
CHAPTER 3

Built-In Data Structures,
Functions, and Files

This chapter discusses capabilities built into the Python language that will be used
ubiquitously throughout the book. While add-on libraries like pandas and NumPy
add advanced computational functionality for larger datasets, they are designed to be
used together with Python’s built-in data manipulation tools.

We’ll start with Python’s workhorse data structures: tuples, lists, dictionaries, and sets.
Then, we’ll discuss creating your own reusable Python functions. Finally, we’ll look at
the mechanics of Python file objects and interacting with your local hard drive.

3.1 Data Structures and Sequences
Python’s data structures are simple but powerful. Mastering their use is a critical
part of becoming a proficient Python programmer. We start with tuple, list, and
dictionary, which are some of the most frequently used sequence types.

Tuple
A tuple is a fixed-length, immutable sequence of Python objects which, once assigned,
cannot be changed. The easiest way to create one is with a comma-separated
sequence of values wrapped in parentheses:

In [2]: tup = (4, 5, 6)

In [3]: tup
Out[3]: (4, 5, 6)

47



In many contexts, the parentheses can be omitted, so here we could also have written:

In [4]: tup = 4, 5, 6

In [5]: tup
Out[5]: (4, 5, 6)

You can convert any sequence or iterator to a tuple by invoking tuple:

In [6]: tuple([4, 0, 2])
Out[6]: (4, 0, 2)

In [7]: tup = tuple('string')

In [8]: tup
Out[8]: ('s', 't', 'r', 'i', 'n', 'g')

Elements can be accessed with square brackets [] as with most other sequence types.
As in C, C++, Java, and many other languages, sequences are 0-indexed in Python:

In [9]: tup[0]
Out[9]: 's'

When you’re defining tuples within more complicated expressions, it’s often neces‐
sary to enclose the values in parentheses, as in this example of creating a tuple of
tuples:

In [10]: nested_tup = (4, 5, 6), (7, 8)

In [11]: nested_tup
Out[11]: ((4, 5, 6), (7, 8))

In [12]: nested_tup[0]
Out[12]: (4, 5, 6)

In [13]: nested_tup[1]
Out[13]: (7, 8)

While the objects stored in a tuple may be mutable themselves, once the tuple is
created it’s not possible to modify which object is stored in each slot:

In [14]: tup = tuple(['foo', [1, 2], True])

In [15]: tup[2] = False
---------------------------------------------------------------------------
TypeError                                 Traceback (most recent call last)
<ipython-input-15-b89d0c4ae599> in <module>
----> 1 tup[2] = False
TypeError: 'tuple' object does not support item assignment

If an object inside a tuple is mutable, such as a list, you can modify it in place:

In [16]: tup[1].append(3)

48 | Chapter 3: Built-In Data Structures, Functions, and Files



In [17]: tup
Out[17]: ('foo', [1, 2, 3], True)

You can concatenate tuples using the + operator to produce longer tuples:

In [18]: (4, None, 'foo') + (6, 0) + ('bar',)
Out[18]: (4, None, 'foo', 6, 0, 'bar')

Multiplying a tuple by an integer, as with lists, has the effect of concatenating that
many copies of the tuple:

In [19]: ('foo', 'bar') * 4
Out[19]: ('foo', 'bar', 'foo', 'bar', 'foo', 'bar', 'foo', 'bar')

Note that the objects themselves are not copied, only the references to them.

Unpacking tuples
If you try to assign to a tuple-like expression of variables, Python will attempt to
unpack the value on the righthand side of the equals sign:

In [20]: tup = (4, 5, 6)

In [21]: a, b, c = tup

In [22]: b
Out[22]: 5

Even sequences with nested tuples can be unpacked:

In [23]: tup = 4, 5, (6, 7)

In [24]: a, b, (c, d) = tup

In [25]: d
Out[25]: 7

Using this functionality you can easily swap variable names, a task that in many
languages might look like:

tmp = a
a = b
b = tmp

But, in Python, the swap can be done like this:

In [26]: a, b = 1, 2

In [27]: a
Out[27]: 1

In [28]: b
Out[28]: 2

In [29]: b, a = a, b

3.1 Data Structures and Sequences | 49



In [30]: a
Out[30]: 2

In [31]: b
Out[31]: 1

A common use of variable unpacking is iterating over sequences of tuples or lists:

In [32]: seq = [(1, 2, 3), (4, 5, 6), (7, 8, 9)]

In [33]: for a, b, c in seq:
   ....:     print(f'a={a}, b={b}, c={c}')
a=1, b=2, c=3
a=4, b=5, c=6
a=7, b=8, c=9

Another common use is returning multiple values from a function. I’ll cover this in
more detail later.

There are some situations where you may want to “pluck” a few elements from the
beginning of a tuple. There is a special syntax that can do this, *rest, which is also
used in function signatures to capture an arbitrarily long list of positional arguments:

In [34]: values = 1, 2, 3, 4, 5

In [35]: a, b, *rest = values

In [36]: a
Out[36]: 1

In [37]: b
Out[37]: 2

In [38]: rest
Out[38]: [3, 4, 5]

This rest bit is sometimes something you want to discard; there is nothing special
about the rest name. As a matter of convention, many Python programmers will use
the underscore (_) for unwanted variables:

In [39]: a, b, *_ = values

Tuple methods
Since the size and contents of a tuple cannot be modified, it is very light on instance
methods. A particularly useful one (also available on lists) is count, which counts the
number of occurrences of a value:

In [40]: a = (1, 2, 2, 2, 3, 4, 2)

In [41]: a.count(2)
Out[41]: 4

50 | Chapter 3: Built-In Data Structures, Functions, and Files



List
In contrast with tuples, lists are variable length and their contents can be modified in
place. Lists are mutable. You can define them using square brackets [] or using the
list type function:

In [42]: a_list = [2, 3, 7, None]

In [43]: tup = ("foo", "bar", "baz")

In [44]: b_list = list(tup)

In [45]: b_list
Out[45]: ['foo', 'bar', 'baz']

In [46]: b_list[1] = "peekaboo"

In [47]: b_list
Out[47]: ['foo', 'peekaboo', 'baz']

Lists and tuples are semantically similar (though tuples cannot be modified) and can
be used interchangeably in many functions.

