloc for label-based and
integer-based indexing, respectively. Since DataFrame is two-dimensional, you can
select a subset of the rows and columns with NumPy-like notation using either axis
labels (loc) or integers (iloc).

As a first example, let’s select a single row by label:

In [153]: data
Out[153]:
 one two three four
Ohio 0 0 0 0
Colorado 0 5 6 7
Utah 8 9 10 11
New York 12 13 14 15

In [154]: data.loc["Colorado"]
Out[154]:
one 0
two 5
three 6
four 7
Name: Colorado, dtype: int64

The result of selecting a single row is a Series with an index that contains the
DataFrame’s column labels. To select multiple roles, creating a new DataFrame, pass a
sequence of labels:

In [155]: data.loc[["Colorado", "New York"]]
Out[155]:
 one two three four
Colorado 0 5 6 7
New York 12 13 14 15

You can combine both row and column selection in loc by separating the selections
with a comma:

In [156]: data.loc["Colorado", ["two", "three"]]
Out[156]:
two 5
three 6
Name: Colorado, dtype: int64

We’ll then perform some similar selections with integers using iloc:

In [157]: data.iloc[2]
Out[157]:
one 8
two 9

5.2 Essential Functionality | 147

three 10
four 11
Name: Utah, dtype: int64

In [158]: data.iloc[[2, 1]]
Out[158]:
 one two three four
Utah 8 9 10 11
Colorado 0 5 6 7

In [159]: data.iloc[2, [3, 0, 1]]
Out[159]:
four 11
one 8
two 9
Name: Utah, dtype: int64

In [160]: data.iloc[[1, 2], [3, 0, 1]]
Out[160]:
 four one two
Colorado 7 0 5
Utah 11 8 9

Both indexing functions work with slices in addition to single labels or lists of labels:

In [161]: data.loc[:"Utah", "two"]
Out[161]:
Ohio 0
Colorado 5
Utah 9
Name: two, dtype: int64

In [162]: data.iloc[:, :3][data.three > 5]
Out[162]:
 one two three
Colorado 0 5 6
Utah 8 9 10
New York 12 13 14

Boolean arrays can be used with loc but not iloc:

In [163]: data.loc[data.three >= 2]
Out[163]:
 one two three four
Colorado 0 5 6 7
Utah 8 9 10 11
New York 12 13 14 15

There are many ways to select and rearrange the data contained in a pandas object.
For DataFrame, Table 5-4 provides a short summary of many of them. As you will see
later, there are a number of additional options for working with hierarchical indexes.

148 | Chapter 5: Getting Started with pandas

Table 5-4. Indexing options with DataFrame

Type Notes
df[column] Select single column or sequence of columns from the DataFrame; special case conveniences:

Boolean array (filter rows), slice (slice rows), or Boolean DataFrame (set values based on some
criterion)

df.loc[rows] Select single row or subset of rows from the DataFrame by label
df.loc[:, cols] Select single column or subset of columns by label
df.loc[rows, cols] Select both row(s) and column(s) by label
df.iloc[rows] Select single row or subset of rows from the DataFrame by integer position
df.iloc[:, cols] Select single column or subset of columns by integer position
df.iloc[rows, cols] Select both row(s) and column(s) by integer position
df.at[row, col] Select a single scalar value by row and column label
df.iat[row, col] Select a single scalar value by row and column position (integers)
reindex method Select either rows or columns by labels

Integer indexing pitfalls
Working with pandas objects indexed by integers can be a stumbling block for new
users since they work differently from built-in Python data structures like lists and
tuples. For example, you might not expect the following code to generate an error:

In [164]: ser = pd.Series(np.arange(3.))

In [165]: ser
Out[165]:
0 0.0
1 1.0
2 2.0
dtype: float64

In [166]: ser[-1]

ValueError Traceback (most recent call last)
/miniconda/envs/book-env/lib/python3.10/site-packages/pandas/core/indexes/range.p
y in get_loc(self, key, method, tolerance)
 384 try:
--> 385 return self._range.index(new_key)
 386 except ValueError as err:
ValueError: -1 is not in range
The above exception was the direct cause of the following exception:
KeyError Traceback (most recent call last)
<ipython-input-166-44969a759c20> in <module>
----> 1 ser[-1]
/miniconda/envs/book-env/lib/python3.10/site-packages/pandas/core/series.py in __
getitem__(self, key)
 956
 957 elif key_is_scalar:
--> 958 return self._get_value(key)

5.2 Essential Functionality | 149

 959
 960 if is_hashable(key):
/miniconda/envs/book-env/lib/python3.10/site-packages/pandas/core/series.py in _g
et_value(self, label, takeable)
 1067
 1068 # Similar to Index.get_value, but we do not fall back to position
al
-> 1069 loc = self.index.get_loc(label)
 1070 return self.index._get_values_for_loc(self, loc, label)
 1071
/miniconda/envs/book-env/lib/python3.10/site-packages/pandas/core/indexes/range.p
y in get_loc(self, key, method, tolerance)
 385 return self._range.index(new_key)
 386 except ValueError as err:
--> 387 raise KeyError(key) from err
 388 self._check_indexing_error(key)
 389 raise KeyError(key)
KeyError: -1

In this case, pandas could “fall back” on integer indexing, but it is difficult to do
this in general without introducing subtle bugs into the user code. Here we have an
index containing 0, 1, and 2, but pandas does not want to guess what the user wants
(label-based indexing or position-based):

In [167]: ser
Out[167]:
0 0.0
1 1.0
2 2.0
dtype: float64

On the other hand, with a noninteger index, there is no such ambiguity:

In [168]: ser2 = pd.Series(np.arange(3.), index=["a", "b", "c"])

In [169]: ser2[-1]
Out[169]: 2.0

If you have an axis index containing integers, data selection will always be label
oriented. As I said above, if you use loc (for labels) or iloc (for integers) you will get
exactly what you want:

In [170]: ser.iloc[-1]
Out[170]: 2.0

On the other hand, slicing with integers is always integer oriented:

In [171]: ser[:2]
Out[171]:
0 0.0
1 1.0
dtype: float64

150 | Chapter 5: Getting Started with pandas

As a result of these pitfalls, it is best to always prefer indexing with loc and iloc to
avoid ambiguity.

Pitfalls with chained indexing
In the previous section we looked at how you can do flexible selections on a Data‐
Frame using loc and iloc. These indexing attributes can also be used to modify
DataFrame objects in place, but doing so requires some care.

For example, in the example DataFrame above, we can assign to a column or row by
label or integer position:

In [172]: data.loc[:, "one"] = 1

In [173]: data
Out[173]:
 one two three four
Ohio 1 0 0 0
Colorado 1 5 6 7
Utah 1 9 10 11
New York 1 13 14 15

In [174]: data.iloc[2] = 5

In [175]: data
Out[175]:
 one two three four
Ohio 1 0 0 0
Colorado 1 5 6 7
Utah 5 5 5 5
New York 1 13 14 15

In [176]: data.loc[data["four"] > 5] = 3

In [177]: data
Out[177]:
 one two three four
Ohio 1 0 0 0
Colorado 3 3 3 3
Utah 5 5 5 5
New York 3 3 3 3

A common gotcha for new pandas users is to chain selections when assigning, like
this:

In [177]: data.loc[data.three == 5]["three"] = 6
<ipython-input-11-0ed1cf2155d5>:1: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead

Depending on the data contents, this may print a special SettingWithCopyWarning,
which warns you that you are trying to modify a temporary value (the nonempty

5.2 Essential Functionality | 151

result of data.loc[data.three == 5]) instead of the original DataFrame data,
which might be what you were intending. Here, data was unmodified:

In [179]: data
Out[179]:
 one two three four
Ohio 1 0 0 0
Colorado 3 3 3 3
Utah 5 5 5 5
New York 3 3 3 3

In these scenarios, the fix is to rewrite the chained assignment to use a single loc
operation:

In [180]: data.loc[data.three == 5, "three"] = 6

In [181]: data
Out[181]:
 one two three four
Ohio 1 0 0 0
Colorado 3 3 3 3
Utah 5 5 6 5
New York 3 3 3 3

A good rule of thumb is to avoid chained indexing when doing assignments. There
are other cases where pandas will generate SettingWithCopyWarning that have to do
with chained indexing. I refer you to this topic in the online pandas documentation.

Arithmetic and Data Alignment
pandas can make it much simpler to work with objects that have different indexes.
For example, when you add objects, if any index pairs are not the same, the respective
index in the result will be the union of the index pairs. Let’s look at an example:

In [182]: s1 = pd.Series([7.3, -2.5, 3.4, 1.5], index=["a", "c", "d", "e"])

In [183]: s2 = pd.Series([-2.1, 3.6, -1.5, 4, 3.1],
 : index=["a", "c", "e", "f", "g"])

In [184]: s1
Out[184]:
a 7.3
c -2.5
d 3.4
e 1.5
dtype: float64

In [185]: s2
Out[185]:
a -2.1
c 3.6
e -1.5

152 | Chapter 5: Getting Started with pandas

f 4.0
g 3.1
dtype: float64

Adding these yields:

In [186]: s1 + s2
Out[186]:
a 5.2
c 1.1
d NaN
e 0.0
f NaN
g NaN
dtype: float64

The internal data alignment introduces missing values in the label locations that don’t
overlap. Missing values will then propagate in further arithmetic computations.

In the case of DataFrame, alignment is performed on both rows and columns:

In [187]: df1 = pd.DataFrame(np.arange(9.).reshape((3, 3)), columns=list("bcd"),
 : index=["Ohio", "Texas", "Colorado"])

In [188]: df2 = pd.DataFrame(np.arange(12.).reshape((4, 3)), columns=list("bde"),
 : index=["Utah", "Ohio", "Texas", "Oregon"])

In [189]: df1
Out[189]:
 b c d
Ohio 0.0 1.0 2.0
Texas 3.0 4.0 5.0
Colorado 6.0 7.0 8.0

In [190]: df2
Out[190]:
 b d e
Utah 0.0 1.0 2.0
Ohio 3.0 4.0 5.0
Texas 6.0 7.0 8.0
Oregon 9.0 10.0 11.0

Adding these returns a DataFrame with index and columns that are the unions of the
ones in each DataFrame:

In [191]: df1 + df2
Out[191]:
 b c d e
Colorado NaN NaN NaN NaN
Ohio 3.0 NaN 6.0 NaN
Oregon NaN NaN NaN NaN
Texas 9.0 NaN 12.0 NaN
Utah NaN NaN NaN NaN

5.2 Essential Functionality | 153

Since the "c" and "e" columns are not found in both DataFrame objects, they appear
as missing in the result. The same holds for the rows with labels that are not common
to both objects.

If you add DataFrame objects with no column or row labels in common, the result
will contain all nulls:

In [192]: df1 = pd.DataFrame({"A": [1, 2]})

In [193]: df2 = pd.DataFrame({"B": [3, 4]})

In [194]: df1
Out[194]:
 A
0 1
1 2

In [195]: df2
Out[195]:
 B
0 3
1 4

In [196]: df1 + df2
Out[196]:
 A B
0 NaN NaN
1 NaN NaN

Arithmetic methods with fill values
In arithmetic operations between differently indexed objects, you might want to fill
with a special value, like 0, when an axis label is found in one object but not the other.
Here is an example where we set a particular value to NA (null) by assigning np.nan
to it:

In [197]: df1 = pd.DataFrame(np.arange(12.).reshape((3, 4)),
 : columns=list("abcd"))

In [198]: df2 = pd.DataFrame(np.arange(20.).reshape((4, 5)),
 : columns=list("abcde"))

In [199]: df2.loc[1, "b"] = np.nan

In [200]: df1
Out[200]:
 a b c d
0 0.0 1.0 2.0 3.0
1 4.0 5.0 6.0 7.0
2 8.0 9.0 10.0 11.0

154 | Chapter 5: Getting Started with pandas

In [201]: df2
Out[201]:
 a b c d e
0 0.0 1.0 2.0 3.0 4.0
1 5.0 NaN 7.0 8.0 9.0
2 10.0 11.0 12.0 13.0 14.0
3 15.0 16.0 17.0 18.0 19.0

Adding these results in missing values in the locations that don’t overlap:

In [202]: df1 + df2
Out[202]:
 a b c d e
0 0.0 2.0 4.0 6.0 NaN
1 9.0 NaN 13.0 15.0 NaN
2 18.0 20.0 22.0 24.0 NaN
3 NaN NaN NaN NaN NaN

Using the add method on df1, I pass df2 and an argument to fill_value, which
substitutes the passed value for any missing values in the operation:

In [203]: df1.add(df2, fill_value=0)
Out[203]:
 a b c d e
0 0.0 2.0 4.0 6.0 4.0
1 9.0 5.0 13.0 15.0 9.0
2 18.0 20.0 22.0 24.0 14.0
3 15.0 16.0 17.0 18.0 19.0

See Table 5-5 for a listing of Series and DataFrame methods for arithmetic. Each has
a counterpart, starting with the letter r, that has arguments reversed. So these two
statements are equivalent:

In [204]: 1 / df1
Out[204]:
 a b c d
0 inf 1.000000 0.500000 0.333333
1 0.250 0.200000 0.166667 0.142857
2 0.125 0.111111 0.100000 0.090909

In [205]: df1.rdiv(1)
Out[205]:
 a b c d
0 inf 1.000000 0.500000 0.333333
1 0.250 0.200000 0.166667 0.142857
2 0.125 0.111111 0.100000 0.090909

Relatedly, when reindexing a Series or DataFrame, you can also specify a different fill
value:

In [206]: df1.reindex(columns=df2.columns, fill_value=0)
Out[206]:
 a b c d e
0 0.0 1.0 2.0 3.0 0

5.2 Essential Functionality | 155

1 4.0 5.0 6.0 7.0 0
2 8.0 9.0 10.0 11.0 0

Table 5-5. Flexible arithmetic methods

Method Description
add, radd Methods for addition (+)
sub, rsub Methods for subtraction (-)
div, rdiv Methods for division (/)
floordiv, rfloordiv Methods for floor division (//)
mul, rmul Methods for multiplication (*)
pow, rpow Methods for exponentiation (**)

Operations between DataFrame and Series
As with NumPy arrays of different dimensions, arithmetic between DataFrame and
Series is also defined. First, as a motivating example, consider the difference between
a two-dimensional array and one of its rows:

In [207]: arr = np.arange(12.).reshape((3, 4))

In [208]: arr
Out[208]:
array([[0., 1., 2., 3.],
 [4., 5., 6., 7.],
 [8., 9., 10., 11.]])

In [209]: arr[0]
Out[209]: array([0., 1., 2., 3.])

In [210]: arr - arr[0]
Out[210]:
array([[0., 0., 0., 0.],
 [4., 4., 4., 4.],
 [8., 8., 8., 8.]])

When we subtract arr[0] from arr, the subtraction is performed once for each row.
This is referred to as broadcasting and is explained in more detail as it relates to
general NumPy arrays in Appendix A. Operations between a DataFrame and a Series
are similar:

In [211]: frame = pd.DataFrame(np.arange(12.).reshape((4, 3)),
 : columns=list("bde"),
 : index=["Utah", "Ohio", "Texas", "Oregon"])

In [212]: series = frame.iloc[0]

In [213]: frame
Out[213]:
 b d e

156 | Chapter 5: Getting Started with pandas

Utah 0.0 1.0 2.0
Ohio 3.0 4.0 5.0
Texas 6.0 7.0 8.0
Oregon 9.0 10.0 11.0

In [214]: series
Out[214]:
b 0.0
d 1.0
e 2.0
Name: Utah, dtype: float64

By default, arithmetic between DataFrame and Series matches the index of the Series
on the columns of the DataFrame, broadcasting down the rows:

In [215]: frame - series
Out[215]:
 b d e
Utah 0.0 0.0 0.0
Ohio 3.0 3.0 3.0
Texas 6.0 6.0 6.0
Oregon 9.0 9.0 9.0

If an index value is not found in either the DataFrame’s columns or the Series’s index,
the objects will be reindexed to form the union:

In [216]: series2 = pd.Series(np.arange(3), index=["b", "e", "f"])

In [217]: series2
Out[217]:
b 0
e 1
f 2
dtype: int64

In [218]: frame + series2
Out[218]:
 b d e f
Utah 0.0 NaN 3.0 NaN
Ohio 3.0 NaN 6.0 NaN
Texas 6.0 NaN 9.0 NaN
Oregon 9.0 NaN 12.0 NaN

If you want to instead broadcast over the columns, matching on the rows, you have to
use one of the arithmetic methods and specify to match over the index. For example:

In [219]: series3 = frame["d"]

In [220]: frame
Out[220]:
 b d e
Utah 0.0 1.0 2.0
Ohio 3.0 4.0 5.0

5.2 Essential Functionality | 157

Texas 6.0 7.0 8.0
Oregon 9.0 10.0 11.0

In [221]: series3
Out[221]:
Utah 1.0
Ohio 4.0
Texas 7.0
Oregon 10.0
Name: d, dtype: float64

In [222]: frame.sub(series3, axis="index")
Out[222]:
 b d e
Utah -1.0 0.0 1.0
Ohio -1.0 0.0 1.0
Texas -1.0 0.0 1.0
Oregon -1.0 0.0 1.0

The axis that you pass is the axis to match on. In this case we mean to match on the
DataFrame’s row index (axis="index") and broadcast across the columns.

Function Application and Mapping
NumPy ufuncs (element-wise array methods) also work with pandas objects:

In [223]: frame = pd.DataFrame(np.random.standard_normal((4, 3)),
 : columns=list("bde"),
 : index=["Utah", "Ohio", "Texas", "Oregon"])

In [224]: frame
Out[224]:
 b d e
Utah -0.204708 0.478943 -0.519439
Ohio -0.555730 1.965781 1.393406
Texas 0.092908 0.281746 0.769023
Oregon 1.246435 1.007189 -1.296221

In [225]: np.abs(frame)
Out[225]:
 b d e
Utah 0.204708 0.478943 0.519439
Ohio 0.555730 1.965781 1.393406
Texas 0.092908 0.281746 0.769023
Oregon 1.246435 1.007189 1.296221

Another frequent operation is applying a function on one-dimensional arrays to each
column or row. DataFrame’s apply method does exactly this:

In [226]: def f1(x):
 : return x.max() - x.min()

158 | Chapter 5: Getting Started with pandas

In [227]: frame.apply(f1)
Out[227]:
b 1.802165
d 1.684034
e 2.689627
dtype: float64

Here the function f, which computes the difference between the maximum and
minimum of a Series, is invoked once on each column in frame. The result is a Series
having the columns of frame as its index.

If you pass axis="columns" to apply, the function will be invoked once per row
instead. A helpful way to think about this is as “apply across the columns”:

In [228]: frame.apply(f1, axis="columns")
Out[228]:
Utah 0.998382
Ohio 2.521511
Texas 0.676115
Oregon 2.542656
dtype: float64

Many of the most common array statistics (like sum and mean) are DataFrame meth‐
ods, so using apply is not necessary.

The function passed to apply need not return a scalar value; it can also return a Series
with multiple values:

In [229]: def f2(x):
 : return pd.Series([x.min(), x.max()], index=["min", "max"])

In [230]: frame.apply(f2)
Out[230]:
 b d e
min -0.555730 0.281746 -1.296221
max 1.246435 1.965781 1.393406

Element-wise Python functions can be used, too. Suppose you wanted to compute
a formatted string from each floating-point value in frame. You can do this with
applymap:

In [231]: def my_format(x):
 : return f"{x:.2f}"

In [232]: frame.applymap(my_format)
Out[232]:
 b d e
Utah -0.20 0.48 -0.52
Ohio -0.56 1.97 1.39
Texas 0.09 0.28 0.77
Oregon 1.25 1.01 -1.30

5.2 Essential Functionality | 159

The reason for the name applymap is that Series has a map method for applying an
element-wise function:

In [233]: frame["e"].map(my_format)
Out[233]:
Utah -0.52
Ohio 1.39
Texas 0.77
Oregon -1.30
Name: e, dtype: object

Sorting and Ranking
Sorting a dataset by some criterion is another important built-in operation. To sort
lexicographically by row or column label, use the sort_index method, which returns
a new, sorted object:

In [234]: obj = pd.Series(np.arange(4), index=["d", "a", "b", "c"])

In [235]: obj
Out[235]:
d 0
a 1
b 2
c 3
dtype: int64

In [236]: obj.sort_index()
Out[236]:
a 1
b 2
c 3
d 0
dtype: int64

With a DataFrame, you can sort by index on either axis:

In [237]: frame = pd.DataFrame(np.arange(8).reshape((2, 4)),
 : index=["three", "one"],
 : columns=["d", "a", "b", "c"])

In [238]: frame
Out[238]:
 d a b c
three 0 1 2 3
one 4 5 6 7

In [239]: frame.sort_index()
Out[239]:
 d a b c
one 4 5 6 7
three 0 1 2 3

160 | Chapter 5: Getting Started with pandas

In [240]: frame.sort_index(axis="columns")
Out[240]:
 a b c d
three 1 2 3 0
one 5 6 7 4

The data is sorted in ascending order by default but can be sorted in descending
order, too:

In [241]: frame.sort_index(axis="columns", ascending=False)
Out[241]:
 d c b a
three 0 3 2 1
one 4 7 6 5

To sort a Series by its values, use its sort_values method:

In [242]: obj = pd.Series([4, 7, -3, 2])

In [243]: obj.sort_values()
Out[243]:
2 -3
3 2
0 4
1 7
dtype: int64

Any missing values are sorted to the end of the Series by default:

In [244]: obj = pd.Series([4, np.nan, 7, np.nan, -3, 2])

In [245]: obj.sort_values()
Out[245]:
4 -3.0
5 2.0
0 4.0
2 7.0
1 NaN
3 NaN
dtype: float64

Missing values can be sorted to the start instead by using the na_position option:

In [246]: obj.sort_values(na_position="first")
Out[246]:
1 NaN
3 NaN
4 -3.0
5 2.0
0 4.0
2 7.0
dtype: float64

5.2 Essential Functionality | 161

When sorting a DataFrame, you can use the data in one or more columns as the sort
keys. To do so, pass one or more column names to sort_values:

In [247]: frame = pd.DataFrame({"b": [4, 7, -3, 2], "a": [0, 1, 0, 1]})

In [248]: frame
Out[248]:
 b a
0 4 0
1 7 1
2 -3 0
3 2 1

In [249]: frame.sort_values("b")
Out[249]:
 b a
2 -3 0
3 2 1
0 4 0
1 7 1

To sort by multiple columns, pass a list of names:

In [250]: frame.sort_values(["a", "b"])
Out[250]:
 b a
2 -3 0
0 4 0
3 2 1
1 7 1

Ranking assigns ranks from one through the number of valid data points in an array,
starting from the lowest value. The rank methods for Series and DataFrame are the
place to look; by default, rank breaks ties by assigning each group the mean rank:

In [251]: obj = pd.Series([7, -5, 7, 4, 2, 0, 4])

In [252]: obj.rank()
Out[252]:
0 6.5
1 1.0
2 6.5
3 4.5
4 3.0
5 2.0
6 4.5
dtype: float64

162 | Chapter 5: Getting Started with pandas

Ranks can also be assigned according to the order in which they’re observed in the
data:

In [253]: obj.rank(method="first")
Out[253]:
0 6.0
1 1.0
2 7.0
3 4.0
4 3.0
5 2.0
6 5.0
dtype: float64

Here, instead of using the average rank 6.5 for the entries 0 and 2, they instead have
been set to 6 and 7 because label 0 precedes label 2 in the data.

You can rank in descending order, too:

In [254]: obj.rank(ascending=False)
Out[254]:
0 1.5
1 7.0
2 1.5
3 3.5
4 5.0
5 6.0
6 3.5
dtype: float64

See Table 5-6 for a list of tie-breaking methods available.

DataFrame can compute ranks over the rows or the columns:

In [255]: frame = pd.DataFrame({"b": [4.3, 7, -3, 2], "a": [0, 1, 0, 1],
 : "c": [-2, 5, 8, -2.5]})

In [256]: frame
Out[256]:
 b a c
0 4.3 0 -2.0
1 7.0 1 5.0
2 -3.0 0 8.0
3 2.0 1 -2.5

In [257]: frame.rank(axis="columns")
Out[257]:
 b a c
0 3.0 2.0 1.0
1 3.0 1.0 2.0
2 1.0 2.0 3.0
3 3.0 2.0 1.0

5.2 Essential Functionality | 163

Table 5-6. Tie-breaking methods with rank

Method Description
"average" Default: assign the average rank to each entry in the equal group
"min" Use the minimum rank for the whole group
"max" Use the maximum rank for the whole group
"first" Assign ranks in the order the values appear in the data
"dense" Like method="min", but ranks always increase by 1 between groups rather than the number of equal

elements in a group

Axis Indexes with Duplicate Labels
Up until now almost all of the examples we have looked at have unique axis labels
(index values). While many pandas functions (like reindex) require that the labels be
unique, it’s not mandatory. Let’s consider a small Series with duplicate indices:

In [258]: obj = pd.Series(np.arange(5), index=["a", "a", "b", "b", "c"])

In [259]: obj
Out[259]:
a 0
a 1
b 2
b 3
c 4
dtype: int64

The is_unique property of the index can tell you whether or not its labels are unique:

In [260]: obj.index.is_unique
Out[260]: False

Data selection is one of the main things that behaves differently with duplicates.
Indexing a label with multiple entries returns a Series, while single entries return a
scalar value:

In [261]: obj["a"]
Out[261]:
a 0
a 1
dtype: int64

In [262]: obj["c"]
Out[262]: 4

This can make your code more complicated, as the output type from indexing can
vary based on whether or not a label is repeated.

