
CHAPTER 16

Function Basics

In Part III, we studied basic procedural statements in Python. Here, we’ll move on to
explore a set of additional statements and expressions that we can use to create func-
tions of our own.

In simple terms, a function is a device that groups a set of statements so they can be run
more than once in a program—a packaged procedure invoked by name. Functions also
can compute a result value and let us specify parameters that serve as function inputs
and may differ each time the code is run. Coding an operation as a function makes it
a generally useful tool, which we can use in a variety of contexts.

More fundamentally, functions are the alternative to programming by cutting and past-
ing—rather than having multiple redundant copies of an operation’s code, we can fac-
tor it into a single function. In so doing, we reduce our future work radically: if the
operation must be changed later, we have only one copy to update in the function, not
many scattered throughout the program.

Functions are also the most basic program structure Python provides for maximizing
code reuse, and lead us to the larger notions of program design. As we’ll see, functions
let us split complex systems into manageable parts. By implementing each part as a
function, we make it both reusable and easier to code.

Table 16-1 previews the primary function-related tools we’ll study in this part of the
book—a set that includes call expressions, two ways to make functions (def and
lambda), two ways to manage scope visibility (global and nonlocal), and two ways to
send results back to callers (return and yield).

Table 16-1. Function-related statements and expressions

Statement or expression Examples

Call expressions myfunc('spam', 'eggs', meat=ham, *rest)

def def printer(messge):
    print('Hello ' + message)

return def adder(a, b=1, *c):
    return a + b + c[0]
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Statement or expression Examples

global x = 'old'
def changer():
    global x; x = 'new'

nonlocal (3.X) def outer():
    x = 'old'
    def changer():
        nonlocal x; x = 'new'

yield def squares(x):
    for i in range(x): yield i ** 2

lambda funcs = [lambda x: x**2, lambda x: x**3]

Why Use Functions?
Before we get into the details, let’s establish a clear picture of what functions are all
about. Functions are a nearly universal program-structuring device. You may have
come across them before in other languages, where they may have been called subrou-
tines or procedures. As a brief introduction, functions serve two primary development
roles:

Maximizing code reuse and minimizing redundancy
As in most programming languages, Python functions are the simplest way to
package logic you may wish to use in more than one place and more than one time.
Up until now, all the code we’ve been writing has run immediately. Functions allow
us to group and generalize code to be used arbitrarily many times later. Because
they allow us to code an operation in a single place and use it in many places,
Python functions are the most basic factoring tool in the language: they allow us
to reduce code redundancy in our programs, and thereby reduce maintenance ef-
fort.

Procedural decomposition
Functions also provide a tool for splitting systems into pieces that have well-defined
roles. For instance, to make a pizza from scratch, you would start by mixing the
dough, rolling it out, adding toppings, baking it, and so on. If you were program-
ming a pizza-making robot, functions would help you divide the overall “make
pizza” task into chunks—one function for each subtask in the process. It’s easier
to implement the smaller tasks in isolation than it is to implement the entire process
at once. In general, functions are about procedure—how to do something, rather
than what you’re doing it to. We’ll see why this distinction matters in Part VI, when
we start making new objects with classes.

In this part of the book, we’ll explore the tools used to code functions in Python: func-
tion basics, scope rules, and argument passing, along with a few related concepts such
as generators and functional tools. Because its importance begins to become more ap-
parent at this level of coding, we’ll also revisit the notion of polymorphism, which was
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introduced earlier in the book. As you’ll see, functions don’t imply much new syntax,
but they do lead us to some bigger programming ideas.

Coding Functions
Although it wasn’t made very formal, we’ve already used some functions in earlier
chapters. For instance, to make a file object, we called the built-in open function; sim-
ilarly, we used the len built-in function to ask for the number of items in a collection
object.

In this chapter, we will explore how to write new functions in Python. Functions we
write behave the same way as the built-ins we’ve already seen: they are called in ex-
pressions, are passed values, and return results. But writing new functions requires the
application of a few additional ideas that haven’t yet been introduced. Moreover, func-
tions behave very differently in Python than they do in compiled languages like C. Here
is a brief introduction to the main concepts behind Python functions, all of which we
will study in this part of the book:

• def is executable code. Python functions are written with a new statement, the
def. Unlike functions in compiled languages such as C, def is an executable state-
ment—your function does not exist until Python reaches and runs the def. In fact,
it’s legal (and even occasionally useful) to nest def statements inside if statements,
while loops, and even other defs. In typical operation, def statements are coded in
module files and are naturally run to generate functions when the module file they
reside in is first imported.

• def creates an object and assigns it to a name. When Python reaches and runs
a def statement, it generates a new function object and assigns it to the function’s
name. As with all assignments, the function name becomes a reference to the func-
tion object. There’s nothing magic about the name of a function—as you’ll see,
the function object can be assigned to other names, stored in a list, and so on.
Function objects may also have arbitrary user-defined attributes attached to them
to record data.

• lambda creates an object but returns it as a result. Functions may also be created
with the lambda expression, a feature that allows us to in-line function definitions
in places where a def statement won’t work syntactically. This is a more advanced
concept that we’ll defer until Chapter 19.

• return sends a result object back to the caller. When a function is called, the
caller stops until the function finishes its work and returns control to the caller.
Functions that compute a value send it back to the caller with a return statement;
the returned value becomes the result of the function call. A return without a value
simply returns to the caller (and sends back None, the default result).

• yield sends a result object back to the caller, but remembers where it left
off. Functions known as generators may also use the yield statement to send back
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a value and suspend their state such that they may be resumed later, to produce a
series of results over time. This is another advanced topic covered later in this part
of the book.

• global declares module-level variables that are to be assigned. By default, all
names assigned in a function are local to that function and exist only while the
function runs. To assign a name in the enclosing module, functions need to list it
in a global statement. More generally, names are always looked up in scopes—
places where variables are stored—and assignments bind names to scopes.

• nonlocal declares enclosing function variables that are to be assigned. Simi-
larly, the nonlocal statement added in Python 3.X allows a function to assign a
name that exists in the scope of a syntactically enclosing def statement. This allows
enclosing functions to serve as a place to retain state—information remembered
between function calls—without using shared global names.

• Arguments are passed by assignment (object reference). In Python, arguments
are passed to functions by assignment (which, as we’ve learned, means by object
reference). As you’ll see, in Python’s model the caller and function share objects
by references, but there is no name aliasing. Changing an argument name within
a function does not also change the corresponding name in the caller, but changing
passed-in mutable objects in place can change objects shared by the caller, and
serve as a function result.

• Arguments are passed by position, unless you say otherwise. Values you pass
in a function call match argument names in a function’s definition from left to right
by default. For flexibility, function calls can also pass arguments by name with
name=value keyword syntax, and unpack arbitrarily many arguments to send with
*pargs and **kargs starred-argument notation. Function definitions use the same
two forms to specify argument defaults, and collect arbitrarily many arguments
received.

• Arguments, return values, and variables are not declared. As with everything
in Python, there are no type constraints on functions. In fact, nothing about a
function needs to be declared ahead of time: you can pass in arguments of any type,
return any kind of object, and so on. As one consequence, a single function can
often be applied to a variety of object types—any objects that sport a compatible
interface (methods and expressions) will do, regardless of their specific types.

If some of the preceding words didn’t sink in, don’t worry—we’ll explore all of these
concepts with real code in this part of the book. Let’s get started by expanding on some
of these ideas and looking at a few examples.

def Statements
The def statement creates a function object and assigns it to a name. Its general format
is as follows:
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def name(arg1, arg2,... argN):
    statements

As with all compound Python statements, def consists of a header line followed by a
block of statements, usually indented (or a simple statement after the colon). The
statement block becomes the function’s body—that is, the code Python executes each
time the function is later called.

The def header line specifies a function name that is assigned the function object, along
with a list of zero or more arguments (sometimes called parameters) in parentheses.
The argument names in the header are assigned to the objects passed in parentheses at
the point of call.

Function bodies often contain a return statement:

def name(arg1, arg2,... argN):
    ...
    return value

The Python return statement can show up anywhere in a function body; when reached,
it ends the function call and sends a result back to the caller. The return statement
consists of an optional object value expression that gives the function’s result. If the
value is omitted, return sends back a None.

The return statement itself is optional too; if it’s not present, the function exits when
the control flow falls off the end of the function body. Technically, a function without
a return statement also returns the None object automatically, but this return value is
usually ignored at the call.

Functions may also contain yield statements, which are designed to produce a series
of values over time, but we’ll defer discussion of these until we survey generator topics
in Chapter 20.

def Executes at Runtime
The Python def is a true executable statement: when it runs, it creates a new function
object and assigns it to a name. (Remember, all we have in Python is runtime; there is
no such thing as a separate compile time.) Because it’s a statement, a def can appear
anywhere a statement can—even nested in other statements. For instance, although
defs normally are run when the module enclosing them is imported, it’s also completely
legal to nest a function def inside an if statement to select between alternative defini-
tions:

if test:
    def func():            # Define func this way
        ...
else:
    def func():            # Or else this way
        ...
...
func()                     # Call the version selected and built
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One way to understand this code is to realize that the def is much like an = statement:
it simply assigns a name at runtime. Unlike in compiled languages such as C, Python
functions do not need to be fully defined before the program runs. More generally,
defs are not evaluated until they are reached and run, and the code inside defs is not
evaluated until the functions are later called.

Because function definition happens at runtime, there’s nothing special about the
function name. What’s important is the object to which it refers:

othername = func           # Assign function object
othername()                # Call func again

Here, the function was assigned to a different name and called through the new name.
Like everything else in Python, functions are just objects; they are recorded explicitly
in memory at program execution time. In fact, besides calls, functions allow arbitrary
attributes to be attached to record information for later use:

def func(): ...            # Create function object
func()                     # Call object
func.attr = value          # Attach attributes

A First Example: Definitions and Calls
Apart from such runtime concepts (which tend to seem most unique to programmers
with backgrounds in traditional compiled languages), Python functions are straight-
forward to use. Let’s code a first real example to demonstrate the basics. As you’ll see,
there are two sides to the function picture: a definition (the def that creates a function)
and a call (an expression that tells Python to run the function’s body).

Definition
Here’s a definition typed interactively that defines a function called times, which re-
turns the product of its two arguments:

>>> def times(x, y):       # Create and assign function
...     return x * y       # Body executed when called
...

When Python reaches and runs this def, it creates a new function object that packages
the function’s code and assigns the object to the name times. Typically, such a state-
ment is coded in a module file and runs when the enclosing file is imported; for some-
thing this small, though, the interactive prompt suffices.

