
8
F U N C T I O N S

In this chapter you’ll learn to write func-
tions, which are named blocks of code

designed to do one specific job. When you
want to perform a particular task that you’ve

defined in a function, you call the function respon-
sible for it. If you need to perform that task multiple
times throughout your program, you don’t need to
type all the code for the same task again and again;
you just call the function dedicated to handling that task, and the call
tells Python to run the code inside the function. You’ll find that using
functions makes your programs easier to write, read, test, and fix.

In this chapter you’ll also learn a variety of ways to pass information to
functions. You’ll learn how to write certain functions whose primary job is
to display information and other functions designed to process data and
return a value or set of values. Finally, you’ll learn to store functions in sep-
arate files called modules to help organize your main program files.

130 Chapter 8

Defining a Function
Here’s a simple function named greet_user() that prints a greeting:

greeter.py def greet_user():
 """Display a simple greeting."""
 print("Hello!")

greet_user()

This example shows the simplest structure of a function. The first line
uses the keyword def to inform Python that you’re defining a function. This
is the function definition, which tells Python the name of the function and, if
applicable, what kind of information the function needs to do its job. The
parentheses hold that information. In this case, the name of the function is
greet_user(), and it needs no information to do its job, so its parentheses are
empty. (Even so, the parentheses are required.) Finally, the definition ends
in a colon.

Any indented lines that follow def greet_user(): make up the body of the
function. The text on the second line is a comment called a docstring, which
describes what the function does. When Python generates documentation
for the functions in your programs, it looks for a string immediately after
the function's definition. These strings are usually enclosed in triple quotes,
which lets you write multiple lines.

The line print("Hello!") is the only line of actual code in the body of
this function, so greet_user() has just one job: print("Hello!").

When you want to use this function, you have to call it. A function call
tells Python to execute the code in the function. To call a function, you write
the name of the function, followed by any necessary information in paren-
theses. Because no information is needed here, calling our function is as
simple as entering greet_user(). As expected, it prints Hello!:

Hello!

Passing Information to a Function
If you modify the function greet_user() slightly, it can greet the user by
name. For the function to do this, you enter username in the parentheses of
the function’s definition at def greet_user(). By adding username here, you
allow the function to accept any value of username you specify. The function
now expects you to provide a value for username each time you call it. When
you call greet_user(), you can pass it a name, such as 'jesse', inside the
parentheses:

def greet_user(username):
 """Display a simple greeting."""
 print(f"Hello, {username.title()}!")

greet_user('jesse')

Functions 131

Entering greet_user('jesse') calls greet_user() and gives the function the
information it needs to execute the print() call. The function accepts the
name you passed it and displays the greeting for that name:

Hello, Jesse!

Likewise, entering greet_user('sarah') calls greet_user(), passes it 'sarah',
and prints Hello, Sarah! You can call greet_user() as often as you want and
pass it any name you want to produce a predictable output every time.

Arguments and Parameters
In the preceding greet_user() function, we defined greet_user() to require a
value for the variable username. Once we called the function and gave it the
information (a person’s name), it printed the right greeting.

The variable username in the definition of greet_user() is an example of a
parameter, a piece of information the function needs to do its job. The value
'jesse' in greet_user('jesse') is an example of an argument. An argument is
a piece of information that’s passed from a function call to a function.
When we call the function, we place the value we want the function to work
with in parentheses. In this case the argument 'jesse' was passed to the
function greet_user(), and the value was assigned to the parameter username.

N O T E People sometimes speak of arguments and parameters interchangeably. Don’t be sur-
prised if you see the variables in a function definition referred to as arguments or the
variables in a function call referred to as parameters.

T RY IT YOURSEL F

8-1. Message: Write a function called display_message() that prints one sen-
tence telling everyone what you are learning about in this chapter. Call the
function, and make sure the message displays correctly.

8-2. Favorite Book: Write a function called favorite_book() that accepts one
parameter, title. The function should print a message, such as One of my
favorite books is Alice in Wonderland. Call the function, making sure to
include a book title as an argument in the function call.

Passing Arguments
Because a function definition can have multiple parameters, a function call
may need multiple arguments. You can pass arguments to your functions
in a number of ways. You can use positional arguments, which need to be in
the same order the parameters were written; keyword arguments, where each
argument consists of a variable name and a value; and lists and dictionaries
of values. Let’s look at each of these in turn.

132 Chapter 8

Positional Arguments
When you call a function, Python must match each argument in the func-
tion call with a parameter in the function definition. The simplest way to
do this is based on the order of the arguments provided. Values matched
up this way are called positional arguments.

To see how this works, consider a function that displays information
about pets. The function tells us what kind of animal each pet is and the
pet’s name, as shown here:

pets.py 1 def describe_pet(animal_type, pet_name):
 """Display information about a pet."""
 print(f"\nI have a {animal_type}.")
 print(f"My {animal_type}'s name is {pet_name.title()}.")

2 describe_pet('hamster', 'harry')

The definition shows that this function needs a type of animal and the
animal’s name 1. When we call describe_pet(), we need to provide an ani-
mal type and a name, in that order. For example, in the function call, the
argument 'hamster' is assigned to the parameter animal_type and the argu-
ment 'harry' is assigned to the parameter pet_name 2. In the function body,
these two parameters are used to display information about the pet being
described.

The output describes a hamster named Harry:

I have a hamster.
My hamster's name is Harry.

Multiple Function Calls

You can call a function as many times as needed. Describing a second, dif-
ferent pet requires just one more call to describe_pet():

def describe_pet(animal_type, pet_name):
 """Display information about a pet."""
 print(f"\nI have a {animal_type}.")
 print(f"My {animal_type}'s name is {pet_name.title()}.")

describe_pet('hamster', 'harry')
describe_pet('dog', 'willie')

In this second function call, we pass describe_pet() the arguments 'dog'
and 'willie'. As with the previous set of arguments we used, Python matches
'dog' with the parameter animal_type and 'willie' with the parameter pet_name.
As before, the function does its job, but this time it prints values for a dog
named Willie. Now we have a hamster named Harry and a dog named Willie:

I have a hamster.
My hamster's name is Harry.