The same logic extends to indexing rows (or columns) in a DataFrame:

164 | Chapter 5: Getting Started with pandas

In [263]: df = pd.DataFrame(np.random.standard_normal((5, 3)),
 : index=["a", "a", "b", "b", "c"])

In [264]: df
Out[264]:
 0 1 2
a 0.274992 0.228913 1.352917
a 0.886429 -2.001637 -0.371843
b 1.669025 -0.438570 -0.539741
b 0.476985 3.248944 -1.021228
c -0.577087 0.124121 0.302614

In [265]: df.loc["b"]
Out[265]:
 0 1 2
b 1.669025 -0.438570 -0.539741
b 0.476985 3.248944 -1.021228

In [266]: df.loc["c"]
Out[266]:
0 -0.577087
1 0.124121
2 0.302614
Name: c, dtype: float64

5.3 Summarizing and Computing Descriptive Statistics
pandas objects are equipped with a set of common mathematical and statistical meth‐
ods. Most of these fall into the category of reductions or summary statistics, methods
that extract a single value (like the sum or mean) from a Series, or a Series of values
from the rows or columns of a DataFrame. Compared with the similar methods
found on NumPy arrays, they have built-in handling for missing data. Consider a
small DataFrame:

In [267]: df = pd.DataFrame([[1.4, np.nan], [7.1, -4.5],
 : [np.nan, np.nan], [0.75, -1.3]],
 : index=["a", "b", "c", "d"],
 : columns=["one", "two"])

In [268]: df
Out[268]:
 one two
a 1.40 NaN
b 7.10 -4.5
c NaN NaN
d 0.75 -1.3

5.3 Summarizing and Computing Descriptive Statistics | 165

Calling DataFrame’s sum method returns a Series containing column sums:

In [269]: df.sum()
Out[269]:
one 9.25
two -5.80
dtype: float64

Passing axis="columns" or axis=1 sums across the columns instead:

In [270]: df.sum(axis="columns")
Out[270]:
a 1.40
b 2.60
c 0.00
d -0.55
dtype: float64

When an entire row or column contains all NA values, the sum is 0, whereas if any
value is not NA, then the result is NA. This can be disabled with the skipna option, in
which case any NA value in a row or column names the corresponding result NA:

In [271]: df.sum(axis="index", skipna=False)
Out[271]:
one NaN
two NaN
dtype: float64

In [272]: df.sum(axis="columns", skipna=False)
Out[272]:
a NaN
b 2.60
c NaN
d -0.55
dtype: float64

Some aggregations, like mean, require at least one non-NA value to yield a value
result, so here we have:

In [273]: df.mean(axis="columns")
Out[273]:
a 1.400
b 1.300
c NaN
d -0.275
dtype: float64

See Table 5-7 for a list of common options for each reduction method.

166 | Chapter 5: Getting Started with pandas

Table 5-7. Options for reduction methods

Method Description
axis Axis to reduce over; “index” for DataFrame’s rows and “columns” for columns
skipna Exclude missing values; True by default
level Reduce grouped by level if the axis is hierarchically indexed (MultiIndex)

Some methods, like idxmin and idxmax, return indirect statistics, like the index value
where the minimum or maximum values are attained:

In [274]: df.idxmax()
Out[274]:
one b
two d
dtype: object

Other methods are accumulations:
In [275]: df.cumsum()
Out[275]:
 one two
a 1.40 NaN
b 8.50 -4.5
c NaN NaN
d 9.25 -5.8

Some methods are neither reductions nor accumulations. describe is one such
example, producing multiple summary statistics in one shot:

In [276]: df.describe()
Out[276]:
 one two
count 3.000000 2.000000
mean 3.083333 -2.900000
std 3.493685 2.262742
min 0.750000 -4.500000
25% 1.075000 -3.700000
50% 1.400000 -2.900000
75% 4.250000 -2.100000
max 7.100000 -1.300000

On nonnumeric data, describe produces alternative summary statistics:

In [277]: obj = pd.Series(["a", "a", "b", "c"] * 4)

In [278]: obj.describe()
Out[278]:
count 16
unique 3
top a
freq 8
dtype: object

5.3 Summarizing and Computing Descriptive Statistics | 167

See Table 5-8 for a full list of summary statistics and related methods.

Table 5-8. Descriptive and summary statistics

Method Description
count Number of non-NA values
describe Compute set of summary statistics
min, max Compute minimum and maximum values
argmin, argmax Compute index locations (integers) at which minimum or maximum value is obtained, respectively;

not available on DataFrame objects
idxmin, idxmax Compute index labels at which minimum or maximum value is obtained, respectively
quantile Compute sample quantile ranging from 0 to 1 (default: 0.5)
sum Sum of values
mean Mean of values
median Arithmetic median (50% quantile) of values
mad Mean absolute deviation from mean value
prod Product of all values
var Sample variance of values
std Sample standard deviation of values
skew Sample skewness (third moment) of values
kurt Sample kurtosis (fourth moment) of values
cumsum Cumulative sum of values
cummin, cummax Cumulative minimum or maximum of values, respectively
cumprod Cumulative product of values
diff Compute first arithmetic difference (useful for time series)
pct_change Compute percent changes

Correlation and Covariance
Some summary statistics, like correlation and covariance, are computed from pairs
of arguments. Let’s consider some DataFrames of stock prices and volumes originally
obtained from Yahoo! Finance and available in binary Python pickle files you can
find in the accompanying datasets for the book:

In [279]: price = pd.read_pickle("examples/yahoo_price.pkl")

In [280]: volume = pd.read_pickle("examples/yahoo_volume.pkl")

I now compute percent changes of the prices, a time series operation that will be
explored further in Chapter 11:

In [281]: returns = price.pct_change()

In [282]: returns.tail()
Out[282]:
 AAPL GOOG IBM MSFT

168 | Chapter 5: Getting Started with pandas

Date
2016-10-17 -0.000680 0.001837 0.002072 -0.003483
2016-10-18 -0.000681 0.019616 -0.026168 0.007690
2016-10-19 -0.002979 0.007846 0.003583 -0.002255
2016-10-20 -0.000512 -0.005652 0.001719 -0.004867
2016-10-21 -0.003930 0.003011 -0.012474 0.042096

The corr method of Series computes the correlation of the overlapping, non-NA,
aligned-by-index values in two Series. Relatedly, cov computes the covariance:

In [283]: returns["MSFT"].corr(returns["IBM"])
Out[283]: 0.49976361144151144

In [284]: returns["MSFT"].cov(returns["IBM"])
Out[284]: 8.870655479703546e-05

Since MSFT is a valid Python variable name, we can also select these columns using
more concise syntax:

In [285]: returns["MSFT"].corr(returns["IBM"])
Out[285]: 0.49976361144151144

DataFrame’s corr and cov methods, on the other hand, return a full correlation or
covariance matrix as a DataFrame, respectively:

In [286]: returns.corr()
Out[286]:
 AAPL GOOG IBM MSFT
AAPL 1.000000 0.407919 0.386817 0.389695
GOOG 0.407919 1.000000 0.405099 0.465919
IBM 0.386817 0.405099 1.000000 0.499764
MSFT 0.389695 0.465919 0.499764 1.000000

In [287]: returns.cov()
Out[287]:
 AAPL GOOG IBM MSFT
AAPL 0.000277 0.000107 0.000078 0.000095
GOOG 0.000107 0.000251 0.000078 0.000108
IBM 0.000078 0.000078 0.000146 0.000089
MSFT 0.000095 0.000108 0.000089 0.000215

Using DataFrame’s corrwith method, you can compute pair-wise correlations
between a DataFrame’s columns or rows with another Series or DataFrame. Passing a
Series returns a Series with the correlation value computed for each column:

In [288]: returns.corrwith(returns["IBM"])
Out[288]:
AAPL 0.386817
GOOG 0.405099
IBM 1.000000
MSFT 0.499764
dtype: float64

5.3 Summarizing and Computing Descriptive Statistics | 169

Passing a DataFrame computes the correlations of matching column names. Here, I
compute correlations of percent changes with volume:

In [289]: returns.corrwith(volume)
Out[289]:
AAPL -0.075565
GOOG -0.007067
IBM -0.204849
MSFT -0.092950
dtype: float64

Passing axis="columns" does things row-by-row instead. In all cases, the data points
are aligned by label before the correlation is computed.

Unique Values, Value Counts, and Membership
Another class of related methods extracts information about the values contained in a
one-dimensional Series. To illustrate these, consider this example:

In [290]: obj = pd.Series(["c", "a", "d", "a", "a", "b", "b", "c", "c"])

The first function is unique, which gives you an array of the unique values in a Series:

In [291]: uniques = obj.unique()

In [292]: uniques
Out[292]: array(['c', 'a', 'd', 'b'], dtype=object)

The unique values are not necessarily returned in the order in which they first
appear, and not in sorted order, but they could be sorted after the fact if needed
(uniques.sort()). Relatedly, value_counts computes a Series containing value fre‐
quencies:

In [293]: obj.value_counts()
Out[293]:
c 3
a 3
b 2
d 1
dtype: int64

The Series is sorted by value in descending order as a convenience. value_counts is
also available as a top-level pandas method that can be used with NumPy arrays or
other Python sequences:

In [294]: pd.value_counts(obj.to_numpy(), sort=False)
Out[294]:
c 3
a 3
d 1
b 2
dtype: int64

170 | Chapter 5: Getting Started with pandas

isin performs a vectorized set membership check and can be useful in filtering a
dataset down to a subset of values in a Series or column in a DataFrame:

In [295]: obj
Out[295]:
0 c
1 a
2 d
3 a
4 a
5 b
6 b
7 c
8 c
dtype: object

In [296]: mask = obj.isin(["b", "c"])

In [297]: mask
Out[297]:
0 True
1 False
2 False
3 False
4 False
5 True
6 True
7 True
8 True
dtype: bool

In [298]: obj[mask]
Out[298]:
0 c
5 b
6 b
7 c
8 c
dtype: object

Related to isin is the Index.get_indexer method, which gives you an index array
from an array of possibly nondistinct values into another array of distinct values:

In [299]: to_match = pd.Series(["c", "a", "b", "b", "c", "a"])

In [300]: unique_vals = pd.Series(["c", "b", "a"])

In [301]: indices = pd.Index(unique_vals).get_indexer(to_match)

In [302]: indices
Out[302]: array([0, 2, 1, 1, 0, 2])

See Table 5-9 for a reference on these methods.

5.3 Summarizing and Computing Descriptive Statistics | 171

Table 5-9. Unique, value counts, and set membership methods

Method Description
isin Compute a Boolean array indicating whether each Series or DataFrame value is contained in the passed

sequence of values
get_indexer Compute integer indices for each value in an array into another array of distinct values; helpful for data

alignment and join-type operations
unique Compute an array of unique values in a Series, returned in the order observed
value_counts Return a Series containing unique values as its index and frequencies as its values, ordered count in

descending order

In some cases, you may want to compute a histogram on multiple related columns in
a DataFrame. Here’s an example:

In [303]: data = pd.DataFrame({"Qu1": [1, 3, 4, 3, 4],
 : "Qu2": [2, 3, 1, 2, 3],
 : "Qu3": [1, 5, 2, 4, 4]})

In [304]: data
Out[304]:
 Qu1 Qu2 Qu3
0 1 2 1
1 3 3 5
2 4 1 2
3 3 2 4
4 4 3 4

We can compute the value counts for a single column, like so:

In [305]: data["Qu1"].value_counts().sort_index()
Out[305]:
1 1
3 2
4 2
Name: Qu1, dtype: int64

To compute this for all columns, pass pandas.value_counts to the DataFrame’s
apply method:

In [306]: result = data.apply(pd.value_counts).fillna(0)

In [307]: result
Out[307]:
 Qu1 Qu2 Qu3
1 1.0 1.0 1.0
2 0.0 2.0 1.0
3 2.0 2.0 0.0
4 2.0 0.0 2.0
5 0.0 0.0 1.0

Here, the row labels in the result are the distinct values occurring in all of the
columns. The values are the respective counts of these values in each column.

172 | Chapter 5: Getting Started with pandas

There is also a DataFrame.value_counts method, but it computes counts considering
each row of the DataFrame as a tuple to determine the number of occurrences of each
distinct row:

In [308]: data = pd.DataFrame({"a": [1, 1, 1, 2, 2], "b": [0, 0, 1, 0, 0]})

In [309]: data
Out[309]:
 a b
0 1 0
1 1 0
2 1 1
3 2 0
4 2 0

In [310]: data.value_counts()
Out[310]:
a b
1 0 2
2 0 2
1 1 1
dtype: int64

In this case, the result has an index representing the distinct rows as a hierarchical
index, a topic we will explore in greater detail in Chapter 8.

5.4 Conclusion
In the next chapter, we will discuss tools for reading (or loading) and writing datasets
with pandas. After that, we will dig deeper into data cleaning, wrangling, analysis, and
visualization tools using pandas.

5.4 Conclusion | 173

CHAPTER 6

Data Loading, Storage, and File Formats

Reading data and making it accessible (often called data loading) is a necessary first
step for using most of the tools in this book. The term parsing is also sometimes used
to describe loading text data and interpreting it as tables and different data types. I’m
going to focus on data input and output using pandas, though there are numerous
tools in other libraries to help with reading and writing data in various formats.

Input and output typically fall into a few main categories: reading text files and other
more efficient on-disk formats, loading data from databases, and interacting with
network sources like web APIs.

6.1 Reading and Writing Data in Text Format
pandas features a number of functions for reading tabular data as a DataFrame
object. Table 6-1 summarizes some of them; pandas.read_csv is one of the most
frequently used in this book. We will look at binary data formats later in Section 6.2,
“Binary Data Formats,” on page 193.

Table 6-1. Text and binary data loading functions in pandas

Function Description
read_csv Load delimited data from a file, URL, or file-like object; use comma as default delimiter
read_fwf Read data in fixed-width column format (i.e., no delimiters)
read_clipboard Variation of read_csv that reads data from the clipboard; useful for converting tables from web

pages
read_excel Read tabular data from an Excel XLS or XLSX file
read_hdf Read HDF5 files written by pandas
read_html Read all tables found in the given HTML document
read_json Read data from a JSON (JavaScript Object Notation) string representation, file, URL, or file-like object

175

Function Description
read_feather Read the Feather binary file format
read_orc Read the Apache ORC binary file format
read_parquet Read the Apache Parquet binary file format
read_pickle Read an object stored by pandas using the Python pickle format
read_sas Read a SAS dataset stored in one of the SAS system’s custom storage formats
read_spss Read a data file created by SPSS
read_sql Read the results of a SQL query (using SQLAlchemy)
read_sql_table Read a whole SQL table (using SQLAlchemy); equivalent to using a query that selects everything in

that table using read_sql
read_stata Read a dataset from Stata file format
read_xml Read a table of data from an XML file

I’ll give an overview of the mechanics of these functions, which are meant to convert
text data into a DataFrame. The optional arguments for these functions may fall into
a few categories:

Indexing
Can treat one or more columns as the returned DataFrame, and whether to get
column names from the file, arguments you provide, or not at all.

Type inference and data conversion
Includes the user-defined value conversions and custom list of missing value
markers.

Date and time parsing
Includes a combining capability, including combining date and time information
spread over multiple columns into a single column in the result.

Iterating
Support for iterating over chunks of very large files.

Unclean data issues
Includes skipping rows or a footer, comments, or other minor things like
numeric data with thousands separated by commas.

Because of how messy data in the real world can be, some of the data loading
functions (especially pandas.read_csv) have accumulated a long list of optional
arguments over time. It’s normal to feel overwhelmed by the number of different
parameters (pandas.read_csv has around 50). The online pandas documentation
has many examples about how each of these works, so if you’re struggling to read a
particular file, there might be a similar enough example to help you find the right
parameters.

176 | Chapter 6: Data Loading, Storage, and File Formats

Some of these functions perform type inference, because the column data types are
not part of the data format. That means you don’t necessarily have to specify which
columns are numeric, integer, Boolean, or string. Other data formats, like HDF5,
ORC, and Parquet, have the data type information embedded in the format.

Handling dates and other custom types can require extra effort.

Let’s start with a small comma-separated values (CSV) text file:

In [10]: !cat examples/ex1.csv
a,b,c,d,message
1,2,3,4,hello
5,6,7,8,world
9,10,11,12,foo

Here I used the Unix cat shell command to print the raw contents
of the file to the screen. If you’re on Windows, you can use type
instead of cat to achieve the same effect within a Windows termi‐
nal (or command line).

Since this is comma-delimited, we can then use pandas.read_csv to read it into a
DataFrame:

In [11]: df = pd.read_csv("examples/ex1.csv")

In [12]: df
Out[12]:
 a b c d message
0 1 2 3 4 hello
1 5 6 7 8 world
2 9 10 11 12 foo

A file will not always have a header row. Consider this file:

In [13]: !cat examples/ex2.csv
1,2,3,4,hello
5,6,7,8,world
9,10,11,12,foo

To read this file, you have a couple of options. You can allow pandas to assign default
column names, or you can specify names yourself:

In [14]: pd.read_csv("examples/ex2.csv", header=None)
Out[14]:
 0 1 2 3 4
0 1 2 3 4 hello
1 5 6 7 8 world
2 9 10 11 12 foo

In [15]: pd.read_csv("examples/ex2.csv", names=["a", "b", "c", "d", "message"])
Out[15]:

6.1 Reading and Writing Data in Text Format | 177

 a b c d message
0 1 2 3 4 hello
1 5 6 7 8 world
2 9 10 11 12 foo

Suppose you wanted the message column to be the index of the returned DataFrame.
You can either indicate you want the column at index 4 or named "message" using
the index_col argument:

In [16]: names = ["a", "b", "c", "d", "message"]

In [17]: pd.read_csv("examples/ex2.csv", names=names, index_col="message")
Out[17]:
 a b c d
message
hello 1 2 3 4
world 5 6 7 8
foo 9 10 11 12

If you want to form a hierarchical index (discussed in Section 8.1, “Hierarchical
Indexing,” on page 247) from multiple columns, pass a list of column numbers or
names:

In [18]: !cat examples/csv_mindex.csv
key1,key2,value1,value2
one,a,1,2
one,b,3,4
one,c,5,6
one,d,7,8
two,a,9,10
two,b,11,12
two,c,13,14
two,d,15,16

In [19]: parsed = pd.read_csv("examples/csv_mindex.csv",
 : index_col=["key1", "key2"])

In [20]: parsed
Out[20]:
 value1 value2
key1 key2
one a 1 2
 b 3 4
 c 5 6
 d 7 8
two a 9 10
 b 11 12
 c 13 14
 d 15 16

178 | Chapter 6: Data Loading, Storage, and File Formats

In some cases, a table might not have a fixed delimiter, using whitespace or some
other pattern to separate fields. Consider a text file that looks like this:

In [21]: !cat examples/ex3.txt
A B C
aaa -0.264438 -1.026059 -0.619500
bbb 0.927272 0.302904 -0.032399
ccc -0.264273 -0.386314 -0.217601
ddd -0.871858 -0.348382 1.100491

While you could do some munging by hand, the fields here are separated by a
variable amount of whitespace. In these cases, you can pass a regular expression as a
delimiter for pandas.read_csv. This can be expressed by the regular expression \s+,
so we have then:

In [22]: result = pd.read_csv("examples/ex3.txt", sep="\s+")

In [23]: result
Out[23]:
 A B C
aaa -0.264438 -1.026059 -0.619500
bbb 0.927272 0.302904 -0.032399
ccc -0.264273 -0.386314 -0.217601
ddd -0.871858 -0.348382 1.100491

Because there was one fewer column name than the number of data rows,
pandas.read_csv infers that the first column should be the DataFrame’s index in
this special case.

The file parsing functions have many additional arguments to help you handle the
wide variety of exception file formats that occur (see a partial listing in Table 6-2). For
example, you can skip the first, third, and fourth rows of a file with skiprows:

In [24]: !cat examples/ex4.csv
hey!
a,b,c,d,message
just wanted to make things more difficult for you
who reads CSV files with computers, anyway?
1,2,3,4,hello
5,6,7,8,world
9,10,11,12,foo

In [25]: pd.read_csv("examples/ex4.csv", skiprows=[0, 2, 3])
Out[25]:
 a b c d message
0 1 2 3 4 hello
1 5 6 7 8 world
2 9 10 11 12 foo

Handling missing values is an important and frequently nuanced part of the file
reading process. Missing data is usually either not present (empty string) or marked

6.1 Reading and Writing Data in Text Format | 179

by some sentinel (placeholder) value. By default, pandas uses a set of commonly
occurring sentinels, such as NA and NULL:

In [26]: !cat examples/ex5.csv
something,a,b,c,d,message
one,1,2,3,4,NA
two,5,6,,8,world
three,9,10,11,12,foo
In [27]: result = pd.read_csv("examples/ex5.csv")

In [28]: result
Out[28]:
 something a b c d message
0 one 1 2 3.0 4 NaN
1 two 5 6 NaN 8 world
2 three 9 10 11.0 12 foo

Recall that pandas outputs missing values as NaN, so we have two null or missing
values in result:

In [29]: pd.isna(result)
Out[29]:
 something a b c d message
0 False False False False False True
1 False False False True False False
2 False False False False False False

The na_values option accepts a sequence of strings to add to the default list of strings
recognized as missing:

In [30]: result = pd.read_csv("examples/ex5.csv", na_values=["NULL"])

In [31]: result
Out[31]:
 something a b c d message
0 one 1 2 3.0 4 NaN
1 two 5 6 NaN 8 world
2 three 9 10 11.0 12 foo

pandas.read_csv has a list of many default NA value representations, but these
defaults can be disabled with the keep_default_na option:

In [32]: result2 = pd.read_csv("examples/ex5.csv", keep_default_na=False)

In [33]: result2
Out[33]:
 something a b c d message
0 one 1 2 3 4 NA
1 two 5 6 8 world
2 three 9 10 11 12 foo

In [34]: result2.isna()
Out[34]:

180 | Chapter 6: Data Loading, Storage, and File Formats

 something a b c d message
0 False False False False False False
1 False False False False False False
2 False False False False False False

In [35]: result3 = pd.read_csv("examples/ex5.csv", keep_default_na=False,
 : na_values=["NA"])

In [36]: result3
Out[36]:
 something a b c d message
0 one 1 2 3 4 NaN
1 two 5 6 8 world
2 three 9 10 11 12 foo

In [37]: result3.isna()
Out[37]:
 something a b c d message
0 False False False False False True
1 False False False False False False
2 False False False False False False

Different NA sentinels can be specified for each column in a dictionary:

In [38]: sentinels = {"message": ["foo", "NA"], "something": ["two"]}

In [39]: pd.read_csv("examples/ex5.csv", na_values=sentinels,
 : keep_default_na=False)
Out[39]:
 something a b c d message
0 one 1 2 3 4 NaN
1 NaN 5 6 8 world
2 three 9 10 11 12 NaN

Table 6-2 lists some frequently used options in pandas.read_csv.

Table 6-2. Some pandas.read_csv function arguments

Argument Description
path String indicating filesystem location, URL, or file-like object.
sep or delimiter Character sequence or regular expression to use to split fields in each row.
header Row number to use as column names; defaults to 0 (first row), but should be None if there is no

header row.
index_col Column numbers or names to use as the row index in the result; can be a single name/number or a

list of them for a hierarchical index.
names List of column names for result.
skiprows Number of rows at beginning of file to ignore or list of row numbers (starting from 0) to skip.
na_values Sequence of values to replace with NA. They are added to the default list unless

keep_default_na=False is passed.
keep_default_na Whether to use the default NA value list or not (True by default).

6.1 Reading and Writing Data in Text Format | 181

Argument Description
comment Character(s) to split comments off the end of lines.
parse_dates Attempt to parse data to datetime; False by default. If True, will attempt to parse all

columns. Otherwise, can specify a list of column numbers or names to parse. If element of list is
tuple or list, will combine multiple columns together and parse to date (e.g., if date/time split across
two columns).

keep_date_col If joining columns to parse date, keep the joined columns; False by default.
converters Dictionary containing column number or name mapping to functions (e.g., {"foo": f} would

apply the function f to all values in the "foo" column).
dayfirst When parsing potentially ambiguous dates, treat as international format (e.g., 7/6/2012 -> June 7,

2012); False by default.
date_parser Function to use to parse dates.
nrows Number of rows to read from beginning of file (not counting the header).
iterator Return a TextFileReader object for reading the file piecemeal. This object can also be used

with the with statement.
chunksize For iteration, size of file chunks.
skip_footer Number of lines to ignore at end of file.
verbose Print various parsing information, like the time spent in each stage of the file conversion and

memory use information.
encoding Text encoding (e.g., "utf-8 for UTF-8 encoded text). Defaults to "utf-8" if None.
squeeze If the parsed data contains only one column, return a Series.
thousands Separator for thousands (e.g., "," or "."); default is None.
decimal Decimal separator in numbers (e.g., "." or ","); default is ".".
engine CSV parsing and conversion engine to use; can be one of "c", "python", or "pyarrow". The

default is "c", though the newer "pyarrow" engine can parse some files much faster. The
"python" engine is slower but supports some features that the other engines do not.

Reading Text Files in Pieces
When processing very large files or figuring out the right set of arguments to cor‐
rectly process a large file, you may want to read only a small piece of a file or iterate
through smaller chunks of the file.