Calls
The def statement makes a function but does not call it. After the def has run, you can
call (run) the function in your program by adding parentheses after the function’s name.
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The parentheses may optionally contain one or more object arguments, to be passed
(assigned) to the names in the function’s header:

>>> times(2, 4)            # Arguments in parentheses
8

This expression passes two arguments to times. As mentioned previously, arguments
are passed by assignment, so in this case the name x in the function header is assigned
the value 2, y is assigned the value 4, and the function’s body is run. For this function,
the body is just a return statement that sends back the result as the value of the call
expression. The returned object was printed here interactively (as in most languages,
2 * 4 is 8 in Python), but if we needed to use it later we could instead assign it to a
variable. For example:

>>> x = times(3.14, 4)     # Save the result object
>>> x
12.56

Now, watch what happens when the function is called a third time, with very different
kinds of objects passed in:

>>> times('Ni', 4)         # Functions are "typeless"
'NiNiNiNi'

This time, our function means something completely different (Monty Python reference
again intended). In this third call, a string and an integer are passed to x and y, instead
of two numbers. Recall that * works on both numbers and sequences; because we never
declare the types of variables, arguments, or return values in Python, we can use
times to either multiply numbers or repeat sequences.

In other words, what our times function means and does depends on what we pass into
it. This is a core idea in Python (and perhaps the key to using the language well), which
merits a bit of expansion here.

Polymorphism in Python
As we just saw, the very meaning of the expression x * y in our simple times function
depends completely upon the kinds of objects that x and y are—thus, the same function
can perform multiplication in one instance and repetition in another. Python leaves it
up to the objects to do something reasonable for the syntax. Really, * is just a dispatch
mechanism that routes control to the objects being processed.

This sort of type-dependent behavior is known as polymorphism, a term we first met
in Chapter 4 that essentially means that the meaning of an operation depends on the
objects being operated upon. Because it’s a dynamically typed language, polymorphism
runs rampant in Python. In fact, every operation is a polymorphic operation in Python:
printing, indexing, the * operator, and much more.

This is deliberate, and it accounts for much of the language’s conciseness and flexibility.
A single function, for instance, can generally be applied to a whole category of object
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types automatically. As long as those objects support the expected interface (a.k.a.
protocol), the function can process them. That is, if the objects passed into a function
have the expected methods and expression operators, they are plug-and-play compat-
ible with the function’s logic.

Even in our simple times function, this means that any two objects that support a * will
work, no matter what they may be, and no matter when they are coded. This function
will work on two numbers (performing multiplication), or a string and a number (per-
forming repetition), or any other combination of objects supporting the expected in-
terface—even class-based objects we have not even imagined yet.

Moreover, if the objects passed in do not support this expected interface, Python will
detect the error when the * expression is run and raise an exception automatically. It’s
therefore usually pointless to code error checking ourselves. In fact, doing so would
limit our function’s utility, as it would be restricted to work only on objects whose types
we test for.

This turns out to be a crucial philosophical difference between Python and statically
typed languages like C++ and Java: in Python, your code is not supposed to care about
specific data types. If it does, it will be limited to working on just the types you antici-
pated when you wrote it, and it will not support other compatible object types that
may be coded in the future. Although it is possible to test for types with tools like the
type built-in function, doing so breaks your code’s flexibility. By and large, we code to 
object interfaces in Python, not data types.1

Of course, some programs have unique requirements, and this polymorphic model of
programming means we have to test our code to detect errors, rather than providing
type declarations a compiler can use to detect some types of errors for us ahead of time.
In exchange for an initial bit of testing, though, we radically reduce the amount of code
we have to write and radically increase our code’s flexibility. As you’ll learn, it’s a net
win in practice.

A Second Example: Intersecting Sequences
Let’s look at a second function example that does something a bit more useful than
multiplying arguments and further illustrates function basics.

In Chapter 13, we coded a for loop that collected items held in common in two strings.
We noted there that the code wasn’t as useful as it could be because it was set up to
work only on specific variables and could not be rerun later. Of course, we could copy

1. This polymorphic behavior has in recent years come to also be known as duck typing—the essential idea
being that your code is not supposed to care if an object is a duck, only that it quacks. Anything that
quacks will do, duck or not, and the implementation of quacks is up to the object, a principle which will
become even more apparent when we study classes in Part VI. Graphic metaphor to be sure, though this
is really just a new label for an older idea, and use cases for quacking software would seem limited in the
tangible world (he says, bracing for emails from militant ornithologists...).
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the code and paste it into each place where it needs to be run, but this solution is neither
good nor general—we’d still have to edit each copy to support different sequence
names, and changing the algorithm would then require changing multiple copies.

Definition
By now, you can probably guess that the solution to this dilemma is to package the
for loop inside a function. Doing so offers a number of advantages:

• Putting the code in a function makes it a tool that you can run as many times as
you like.

• Because callers can pass in arbitrary arguments, functions are general enough to
work on any two sequences (or other iterables) you wish to intersect.

• When the logic is packaged in a function, you have to change code in only one
place if you ever need to change the way the intersection works.

• Coding the function in a module file means it can be imported and reused by any
program run on your machine.

In effect, wrapping the code in a function makes it a general intersection utility:

def intersect(seq1, seq2):
    res = []                     # Start empty
    for x in seq1:               # Scan seq1
        if x in seq2:            # Common item?
            res.append(x)        # Add to end
    return res

The transformation from the simple code of Chapter 13 to this function is straightfor-
ward; we’ve just nested the original logic under a def header and made the objects on
which it operates passed-in parameter names. Because this function computes a result,
we’ve also added a return statement to send a result object back to the caller.

Calls
Before you can call a function, you have to make it. To do this, run its def statement,
either by typing it interactively or by coding it in a module file and importing the file.
Once you’ve run the def, you can call the function by passing any two sequence objects
in parentheses:

>>> s1 = "SPAM"
>>> s2 = "SCAM"
>>> intersect(s1, s2)            # Strings
['S', 'A', 'M']

Here, we’ve passed in two strings, and we get back a list containing the characters in
common. The algorithm the function uses is simple: “for every item in the first argu-
ment, if that item is also in the second argument, append the item to the result.” It’s a
little shorter to say that in Python than in English, but it works out the same.
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To be fair, our intersect function is fairly slow (it executes nested loops), isn’t really
mathematical intersection (there may be duplicates in the result), and isn’t required at
all (as we’ve seen, Python’s set data type provides a built-in intersection operation).
Indeed, the function could be replaced with a single list comprehension expression, as
it exhibits the classic loop collector code pattern:

>>> [x for x in s1 if x in s2]
['S', 'A', 'M']

As a function basics example, though, it does the job—this single piece of code can
apply to an entire range of object types, as the next section explains. In fact, we’ll
improve and extend this to support arbitrarily many operands in Chapter 18, after we
learn more about argument passing modes.

Polymorphism Revisited
Like all good functions in Python, intersect is polymorphic. That is, it works on ar-
bitrary types, as long as they support the expected object interface:

>>> x = intersect([1, 2, 3], (1, 4))      # Mixed types
>>> x                                     # Saved result object
[1]

This time, we passed in different types of objects to our function—a list and a tuple
(mixed types)—and it still picked out the common items. Because you don’t have to
specify the types of arguments ahead of time, the intersect function happily iterates
through any kind of sequence objects you send it, as long as they support the expected
interfaces.

For intersect, this means that the first argument has to support the for loop, and the
second has to support the in membership test. Any two such objects will work, re-
gardless of their specific types—that includes physically stored sequences like strings
and lists; all the iterable objects we met in Chapter 14, including files and dictionaries;
and even any class-based objects we code that apply operator overloading techniques
we’ll discuss later in the book.2

Here again, if we pass in objects that do not support these interfaces (e.g., numbers),
Python will automatically detect the mismatch and raise an exception for us—which
is exactly what we want, and the best we could do on our own if we coded explicit type

2. This code will always work if we intersect files’ contents obtained with file.readlines(). It may not work
to intersect lines in open input files directly, though, depending on the file object’s implementation of
the in operator or general iteration. Files must generally be rewound (e.g., with a file.seek(0) or another
open) after they have been read to end-of-file once, and so are single-pass iterators. As we’ll see in
Chapter 30 when we study operator overloading, objects implement the in operator either by providing
the specific __contains__ method or by supporting the general iteration protocol with the __iter__ or
older __getitem__ methods; classes can code these methods arbitrarily to define what iteration means for
their data.
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tests. By not coding type tests and allowing Python to detect the mismatches for us, we
both reduce the amount of code we need to write and increase our code’s flexibility.

Local Variables
Probably the most interesting part of this example, though, is its names. It turns out
that the variable res inside intersect is what in Python is called a local variable—a
name that is visible only to code inside the function def and that exists only while the
function runs. In fact, because all names assigned in any way inside a function are
classified as local variables by default, nearly all the names in intersect are local vari-
ables:

• res is obviously assigned, so it is a local variable.

• Arguments are passed by assignment, so seq1 and seq2 are, too.

• The for loop assigns items to a variable, so the name x is also local.

All these local variables appear when the function is called and disappear when the
function exits—the return statement at the end of intersect sends back the result
object, but the name res goes away. Because of this, a function’s variables won’t re-
member values between calls; although the object returned by a function lives on, re-
taining other sorts of state information requires other sorts of techniques. To fully
explore the notion of locals and state, though, we need to move on to the scopes 
coverage of Chapter 17.

Chapter Summary
This chapter introduced the core ideas behind function definition—the syntax and
operation of the def and return statements, the behavior of function call expressions,
and the notion and benefits of polymorphism in Python functions. As we saw, a def
statement is executable code that creates a function object at runtime; when the func-
tion is later called, objects are passed into it by assignment (recall that assignment
means object reference in Python, which, as we learned in Chapter 6, really means
pointer internally), and computed values are sent back by return. We also began ex-
ploring the concepts of local variables and scopes in this chapter, but we’ll save all the
details on those topics for Chapter 17. First, though, a quick quiz.

Test Your Knowledge: Quiz
1. What is the point of coding functions?

2. At what time does Python create a function?

3. What does a function return if it has no return statement in it?

4. When does the code nested inside the function definition statement run?
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5. What’s wrong with checking the types of objects passed into a function?

Test Your Knowledge: Answers
1. Functions are the most basic way of avoiding code redundancy in Python—factor-

ing code into functions means that we have only one copy of an operation’s code
to update in the future. Functions are also the basic unit of code reuse in Python
—wrapping code in functions makes it a reusable tool, callable in a variety of pro-
grams. Finally, functions allow us to divide a complex system into manageable
parts, each of which may be developed individually.

2. A function is created when Python reaches and runs the def statement; this state-
ment creates a function object and assigns it the function’s name. This normally
happens when the enclosing module file is imported by another module (recall that
imports run the code in a file from top to bottom, including any defs), but it can
also occur when a def is typed interactively or nested in other statements, such as
ifs.

3. A function returns the None object by default if the control flow falls off the end of
the function body without running into a return statement. Such functions are
usually called with expression statements, as assigning their None results to vari-
ables is generally pointless. A return statement with no expression in it also returns
None.

4. The function body (the code nested inside the function definition statement) is run
when the function is later called with a call expression. The body runs anew each
time the function is called.