Functions 133

I have a dog.
My dog's name is Willie.

Calling a function multiple times is a very efficient way to work. The
code describing a pet is written once in the function. Then, anytime you
want to describe a new pet, you call the function with the new pet’s infor-
mation. Even if the code for describing a pet were to expand to 10 lines, you
could still describe a new pet in just one line by calling the function again.

Order Matters in Positional Arguments

You can get unexpected results if you mix up the order of the arguments in
a function call when using positional arguments:

def describe_pet(animal_type, pet_name):
 """Display information about a pet."""
 print(f"\nI have a {animal_type}.")
 print(f"My {animal_type}'s name is {pet_name.title()}.")

describe_pet('harry', 'hamster')

In this function call, we list the name first and the type of animal
second. Because the argument 'harry' is listed first this time, that value
is assigned to the parameter animal_type. Likewise, 'hamster' is assigned to
pet_name. Now we have a “harry” named “Hamster”:

I have a harry.
My harry's name is Hamster.

If you get funny results like this, check to make sure the order of the
arguments in your function call matches the order of the parameters in the
function’s definition.

Keyword Arguments
A keyword argument is a name-value pair that you pass to a function. You
directly associate the name and the value within the argument, so when you
pass the argument to the function, there’s no confusion (you won’t end up
with a harry named Hamster). Keyword arguments free you from having
to worry about correctly ordering your arguments in the function call, and
they clarify the role of each value in the function call.

Let’s rewrite pets.py using keyword arguments to call describe_pet():

def describe_pet(animal_type, pet_name):
 """Display information about a pet."""
 print(f"\nI have a {animal_type}.")
 print(f"My {animal_type}'s name is {pet_name.title()}.")

describe_pet(animal_type='hamster', pet_name='harry')

134 Chapter 8

The function describe_pet() hasn’t changed. But when we call the func-
tion, we explicitly tell Python which parameter each argument should be
matched with. When Python reads the function call, it knows to assign the
argument 'hamster' to the parameter animal_type and the argument 'harry' to
pet_name. The output correctly shows that we have a hamster named Harry.

The order of keyword arguments doesn’t matter because Python
knows where each value should go. The following two function calls are
equivalent:

describe_pet(animal_type='hamster', pet_name='harry')
describe_pet(pet_name='harry', animal_type='hamster')

N O T E When you use keyword arguments, be sure to use the exact names of the parameters in
the function’s definition.

Default Values
When writing a function, you can define a default value for each parameter.
If an argument for a parameter is provided in the function call, Python
uses the argument value. If not, it uses the parameter’s default value. So
when you define a default value for a parameter, you can exclude the cor-
responding argument you’d usually write in the function call. Using default
values can simplify your function calls and clarify the ways your functions
are typically used.

For example, if you notice that most of the calls to describe_pet() are
being used to describe dogs, you can set the default value of animal_type to
'dog'. Now anyone calling describe_pet() for a dog can omit that information:

def describe_pet(pet_name, animal_type='dog'):
 """Display information about a pet."""
 print(f"\nI have a {animal_type}.")
 print(f"My {animal_type}'s name is {pet_name.title()}.")

describe_pet(pet_name='willie')

We changed the definition of describe_pet() to include a default value,
'dog', for animal_type. Now when the function is called with no animal_type
specified, Python knows to use the value 'dog' for this parameter:

I have a dog.
My dog's name is Willie.

Note that the order of the parameters in the function definition had
to be changed. Because the default value makes it unnecessary to specify a
type of animal as an argument, the only argument left in the function call
is the pet’s name. Python still interprets this as a positional argument, so
if the function is called with just a pet’s name, that argument will match up
with the first parameter listed in the function’s definition. This is the reason
the first parameter needs to be pet_name.

Functions 135

The simplest way to use this function now is to provide just a dog’s
name in the function call:

describe_pet('willie')

This function call would have the same output as the previous example.
The only argument provided is 'willie', so it is matched up with the first
parameter in the definition, pet_name. Because no argument is provided for
animal_type, Python uses the default value 'dog'.

To describe an animal other than a dog, you could use a function call
like this:

describe_pet(pet_name='harry', animal_type='hamster')

Because an explicit argument for animal_type is provided, Python will
ignore the parameter’s default value.

N O T E When you use default values, any parameter with a default value needs to be listed
after all the parameters that don’t have default values. This allows Python to con-
tinue interpreting positional arguments correctly.

Equivalent Function Calls
Because positional arguments, keyword arguments, and default values can
all be used together, you’ll often have several equivalent ways to call a func-
tion. Consider the following definition for describe_pet() with one default
value provided:

def describe_pet(pet_name, animal_type='dog'):

With this definition, an argument always needs to be provided for
pet_name, and this value can be provided using the positional or keyword for-
mat. If the animal being described is not a dog, an argument for animal_type
must be included in the call, and this argument can also be specified using
the positional or keyword format.

All of the following calls would work for this function:

A dog named Willie.
describe_pet('willie')
describe_pet(pet_name='willie')

A hamster named Harry.
describe_pet('harry', 'hamster')
describe_pet(pet_name='harry', animal_type='hamster')
describe_pet(animal_type='hamster', pet_name='harry')

Each of these function calls would have the same output as the previous
examples.

It doesn’t really matter which calling style you use. As long as your func-
tion calls produce the output you want, just use the style you find easiest to
understand.