Before we look at a large file, we make the pandas display settings more compact:

In [40]: pd.options.display.max_rows = 10

Now we have:

In [41]: result = pd.read_csv("examples/ex6.csv")

In [42]: result
Out[42]:
 one two three four key
0 0.467976 -0.038649 -0.295344 -1.824726 L
1 -0.358893 1.404453 0.704965 -0.200638 B
2 -0.501840 0.659254 -0.421691 -0.057688 G

182 | Chapter 6: Data Loading, Storage, and File Formats

3 0.204886 1.074134 1.388361 -0.982404 R
4 0.354628 -0.133116 0.283763 -0.837063 Q
...
9995 2.311896 -0.417070 -1.409599 -0.515821 L
9996 -0.479893 -0.650419 0.745152 -0.646038 E
9997 0.523331 0.787112 0.486066 1.093156 K
9998 -0.362559 0.598894 -1.843201 0.887292 G
9999 -0.096376 -1.012999 -0.657431 -0.573315 0
[10000 rows x 5 columns]

The elipsis marks ... indicate that rows in the middle of the DataFrame have been
omitted.

If you want to read only a small number of rows (avoiding reading the entire file),
specify that with nrows:

In [43]: pd.read_csv("examples/ex6.csv", nrows=5)
Out[43]:
 one two three four key
0 0.467976 -0.038649 -0.295344 -1.824726 L
1 -0.358893 1.404453 0.704965 -0.200638 B
2 -0.501840 0.659254 -0.421691 -0.057688 G
3 0.204886 1.074134 1.388361 -0.982404 R
4 0.354628 -0.133116 0.283763 -0.837063 Q

To read a file in pieces, specify a chunksize as a number of rows:

In [44]: chunker = pd.read_csv("examples/ex6.csv", chunksize=1000)

In [45]: type(chunker)
Out[45]: pandas.io.parsers.readers.TextFileReader

The TextFileReader object returned by pandas.read_csv allows you to iterate over
the parts of the file according to the chunksize. For example, we can iterate over
ex6.csv, aggregating the value counts in the "key" column, like so:

chunker = pd.read_csv("examples/ex6.csv", chunksize=1000)

tot = pd.Series([], dtype='int64')
for piece in chunker:
 tot = tot.add(piece["key"].value_counts(), fill_value=0)

tot = tot.sort_values(ascending=False)

We have then:

In [47]: tot[:10]
Out[47]:
E 368.0
X 364.0
L 346.0
O 343.0
Q 340.0
M 338.0

6.1 Reading and Writing Data in Text Format | 183

J 337.0
F 335.0
K 334.0
H 330.0
dtype: float64

TextFileReader is also equipped with a get_chunk method that enables you to read
pieces of an arbitrary size.

Writing Data to Text Format
Data can also be exported to a delimited format. Let’s consider one of the CSV files
read before:

In [48]: data = pd.read_csv("examples/ex5.csv")

In [49]: data
Out[49]:
 something a b c d message
0 one 1 2 3.0 4 NaN
1 two 5 6 NaN 8 world
2 three 9 10 11.0 12 foo

Using DataFrame’s to_csv method, we can write the data out to a comma-separated
file:

In [50]: data.to_csv("examples/out.csv")

In [51]: !cat examples/out.csv
,something,a,b,c,d,message
0,one,1,2,3.0,4,
1,two,5,6,,8,world
2,three,9,10,11.0,12,foo

Other delimiters can be used, of course (writing to sys.stdout so it prints the text
result to the console rather than a file):

In [52]: import sys

In [53]: data.to_csv(sys.stdout, sep="|")
|something|a|b|c|d|message
0|one|1|2|3.0|4|
1|two|5|6||8|world
2|three|9|10|11.0|12|foo

Missing values appear as empty strings in the output. You might want to denote them
by some other sentinel value:

In [54]: data.to_csv(sys.stdout, na_rep="NULL")
,something,a,b,c,d,message
0,one,1,2,3.0,4,NULL
1,two,5,6,NULL,8,world
2,three,9,10,11.0,12,foo

184 | Chapter 6: Data Loading, Storage, and File Formats

With no other options specified, both the row and column labels are written. Both of
these can be disabled:

In [55]: data.to_csv(sys.stdout, index=False, header=False)
one,1,2,3.0,4,
two,5,6,,8,world
three,9,10,11.0,12,foo

You can also write only a subset of the columns, and in an order of your choosing:

In [56]: data.to_csv(sys.stdout, index=False, columns=["a", "b", "c"])
a,b,c
1,2,3.0
5,6,
9,10,11.0

Working with Other Delimited Formats
It’s possible to load most forms of tabular data from disk using functions like pan
das.read_csv. In some cases, however, some manual processing may be necessary.
It’s not uncommon to receive a file with one or more malformed lines that trip up
pandas.read_csv. To illustrate the basic tools, consider a small CSV file:

In [57]: !cat examples/ex7.csv
"a","b","c"
"1","2","3"
"1","2","3"

For any file with a single-character delimiter, you can use Python’s built-in csv
module. To use it, pass any open file or file-like object to csv.reader:

In [58]: import csv

In [59]: f = open("examples/ex7.csv")

In [60]: reader = csv.reader(f)

Iterating through the reader like a file yields lists of values with any quote characters
removed:

In [61]: for line in reader:
 : print(line)
['a', 'b', 'c']
['1', '2', '3']
['1', '2', '3']

In [62]: f.close()

From there, it’s up to you to do the wrangling necessary to put the data in the form
that you need. Let’s take this step by step. First, we read the file into a list of lines:

In [63]: with open("examples/ex7.csv") as f:
 : lines = list(csv.reader(f))

6.1 Reading and Writing Data in Text Format | 185

Then we split the lines into the header line and the data lines:

In [64]: header, values = lines[0], lines[1:]

Then we can create a dictionary of data columns using a dictionary comprehension
and the expression zip(*values) (beware that this will use a lot of memory on large
files), which transposes rows to columns:

In [65]: data_dict = {h: v for h, v in zip(header, zip(*values))}

In [66]: data_dict
Out[66]: {'a': ('1', '1'), 'b': ('2', '2'), 'c': ('3', '3')}

CSV files come in many different flavors. To define a new format with a different
delimiter, string quoting convention, or line terminator, we could define a simple
subclass of csv.Dialect:

class my_dialect(csv.Dialect):
 lineterminator = "\n"
 delimiter = ";"
 quotechar = '"'
 quoting = csv.QUOTE_MINIMAL

reader = csv.reader(f, dialect=my_dialect)

We could also give individual CSV dialect parameters as keywords to csv.reader
without having to define a subclass:

reader = csv.reader(f, delimiter="|")

The possible options (attributes of csv.Dialect) and what they do can be found in
Table 6-3.

Table 6-3. CSV dialect options

Argument Description
delimiter One-character string to separate fields; defaults to ",".
lineterminator Line terminator for writing; defaults to "\r\n". Reader ignores this and recognizes cross-platform

line terminators.
quotechar Quote character for fields with special characters (like a delimiter); default is '"'.
quoting Quoting convention. Options include csv.QUOTE_ALL (quote all fields), csv.QUOTE_MINI

MAL (only fields with special characters like the delimiter), csv.QUOTE_NONNUMERIC, and
csv.QUOTE_NONE (no quoting). See Python’s documentation for full details. Defaults to
QUOTE_MINIMAL.

skipinitialspace Ignore whitespace after each delimiter; default is False.
doublequote How to handle quoting character inside a field; if True, it is doubled (see online documentation

for full detail and behavior).
escapechar String to escape the delimiter if quoting is set to csv.QUOTE_NONE; disabled by default.

186 | Chapter 6: Data Loading, Storage, and File Formats

For files with more complicated or fixed multicharacter delimiters,
you will not be able to use the csv module. In those cases, you’ll
have to do the line splitting and other cleanup using the string’s
split method or the regular expression method re.split. Thank‐
fully, pandas.read_csv is capable of doing almost anything you
need if you pass the necessary options, so you only rarely will have
to parse files by hand.

To write delimited files manually, you can use csv.writer. It accepts an open, writa‐
ble file object and the same dialect and format options as csv.reader:

with open("mydata.csv", "w") as f:
 writer = csv.writer(f, dialect=my_dialect)
 writer.writerow(("one", "two", "three"))
 writer.writerow(("1", "2", "3"))
 writer.writerow(("4", "5", "6"))
 writer.writerow(("7", "8", "9"))

JSON Data
JSON (short for JavaScript Object Notation) has become one of the standard formats
for sending data by HTTP request between web browsers and other applications. It
is a much more free-form data format than a tabular text form like CSV. Here is an
example:

obj = """
{"name": "Wes",
 "cities_lived": ["Akron", "Nashville", "New York", "San Francisco"],
 "pet": null,
 "siblings": [{"name": "Scott", "age": 34, "hobbies": ["guitars", "soccer"]},
 {"name": "Katie", "age": 42, "hobbies": ["diving", "art"]}]
}
"""

JSON is very nearly valid Python code with the exception of its null value null and
some other nuances (such as disallowing trailing commas at the end of lists). The
basic types are objects (dictionaries), arrays (lists), strings, numbers, Booleans, and
nulls. All of the keys in an object must be strings. There are several Python libraries
for reading and writing JSON data. I’ll use json here, as it is built into the Python
standard library. To convert a JSON string to Python form, use json.loads:

In [68]: import json

In [69]: result = json.loads(obj)

In [70]: result
Out[70]:
{'name': 'Wes',
 'cities_lived': ['Akron', 'Nashville', 'New York', 'San Francisco'],

6.1 Reading and Writing Data in Text Format | 187

 'pet': None,
 'siblings': [{'name': 'Scott',
 'age': 34,
 'hobbies': ['guitars', 'soccer']},
 {'name': 'Katie', 'age': 42, 'hobbies': ['diving', 'art']}]}

json.dumps, on the other hand, converts a Python object back to JSON:

In [71]: asjson = json.dumps(result)

In [72]: asjson
Out[72]: '{"name": "Wes", "cities_lived": ["Akron", "Nashville", "New York", "San
 Francisco"], "pet": null, "siblings": [{"name": "Scott", "age": 34, "hobbies": [
"guitars", "soccer"]}, {"name": "Katie", "age": 42, "hobbies": ["diving", "art"]}
]}'

How you convert a JSON object or list of objects to a DataFrame or some other
data structure for analysis will be up to you. Conveniently, you can pass a list of
dictionaries (which were previously JSON objects) to the DataFrame constructor and
select a subset of the data fields:

In [73]: siblings = pd.DataFrame(result["siblings"], columns=["name", "age"])

In [74]: siblings
Out[74]:
 name age
0 Scott 34
1 Katie 42

The pandas.read_json can automatically convert JSON datasets in specific arrange‐
ments into a Series or DataFrame. For example:

In [75]: !cat examples/example.json
[{"a": 1, "b": 2, "c": 3},
 {"a": 4, "b": 5, "c": 6},
 {"a": 7, "b": 8, "c": 9}]

The default options for pandas.read_json assume that each object in the JSON array
is a row in the table:

In [76]: data = pd.read_json("examples/example.json")

In [77]: data
Out[77]:
 a b c
0 1 2 3
1 4 5 6
2 7 8 9

For an extended example of reading and manipulating JSON data (including nested
records), see the USDA food database example in Chapter 13.

188 | Chapter 6: Data Loading, Storage, and File Formats

1 For the full list, see https://www.fdic.gov/bank/individual/failed/banklist.html.

If you need to export data from pandas to JSON, one way is to use the to_json
methods on Series and DataFrame:

In [78]: data.to_json(sys.stdout)
{"a":{"0":1,"1":4,"2":7},"b":{"0":2,"1":5,"2":8},"c":{"0":3,"1":6,"2":9}}
In [79]: data.to_json(sys.stdout, orient="records")
[{"a":1,"b":2,"c":3},{"a":4,"b":5,"c":6},{"a":7,"b":8,"c":9}]

XML and HTML: Web Scraping
Python has many libraries for reading and writing data in the ubiquitous HTML and
XML formats. Examples include lxml, Beautiful Soup, and html5lib. While lxml is
comparatively much faster in general, the other libraries can better handle malformed
HTML or XML files.

pandas has a built-in function, pandas.read_html, which uses all of these libraries to
automatically parse tables out of HTML files as DataFrame objects. To show how this
works, I downloaded an HTML file (used in the pandas documentation) from the US
FDIC showing bank failures.1 First, you must install some additional libraries used by
read_html:

conda install lxml beautifulsoup4 html5lib

If you are not using conda, pip install lxml should also work.

The pandas.read_html function has a number of options, but by default it searches
for and attempts to parse all tabular data contained within <table> tags. The result is
a list of DataFrame objects:

In [80]: tables = pd.read_html("examples/fdic_failed_bank_list.html")

In [81]: len(tables)
Out[81]: 1

In [82]: failures = tables[0]

In [83]: failures.head()
Out[83]:
 Bank Name City ST CERT \
0 Allied Bank Mulberry AR 91
1 The Woodbury Banking Company Woodbury GA 11297
2 First CornerStone Bank King of Prussia PA 35312
3 Trust Company Bank Memphis TN 9956
4 North Milwaukee State Bank Milwaukee WI 20364
 Acquiring Institution Closing Date Updated Date
0 Today's Bank September 23, 2016 November 17, 2016
1 United Bank August 19, 2016 November 17, 2016

6.1 Reading and Writing Data in Text Format | 189

https://www.fdic.gov/bank/individual/failed/banklist.html

2 First-Citizens Bank & Trust Company May 6, 2016 September 6, 2016
3 The Bank of Fayette County April 29, 2016 September 6, 2016
4 First-Citizens Bank & Trust Company March 11, 2016 June 16, 2016

Because failures has many columns, pandas inserts a line break character \.

As you will learn in later chapters, from here we could proceed to do some data
cleaning and analysis, like computing the number of bank failures by year:

In [84]: close_timestamps = pd.to_datetime(failures["Closing Date"])

In [85]: close_timestamps.dt.year.value_counts()
Out[85]:
2010 157
2009 140
2011 92
2012 51
2008 25
 ...
2004 4
2001 4
2007 3
2003 3
2000 2
Name: Closing Date, Length: 15, dtype: int64

Parsing XML with lxml.objectify
XML is another common structured data format supporting hierarchical, nested data
with metadata. The book you are currently reading was actually created from a series
of large XML documents.

Earlier, I showed the pandas.read_html function, which uses either lxml or Beautiful
Soup under the hood to parse data from HTML. XML and HTML are structurally
similar, but XML is more general. Here, I will show an example of how to use lxml to
parse data from a more general XML format.

For many years, the New York Metropolitan Transportation Authority (MTA) pub‐
lished a number of data series about its bus and train services in XML format. Here
we’ll look at the performance data, which is contained in a set of XML files. Each train
or bus service has a different file (like Performance_MNR.xml for the Metro-North
Railroad) containing monthly data as a series of XML records that look like this:

<INDICATOR>
 <INDICATOR_SEQ>373889</INDICATOR_SEQ>
 <PARENT_SEQ></PARENT_SEQ>
 <AGENCY_NAME>Metro-North Railroad</AGENCY_NAME>
 <INDICATOR_NAME>Escalator Availability</INDICATOR_NAME>
 <DESCRIPTION>Percent of the time that escalators are operational
 systemwide. The availability rate is based on physical observations performed
 the morning of regular business days only. This is a new indicator the agency

190 | Chapter 6: Data Loading, Storage, and File Formats

 began reporting in 2009.</DESCRIPTION>
 <PERIOD_YEAR>2011</PERIOD_YEAR>
 <PERIOD_MONTH>12</PERIOD_MONTH>
 <CATEGORY>Service Indicators</CATEGORY>
 <FREQUENCY>M</FREQUENCY>
 <DESIRED_CHANGE>U</DESIRED_CHANGE>
 <INDICATOR_UNIT>%</INDICATOR_UNIT>
 <DECIMAL_PLACES>1</DECIMAL_PLACES>
 <YTD_TARGET>97.00</YTD_TARGET>
 <YTD_ACTUAL></YTD_ACTUAL>
 <MONTHLY_TARGET>97.00</MONTHLY_TARGET>
 <MONTHLY_ACTUAL></MONTHLY_ACTUAL>
</INDICATOR>

Using lxml.objectify, we parse the file and get a reference to the root node of the
XML file with getroot:

In [86]: from lxml import objectify

In [87]: path = "datasets/mta_perf/Performance_MNR.xml"

In [88]: with open(path) as f:
 : parsed = objectify.parse(f)

In [89]: root = parsed.getroot()

root.INDICATOR returns a generator yielding each <INDICATOR> XML element. For
each record, we can populate a dictionary of tag names (like YTD_ACTUAL) to data
values (excluding a few tags) by running the following code:

data = []

skip_fields = ["PARENT_SEQ", "INDICATOR_SEQ",
 "DESIRED_CHANGE", "DECIMAL_PLACES"]

for elt in root.INDICATOR:
 el_data = {}
 for child in elt.getchildren():
 if child.tag in skip_fields:
 continue
 el_data[child.tag] = child.pyval
 data.append(el_data)

Lastly, convert this list of dictionaries into a DataFrame:

In [91]: perf = pd.DataFrame(data)

In [92]: perf.head()
Out[92]:
 AGENCY_NAME INDICATOR_NAME \
0 Metro-North Railroad On-Time Performance (West of Hudson)
1 Metro-North Railroad On-Time Performance (West of Hudson)
2 Metro-North Railroad On-Time Performance (West of Hudson)

6.1 Reading and Writing Data in Text Format | 191

3 Metro-North Railroad On-Time Performance (West of Hudson)
4 Metro-North Railroad On-Time Performance (West of Hudson)
 DESCRIPTION \
0 Percent of commuter trains that arrive at their destinations within 5 m...
1 Percent of commuter trains that arrive at their destinations within 5 m...
2 Percent of commuter trains that arrive at their destinations within 5 m...
3 Percent of commuter trains that arrive at their destinations within 5 m...
4 Percent of commuter trains that arrive at their destinations within 5 m...
 PERIOD_YEAR PERIOD_MONTH CATEGORY FREQUENCY INDICATOR_UNIT \
0 2008 1 Service Indicators M %
1 2008 2 Service Indicators M %
2 2008 3 Service Indicators M %
3 2008 4 Service Indicators M %
4 2008 5 Service Indicators M %
 YTD_TARGET YTD_ACTUAL MONTHLY_TARGET MONTHLY_ACTUAL
0 95.0 96.9 95.0 96.9
1 95.0 96.0 95.0 95.0
2 95.0 96.3 95.0 96.9
3 95.0 96.8 95.0 98.3
4 95.0 96.6 95.0 95.8

pandas’s pandas.read_xml function turns this process into a one-line expression:

In [93]: perf2 = pd.read_xml(path)

In [94]: perf2.head()
Out[94]:
 INDICATOR_SEQ PARENT_SEQ AGENCY_NAME \
0 28445 NaN Metro-North Railroad
1 28445 NaN Metro-North Railroad
2 28445 NaN Metro-North Railroad
3 28445 NaN Metro-North Railroad
4 28445 NaN Metro-North Railroad
 INDICATOR_NAME \
0 On-Time Performance (West of Hudson)
1 On-Time Performance (West of Hudson)
2 On-Time Performance (West of Hudson)
3 On-Time Performance (West of Hudson)
4 On-Time Performance (West of Hudson)
 DESCRIPTION \
0 Percent of commuter trains that arrive at their destinations within 5 m...
1 Percent of commuter trains that arrive at their destinations within 5 m...
2 Percent of commuter trains that arrive at their destinations within 5 m...
3 Percent of commuter trains that arrive at their destinations within 5 m...
4 Percent of commuter trains that arrive at their destinations within 5 m...
 PERIOD_YEAR PERIOD_MONTH CATEGORY FREQUENCY DESIRED_CHANGE \
0 2008 1 Service Indicators M U
1 2008 2 Service Indicators M U
2 2008 3 Service Indicators M U
3 2008 4 Service Indicators M U
4 2008 5 Service Indicators M U
 INDICATOR_UNIT DECIMAL_PLACES YTD_TARGET YTD_ACTUAL MONTHLY_TARGET \
0 % 1 95.00 96.90 95.00

192 | Chapter 6: Data Loading, Storage, and File Formats

1 % 1 95.00 96.00 95.00
2 % 1 95.00 96.30 95.00
3 % 1 95.00 96.80 95.00
4 % 1 95.00 96.60 95.00
 MONTHLY_ACTUAL
0 96.90
1 95.00
2 96.90
3 98.30
4 95.80

For more complex XML documents, refer to the docstring for pandas.read_xml
which describes how to do selections and filters to extract a particular table of
interest.

6.2 Binary Data Formats
One simple way to store (or serialize) data in binary format is using Python’s built-in
pickle module. pandas objects all have a to_pickle method that writes the data to
disk in pickle format:

In [95]: frame = pd.read_csv("examples/ex1.csv")

In [96]: frame
Out[96]:
 a b c d message
0 1 2 3 4 hello
1 5 6 7 8 world
2 9 10 11 12 foo

In [97]: frame.to_pickle("examples/frame_pickle")

Pickle files are in general readable only in Python. You can read any “pickled” object
stored in a file by using the built-in pickle directly, or even more conveniently using
pandas.read_pickle:

In [98]: pd.read_pickle("examples/frame_pickle")
Out[98]:
 a b c d message
0 1 2 3 4 hello
1 5 6 7 8 world
2 9 10 11 12 foo

pickle is recommended only as a short-term storage format. The
problem is that it is hard to guarantee that the format will be
stable over time; an object pickled today may not unpickle with a
later version of a library. pandas has tried to maintain backward
compatibility when possible, but at some point in the future it may
be necessary to “break” the pickle format.

6.2 Binary Data Formats | 193

pandas has built-in support for several other open source binary data formats, such
as HDF5, ORC, and Apache Parquet. For example, if you install the pyarrow package
(conda install pyarrow), then you can read Parquet files with pandas.read_par
quet:

In [100]: fec = pd.read_parquet('datasets/fec/fec.parquet')

I will give some HDF5 examples in “Using HDF5 Format” on page 195. I encourage
you to explore different file formats to see how fast they are and how well they work
for your analysis.

Reading Microsoft Excel Files
pandas also supports reading tabular data stored in Excel 2003 (and higher) files
using either the pandas.ExcelFile class or pandas.read_excel function. Internally,
these tools use the add-on packages xlrd and openpyxl to read old-style XLS and
newer XLSX files, respectively. These must be installed separately from pandas using
pip or conda:

conda install openpyxl xlrd

To use pandas.ExcelFile, create an instance by passing a path to an xls or xlsx file:

In [101]: xlsx = pd.ExcelFile("examples/ex1.xlsx")

This object can show you the list of available sheet names in the file:

In [102]: xlsx.sheet_names
Out[102]: ['Sheet1']

Data stored in a sheet can then be read into DataFrame with parse:

In [103]: xlsx.parse(sheet_name="Sheet1")
Out[103]:
 Unnamed: 0 a b c d message
0 0 1 2 3 4 hello
1 1 5 6 7 8 world
2 2 9 10 11 12 foo

This Excel table has an index column, so we can indicate that with the index_col
argument:

In [104]: xlsx.parse(sheet_name="Sheet1", index_col=0)
Out[104]:
 a b c d message
0 1 2 3 4 hello
1 5 6 7 8 world
2 9 10 11 12 foo

If you are reading multiple sheets in a file, then it is faster to create the pandas.Excel
File, but you can also simply pass the filename to pandas.read_excel:

194 | Chapter 6: Data Loading, Storage, and File Formats

In [105]: frame = pd.read_excel("examples/ex1.xlsx", sheet_name="Sheet1")

In [106]: frame
Out[106]:
 Unnamed: 0 a b c d message
0 0 1 2 3 4 hello
1 1 5 6 7 8 world
2 2 9 10 11 12 foo

To write pandas data to Excel format, you must first create an ExcelWriter, then
write data to it using the pandas object’s to_excel method:

In [107]: writer = pd.ExcelWriter("examples/ex2.xlsx")

In [108]: frame.to_excel(writer, "Sheet1")

In [109]: writer.save()

You can also pass a file path to to_excel and avoid the ExcelWriter:

In [110]: frame.to_excel("examples/ex2.xlsx")

Using HDF5 Format
HDF5 is a respected file format intended for storing large quantities of scientific array
data. It is available as a C library, and it has interfaces available in many other lan‐
guages, including Java, Julia, MATLAB, and Python. The “HDF” in HDF5 stands for
hierarchical data format. Each HDF5 file can store multiple datasets and supporting
metadata. Compared with simpler formats, HDF5 supports on-the-fly compression
with a variety of compression modes, enabling data with repeated patterns to be
stored more efficiently. HDF5 can be a good choice for working with datasets that
don’t fit into memory, as you can efficiently read and write small sections of much
larger arrays.

To get started with HDF5 and pandas, you must first install PyTables by installing the
tables package with conda:

conda install pytables

Note that the PyTables package is called “tables” in PyPI, so if you
install with pip you will have to run pip install tables.

While it’s possible to directly access HDF5 files using either the PyTables or h5py
libraries, pandas provides a high-level interface that simplifies storing Series and
DataFrame objects. The HDFStore class works like a dictionary and handles the
low-level details:

6.2 Binary Data Formats | 195

In [113]: frame = pd.DataFrame({"a": np.random.standard_normal(100)})

In [114]: store = pd.HDFStore("examples/mydata.h5")

In [115]: store["obj1"] = frame

In [116]: store["obj1_col"] = frame["a"]

In [117]: store
Out[117]:
<class 'pandas.io.pytables.HDFStore'>
File path: examples/mydata.h5

Objects contained in the HDF5 file can then be retrieved with the same dictionary-
like API:

In [118]: store["obj1"]
Out[118]:
 a
0 -0.204708
1 0.478943
2 -0.519439
3 -0.555730
4 1.965781
.. ...
95 0.795253
96 0.118110
97 -0.748532
98 0.584970
99 0.152677
[100 rows x 1 columns]

HDFStore supports two storage schemas, "fixed" and "table" (the default is
"fixed"). The latter is generally slower, but it supports query operations using a
special syntax:

In [119]: store.put("obj2", frame, format="table")

In [120]: store.select("obj2", where=["index >= 10 and index <= 15"])
Out[120]:
 a
10 1.007189
11 -1.296221
12 0.274992
13 0.228913
14 1.352917
15 0.886429

In [121]: store.close()

The put is an explicit version of the store["obj2"] = frame method but allows us to
set other options like the storage format.