5. Checking the types of objects passed into a function effectively breaks the func-
tion’s flexibility, constraining the function to work on specific types only. Without
such checks, the function would likely be able to process an entire range of object
types—any objects that support the interface expected by the function will work.
(The term interface means the set of methods and expression operators the func-
tion’s code runs.)
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CHAPTER 22

Modules: The Big Picture

This chapter begins our in-depth look at the Python module—the highest-level program
organization unit, which packages program code and data for reuse, and provides self-
contained namespaces that minimize variable name clashes across your programs. In
concrete terms, modules typically correspond to Python program files. Each file is a
module, and modules import other modules to use the names they define. Modules
might also correspond to extensions coded in external languages such as C, Java, or
C#, and even to directories in package imports. Modules are processed with two state-
ments and one important function:

import
Lets a client (importer) fetch a module as a whole

from
Allows clients to fetch particular names from a module

imp.reload (reload in 2.X)
Provides a way to reload a module’s code without stopping Python

Chapter 3 introduced module fundamentals, and we’ve been using them ever since.
The goal here is to expand on the core module concepts you’re already familiar with,
and move on to explore more advanced module usage. This first chapter reviews mod-
ule basics, and offers a general look at the role of modules in overall program structure.
In the chapters that follow, we’ll dig into the coding details behind the theory.

Along the way, we’ll flesh out module details omitted so far—you’ll learn about reloads,
the __name__ and __all__ attributes, package imports, relative import syntax, 3.3 name-
space packages, and so on. Because modules and classes are really just glorified name-
spaces, we’ll formalize namespace concepts here as well.

Why Use Modules?
In short, modules provide an easy way to organize components into a system by serving
as self-contained packages of variables known as namespaces. All the names defined at
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the top level of a module file become attributes of the imported module object. As we
saw in the last part of this book, imports give access to names in a module’s global
scope. That is, the module file’s global scope morphs into the module object’s attribute
namespace when it is imported. Ultimately, Python’s modules allow us to link indi-
vidual files into a larger program system.

More specifically, modules have at least three roles:

Code reuse
As discussed in Chapter 3, modules let you save code in files permanently. Unlike
code you type at the Python interactive prompt, which goes away when you exit
Python, code in module files is persistent—it can be reloaded and rerun as many
times as needed. Just as importantly, modules are a place to define names, known
as attributes, which may be referenced by multiple external clients. When used
well, this supports a modular program design that groups functionality into reus-
able units.

System namespace partitioning
Modules are also the highest-level program organization unit in Python. Although
they are fundamentally just packages of names, these packages are also self-con-
tained—you can never see a name in another file, unless you explicitly import that
file. Much like the local scopes of functions, this helps avoid name clashes across
your programs. In fact, you can’t avoid this feature—everything “lives” in a mod-
ule, both the code you run and the objects you create are always implicitly enclosed
in modules. Because of that, modules are natural tools for grouping system com-
ponents.

Implementing shared services or data
From an operational perspective, modules are also useful for implementing com-
ponents that are shared across a system and hence require only a single copy. For
instance, if you need to provide a global object that’s used by more than one func-
tion or file, you can code it in a module that can then be imported by many clients.

At least that’s the abstract story—for you to truly understand the role of modules in a
Python system, we need to digress for a moment and explore the general structure of
a Python program.

Python Program Architecture
So far in this book, I’ve sugarcoated some of the complexity in my descriptions of
Python programs. In practice, programs usually involve more than just one file. For all
but the simplest scripts, your programs will take the form of multifile systems—as the
code timing programs of the preceding chapter illustrate. Even if you can get by with
coding a single file yourself, you will almost certainly wind up using external files that
someone else has already written.
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This section introduces the general architecture of Python programs—the way you di-
vide a program into a collection of source files (a.k.a. modules) and link the parts into
a whole. As we’ll see, Python fosters a modular program structure that groups func-
tionality into coherent and reusable units, in ways that are natural, and almost auto-
matic. Along the way, we’ll also explore the central concepts of Python modules, im-
ports, and object attributes.

How to Structure a Program
At a base level, a Python program consists of text files containing Python statements,
with one main top-level file, and zero or more supplemental files known as modules.

Here’s how this works. The top-level (a.k.a. script) file contains the main flow of control
of your program—this is the file you run to launch your application. The module files
are libraries of tools used to collect components used by the top-level file, and possibly
elsewhere. Top-level files use tools defined in module files, and modules use tools de-
fined in other modules.

Although they are files of code too, module files generally don’t do anything when run
directly; rather, they define tools intended for use in other files. A file imports a module
to gain access to the tools it defines, which are known as its attributes—variable names
attached to objects such as functions. Ultimately, we import modules and access their
attributes to use their tools.

Imports and Attributes
Let’s make this a bit more concrete. Figure 22-1 sketches the structure of a Python
program composed of three files: a.py, b.py, and c.py. The file a.py is chosen to be the
top-level file; it will be a simple text file of statements, which is executed from top to
bottom when launched. The files b.py and c.py are modules; they are simple text files
of statements as well, but they are not usually launched directly. Instead, as explained
previously, modules are normally imported by other files that wish to use the tools the
modules define.

For instance, suppose the file b.py in Figure 22-1 defines a function called spam, for
external use. As we learned when studying functions in Part IV, b.py will contain a
Python def statement to generate the function, which you can later run by passing zero
or more values in parentheses after the function’s name:

def spam(text):                # File b.py
    print(text, 'spam')

Now, suppose a.py wants to use spam. To this end, it might contain Python statements
such as the following:

import b                       # File a.py
b.spam('gumby')                # Prints "gumby spam"
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The first of these, a Python import statement, gives the file a.py access to everything
defined by top-level code in the file b.py. The code import b roughly means:

Load the file b.py (unless it’s already loaded), and give me access to all its attributes
through the name b.

To satisfy such goals, import (and, as you’ll see later, from) statements execute and load
other files on request. More formally, in Python, cross-file module linking is not re-
solved until such import statements are executed at runtime; their net effect is to assign
module names—simple variables like b—to loaded module objects. In fact, the module
name used in an import statement serves two purposes: it identifies the external file to
be loaded, but it also becomes a variable assigned to the loaded module.

Similarly, objects defined by a module are also created at runtime, as the import is
executing: import literally runs statements in the target file one at a time to create its
contents. Along the way, every name assigned at the top-level of the file becomes an
attribute of the module, accessible to importers. For example, the second of the state-
ments in a.py calls the function spam defined in the module b—created by running its
def statement during the import—using object attribute notation. The code b.spam
means:

Fetch the value of the name spam that lives within the object b.

This happens to be a callable function in our example, so we pass a string in parentheses
('gumby'). If you actually type these files, save them, and run a.py, the words “gumby
spam” will be printed.

As we’ve seen, the object.attribute notation appears throughout Python code—most
objects have useful attributes that are fetched with the “.” operator. Some reference
callable objects like functions that take action (e.g., a salary computer), and others are

Figure 22-1. Program architecture in Python. A program is a system of modules. It has one top-level
script file (launched to run the program), and multiple module files (imported libraries of tools). Scripts
and modules are both text files containing Python statements, though the statements in modules
usually just create objects to be used later. Python’s standard library provides a collection of precoded
modules.
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simple data values that denote more static objects and properties (e.g., a person’s
name).

The notion of importing is also completely general throughout Python. Any file can
import tools from any other file. For instance, the file a.py may import b.py to call its
function, but b.py might also import c.py to leverage different tools defined there. Im-
port chains can go as deep as you like: in this example, the module a can import b,
which can import c, which can import b again, and so on.

Besides serving as the highest organizational structure, modules (and module packages,
described in Chapter 24) are also the highest level of code reuse in Python. Coding
components in module files makes them useful in your original program, and in any
other programs you may write later. For instance, if after coding the program in Fig-
ure 22-1 we discover that the function b.spam is a general-purpose tool, we can reuse
it in a completely different program; all we have to do is import the file b.py again from
the other program’s files.

Standard Library Modules
Notice the rightmost portion of Figure 22-1. Some of the modules that your programs
will import are provided by Python itself and are not files you will code.

Python automatically comes with a large collection of utility modules known as the
standard library. This collection, over 200 modules large at last count, contains plat-
form-independent support for common programming tasks: operating system inter-
faces, object persistence, text pattern matching, network and Internet scripting, GUI
construction, and much more. None of these tools are part of the Python language
itself, but you can use them by importing the appropriate modules on any standard
Python installation. Because they are standard library modules, you can also be rea-
sonably sure that they will be available and will work portably on most platforms on
which you will run Python.

This book’s examples employ a few of the standard library’s modules—timeit, sys,
and os in last chapter’s code, for instance—but we’ll really only scratch the surface of
the libraries story here. For a complete look, you should browse the standard Python
library reference manual, available either online at http://www.python.org, or with your
Python installation (via IDLE or Python’s Start button menu on some Windows). The
PyDoc tool discussed in Chapter 15 is another way to explore standard library modules.

Because there are so many modules, this is really the only way to get a feel for what
tools are available. You can also find tutorials on Python library tools in commercial
books that cover application-level programming, such as O’Reilly’s Programming
Python, but the manuals are free, viewable in any web browser (in HTML format),
viewable in other formats (e.g., Windows help), and updated each time Python is re-
released. See Chapter 15 for more pointers.
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How Imports Work
The prior section talked about importing modules without really explaining what hap-
pens when you do so. Because imports are at the heart of program structure in Python,
this section goes into more formal detail on the import operation to make this process
less abstract.

Some C programmers like to compare the Python module import operation to a C
#include, but they really shouldn’t—in Python, imports are not just textual insertions
of one file into another. They are really runtime operations that perform three distinct
steps the first time a program imports a given file:

1. Find the module’s file.

2. Compile it to byte code (if needed).

3. Run the module’s code to build the objects it defines.

To better understand module imports, we’ll explore these steps in turn. Bear in mind
that all three of these steps are carried out only the first time a module is imported
during a program’s execution; later imports of the same module in a program run
bypass all of these steps and simply fetch the already loaded module object in memory.
Technically, Python does this by storing loaded modules in a table named sys.mod
ules and checking there at the start of an import operation. If the module is not present,
a three-step process begins.

1. Find It
First, Python must locate the module file referenced by an import statement. Notice
that the import statement in the prior section’s example names the file without a .py
extension and without its directory path: it just says import b, instead of something
like import c:\dir1\b.py. Path and extension details are omitted on purpose; instead,
Python uses a standard module search path and known file types to locate the module
file corresponding to an import statement.1 Because this is the main part of the import
operation that programmers must know about, we’ll return to this topic in a moment.

1. It’s syntactically illegal to include path and extension details in a standard import. However, package
imports, which we’ll discuss in Chapter 24, allow import statements to include part of the directory path
leading to a file as a set of period-separated names. Package imports, though, still rely on the normal
module search path to locate the leftmost directory in a package path (i.e., they are relative to a directory
in the search path). They also cannot make use of any platform-specific directory syntax in the import
statements; such syntax only works on the search path. Also, note that module file search path issues are
not as relevant when you run frozen executables (discussed in Chapter 2), which typically embed byte
code in the binary image.
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2. Compile It (Maybe)
After finding a source code file that matches an import statement by traversing the
module search path, Python next compiles it to byte code, if necessary. We discussed
byte code briefly in Chapter 2, but it’s a bit richer than explained there. During an
import operation Python checks both file modification times and the byte code’s Python
version number to decide how to proceed. The former uses file “timestamps,” and the
latter uses either a “magic” number embedded in the byte code or a filename, depending
on the Python release being used. This step chooses an action as follows:

Compile
If the byte code file is older than the source file (i.e., if you’ve changed the source)
or was created by a different Python version, Python automatically regenerates the
byte code when the program is run.