136 Chapter 8

Avoiding Argument Errors
When you start to use functions, don’t be surprised if you encounter errors
about unmatched arguments. Unmatched arguments occur when you
provide fewer or more arguments than a function needs to do its work.
For example, here’s what happens if we try to call describe_pet() with no
arguments:

def describe_pet(animal_type, pet_name):
 """Display information about a pet."""
 print(f"\nI have a {animal_type}.")
 print(f"My {animal_type}'s name is {pet_name.title()}.")

describe_pet()

Python recognizes that some information is missing from the function
call, and the traceback tells us that:

Traceback (most recent call last):
1 File "pets.py", line 6, in <module>
2 describe_pet()
 ^^^^^^^^^^^^^^
3 TypeError: describe_pet() missing 2 required positional arguments:
 'animal_type' and 'pet_name'

The traceback first tells us the location of the problem 1, allowing us
to look back and see that something went wrong in our function call. Next,
the offending function call is written out for us to see 2. Last, the trace-
back tells us the call is missing two arguments and reports the names of
the missing arguments 3. If this function were in a separate file, we could
probably rewrite the call correctly without having to open that file and read
the function code.

Python is helpful in that it reads the function’s code for us and tells us
the names of the arguments we need to provide. This is another motiva-
tion for giving your variables and functions descriptive names. If you do,
Python’s error messages will be more useful to you and anyone else who
might use your code.

If you provide too many arguments, you should get a similar traceback
that can help you correctly match your function call to the function definition.

T RY IT YOURSEL F

8-3. T-Shirt: Write a function called make_shirt() that accepts a size and the
text of a message that should be printed on the shirt. The function should print a
sentence summarizing the size of the shirt and the message printed on it.

Call the function once using positional arguments to make a shirt. Call the
function a second time using keyword arguments.

Functions 137

8-4. Large Shirts: Modify the make_shirt() function so that shirts are large
by default with a message that reads I love Python. Make a large shirt and a
medium shirt with the default message, and a shirt of any size with a different
message.

8-5. Cities: Write a function called describe_city() that accepts the name of
a city and its country. The function should print a simple sentence, such as
Reykjavik is in Iceland. Give the parameter for the country a default value.
Call your function for three different cities, at least one of which is not in the
default country.

Return Values
A function doesn’t always have to display its output directly. Instead, it can
process some data and then return a value or set of values. The value the
function returns is called a return value. The return statement takes a value
from inside a function and sends it back to the line that called the func-
tion. Return values allow you to move much of your program’s grunt
work into functions, which can simplify the body of your program.

Returning a Simple Value
Let’s look at a function that takes a first and last name, and returns a neatly
formatted full name:

formatted
_name.py

def get_formatted_name(first_name, last_name):
 """Return a full name, neatly formatted."""
1 full_name = f"{first_name} {last_name}"
2 return full_name.title()

3 musician = get_formatted_name('jimi', 'hendrix')
print(musician)

The definition of get_formatted_name() takes as parameters a first and
last name. The function combines these two names, adds a space between
them, and assigns the result to full_name 1. The value of full_name is con-
verted to title case, and then returned to the calling line 2.

When you call a function that returns a value, you need to provide a
variable that the return value can be assigned to. In this case, the returned
value is assigned to the variable musician 3. The output shows a neatly for-
matted name made up of the parts of a person’s name:

Jimi Hendrix

This might seem like a lot of work to get a neatly formatted name when
we could have just written:

print("Jimi Hendrix")

138 Chapter 8

However, when you consider working with a large program that needs
to store many first and last names separately, functions like get_formatted
_name() become very useful. You store first and last names separately and
then call this function whenever you want to display a full name.

Making an Argument Optional
Sometimes it makes sense to make an argument optional, so that people
using the function can choose to provide extra information only if they
want to. You can use default values to make an argument optional.

For example, say we want to expand get_formatted_name() to handle
middle names as well. A first attempt to include middle names might look
like this:

def get_formatted_name(first_name, middle_name, last_name):
 """Return a full name, neatly formatted."""
 full_name = f"{first_name} {middle_name} {last_name}"
 return full_name.title()

musician = get_formatted_name('john', 'lee', 'hooker')
print(musician)

This function works when given a first, middle, and last name. The
function takes in all three parts of a name and then builds a string out of
them. The function adds spaces where appropriate and converts the full
name to title case:

John Lee Hooker

But middle names aren’t always needed, and this function as written
would not work if you tried to call it with only a first name and a last name.
To make the middle name optional, we can give the middle_name argument
an empty default value and ignore the argument unless the user provides a
value. To make get_formatted_name() work without a middle name, we set the
default value of middle_name to an empty string and move it to the end of the
list of parameters:

def get_formatted_name(first_name, last_name, middle_name=''):
 """Return a full name, neatly formatted."""
1 if middle_name:
 full_name = f"{first_name} {middle_name} {last_name}"
2 else:
 full_name = f"{first_name} {last_name}"
 return full_name.title()

musician = get_formatted_name('jimi', 'hendrix')
print(musician)

3 musician = get_formatted_name('john', 'hooker', 'lee')
print(musician)

Functions 139

In this example, the name is built from three possible parts. Because
there’s always a first and last name, these parameters are listed first in the
function’s definition. The middle name is optional, so it’s listed last in the
definition, and its default value is an empty string.

In the body of the function, we check to see if a middle name has been
provided. Python interprets non-empty strings as True, so the conditional
test if middle_name evaluates to True if a middle name argument is in the
function call 1. If a middle name is provided, the first, middle, and last
names are combined to form a full name. This name is then changed to
title case and returned to the function call line, where it’s assigned to the
variable musician and printed. If no middle name is provided, the empty
string fails the if test and the else block runs 2. The full name is made
with just a first and last name, and the formatted name is returned to the
calling line where it’s assigned to musician and printed.

Calling this function with a first and last name is straightforward. If
we’re using a middle name, however, we have to make sure the middle
name is the last argument passed so Python will match up the positional
arguments correctly 3.

This modified version of our function works for people with just a first
and last name, and it works for people who have a middle name as well:

Jimi Hendrix
John Lee Hooker

Optional values allow functions to handle a wide range of use cases
while letting function calls remain as simple as possible.