196 | Chapter 6: Data Loading, Storage, and File Formats

The pandas.read_hdf function gives you a shortcut to these tools:

In [122]: frame.to_hdf("examples/mydata.h5", "obj3", format="table")

In [123]: pd.read_hdf("examples/mydata.h5", "obj3", where=["index < 5"])
Out[123]:
 a
0 -0.204708
1 0.478943
2 -0.519439
3 -0.555730
4 1.965781

If you’d like, you can delete the HDF5 file you created, like so:

In [124]: import os

In [125]: os.remove("examples/mydata.h5")

If you are processing data that is stored on remote servers, like
Amazon S3 or HDFS, using a different binary format designed for
distributed storage like Apache Parquet may be more suitable.

If you work with large quantities of data locally, I would encourage you to explore
PyTables and h5py to see how they can suit your needs. Since many data analysis
problems are I/O-bound (rather than CPU-bound), using a tool like HDF5 can
massively accelerate your applications.

HDF5 is not a database. It is best suited for write-once, read-many
datasets. While data can be added to a file at any time, if multiple
writers do so simultaneously, the file can become corrupted.

6.3 Interacting with Web APIs
Many websites have public APIs providing data feeds via JSON or some other format.
There are a number of ways to access these APIs from Python; one method that I
recommend is the requests package, which can be installed with pip or conda:

conda install requests

To find the last 30 GitHub issues for pandas on GitHub, we can make a GET HTTP
request using the add-on requests library:

In [126]: import requests

In [127]: url = "https://api.github.com/repos/pandas-dev/pandas/issues"

6.3 Interacting with Web APIs | 197

http://parquet.apache.org
http://docs.python-requests.org

In [128]: resp = requests.get(url)

In [129]: resp.raise_for_status()

In [130]: resp
Out[130]: <Response [200]>

It’s a good practice to always call raise_for_status after using requests.get to
check for HTTP errors.

The response object’s json method will return a Python object containing the parsed
JSON data as a dictionary or list (depending on what JSON is returned):

In [131]: data = resp.json()

In [132]: data[0]["title"]
Out[132]: 'REF: make copy keyword non-stateful'

Since the results retrieved are based on real-time data, what you see when you run
this code will almost definitely be different.

Each element in data is a dictionary containing all of the data found on a GitHub
issue page (except for the comments). We can pass data directly to pandas.Data
Frame and extract fields of interest:

In [133]: issues = pd.DataFrame(data, columns=["number", "title",
 : "labels", "state"])

In [134]: issues
Out[134]:
 number \
0 48062
1 48061
2 48060
3 48059
4 48058
.. ...
25 48032
26 48030
27 48028
28 48027
29 48026
 title \
0 REF: make copy keyword non-stateful
1 STYLE: upgrade flake8
2 DOC: "Creating a Python environment" in "Creating a development environ...
3 REGR: Avoid overflow with groupby sum
4 REGR: fix reset_index (Index.insert) regression with custom Index subcl...
.. ...
25 BUG: Union of multi index with EA types can lose EA dtype
26 ENH: Add rolling.prod()

198 | Chapter 6: Data Loading, Storage, and File Formats

27 CLN: Refactor groupby's _make_wrapper
28 ENH: Support masks in groupby prod
29 DEP: Add pip to environment.yml
 labels \
0 []
1 [{'id': 106935113, 'node_id': 'MDU6TGFiZWwxMDY5MzUxMTM=', 'url': 'https...
2 [{'id': 134699, 'node_id': 'MDU6TGFiZWwxMzQ2OTk=', 'url': 'https://api....
3 [{'id': 233160, 'node_id': 'MDU6TGFiZWwyMzMxNjA=', 'url': 'https://api....
4 [{'id': 32815646, 'node_id': 'MDU6TGFiZWwzMjgxNTY0Ng==', 'url': 'https:...
.. ...
25 [{'id': 76811, 'node_id': 'MDU6TGFiZWw3NjgxMQ==', 'url': 'https://api.g...
26 [{'id': 76812, 'node_id': 'MDU6TGFiZWw3NjgxMg==', 'url': 'https://api.g...
27 [{'id': 233160, 'node_id': 'MDU6TGFiZWwyMzMxNjA=', 'url': 'https://api....
28 [{'id': 233160, 'node_id': 'MDU6TGFiZWwyMzMxNjA=', 'url': 'https://api....
29 [{'id': 76811, 'node_id': 'MDU6TGFiZWw3NjgxMQ==', 'url': 'https://api.g...
 state
0 open
1 open
2 open
3 open
4 open
.. ...
25 open
26 open
27 open
28 open
29 open
[30 rows x 4 columns]

With a bit of elbow grease, you can create some higher-level interfaces to common
web APIs that return DataFrame objects for more convenient analysis.

6.4 Interacting with Databases
In a business setting, a lot of data may not be stored in text or Excel files. SQL-based
relational databases (such as SQL Server, PostgreSQL, and MySQL) are in wide use,
and many alternative databases have become quite popular. The choice of database
is usually dependent on the performance, data integrity, and scalability needs of an
application.

pandas has some functions to simplify loading the results of a SQL query into a
DataFrame. As an example, I’ll create a SQLite3 database using Python’s built-in
sqlite3 driver:

In [135]: import sqlite3

In [136]: query = """
 : CREATE TABLE test
 : (a VARCHAR(20), b VARCHAR(20),
 : c REAL, d INTEGER

6.4 Interacting with Databases | 199

 :);"""

In [137]: con = sqlite3.connect("mydata.sqlite")

In [138]: con.execute(query)
Out[138]: <sqlite3.Cursor at 0x7fdfd73b69c0>

In [139]: con.commit()

Then, insert a few rows of data:

In [140]: data = [("Atlanta", "Georgia", 1.25, 6),
 : ("Tallahassee", "Florida", 2.6, 3),
 : ("Sacramento", "California", 1.7, 5)]

In [141]: stmt = "INSERT INTO test VALUES(?, ?, ?, ?)"

In [142]: con.executemany(stmt, data)
Out[142]: <sqlite3.Cursor at 0x7fdfd73a00c0>

In [143]: con.commit()

Most Python SQL drivers return a list of tuples when selecting data from a table:

In [144]: cursor = con.execute("SELECT * FROM test")

In [145]: rows = cursor.fetchall()

In [146]: rows
Out[146]:
[('Atlanta', 'Georgia', 1.25, 6),
 ('Tallahassee', 'Florida', 2.6, 3),
 ('Sacramento', 'California', 1.7, 5)]

You can pass the list of tuples to the DataFrame constructor, but you also need
the column names, contained in the cursor’s description attribute. Note that for
SQLite3, the cursor description only provides column names (the other fields,
which are part of Python’s Database API specification, are None), but for some other
database drivers, more column information is provided:

In [147]: cursor.description
Out[147]:
(('a', None, None, None, None, None, None),
 ('b', None, None, None, None, None, None),
 ('c', None, None, None, None, None, None),
 ('d', None, None, None, None, None, None))

In [148]: pd.DataFrame(rows, columns=[x[0] for x in cursor.description])
Out[148]:
 a b c d
0 Atlanta Georgia 1.25 6
1 Tallahassee Florida 2.60 3
2 Sacramento California 1.70 5

200 | Chapter 6: Data Loading, Storage, and File Formats

This is quite a bit of munging that you’d rather not repeat each time you query the
database. The SQLAlchemy project is a popular Python SQL toolkit that abstracts
away many of the common differences between SQL databases. pandas has a
read_sql function that enables you to read data easily from a general SQLAlchemy
connection. You can install SQLAlchemy with conda like so:

conda install sqlalchemy

Now, we’ll connect to the same SQLite database with SQLAlchemy and read data
from the table created before:

In [149]: import sqlalchemy as sqla

In [150]: db = sqla.create_engine("sqlite:///mydata.sqlite")

In [151]: pd.read_sql("SELECT * FROM test", db)
Out[151]:
 a b c d
0 Atlanta Georgia 1.25 6
1 Tallahassee Florida 2.60 3
2 Sacramento California 1.70 5

6.5 Conclusion
Getting access to data is frequently the first step in the data analysis process. We have
looked at a number of useful tools in this chapter that should help you get started.
In the upcoming chapters we will dig deeper into data wrangling, data visualization,
time series analysis, and other topics.

6.5 Conclusion | 201

http://www.sqlalchemy.org/

CHAPTER 7

Data Cleaning and Preparation

During the course of doing data analysis and modeling, a significant amount of time
is spent on data preparation: loading, cleaning, transforming, and rearranging. Such
tasks are often reported to take up 80% or more of an analyst’s time. Sometimes the
way that data is stored in files or databases is not in the right format for a particular
task. Many researchers choose to do ad hoc processing of data from one form to
another using a general-purpose programming language, like Python, Perl, R, or Java,
or Unix text-processing tools like sed or awk. Fortunately, pandas, along with the
built-in Python language features, provides you with a high-level, flexible, and fast set
of tools to enable you to manipulate data into the right form.

If you identify a type of data manipulation that isn’t anywhere in this book or
elsewhere in the pandas library, feel free to share your use case on one of the
Python mailing lists or on the pandas GitHub site. Indeed, much of the design and
implementation of pandas have been driven by the needs of real-world applications.

In this chapter I discuss tools for missing data, duplicate data, string manipulation,
and some other analytical data transformations. In the next chapter, I focus on
combining and rearranging datasets in various ways.

7.1 Handling Missing Data
Missing data occurs commonly in many data analysis applications. One of the goals
of pandas is to make working with missing data as painless as possible. For example,
all of the descriptive statistics on pandas objects exclude missing data by default.

The way that missing data is represented in pandas objects is somewhat imperfect,
but it is sufficient for most real-world use. For data with float64 dtype, pandas uses
the floating-point value NaN (Not a Number) to represent missing data.

203

We call this a sentinel value: when present, it indicates a missing (or null) value:

In [14]: float_data = pd.Series([1.2, -3.5, np.nan, 0])

In [15]: float_data
Out[15]:
0 1.2
1 -3.5
2 NaN
3 0.0
dtype: float64

The isna method gives us a Boolean Series with True where values are null:

In [16]: float_data.isna()
Out[16]:
0 False
1 False
2 True
3 False
dtype: bool

In pandas, we’ve adopted a convention used in the R programming language by refer‐
ring to missing data as NA, which stands for not available. In statistics applications,
NA data may either be data that does not exist or that exists but was not observed
(through problems with data collection, for example). When cleaning up data for
analysis, it is often important to do analysis on the missing data itself to identify data
collection problems or potential biases in the data caused by missing data.

The built-in Python None value is also treated as NA:

In [17]: string_data = pd.Series(["aardvark", np.nan, None, "avocado"])

In [18]: string_data
Out[18]:
0 aardvark
1 NaN
2 None
3 avocado
dtype: object

In [19]: string_data.isna()
Out[19]:
0 False
1 True
2 True
3 False
dtype: bool

In [20]: float_data = pd.Series([1, 2, None], dtype='float64')

In [21]: float_data
Out[21]:

204 | Chapter 7: Data Cleaning and Preparation

0 1.0
1 2.0
2 NaN
dtype: float64

In [22]: float_data.isna()
Out[22]:
0 False
1 False
2 True
dtype: bool

The pandas project has attempted to make working with missing data consistent
across data types. Functions like pandas.isna abstract away many of the annoying
details. See Table 7-1 for a list of some functions related to missing data handling.

Table 7-1. NA handling object methods

Method Description
dropna Filter axis labels based on whether values for each label have missing data, with varying thresholds for how much

missing data to tolerate.
fillna Fill in missing data with some value or using an interpolation method such as "ffill" or "bfill".
isna Return Boolean values indicating which values are missing/NA.
notna Negation of isna, returns True for non-NA values and False for NA values.

Filtering Out Missing Data
There are a few ways to filter out missing data. While you always have the option to
do it by hand using pandas.isna and Boolean indexing, dropna can be helpful. On a
Series, it returns the Series with only the nonnull data and index values:

In [23]: data = pd.Series([1, np.nan, 3.5, np.nan, 7])

In [24]: data.dropna()
Out[24]:
0 1.0
2 3.5
4 7.0
dtype: float64

This is the same thing as doing:

In [25]: data[data.notna()]
Out[25]:
0 1.0
2 3.5
4 7.0
dtype: float64

7.1 Handling Missing Data | 205

With DataFrame objects, there are different ways to remove missing data. You may
want to drop rows or columns that are all NA, or only those rows or columns
containing any NAs at all. dropna by default drops any row containing a missing
value:

In [26]: data = pd.DataFrame([[1., 6.5, 3.], [1., np.nan, np.nan],
 : [np.nan, np.nan, np.nan], [np.nan, 6.5, 3.]])

In [27]: data
Out[27]:
 0 1 2
0 1.0 6.5 3.0
1 1.0 NaN NaN
2 NaN NaN NaN
3 NaN 6.5 3.0

In [28]: data.dropna()
Out[28]:
 0 1 2
0 1.0 6.5 3.0

Passing how="all" will drop only rows that are all NA:

In [29]: data.dropna(how="all")
Out[29]:
 0 1 2
0 1.0 6.5 3.0
1 1.0 NaN NaN
3 NaN 6.5 3.0

Keep in mind that these functions return new objects by default and do not modify
the contents of the original object.

To drop columns in the same way, pass axis="columns":

In [30]: data[4] = np.nan

In [31]: data
Out[31]:
 0 1 2 4
0 1.0 6.5 3.0 NaN
1 1.0 NaN NaN NaN
2 NaN NaN NaN NaN
3 NaN 6.5 3.0 NaN

In [32]: data.dropna(axis="columns", how="all")
Out[32]:
 0 1 2
0 1.0 6.5 3.0
1 1.0 NaN NaN
2 NaN NaN NaN
3 NaN 6.5 3.0

206 | Chapter 7: Data Cleaning and Preparation

Suppose you want to keep only rows containing at most a certain number of missing
observations. You can indicate this with the thresh argument:

In [33]: df = pd.DataFrame(np.random.standard_normal((7, 3)))

In [34]: df.iloc[:4, 1] = np.nan

In [35]: df.iloc[:2, 2] = np.nan

In [36]: df
Out[36]:
 0 1 2
0 -0.204708 NaN NaN
1 -0.555730 NaN NaN
2 0.092908 NaN 0.769023
3 1.246435 NaN -1.296221
4 0.274992 0.228913 1.352917
5 0.886429 -2.001637 -0.371843
6 1.669025 -0.438570 -0.539741

In [37]: df.dropna()
Out[37]:
 0 1 2
4 0.274992 0.228913 1.352917
5 0.886429 -2.001637 -0.371843
6 1.669025 -0.438570 -0.539741

In [38]: df.dropna(thresh=2)
Out[38]:
 0 1 2
2 0.092908 NaN 0.769023
3 1.246435 NaN -1.296221
4 0.274992 0.228913 1.352917
5 0.886429 -2.001637 -0.371843
6 1.669025 -0.438570 -0.539741

Filling In Missing Data
Rather than filtering out missing data (and potentially discarding other data along
with it), you may want to fill in the “holes” in any number of ways. For most
purposes, the fillna method is the workhorse function to use. Calling fillna with a
constant replaces missing values with that value:

In [39]: df.fillna(0)
Out[39]:
 0 1 2
0 -0.204708 0.000000 0.000000
1 -0.555730 0.000000 0.000000
2 0.092908 0.000000 0.769023
3 1.246435 0.000000 -1.296221
4 0.274992 0.228913 1.352917

7.1 Handling Missing Data | 207

5 0.886429 -2.001637 -0.371843
6 1.669025 -0.438570 -0.539741

Calling fillna with a dictionary, you can use a different fill value for each column:

In [40]: df.fillna({1: 0.5, 2: 0})
Out[40]:
 0 1 2
0 -0.204708 0.500000 0.000000
1 -0.555730 0.500000 0.000000
2 0.092908 0.500000 0.769023
3 1.246435 0.500000 -1.296221
4 0.274992 0.228913 1.352917
5 0.886429 -2.001637 -0.371843
6 1.669025 -0.438570 -0.539741

The same interpolation methods available for reindexing (see Table 5-3) can be used
with fillna:

In [41]: df = pd.DataFrame(np.random.standard_normal((6, 3)))

In [42]: df.iloc[2:, 1] = np.nan

In [43]: df.iloc[4:, 2] = np.nan

In [44]: df
Out[44]:
 0 1 2
0 0.476985 3.248944 -1.021228
1 -0.577087 0.124121 0.302614
2 0.523772 NaN 1.343810
3 -0.713544 NaN -2.370232
4 -1.860761 NaN NaN
5 -1.265934 NaN NaN

In [45]: df.fillna(method="ffill")
Out[45]:
 0 1 2
0 0.476985 3.248944 -1.021228
1 -0.577087 0.124121 0.302614
2 0.523772 0.124121 1.343810
3 -0.713544 0.124121 -2.370232
4 -1.860761 0.124121 -2.370232
5 -1.265934 0.124121 -2.370232

In [46]: df.fillna(method="ffill", limit=2)
Out[46]:
 0 1 2
0 0.476985 3.248944 -1.021228
1 -0.577087 0.124121 0.302614
2 0.523772 0.124121 1.343810
3 -0.713544 0.124121 -2.370232

208 | Chapter 7: Data Cleaning and Preparation

4 -1.860761 NaN -2.370232
5 -1.265934 NaN -2.370232

With fillna you can do lots of other things such as simple data imputation using the
median or mean statistics:

In [47]: data = pd.Series([1., np.nan, 3.5, np.nan, 7])

In [48]: data.fillna(data.mean())
Out[48]:
0 1.000000
1 3.833333
2 3.500000
3 3.833333
4 7.000000
dtype: float64

See Table 7-2 for a reference on fillna function arguments.

Table 7-2. fillna function arguments

Argument Description
value Scalar value or dictionary-like object to use to fill missing values
method Interpolation method: one of "bfill" (backward fill) or "ffill" (forward fill); default is None
axis Axis to fill on ("index" or "columns"); default is axis="index"
limit For forward and backward filling, maximum number of consecutive periods to fill

7.2 Data Transformation
So far in this chapter we’ve been concerned with handling missing data. Filtering,
cleaning, and other transformations are another class of important operations.

Removing Duplicates
Duplicate rows may be found in a DataFrame for any number of reasons. Here is an
example:

In [49]: data = pd.DataFrame({"k1": ["one", "two"] * 3 + ["two"],
 : "k2": [1, 1, 2, 3, 3, 4, 4]})

In [50]: data
Out[50]:
 k1 k2
0 one 1
1 two 1
2 one 2
3 two 3
4 one 3
5 two 4
6 two 4

7.2 Data Transformation | 209

The DataFrame method duplicated returns a Boolean Series indicating whether
each row is a duplicate (its column values are exactly equal to those in an earlier row)
or not:

In [51]: data.duplicated()
Out[51]:
0 False
1 False
2 False
3 False
4 False
5 False
6 True
dtype: bool

Relatedly, drop_duplicates returns a DataFrame with rows where the duplicated
array is False filtered out:

In [52]: data.drop_duplicates()
Out[52]:
 k1 k2
0 one 1
1 two 1
2 one 2
3 two 3
4 one 3
5 two 4

Both methods by default consider all of the columns; alternatively, you can specify
any subset of them to detect duplicates. Suppose we had an additional column of
values and wanted to filter duplicates based only on the "k1" column:

In [53]: data["v1"] = range(7)

In [54]: data
Out[54]:
 k1 k2 v1
0 one 1 0
1 two 1 1
2 one 2 2
3 two 3 3
4 one 3 4
5 two 4 5
6 two 4 6

In [55]: data.drop_duplicates(subset=["k1"])
Out[55]:
 k1 k2 v1
0 one 1 0
1 two 1 1

210 | Chapter 7: Data Cleaning and Preparation

duplicated and drop_duplicates by default keep the first observed value combina‐
tion. Passing keep="last" will return the last one:

In [56]: data.drop_duplicates(["k1", "k2"], keep="last")
Out[56]:
 k1 k2 v1
0 one 1 0
1 two 1 1
2 one 2 2
3 two 3 3
4 one 3 4
6 two 4 6

Transforming Data Using a Function or Mapping
For many datasets, you may wish to perform some transformation based on the
values in an array, Series, or column in a DataFrame. Consider the following hypo‐
thetical data collected about various kinds of meat:

In [57]: data = pd.DataFrame({"food": ["bacon", "pulled pork", "bacon",
 : "pastrami", "corned beef", "bacon",
 : "pastrami", "honey ham", "nova lox"],
 : "ounces": [4, 3, 12, 6, 7.5, 8, 3, 5, 6]})

In [58]: data
Out[58]:
 food ounces
0 bacon 4.0
1 pulled pork 3.0
2 bacon 12.0
3 pastrami 6.0
4 corned beef 7.5
5 bacon 8.0
6 pastrami 3.0
7 honey ham 5.0
8 nova lox 6.0

Suppose you wanted to add a column indicating the type of animal that each food
came from. Let’s write down a mapping of each distinct meat type to the kind of
animal:

meat_to_animal = {
 "bacon": "pig",
 "pulled pork": "pig",
 "pastrami": "cow",
 "corned beef": "cow",
 "honey ham": "pig",
 "nova lox": "salmon"
}

7.2 Data Transformation | 211

The map method on a Series (also discussed in “Function Application and Mapping”
on page 158) accepts a function or dictionary-like object containing a mapping to do
the transformation of values:

In [60]: data["animal"] = data["food"].map(meat_to_animal)

In [61]: data
Out[61]:
 food ounces animal
0 bacon 4.0 pig
1 pulled pork 3.0 pig
2 bacon 12.0 pig
3 pastrami 6.0 cow
4 corned beef 7.5 cow
5 bacon 8.0 pig
6 pastrami 3.0 cow
7 honey ham 5.0 pig
8 nova lox 6.0 salmon

We could also have passed a function that does all the work:

In [62]: def get_animal(x):
 : return meat_to_animal[x]

In [63]: data["food"].map(get_animal)
Out[63]:
0 pig
1 pig
2 pig
3 cow
4 cow
5 pig
6 cow
7 pig
8 salmon
Name: food, dtype: object

Using map is a convenient way to perform element-wise transformations and other
data cleaning-related operations.

Replacing Values
Filling in missing data with the fillna method is a special case of more general value
replacement. As you’ve already seen, map can be used to modify a subset of values
in an object, but replace provides a simpler and more flexible way to do so. Let’s
consider this Series:

In [64]: data = pd.Series([1., -999., 2., -999., -1000., 3.])

In [65]: data
Out[65]:
0 1.0

212 | Chapter 7: Data Cleaning and Preparation

1 -999.0
2 2.0
3 -999.0
4 -1000.0
5 3.0
dtype: float64

The -999 values might be sentinel values for missing data. To replace these with NA
values that pandas understands, we can use replace, producing a new Series:

In [66]: data.replace(-999, np.nan)
Out[66]:
0 1.0
1 NaN
2 2.0
3 NaN
4 -1000.0
5 3.0
dtype: float64

If you want to replace multiple values at once, you instead pass a list and then the
substitute value:

In [67]: data.replace([-999, -1000], np.nan)
Out[67]:
0 1.0
1 NaN
2 2.0
3 NaN
4 NaN
5 3.0
dtype: float64

To use a different replacement for each value, pass a list of substitutes:

In [68]: data.replace([-999, -1000], [np.nan, 0])
Out[68]:
0 1.0
1 NaN
2 2.0
3 NaN
4 0.0
5 3.0
dtype: float64

The argument passed can also be a dictionary:

In [69]: data.replace({-999: np.nan, -1000: 0})
Out[69]:
0 1.0
1 NaN
2 2.0
3 NaN
4 0.0

7.2 Data Transformation | 213

5 3.0
dtype: float64

The data.replace method is distinct from data.str.replace,
which performs element-wise string substitution. We look at these
string methods on Series later in the chapter.

Renaming Axis Indexes
Like values in a Series, axis labels can be similarly transformed by a function or
mapping of some form to produce new, differently labeled objects. You can also
modify the axes in place without creating a new data structure. Here’s a simple
example:

In [70]: data = pd.DataFrame(np.arange(12).reshape((3, 4)),
 : index=["Ohio", "Colorado", "New York"],
 : columns=["one", "two", "three", "four"])

Like a Series, the axis indexes have a map method:

In [71]: def transform(x):
 : return x[:4].upper()

In [72]: data.index.map(transform)
Out[72]: Index(['OHIO', 'COLO', 'NEW '], dtype='object')

You can assign to the index attribute, modifying the DataFrame in place:

In [73]: data.index = data.index.map(transform)

In [74]: data
Out[74]:
 one two three four
OHIO 0 1 2 3
COLO 4 5 6 7
NEW 8 9 10 11

If you want to create a transformed version of a dataset without modifying the
original, a useful method is rename:

In [75]: data.rename(index=str.title, columns=str.upper)
Out[75]:
 ONE TWO THREE FOUR
Ohio 0 1 2 3
Colo 4 5 6 7
New 8 9 10 11

Notably, rename can be used in conjunction with a dictionary-like object, providing
new values for a subset of the axis labels:

214 | Chapter 7: Data Cleaning and Preparation

In [76]: data.rename(index={"OHIO": "INDIANA"},
 : columns={"three": "peekaboo"})
Out[76]:
 one two peekaboo four
INDIANA 0 1 2 3
COLO 4 5 6 7
NEW 8 9 10 11

rename saves you from the chore of copying the DataFrame manually and assigning
new values to its index and columns attributes.