As discussed ahead, this model is modified somewhat in Python 3.2 and later—
byte code files are segregated in a __pycache__ subdirectory and named with their
Python version to avoid contention and recompiles when multiple Pythons are
installed. This obviates the need to check version numbers in the byte code, but
the timestamp check is still used to detect changes in the source.

Don’t compile
If, on the other hand, Python finds a .pyc byte code file that is not older than the 
corresponding .py source file and was created by the same Python version, it skips
the source-to-byte-code compile step.

In addition, if Python finds only a byte code file on the search path and no source,
it simply loads the byte code directly; this means you can ship a program as just
byte code files and avoid sending source. In other words, the compile step is by-
passed if possible to speed program startup.

Notice that compilation happens when a file is being imported. Because of this, you
will not usually see a .pyc byte code file for the top-level file of your program, unless it
is also imported elsewhere—only imported files leave behind .pyc files on your ma-
chine. The byte code of top-level files is used internally and discarded; byte code of
imported files is saved in files to speed future imports.

Top-level files are often designed to be executed directly and not imported at all. Later,
we’ll see that it is possible to design a file that serves both as the top-level code of a
program and as a module of tools to be imported. Such a file may be both executed
and imported, and thus does generate a .pyc. To learn how this works, watch for the
discussion of the special __name__ attribute and __main__ in Chapter 25.

3. Run It
The final step of an import operation executes the byte code of the module. All state-
ments in the file are run in turn, from top to bottom, and any assignments made to
names during this step generate attributes of the resulting module object. This is how
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the tools defined by the module’s code are created. For instance, def statements in a
file are run at import time to create functions and assign attributes within the module
to those functions. The functions can then be called later in the program by the file’s
importers.

Because this last import step actually runs the file’s code, if any top-level code in a
module file does real work, you’ll see its results at import time. For example, top-level
print statements in a module show output when the file is imported. Function def
statements simply define objects for later use.

As you can see, import operations involve quite a bit of work—they search for files,
possibly run a compiler, and run Python code. Because of this, any given module is
imported only once per process by default. Future imports skip all three import steps
and reuse the already loaded module in memory. If you need to import a file again after
it has already been loaded (for example, to support dynamic end-user customizations),
you have to force the issue with an imp.reload call—a tool we’ll meet in the next 
chapter.2

Byte Code Files: __pycache__ in Python 3.2+
As mentioned briefly, the way that Python stores files to retain the byte code that results
from compiling your source has changed in Python 3.2 and later. First of all, if Python
cannot write a file to save this on your computer for any reason, your program still runs
fine—Python simply creates and uses the byte code in memory and discards it on exit.
To speed startups, though, it will try to save byte code in a file in order to skip the
compile step next time around. The way it does this varies per Python version:

In Python 3.1 and earlier (including all of Python 2.X)
Byte code is stored in files in the same directory as the corresponding source files,
normally with the filename extension .pyc (e.g., module.pyc). Byte code files are
also stamped internally with the version of Python that created them (known as a
“magic” field to developers) so Python knows to recompile when this differs in the
version of Python running your program. For instance, if you upgrade to a new
Python whose byte code differs, all your byte code files will be recompiled auto-
matically due to a version number mismatch, even if you haven’t changed your
source code.

In Python 3.2 and later
Byte code is instead stored in files in a subdirectory named __pycache__, which
Python creates if needed, and which is located in the directory containing the cor-
responding source files. This helps avoid clutter in your source directories by seg-
regating the byte code files in their own directory. In addition, although byte code

2. As described earlier, Python keeps already imported modules in the built-in sys.modules dictionary so it
can keep track of what’s been loaded. In fact, if you want to see which modules are loaded, you can import
sys and print list(sys.modules.keys()). There’s more on other uses for this internal table in Chapter 25.
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files still get the .pyc extension as before, they are given more descriptive names
that include text identifying the version of Python that created them (e.g., mod-
ule.cpython-32.pyc). This avoids contention and recompiles: because each version
of Python installed can have its own uniquely named version of byte code files in
the __pycache__ subdirectory, running under a given version doesn’t overwrite the
byte code of another, and doesn’t require recompiles. Technically, byte code file-
names also include the name of the Python that created them, so CPython, Jython,
and other implementations mentioned in the preface and Chapter 2 can coexist on
the same machine without stepping on each other’s work (once they support this
model).

In both models, Python always recreates the byte code file if you’ve changed the source
code file since the last compile, but version differences are handled differently—by
magic numbers and replacement prior to 3.2, and by filenames that allow for multiple
copies in 3.2 and later.

Byte Code File Models in Action
The following is a quick example of these two models in action under 2.X and 3.3. I’ve
omitted much of the text displayed by the dir directory listing on Windows here to
save space, and the script used here isn’t listed because it is not relevant to this discus-
sion (it’s from Chapter 2, and simply prints two values). Prior to 3.2, byte code files
show up alongside their source files after being created by import operations:

c:\code\py2x> dir
10/31/2012  10:58 AM                39 script0.py

c:\code\py2x> C:\python27\python
>>> import script0
hello world
1267650600228229401496703205376
>>> ^Z

c:\code\py2x> dir
10/31/2012  10:58 AM                39 script0.py
10/31/2012  11:00 AM               154 script0.pyc

However, in 3.2 and later byte code files are saved in the __pycache__ subdirectory and
include versions and Python implementation details in their names to avoid clutter and
contention among the Pythons on your computer:

c:\code\py2x> cd ..\py3x
c:\code\py3x> dir
10/31/2012  10:58 AM                39 script0.py

c:\code\py3x> C:\python33\python
>>> import script0
hello world
1267650600228229401496703205376
>>> ^Z
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c:\code\py3x> dir
10/31/2012  10:58 AM                39 script0.py
10/31/2012  11:00 AM    <DIR>          __pycache__

c:\code\py3x> dir __pycache__
10/31/2012  11:00 AM               184 script0.cpython-33.pyc

Crucially, under the model used in 3.2 and later, importing the same file with a different
Python creates a different byte code file, instead of overwriting the single file as done
by the pre-3.2 model—in the newer model, each Python version and implementation
has its own byte code files, ready to be loaded on the next program run (earlier Pythons
will happily continue using their scheme on the same machine):

c:\code\py3x> C:\python32\python
>>> import script0
hello world
1267650600228229401496703205376
>>> ^Z

c:\code\py3x> dir __pycache__
10/31/2012  12:28 PM               178 script0.cpython-32.pyc
10/31/2012  11:00 AM               184 script0.cpython-33.pyc

Python 3.2’s newer byte code file model is probably superior, as it avoids recompiles
when there is more than one Python on your machine—a common case in today’s
mixed 2.X/3.X world. On the other hand, it is not without potential incompatibilities
in programs that rely on the prior file and directory structure. This may be a compati-
bility issue in some tools programs, for instance, though most well-behaved tools
should work as before. See Python 3.2’s “What’s New?” document for details on po-
tential impacts.

Also keep in mind that this process is completely automatic—it’s a side effect of running
programs—and most programmers probably won’t care about or even notice the dif-
ference, apart from faster startups due to fewer recompiles.

The Module Search Path
As mentioned earlier, the part of the import procedure that most programmers will
need to care about is usually the first—locating the file to be imported (the “find it”
part). Because you may need to tell Python where to look to find files to import, you
need to know how to tap into its search path in order to extend it.

In many cases, you can rely on the automatic nature of the module import search path
and won’t need to configure this path at all. If you want to be able to import user-
defined files across directory boundaries, though, you will need to know how the search
path works in order to customize it. Roughly, Python’s module search path is composed
of the concatenation of these major components, some of which are preset for you and
some of which you can tailor to tell Python where to look:
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1. The home directory of the program

2. PYTHONPATH directories (if set)

3. Standard library directories

4. The contents of any .pth files (if present)

5. The site-packages home of third-party extensions

Ultimately, the concatenation of these four components becomes sys.path, a mutable
list of directory name strings that I’ll expand upon later in this section. The first and
third elements of the search path are defined automatically. Because Python searches
the concatenation of these components from first to last, though, the second and
fourth elements can be used to extend the path to include your own source code di-
rectories. Here is how Python uses each of these path components:

Home directory (automatic)
Python first looks for the imported file in the home directory. The meaning of this
entry depends on how you are running the code. When you’re running a pro-
gram, this entry is the directory containing your program’s top-level script file.
When you’re working interactively, this entry is the directory in which you are
working (i.e., the current working directory).

Because this directory is always searched first, if a program is located entirely in a
single directory, all of its imports will work automatically with no path configura-
tion required. On the other hand, because this directory is searched first, its files
will also override modules of the same name in directories elsewhere on the path;
be careful not to accidentally hide library modules this way if you need them in
your program, or use package tools we’ll meet later that can partially sidestep this
issue.

PYTHONPATH directories (configurable)
Next, Python searches all directories listed in your PYTHONPATH environment vari-
able setting, from left to right (assuming you have set this at all: it’s not preset for
you). In brief, PYTHONPATH is simply a list of user-defined and platform-specific
names of directories that contain Python code files. You can add all the directories
from which you wish to be able to import, and Python will extend the module
search path to include all the directories your PYTHONPATH lists.

Because Python searches the home directory first, this setting is only important
when importing files across directory boundaries—that is, if you need to import a
file that is stored in a different directory from the file that imports it. You’ll probably
want to set your PYTHONPATH variable once you start writing substantial programs,
but when you’re first starting out, as long as you save all your module files in the
directory in which you’re working (i.e., the home directory, like the C:\code used
in this book) your imports will work without you needing to worry about this
setting at all.
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Standard library directories (automatic)
Next, Python automatically searches the directories where the standard library
modules are installed on your machine. Because these are always searched, they
normally do not need to be added to your PYTHONPATH or included in path files
(discussed next).

.pth path file directories (configurable)
Next, a lesser-used feature of Python allows users to add directories to the module
search path by simply listing them, one per line, in a text file whose name ends
with a .pth suffix (for “path”). These path configuration files are a somewhat ad-
vanced installation-related feature; we won’t cover them fully here, but they pro-
vide an alternative to PYTHONPATH settings.

In short, text files of directory names dropped in an appropriate directory can serve
roughly the same role as the PYTHONPATH environment variable setting. For instance,
if you’re running Windows and Python 3.3, a file named myconfig.pth may be
placed at the top level of the Python install directory (C:\Python33) or in the site-
packages subdirectory of the standard library there (C:\Python33\Lib\site-pack-
ages) to extend the module search path. On Unix-like systems, this file might be
located in usr/local/lib/python3.3/site-packages or /usr/local/lib/site-python instead.