The list built-in function is frequently used in data processing as a way to material‐
ize an iterator or generator expression:

In [48]: gen = range(10)

In [49]: gen
Out[49]: range(0, 10)

In [50]: list(gen)
Out[50]: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

Adding and removing elements

Elements can be appended to the end of the list with the append method:

In [51]: b_list.append("dwarf")

In [52]: b_list
Out[52]: ['foo', 'peekaboo', 'baz', 'dwarf']

Using insert you can insert an element at a specific location in the list:

In [53]: b_list.insert(1, "red")

In [54]: b_list
Out[54]: ['foo', 'red', 'peekaboo', 'baz', 'dwarf']

The insertion index must be between 0 and the length of the list, inclusive.

3.1 Data Structures and Sequences | 51



insert is computationally expensive compared with append,
because references to subsequent elements have to be shifted inter‐
nally to make room for the new element. If you need to insert
elements at both the beginning and end of a sequence, you may
wish to explore collections.deque, a double-ended queue, which
is optimized for this purpose and found in the Python Standard
Library.

The inverse operation to insert is pop, which removes and returns an element at a
particular index:

In [55]: b_list.pop(2)
Out[55]: 'peekaboo'

In [56]: b_list
Out[56]: ['foo', 'red', 'baz', 'dwarf']

Elements can be removed by value with remove, which locates the first such value and
removes it from the list:

In [57]: b_list.append("foo")

In [58]: b_list
Out[58]: ['foo', 'red', 'baz', 'dwarf', 'foo']

In [59]: b_list.remove("foo")

In [60]: b_list
Out[60]: ['red', 'baz', 'dwarf', 'foo']

If performance is not a concern, by using append and remove, you can use a Python
list as a set-like data structure (although Python has actual set objects, discussed
later).

Check if a list contains a value using the in keyword:

In [61]: "dwarf" in b_list
Out[61]: True

The keyword not can be used to negate in:

In [62]: "dwarf" not in b_list
Out[62]: False

Checking whether a list contains a value is a lot slower than doing so with diction‐
aries and sets (to be introduced shortly), as Python makes a linear scan across the
values of the list, whereas it can check the others (based on hash tables) in constant
time.

52 | Chapter 3: Built-In Data Structures, Functions, and Files



Concatenating and combining lists

Similar to tuples, adding two lists together with + concatenates them:

In [63]: [4, None, "foo"] + [7, 8, (2, 3)]
Out[63]: [4, None, 'foo', 7, 8, (2, 3)]

If you have a list already defined, you can append multiple elements to it using the
extend method:

In [64]: x = [4, None, "foo"]

In [65]: x.extend([7, 8, (2, 3)])

In [66]: x
Out[66]: [4, None, 'foo', 7, 8, (2, 3)]

Note that list concatenation by addition is a comparatively expensive operation since
a new list must be created and the objects copied over. Using extend to append
elements to an existing list, especially if you are building up a large list, is usually
preferable. Thus:

everything = []
for chunk in list_of_lists:
    everything.extend(chunk)

is faster than the concatenative alternative:

everything = []
for chunk in list_of_lists:
    everything = everything + chunk

Sorting

You can sort a list in place (without creating a new object) by calling its sort
function:

In [67]: a = [7, 2, 5, 1, 3]

In [68]: a.sort()

In [69]: a
Out[69]: [1, 2, 3, 5, 7]

sort has a few options that will occasionally come in handy. One is the ability to
pass a secondary sort key—that is, a function that produces a value to use to sort the
objects. For example, we could sort a collection of strings by their lengths:

In [70]: b = ["saw", "small", "He", "foxes", "six"]

In [71]: b.sort(key=len)

In [72]: b
Out[72]: ['He', 'saw', 'six', 'small', 'foxes']

3.1 Data Structures and Sequences | 53



Soon, we’ll look at the sorted function, which can produce a sorted copy of a general
sequence.

Slicing
You can select sections of most sequence types by using slice notation, which in its
basic form consists of start:stop passed to the indexing operator []:

In [73]: seq = [7, 2, 3, 7, 5, 6, 0, 1]

In [74]: seq[1:5]
Out[74]: [2, 3, 7, 5]

Slices can also be assigned with a sequence:

In [75]: seq[3:5] = [6, 3]

In [76]: seq
Out[76]: [7, 2, 3, 6, 3, 6, 0, 1]

While the element at the start index is included, the stop index is not included, so
that the number of elements in the result is stop - start.

Either the start or stop can be omitted, in which case they default to the start of the
sequence and the end of the sequence, respectively:

In [77]: seq[:5]
Out[77]: [7, 2, 3, 6, 3]

In [78]: seq[3:]
Out[78]: [6, 3, 6, 0, 1]

Negative indices slice the sequence relative to the end:

In [79]: seq[-4:]
Out[79]: [3, 6, 0, 1]

In [80]: seq[-6:-2]
Out[80]: [3, 6, 3, 6]

Slicing semantics takes a bit of getting used to, especially if you’re coming from R
or MATLAB. See Figure 3-1 for a helpful illustration of slicing with positive and
negative integers. In the figure, the indices are shown at the “bin edges” to help show
where the slice selections start and stop using positive or negative indices.