Discretization and Binning
Continuous data is often discretized or otherwise separated into “bins” for analysis.
Suppose you have data about a group of people in a study, and you want to group
them into discrete age buckets:

In [77]: ages = [20, 22, 25, 27, 21, 23, 37, 31, 61, 45, 41, 32]

Let’s divide these into bins of 18 to 25, 26 to 35, 36 to 60, and finally 61 and older. To
do so, you have to use pandas.cut:

In [78]: bins = [18, 25, 35, 60, 100]

In [79]: age_categories = pd.cut(ages, bins)

In [80]: age_categories
Out[80]:
[(18, 25], (18, 25], (18, 25], (25, 35], (18, 25], ..., (25, 35], (60, 100], (35,
 60], (35, 60], (25, 35]]
Length: 12
Categories (4, interval[int64, right]): [(18, 25] < (25, 35] < (35, 60] < (60, 10
0]]

The object pandas returns is a special Categorical object. The output you see
describes the bins computed by pandas.cut. Each bin is identified by a special
(unique to pandas) interval value type containing the lower and upper limit of each
bin:

In [81]: age_categories.codes
Out[81]: array([0, 0, 0, 1, 0, 0, 2, 1, 3, 2, 2, 1], dtype=int8)

In [82]: age_categories.categories
Out[82]: IntervalIndex([(18, 25], (25, 35], (35, 60], (60, 100]], dtype='interval
[int64, right]')

In [83]: age_categories.categories[0]
Out[83]: Interval(18, 25, closed='right')

In [84]: pd.value_counts(age_categories)
Out[84]:
(18, 25] 5

7.2 Data Transformation | 215

(25, 35] 3
(35, 60] 3
(60, 100] 1
dtype: int64

Note that pd.value_counts(categories) are the bin counts for the result of
pandas.cut.

In the string representation of an interval, a parenthesis means that the side is open
(exclusive), while the square bracket means it is closed (inclusive). You can change
which side is closed by passing right=False:

In [85]: pd.cut(ages, bins, right=False)
Out[85]:
[[18, 25), [18, 25), [25, 35), [25, 35), [18, 25), ..., [25, 35), [60, 100), [35,
 60), [35, 60), [25, 35)]
Length: 12
Categories (4, interval[int64, left]): [[18, 25) < [25, 35) < [35, 60) < [60, 100
)]

You can override the default interval-based bin labeling by passing a list or array to
the labels option:

In [86]: group_names = ["Youth", "YoungAdult", "MiddleAged", "Senior"]

In [87]: pd.cut(ages, bins, labels=group_names)
Out[87]:
['Youth', 'Youth', 'Youth', 'YoungAdult', 'Youth', ..., 'YoungAdult', 'Senior', '
MiddleAged', 'MiddleAged', 'YoungAdult']
Length: 12
Categories (4, object): ['Youth' < 'YoungAdult' < 'MiddleAged' < 'Senior']

If you pass an integer number of bins to pandas.cut instead of explicit bin edges, it
will compute equal-length bins based on the minimum and maximum values in the
data. Consider the case of some uniformly distributed data chopped into fourths:

In [88]: data = np.random.uniform(size=20)

In [89]: pd.cut(data, 4, precision=2)
Out[89]:
[(0.34, 0.55], (0.34, 0.55], (0.76, 0.97], (0.76, 0.97], (0.34, 0.55], ..., (0.34
, 0.55], (0.34, 0.55], (0.55, 0.76], (0.34, 0.55], (0.12, 0.34]]
Length: 20
Categories (4, interval[float64, right]): [(0.12, 0.34] < (0.34, 0.55] < (0.55, 0
.76] <
 (0.76, 0.97]]

The precision=2 option limits the decimal precision to two digits.

A closely related function, pandas.qcut, bins the data based on sample quantiles.
Depending on the distribution of the data, using pandas.cut will not usually result

216 | Chapter 7: Data Cleaning and Preparation

in each bin having the same number of data points. Since pandas.qcut uses sample
quantiles instead, you will obtain roughly equally sized bins:

In [90]: data = np.random.standard_normal(1000)

In [91]: quartiles = pd.qcut(data, 4, precision=2)

In [92]: quartiles
Out[92]:
[(-0.026, 0.62], (0.62, 3.93], (-0.68, -0.026], (0.62, 3.93], (-0.026, 0.62], ...
, (-0.68, -0.026], (-0.68, -0.026], (-2.96, -0.68], (0.62, 3.93], (-0.68, -0.026]
]
Length: 1000
Categories (4, interval[float64, right]): [(-2.96, -0.68] < (-0.68, -0.026] < (-0
.026, 0.62] <
 (0.62, 3.93]]

In [93]: pd.value_counts(quartiles)
Out[93]:
(-2.96, -0.68] 250
(-0.68, -0.026] 250
(-0.026, 0.62] 250
(0.62, 3.93] 250
dtype: int64

Similar to pandas.cut, you can pass your own quantiles (numbers between 0 and 1,
inclusive):

In [94]: pd.qcut(data, [0, 0.1, 0.5, 0.9, 1.]).value_counts()
Out[94]:
(-2.9499999999999997, -1.187] 100
(-1.187, -0.0265] 400
(-0.0265, 1.286] 400
(1.286, 3.928] 100
dtype: int64

We’ll return to pandas.cut and pandas.qcut later in the chapter during our dis‐
cussion of aggregation and group operations, as these discretization functions are
especially useful for quantile and group analysis.

Detecting and Filtering Outliers
Filtering or transforming outliers is largely a matter of applying array operations.
Consider a DataFrame with some normally distributed data:

In [95]: data = pd.DataFrame(np.random.standard_normal((1000, 4)))

In [96]: data.describe()
Out[96]:
 0 1 2 3
count 1000.000000 1000.000000 1000.000000 1000.000000
mean 0.049091 0.026112 -0.002544 -0.051827

7.2 Data Transformation | 217

std 0.996947 1.007458 0.995232 0.998311
min -3.645860 -3.184377 -3.745356 -3.428254
25% -0.599807 -0.612162 -0.687373 -0.747478
50% 0.047101 -0.013609 -0.022158 -0.088274
75% 0.756646 0.695298 0.699046 0.623331
max 2.653656 3.525865 2.735527 3.366626

Suppose you wanted to find values in one of the columns exceeding 3 in absolute
value:

In [97]: col = data[2]

In [98]: col[col.abs() > 3]
Out[98]:
41 -3.399312
136 -3.745356
Name: 2, dtype: float64

To select all rows having a value exceeding 3 or –3, you can use the any method on a
Boolean DataFrame:

In [99]: data[(data.abs() > 3).any(axis="columns")]
Out[99]:
 0 1 2 3
41 0.457246 -0.025907 -3.399312 -0.974657
60 1.951312 3.260383 0.963301 1.201206
136 0.508391 -0.196713 -3.745356 -1.520113
235 -0.242459 -3.056990 1.918403 -0.578828
258 0.682841 0.326045 0.425384 -3.428254
322 1.179227 -3.184377 1.369891 -1.074833
544 -3.548824 1.553205 -2.186301 1.277104
635 -0.578093 0.193299 1.397822 3.366626
782 -0.207434 3.525865 0.283070 0.544635
803 -3.645860 0.255475 -0.549574 -1.907459

The parentheses around data.abs() > 3 are necessary in order to call the any
method on the result of the comparison operation.

Values can be set based on these criteria. Here is code to cap values outside the
interval –3 to 3:

In [100]: data[data.abs() > 3] = np.sign(data) * 3

In [101]: data.describe()
Out[101]:
 0 1 2 3
count 1000.000000 1000.000000 1000.000000 1000.000000
mean 0.050286 0.025567 -0.001399 -0.051765
std 0.992920 1.004214 0.991414 0.995761
min -3.000000 -3.000000 -3.000000 -3.000000
25% -0.599807 -0.612162 -0.687373 -0.747478
50% 0.047101 -0.013609 -0.022158 -0.088274

218 | Chapter 7: Data Cleaning and Preparation

75% 0.756646 0.695298 0.699046 0.623331
max 2.653656 3.000000 2.735527 3.000000

The statement np.sign(data) produces 1 and –1 values based on whether the values
in data are positive or negative:

In [102]: np.sign(data).head()
Out[102]:
 0 1 2 3
0 -1.0 1.0 -1.0 1.0
1 1.0 -1.0 1.0 -1.0
2 1.0 1.0 1.0 -1.0
3 -1.0 -1.0 1.0 -1.0
4 -1.0 1.0 -1.0 -1.0

Permutation and Random Sampling
Permuting (randomly reordering) a Series or the rows in a DataFrame is possible
using the numpy.random.permutation function. Calling permutation with the length
of the axis you want to permute produces an array of integers indicating the new
ordering:

In [103]: df = pd.DataFrame(np.arange(5 * 7).reshape((5, 7)))

In [104]: df
Out[104]:
 0 1 2 3 4 5 6
0 0 1 2 3 4 5 6
1 7 8 9 10 11 12 13
2 14 15 16 17 18 19 20
3 21 22 23 24 25 26 27
4 28 29 30 31 32 33 34

In [105]: sampler = np.random.permutation(5)

In [106]: sampler
Out[106]: array([3, 1, 4, 2, 0])

That array can then be used in iloc-based indexing or the equivalent take function:

In [107]: df.take(sampler)
Out[107]:
 0 1 2 3 4 5 6
3 21 22 23 24 25 26 27
1 7 8 9 10 11 12 13
4 28 29 30 31 32 33 34
2 14 15 16 17 18 19 20
0 0 1 2 3 4 5 6

In [108]: df.iloc[sampler]
Out[108]:
 0 1 2 3 4 5 6

7.2 Data Transformation | 219

3 21 22 23 24 25 26 27
1 7 8 9 10 11 12 13
4 28 29 30 31 32 33 34
2 14 15 16 17 18 19 20
0 0 1 2 3 4 5 6

By invoking take with axis="columns", we could also select a permutation of the
columns:

In [109]: column_sampler = np.random.permutation(7)

In [110]: column_sampler
Out[110]: array([4, 6, 3, 2, 1, 0, 5])

In [111]: df.take(column_sampler, axis="columns")
Out[111]:
 4 6 3 2 1 0 5
0 4 6 3 2 1 0 5
1 11 13 10 9 8 7 12
2 18 20 17 16 15 14 19
3 25 27 24 23 22 21 26
4 32 34 31 30 29 28 33

To select a random subset without replacement (the same row cannot appear twice),
you can use the sample method on Series and DataFrame:

In [112]: df.sample(n=3)
Out[112]:
 0 1 2 3 4 5 6
2 14 15 16 17 18 19 20
4 28 29 30 31 32 33 34
0 0 1 2 3 4 5 6

To generate a sample with replacement (to allow repeat choices), pass replace=True
to sample:

In [113]: choices = pd.Series([5, 7, -1, 6, 4])

In [114]: choices.sample(n=10, replace=True)
Out[114]:
2 -1
0 5
3 6
1 7
4 4
0 5
4 4
0 5
4 4
4 4
dtype: int64

220 | Chapter 7: Data Cleaning and Preparation

Computing Indicator/Dummy Variables
Another type of transformation for statistical modeling or machine learning applica‐
tions is converting a categorical variable into a dummy or indicator matrix. If a col‐
umn in a DataFrame has k distinct values, you would derive a matrix or DataFrame
with k columns containing all 1s and 0s. pandas has a pandas.get_dummies function
for doing this, though you could also devise one yourself. Let’s consider an example
DataFrame:

In [115]: df = pd.DataFrame({"key": ["b", "b", "a", "c", "a", "b"],
 : "data1": range(6)})

In [116]: df
Out[116]:
 key data1
0 b 0
1 b 1
2 a 2
3 c 3
4 a 4
5 b 5

In [117]: pd.get_dummies(df["key"])
Out[117]:
 a b c
0 0 1 0
1 0 1 0
2 1 0 0
3 0 0 1
4 1 0 0
5 0 1 0

In some cases, you may want to add a prefix to the columns in the indicator Data‐
Frame, which can then be merged with the other data. pandas.get_dummies has a
prefix argument for doing this:

In [118]: dummies = pd.get_dummies(df["key"], prefix="key")

In [119]: df_with_dummy = df[["data1"]].join(dummies)

In [120]: df_with_dummy
Out[120]:
 data1 key_a key_b key_c
0 0 0 1 0
1 1 0 1 0
2 2 1 0 0
3 3 0 0 1
4 4 1 0 0
5 5 0 1 0

The DataFrame.join method will be explained in more detail in the next chapter.

7.2 Data Transformation | 221

If a row in a DataFrame belongs to multiple categories, we have to use a different
approach to create the dummy variables. Let’s look at the MovieLens 1M dataset,
which is investigated in more detail in Chapter 13:

In [121]: mnames = ["movie_id", "title", "genres"]

In [122]: movies = pd.read_table("datasets/movielens/movies.dat", sep="::",
 : header=None, names=mnames, engine="python")

In [123]: movies[:10]
Out[123]:
 movie_id title genres
0 1 Toy Story (1995) Animation|Children's|Comedy
1 2 Jumanji (1995) Adventure|Children's|Fantasy
2 3 Grumpier Old Men (1995) Comedy|Romance
3 4 Waiting to Exhale (1995) Comedy|Drama
4 5 Father of the Bride Part II (1995) Comedy
5 6 Heat (1995) Action|Crime|Thriller
6 7 Sabrina (1995) Comedy|Romance
7 8 Tom and Huck (1995) Adventure|Children's
8 9 Sudden Death (1995) Action
9 10 GoldenEye (1995) Action|Adventure|Thriller

pandas has implemented a special Series method str.get_dummies (methods that
start with str. are discussed in more detail later in Section 7.4, “String Manipula‐
tion,” on page 227) that handles this scenario of multiple group membership encoded
as a delimited string:

In [124]: dummies = movies["genres"].str.get_dummies("|")

In [125]: dummies.iloc[:10, :6]
Out[125]:
 Action Adventure Animation Children's Comedy Crime
0 0 0 1 1 1 0
1 0 1 0 1 0 0
2 0 0 0 0 1 0
3 0 0 0 0 1 0
4 0 0 0 0 1 0
5 1 0 0 0 0 1
6 0 0 0 0 1 0
7 0 1 0 1 0 0
8 1 0 0 0 0 0
9 1 1 0 0 0 0

Then, as before, you can combine this with movies while adding a "Genre_" to the
column names in the dummies DataFrame with the add_prefix method:

In [126]: movies_windic = movies.join(dummies.add_prefix("Genre_"))

In [127]: movies_windic.iloc[0]
Out[127]:
movie_id 1

222 | Chapter 7: Data Cleaning and Preparation

title Toy Story (1995)
genres Animation|Children's|Comedy
Genre_Action 0
Genre_Adventure 0
Genre_Animation 1
Genre_Children's 1
Genre_Comedy 1
Genre_Crime 0
Genre_Documentary 0
Genre_Drama 0
Genre_Fantasy 0
Genre_Film-Noir 0
Genre_Horror 0
Genre_Musical 0
Genre_Mystery 0
Genre_Romance 0
Genre_Sci-Fi 0
Genre_Thriller 0
Genre_War 0
Genre_Western 0
Name: 0, dtype: object

For much larger data, this method of constructing indicator vari‐
ables with multiple membership is not especially speedy. It would
be better to write a lower-level function that writes directly to a
NumPy array, and then wrap the result in a DataFrame.

A useful recipe for statistical applications is to combine pandas.get_dummies with a
discretization function like pandas.cut:

In [128]: np.random.seed(12345) # to make the example repeatable

In [129]: values = np.random.uniform(size=10)

In [130]: values
Out[130]:
array([0.9296, 0.3164, 0.1839, 0.2046, 0.5677, 0.5955, 0.9645, 0.6532,
 0.7489, 0.6536])

In [131]: bins = [0, 0.2, 0.4, 0.6, 0.8, 1]

In [132]: pd.get_dummies(pd.cut(values, bins))
Out[132]:
 (0.0, 0.2] (0.2, 0.4] (0.4, 0.6] (0.6, 0.8] (0.8, 1.0]
0 0 0 0 0 1
1 0 1 0 0 0
2 1 0 0 0 0
3 0 1 0 0 0
4 0 0 1 0 0
5 0 0 1 0 0

7.2 Data Transformation | 223

6 0 0 0 0 1
7 0 0 0 1 0
8 0 0 0 1 0
9 0 0 0 1 0

We will look again at pandas.get_dummies later in “Creating dummy variables for
modeling” on page 245.

7.3 Extension Data Types
This is a newer and more advanced topic that many pandas users
do not need to know a lot about, but I present it here for complete‐
ness since I will reference and use extension data types in various
places in the upcoming chapters.

pandas was originally built upon the capabilities present in NumPy, an array comput‐
ing library used primarily for working with numerical data. Many pandas concepts,
such as missing data, were implemented using what was available in NumPy while
trying to maximize compatibility between libraries that used NumPy and pandas
together.

Building on NumPy led to a number of shortcomings, such as:

• Missing data handling for some numerical data types, such as integers and Boo‐•
leans, was incomplete. As a result, when missing data was introduced into such
data, pandas converted the data type to float64 and used np.nan to represent
null values. This had compounding effects by introducing subtle issues into many
pandas algorithms.

• Datasets with a lot of string data were computationally expensive and used a lot•
of memory.

• Some data types, like time intervals, timedeltas, and timestamps with time zones,•
could not be supported efficiently without using computationally expensive
arrays of Python objects.

More recently, pandas has developed an extension type system allowing for new data
types to be added even if they are not supported natively by NumPy. These new data
types can be treated as first class alongside data coming from NumPy arrays.

Let’s look at an example where we create a Series of integers with a missing value:

In [133]: s = pd.Series([1, 2, 3, None])

In [134]: s
Out[134]:
0 1.0

224 | Chapter 7: Data Cleaning and Preparation

1 2.0
2 3.0
3 NaN
dtype: float64

In [135]: s.dtype
Out[135]: dtype('float64')

Mainly for backward compatibility reasons, Series uses the legacy behavior of using
a float64 data type and np.nan for the missing value. We could create this Series
instead using pandas.Int64Dtype:

In [136]: s = pd.Series([1, 2, 3, None], dtype=pd.Int64Dtype())

In [137]: s
Out[137]:
0 1
1 2
2 3
3 <NA>
dtype: Int64

In [138]: s.isna()
Out[138]:
0 False
1 False
2 False
3 True
dtype: bool

In [139]: s.dtype
Out[139]: Int64Dtype()

The output <NA> indicates that a value is missing for an extension type array. This
uses the special pandas.NA sentinel value:

In [140]: s[3]
Out[140]: <NA>

In [141]: s[3] is pd.NA
Out[141]: True

We also could have used the shorthand "Int64" instead of pd.Int64Dtype() to
specify the type. The capitalization is necessary, otherwise it will be a NumPy-based
nonextension type:

In [142]: s = pd.Series([1, 2, 3, None], dtype="Int64")

7.3 Extension Data Types | 225

pandas also has an extension type specialized for string data that does not use
NumPy object arrays (it requires the pyarrow library, which you may need to install
separately):

In [143]: s = pd.Series(['one', 'two', None, 'three'], dtype=pd.StringDtype())

In [144]: s
Out[144]:
0 one
1 two
2 <NA>
3 three
dtype: string

These string arrays generally use much less memory and are frequently computation‐
ally more efficient for doing operations on large datasets.

Another important extension type is Categorical, which we discuss in more detail in
Section 7.5, “Categorical Data,” on page 235. A reasonably complete list of extension
types available as of this writing is in Table 7-3.

Extension types can be passed to the Series astype method, allowing you to convert
easily as part of your data cleaning process:

In [145]: df = pd.DataFrame({"A": [1, 2, None, 4],
 : "B": ["one", "two", "three", None],
 : "C": [False, None, False, True]})

In [146]: df
Out[146]:
 A B C
0 1.0 one False
1 2.0 two None
2 NaN three False
3 4.0 None True

In [147]: df["A"] = df["A"].astype("Int64")

In [148]: df["B"] = df["B"].astype("string")

In [149]: df["C"] = df["C"].astype("boolean")

In [150]: df
Out[150]:
 A B C
0 1 one False
1 2 two <NA>
2 <NA> three False
3 4 <NA> True

226 | Chapter 7: Data Cleaning and Preparation

Table 7-3. pandas extension data types

Extension type Description
BooleanDtype Nullable Boolean data, use "boolean" when passing as string
CategoricalDtype Categorical data type, use "category" when passing as string
DatetimeTZDtype Datetime with time zone
Float32Dtype 32-bit nullable floating point, use "Float32" when passing as string
Float64Dtype 64-bit nullable floating point, use "Float64" when passing as string
Int8Dtype 8-bit nullable signed integer, use "Int8" when passing as string
Int16Dtype 16-bit nullable signed integer, use "Int16" when passing as string
Int32Dtype 32-bit nullable signed integer, use "Int32" when passing as string
Int64Dtype 64-bit nullable signed integer, use "Int64" when passing as string
UInt8Dtype 8-bit nullable unsigned integer, use "UInt8" when passing as string
UInt16Dtype 16-bit nullable unsigned integer, use "UInt16" when passing as string
UInt32Dtype 32-bit nullable unsigned integer, use "UInt32" when passing as string
UInt64Dtype 64-bit nullable unsigned integer, use "UInt64" when passing as string

7.4 String Manipulation
Python has long been a popular raw data manipulation language in part due to its
ease of use for string and text processing. Most text operations are made simple
with the string object’s built-in methods. For more complex pattern matching and
text manipulations, regular expressions may be needed. pandas adds to the mix by
enabling you to apply string and regular expressions concisely on whole arrays of
data, additionally handling the annoyance of missing data.

Python Built-In String Object Methods
In many string munging and scripting applications, built-in string methods are
sufficient. As an example, a comma-separated string can be broken into pieces with
split:

In [151]: val = "a,b, guido"

In [152]: val.split(",")
Out[152]: ['a', 'b', ' guido']

split is often combined with strip to trim whitespace (including line breaks):

In [153]: pieces = [x.strip() for x in val.split(",")]

In [154]: pieces
Out[154]: ['a', 'b', 'guido']

7.4 String Manipulation | 227

These substrings could be concatenated together with a two-colon delimiter using
addition:

In [155]: first, second, third = pieces

In [156]: first + "::" + second + "::" + third
Out[156]: 'a::b::guido'

But this isn’t a practical generic method. A faster and more Pythonic way is to pass a
list or tuple to the join method on the string "::":

In [157]: "::".join(pieces)
Out[157]: 'a::b::guido'

Other methods are concerned with locating substrings. Using Python’s in keyword is
the best way to detect a substring, though index and find can also be used:

In [158]: "guido" in val
Out[158]: True

In [159]: val.index(",")
Out[159]: 1

In [160]: val.find(":")
Out[160]: -1

Note that the difference between find and index is that index raises an exception if
the string isn’t found (versus returning –1):

In [161]: val.index(":")

ValueError Traceback (most recent call last)
<ipython-input-161-bea4c4c30248> in <module>
----> 1 val.index(":")
ValueError: substring not found

Relatedly, count returns the number of occurrences of a particular substring:

In [162]: val.count(",")
Out[162]: 2

replace will substitute occurrences of one pattern for another. It is commonly used
to delete patterns, too, by passing an empty string:

In [163]: val.replace(",", "::")
Out[163]: 'a::b:: guido'

In [164]: val.replace(",", "")
Out[164]: 'ab guido'

See Table 7-4 for a listing of some of Python’s string methods.

Regular expressions can also be used with many of these operations, as you’ll see.

228 | Chapter 7: Data Cleaning and Preparation

Table 7-4. Python built-in string methods

Method Description
count Return the number of nonoverlapping occurrences of substring in the string
endswith Return True if string ends with suffix
startswith Return True if string starts with prefix
join Use string as delimiter for concatenating a sequence of other strings
index Return starting index of the first occurrence of passed substring if found in the string; otherwise, raises

ValueError if not found
find Return position of first character of first occurrence of substring in the string; like index, but returns –1 if

not found
rfind Return position of first character of last occurrence of substring in the string; returns –1 if not found
replace Replace occurrences of string with another string
strip,

rstrip,

lstrip

Trim whitespace, including newlines on both sides, on the right side, or on the left side, respectively

split Break string into list of substrings using passed delimiter
lower Convert alphabet characters to lowercase
upper Convert alphabet characters to uppercase
casefold Convert characters to lowercase, and convert any region-specific variable character combinations to a

common comparable form
ljust,

rjust

Left justify or right justify, respectively; pad opposite side of string with spaces (or some other fill
character) to return a string with a minimum width

Regular Expressions
Regular expressions provide a flexible way to search or match (often more complex)
string patterns in text. A single expression, commonly called a regex, is a string
formed according to the regular expression language. Python’s built-in re module is
responsible for applying regular expressions to strings; I’ll give a number of examples
of its use here.

The art of writing regular expressions could be a chapter of its own
and thus is outside the book’s scope. There are many excellent tuto‐
rials and references available on the internet and in other books.

The re module functions fall into three categories: pattern matching, substitution,
and splitting. Naturally these are all related; a regex describes a pattern to locate in
the text, which can then be used for many purposes. Let’s look at a simple example:
suppose we wanted to split a string with a variable number of whitespace characters
(tabs, spaces, and newlines).