When such a file is present, Python will add the directories listed on each line of
the file, from first to last, near the end of the module search path list—currently,
after PYTHONPATH and standard libraries, but before the site-packages directory
where third-party extensions are often installed. In fact, Python will collect the
directory names in all the .pth path files it finds and will filter out any duplicates
and nonexistent directories. Because they are files rather than shell settings, path
files can apply to all users of an installation, instead of just one user or shell. More-
over, for some users and applications, text files may be simpler to code than envi-
ronment settings.

This feature is more sophisticated than I’ve described here. For more details, con-
sult the Python library manual, and especially its documentation for the standard
library module site—this module allows the locations of Python libraries and path
files to be configured, and its documentation describes the expected locations of
path files in general. I recommend that beginners use PYTHONPATH or perhaps a sin-
gle .pth file, and then only if you must import across directories. Path files are used
more often by third-party libraries, which commonly install a path file in Python’s
site-packages, described next.

The Lib\site-packages directory of third-party extensions (automatic)
Finally, Python automatically adds the site-packages subdirectory of its standard
library to the module search path. By convention, this is the place that most third-
party extensions are installed, often automatically by the distutils utility de-
scribed in an upcoming sidebar. Because their install directory is always part of the
module search path, clients can import the modules of such extensions without
any path settings.
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Configuring the Search Path
The net effect of all of this is that both the PYTHONPATH and path file components of the
search path allow you to tailor the places where imports look for files. The way you set
environment variables and where you store path files varies per platform. For instance,
on Windows, you might use your Control Panel’s System icon to set PYTHONPATH to a
list of directories separated by semicolons, like this:

c:\pycode\utilities;d:\pycode\package1

Or you might instead create a text file called C:\Python33\pydirs.pth, which looks like
this:

c:\pycode\utilities
d:\pycode\package1

These settings are analogous on other platforms, but the details can vary too widely for
us to cover in this chapter. See Appendix A for pointers on extending your module
search path with PYTHONPATH or .pth files on various platforms.

Search Path Variations
This description of the module search path is accurate, but generic; the exact config-
uration of the search path is prone to changing across platforms, Python releases, and
even Python implementations. Depending on your platform, additional directories may
automatically be added to the module search path as well.

For instance, some Pythons may add an entry for the current working directory—the
directory from which you launched your program—in the search path before the
PYTHONPATH directories. When you’re launching from a command line, the current
working directory may not be the same as the home directory of your top-level file (i.e.,
the directory where your program file resides), which is always added. Because the
current working directory can vary each time your program runs, you normally
shouldn’t depend on its value for import purposes. See Chapter 3 for more on launching
programs from command lines.3

To see how your Python configures the module search path on your platform, you can
always inspect sys.path—the topic of the next section.

The sys.path List
If you want to see how the module search path is truly configured on your machine,
you can always inspect the path as Python knows it by printing the built-in sys.path

3. Also watch for Chapter 24’s discussion of the new relative import syntax and search rules in Python 3.X;
they modify the search path for from statements in files inside packages when “.” characters are used (e.g.,
from . import string). By default, a package’s own directory is not automatically searched by imports
in Python 3.X, unless such relative imports are used by files in the package itself.
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list (that is, the path attribute of the standard library module sys). This list of directory
name strings is the actual search path within Python; on imports, Python searches each
directory in this list from left to right, and uses the first file match it finds.

Really, sys.path is the module search path. Python configures it at program startup,
automatically merging the home directory of the top-level file (or an empty string to
designate the current working directory), any PYTHONPATH directories, the contents of
any .pth file paths you’ve created, and all the standard library directories. The result is
a list of directory name strings that Python searches on each import of a new file.

Python exposes this list for two good reasons. First, it provides a way to verify the search
path settings you’ve made—if you don’t see your settings somewhere in this list, you
need to recheck your work. For example, here is what my module search path looks
like on Windows under Python 3.3, with my PYTHONPATH set to C:\code and a C:
\Python33\mypath.pth path file that lists C:\Users\mark. The empty string at the front
means current directory, and my two settings are merged in; the rest are standard library
directories and files and the site-packages home for third-party extensions:

>>> import sys
>>> sys.path
['', 'C:\\code', 'C:\\Windows\\system32\\python33.zip', 'C:\\Python33\\DLLs',
'C:\\Python33\\lib', 'C:\\Python33', 'C:\\Users\\mark',
'C:\\Python33\\lib\\site-packages']

Second, if you know what you’re doing, this list provides a way for scripts to tailor their
search paths manually. As you’ll see by example later in this part of the book, by
modifying the sys.path list, you can modify the search path for all future imports made
in a program’s run. Such changes last only for the duration of the script, however;
PYTHONPATH and .pth files offer more permanent ways to modify the path—the first per
user, and the second per installation.

On the other hand, some programs really do need to change sys.path. Scripts that run
on web servers, for example, often run as the user “nobody” to limit machine access.
Because such scripts cannot usually depend on “nobody” to have set PYTHONPATH in any
particular way, they often set sys.path manually to include required source directories,
prior to running any import statements. A sys.path.append or sys.path.insert will
often suffice, though will endure for a single program run only.

Module File Selection
Keep in mind that filename extensions (e.g., .py) are omitted from import statements
intentionally. Python chooses the first file it can find on the search path that matches
the imported name. In fact, imports are the point of interface to a host of external
components—source code, multiple flavors of byte code, compiled extensions, and
more. Python automatically selects any type that matches a module’s name.
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Module sources

For example, an import statement of the form import b might today load or resolve to:

• A source code file named b.py

• A byte code file named b.pyc

• An optimized byte code file named b.pyo (a less common format)

• A directory named b, for package imports (described in Chapter 24)

• A compiled extension module, coded in C, C++, or another language, and dy-
namically linked when imported (e.g., b.so on Linux, or b.dll or b.pyd on Cygwin
and Windows)

• A compiled built-in module coded in C and statically linked into Python

• A ZIP file component that is automatically extracted when imported

• An in-memory image, for frozen executables

• A Java class, in the Jython version of Python

• A .NET component, in the IronPython version of Python

C extensions, Jython, and package imports all extend imports beyond simple files. To
importers, though, differences in the loaded file type are completely irrelevant, both
when importing and when fetching module attributes. Saying import b gets whatever
module b is, according to your module search path, and b.attr fetches an item in the
module, be it a Python variable or a linked-in C function. Some standard modules we
will use in this book are actually coded in C, not Python; because they look just like
Python-coded module files, their clients don’t have to care.

Selection priorities

If you have both a b.py and a b.so in different directories, Python will always load the
one found in the first (leftmost) directory of your module search path during the left-
to-right search of sys.path. But what happens if it finds both a b.py and a b.so in the
same directory? In this case, Python follows a standard picking order, though this order
is not guaranteed to stay the same over time or across implementations. In general, you
should not depend on which type of file Python will choose within a given directory—
make your module names distinct, or configure your module search path to make your
module selection preferences explicit.

Import hooks and ZIP files

Normally, imports work as described in this section—they find and load files on your
machine. However, it is possible to redefine much of what an import operation does
in Python, using what are known as import hooks. These hooks can be used to make
imports do various useful things, such as loading files from archives, performing de-
cryption, and so on.
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In fact, Python itself makes use of these hooks to enable files to be directly imported
from ZIP archives: archived files are automatically extracted at import time when
a .zip file is selected from the module import search path. One of the standard library
directories in the earlier sys.path display, for example, is a .zip file today. For more
details, see the Python standard library manual’s description of the built-in
__import__ function, the customizable tool that import statements actually run.

Also see Python 3.3’s “What’s New?” document for updates on this
front that we’ll mostly omit here for space. In short, in this version and
later, the __import__ function is now implemented by impor
tlib.__import__, in part to unify and more clearly expose its imple-
mentation.

The latter of these calls is also wrapped by importlib.import_module—
a tool that, per Python’s current manuals, is generally preferred over
__import__ for direct calls to import by name string, a technique dis-
cussed in Chapter 25. Both calls still work today, though the
__import__ function supports customizing imports by replacement in
the built-in scope (see Chapter 17), and other techniques support similar
roles. See the Python library manuals for more details.

Optimized byte code files

Finally, Python also supports the notion of .pyo optimized byte code files, created and
run with the -O Python command-line flag, and automatically generated by some install
tools. Because these run only slightly faster than normal .pyc files (typically 5 percent
faster), however, they are infrequently used. The PyPy system (see Chapter 2 and
Chapter 21), for example, provides more substantial speedups. See Appendix A and
Chapter 36 for more on .pyo files.

Third-Party Software: distutils
This chapter’s description of module search path settings is targeted mainly at user-
defined source code that you write on your own. Third-party extensions for Python
typically use the distutils tools in the standard library to automatically install them-
selves, so no path configuration is required to use their code.

Systems that use distutils generally come with a setup.py script, which is run to install
them; this script imports and uses distutils modules to place such systems in a direc-
tory that is automatically part of the module search path (usually in the Lib\site-pack-
ages subdirectory of the Python install tree, wherever that resides on the target ma-
chine).

For more details on distributing and installing with distutils, see the Python standard
manual set; its use is beyond the scope of this book (for instance, it also provides ways
to automatically compile C-coded extensions on the target machine). Also check out
the third-party open source eggs system, which adds dependency checking for installed
Python software.
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Note: as this fifth edition is being written, there is some talk of deprecating distutils
and replacing it with a newer distutils2 package in the Python standard library. The
status of this is unclear—it was anticipated in 3.3 but did not appear—so be sure to
see Python’s “What’s New” documents for updates on this front that may emerge after
this book is released.

Chapter Summary
In this chapter, we covered the basics of modules, attributes, and imports and explored
the operation of import statements. We learned that imports find the designated file on
the module search path, compile it to byte code, and execute all of its statements to
generate its contents. We also learned how to configure the search path to be able to
import from directories other than the home directory and the standard library direc-
tories, primarily with PYTHONPATH settings.

As this chapter demonstrated, the import operation and modules are at the heart of
program architecture in Python. Larger programs are divided into multiple files, which
are linked together at runtime by imports. Imports in turn use the module search path
to locate files, and modules define attributes for external use.

Of course, the whole point of imports and modules is to provide a structure to your
program, which divides its logic into self-contained software components. Code in one
module is isolated from code in another; in fact, no file can ever see the names defined
in another, unless explicit import statements are run. Because of this, modules minimize
name collisions between different parts of your program.

You’ll see what this all means in terms of actual statements and code in the next chapter.
Before we move on, though, let’s run through the chapter quiz.

Test Your Knowledge: Quiz
1. How does a module source code file become a module object?

2. Why might you have to set your PYTHONPATH environment variable?

3. Name the five major components of the module import search path.

4. Name four file types that Python might load in response to an import operation.

5. What is a namespace, and what does a module’s namespace contain?

Test Your Knowledge: Answers
1. A module’s source code file automatically becomes a module object when that

module is imported. Technically, the module’s source code is run during the im-
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port, one statement at a time, and all the names assigned in the process become
attributes of the module object.

2. You only need to set PYTHONPATH to import from directories other than the one in
which you are working (i.e., the current directory when working interactively, or
the directory containing your top-level file). In practice, this will be a common case
for nontrivial programs.