54 | Chapter 3: Built-In Data Structures, Functions, and Files



Figure 3-1. Illustration of Python slicing conventions

A step can also be used after a second colon to, say, take every other element:

In [81]: seq[::2]
Out[81]: [7, 3, 3, 0]

A clever use of this is to pass -1, which has the useful effect of reversing a list or tuple:

In [82]: seq[::-1]
Out[82]: [1, 0, 6, 3, 6, 3, 2, 7]

Dictionary
The dictionary or dict may be the most important built-in Python data structure.
In other programming languages, dictionaries are sometimes called hash maps or
associative arrays. A dictionary stores a collection of key-value pairs, where key and
value are Python objects. Each key is associated with a value so that a value can
be conveniently retrieved, inserted, modified, or deleted given a particular key. One
approach for creating a dictionary is to use curly braces {} and colons to separate
keys and values:

In [83]: empty_dict = {}

In [84]: d1 = {"a": "some value", "b": [1, 2, 3, 4]}

In [85]: d1
Out[85]: {'a': 'some value', 'b': [1, 2, 3, 4]}

You can access, insert, or set elements using the same syntax as for accessing elements
of a list or tuple:

In [86]: d1[7] = "an integer"

In [87]: d1
Out[87]: {'a': 'some value', 'b': [1, 2, 3, 4], 7: 'an integer'}

In [88]: d1["b"]
Out[88]: [1, 2, 3, 4]

3.1 Data Structures and Sequences | 55



You can check if a dictionary contains a key using the same syntax used for checking
whether a list or tuple contains a value:

In [89]: "b" in d1
Out[89]: True

You can delete values using either the del keyword or the pop method (which
simultaneously returns the value and deletes the key):

In [90]: d1[5] = "some value"

In [91]: d1
Out[91]: 
{'a': 'some value',
 'b': [1, 2, 3, 4],
 7: 'an integer',
 5: 'some value'}

In [92]: d1["dummy"] = "another value"

In [93]: d1
Out[93]: 
{'a': 'some value',
 'b': [1, 2, 3, 4],
 7: 'an integer',
 5: 'some value',
 'dummy': 'another value'}

In [94]: del d1[5]

In [95]: d1
Out[95]: 
{'a': 'some value',
 'b': [1, 2, 3, 4],
 7: 'an integer',
 'dummy': 'another value'}

In [96]: ret = d1.pop("dummy")

In [97]: ret
Out[97]: 'another value'

In [98]: d1
Out[98]: {'a': 'some value', 'b': [1, 2, 3, 4], 7: 'an integer'}

The keys and values method gives you iterators of the dictionary’s keys and values,
respectively. The order of the keys depends on the order of their insertion, and these
functions output the keys and values in the same respective order:

In [99]: list(d1.keys())
Out[99]: ['a', 'b', 7]

56 | Chapter 3: Built-In Data Structures, Functions, and Files



In [100]: list(d1.values())
Out[100]: ['some value', [1, 2, 3, 4], 'an integer']

If you need to iterate over both the keys and values, you can use the items method to
iterate over the keys and values as 2-tuples:

In [101]: list(d1.items())
Out[101]: [('a', 'some value'), ('b', [1, 2, 3, 4]), (7, 'an integer')]

You can merge one dictionary into another using the update method:

In [102]: d1.update({"b": "foo", "c": 12})

In [103]: d1
Out[103]: {'a': 'some value', 'b': 'foo', 7: 'an integer', 'c': 12}

The update method changes dictionaries in place, so any existing keys in the data
passed to update will have their old values discarded.

Creating dictionaries from sequences
It’s common to occasionally end up with two sequences that you want to pair up
element-wise in a dictionary. As a first cut, you might write code like this:

mapping = {}
for key, value in zip(key_list, value_list):
    mapping[key] = value

Since a dictionary is essentially a collection of 2-tuples, the dict function accepts a
list of 2-tuples:

In [104]: tuples = zip(range(5), reversed(range(5)))

In [105]: tuples
Out[105]: <zip at 0x7fefe4553a00>

In [106]: mapping = dict(tuples)

In [107]: mapping
Out[107]: {0: 4, 1: 3, 2: 2, 3: 1, 4: 0}

Later we’ll talk about dictionary comprehensions, which are another way to construct
dictionaries.

Default values
It’s common to have logic like:

if key in some_dict:
    value = some_dict[key]
else:
    value = default_value

3.1 Data Structures and Sequences | 57



Thus, the dictionary methods get and pop can take a default value to be returned, so
that the above if-else block can be written simply as:

value = some_dict.get(key, default_value)

get by default will return None if the key is not present, while pop will raise an
exception. With setting values, it may be that the values in a dictionary are another
kind of collection, like a list. For example, you could imagine categorizing a list of
words by their first letters as a dictionary of lists:

In [108]: words = ["apple", "bat", "bar", "atom", "book"]

In [109]: by_letter = {}

In [110]: for word in words:
   .....:     letter = word[0]
   .....:     if letter not in by_letter:
   .....:         by_letter[letter] = [word]
   .....:     else:
   .....:         by_letter[letter].append(word)
   .....:

In [111]: by_letter
Out[111]: {'a': ['apple', 'atom'], 'b': ['bat', 'bar', 'book']}

The setdefault dictionary method can be used to simplify this workflow. The
preceding for loop can be rewritten as:

In [112]: by_letter = {}

In [113]: for word in words:
   .....:     letter = word[0]
   .....:     by_letter.setdefault(letter, []).append(word)
   .....:

In [114]: by_letter
Out[114]: {'a': ['apple', 'atom'], 'b': ['bat', 'bar', 'book']}

The built-in collections module has a useful class, defaultdict, which makes this
even easier. To create one, you pass a type or function for generating the default value
for each slot in the dictionary:

In [115]: from collections import defaultdict

In [116]: by_letter = defaultdict(list)

In [117]: for word in words:
   .....:     by_letter[word[0]].append(word)

58 | Chapter 3: Built-In Data Structures, Functions, and Files



Valid dictionary key types
While the values of a dictionary can be any Python object, the keys generally have to
be immutable objects like scalar types (int, float, string) or tuples (all the objects in
the tuple need to be immutable, too). The technical term here is hashability. You can
check whether an object is hashable (can be used as a key in a dictionary) with the
hash function:

In [118]: hash("string")
Out[118]: 3634226001988967898

In [119]: hash((1, 2, (2, 3)))
Out[119]: -9209053662355515447

In [120]: hash((1, 2, [2, 3])) # fails because lists are mutable
---------------------------------------------------------------------------
TypeError                                 Traceback (most recent call last)
<ipython-input-120-473c35a62c0b> in <module>
----> 1 hash((1, 2, [2, 3])) # fails because lists are mutable
TypeError: unhashable type: 'list'

The hash values you see when using the hash function in general will depend on the
Python version you are using.