7.4 String Manipulation | 229

The regex describing one or more whitespace characters is \s+:

In [165]: import re

In [166]: text = "foo bar\t baz \tqux"

In [167]: re.split(r"\s+", text)
Out[167]: ['foo', 'bar', 'baz', 'qux']

When you call re.split(r"\s+", text), the regular expression is first compiled, and
then its split method is called on the passed text. You can compile the regex yourself
with re.compile, forming a reusable regex object:

In [168]: regex = re.compile(r"\s+")

In [169]: regex.split(text)
Out[169]: ['foo', 'bar', 'baz', 'qux']

If, instead, you wanted to get a list of all patterns matching the regex, you can use the
findall method:

In [170]: regex.findall(text)
Out[170]: [' ', '\t ', ' \t']

To avoid unwanted escaping with \ in a regular expression, use raw
string literals like r"C:\x" instead of the equivalent "C:\\x".

Creating a regex object with re.compile is highly recommended if you intend to
apply the same expression to many strings; doing so will save CPU cycles.

match and search are closely related to findall. While findall returns all matches
in a string, search returns only the first match. More rigidly, match only matches at
the beginning of the string. As a less trivial example, let’s consider a block of text and
a regular expression capable of identifying most email addresses:

text = """Dave dave@google.com
Steve steve@gmail.com
Rob rob@gmail.com
Ryan ryan@yahoo.com"""
pattern = r"[A-Z0-9._%+-]+@[A-Z0-9.-]+\.[A-Z]{2,4}"

re.IGNORECASE makes the regex case insensitive
regex = re.compile(pattern, flags=re.IGNORECASE)

Using findall on the text produces a list of the email addresses:

In [172]: regex.findall(text)
Out[172]:
['dave@google.com',

230 | Chapter 7: Data Cleaning and Preparation

 'steve@gmail.com',
 'rob@gmail.com',
 'ryan@yahoo.com']

search returns a special match object for the first email address in the text. For the
preceding regex, the match object can only tell us the start and end position of the
pattern in the string:

In [173]: m = regex.search(text)

In [174]: m
Out[174]: <re.Match object; span=(5, 20), match='dave@google.com'>

In [175]: text[m.start():m.end()]
Out[175]: 'dave@google.com'

regex.match returns None, as it will match only if the pattern occurs at the start of the
string:

In [176]: print(regex.match(text))
None

Relatedly, sub will return a new string with occurrences of the pattern replaced by a
new string:

In [177]: print(regex.sub("REDACTED", text))
Dave REDACTED
Steve REDACTED
Rob REDACTED
Ryan REDACTED

Suppose you wanted to find email addresses and simultaneously segment each
address into its three components: username, domain name, and domain suffix. To
do this, put parentheses around the parts of the pattern to segment:

In [178]: pattern = r"([A-Z0-9._%+-]+)@([A-Z0-9.-]+)\.([A-Z]{2,4})"

In [179]: regex = re.compile(pattern, flags=re.IGNORECASE)

A match object produced by this modified regex returns a tuple of the pattern
components with its groups method:

In [180]: m = regex.match("wesm@bright.net")

In [181]: m.groups()
Out[181]: ('wesm', 'bright', 'net')

findall returns a list of tuples when the pattern has groups:

In [182]: regex.findall(text)
Out[182]:
[('dave', 'google', 'com'),
 ('steve', 'gmail', 'com'),

7.4 String Manipulation | 231

 ('rob', 'gmail', 'com'),
 ('ryan', 'yahoo', 'com')]

sub also has access to groups in each match using special symbols like \1 and \2. The
symbol \1 corresponds to the first matched group, \2 corresponds to the second, and
so forth:

In [183]: print(regex.sub(r"Username: \1, Domain: \2, Suffix: \3", text))
Dave Username: dave, Domain: google, Suffix: com
Steve Username: steve, Domain: gmail, Suffix: com
Rob Username: rob, Domain: gmail, Suffix: com
Ryan Username: ryan, Domain: yahoo, Suffix: com

There is much more to regular expressions in Python, most of which is outside the
book’s scope. Table 7-5 provides a brief summary.

Table 7-5. Regular expression methods

Method Description
findall Return all nonoverlapping matching patterns in a string as a list
finditer Like findall, but returns an iterator
match Match pattern at start of string and optionally segment pattern components into groups; if the pattern

matches, return a match object, and otherwise None
search Scan string for match to pattern, returning a match object if so; unlike match, the match can be anywhere in

the string as opposed to only at the beginning
split Break string into pieces at each occurrence of pattern
sub, subn Replace all (sub) or first n occurrences (subn) of pattern in string with replacement expression; use symbols

\1, \2, ... to refer to match group elements in the replacement string

String Functions in pandas
Cleaning up a messy dataset for analysis often requires a lot of string manipulation.
To complicate matters, a column containing strings will sometimes have missing data:

In [184]: data = {"Dave": "dave@google.com", "Steve": "steve@gmail.com",
 : "Rob": "rob@gmail.com", "Wes": np.nan}

In [185]: data = pd.Series(data)

In [186]: data
Out[186]:
Dave dave@google.com
Steve steve@gmail.com
Rob rob@gmail.com
Wes NaN
dtype: object

In [187]: data.isna()
Out[187]:
Dave False

232 | Chapter 7: Data Cleaning and Preparation

Steve False
Rob False
Wes True
dtype: bool

String and regular expression methods can be applied (passing a lambda or other
function) to each value using data.map, but it will fail on the NA (null) values.
To cope with this, Series has array-oriented methods for string operations that skip
over and propagate NA values. These are accessed through Series’s str attribute;
for example, we could check whether each email address has "gmail" in it with
str.contains:

In [188]: data.str.contains("gmail")
Out[188]:
Dave False
Steve True
Rob True
Wes NaN
dtype: object

Note that the result of this operation has an object dtype. pandas has extension types
that provide for specialized treatment of strings, integers, and Boolean data which
until recently have had some rough edges when working with missing data:

In [189]: data_as_string_ext = data.astype('string')

In [190]: data_as_string_ext
Out[190]:
Dave dave@google.com
Steve steve@gmail.com
Rob rob@gmail.com
Wes <NA>
dtype: string

In [191]: data_as_string_ext.str.contains("gmail")
Out[191]:
Dave False
Steve True
Rob True
Wes <NA>
dtype: boolean

Extension types are discussed in more detail in Section 7.3, “Extension Data Types,”
on page 224.

Regular expressions can be used, too, along with any re options like IGNORECASE:

In [192]: pattern = r"([A-Z0-9._%+-]+)@([A-Z0-9.-]+)\.([A-Z]{2,4})"

In [193]: data.str.findall(pattern, flags=re.IGNORECASE)
Out[193]:
Dave [(dave, google, com)]

7.4 String Manipulation | 233

Steve [(steve, gmail, com)]
Rob [(rob, gmail, com)]
Wes NaN
dtype: object

There are a couple of ways to do vectorized element retrieval. Either use str.get or
index into the str attribute:

In [194]: matches = data.str.findall(pattern, flags=re.IGNORECASE).str[0]

In [195]: matches
Out[195]:
Dave (dave, google, com)
Steve (steve, gmail, com)
Rob (rob, gmail, com)
Wes NaN
dtype: object

In [196]: matches.str.get(1)
Out[196]:
Dave google
Steve gmail
Rob gmail
Wes NaN
dtype: object

You can similarly slice strings using this syntax:

In [197]: data.str[:5]
Out[197]:
Dave dave@
Steve steve
Rob rob@g
Wes NaN
dtype: object

The str.extract method will return the captured groups of a regular expression as a
DataFrame:

In [198]: data.str.extract(pattern, flags=re.IGNORECASE)
Out[198]:
 0 1 2
Dave dave google com
Steve steve gmail com
Rob rob gmail com
Wes NaN NaN NaN

See Table 7-6 for more pandas string methods.

234 | Chapter 7: Data Cleaning and Preparation

Table 7-6. Partial listing of Series string methods

Method Description
cat Concatenate strings element-wise with optional delimiter
contains Return Boolean array if each string contains pattern/regex
count Count occurrences of pattern
extract Use a regular expression with groups to extract one or more strings from a Series of strings; the result

will be a DataFrame with one column per group

endswith Equivalent to x.endswith(pattern) for each element
startswith Equivalent to x.startswith(pattern) for each element
findall Compute list of all occurrences of pattern/regex for each string
get Index into each element (retrieve i-th element)
isalnum Equivalent to built-in str.alnum
isalpha Equivalent to built-in str.isalpha
isdecimal Equivalent to built-in str.isdecimal
isdigit Equivalent to built-in str.isdigit
islower Equivalent to built-in str.islower
isnumeric Equivalent to built-in str.isnumeric
isupper Equivalent to built-in str.isupper
join Join strings in each element of the Series with passed separator
len Compute length of each string
lower, upper Convert cases; equivalent to x.lower() or x.upper() for each element
match Use re.match with the passed regular expression on each element, returning True or False

whether it matches
pad Add whitespace to left, right, or both sides of strings
center Equivalent to pad(side="both")
repeat Duplicate values (e.g., s.str.repeat(3) is equivalent to x * 3 for each string)
replace Replace occurrences of pattern/regex with some other string
slice Slice each string in the Series
split Split strings on delimiter or regular expression
strip Trim whitespace from both sides, including newlines
rstrip Trim whitespace on right side
lstrip Trim whitespace on left side

7.5 Categorical Data
This section introduces the pandas Categorical type. I will show how you can
achieve better performance and memory use in some pandas operations by using it.
I also introduce some tools that may help with using categorical data in statistics and
machine learning applications.

7.5 Categorical Data | 235

Background and Motivation
Frequently, a column in a table may contain repeated instances of a smaller set of
distinct values. We have already seen functions like unique and value_counts, which
enable us to extract the distinct values from an array and compute their frequencies,
respectively:

In [199]: values = pd.Series(['apple', 'orange', 'apple',
 : 'apple'] * 2)

In [200]: values
Out[200]:
0 apple
1 orange
2 apple
3 apple
4 apple
5 orange
6 apple
7 apple
dtype: object

In [201]: pd.unique(values)
Out[201]: array(['apple', 'orange'], dtype=object)

In [202]: pd.value_counts(values)
Out[202]:
apple 6
orange 2
dtype: int64

Many data systems (for data warehousing, statistical computing, or other uses) have
developed specialized approaches for representing data with repeated values for more
efficient storage and computation. In data warehousing, a best practice is to use
so-called dimension tables containing the distinct values and storing the primary
observations as integer keys referencing the dimension table:

In [203]: values = pd.Series([0, 1, 0, 0] * 2)

In [204]: dim = pd.Series(['apple', 'orange'])

In [205]: values
Out[205]:
0 0
1 1
2 0
3 0
4 0
5 1
6 0
7 0

236 | Chapter 7: Data Cleaning and Preparation

dtype: int64

In [206]: dim
Out[206]:
0 apple
1 orange
dtype: object

We can use the take method to restore the original Series of strings:

In [207]: dim.take(values)
Out[207]:
0 apple
1 orange
0 apple
0 apple
0 apple
1 orange
0 apple
0 apple
dtype: object

This representation as integers is called the categorical or dictionary-encoded repre‐
sentation. The array of distinct values can be called the categories, dictionary, or levels
of the data. In this book we will use the terms categorical and categories. The integer
values that reference the categories are called the category codes or simply codes.

The categorical representation can yield significant performance improvements when
you are doing analytics. You can also perform transformations on the categories while
leaving the codes unmodified. Some example transformations that can be made at
relatively low cost are:

• Renaming categories•
• Appending a new category without changing the order or position of the existing•

categories

Categorical Extension Type in pandas
pandas has a special Categorical extension type for holding data that uses the
integer-based categorical representation or encoding. This is a popular data compres‐
sion technique for data with many occurrences of similar values and can provide
significantly faster performance with lower memory use, especially for string data.

Let’s consider the example Series from before:

In [208]: fruits = ['apple', 'orange', 'apple', 'apple'] * 2

In [209]: N = len(fruits)

In [210]: rng = np.random.default_rng(seed=12345)

7.5 Categorical Data | 237

In [211]: df = pd.DataFrame({'fruit': fruits,
 : 'basket_id': np.arange(N),
 : 'count': rng.integers(3, 15, size=N),
 : 'weight': rng.uniform(0, 4, size=N)},
 : columns=['basket_id', 'fruit', 'count', 'weight'])

In [212]: df
Out[212]:
 basket_id fruit count weight
0 0 apple 11 1.564438
1 1 orange 5 1.331256
2 2 apple 12 2.393235
3 3 apple 6 0.746937
4 4 apple 5 2.691024
5 5 orange 12 3.767211
6 6 apple 10 0.992983
7 7 apple 11 3.795525

Here, df['fruit'] is an array of Python string objects. We can convert it to categori‐
cal by calling:

In [213]: fruit_cat = df['fruit'].astype('category')

In [214]: fruit_cat
Out[214]:
0 apple
1 orange
2 apple
3 apple
4 apple
5 orange
6 apple
7 apple
Name: fruit, dtype: category
Categories (2, object): ['apple', 'orange']

The values for fruit_cat are now an instance of pandas.Categorical, which you
can access via the .array attribute:

In [215]: c = fruit_cat.array

In [216]: type(c)
Out[216]: pandas.core.arrays.categorical.Categorical

The Categorical object has categories and codes attributes:

In [217]: c.categories
Out[217]: Index(['apple', 'orange'], dtype='object')

In [218]: c.codes
Out[218]: array([0, 1, 0, 0, 0, 1, 0, 0], dtype=int8)

238 | Chapter 7: Data Cleaning and Preparation

These can be accessed more easily using the cat accessor, which will be explained
soon in “Categorical Methods” on page 242.

A useful trick to get a mapping between codes and categories is:

In [219]: dict(enumerate(c.categories))
Out[219]: {0: 'apple', 1: 'orange'}

You can convert a DataFrame column to categorical by assigning the converted result:

In [220]: df['fruit'] = df['fruit'].astype('category')

In [221]: df["fruit"]
Out[221]:
0 apple
1 orange
2 apple
3 apple
4 apple
5 orange
6 apple
7 apple
Name: fruit, dtype: category
Categories (2, object): ['apple', 'orange']

You can also create pandas.Categorical directly from other types of Python
sequences:

In [222]: my_categories = pd.Categorical(['foo', 'bar', 'baz', 'foo', 'bar'])

In [223]: my_categories
Out[223]:
['foo', 'bar', 'baz', 'foo', 'bar']
Categories (3, object): ['bar', 'baz', 'foo']

If you have obtained categorical encoded data from another source, you can use the
alternative from_codes constructor:

In [224]: categories = ['foo', 'bar', 'baz']

In [225]: codes = [0, 1, 2, 0, 0, 1]

In [226]: my_cats_2 = pd.Categorical.from_codes(codes, categories)

In [227]: my_cats_2
Out[227]:
['foo', 'bar', 'baz', 'foo', 'foo', 'bar']
Categories (3, object): ['foo', 'bar', 'baz']

Unless explicitly specified, categorical conversions assume no specific ordering of the
categories. So the categories array may be in a different order depending on the
ordering of the input data. When using from_codes or any of the other constructors,
you can indicate that the categories have a meaningful ordering:

7.5 Categorical Data | 239

In [228]: ordered_cat = pd.Categorical.from_codes(codes, categories,
 : ordered=True)

In [229]: ordered_cat
Out[229]:
['foo', 'bar', 'baz', 'foo', 'foo', 'bar']
Categories (3, object): ['foo' < 'bar' < 'baz']

The output [foo < bar < baz] indicates that 'foo' precedes 'bar' in the ordering,
and so on. An unordered categorical instance can be made ordered with as_ordered:

In [230]: my_cats_2.as_ordered()
Out[230]:
['foo', 'bar', 'baz', 'foo', 'foo', 'bar']
Categories (3, object): ['foo' < 'bar' < 'baz']

As a last note, categorical data need not be strings, even though I have shown only
string examples. A categorical array can consist of any immutable value types.

Computations with Categoricals
Using Categorical in pandas compared with the nonencoded version (like an array
of strings) generally behaves the same way. Some parts of pandas, like the groupby
function, perform better when working with categoricals. There are also some func‐
tions that can utilize the ordered flag.

Let’s consider some random numeric data and use the pandas.qcut binning func‐
tion. This returns pandas.Categorical; we used pandas.cut earlier in the book but
glossed over the details of how categoricals work:

In [231]: rng = np.random.default_rng(seed=12345)

In [232]: draws = rng.standard_normal(1000)

In [233]: draws[:5]
Out[233]: array([-1.4238, 1.2637, -0.8707, -0.2592, -0.0753])

Let’s compute a quartile binning of this data and extract some statistics:

In [234]: bins = pd.qcut(draws, 4)

In [235]: bins
Out[235]:
[(-3.121, -0.675], (0.687, 3.211], (-3.121, -0.675], (-0.675, 0.0134], (-0.675, 0
.0134], ..., (0.0134, 0.687], (0.0134, 0.687], (-0.675, 0.0134], (0.0134, 0.687],
 (-0.675, 0.0134]]
Length: 1000
Categories (4, interval[float64, right]): [(-3.121, -0.675] < (-0.675, 0.0134] <
(0.0134, 0.687] <
 (0.687, 3.211]]

240 | Chapter 7: Data Cleaning and Preparation

While useful, the exact sample quartiles may be less useful for producing a report
than quartile names. We can achieve this with the labels argument to qcut:

In [236]: bins = pd.qcut(draws, 4, labels=['Q1', 'Q2', 'Q3', 'Q4'])

In [237]: bins
Out[237]:
['Q1', 'Q4', 'Q1', 'Q2', 'Q2', ..., 'Q3', 'Q3', 'Q2', 'Q3', 'Q2']
Length: 1000
Categories (4, object): ['Q1' < 'Q2' < 'Q3' < 'Q4']

In [238]: bins.codes[:10]
Out[238]: array([0, 3, 0, 1, 1, 0, 0, 2, 2, 0], dtype=int8)

The labeled bins categorical does not contain information about the bin edges in the
data, so we can use groupby to extract some summary statistics:

In [239]: bins = pd.Series(bins, name='quartile')

In [240]: results = (pd.Series(draws)
 : .groupby(bins)
 : .agg(['count', 'min', 'max'])
 : .reset_index())

In [241]: results
Out[241]:
 quartile count min max
0 Q1 250 -3.119609 -0.678494
1 Q2 250 -0.673305 0.008009
2 Q3 250 0.018753 0.686183
3 Q4 250 0.688282 3.211418

The 'quartile' column in the result retains the original categorical information,
including ordering, from bins:

In [242]: results['quartile']
Out[242]:
0 Q1
1 Q2
2 Q3
3 Q4
Name: quartile, dtype: category
Categories (4, object): ['Q1' < 'Q2' < 'Q3' < 'Q4']

Better performance with categoricals
At the beginning of the section, I said that categorical types can improve performance
and memory use, so let’s look at some examples. Consider some Series with 10
million elements and a small number of distinct categories:

7.5 Categorical Data | 241

In [243]: N = 10_000_000

In [244]: labels = pd.Series(['foo', 'bar', 'baz', 'qux'] * (N // 4))

Now we convert labels to categorical:

In [245]: categories = labels.astype('category')

Now we note that labels uses significantly more memory than categories:

In [246]: labels.memory_usage(deep=True)
Out[246]: 600000128

In [247]: categories.memory_usage(deep=True)
Out[247]: 10000540

The conversion to category is not free, of course, but it is a one-time cost:

In [248]: %time _ = labels.astype('category')
CPU times: user 469 ms, sys: 106 ms, total: 574 ms
Wall time: 577 ms

GroupBy operations can be significantly faster with categoricals because the underly‐
ing algorithms use the integer-based codes array instead of an array of strings. Here
we compare the performance of value_counts(), which internally uses the GroupBy
machinery:

In [249]: %timeit labels.value_counts()
840 ms +- 10.9 ms per loop (mean +- std. dev. of 7 runs, 1 loop each)

In [250]: %timeit categories.value_counts()
30.1 ms +- 549 us per loop (mean +- std. dev. of 7 runs, 10 loops each)

Categorical Methods
Series containing categorical data have several special methods similar to the Ser
ies.str specialized string methods. This also provides convenient access to the
categories and codes. Consider the Series:

In [251]: s = pd.Series(['a', 'b', 'c', 'd'] * 2)

In [252]: cat_s = s.astype('category')

In [253]: cat_s
Out[253]:
0 a
1 b
2 c
3 d
4 a
5 b
6 c
7 d

242 | Chapter 7: Data Cleaning and Preparation

dtype: category
Categories (4, object): ['a', 'b', 'c', 'd']

The special accessor attribute cat provides access to categorical methods:

In [254]: cat_s.cat.codes
Out[254]:
0 0
1 1
2 2
3 3
4 0
5 1
6 2
7 3
dtype: int8

In [255]: cat_s.cat.categories
Out[255]: Index(['a', 'b', 'c', 'd'], dtype='object')

Suppose that we know the actual set of categories for this data extends beyond the
four values observed in the data. We can use the set_categories method to change
them:

In [256]: actual_categories = ['a', 'b', 'c', 'd', 'e']

In [257]: cat_s2 = cat_s.cat.set_categories(actual_categories)

In [258]: cat_s2
Out[258]:
0 a
1 b
2 c
3 d
4 a
5 b
6 c
7 d
dtype: category
Categories (5, object): ['a', 'b', 'c', 'd', 'e']

While it appears that the data is unchanged, the new categories will be reflected
in operations that use them. For example, value_counts respects the categories, if
present:

In [259]: cat_s.value_counts()
Out[259]:
a 2
b 2
c 2
d 2
dtype: int64

7.5 Categorical Data | 243

In [260]: cat_s2.value_counts()
Out[260]:
a 2
b 2
c 2
d 2
e 0
dtype: int64

In large datasets, categoricals are often used as a convenient tool for memory sav‐
ings and better performance. After you filter a large DataFrame or Series, many
of the categories may not appear in the data. To help with this, we can use the
remove_unused_categories method to trim unobserved categories:

In [261]: cat_s3 = cat_s[cat_s.isin(['a', 'b'])]

In [262]: cat_s3
Out[262]:
0 a
1 b
4 a
5 b
dtype: category
Categories (4, object): ['a', 'b', 'c', 'd']

In [263]: cat_s3.cat.remove_unused_categories()
Out[263]:
0 a
1 b
4 a
5 b
dtype: category
Categories (2, object): ['a', 'b']

See Table 7-7 for a listing of available categorical methods.

Table 7-7. Categorical methods for Series in pandas

Method Description
add_categories Append new (unused) categories at end of existing categories
as_ordered Make categories ordered
as_unordered Make categories unordered
remove_categories Remove categories, setting any removed values to null
remove_unused_categories Remove any category values that do not appear in the data
rename_categories Replace categories with indicated set of new category names; cannot change the

number of categories
reorder_categories Behaves like rename_categories, but can also change the result to have ordered

categories
set_categories Replace the categories with the indicated set of new categories; can add or remove

categories

244 | Chapter 7: Data Cleaning and Preparation

Creating dummy variables for modeling
When you’re using statistics or machine learning tools, you’ll often transform catego‐
rical data into dummy variables, also known as one-hot encoding. This involves creat‐
ing a DataFrame with a column for each distinct category; these columns contain 1s
for occurrences of a given category and 0 otherwise.

Consider the previous example:

In [264]: cat_s = pd.Series(['a', 'b', 'c', 'd'] * 2, dtype='category')

As mentioned previously in this chapter, the pandas.get_dummies function converts
this one-dimensional categorical data into a DataFrame containing the dummy
variable:

In [265]: pd.get_dummies(cat_s)
Out[265]:
 a b c d
0 1 0 0 0
1 0 1 0 0
2 0 0 1 0
3 0 0 0 1
4 1 0 0 0
5 0 1 0 0
6 0 0 1 0
7 0 0 0 1

7.6 Conclusion
Effective data preparation can significantly improve productivity by enabling you to
spend more time analyzing data and less time getting it ready for analysis. We have
explored a number of tools in this chapter, but the coverage here is by no means
comprehensive. In the next chapter, we will explore pandas’s joining and grouping
functionality.

7.6 Conclusion | 245

CHAPTER 8

Data Wrangling: Join,
Combine, and Reshape

In many applications, data may be spread across a number of files or databases, or be
arranged in a form that is not convenient to analyze. This chapter focuses on tools to
help combine, join, and rearrange data.

First, I introduce the concept of hierarchical indexing in pandas, which is used exten‐
sively in some of these operations. I then dig into the particular data manipulations.
You can see various applied usages of these tools in Chapter 13.