Returning a Dictionary
A function can return any kind of value you need it to, including more com-
plicated data structures like lists and dictionaries. For example, the follow-
ing function takes in parts of a name and returns a dictionary representing
a person:

person.py def build_person(first_name, last_name):
 """Return a dictionary of information about a person."""
1 person = {'first': first_name, 'last': last_name}
2 return person

musician = build_person('jimi', 'hendrix')
3 print(musician)

The function build_person() takes in a first and last name, and puts
these values into a dictionary 1. The value of first_name is stored with the
key 'first', and the value of last_name is stored with the key 'last'. Then,
the entire dictionary representing the person is returned 2. The return
value is printed 3 with the original two pieces of textual information now
stored in a dictionary:

{'first': 'jimi', 'last': 'hendrix'}

140 Chapter 8

This function takes in simple textual information and puts it into a
more meaningful data structure that lets you work with the information
beyond just printing it. The strings 'jimi' and 'hendrix' are now labeled as
a first name and last name. You can easily extend this function to accept
optional values like a middle name, an age, an occupation, or any other
information you want to store about a person. For example, the following
change allows you to store a person’s age as well:

def build_person(first_name, last_name, age=None):
 """Return a dictionary of information about a person."""
 person = {'first': first_name, 'last': last_name}
 if age:
 person['age'] = age
 return person

musician = build_person('jimi', 'hendrix', age=27)
print(musician)

We add a new optional parameter age to the function definition and
assign the parameter the special value None, which is used when a variable
has no specific value assigned to it. You can think of None as a placeholder
value. In conditional tests, None evaluates to False. If the function call
includes a value for age, that value is stored in the dictionary. This function
always stores a person’s name, but it can also be modified to store any other
information you want about a person.

Using a Function with a while Loop
You can use functions with all the Python structures you’ve learned about
so far. For example, let’s use the get_formatted_name() function with a while
loop to greet users more formally. Here’s a first attempt at greeting people
using their first and last names:

greeter.py def get_formatted_name(first_name, last_name):
 """Return a full name, neatly formatted."""
 full_name = f"{first_name} {last_name}"
 return full_name.title()

This is an infinite loop!
while True:
1 print("\nPlease tell me your name:")
 f_name = input("First name: ")
 l_name = input("Last name: ")

 formatted_name = get_formatted_name(f_name, l_name)
 print(f"\nHello, {formatted_name}!")

For this example, we use a simple version of get_formatted_name() that
doesn’t involve middle names. The while loop asks the user to enter their
name, and we prompt for their first and last name separately 1.

But there’s one problem with this while loop: We haven’t defined a quit
condition. Where do you put a quit condition when you ask for a series of

Functions 141

inputs? We want the user to be able to quit as easily as possible, so each
prompt should offer a way to quit. The break statement offers a straightfor-
ward way to exit the loop at either prompt:

def get_formatted_name(first_name, last_name):
 """Return a full name, neatly formatted."""
 full_name = f"{first_name} {last_name}"
 return full_name.title()

while True:
 print("\nPlease tell me your name:")
 print("(enter 'q' at any time to quit)")

 f_name = input("First name: ")
 if f_name == 'q':
 break

 l_name = input("Last name: ")
 if l_name == 'q':
 break

 formatted_name = get_formatted_name(f_name, l_name)
 print(f"\nHello, {formatted_name}!")

We add a message that informs the user how to quit, and then we break
out of the loop if the user enters the quit value at either prompt. Now the pro-
gram will continue greeting people until someone enters q for either name:

Please tell me your name:
(enter 'q' at any time to quit)
First name: eric
Last name: matthes

Hello, Eric Matthes!

Please tell me your name:
(enter 'q' at any time to quit)
First name: q

T RY IT YOURSEL F

8-6. City Names: Write a function called city_country() that takes in the name
of a city and its country. The function should return a string formatted like this:

"Santiago, Chile"

Call your function with at least three city-country pairs, and print the values
that are returned.

(continued)

142 Chapter 8

8-7. Album: Write a function called make_album() that builds a dictionary
describing a music album. The function should take in an artist name and an
album title, and it should return a dictionary containing these two pieces of
information. Use the function to make three dictionaries representing different
albums. Print each return value to show that the dictionaries are storing the
album information correctly.

Use None to add an optional parameter to make_album() that allows you to
store the number of songs on an album. If the calling line includes a value for
the number of songs, add that value to the album’s dictionary. Make at least
one new function call that includes the number of songs on an album.

8-8. User Albums: Start with your program from Exercise 8-7. Write a while
loop that allows users to enter an album’s artist and title. Once you have that
information, call make_album() with the user’s input and print the dictionary
that’s created. Be sure to include a quit value in the while loop.

Passing a List
You’ll often find it useful to pass a list to a function, whether it’s a list of
names, numbers, or more complex objects, such as dictionaries. When you
pass a list to a function, the function gets direct access to the contents of
the list. Let’s use functions to make working with lists more efficient.

Say we have a list of users and want to print a greeting to each. The
following example sends a list of names to a function called greet_users(),
which greets each person in the list individually:

greet_users.py def greet_users(names):
 """Print a simple greeting to each user in the list."""
 for name in names:
 msg = f"Hello, {name.title()}!"
 print(msg)

usernames = ['hannah', 'ty', 'margot']
greet_users(usernames)

We define greet_users() so it expects a list of names, which it assigns
to the parameter names. The function loops through the list it receives and
prints a greeting to each user. Outside of the function, we define a list of
users and then pass the list usernames to greet_users() in the function call:

Hello, Hannah!
Hello, Ty!
Hello, Margot!

This is the output we wanted. Every user sees a personalized greeting,
and you can call the function anytime you want to greet a specific set of
users.

Functions 143

Modifying a List in a Function
When you pass a list to a function, the function can modify the list. Any
changes made to the list inside the function’s body are permanent, allowing
you to work efficiently even when you’re dealing with large amounts of data.