To use a list as a key, one option is to convert it to a tuple, which can be hashed as
long as its elements also can be:

In [121]: d = {}

In [122]: d[tuple([1, 2, 3])] = 5

In [123]: d
Out[123]: {(1, 2, 3): 5}

Set
A set is an unordered collection of unique elements. A set can be created in two ways:
via the set function or via a set literal with curly braces:

In [124]: set([2, 2, 2, 1, 3, 3])
Out[124]: {1, 2, 3}

In [125]: {2, 2, 2, 1, 3, 3}
Out[125]: {1, 2, 3}

Sets support mathematical set operations like union, intersection, difference, and
symmetric difference. Consider these two example sets:

In [126]: a = {1, 2, 3, 4, 5}

In [127]: b = {3, 4, 5, 6, 7, 8}

3.1 Data Structures and Sequences | 59



The union of these two sets is the set of distinct elements occurring in either set. This
can be computed with either the union method or the | binary operator:

In [128]: a.union(b)
Out[128]: {1, 2, 3, 4, 5, 6, 7, 8}

In [129]: a | b
Out[129]: {1, 2, 3, 4, 5, 6, 7, 8}

The intersection contains the elements occurring in both sets. The & operator or the
intersection method can be used:

In [130]: a.intersection(b)
Out[130]: {3, 4, 5}

In [131]: a & b
Out[131]: {3, 4, 5}

See Table 3-1 for a list of commonly used set methods.

Table 3-1. Python set operations

Function Alternative
syntax

Description

a.add(x) N/A Add element x to set a
a.clear() N/A Reset set a to an empty state, discarding all of its

elements
a.remove(x) N/A Remove element x from set a
a.pop() N/A Remove an arbitrary element from set a, raising

KeyError if the set is empty
a.union(b) a | b All of the unique elements in a and b
a.update(b) a |= b Set the contents of a to be the union of the elements

in a and b
a.intersection(b) a & b All of the elements in both a and b
a.intersection_update(b) a &= b Set the contents of a to be the intersection of the

elements in a and b
a.difference(b) a - b The elements in a that are not in b
a.difference_update(b) a -= b Set a to the elements in a that are not in b
a.symmetric_difference(b) a ^ b All of the elements in either a or b but not both
a.symmetric_difference_update(b) a ^= b Set a to contain the elements in either a or b but

not both
a.issubset(b) <= True if the elements of a are all contained in b
a.issuperset(b) >= True if the elements of b are all contained in a
a.isdisjoint(b) N/A True if a and b have no elements in common

60 | Chapter 3: Built-In Data Structures, Functions, and Files



If you pass an input that is not a set to methods like union and
intersection, Python will convert the input to a set before execut‐
ing the operation. When using the binary operators, both objects
must already be sets.

All of the logical set operations have in-place counterparts, which enable you to
replace the contents of the set on the left side of the operation with the result. For
very large sets, this may be more efficient:

In [132]: c = a.copy()

In [133]: c |= b

In [134]: c
Out[134]: {1, 2, 3, 4, 5, 6, 7, 8}

In [135]: d = a.copy()

In [136]: d &= b

In [137]: d
Out[137]: {3, 4, 5}

Like dictionary keys, set elements generally must be immutable, and they must be
hashable (which means that calling hash on a value does not raise an exception). In
order to store list-like elements (or other mutable sequences) in a set, you can convert
them to tuples:

In [138]: my_data = [1, 2, 3, 4]

In [139]: my_set = {tuple(my_data)}

In [140]: my_set
Out[140]: {(1, 2, 3, 4)}

You can also check if a set is a subset of (is contained in) or a superset of (contains all
elements of) another set:

In [141]: a_set = {1, 2, 3, 4, 5}

In [142]: {1, 2, 3}.issubset(a_set)
Out[142]: True

In [143]: a_set.issuperset({1, 2, 3})
Out[143]: True

Sets are equal if and only if their contents are equal:

In [144]: {1, 2, 3} == {3, 2, 1}
Out[144]: True

3.1 Data Structures and Sequences | 61



Built-In Sequence Functions
Python has a handful of useful sequence functions that you should familiarize your‐
self with and use at any opportunity.

enumerate
It’s common when iterating over a sequence to want to keep track of the index of the
current item. A do-it-yourself approach would look like:

index = 0
for value in collection:
   # do something with value
   index += 1

Since this is so common, Python has a built-in function, enumerate, which returns a
sequence of (i, value) tuples:

for index, value in enumerate(collection):
   # do something with value

sorted

The sorted function returns a new sorted list from the elements of any sequence:

In [145]: sorted([7, 1, 2, 6, 0, 3, 2])
Out[145]: [0, 1, 2, 2, 3, 6, 7]

In [146]: sorted("horse race")
Out[146]: [' ', 'a', 'c', 'e', 'e', 'h', 'o', 'r', 'r', 's']

The sorted function accepts the same arguments as the sort method on lists.

zip

zip “pairs” up the elements of a number of lists, tuples, or other sequences to create a
list of tuples:

In [147]: seq1 = ["foo", "bar", "baz"]

In [148]: seq2 = ["one", "two", "three"]

In [149]: zipped = zip(seq1, seq2)