8.1 Hierarchical Indexing
Hierarchical indexing is an important feature of pandas that enables you to have
multiple (two or more) index levels on an axis. Another way of thinking about it
is that it provides a way for you to work with higher dimensional data in a lower
dimensional form. Let’s start with a simple example: create a Series with a list of lists
(or arrays) as the index:

In [11]: data = pd.Series(np.random.uniform(size=9),
 : index=[["a", "a", "a", "b", "b", "c", "c", "d", "d"],
 : [1, 2, 3, 1, 3, 1, 2, 2, 3]])

In [12]: data
Out[12]:
a 1 0.929616
 2 0.316376
 3 0.183919
b 1 0.204560
 3 0.567725
c 1 0.595545
 2 0.964515

247

d 2 0.653177
 3 0.748907
dtype: float64

What you’re seeing is a prettified view of a Series with a MultiIndex as its index. The
“gaps” in the index display mean “use the label directly above”:

In [13]: data.index
Out[13]:
MultiIndex([('a', 1),
 ('a', 2),
 ('a', 3),
 ('b', 1),
 ('b', 3),
 ('c', 1),
 ('c', 2),
 ('d', 2),
 ('d', 3)],
)

With a hierarchically indexed object, so-called partial indexing is possible, enabling
you to concisely select subsets of the data:

In [14]: data["b"]
Out[14]:
1 0.204560
3 0.567725
dtype: float64

In [15]: data["b":"c"]
Out[15]:
b 1 0.204560
 3 0.567725
c 1 0.595545
 2 0.964515
dtype: float64

In [16]: data.loc[["b", "d"]]
Out[16]:
b 1 0.204560
 3 0.567725
d 2 0.653177
 3 0.748907
dtype: float64

Selection is even possible from an “inner” level. Here I select all of the values having
the value 2 from the second index level:

In [17]: data.loc[:, 2]
Out[17]:
a 0.316376
c 0.964515

248 | Chapter 8: Data Wrangling: Join, Combine, and Reshape

d 0.653177
dtype: float64

Hierarchical indexing plays an important role in reshaping data and in group-based
operations like forming a pivot table. For example, you can rearrange this data into a
DataFrame using its unstack method:

In [18]: data.unstack()
Out[18]:
 1 2 3
a 0.929616 0.316376 0.183919
b 0.204560 NaN 0.567725
c 0.595545 0.964515 NaN
d NaN 0.653177 0.748907

The inverse operation of unstack is stack:

In [19]: data.unstack().stack()
Out[19]:
a 1 0.929616
 2 0.316376
 3 0.183919
b 1 0.204560
 3 0.567725
c 1 0.595545
 2 0.964515
d 2 0.653177
 3 0.748907
dtype: float64

stack and unstack will be explored in more detail later in Section 8.3, “Reshaping
and Pivoting,” on page 270.

With a DataFrame, either axis can have a hierarchical index:

In [20]: frame = pd.DataFrame(np.arange(12).reshape((4, 3)),
 : index=[["a", "a", "b", "b"], [1, 2, 1, 2]],
 : columns=[["Ohio", "Ohio", "Colorado"],
 : ["Green", "Red", "Green"]])

In [21]: frame
Out[21]:
 Ohio Colorado
 Green Red Green
a 1 0 1 2
 2 3 4 5
b 1 6 7 8
 2 9 10 11

The hierarchical levels can have names (as strings or any Python objects). If so, these
will show up in the console output:

In [22]: frame.index.names = ["key1", "key2"]

8.1 Hierarchical Indexing | 249

In [23]: frame.columns.names = ["state", "color"]

In [24]: frame
Out[24]:
state Ohio Colorado
color Green Red Green
key1 key2
a 1 0 1 2
 2 3 4 5
b 1 6 7 8
 2 9 10 11

These names supersede the name attribute, which is used only with single-level
indexes.

Be careful to note that the index names "state" and "color" are
not part of the row labels (the frame.index values).

You can see how many levels an index has by accessing its nlevels attribute:

In [25]: frame.index.nlevels
Out[25]: 2

With partial column indexing you can similarly select groups of columns:

In [26]: frame["Ohio"]
Out[26]:
color Green Red
key1 key2
a 1 0 1
 2 3 4
b 1 6 7
 2 9 10

A MultiIndex can be created by itself and then reused; the columns in the preceding
DataFrame with level names could also be created like this:

pd.MultiIndex.from_arrays([["Ohio", "Ohio", "Colorado"],
 ["Green", "Red", "Green"]],
 names=["state", "color"])

Reordering and Sorting Levels
At times you may need to rearrange the order of the levels on an axis or sort the data
by the values in one specific level. The swaplevel method takes two level numbers
or names and returns a new object with the levels interchanged (but the data is
otherwise unaltered):

250 | Chapter 8: Data Wrangling: Join, Combine, and Reshape

In [27]: frame.swaplevel("key1", "key2")
Out[27]:
state Ohio Colorado
color Green Red Green
key2 key1
1 a 0 1 2
2 a 3 4 5
1 b 6 7 8
2 b 9 10 11

sort_index by default sorts the data lexicographically using all the index levels, but
you can choose to use only a single level or a subset of levels to sort by passing the
level argument. For example:

In [28]: frame.sort_index(level=1)
Out[28]:
state Ohio Colorado
color Green Red Green
key1 key2
a 1 0 1 2
b 1 6 7 8
a 2 3 4 5
b 2 9 10 11

In [29]: frame.swaplevel(0, 1).sort_index(level=0)
Out[29]:
state Ohio Colorado
color Green Red Green
key2 key1
1 a 0 1 2
 b 6 7 8
2 a 3 4 5
 b 9 10 11

Data selection performance is much better on hierarchically
indexed objects if the index is lexicographically sorted start‐
ing with the outermost level—that is, the result of calling
sort_index(level=0) or sort_index().

Summary Statistics by Level
Many descriptive and summary statistics on DataFrame and Series have a level
option in which you can specify the level you want to aggregate by on a particular
axis. Consider the above DataFrame; we can aggregate by level on either the rows or
columns, like so:

In [30]: frame.groupby(level="key2").sum()
Out[30]:
state Ohio Colorado
color Green Red Green

8.1 Hierarchical Indexing | 251

key2
1 6 8 10
2 12 14 16

In [31]: frame.groupby(level="color", axis="columns").sum()
Out[31]:
color Green Red
key1 key2
a 1 2 1
 2 8 4
b 1 14 7
 2 20 10

We will discuss groupby in much more detail later in Chapter 10.

Indexing with a DataFrame’s columns
It’s not unusual to want to use one or more columns from a DataFrame as the
row index; alternatively, you may wish to move the row index into the DataFrame’s
columns. Here’s an example DataFrame:

In [32]: frame = pd.DataFrame({"a": range(7), "b": range(7, 0, -1),
 : "c": ["one", "one", "one", "two", "two",
 : "two", "two"],
 : "d": [0, 1, 2, 0, 1, 2, 3]})

In [33]: frame
Out[33]:
 a b c d
0 0 7 one 0
1 1 6 one 1
2 2 5 one 2
3 3 4 two 0
4 4 3 two 1
5 5 2 two 2
6 6 1 two 3

DataFrame’s set_index function will create a new DataFrame using one or more of
its columns as the index:

In [34]: frame2 = frame.set_index(["c", "d"])

In [35]: frame2
Out[35]:
 a b
c d
one 0 0 7
 1 1 6
 2 2 5
two 0 3 4
 1 4 3

252 | Chapter 8: Data Wrangling: Join, Combine, and Reshape

 2 5 2
 3 6 1

By default, the columns are removed from the DataFrame, though you can leave
them in by passing drop=False to set_index:

In [36]: frame.set_index(["c", "d"], drop=False)
Out[36]:
 a b c d
c d
one 0 0 7 one 0
 1 1 6 one 1
 2 2 5 one 2
two 0 3 4 two 0
 1 4 3 two 1
 2 5 2 two 2
 3 6 1 two 3

reset_index, on the other hand, does the opposite of set_index; the hierarchical
index levels are moved into the columns:

In [37]: frame2.reset_index()
Out[37]:
 c d a b
0 one 0 0 7
1 one 1 1 6
2 one 2 2 5
3 two 0 3 4
4 two 1 4 3
5 two 2 5 2
6 two 3 6 1

8.2 Combining and Merging Datasets
Data contained in pandas objects can be combined in a number of ways:

pandas.merge

Connect rows in DataFrames based on one or more keys. This will be familiar
to users of SQL or other relational databases, as it implements database join
operations.

pandas.concat

Concatenate or “stack” objects together along an axis.

combine_first

Splice together overlapping data to fill in missing values in one object with values
from another.

I will address each of these and give a number of examples. They’ll be utilized in
examples throughout the rest of the book.

8.2 Combining and Merging Datasets | 253

Database-Style DataFrame Joins
Merge or join operations combine datasets by linking rows using one or more keys.
These operations are particularly important in relational databases (e.g., SQL-based).
The pandas.merge function in pandas is the main entry point for using these algo‐
rithms on your data.

Let’s start with a simple example:

In [38]: df1 = pd.DataFrame({"key": ["b", "b", "a", "c", "a", "a", "b"],
 : "data1": pd.Series(range(7), dtype="Int64")})

In [39]: df2 = pd.DataFrame({"key": ["a", "b", "d"],
 : "data2": pd.Series(range(3), dtype="Int64")})

In [40]: df1
Out[40]:
 key data1
0 b 0
1 b 1
2 a 2
3 c 3
4 a 4
5 a 5
6 b 6

In [41]: df2
Out[41]:
 key data2
0 a 0
1 b 1
2 d 2

Here I am using pandas’s Int64 extension type for nullable integers, discussed in
Section 7.3, “Extension Data Types,” on page 224.

This is an example of a many-to-one join; the data in df1 has multiple rows labeled
a and b, whereas df2 has only one row for each value in the key column. Calling
pandas.merge with these objects, we obtain:

In [42]: pd.merge(df1, df2)
Out[42]:
 key data1 data2
0 b 0 1
1 b 1 1
2 b 6 1
3 a 2 0
4 a 4 0
5 a 5 0

254 | Chapter 8: Data Wrangling: Join, Combine, and Reshape

Note that I didn’t specify which column to join on. If that information is not
specified, pandas.merge uses the overlapping column names as the keys. It’s a good
practice to specify explicitly, though:

In [43]: pd.merge(df1, df2, on="key")
Out[43]:
 key data1 data2
0 b 0 1
1 b 1 1
2 b 6 1
3 a 2 0
4 a 4 0
5 a 5 0

In general, the order of column output in pandas.merge operations is unspecified.

If the column names are different in each object, you can specify them separately:

In [44]: df3 = pd.DataFrame({"lkey": ["b", "b", "a", "c", "a", "a", "b"],
 : "data1": pd.Series(range(7), dtype="Int64")})

In [45]: df4 = pd.DataFrame({"rkey": ["a", "b", "d"],
 : "data2": pd.Series(range(3), dtype="Int64")})

In [46]: pd.merge(df3, df4, left_on="lkey", right_on="rkey")
Out[46]:
 lkey data1 rkey data2
0 b 0 b 1
1 b 1 b 1
2 b 6 b 1
3 a 2 a 0
4 a 4 a 0
5 a 5 a 0

You may notice that the "c" and "d" values and associated data are missing from
the result. By default, pandas.merge does an "inner" join; the keys in the result are
the intersection, or the common set found in both tables. Other possible options are
"left", "right", and "outer". The outer join takes the union of the keys, combining
the effect of applying both left and right joins:

In [47]: pd.merge(df1, df2, how="outer")
Out[47]:
 key data1 data2
0 b 0 1
1 b 1 1
2 b 6 1
3 a 2 0
4 a 4 0
5 a 5 0
6 c 3 <NA>
7 d <NA> 2

8.2 Combining and Merging Datasets | 255

In [48]: pd.merge(df3, df4, left_on="lkey", right_on="rkey", how="outer")
Out[48]:
 lkey data1 rkey data2
0 b 0 b 1
1 b 1 b 1
2 b 6 b 1
3 a 2 a 0
4 a 4 a 0
5 a 5 a 0
6 c 3 NaN <NA>
7 NaN <NA> d 2

In an outer join, rows from the left or right DataFrame objects that do not match
on keys in the other DataFrame will appear with NA values in the other DataFrame’s
columns for the nonmatching rows.

See Table 8-1 for a summary of the options for how.

Table 8-1. Different join types with the how argument

Option Behavior
how="inner" Use only the key combinations observed in both tables
how="left" Use all key combinations found in the left table
how="right" Use all key combinations found in the right table
how="outer" Use all key combinations observed in both tables together

Many-to-many merges form the Cartesian product of the matching keys. Here’s an
example:

In [49]: df1 = pd.DataFrame({"key": ["b", "b", "a", "c", "a", "b"],
 : "data1": pd.Series(range(6), dtype="Int64")})

In [50]: df2 = pd.DataFrame({"key": ["a", "b", "a", "b", "d"],
 : "data2": pd.Series(range(5), dtype="Int64")})

In [51]: df1
Out[51]:
 key data1
0 b 0
1 b 1
2 a 2
3 c 3
4 a 4
5 b 5

In [52]: df2
Out[52]:
 key data2
0 a 0
1 b 1
2 a 2

256 | Chapter 8: Data Wrangling: Join, Combine, and Reshape

3 b 3
4 d 4

In [53]: pd.merge(df1, df2, on="key", how="left")
Out[53]:
 key data1 data2
0 b 0 1
1 b 0 3
2 b 1 1
3 b 1 3
4 a 2 0
5 a 2 2
6 c 3 <NA>
7 a 4 0
8 a 4 2
9 b 5 1
10 b 5 3

Since there were three "b" rows in the left DataFrame and two in the right one, there
are six "b" rows in the result. The join method passed to the how keyword argument
affects only the distinct key values appearing in the result:

In [54]: pd.merge(df1, df2, how="inner")
Out[54]:
 key data1 data2
0 b 0 1
1 b 0 3
2 b 1 1
3 b 1 3
4 b 5 1
5 b 5 3
6 a 2 0
7 a 2 2
8 a 4 0
9 a 4 2

To merge with multiple keys, pass a list of column names:

In [55]: left = pd.DataFrame({"key1": ["foo", "foo", "bar"],
 : "key2": ["one", "two", "one"],
 : "lval": pd.Series([1, 2, 3], dtype='Int64')})

In [56]: right = pd.DataFrame({"key1": ["foo", "foo", "bar", "bar"],
 : "key2": ["one", "one", "one", "two"],
 : "rval": pd.Series([4, 5, 6, 7], dtype='Int64')})

In [57]: pd.merge(left, right, on=["key1", "key2"], how="outer")
Out[57]:
 key1 key2 lval rval
0 foo one 1 4
1 foo one 1 5
2 foo two 2 <NA>

8.2 Combining and Merging Datasets | 257

3 bar one 3 6
4 bar two <NA> 7

To determine which key combinations will appear in the result depending on the
choice of merge method, think of the multiple keys as forming an array of tuples to
be used as a single join key.

When you’re joining columns on columns, the indexes on the
passed DataFrame objects are discarded. If you need to preserve
the index values, you can use reset_index to append the index to
the columns.

A last issue to consider in merge operations is the treatment of overlapping column
names. For example:

In [58]: pd.merge(left, right, on="key1")
Out[58]:
 key1 key2_x lval key2_y rval
0 foo one 1 one 4
1 foo one 1 one 5
2 foo two 2 one 4
3 foo two 2 one 5
4 bar one 3 one 6
5 bar one 3 two 7

While you can address the overlap manually (see the section “Renaming Axis
Indexes” on page 214 for renaming axis labels), pandas.merge has a suffixes option
for specifying strings to append to overlapping names in the left and right DataFrame
objects:

In [59]: pd.merge(left, right, on="key1", suffixes=("_left", "_right"))
Out[59]:
 key1 key2_left lval key2_right rval
0 foo one 1 one 4
1 foo one 1 one 5
2 foo two 2 one 4
3 foo two 2 one 5
4 bar one 3 one 6
5 bar one 3 two 7

See Table 8-2 for an argument reference on pandas.merge. The next section covers
joining using the DataFrame’s row index.

Table 8-2. pandas.merge function arguments

Argument Description
left DataFrame to be merged on the left side.
right DataFrame to be merged on the right side.
how Type of join to apply: one of "inner", "outer", "left", or "right"; defaults to "inner".

258 | Chapter 8: Data Wrangling: Join, Combine, and Reshape

Argument Description
on Column names to join on. Must be found in both DataFrame objects. If not specified and no other join keys

given, will use the intersection of the column names in left and right as the join keys.
left_on Columns in left DataFrame to use as join keys. Can be a single column name or a list of column names.
right_on Analogous to left_on for right DataFrame.
left_index Use row index in left as its join key (or keys, if a MultiIndex).
right_index Analogous to left_index.
sort Sort merged data lexicographically by join keys; False by default.
suffixes Tuple of string values to append to column names in case of overlap; defaults to ("_x", "_y") (e.g., if

"data" in both DataFrame objects, would appear as "data_x" and "data_y" in result).
copy If False, avoid copying data into resulting data structure in some exceptional cases; by default always

copies.
validate Verifies if the merge is of the specified type, whether one-to-one, one-to-many, or many-to-many. See the

docstring for full details on the options.

indicator Adds a special column _merge that indicates the source of each row; values will be "left_only",
"right_only", or "both" based on the origin of the joined data in each row.

Merging on Index
In some cases, the merge key(s) in a DataFrame will be found in its index (row
labels). In this case, you can pass left_index=True or right_index=True (or both) to
indicate that the index should be used as the merge key:

In [60]: left1 = pd.DataFrame({"key": ["a", "b", "a", "a", "b", "c"],
 : "value": pd.Series(range(6), dtype="Int64")})

In [61]: right1 = pd.DataFrame({"group_val": [3.5, 7]}, index=["a", "b"])

In [62]: left1
Out[62]:
 key value
0 a 0
1 b 1
2 a 2
3 a 3
4 b 4
5 c 5

In [63]: right1
Out[63]:
 group_val
a 3.5
b 7.0

In [64]: pd.merge(left1, right1, left_on="key", right_index=True)
Out[64]:
 key value group_val
0 a 0 3.5

8.2 Combining and Merging Datasets | 259

2 a 2 3.5
3 a 3 3.5
1 b 1 7.0
4 b 4 7.0

If you look carefully here, you will see that the index values for
left1 have been preserved, whereas in other examples above, the
indexes of the input DataFrame objects are dropped. Because the
index of right1 is unique, this “many-to-one” merge (with the
default how="inner" method) can preserve the index values from
left1 that correspond to rows in the output.

Since the default merge method is to intersect the join keys, you can instead form the
union of them with an outer join:

In [65]: pd.merge(left1, right1, left_on="key", right_index=True, how="outer")
Out[65]:
 key value group_val
0 a 0 3.5
2 a 2 3.5
3 a 3 3.5
1 b 1 7.0
4 b 4 7.0
5 c 5 NaN

With hierarchically indexed data, things are more complicated, as joining on index is
equivalent to a multiple-key merge:

In [66]: lefth = pd.DataFrame({"key1": ["Ohio", "Ohio", "Ohio",
 : "Nevada", "Nevada"],
 : "key2": [2000, 2001, 2002, 2001, 2002],
 : "data": pd.Series(range(5), dtype="Int64")})

In [67]: righth_index = pd.MultiIndex.from_arrays(
 : [
 : ["Nevada", "Nevada", "Ohio", "Ohio", "Ohio", "Ohio"],
 : [2001, 2000, 2000, 2000, 2001, 2002]
 :]
 :)

In [68]: righth = pd.DataFrame({"event1": pd.Series([0, 2, 4, 6, 8, 10], dtype="I
nt64",
 : index=righth_index),
 : "event2": pd.Series([1, 3, 5, 7, 9, 11], dtype="I
nt64",
 : index=righth_index)})

In [69]: lefth
Out[69]:
 key1 key2 data
0 Ohio 2000 0

260 | Chapter 8: Data Wrangling: Join, Combine, and Reshape

1 Ohio 2001 1
2 Ohio 2002 2
3 Nevada 2001 3
4 Nevada 2002 4

In [70]: righth
Out[70]:
 event1 event2
Nevada 2001 0 1
 2000 2 3
Ohio 2000 4 5
 2000 6 7
 2001 8 9
 2002 10 11

In this case, you have to indicate multiple columns to merge on as a list (note the
handling of duplicate index values with how="outer"):

In [71]: pd.merge(lefth, righth, left_on=["key1", "key2"], right_index=True)
Out[71]:
 key1 key2 data event1 event2
0 Ohio 2000 0 4 5
0 Ohio 2000 0 6 7
1 Ohio 2001 1 8 9
2 Ohio 2002 2 10 11
3 Nevada 2001 3 0 1

In [72]: pd.merge(lefth, righth, left_on=["key1", "key2"],
 : right_index=True, how="outer")
Out[72]:
 key1 key2 data event1 event2
0 Ohio 2000 0 4 5
0 Ohio 2000 0 6 7
1 Ohio 2001 1 8 9
2 Ohio 2002 2 10 11
3 Nevada 2001 3 0 1
4 Nevada 2002 4 <NA> <NA>
4 Nevada 2000 <NA> 2 3

Using the indexes of both sides of the merge is also possible:

In [73]: left2 = pd.DataFrame([[1., 2.], [3., 4.], [5., 6.]],
 : index=["a", "c", "e"],
 : columns=["Ohio", "Nevada"]).astype("Int64")

In [74]: right2 = pd.DataFrame([[7., 8.], [9., 10.], [11., 12.], [13, 14]],
 : index=["b", "c", "d", "e"],
 : columns=["Missouri", "Alabama"]).astype("Int64")

In [75]: left2
Out[75]:
 Ohio Nevada
a 1 2

8.2 Combining and Merging Datasets | 261

c 3 4
e 5 6

In [76]: right2
Out[76]:
 Missouri Alabama
b 7 8
c 9 10
d 11 12
e 13 14

In [77]: pd.merge(left2, right2, how="outer", left_index=True, right_index=True)
Out[77]:
 Ohio Nevada Missouri Alabama
a 1 2 <NA> <NA>
b <NA> <NA> 7 8
c 3 4 9 10
d <NA> <NA> 11 12
e 5 6 13 14

DataFrame has a join instance method to simplify merging by index. It can also be
used to combine many DataFrame objects having the same or similar indexes but
nonoverlapping columns. In the prior example, we could have written:

In [78]: left2.join(right2, how="outer")
Out[78]:
 Ohio Nevada Missouri Alabama
a 1 2 <NA> <NA>
b <NA> <NA> 7 8
c 3 4 9 10
d <NA> <NA> 11 12
e 5 6 13 14

Compared with pandas.merge, DataFrame’s join method performs a left join on the
join keys by default. It also supports joining the index of the passed DataFrame on
one of the columns of the calling DataFrame:

In [79]: left1.join(right1, on="key")
Out[79]:
 key value group_val
0 a 0 3.5
1 b 1 7.0
2 a 2 3.5
3 a 3 3.5
4 b 4 7.0
5 c 5 NaN

You can think of this method as joining data “into” the object whose join method
was called.

262 | Chapter 8: Data Wrangling: Join, Combine, and Reshape

Lastly, for simple index-on-index merges, you can pass a list of DataFrames to join
as an alternative to using the more general pandas.concat function described in the
next section:

In [80]: another = pd.DataFrame([[7., 8.], [9., 10.], [11., 12.], [16., 17.]],
 : index=["a", "c", "e", "f"],
 : columns=["New York", "Oregon"])

In [81]: another
Out[81]:
 New York Oregon
a 7.0 8.0
c 9.0 10.0
e 11.0 12.0
f 16.0 17.0

In [82]: left2.join([right2, another])
Out[82]:
 Ohio Nevada Missouri Alabama New York Oregon
a 1 2 <NA> <NA> 7.0 8.0
c 3 4 9 10 9.0 10.0
e 5 6 13 14 11.0 12.0

In [83]: left2.join([right2, another], how="outer")
Out[83]:
 Ohio Nevada Missouri Alabama New York Oregon
a 1 2 <NA> <NA> 7.0 8.0
c 3 4 9 10 9.0 10.0
e 5 6 13 14 11.0 12.0
b <NA> <NA> 7 8 NaN NaN
d <NA> <NA> 11 12 NaN NaN
f <NA> <NA> <NA> <NA> 16.0 17.0

Concatenating Along an Axis
Another kind of data combination operation is referred to interchangeably as concat‐
enation or stacking. NumPy’s concatenate function can do this with NumPy arrays:

In [84]: arr = np.arange(12).reshape((3, 4))

In [85]: arr
Out[85]:
array([[0, 1, 2, 3],
 [4, 5, 6, 7],
 [8, 9, 10, 11]])

In [86]: np.concatenate([arr, arr], axis=1)
Out[86]:
array([[0, 1, 2, 3, 0, 1, 2, 3],
 [4, 5, 6, 7, 4, 5, 6, 7],
 [8, 9, 10, 11, 8, 9, 10, 11]])

8.2 Combining and Merging Datasets | 263

In the context of pandas objects such as Series and DataFrame, having labeled axes
enable you to further generalize array concatenation. In particular, you have a num‐
ber of additional concerns:

• If the objects are indexed differently on the other axes, should we combine the•
distinct elements in these axes or use only the values in common?

• Do the concatenated chunks of data need to be identifiable as such in the result‐•
ing object?

• Does the “concatenation axis” contain data that needs to be preserved? In•
many cases, the default integer labels in a DataFrame are best discarded during
concatenation.

The concat function in pandas provides a consistent way to address each of these
questions. I’ll give a number of examples to illustrate how it works. Suppose we have
three Series with no index overlap:

In [87]: s1 = pd.Series([0, 1], index=["a", "b"], dtype="Int64")

In [88]: s2 = pd.Series([2, 3, 4], index=["c", "d", "e"], dtype="Int64")

In [89]: s3 = pd.Series([5, 6], index=["f", "g"], dtype="Int64")

Calling pandas.concat with these objects in a list glues together the values and
indexes:

In [90]: s1
Out[90]:
a 0
b 1
dtype: Int64

In [91]: s2
Out[91]:
c 2
d 3
e 4
dtype: Int64

In [92]: s3
Out[92]:
f 5
g 6
dtype: Int64

In [93]: pd.concat([s1, s2, s3])
Out[93]:
a 0
b 1
c 2

264 | Chapter 8: Data Wrangling: Join, Combine, and Reshape

d 3
e 4
f 5
g 6
dtype: Int64

By default, pandas.concat works along axis="index", producing another Series. If
you pass axis="columns", the result will instead be a DataFrame:

In [94]: pd.concat([s1, s2, s3], axis="columns")
Out[94]:
 0 1 2
a 0 <NA> <NA>
b 1 <NA> <NA>
c <NA> 2 <NA>
d <NA> 3 <NA>
e <NA> 4 <NA>
f <NA> <NA> 5
g <NA> <NA> 6

In this case there is no overlap on the other axis, which as you can see is the
union (the "outer" join) of the indexes. You can instead intersect them by passing
join="inner":

In [95]: s4 = pd.concat([s1, s3])

In [96]: s4
Out[96]:
a 0
b 1
f 5
g 6
dtype: Int64

In [97]: pd.concat([s1, s4], axis="columns")
Out[97]:
 0 1
a 0 0
b 1 1
f <NA> 5
g <NA> 6

In [98]: pd.concat([s1, s4], axis="columns", join="inner")
Out[98]:
 0 1
a 0 0
b 1 1

In this last example, the "f" and "g" labels disappeared because of the join="inner"
option.