3. The five major components of the module import search path are the top-level
script’s home directory (the directory containing it), all directories listed in the
PYTHONPATH environment variable, the standard library directories, all directories
listed in .pth path files located in standard places, and the site-packages root di-
rectory for third-party extension installs. Of these, programmers can customize
PYTHONPATH and .pth files.

4. Python might load a source code (.py) file, a byte code (.pyc or .pyo) file, a C ex-
tension module (e.g., a .so file on Linux or a .dll or .pyd file on Windows), or a
directory of the same name for package imports. Imports may also load more exotic
things such as ZIP file components, Java classes under the Jython version of
Python, .NET components under IronPython, and statically linked C extensions
that have no files present at all. In fact, with import hooks, imports can load arbi-
trary items.

5. A namespace is a self-contained package of variables, which are known as the
attributes of the namespace object. A module’s namespace contains all the names
assigned by code at the top level of the module file (i.e., not nested in def or
class statements). Technically, a module’s global scope morphs into the module
object’s attributes namespace. A module’s namespace may also be altered by as-
signments from other files that import it, though this is generally frowned upon
(see Chapter 17 for more on the downsides of cross-file changes).
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CHAPTER 23

Module Coding Basics

Now that we’ve looked at the larger ideas behind modules, let’s turn to some examples
of modules in action. Although some of the early topics in this chapter will be review
for linear readers who have already applied them in previous chapters’ examples, we’ll
find that they quickly lead us to further details surrounding Python’s modules that we
haven’t yet met, such as nesting, reloads, scopes, and more.

Python modules are easy to create; they’re just files of Python program code created
with a text editor. You don’t need to write special syntax to tell Python you’re making
a module; almost any text file will do. Because Python handles all the details of finding
and loading modules, modules are also easy to use; clients simply import a module, or
specific names a module defines, and use the objects they reference.

Module Creation
To define a module, simply use your text editor to type some Python code into a text
file, and save it with a “.py” extension; any such file is automatically considered a
Python module. All the names assigned at the top level of the module become its
attributes (names associated with the module object) and are exported for clients to use
—they morph from variable to module object attribute automatically.

For instance, if you type the following def into a file called module1.py and import it,
you create a module object with one attribute—the name printer, which happens to
be a reference to a function object:

def printer(x):                   # Module attribute
    print(x)

Module Filenames
Before we go on, I should say a few more words about module filenames. You can call
modules just about anything you like, but module filenames should end in a .py suffix
if you plan to import them. The .py is technically optional for top-level files that will
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be run but not imported, but adding it in all cases makes your files’ types more obvious
and allows you to import any of your files in the future.

Because module names become variable names inside a Python program (without
the .py), they should also follow the normal variable name rules outlined in Chap-
ter 11. For instance, you can create a module file named if.py, but you cannot import
it because if is a reserved word—when you try to run import if, you’ll get a syntax
error. In fact, both the names of module files and the names of directories used in
package imports (discussed in the next chapter) must conform to the rules for variable
names presented in Chapter 11; they may, for instance, contain only letters, digits, and
underscores. Package directories also cannot contain platform-specific syntax such as
spaces in their names.

When a module is imported, Python maps the internal module name to an external
filename by adding a directory path from the module search path to the front, and
a .py or other extension at the end. For instance, a module named M ultimately maps
to some external file <directory>\M.<extension> that contains the module’s code.

Other Kinds of Modules
As mentioned in the preceding chapter, it is also possible to create a Python module by
writing code in an external language such as C, C++, and others (e.g., Java, in the
Jython implementation of the language). Such modules are called extension modules,
and they are generally used to wrap up external libraries for use in Python scripts. When
imported by Python code, extension modules look and feel the same as modules coded
as Python source code files—they are accessed with import statements, and they provide
functions and objects as module attributes. Extension modules are beyond the scope
of this book; see Python’s standard manuals or advanced texts such as Programming
Python for more details.

Module Usage
Clients can use the simple module file we just wrote by running an import or from
statement. Both statements find, compile, and run a module file’s code, if it hasn’t yet
been loaded. The chief difference is that import fetches the module as a whole, so you
must qualify to fetch its names; in contrast, from fetches (or copies) specific names out
of the module.

Let’s see what this means in terms of code. All of the following examples wind up calling
the printer function defined in the prior section’s module1.py module file, but in dif-
ferent ways.
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The import Statement
In the first example, the name module1 serves two different purposes—it identifies an
external file to be loaded, and it becomes a variable in the script, which references the
module object after the file is loaded:

>>> import module1                         # Get module as a whole (one or more)
>>> module1.printer('Hello world!')        # Qualify to get names
Hello world!

The import statement simply lists one or more names of modules to load, separated by
commas. Because it gives a name that refers to the whole module object, we must go
through the module name to fetch its attributes (e.g., module1.printer).

The from Statement
By contrast, because from copies specific names from one file over to another scope, it
allows us to use the copied names directly in the script without going through the
module (e.g., printer):

>>> from module1 import printer            # Copy out a variable (one or more)
>>> printer('Hello world!')                # No need to qualify name
Hello world!

This form of from allows us to list one or more names to be copied out, separated by
commas. Here, it has the same effect as the prior example, but because the imported
name is copied into the scope where the from statement appears, using that name in
the script requires less typing—we can use it directly instead of naming the enclosing
module. In fact, we must; from doesn’t assign the name of the module itself.

As you’ll see in more detail later, the from statement is really just a minor extension to
the import statement—it imports the module file as usual (running the full three-step
procedure of the preceding chapter), but adds an extra step that copies one or more
names (not objects) out of the file. The entire file is loaded, but you’re given names for
more direct access to its parts.

The from * Statement
Finally, the next example uses a special form of from: when we use a * instead of specific
names, we get copies of all names assigned at the top level of the referenced module.
Here again, we can then use the copied name printer in our script without going
through the module name:

>>> from module1 import *                   # Copy out _all_ variables
>>> printer('Hello world!')
Hello world!

Technically, both import and from statements invoke the same import operation; the
from * form simply adds an extra step that copies all the names in the module into the
importing scope. It essentially collapses one module’s namespace into another; again,
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the net effect is less typing for us. Note that only * works in this context; you can’t use
pattern matching to select a subset of names (though you could with more work and
a loop through a module’s __dict__, discussed ahead).

And that’s it—modules really are simple to use. To give you a better understanding of
what really happens when you define and use modules, though, let’s move on to look
at some of their properties in more detail.

In Python 3.X, the from ...* statement form described here can be used
only at the top level of a module file, not within a function. Python 2.X
allows it to be used within a function, but issues a warning anyhow. It’s
rare to see this statement used inside a function in practice; when
present, it makes it impossible for Python to detect variables statically,
before the function runs. Best practice in all Pythons recommends listing
all your imports at the top of a module file; it’s not required, but makes
them easier to spot.

Imports Happen Only Once
One of the most common questions people seem to ask when they start using modules
is, “Why won’t my imports keep working?” They often report that the first import
works fine, but later imports during an interactive session (or program run) seem to
have no effect. In fact, they’re not supposed to. This section explains why.

Modules are loaded and run on the first import or from, and only the first. This is on
purpose—because importing is an expensive operation, by default Python does it just
once per file, per process. Later import operations simply fetch the already loaded
module object.

Initialization code

As one consequence, because top-level code in a module file is usually executed only
once, you can use it to initialize variables. Consider the file simple.py, for example:

print('hello')
spam = 1                   # Initialize variable

In this example, the print and = statements run the first time the module is imported,
and the variable spam is initialized at import time:

% python
>>> import simple          # First import: loads and runs file's code
hello
>>> simple.spam            # Assignment makes an attribute
1

Second and later imports don’t rerun the module’s code; they just fetch the already
created module object from Python’s internal modules table. Thus, the variable spam
is not reinitialized:
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>>> simple.spam = 2        # Change attribute in module
>>> import simple          # Just fetches already loaded module
>>> simple.spam            # Code wasn't rerun: attribute unchanged
2

Of course, sometimes you really want a module’s code to be rerun on a subsequent
import. We’ll see how to do this with Python’s reload function later in this chapter.

import and from Are Assignments
Just like def, import and from are executable statements, not compile-time declarations.
They may be nested in if tests, to select among options; appear in function defs, to be
loaded only on calls (subject to the preceding note); be used in try statements, to pro-
vide defaults; and so on. They are not resolved or run until Python reaches them while
executing your program. In other words, imported modules and names are not available
until their associated import or from statements run.

Changing mutables in modules

Also, like def, the import and from are implicit assignments:

• import assigns an entire module object to a single name.

• from assigns one or more names to objects of the same names in another module.

All the things we’ve already discussed about assignment apply to module access, too.
For instance, names copied with a from become references to shared objects; as with
function arguments, reassigning a copied name has no effect on the module from which
it was copied, but changing a shared mutable object through a copied name can also
change it in the module from which it was imported. To illustrate, consider the fol-
lowing file, small.py:

x = 1
y = [1, 2]

When importing with from, we copy names to the importer’s scope that initially share
objects referenced by the module’s names:

% python
>>> from small import x, y         # Copy two names out
>>> x = 42                         # Changes local x only
>>> y[0] = 42                      # Changes shared mutable in place

Here, x is not a shared mutable object, but y is. The names y in the importer and the
importee both reference the same list object, so changing it from one place changes it
in the other:

>>> import small                   # Get module name (from doesn't)
>>> small.x                        # Small's x is not my x
1
>>> small.y                        # But we share a changed mutable
[42, 2]
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For more background on this, see Chapter 6. And for a graphical picture of what
from assignments do with references, flip back to Figure 18-1 (function argument pass-
ing), and mentally replace “caller” and “function” with “imported” and “importer.”
The effect is the same, except that here we’re dealing with names in modules, not
functions. Assignment works the same everywhere in Python.

Cross-file name changes

Recall from the preceding example that the assignment to x in the interactive session
changed the name x in that scope only, not the x in the file—there is no link from a
name copied with from back to the file it came from. To really change a global name in
another file, you must use import:

% python
>>> from small import x, y         # Copy two names out
>>> x = 42                         # Changes my x only

>>> import small                   # Get module name
>>> small.x = 42                   # Changes x in other module

This phenomenon was introduced in Chapter 17. Because changing variables in other
modules like this is a common source of confusion (and often a bad design choice),
we’ll revisit this technique again later in this part of the book. Note that the change to
y[0] in the prior session is different; it changes an object, not a name, and the name in
both modules references the same, changed object.

import and from Equivalence
Notice in the prior example that we have to execute an import statement after the
from to access the small module name at all. from only copies names from one module
to another; it does not assign the module name itself. At least conceptually, a from
statement like this one:

from module import name1, name2     # Copy these two names out (only)

is equivalent to this statement sequence:

import module                       # Fetch the module object
name1 = module.name1                # Copy names out by assignment
name2 = module.name2
del module                          # Get rid of the module name

Like all assignments, the from statement creates new variables in the importer, which
initially refer to objects of the same names in the imported file. Only the names are
copied out, though, not the objects they reference, and not the name of the module
itself. When we use the from * form of this statement (from module import *), the
equivalence is the same, but all the top-level names in the module are copied over to
the importing scope this way.
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Notice that the first step of the from runs a normal import operation, with all the se-
mantics outlined in the preceding chapter. Because of this, the from always imports the
entire module into memory if it has not yet been imported, regardless of how many
names it copies out of the file. There is no way to load just part of a module file (e.g.,
just one function), but because modules are byte code in Python instead of machine
code, the performance implications are generally negligible.