In [150]: list(zipped)
Out[150]: [('foo', 'one'), ('bar', 'two'), ('baz', 'three')]

zip can take an arbitrary number of sequences, and the number of elements it
produces is determined by the shortest sequence:

In [151]: seq3 = [False, True]

62 | Chapter 3: Built-In Data Structures, Functions, and Files



In [152]: list(zip(seq1, seq2, seq3))
Out[152]: [('foo', 'one', False), ('bar', 'two', True)]

A common use of zip is simultaneously iterating over multiple sequences, possibly
also combined with enumerate:

In [153]: for index, (a, b) in enumerate(zip(seq1, seq2)):
   .....:     print(f"{index}: {a}, {b}")
   .....:
0: foo, one
1: bar, two
2: baz, three

reversed

reversed iterates over the elements of a sequence in reverse order:

In [154]: list(reversed(range(10)))
Out[154]: [9, 8, 7, 6, 5, 4, 3, 2, 1, 0]

Keep in mind that reversed is a generator (to be discussed in some more detail later),
so it does not create the reversed sequence until materialized (e.g., with list or a for
loop).

List, Set, and Dictionary Comprehensions
List comprehensions are a convenient and widely used Python language feature. They
allow you to concisely form a new list by filtering the elements of a collection,
transforming the elements passing the filter into one concise expression. They take
the basic form:

[expr for value in collection if condition]

This is equivalent to the following for loop:

result = []
for value in collection:
    if condition:
        result.append(expr)

The filter condition can be omitted, leaving only the expression. For example, given
a list of strings, we could filter out strings with length 2 or less and convert them to
uppercase like this:

In [155]: strings = ["a", "as", "bat", "car", "dove", "python"]

In [156]: [x.upper() for x in strings if len(x) > 2]
Out[156]: ['BAT', 'CAR', 'DOVE', 'PYTHON']

Set and dictionary comprehensions are a natural extension, producing sets and dic‐
tionaries in an idiomatically similar way instead of lists.

3.1 Data Structures and Sequences | 63



A dictionary comprehension looks like this:

dict_comp = {key-expr: value-expr for value in collection
             if condition}

A set comprehension looks like the equivalent list comprehension except with curly
braces instead of square brackets:

set_comp = {expr for value in collection if condition}

Like list comprehensions, set and dictionary comprehensions are mostly convenien‐
ces, but they similarly can make code both easier to write and read. Consider the
list of strings from before. Suppose we wanted a set containing just the lengths of
the strings contained in the collection; we could easily compute this using a set
comprehension:

In [157]: unique_lengths = {len(x) for x in strings}

In [158]: unique_lengths
Out[158]: {1, 2, 3, 4, 6}

We could also express this more functionally using the map function, introduced
shortly:

In [159]: set(map(len, strings))
Out[159]: {1, 2, 3, 4, 6}

As a simple dictionary comprehension example, we could create a lookup map of
these strings for their locations in the list:

In [160]: loc_mapping = {value: index for index, value in enumerate(strings)}

In [161]: loc_mapping
Out[161]: {'a': 0, 'as': 1, 'bat': 2, 'car': 3, 'dove': 4, 'python': 5}

Nested list comprehensions
Suppose we have a list of lists containing some English and Spanish names:

In [162]: all_data = [["John", "Emily", "Michael", "Mary", "Steven"],
   .....:             ["Maria", "Juan", "Javier", "Natalia", "Pilar"]]

Suppose we wanted to get a single list containing all names with two or more a’s in
them. We could certainly do this with a simple for loop:

In [163]: names_of_interest = []

In [164]: for names in all_data:
   .....:     enough_as = [name for name in names if name.count("a") >= 2]
   .....:     names_of_interest.extend(enough_as)
   .....:

In [165]: names_of_interest
Out[165]: ['Maria', 'Natalia']

64 | Chapter 3: Built-In Data Structures, Functions, and Files



You can actually wrap this whole operation up in a single nested list comprehension,
which will look like:

In [166]: result = [name for names in all_data for name in names
   .....:           if name.count("a") >= 2]

In [167]: result
Out[167]: ['Maria', 'Natalia']

At first, nested list comprehensions are a bit hard to wrap your head around. The for
parts of the list comprehension are arranged according to the order of nesting, and
any filter condition is put at the end as before. Here is another example where we
“flatten” a list of tuples of integers into a simple list of integers:

In [168]: some_tuples = [(1, 2, 3), (4, 5, 6), (7, 8, 9)]

In [169]: flattened = [x for tup in some_tuples for x in tup]

In [170]: flattened
Out[170]: [1, 2, 3, 4, 5, 6, 7, 8, 9]

Keep in mind that the order of the for expressions would be the same if you wrote a
nested for loop instead of a list comprehension:

flattened = []

for tup in some_tuples:
    for x in tup:
        flattened.append(x)

You can have arbitrarily many levels of nesting, though if you have more than two
or three levels of nesting, you should probably start to question whether this makes
sense from a code readability standpoint. It’s important to distinguish the syntax just
shown from a list comprehension inside a list comprehension, which is also perfectly
valid:

In [172]: [[x for x in tup] for tup in some_tuples]
Out[172]: [[1, 2, 3], [4, 5, 6], [7, 8, 9]]

This produces a list of lists, rather than a flattened list of all of the inner elements.

3.2 Functions
Functions are the primary and most important method of code organization and
reuse in Python. As a rule of thumb, if you anticipate needing to repeat the same
or very similar code more than once, it may be worth writing a reusable function.
Functions can also help make your code more readable by giving a name to a group
of Python statements.

3.2 Functions | 65



Functions are declared with the def keyword. A function contains a block of code
with an optional use of the return keyword:

In [173]: def my_function(x, y):
   .....:     return x + y

When a line with return is reached, the value or expression after return is sent to the
context where the function was called, for example:

In [174]: my_function(1, 2)
Out[174]: 3

In [175]: result = my_function(1, 2)

In [176]: result
Out[176]: 3

There is no issue with having multiple return statements. If Python reaches the end
of a function without encountering a return statement, None is returned automati‐
cally. For example:

In [177]: def function_without_return(x):
   .....:     print(x)

In [178]: result = function_without_return("hello!")
hello!