8.2 Combining and Merging Datasets | 265

A potential issue is that the concatenated pieces are not identifiable in the result.
Suppose instead you wanted to create a hierarchical index on the concatenation axis.
To do this, use the keys argument:

In [99]: result = pd.concat([s1, s1, s3], keys=["one", "two", "three"])

In [100]: result
Out[100]:
one a 0
 b 1
two a 0
 b 1
three f 5
 g 6
dtype: Int64

In [101]: result.unstack()
Out[101]:
 a b f g
one 0 1 <NA> <NA>
two 0 1 <NA> <NA>
three <NA> <NA> 5 6

In the case of combining Series along axis="columns", the keys become the Data‐
Frame column headers:

In [102]: pd.concat([s1, s2, s3], axis="columns", keys=["one", "two", "three"])
Out[102]:
 one two three
a 0 <NA> <NA>
b 1 <NA> <NA>
c <NA> 2 <NA>
d <NA> 3 <NA>
e <NA> 4 <NA>
f <NA> <NA> 5
g <NA> <NA> 6

The same logic extends to DataFrame objects:

In [103]: df1 = pd.DataFrame(np.arange(6).reshape(3, 2), index=["a", "b", "c"],
 : columns=["one", "two"])

In [104]: df2 = pd.DataFrame(5 + np.arange(4).reshape(2, 2), index=["a", "c"],
 : columns=["three", "four"])

In [105]: df1
Out[105]:
 one two
a 0 1
b 2 3
c 4 5

In [106]: df2

266 | Chapter 8: Data Wrangling: Join, Combine, and Reshape

Out[106]:
 three four
a 5 6
c 7 8

In [107]: pd.concat([df1, df2], axis="columns", keys=["level1", "level2"])
Out[107]:
 level1 level2
 one two three four
a 0 1 5.0 6.0
b 2 3 NaN NaN
c 4 5 7.0 8.0

Here the keys argument is used to create a hierarchical index where the first level can
be used to identify each of the concatenated DataFrame objects.

If you pass a dictionary of objects instead of a list, the dictionary’s keys will be used
for the keys option:

In [108]: pd.concat({"level1": df1, "level2": df2}, axis="columns")
Out[108]:
 level1 level2
 one two three four
a 0 1 5.0 6.0
b 2 3 NaN NaN
c 4 5 7.0 8.0

There are additional arguments governing how the hierarchical index is created
(see Table 8-3). For example, we can name the created axis levels with the names
argument:

In [109]: pd.concat([df1, df2], axis="columns", keys=["level1", "level2"],
 : names=["upper", "lower"])
Out[109]:
upper level1 level2
lower one two three four
a 0 1 5.0 6.0
b 2 3 NaN NaN
c 4 5 7.0 8.0

A last consideration concerns DataFrames in which the row index does not contain
any relevant data:

In [110]: df1 = pd.DataFrame(np.random.standard_normal((3, 4)),
 : columns=["a", "b", "c", "d"])

In [111]: df2 = pd.DataFrame(np.random.standard_normal((2, 3)),
 : columns=["b", "d", "a"])

In [112]: df1
Out[112]:
 a b c d
0 1.248804 0.774191 -0.319657 -0.624964

8.2 Combining and Merging Datasets | 267

1 1.078814 0.544647 0.855588 1.343268
2 -0.267175 1.793095 -0.652929 -1.886837

In [113]: df2
Out[113]:
 b d a
0 1.059626 0.644448 -0.007799
1 -0.449204 2.448963 0.667226

In this case, you can pass ignore_index=True, which discards the indexes from each
DataFrame and concatenates the data in the columns only, assigning a new default
index:

In [114]: pd.concat([df1, df2], ignore_index=True)
Out[114]:
 a b c d
0 1.248804 0.774191 -0.319657 -0.624964
1 1.078814 0.544647 0.855588 1.343268
2 -0.267175 1.793095 -0.652929 -1.886837
3 -0.007799 1.059626 NaN 0.644448
4 0.667226 -0.449204 NaN 2.448963

Table 8-3 describes the pandas.concat function arguments.

Table 8-3. pandas.concat function arguments

Argument Description
objs List or dictionary of pandas objects to be concatenated; this is the only required argument
axis Axis to concatenate along; defaults to concatenating along rows (axis="index")
join Either "inner" or "outer" ("outer" by default); whether to intersect (inner) or union

(outer) indexes along the other axes
keys Values to associate with objects being concatenated, forming a hierarchical index along the

concatenation axis; can be a list or array of arbitrary values, an array of tuples, or a list of arrays (if
multiple-level arrays passed in levels)

levels Specific indexes to use as hierarchical index level or levels if keys passed
names Names for created hierarchical levels if keys and/or levels passed
verify_integrity Check new axis in concatenated object for duplicates and raise an exception if so; by default

(False) allows duplicates
ignore_index Do not preserve indexes along concatenation axis, instead produce a new

range(total_length) index

Combining Data with Overlap
There is another data combination situation that can’t be expressed as either a merge
or concatenation operation. You may have two datasets with indexes that overlap in
full or in part. As a motivating example, consider NumPy’s where function, which
performs the array-oriented equivalent of an if-else expression:

268 | Chapter 8: Data Wrangling: Join, Combine, and Reshape

In [115]: a = pd.Series([np.nan, 2.5, 0.0, 3.5, 4.5, np.nan],
 : index=["f", "e", "d", "c", "b", "a"])

In [116]: b = pd.Series([0., np.nan, 2., np.nan, np.nan, 5.],
 : index=["a", "b", "c", "d", "e", "f"])

In [117]: a
Out[117]:
f NaN
e 2.5
d 0.0
c 3.5
b 4.5
a NaN
dtype: float64

In [118]: b
Out[118]:
a 0.0
b NaN
c 2.0
d NaN
e NaN
f 5.0
dtype: float64

In [119]: np.where(pd.isna(a), b, a)
Out[119]: array([0. , 2.5, 0. , 3.5, 4.5, 5.])

Here, whenever values in a are null, values from b are selected, otherwise the non-
null values from a are selected. Using numpy.where does not check whether the index
labels are aligned or not (and does not even require the objects to be the same
length), so if you want to line up values by index, use the Series combine_first
method:

In [120]: a.combine_first(b)
Out[120]:
a 0.0
b 4.5
c 3.5
d 0.0
e 2.5
f 5.0
dtype: float64

With DataFrames, combine_first does the same thing column by column, so you
can think of it as “patching” missing data in the calling object with data from the
object you pass:

In [121]: df1 = pd.DataFrame({"a": [1., np.nan, 5., np.nan],
 : "b": [np.nan, 2., np.nan, 6.],
 : "c": range(2, 18, 4)})

8.2 Combining and Merging Datasets | 269

In [122]: df2 = pd.DataFrame({"a": [5., 4., np.nan, 3., 7.],
 : "b": [np.nan, 3., 4., 6., 8.]})

In [123]: df1
Out[123]:
 a b c
0 1.0 NaN 2
1 NaN 2.0 6
2 5.0 NaN 10
3 NaN 6.0 14

In [124]: df2
Out[124]:
 a b
0 5.0 NaN
1 4.0 3.0
2 NaN 4.0
3 3.0 6.0
4 7.0 8.0

In [125]: df1.combine_first(df2)
Out[125]:
 a b c
0 1.0 NaN 2.0
1 4.0 2.0 6.0
2 5.0 4.0 10.0
3 3.0 6.0 14.0
4 7.0 8.0 NaN

The output of combine_first with DataFrame objects will have the union of all the
column names.

8.3 Reshaping and Pivoting
There are a number of basic operations for rearranging tabular data. These are
referred to as reshape or pivot operations.

Reshaping with Hierarchical Indexing
Hierarchical indexing provides a consistent way to rearrange data in a DataFrame.
There are two primary actions:

stack

This “rotates” or pivots from the columns in the data to the rows.

unstack

This pivots from the rows into the columns.

270 | Chapter 8: Data Wrangling: Join, Combine, and Reshape

I’ll illustrate these operations through a series of examples. Consider a small Data‐
Frame with string arrays as row and column indexes:

In [126]: data = pd.DataFrame(np.arange(6).reshape((2, 3)),
 : index=pd.Index(["Ohio", "Colorado"], name="state"),
 : columns=pd.Index(["one", "two", "three"],
 : name="number"))

In [127]: data
Out[127]:
number one two three
state
Ohio 0 1 2
Colorado 3 4 5

Using the stack method on this data pivots the columns into the rows, producing a
Series:

In [128]: result = data.stack()

In [129]: result
Out[129]:
state number
Ohio one 0
 two 1
 three 2
Colorado one 3
 two 4
 three 5
dtype: int64

From a hierarchically indexed Series, you can rearrange the data back into a Data‐
Frame with unstack:

In [130]: result.unstack()
Out[130]:
number one two three
state
Ohio 0 1 2
Colorado 3 4 5

By default, the innermost level is unstacked (same with stack). You can unstack a
different level by passing a level number or name:

In [131]: result.unstack(level=0)
Out[131]:
state Ohio Colorado
number
one 0 3
two 1 4
three 2 5

In [132]: result.unstack(level="state")

8.3 Reshaping and Pivoting | 271

Out[132]:
state Ohio Colorado
number
one 0 3
two 1 4
three 2 5

Unstacking might introduce missing data if all of the values in the level aren’t found
in each subgroup:

In [133]: s1 = pd.Series([0, 1, 2, 3], index=["a", "b", "c", "d"], dtype="Int64")

In [134]: s2 = pd.Series([4, 5, 6], index=["c", "d", "e"], dtype="Int64")

In [135]: data2 = pd.concat([s1, s2], keys=["one", "two"])

In [136]: data2
Out[136]:
one a 0
 b 1
 c 2
 d 3
two c 4
 d 5
 e 6
dtype: Int64

Stacking filters out missing data by default, so the operation is more easily invertible:

In [137]: data2.unstack()
Out[137]:
 a b c d e
one 0 1 2 3 <NA>
two <NA> <NA> 4 5 6

In [138]: data2.unstack().stack()
Out[138]:
one a 0
 b 1
 c 2
 d 3
two c 4
 d 5
 e 6
dtype: Int64

In [139]: data2.unstack().stack(dropna=False)
Out[139]:
one a 0
 b 1
 c 2
 d 3
 e <NA>

272 | Chapter 8: Data Wrangling: Join, Combine, and Reshape

two a <NA>
 b <NA>
 c 4
 d 5
 e 6
dtype: Int64

When you unstack in a DataFrame, the level unstacked becomes the lowest level in
the result:

In [140]: df = pd.DataFrame({"left": result, "right": result + 5},
 : columns=pd.Index(["left", "right"], name="side"))

In [141]: df
Out[141]:
side left right
state number
Ohio one 0 5
 two 1 6
 three 2 7
Colorado one 3 8
 two 4 9
 three 5 10

In [142]: df.unstack(level="state")
Out[142]:
side left right
state Ohio Colorado Ohio Colorado
number
one 0 3 5 8
two 1 4 6 9
three 2 5 7 10

As with unstack, when calling stack we can indicate the name of the axis to stack:

In [143]: df.unstack(level="state").stack(level="side")
Out[143]:
state Colorado Ohio
number side
one left 3 0
 right 8 5
two left 4 1
 right 9 6
three left 5 2
 right 10 7

Pivoting “Long” to “Wide” Format
A common way to store multiple time series in databases and CSV files is what
is sometimes called long or stacked format. In this format, individual values are
represented by a single row in a table rather than multiple values per row.

8.3 Reshaping and Pivoting | 273

Let’s load some example data and do a small amount of time series wrangling and
other data cleaning:

In [144]: data = pd.read_csv("examples/macrodata.csv")

In [145]: data = data.loc[:, ["year", "quarter", "realgdp", "infl", "unemp"]]

In [146]: data.head()
Out[146]:
 year quarter realgdp infl unemp
0 1959 1 2710.349 0.00 5.8
1 1959 2 2778.801 2.34 5.1
2 1959 3 2775.488 2.74 5.3
3 1959 4 2785.204 0.27 5.6
4 1960 1 2847.699 2.31 5.2

First, I use pandas.PeriodIndex (which represents time intervals rather than points
in time), discussed in more detail in Chapter 11, to combine the year and quarter
columns to set the index to consist of datetime values at the end of each quarter:

In [147]: periods = pd.PeriodIndex(year=data.pop("year"),
 : quarter=data.pop("quarter"),
 : name="date")

In [148]: periods
Out[148]:
PeriodIndex(['1959Q1', '1959Q2', '1959Q3', '1959Q4', '1960Q1', '1960Q2',
 '1960Q3', '1960Q4', '1961Q1', '1961Q2',
 ...
 '2007Q2', '2007Q3', '2007Q4', '2008Q1', '2008Q2', '2008Q3',
 '2008Q4', '2009Q1', '2009Q2', '2009Q3'],
 dtype='period[Q-DEC]', name='date', length=203)

In [149]: data.index = periods.to_timestamp("D")

In [150]: data.head()
Out[150]:
 realgdp infl unemp
date
1959-01-01 2710.349 0.00 5.8
1959-04-01 2778.801 2.34 5.1
1959-07-01 2775.488 2.74 5.3
1959-10-01 2785.204 0.27 5.6
1960-01-01 2847.699 2.31 5.2

Here I used the pop method on the DataFrame, which returns a column while
deleting it from the DataFrame at the same time.

Then, I select a subset of columns and give the columns index the name "item":

In [151]: data = data.reindex(columns=["realgdp", "infl", "unemp"])

In [152]: data.columns.name = "item"

274 | Chapter 8: Data Wrangling: Join, Combine, and Reshape

In [153]: data.head()
Out[153]:
item realgdp infl unemp
date
1959-01-01 2710.349 0.00 5.8
1959-04-01 2778.801 2.34 5.1
1959-07-01 2775.488 2.74 5.3
1959-10-01 2785.204 0.27 5.6
1960-01-01 2847.699 2.31 5.2

Lastly, I reshape with stack, turn the new index levels into columns with
reset_index, and finally give the column containing the data values the name
"value":

In [154]: long_data = (data.stack()
 : .reset_index()
 : .rename(columns={0: "value"}))

Now, ldata looks like:

In [155]: long_data[:10]
Out[155]:
 date item value
0 1959-01-01 realgdp 2710.349
1 1959-01-01 infl 0.000
2 1959-01-01 unemp 5.800
3 1959-04-01 realgdp 2778.801
4 1959-04-01 infl 2.340
5 1959-04-01 unemp 5.100
6 1959-07-01 realgdp 2775.488
7 1959-07-01 infl 2.740
8 1959-07-01 unemp 5.300
9 1959-10-01 realgdp 2785.204

In this so-called long format for multiple time series, each row in the table represents
a single observation.

Data is frequently stored this way in relational SQL databases, as a fixed schema (col‐
umn names and data types) allows the number of distinct values in the item column
to change as data is added to the table. In the previous example, date and item would
usually be the primary keys (in relational database parlance), offering both relational
integrity and easier joins. In some cases, the data may be more difficult to work with
in this format; you might prefer to have a DataFrame containing one column per
distinct item value indexed by timestamps in the date column. DataFrame’s pivot
method performs exactly this transformation:

In [156]: pivoted = long_data.pivot(index="date", columns="item",
 : values="value")

In [157]: pivoted.head()
Out[157]:

8.3 Reshaping and Pivoting | 275

item infl realgdp unemp
date
1959-01-01 0.00 2710.349 5.8
1959-04-01 2.34 2778.801 5.1
1959-07-01 2.74 2775.488 5.3
1959-10-01 0.27 2785.204 5.6
1960-01-01 2.31 2847.699 5.2

The first two values passed are the columns to be used, respectively, as the row and
column index, then finally an optional value column to fill the DataFrame. Suppose
you had two value columns that you wanted to reshape simultaneously:

In [158]: long_data["value2"] = np.random.standard_normal(len(long_data))

In [159]: long_data[:10]
Out[159]:
 date item value value2
0 1959-01-01 realgdp 2710.349 0.802926
1 1959-01-01 infl 0.000 0.575721
2 1959-01-01 unemp 5.800 1.381918
3 1959-04-01 realgdp 2778.801 0.000992
4 1959-04-01 infl 2.340 -0.143492
5 1959-04-01 unemp 5.100 -0.206282
6 1959-07-01 realgdp 2775.488 -0.222392
7 1959-07-01 infl 2.740 -1.682403
8 1959-07-01 unemp 5.300 1.811659
9 1959-10-01 realgdp 2785.204 -0.351305

By omitting the last argument, you obtain a DataFrame with hierarchical columns:

In [160]: pivoted = long_data.pivot(index="date", columns="item")

In [161]: pivoted.head()
Out[161]:
 value value2
item infl realgdp unemp infl realgdp unemp
date
1959-01-01 0.00 2710.349 5.8 0.575721 0.802926 1.381918
1959-04-01 2.34 2778.801 5.1 -0.143492 0.000992 -0.206282
1959-07-01 2.74 2775.488 5.3 -1.682403 -0.222392 1.811659
1959-10-01 0.27 2785.204 5.6 0.128317 -0.351305 -1.313554
1960-01-01 2.31 2847.699 5.2 -0.615939 0.498327 0.174072

In [162]: pivoted["value"].head()
Out[162]:
item infl realgdp unemp
date
1959-01-01 0.00 2710.349 5.8
1959-04-01 2.34 2778.801 5.1
1959-07-01 2.74 2775.488 5.3
1959-10-01 0.27 2785.204 5.6
1960-01-01 2.31 2847.699 5.2

276 | Chapter 8: Data Wrangling: Join, Combine, and Reshape

Note that pivot is equivalent to creating a hierarchical index using set_index fol‐
lowed by a call to unstack:

In [163]: unstacked = long_data.set_index(["date", "item"]).unstack(level="item")

In [164]: unstacked.head()
Out[164]:
 value value2
item infl realgdp unemp infl realgdp unemp
date
1959-01-01 0.00 2710.349 5.8 0.575721 0.802926 1.381918
1959-04-01 2.34 2778.801 5.1 -0.143492 0.000992 -0.206282
1959-07-01 2.74 2775.488 5.3 -1.682403 -0.222392 1.811659
1959-10-01 0.27 2785.204 5.6 0.128317 -0.351305 -1.313554
1960-01-01 2.31 2847.699 5.2 -0.615939 0.498327 0.174072

Pivoting “Wide” to “Long” Format
An inverse operation to pivot for DataFrames is pandas.melt. Rather than trans‐
forming one column into many in a new DataFrame, it merges multiple columns into
one, producing a DataFrame that is longer than the input. Let’s look at an example:

In [166]: df = pd.DataFrame({"key": ["foo", "bar", "baz"],
 : "A": [1, 2, 3],
 : "B": [4, 5, 6],
 : "C": [7, 8, 9]})

In [167]: df
Out[167]:
 key A B C
0 foo 1 4 7
1 bar 2 5 8
2 baz 3 6 9

The "key" column may be a group indicator, and the other columns are data values.
When using pandas.melt, we must indicate which columns (if any) are group indica‐
tors. Let’s use "key" as the only group indicator here:

In [168]: melted = pd.melt(df, id_vars="key")

In [169]: melted
Out[169]:
 key variable value
0 foo A 1
1 bar A 2
2 baz A 3
3 foo B 4
4 bar B 5
5 baz B 6
6 foo C 7
7 bar C 8
8 baz C 9

8.3 Reshaping and Pivoting | 277

Using pivot, we can reshape back to the original layout:

In [170]: reshaped = melted.pivot(index="key", columns="variable",
 : values="value")

In [171]: reshaped
Out[171]:
variable A B C
key
bar 2 5 8
baz 3 6 9
foo 1 4 7

Since the result of pivot creates an index from the column used as the row labels, we
may want to use reset_index to move the data back into a column:

In [172]: reshaped.reset_index()
Out[172]:
variable key A B C
0 bar 2 5 8
1 baz 3 6 9
2 foo 1 4 7

You can also specify a subset of columns to use as value columns:

In [173]: pd.melt(df, id_vars="key", value_vars=["A", "B"])
Out[173]:
 key variable value
0 foo A 1
1 bar A 2
2 baz A 3
3 foo B 4
4 bar B 5
5 baz B 6

pandas.melt can be used without any group identifiers, too:

In [174]: pd.melt(df, value_vars=["A", "B", "C"])
Out[174]:
 variable value
0 A 1
1 A 2
2 A 3
3 B 4
4 B 5
5 B 6
6 C 7
7 C 8
8 C 9

In [175]: pd.melt(df, value_vars=["key", "A", "B"])
Out[175]:
 variable value
0 key foo

278 | Chapter 8: Data Wrangling: Join, Combine, and Reshape

1 key bar
2 key baz
3 A 1
4 A 2
5 A 3
6 B 4
7 B 5
8 B 6

8.4 Conclusion
Now that you have some pandas basics for data import, cleaning, and reorganization
under your belt, we are ready to move on to data visualization with matplotlib. We
will return to explore other areas of pandas later in the book when we discuss more
advanced analytics.

8.4 Conclusion | 279

CHAPTER 9

Plotting and Visualization

Making informative visualizations (sometimes called plots) is one of the most impor‐
tant tasks in data analysis. It may be a part of the exploratory process—for example,
to help identify outliers or needed data transformations, or as a way of generating
ideas for models. For others, building an interactive visualization for the web may
be the end goal. Python has many add-on libraries for making static or dynamic
visualizations, but I’ll be mainly focused on matplotlib and libraries that build on top
of it.

matplotlib is a desktop plotting package designed for creating plots and figures
suitable for publication. The project was started by John Hunter in 2002 to enable
a MATLAB-like plotting interface in Python. The matplotlib and IPython commun‐
ities have collaborated to simplify interactive plotting from the IPython shell (and
now, Jupyter notebook). matplotlib supports various GUI backends on all operating
systems and can export visualizations to all of the common vector and raster graphics
formats (PDF, SVG, JPG, PNG, BMP, GIF, etc.). With the exception of a few diagrams,
nearly all of the graphics in this book were produced using matplotlib.

Over time, matplotlib has spawned a number of add-on toolkits for data visualization
that use matplotlib for their underlying plotting. One of these is seaborn, which we
explore later in this chapter.

The simplest way to follow the code examples in the chapter is to output plots in
the Jupyter notebook. To set this up, execute the following statement in a Jupyter
notebook:

%matplotlib inline

281

https://matplotlib.org
http://seaborn.pydata.org

	Chapter 5. Getting Started with pandas
	5.1 Introduction to pandas Data Structures
	Series
	DataFrame
	Index Objects

	5.2 Essential Functionality
	Reindexing
	Dropping Entries from an Axis
	Indexing, Selection, and Filtering
	Arithmetic and Data Alignment
	Function Application and Mapping
	Sorting and Ranking
	Axis Indexes with Duplicate Labels

	5.3 Summarizing and Computing Descriptive Statistics
	Correlation and Covariance
	Unique Values, Value Counts, and Membership

	5.4 Conclusion

	Chapter 6. Data Loading, Storage, and File
 Formats
	6.1 Reading and Writing Data in Text Format
	Reading Text Files in Pieces
	Writing Data to Text Format
	Working with Other Delimited Formats
	JSON Data
	XML and HTML: Web Scraping

	6.2 Binary Data Formats
	Reading Microsoft Excel Files
	Using HDF5 Format

	6.3 Interacting with Web APIs
	6.4 Interacting with Databases
	6.5 Conclusion

	Chapter 7. Data Cleaning and Preparation
	7.1 Handling Missing Data
	Filtering Out Missing Data
	Filling In Missing Data

	7.2 Data Transformation
	Removing Duplicates
	Transforming Data Using a Function or Mapping
	Replacing Values
	Renaming Axis Indexes
	Discretization and Binning
	Detecting and Filtering Outliers
	Permutation and Random Sampling
	Computing Indicator/Dummy Variables

	7.3 Extension Data Types
	7.4 String Manipulation
	Python Built-In String Object Methods
	Regular Expressions
	String Functions in pandas

	7.5 Categorical Data
	Background and Motivation
	Categorical Extension Type in pandas
	Computations with Categoricals
	Categorical Methods

	7.6 Conclusion

	Chapter 8. Data Wrangling: Join, Combine, and Reshape
	8.1 Hierarchical Indexing
	Reordering and Sorting Levels
	Summary Statistics by Level
	Indexing with a DataFrame’s columns

	8.2 Combining and Merging Datasets
	Database-Style DataFrame Joins
	Merging on Index
	Concatenating Along an Axis
	Combining Data with Overlap

	8.3 Reshaping and Pivoting
	Reshaping with Hierarchical Indexing
	Pivoting “Long” to “Wide” Format
	Pivoting “Wide” to “Long” Format

	8.4 Conclusion

	Chapter 9. Plotting and Visualization