Potential Pitfalls of the from Statement
Because the from statement makes the location of a variable more implicit and obscure
(name is less meaningful to the reader than module.name), some Python users recommend
using import instead of from most of the time. I’m not sure this advice is warranted,
though; from is commonly and widely used, without too many dire consequences. In
practice, in realistic programs, it’s often convenient not to have to type a module’s name
every time you wish to use one of its tools. This is especially true for large modules that
provide many attributes—the standard library’s tkinter GUI module, for example.

It is true that the from statement has the potential to corrupt namespaces, at least in
principle—if you use it to import variables that happen to have the same names as
existing variables in your scope, your variables will be silently overwritten. This prob-
lem doesn’t occur with the simple import statement because you must always go
through a module’s name to get to its contents (module.attr will not clash with a vari-
able named attr in your scope). As long as you understand and expect that this can
happen when using from, though, this isn’t a major concern in practice, especially if
you list the imported names explicitly (e.g., from module import x, y, z).

On the other hand, the from statement has more serious issues when used in conjunc-
tion with the reload call, as imported names might reference prior versions of objects.
Moreover, the from module import * form really can corrupt namespaces and make
names difficult to understand, especially when applied to more than one file—in this
case, there is no way to tell which module a name came from, short of searching the
external source files. In effect, the from * form collapses one namespace into another,
and so defeats the namespace partitioning feature of modules. We will explore these
issues in more detail in the section “Module Gotchas” on page 770 (see Chapter 25).

Probably the best real-world advice here is to generally prefer import to from for simple
modules, to explicitly list the variables you want in most from statements, and to limit
the from * form to just one import per file. That way, any undefined names can be
assumed to live in the module referenced with the from *. Some care is required when
using the from statement, but armed with a little knowledge, most programmers find
it to be a convenient way to access modules.
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When import is required

The only time you really must use import instead of from is when you must use the same
name defined in two different modules. For example, if two files define the same name
differently:

# M.py
def func():
    ...do something...

# N.py
def func():
    ...do something else...

and you must use both versions of the name in your program, the from statement will
fail—you can have only one assignment to the name in your scope:

# O.py
from M import func
from N import func             # This overwrites the one we fetched from M
func()                         # Calls N.func only!

An import will work here, though, because including the name of the enclosing module
makes the two names unique:

# O.py
import M, N                    # Get the whole modules, not their names
M.func()                       # We can call both names now
N.func()                       # The module names make them unique

This case is unusual enough that you’re unlikely to encounter it very often in practice.
If you do, though, import allows you to avoid the name collision. Another way out of
this dilemma is using the as extension, which we’ll cover in Chapter 25 but is simple
enough to introduce here:

# O.py
from M import func as mfunc    # Rename uniquely with "as"
from N import func as nfunc
mfunc(); nfunc()               # Calls one or the other

The as extension works in both import and from as a simple renaming tool (it can also
be used to give a shorter synonym for a long module name in import); more on this 
form in Chapter 25.

Module Namespaces
Modules are probably best understood as simply packages of names—i.e., places to
define names you want to make visible to the rest of a system. Technically, modules
usually correspond to files, and Python creates a module object to contain all the names
assigned in a module file. But in simple terms, modules are just namespaces (places
where names are created), and the names that live in a module are called its at-
tributes. This section expands on the details behind this model.
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Files Generate Namespaces
I’ve mentioned that files morph into namespaces, but how does this actually happen?
The short answer is that every name that is assigned a value at the top level of a module
file (i.e., not nested in a function or class body) becomes an attribute of that module.

For instance, given an assignment statement such as X = 1 at the top level of a module
file M.py, the name X becomes an attribute of M, which we can refer to from outside the
module as M.X. The name X also becomes a global variable to other code inside M.py,
but we need to consider the notion of module loading and scopes a bit more formally
to understand why:

• Module statements run on the first import. The first time a module is imported
anywhere in a system, Python creates an empty module object and executes the
statements in the module file one after another, from the top of the file to the
bottom.

• Top-level assignments create module attributes. During an import, statements
at the top level of the file not nested in a def or class that assign names (e.g., =,
def) create attributes of the module object; assigned names are stored in the mod-
ule’s namespace.

• Module namespaces can be accessed via the attribute__dict__ or dir(M).
Module namespaces created by imports are dictionaries; they may be accessed
through the built-in __dict__ attribute associated with module objects and may be
inspected with the dir function. The dir function is roughly equivalent to the sorted
keys list of an object’s __dict__ attribute, but it includes inherited names for classes,
may not be complete, and is prone to changing from release to release.

• Modules are a single scope (local is global). As we saw in Chapter 17, names
at the top level of a module follow the same reference/assignment rules as names
in a function, but the local and global scopes are the same—or, more formally,
they follow the LEGB scope rule we met in Chapter 17, but without the L and E
lookup layers.

Crucially, though, the module’s global scope becomes an attribute dictionary of a
module object after the module has been loaded. Unlike function scopes, where
the local namespace exists only while the function runs, a module file’s scope be-
comes a module object’s attribute namespace and lives on after the import, pro-
viding a source of tools to importers.

Here’s a demonstration of these ideas. Suppose we create the following module file in
a text editor and call it module2.py:

print('starting to load...')
import sys
name = 42

def func(): pass
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class klass: pass

print('done loading.')

The first time this module is imported (or run as a program), Python executes its state-
ments from top to bottom. Some statements create names in the module’s namespace
as a side effect, but others do actual work while the import is going on. For instance,
the two print statements in this file execute at import time:

>>> import module2
starting to load...
done loading.

Once the module is loaded, its scope becomes an attribute namespace in the module
object we get back from import. We can then access attributes in this namespace by
qualifying them with the name of the enclosing module:

>>> module2.sys
<module 'sys' (built-in)>

>>> module2.name
42

>>> module2.func
<function func at 0x000000000222E7B8>

>>> module2.klass
<class 'module2.klass'>

Here, sys, name, func, and klass were all assigned while the module’s statements were
being run, so they are attributes after the import. We’ll talk about classes in Part VI,
but notice the sys attribute—import statements really assign module objects to names,
and any type of assignment to a name at the top level of a file generates a module
attribute.

Namespace Dictionaries: __dict__
In fact, internally, module namespaces are stored as dictionary objects. These are just
normal dictionaries with all the usual methods. When needed—for instance, to write
tools that list module content generically as we will in Chapter 25—we can access a
module’s namespace dictionary through the module’s __dict__ attribute. Continuing
the prior section’s example (remember to wrap this in a list call in Python 3.X—it’s a
view object there, and contents may vary outside 3.3 used here):

>>> list(module2.__dict__.keys())
['__loader__', 'func', 'klass', '__builtins__', '__doc__', '__file__', '__name__',
'name', '__package__', 'sys', '__initializing__', '__cached__']

The names we assigned in the module file become dictionary keys internally, so some
of the names here reflect top-level assignments in our file. However, Python also adds
some names in the module’s namespace for us; for instance, __file__ gives the name
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of the file the module was loaded from, and __name__ gives its name as known to im-
porters (without the .py extension and directory path). To see just the names your code
assigns, filter out the double-underscore names as we’ve done before, in Chapter 15’s
dir coverage and Chapter 17’s built-in scope coverage:

>>> list(name for name in module2.__dict__.keys() if not name.startswith('__'))
['func', 'klass', 'name', 'sys']
>>> list(name for name in module2.__dict__ if not name.startswith('__'))
['func', 'sys', 'name', 'klass']

This time we’re filtering with a generator instead of a list comprehension, and can omit
the .keys() because dictionaries generate their keys automatically though implicitly;
the effect is the same. We’ll see similar __dict__ dictionaries on class-related objects in
Part VI too. In both cases, attribute fetch is similar to dictionary indexing, though only
the former kicks off inheritance in classes:

>>> module2.name, module2.__dict__['name']
(42, 42)

Attribute Name Qualification
Speaking of attribute fetch, now that you’re becoming more familiar with modules, we
should firm up the notion of name qualification more formally too. In Python, you can
access the attributes of any object that has attributes using the qualification (a.k.a.
attribute fetch) syntax object.attribute.

Qualification is really an expression that returns the value assigned to an attribute name
associated with an object. For example, the expression module2.sys in the previous
example fetches the value assigned to sys in module2. Similarly, if we have a built-in list
object L, L.append returns the append method object associated with that list.

It’s important to keep in mind that attribute qualification has nothing to do with the
scope rules we studied in Chapter 17; it’s an independent concept. When you use
qualification to access names, you give Python an explicit object from which to fetch
the specified names. The LEGB scope rule applies only to bare, unqualified names—it
may be used for the leftmost name in a name path, but later names after dots search
specific objects instead. Here are the rules:

Simple variables
X means search for the name X in the current scopes (following the LEGB rule of
Chapter 17).

Qualification
X.Y means find X in the current scopes, then search for the attribute Y in the object
X (not in scopes).

Qualification paths
X.Y.Z means look up the name Y in the object X, then look up Z in the object X.Y.
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Generality
Qualification works on all objects with attributes: modules, classes, C extension
types, etc.

In Part VI, we’ll see that attribute qualification means a bit more for classes—it’s also
the place where something called inheritance happens—but in general, the rules out-
lined here apply to all names in Python.

Imports Versus Scopes
As we’ve learned, it is never possible to access names defined in another module file
without first importing that file. That is, you never automatically get to see names in
another file, regardless of the structure of imports or function calls in your program. A
variable’s meaning is always determined by the locations of assignments in your source
code, and attributes are always requested of an object explicitly.

For example, consider the following two simple modules. The first, moda.py, defines
a variable X global to code in its file only, along with a function that changes the global
X in this file:

X = 88                        # My X: global to this file only
def f():
    global X                  # Change this file's X
    X = 99                    # Cannot see names in other modules

The second module, modb.py, defines its own global variable X and imports and calls
the function in the first module:

X = 11                        # My X: global to this file only

import moda                   # Gain access to names in moda
moda.f()                      # Sets moda.X, not this file's X
print(X, moda.X)

When run, moda.f changes the X in moda, not the X in modb. The global scope for
moda.f is always the file enclosing it, regardless of which module it is ultimately called
from:

% python modb.py
11 99

In other words, import operations never give upward visibility to code in imported files
—an imported file cannot see names in the importing file. More formally:

• Functions can never see names in other functions, unless they are physically en-
closing.