In [179]: print(result)
None

Each function can have positional arguments and keyword arguments. Keyword argu‐
ments are most commonly used to specify default values or optional arguments. Here
we will define a function with an optional z argument with the default value 1.5:

def my_function2(x, y, z=1.5):
    if z > 1:
        return z * (x + y)
    else:
        return z / (x + y)

While keyword arguments are optional, all positional arguments must be specified
when calling a function.

You can pass values to the z argument with or without the keyword provided, though
using the keyword is encouraged:

In [181]: my_function2(5, 6, z=0.7)
Out[181]: 0.06363636363636363

In [182]: my_function2(3.14, 7, 3.5)
Out[182]: 35.49

66 | Chapter 3: Built-In Data Structures, Functions, and Files



In [183]: my_function2(10, 20)
Out[183]: 45.0

The main restriction on function arguments is that the keyword arguments must
follow the positional arguments (if any). You can specify keyword arguments in any
order. This frees you from having to remember the order in which the function
arguments were specified. You need to remember only what their names are.

Namespaces, Scope, and Local Functions
Functions can access variables created inside the function as well as those outside
the function in higher (or even global) scopes. An alternative and more descriptive
name describing a variable scope in Python is a namespace. Any variables that are
assigned within a function by default are assigned to the local namespace. The local
namespace is created when the function is called and is immediately populated by the
function’s arguments. After the function is finished, the local namespace is destroyed
(with some exceptions that are outside the purview of this chapter). Consider the
following function:

def func():
    a = []
    for i in range(5):
        a.append(i)

When func() is called, the empty list a is created, five elements are appended, and
then a is destroyed when the function exits. Suppose instead we had declared a as
follows:

In [184]: a = []

In [185]: def func():
   .....:     for i in range(5):
   .....:         a.append(i)

Each call to func will modify list a:

In [186]: func()

In [187]: a
Out[187]: [0, 1, 2, 3, 4]

In [188]: func()

In [189]: a
Out[189]: [0, 1, 2, 3, 4, 0, 1, 2, 3, 4]

Assigning variables outside of the function’s scope is possible, but those variables
must be declared explicitly using either the global or nonlocal keywords:

In [190]: a = None

3.2 Functions | 67



In [191]: def bind_a_variable():
   .....:     global a
   .....:     a = []
   .....: bind_a_variable()
   .....:

In [192]: print(a)
[]

nonlocal allows a function to modify variables defined in a higher-level scope that is
not global. Since its use is somewhat esoteric (I never use it in this book), I refer you
to the Python documentation to learn more about it.

I generally discourage use of the global keyword. Typically, global
variables are used to store some kind of state in a system. If you
find yourself using a lot of them, it may indicate a need for object-
oriented programming (using classes).

Returning Multiple Values
When I first programmed in Python after having programmed in Java and C++, one
of my favorite features was the ability to return multiple values from a function with
simple syntax. Here’s an example:

def f():
    a = 5
    b = 6
    c = 7
    return a, b, c

a, b, c = f()

In data analysis and other scientific applications, you may find yourself doing this
often. What’s happening here is that the function is actually just returning one object,
a tuple, which is then being unpacked into the result variables. In the preceding
example, we could have done this instead:

return_value = f()

In this case, return_value would be a 3-tuple with the three returned variables. A
potentially attractive alternative to returning multiple values like before might be to
return a dictionary instead:

def f():
    a = 5
    b = 6
    c = 7
    return {"a" : a, "b" : b, "c" : c}

This alternative technique can be useful depending on what you are trying to do.

68 | Chapter 3: Built-In Data Structures, Functions, and Files



Functions Are Objects
Since Python functions are objects, many constructs can be easily expressed that are
difficult to do in other languages. Suppose we were doing some data cleaning and
needed to apply a bunch of transformations to the following list of strings:

In [193]: states = ["   Alabama ", "Georgia!", "Georgia", "georgia", "FlOrIda",
   .....:           "south   carolina##", "West virginia?"]

Anyone who has ever worked with user-submitted survey data has seen messy results
like these. Lots of things need to happen to make this list of strings uniform and
ready for analysis: stripping whitespace, removing punctuation symbols, and stand‐
ardizing proper capitalization. One way to do this is to use built-in string methods
along with the re standard library module for regular expressions:

import re

def clean_strings(strings):
    result = []
    for value in strings:
        value = value.strip()
        value = re.sub("[!#?]", "", value)
        value = value.title()
        result.append(value)
    return result

The result looks like this:

In [195]: clean_strings(states)
Out[195]: 
['Alabama',
 'Georgia',
 'Georgia',
 'Georgia',
 'Florida',
 'South   Carolina',
 'West Virginia']

An alternative approach that you may find useful is to make a list of the operations
you want to apply to a particular set of strings:

def remove_punctuation(value):
    return re.sub("[!#?]", "", value)

clean_ops = [str.strip, remove_punctuation, str.title]

def clean_strings(strings, ops):
    result = []
    for value in strings:
        for func in ops:
            value = func(value)
        result.append(value)
    return result

3.2 Functions | 69



Then we have the following:

In [197]: clean_strings(states, clean_ops)
Out[197]: 
['Alabama',
 'Georgia',
 'Georgia',
 'Georgia',
 'Florida',
 'South   Carolina',
 'West Virginia']

A more functional pattern like this enables you to easily modify how the strings
are transformed at a very high level. The clean_strings function is also now more
reusable and generic.

You can use functions as arguments to other functions like the built-in map function,
which applies a function to a sequence of some kind:

In [198]: for x in map(remove_punctuation, states):
   .....:     print(x)
Alabama 
Georgia
Georgia
georgia
FlOrIda
south   carolina
West virginia

map can be used as an alternative to list comprehensions without any filter.