Consider a company that creates 3D printed models of designs that
users submit. Designs that need to be printed are stored in a list, and after
being printed they’re moved to a separate list. The following code does this
without using functions:

printing
_models.py

Start with some designs that need to be printed.
unprinted_designs = ['phone case', 'robot pendant', 'dodecahedron']
completed_models = []

Simulate printing each design, until none are left.
Move each design to completed_models after printing.
while unprinted_designs:
 current_design = unprinted_designs.pop()
 print(f"Printing model: {current_design}")
 completed_models.append(current_design)

Display all completed models.
print("\nThe following models have been printed:")
for completed_model in completed_models:
 print(completed_model)

This program starts with a list of designs that need to be printed and
an empty list called completed_models that each design will be moved to after
it has been printed. As long as designs remain in unprinted_designs, the while
loop simulates printing each design by removing a design from the end of
the list, storing it in current_design, and displaying a message that the cur-
rent design is being printed. It then adds the design to the list of completed
models. When the loop is finished running, a list of the designs that have
been printed is displayed:

Printing model: dodecahedron
Printing model: robot pendant
Printing model: phone case

The following models have been printed:
dodecahedron
robot pendant
phone case

We can reorganize this code by writing two functions, each of which
does one specific job. Most of the code won’t change; we’re just structuring
it more carefully. The first function will handle printing the designs, and
the second will summarize the prints that have been made:

1 def print_models(unprinted_designs, completed_models):
 """
 Simulate printing each design, until none are left.

144 Chapter 8

 Move each design to completed_models after printing.
 """
 while unprinted_designs:
 current_design = unprinted_designs.pop()
 print(f"Printing model: {current_design}")
 completed_models.append(current_design)

2 def show_completed_models(completed_models):
 """Show all the models that were printed."""
 print("\nThe following models have been printed:")
 for completed_model in completed_models:
 print(completed_model)

unprinted_designs = ['phone case', 'robot pendant', 'dodecahedron']
completed_models = []

print_models(unprinted_designs, completed_models)
show_completed_models(completed_models)

We define the function print_models() with two parameters: a list of
designs that need to be printed and a list of completed models 1. Given
these two lists, the function simulates printing each design by emptying the
list of unprinted designs and filling up the list of completed models. We
then define the function show_completed_models() with one parameter: the list
of completed models 2. Given this list, show_completed_models() displays the
name of each model that was printed.

This program has the same output as the version without functions, but
the code is much more organized. The code that does most of the work has
been moved to two separate functions, which makes the main part of the
program easier to understand. Look at the body of the program and notice
how easily you can follow what’s happening:

unprinted_designs = ['phone case', 'robot pendant', 'dodecahedron']
completed_models = []

print_models(unprinted_designs, completed_models)
show_completed_models(completed_models)

We set up a list of unprinted designs and an empty list that will hold the
completed models. Then, because we’ve already defined our two functions,
all we have to do is call them and pass them the right arguments. We call
print_models() and pass it the two lists it needs; as expected, print_models()
simulates printing the designs. Then we call show_completed_models() and
pass it the list of completed models so it can report the models that have
been printed. The descriptive function names allow others to read this code
and understand it, even without comments.

This program is easier to extend and maintain than the version with-
out functions. If we need to print more designs later on, we can simply call

Functions 145

print_models() again. If we realize the printing code needs to be modified,
we can change the code once, and our changes will take place everywhere
the function is called. This technique is more efficient than having to
update code separately in several places in the program.

This example also demonstrates the idea that every function should
have one specific job. The first function prints each design, and the second
displays the completed models. This is more beneficial than using one func-
tion to do both jobs. If you’re writing a function and notice the function
is doing too many different tasks, try to split the code into two functions.
Remember that you can always call a function from another function,
which can be helpful when splitting a complex task into a series of steps.

Preventing a Function from Modifying a List
Sometimes you’ll want to prevent a function from modifying a list. For
example, say that you start with a list of unprinted designs and write a
function to move them to a list of completed models, as in the previous
example. You may decide that even though you’ve printed all the designs,
you want to keep the original list of unprinted designs for your records. But
because you moved all the design names out of unprinted_designs, the list is
now empty, and the empty list is the only version you have; the original is
gone. In this case, you can address this issue by passing the function a copy
of the list, not the original. Any changes the function makes to the list will
affect only the copy, leaving the original list intact.

You can send a copy of a list to a function like this:

function_name(list_name[:])

The slice notation [:] makes a copy of the list to send to the function. If
we didn’t want to empty the list of unprinted designs in printing_models.py,
we could call print_models() like this:

print_models(unprinted_designs[:], completed_models)

The function print_models() can do its work because it still receives the
names of all unprinted designs. But this time it uses a copy of the original
unprinted designs list, not the actual unprinted_designs list. The list completed
_models will fill up with the names of printed models like it did before, but
the original list of unprinted designs will be unaffected by the function.

Even though you can preserve the contents of a list by passing a copy
of it to your functions, you should pass the original list to functions unless
you have a specific reason to pass a copy. It’s more efficient for a function to
work with an existing list, because this avoids using the time and memory
needed to make a separate copy. This is especially true when working with
large lists.

146 Chapter 8

T RY IT YOURSEL F

8-9. Messages: Make a list containing a series of short text messages. Pass the
list to a function called show_messages(), which prints each text message.

8-10. Sending Messages: Start with a copy of your program from Exercise 8-9.
Write a function called send_messages() that prints each text message and
moves each message to a new list called sent_messages as it’s printed. After
calling the function, print both of your lists to make sure the messages were
moved correctly.

8-11. Archived Messages: Start with your work from Exercise 8-10. Call the func-
tion send_messages() with a copy of the list of messages. After calling the func-
tion, print both of your lists to show that the original list has retained its messages.