• Module code can never see names in other modules, unless they are explicitly im-
ported.
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Such behavior is part of the lexical scoping notion—in Python, the scopes surrounding
a piece of code are completely determined by the code’s physical position in your file.
Scopes are never influenced by function calls or module imports.1

Namespace Nesting
In some sense, although imports do not nest namespaces upward, they do nest down-
ward. That is, although an imported module never has direct access to names in a file
that imports it, using attribute qualification paths it is possible to descend into arbi-
trarily nested modules and access their attributes. For example, consider the next three
files. mod3.py defines a single global name and attribute by assignment:

X = 3

mod2.py in turn defines its own X, then imports mod3 and uses qualification to access
the imported module’s attribute:

X = 2
import mod3

print(X, end=' ')             # My global X
print(mod3.X)                 # mod3's X

mod1.py also defines its own X, then imports mod2, and fetches attributes in both the
first and second files:

X = 1
import mod2

print(X, end=' ')             # My global X
print(mod2.X, end=' ')        # mod2's X
print(mod2.mod3.X)            # Nested mod3's X

Really, when mod1 imports mod2 here, it sets up a two-level namespace nesting. By using
the path of names mod2.mod3.X, it can descend into mod3, which is nested in the imported
mod2. The net effect is that mod1 can see the Xs in all three files, and hence has access to
all three global scopes:

% python mod1.py
2 3
1 2 3

The reverse, however, is not true: mod3 cannot see names in mod2, and mod2 cannot see
names in mod1. This example may be easier to grasp if you don’t think in terms of
namespaces and scopes, but instead focus on the objects involved. Within mod1, mod2
is just a name that refers to an object with attributes, some of which may refer to other

1. Some languages act differently and provide for dynamic scoping, where scopes really may depend on
runtime calls. This tends to make code trickier, though, because the meaning of a variable can differ over
time. In Python, scopes more simply correspond to the text of your program.
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objects with attributes (import is an assignment). For paths like mod2.mod3.X, Python
simply evaluates from left to right, fetching attributes from objects along the way.

Note that mod1 can say import mod2, and then mod2.mod3.X, but it cannot say import
mod2.mod3—this syntax invokes something called package (directory) imports, de-
scribed in the next chapter. Package imports also create module namespace nesting,
but their import statements are taken to reflect directory trees, not simple file import 
chains.

Reloading Modules
As we’ve seen, a module’s code is run only once per process by default. To force a
module’s code to be reloaded and rerun, you need to ask Python to do so explicitly by
calling the reload built-in function. In this section, we’ll explore how to use reloads to
make your systems more dynamic. In a nutshell:

• Imports (via both import and from statements) load and run a module’s code only
the first time the module is imported in a process.

• Later imports use the already loaded module object without reloading or rerunning
the file’s code.

• The reload function forces an already loaded module’s code to be reloaded and
rerun. Assignments in the file’s new code change the existing module object in
place.

Why care about reloading modules? In short, dynamic customization: the reload func-
tion allows parts of a program to be changed without stopping the whole program.
With reload, the effects of changes in components can be observed immediately. Re-
loading doesn’t help in every situation, but where it does, it makes for a much shorter
development cycle. For instance, imagine a database program that must connect to a
server on startup; because program changes or customizations can be tested immedi-
ately after reloads, you need to connect only once while debugging. Long-running
servers can update themselves this way, too.

Because Python is interpreted (more or less), it already gets rid of the compile/link steps
you need to go through to get a C program to run: modules are loaded dynamically
when imported by a running program. Reloading offers a further performance advan-
tage by allowing you to also change parts of running programs without stopping.

Though beyond this book’s scope, note that reload currently only works on modules
written in Python; compiled extension modules coded in a language such as C can be
dynamically loaded at runtime, too, but they can’t be reloaded (though most users
probably prefer to code customizations in Python anyhow!).
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Version skew note: In Python 2.X, reload is available as a built-in func-
tion. In Python 3.X, it has been moved to the imp standard library mod-
ule—it’s known as imp.reload in 3.X. This simply means that an extra
import or from statement is required to load this tool in 3.X only. Readers
using 2.X can ignore these imports in this book’s examples, or use them
anyhow—2.X also has a reload in its imp module to ease migration to
3.X. Reloading works the same regardless of its packaging.

reload Basics
Unlike import and from:

• reload is a function in Python, not a statement.

• reload is passed an existing module object, not a new name.

• reload lives in a module in Python 3.X and must be imported itself.

Because reload expects an object, a module must have been previously imported suc-
cessfully before you can reload it (if the import was unsuccessful due to a syntax or
other error, you may need to repeat it before you can reload the module). Furthermore,
the syntax of import statements and reload calls differs: as a function reloads require
parentheses, but import statements do not. Abstractly, reloading looks like this:

import module                     # Initial import
...use module.attributes...
...                               # Now, go change the module file
...
from imp import reload            # Get reload itself (in 3.X)
reload(module)                    # Get updated exports
...use module.attributes...

The typical usage pattern is that you import a module, then change its source code in
a text editor, and then reload it. This can occur when working interactively, but also
in larger programs that reload periodically.

When you call reload, Python rereads the module file’s source code and reruns its top-
level statements. Perhaps the most important thing to know about reload is that it
changes a module object in place; it does not delete and re-create the module object.
Because of that, every reference to an entire module object anywhere in your program
is automatically affected by a reload. Here are the details:

• reload runs a module file’s new code in the module’s current namespace.
Rerunning a module file’s code overwrites its existing namespace, rather than de-
leting and re-creating it.

• Top-level assignments in the file replace names with new values. For instance,
rerunning a def statement replaces the prior version of the function in the module’s
namespace by reassigning the function name.
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• Reloads impact all clients that use import to fetch modules. Because clients
that use import qualify to fetch attributes, they’ll find new values in the module
object after a reload.

• Reloads impact future from clients only. Clients that used from to fetch attributes
in the past won’t be affected by a reload; they’ll still have references to the old
objects fetched before the reload.

• Reloads apply to a single module only. You must run them on each module you
wish to update, unless you use code or tools that apply reloads transitively.

reload Example
To demonstrate, here’s a more concrete example of reload in action. In the following,
we’ll change and reload a module file without stopping the interactive Python session.
Reloads are used in many other scenarios, too (see the sidebar “Why You Will Care:
Module Reloads” on page 703), but we’ll keep things simple for illustration here.
First, in the text editor of your choice, write a module file named changer.py with the
following contents:

message = "First version"
def printer():
    print(message)

This module creates and exports two names—one bound to a string, and another to a
function. Now, start the Python interpreter, import the module, and call the function
it exports. The function will print the value of the global message variable:

% python
>>> import changer
>>> changer.printer()
First version

Keeping the interpreter active, now edit the module file in another window:

...modify changer.py without stopping Python...
% notepad changer.py

Change the global message variable, as well as the printer function body:

message = "After editing"
def printer():
    print('reloaded:', message)

Then, return to the Python window and reload the module to fetch the new code. Notice
in the following interaction that importing the module again has no effect; we get the
original message, even though the file’s been changed. We have to call reload in order
to get the new version:

...back to the Python interpreter...
>>> import changer
>>> changer.printer()                 # No effect: uses loaded module
First version
>>> from imp import reload
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>>> reload(changer)                   # Forces new code to load/run
<module 'changer' from '.\\changer.py'>
>>> changer.printer()                 # Runs the new version now
reloaded: After editing

Notice that reload actually returns the module object for us—its result is usually ig-
nored, but because expression results are printed at the interactive prompt, Python
shows a default <module 'name'...> representation.

Two final notes here: first, if you use reload, you’ll probably want to pair it with
import instead of from, as the latter isn’t updated by reload operations—leaving your
names in a state that’s strange enough to warrant postponing further elaboration until
this part’s “gotchas” at the end of Chapter 25. Second, reload by itself updates only a
single module, but it’s straightforward to code a function that applies it transitively to
related modules—an extension we’ll save for a case study near the end of Chapter 25.

Why You Will Care: Module Reloads
Besides allowing you to reload (and hence rerun) modules at the interactive prompt,
module reloads are also useful in larger systems, especially when the cost of restarting
the entire application is prohibitive. For instance, game servers and systems that must
connect to servers over a network on startup are prime candidates for dynamic reloads.

They’re also useful in GUI work (a widget’s callback action can be changed while the
GUI remains active), and when Python is used as an embedded language in a C or C+
+ program (the enclosing program can request a reload of the Python code it runs,
without having to stop). See Programming Python for more on reloading GUI callbacks
and embedded Python code.

More generally, reloads allow programs to provide highly dynamic interfaces. For in-
stance, Python is often used as a customization language for larger systems—users can
customize products by coding bits of Python code onsite, without having to recompile
the entire product (or even having its source code at all). In such worlds, the Python
code already adds a dynamic flavor by itself.

To be even more dynamic, though, such systems can automatically reload the Python
customization code periodically at runtime. That way, users’ changes are picked up
while the system is running; there is no need to stop and restart each time the Python
code is modified. Not all systems require such a dynamic approach, but for those that
do, module reloads provide an easy-to-use dynamic customization tool.

Chapter Summary
This chapter delved into the essentials of module coding tools—the import and from
statements, and the reload call. We learned how the from statement simply adds an
extra step that copies names out of a file after it has been imported, and how reload
forces a file to be imported again without stopping and restarting Python. We also
surveyed namespace concepts, saw what happens when imports are nested, explored
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the way files become module namespaces, and learned about some potential pitfalls of
the from statement.

Although we’ve already seen enough to handle module files in our programs, the next
chapter extends our coverage of the import model by presenting package imports—a
way for our import statements to specify part of the directory path leading to the desired
module. As we’ll see, package imports give us a hierarchy that is useful in larger systems
and allow us to break conflicts between same-named modules. Before we move on,
though, here’s a quick quiz on the concepts presented here.

Test Your Knowledge: Quiz
1. How do you make a module?

2. How is the from statement related to the import statement?

3. How is the reload function related to imports?

4. When must you use import instead of from?

5. Name three potential pitfalls of the from statement.

6. What...is the airspeed velocity of an unladen swallow?

Test Your Knowledge: Answers
1. To create a module, you simply write a text file containing Python statements; every

source code file is automatically a module, and there is no syntax for declaring one.
Import operations load module files into module objects in memory. You can also
make a module by writing code in an external language like C or Java, but such
extension modules are beyond the scope of this book.

2. The from statement imports an entire module, like the import statement, but as an
extra step it also copies one or more variables from the imported module into the
scope where the from appears. This enables you to use the imported names directly
(name) instead of having to go through the module (module.name).

3. By default, a module is imported only once per process. The reload function forces
a module to be imported again. It is mostly used to pick up new versions of a
module’s source code during development, and in dynamic customization scenar-
ios.

4. You must use import instead of from only when you need to access the same name
in two different modules; because you’ll have to specify the names of the enclosing
modules, the two names will be unique. The as extension can render from usable
in this context as well.

5. The from statement can obscure the meaning of a variable (which module it is
defined in), can have problems with the reload call (names may reference prior
versions of objects), and can corrupt namespaces (it might silently overwrite names
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you are using in your scope). The from * form is worse in most regards—it can
seriously corrupt namespaces and obscure the meaning of variables, so it is prob-
ably best used sparingly.

6. What do you mean? An African or European swallow?
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