Anonymous (Lambda) Functions
Python has support for so-called anonymous or lambda functions, which are a way
of writing functions consisting of a single statement, the result of which is the return
value. They are defined with the lambda keyword, which has no meaning other than
“we are declaring an anonymous function”:

In [199]: def short_function(x):
   .....:     return x * 2

In [200]: equiv_anon = lambda x: x * 2

I usually refer to these as lambda functions in the rest of the book. They are especially
convenient in data analysis because, as you’ll see, there are many cases where data
transformation functions will take functions as arguments. It’s often less typing (and
clearer) to pass a lambda function as opposed to writing a full-out function declara‐
tion or even assigning the lambda function to a local variable. Consider this example:

In [201]: def apply_to_list(some_list, f):
   .....:     return [f(x) for x in some_list]

70 | Chapter 3: Built-In Data Structures, Functions, and Files



In [202]: ints = [4, 0, 1, 5, 6]

In [203]: apply_to_list(ints, lambda x: x * 2)
Out[203]: [8, 0, 2, 10, 12]

You could also have written [x * 2 for x in ints], but here we were able to
succinctly pass a custom operator to the apply_to_list function.

As another example, suppose you wanted to sort a collection of strings by the number
of distinct letters in each string:

In [204]: strings = ["foo", "card", "bar", "aaaa", "abab"]

Here we could pass a lambda function to the list’s sort method:

In [205]: strings.sort(key=lambda x: len(set(x)))

In [206]: strings
Out[206]: ['aaaa', 'foo', 'abab', 'bar', 'card']

Generators
Many objects in Python support iteration, such as over objects in a list or lines in a
file. This is accomplished by means of the iterator protocol, a generic way to make
objects iterable. For example, iterating over a dictionary yields the dictionary keys:

In [207]: some_dict = {"a": 1, "b": 2, "c": 3}

In [208]: for key in some_dict:
   .....:     print(key)
a
b
c

When you write for key in some_dict, the Python interpreter first attempts to
create an iterator out of some_dict:

In [209]: dict_iterator = iter(some_dict)

In [210]: dict_iterator
Out[210]: <dict_keyiterator at 0x7fefe45465c0>

An iterator is any object that will yield objects to the Python interpreter when used
in a context like a for loop. Most methods expecting a list or list-like object will also
accept any iterable object. This includes built-in methods such as min, max, and sum,
and type constructors like list and tuple:

In [211]: list(dict_iterator)
Out[211]: ['a', 'b', 'c']

3.2 Functions | 71



A generator is a convenient way, similar to writing a normal function, to construct a
new iterable object. Whereas normal functions execute and return a single result at
a time, generators can return a sequence of multiple values by pausing and resuming
execution each time the generator is used. To create a generator, use the yield
keyword instead of return in a function:

def squares(n=10):
    print(f"Generating squares from 1 to {n ** 2}")
    for i in range(1, n + 1):
        yield i ** 2

When you actually call the generator, no code is immediately executed:

In [213]: gen = squares()

In [214]: gen
Out[214]: <generator object squares at 0x7fefe437d620>

It is not until you request elements from the generator that it begins executing its
code:

In [215]: for x in gen:
   .....:     print(x, end=" ")
Generating squares from 1 to 100
1 4 9 16 25 36 49 64 81 100

Since generators produce output one element at a time versus an
entire list all at once, it can help your program use less memory.

Generator expressions
Another way to make a generator is by using a generator expression. This is a genera‐
tor analogue to list, dictionary, and set comprehensions. To create one, enclose what
would otherwise be a list comprehension within parentheses instead of brackets:

In [216]: gen = (x ** 2 for x in range(100))

In [217]: gen
Out[217]: <generator object <genexpr> at 0x7fefe437d000>

This is equivalent to the following more verbose generator:

def _make_gen():
    for x in range(100):
        yield x ** 2
gen = _make_gen()

Generator expressions can be used instead of list comprehensions as function argu‐
ments in some cases:

72 | Chapter 3: Built-In Data Structures, Functions, and Files



In [218]: sum(x ** 2 for x in range(100))
Out[218]: 328350

In [219]: dict((i, i ** 2) for i in range(5))
Out[219]: {0: 0, 1: 1, 2: 4, 3: 9, 4: 16}

Depending on the number of elements produced by the comprehension expression,
the generator version can sometimes be meaningfully faster.

itertools module

The standard library itertools module has a collection of generators for many
common data algorithms. For example, groupby takes any sequence and a function,
grouping consecutive elements in the sequence by return value of the function. Here’s
an example:

In [220]: import itertools

In [221]: def first_letter(x):
   .....:     return x[0]

In [222]: names = ["Alan", "Adam", "Wes", "Will", "Albert", "Steven"]

In [223]: for letter, names in itertools.groupby(names, first_letter):
   .....:     print(letter, list(names)) # names is a generator
A ['Alan', 'Adam']
W ['Wes', 'Will']
A ['Albert']
S ['Steven']

See Table 3-2 for a list of a few other itertools functions I’ve frequently found
helpful. You may like to check out the official Python documentation for more on this
useful built-in utility module.

Table 3-2. Some useful itertools functions

Function Description
chain(*iterables) Generates a sequence by chaining iterators together. Once elements from the

first iterator are exhausted, elements from the next iterator are returned, and
so on.

combinations(iterable, k) Generates a sequence of all possible k-tuples of elements in the iterable,
ignoring order and without replacement (see also the companion function
combinations_with_replacement).

permutations(iterable, k) Generates a sequence of all possible k-tuples of elements in the iterable,
respecting order.

groupby(iterable[, keyfunc]) Generates (key, sub-iterator) for each unique key.
product(*iterables, repeat=1) Generates the Cartesian product of the input iterables as tuples, similar to a

nested for loop.