Passing an Arbitrary Number of Arguments
Sometimes you won’t know ahead of time how many arguments a function
needs to accept. Fortunately, Python allows a function to collect an arbi-
trary number of arguments from the calling statement.

For example, consider a function that builds a pizza. It needs to accept a
number of toppings, but you can’t know ahead of time how many toppings a
person will want. The function in the following example has one parameter,
*toppings, but this parameter collects as many arguments as the calling line
provides:

pizza.py def make_pizza(*toppings):
 """Print the list of toppings that have been requested."""
 print(toppings)

make_pizza('pepperoni')
make_pizza('mushrooms', 'green peppers', 'extra cheese')

The asterisk in the parameter name *toppings tells Python to make a
tuple called toppings, containing all the values this function receives. The
print() call in the function body produces output showing that Python can
handle a function call with one value and a call with three values. It treats
the different calls similarly. Note that Python packs the arguments into a
tuple, even if the function receives only one value:

('pepperoni',)
('mushrooms', 'green peppers', 'extra cheese')

Now we can replace the print() call with a loop that runs through the
list of toppings and describes the pizza being ordered:

def make_pizza(*toppings):
 """Summarize the pizza we are about to make."""

Functions 147

 print("\nMaking a pizza with the following toppings:")
 for topping in toppings:
 print(f"- {topping}")

make_pizza('pepperoni')
make_pizza('mushrooms', 'green peppers', 'extra cheese')

The function responds appropriately, whether it receives one value or
three values:

Making a pizza with the following toppings:
- pepperoni

Making a pizza with the following toppings:
- mushrooms
- green peppers
- extra cheese

This syntax works no matter how many arguments the function receives.

Mixing Positional and Arbitrary Arguments
If you want a function to accept several different kinds of arguments, the
parameter that accepts an arbitrary number of arguments must be placed
last in the function definition. Python matches positional and keyword
arguments first and then collects any remaining arguments in the final
parameter.

For example, if the function needs to take in a size for the pizza, that
parameter must come before the parameter *toppings:

def make_pizza(size, *toppings):
 """Summarize the pizza we are about to make."""
 print(f"\nMaking a {size}-inch pizza with the following toppings:")
 for topping in toppings:
 print(f"- {topping}")

make_pizza(16, 'pepperoni')
make_pizza(12, 'mushrooms', 'green peppers', 'extra cheese')

In the function definition, Python assigns the first value it receives to
the parameter size. All other values that come after are stored in the tuple
toppings. The function calls include an argument for the size first, followed
by as many toppings as needed.

Now each pizza has a size and a number of toppings, and each piece of
information is printed in the proper place, showing size first and toppings
after:

Making a 16-inch pizza with the following toppings:
- pepperoni

148 Chapter 8

Making a 12-inch pizza with the following toppings:
- mushrooms
- green peppers
- extra cheese

N O T E You’ll often see the generic parameter name *args, which collects arbitrary positional
arguments like this.

Using Arbitrary Keyword Arguments
Sometimes you’ll want to accept an arbitrary number of arguments, but you
won’t know ahead of time what kind of information will be passed to the
function. In this case, you can write functions that accept as many key-value
pairs as the calling statement provides. One example involves building user
profiles: you know you’ll get information about a user, but you’re not sure
what kind of information you’ll receive. The function build_profile() in the
following example always takes in a first and last name, but it accepts an
arbitrary number of keyword arguments as well:

user_profile.py def build_profile(first, last, **user_info):
 """Build a dictionary containing everything we know about a user."""
1 user_info['first_name'] = first
 user_info['last_name'] = last
 return user_info

user_profile = build_profile('albert', 'einstein',
 location='princeton',
 field='physics')
print(user_profile)

The definition of build_profile() expects a first and last name, and then
it allows the user to pass in as many name-value pairs as they want. The
double asterisks before the parameter **user_info cause Python to create
a dictionary called user_info containing all the extra name-value pairs the
function receives. Within the function, you can access the key-value pairs in
user_info just as you would for any dictionary.

In the body of build_profile(), we add the first and last names to the
user_info dictionary because we’ll always receive these two pieces of infor-
mation from the user 1, and they haven’t been placed into the dictionary
yet. Then we return the user_info dictionary to the function call line.

We call build_profile(), passing it the first name 'albert', the last
name 'einstein', and the two key-value pairs location='princeton' and
field='physics'. We assign the returned profile to user_profile and print
user_profile:

{'location': 'princeton', 'field': 'physics',
'first_name': 'albert', 'last_name': 'einstein'}

The returned dictionary contains the user’s first and last names and, in
this case, the location and field of study as well. The function will work no
matter how many additional key-value pairs are provided in the function call.

Functions 149

You can mix positional, keyword, and arbitrary values in many differ-
ent ways when writing your own functions. It’s useful to know that all these
argument types exist because you’ll see them often when you start reading
other people’s code. It takes practice to use the different types correctly
and to know when to use each type. For now, remember to use the simplest
approach that gets the job done. As you progress, you’ll learn to use the
most efficient approach each time.

N O T E You’ll often see the parameter name **kwargs used to collect nonspecific keyword
arguments.

T RY IT YOURSEL F

8-12. Sandwiches: Write a function that accepts a list of items a person wants
on a sandwich. The function should have one parameter that collects as many
items as the function call provides, and it should print a summary of the sand-
wich that’s being ordered. Call the function three times, using a different num-
ber of arguments each time.

8-13. User Profile: Start with a copy of user_profile.py from page 148. Build a
profile of yourself by calling build_profile(), using your first and last names
and three other key-value pairs that describe you.

8-14. Cars: Write a function that stores information about a car in a diction-
ary. The function should always receive a manufacturer and a model name. It
should then accept an arbitrary number of keyword arguments. Call the func-
tion with the required information and two other name-value pairs, such as a
color or an optional feature. Your function should work for a call like this one:

car = make_car('subaru', 'outback', color='blue', tow_package=True)

Print the dictionary that’s returned to make sure all the information was
stored correctly.

Storing Your Functions in Modules
One advantage of functions is the way they separate blocks of code from
your main program. When you use descriptive names for your functions,
your programs become much easier to follow. You can go a step further by
storing your functions in a separate file called a module and then importing
that module into your main program. An import statement tells Python to
make the code in a module available in the currently running program file.

Storing your functions in a separate file allows you to hide the details of
your program’s code and focus on its higher-level logic. It also allows you to
reuse functions in many different programs. When you store your functions
in separate files, you can share those files with other programmers without

150 Chapter 8

having to share your entire program. Knowing how to import functions
also allows you to use libraries of functions that other programmers have
written.

There are several ways to import a module, and I’ll show you each of
these briefly.

Importing an Entire Module
To start importing functions, we first need to create a module. A module is
a file ending in .py that contains the code you want to import into your pro-
gram. Let’s make a module that contains the function make_pizza(). To make
this module, we’ll remove everything from the file pizza.py except the func-
tion make_pizza():

pizza.py def make_pizza(size, *toppings):
 """Summarize the pizza we are about to make."""
 print(f"\nMaking a {size}-inch pizza with the following toppings:")
 for topping in toppings:
 print(f"- {topping}")

Now we’ll make a separate file called making_pizzas.py in the same
directory as pizza.py. This file imports the module we just created and then
makes two calls to make_pizza():

making
_pizzas.py

import pizza

1 pizza.make_pizza(16, 'pepperoni')
pizza.make_pizza(12, 'mushrooms', 'green peppers', 'extra cheese')

When Python reads this file, the line import pizza tells Python to open
the file pizza.py and copy all the functions from it into this program. You
don’t actually see code being copied between files because Python copies
the code behind the scenes, just before the program runs. All you need
to know is that any function defined in pizza.py will now be available in
making_pizzas.py.

To call a function from an imported module, enter the name of the
module you imported, pizza, followed by the name of the function, make
_pizza(), separated by a dot 1. This code produces the same output as the
original program that didn’t import a module:

Making a 16-inch pizza with the following toppings:
- pepperoni

Making a 12-inch pizza with the following toppings:
- mushrooms
- green peppers
- extra cheese

This first approach to importing, in which you simply write import fol-
lowed by the name of the module, makes every function from the module

Functions 151

available in your program. If you use this kind of import statement to import
an entire module named module_name.py, each function in the module is
available through the following syntax:

module_name.function_name()

Importing Specific Functions
You can also import a specific function from a module. Here’s the general
syntax for this approach:

from module_name import function_name

You can import as many functions as you want from a module by sepa-
rating each function’s name with a comma:

from module_name import function_0, function_1, function_2

The making_pizzas.py example would look like this if we want to import
just the function we’re going to use:

from pizza import make_pizza

make_pizza(16, 'pepperoni')
make_pizza(12, 'mushrooms', 'green peppers', 'extra cheese')

With this syntax, you don’t need to use the dot notation when you call a
function. Because we’ve explicitly imported the function make_pizza() in the
import statement, we can call it by name when we use the function.

Using as to Give a Function an Alias
If the name of a function you’re importing might conflict with an exist-
ing name in your program, or if the function name is long, you can use a
short, unique alias—an alternate name similar to a nickname for the func-
tion. You’ll give the function this special nickname when you import the
function.

Here we give the function make_pizza() an alias, mp(), by importing make
_pizza as mp. The as keyword renames a function using the alias you provide:

from pizza import make_pizza as mp

mp(16, 'pepperoni')
mp(12, 'mushrooms', 'green peppers', 'extra cheese')

The import statement shown here renames the function make_pizza() to
mp() in this program. Anytime we want to call make_pizza() we can simply
write mp() instead, and Python will run the code in make_pizza() while avoid-
ing any confusion with another make_pizza() function you might have writ-
ten in this program file.

152 Chapter 8

The general syntax for providing an alias is:

from module_name import function_name as fn

Using as to Give a Module an Alias
You can also provide an alias for a module name. Giving a module a short
alias, like p for pizza, allows you to call the module’s functions more quickly.
Calling p.make_pizza() is more concise than calling pizza.make_pizza():

import pizza as p

p.make_pizza(16, 'pepperoni')
p.make_pizza(12, 'mushrooms', 'green peppers', 'extra cheese')

The module pizza is given the alias p in the import statement, but all of
the module’s functions retain their original names. Calling the functions
by writing p.make_pizza() is not only more concise than pizza.make_pizza(),
but it also redirects your attention from the module name and allows you
to focus on the descriptive names of its functions. These function names,
which clearly tell you what each function does, are more important to the
readability of your code than using the full module name.

The general syntax for this approach is:

import module_name as mn

Importing All Functions in a Module
You can tell Python to import every function in a module by using the aster-
isk (*) operator:

from pizza import *

make_pizza(16, 'pepperoni')
make_pizza(12, 'mushrooms', 'green peppers', 'extra cheese')

The asterisk in the import statement tells Python to copy every function
from the module pizza into this program file. Because every function is
imported, you can call each function by name without using the dot notation.
However, it’s best not to use this approach when you’re working with larger
modules that you didn’t write: if the module has a function name that matches
an existing name in your project, you can get unexpected results. Python may
see several functions or variables with the same name, and instead of import-
ing all the functions separately, it will overwrite the functions.

The best approach is to import the function or functions you want, or
import the entire module and use the dot notation. This leads to clear code
that’s easy to read and understand. I include this section so you’ll recognize
import statements like the following when you see them in other people’s code:

from module_name import *

Functions 153

Styling Functions
You need to keep a few details in mind when you’re styling functions.
Functions should have descriptive names, and these names should use
lowercase letters and underscores. Descriptive names help you and others
understand what your code is trying to do. Module names should use these
conventions as well.

Every function should have a comment that explains concisely what
the function does. This comment should appear immediately after the
function definition and use the docstring format. In a well-documented
function, other programmers can use the function by reading only the
description in the docstring. They should be able to trust that the code
works as described, and as long as they know the name of the function, the
arguments it needs, and the kind of value it returns, they should be able to
use it in their programs.

If you specify a default value for a parameter, no spaces should be used
on either side of the equal sign:

def function_name(parameter_0, parameter_1='default value')

The same convention should be used for keyword arguments in func-
tion calls:

function_name(value_0, parameter_1='value')

PEP 8 (https://www.python.org/dev/peps/pep-0008) recommends that you
limit lines of code to 79 characters so every line is visible in a reasonably
sized editor window. If a set of parameters causes a function’s definition to
be longer than 79 characters, press ENTER after the opening parenthesis
on the definition line. On the next line, press the TAB key twice to separate
the list of arguments from the body of the function, which will only be
indented one level.

Most editors automatically line up any additional lines of arguments to
match the indentation you have established on the first line:

def function_name(
 parameter_0, parameter_1, parameter_2,
 parameter_3, parameter_4, parameter_5):
 function body...

If your program or module has more than one function, you can sepa-
rate each by two blank lines to make it easier to see where one function
ends and the next one begins.

All import statements should be written at the beginning of a file. The
only exception is if you use comments at the beginning of your file to
describe the overall program.

https://www.python.org/dev/peps/pep-0008

154 Chapter 8

T RY IT YOURSEL F

8-15. Printing Models: Put the functions for the example printing_models.py in a
separate file called printing_functions.py. Write an import statement at the top
of printing_models.py, and modify the file to use the imported functions.

8-16. Imports: Using a program you wrote that has one function in it, store that
function in a separate file. Import the function into your main program file, and
call the function using each of these approaches:

import module_name
from module_name import function_name
from module_name import function_name as fn
import module_name as mn
from module_name import *

8-17. Styling Functions: Choose any three programs you wrote for this chapter,
and make sure they follow the styling guidelines described in this section.

Summary
In this chapter, you learned how to write functions and to pass arguments
so that your functions have access to the information they need to do their
work. You learned how to use positional and keyword arguments, and also
how to accept an arbitrary number of arguments. You saw functions that
display output and functions that return values. You learned how to use
functions with lists, dictionaries, if statements, and while loops. You also saw
how to store your functions in separate files called modules, so your program
files will be simpler and easier to understand. Finally, you learned to style
your functions so your programs will continue to be well-structured and as
easy as possible for you and others to read.

One of your goals as a programmer should be to write simple code that
does what you want it to, and functions help you do this. They allow you to
write blocks of code and leave them alone once you know they work. When
you know a function does its job correctly, you can trust that it will continue
to work and move on to your next coding task.

Functions allow you to write code once and then reuse that code as
many times as you want. When you need to run the code in a function, all
you need to do is write a one-line call and the function does its job. When
you need to modify a function’s behavior, you only have to modify one
block of code, and your change takes effect everywhere you’ve made a call
to that function.

Using functions makes your programs easier to read, and good func-
tion names summarize what each part of a program does. Reading a series
of function calls gives you a much quicker sense of what a program does
than reading a long series of code blocks.

Functions 155

Functions also make your code easier to test and debug. When the bulk
of your program’s work is done by a set of functions, each of which has a
specific job, it’s much easier to test and maintain the code you’ve written.
You can write a separate program that calls each function and tests whether
each function works in all the situations it may encounter. When you do
this, you can be confident that your functions will work properly each time
you call them.

In Chapter 9, you’ll learn to write classes. Classes combine functions and
data into one neat package that can be used in flexible and efficient ways.

9
C L A S S E S

Object-oriented programming (OOP) is one of
the most effective approaches to writing

software. In object-oriented programming,
you write classes that represent real-world things

and situations, and you create objects based on these
classes. When you write a class, you define the general
behavior that a whole category of objects can have.

When you create individual objects from the class, each object is auto-
matically equipped with the general behavior; you can then give each
object whatever unique traits you desire. You’ll be amazed how well real-
world situations can be modeled with object-oriented programming.

Making an object from a class is called instantiation, and you work with
instances of a class. In this chapter you’ll write classes and create instances
of those classes. You’ll specify the kind of information that can be stored in
instances, and you’ll define actions that can be taken with these instances.
You’ll also write classes that extend the functionality of existing classes, so
similar classes can share common functionality, and you can do more with

	Part I: Basics
	Chapter 8: Functions
	Defining a Function
	Passing Information to a Function
	Arguments and Parameters
	Exercise 8-1: Message
	Exercise 8-2: Favorite Book

	Passing Arguments
	Positional Arguments
	Keyword Arguments
	Default Values
	Equivalent Function Calls
	Avoiding Argument Errors
	Exercise 8-3: T-Shirt
	Exercise 8-4: Large Shirts
	Exercise 8-5: Cities

	Return Values
	Returning a Simple Value
	Making an Argument Optional
	Returning a Dictionary
	Using a Function with a while Loop
	Exercise 8-6: City Names
	Exercise 8-7: Album
	Exercise 8-8: User Albums

	Passing a List
	Modifying a List in a Function
	Preventing a Function from Modifying a List
	Exercise 8-9: Messages
	Exercise 8-10: Sending Messages
	Exercise 8-11: Archived Messages

	Passing an Arbitrary Number of Arguments
	Mixing Positional and Arbitrary Arguments
	Using Arbitrary Keyword Arguments
	Exercise 8-12: Sandwiches
	Exercise 8-13: User Profile
	Exercise 8-14: Cars

	Storing Your Functions in Modules
	Importing an Entire Module
	Importing Specific Functions
	Using as to Give a Function an Alias
	Using as to Give a Module an Alias
	Importing All Functions in a Module

	Styling Functions
	Exercise 8-15: Printing Models
	Exercise 8-16: Imports
	Exercise 8-17: Styling Functions

	Summary

	Chapter 9: Classes