3.2 Functions | 73

https://docs.python.org/3/library/itertools.html


Errors and Exception Handling
Handling Python errors or exceptions gracefully is an important part of building
robust programs. In data analysis applications, many functions work only on certain
kinds of input. As an example, Python’s float function is capable of casting a string
to a floating-point number, but it fails with ValueError on improper inputs:

In [224]: float("1.2345")
Out[224]: 1.2345

In [225]: float("something")
---------------------------------------------------------------------------
ValueError                                Traceback (most recent call last)
<ipython-input-225-5ccfe07933f4> in <module>
----> 1 float("something")
ValueError: could not convert string to float: 'something'

Suppose we wanted a version of float that fails gracefully, returning the input
argument. We can do this by writing a function that encloses the call to float in a
try/except block (execute this code in IPython):

def attempt_float(x):
    try:
        return float(x)
    except:
        return x

The code in the except part of the block will only be executed if float(x) raises an
exception:

In [227]: attempt_float("1.2345")
Out[227]: 1.2345

In [228]: attempt_float("something")
Out[228]: 'something'

You might notice that float can raise exceptions other than ValueError:

In [229]: float((1, 2))
---------------------------------------------------------------------------
TypeError                                 Traceback (most recent call last)
<ipython-input-229-82f777b0e564> in <module>
----> 1 float((1, 2))
TypeError: float() argument must be a string or a real number, not 'tuple'

You might want to suppress only ValueError, since a TypeError (the input was not a
string or numeric value) might indicate a legitimate bug in your program. To do that,
write the exception type after except:

def attempt_float(x):
    try:
        return float(x)

74 | Chapter 3: Built-In Data Structures, Functions, and Files



    except ValueError:
        return x

We have then:

In [231]: attempt_float((1, 2))
---------------------------------------------------------------------------
TypeError                                 Traceback (most recent call last)
<ipython-input-231-8b0026e9e6b7> in <module>
----> 1 attempt_float((1, 2))
<ipython-input-230-6209ddecd2b5> in attempt_float(x)
      1 def attempt_float(x):
      2     try:
----> 3         return float(x)
      4     except ValueError:
      5         return x
TypeError: float() argument must be a string or a real number, not 'tuple'

You can catch multiple exception types by writing a tuple of exception types instead
(the parentheses are required):

def attempt_float(x):
    try:
        return float(x)
    except (TypeError, ValueError):
        return x

In some cases, you may not want to suppress an exception, but you want some code
to be executed regardless of whether or not the code in the try block succeeds. To do
this, use finally:

f = open(path, mode="w")

try:
    write_to_file(f)
finally:
    f.close()

Here, the file object f will always get closed. Similarly, you can have code that
executes only if the try: block succeeds using else:

f = open(path, mode="w")

try:
    write_to_file(f)
except:
    print("Failed")
else:
    print("Succeeded")
finally:
    f.close()

3.2 Functions | 75



Exceptions in IPython

If an exception is raised while you are %run-ing a script or executing any statement,
IPython will by default print a full call stack trace (traceback) with a few lines of
context around the position at each point in the stack:

In [10]: %run examples/ipython_bug.py
---------------------------------------------------------------------------
AssertionError                            Traceback (most recent call last)
/home/wesm/code/pydata-book/examples/ipython_bug.py in <module>()
     13     throws_an_exception()
     14
---> 15 calling_things()

/home/wesm/code/pydata-book/examples/ipython_bug.py in calling_things()
     11 def calling_things():
     12     works_fine()
---> 13     throws_an_exception()
     14
     15 calling_things()

/home/wesm/code/pydata-book/examples/ipython_bug.py in throws_an_exception()
      7     a = 5
      8     b = 6
----> 9     assert(a + b == 10)
     10
     11 def calling_things():

AssertionError:

Having additional context by itself is a big advantage over the standard Python
interpreter (which does not provide any additional context). You can control the
amount of context shown using the %xmode magic command, from Plain (same as
the standard Python interpreter) to Verbose (which inlines function argument values
and more). As you will see later in Appendix B, you can step into the stack (using
the %debug or %pdb magics) after an error has occurred for interactive postmortem
debugging.

3.3 Files and the Operating System
Most of this book uses high-level tools like pandas.read_csv to read data files from
disk into Python data structures. However, it’s important to understand the basics of
how to work with files in Python. Fortunately, it’s relatively straightforward, which is
one reason Python is so popular for text and file munging.

To open a file for reading or writing, use the built-in open function with either a
relative or absolute file path and an optional file encoding:

76 | Chapter 3: Built-In Data Structures, Functions, and Files



In [233]: path = "examples/segismundo.txt"

In [234]: f = open(path, encoding="utf-8")

Here, I pass encoding="utf-8" as a best practice because the default Unicode encod‐
ing for reading files varies from platform to platform.

By default, the file is opened in read-only mode "r". We can then treat the file object
f like a list and iterate over the lines like so:

for line in f:
    print(line)

The lines come out of the file with the end-of-line (EOL) markers intact, so you’ll
often see code to get an EOL-free list of lines in a file like:

In [235]: lines = [x.rstrip() for x in open(path, encoding="utf-8")]

In [236]: lines
Out[236]: 
['Sueña el rico en su riqueza,',
 'que más cuidados le ofrece;',
 '',
 'sueña el pobre que padece',
 'su miseria y su pobreza;',
 '',
 'sueña el que a medrar empieza,',
 'sueña el que afana y pretende,',
 'sueña el que agravia y ofende,',
 '',
 'y en el mundo, en conclusión,',
 'todos sueñan lo que son,',
 'aunque ninguno lo entiende.',
 '']

When you use open to create file objects, it is recommended to close the file when
you are finished with it. Closing the file releases its resources back to the operating
system:

In [237]: f.close()

One of the ways to make it easier to clean up open files is to use the with statement:

In [238]: with open(path, encoding="utf-8") as f:
   .....:     lines = [x.rstrip() for x in f]

This will automatically close the file f when exiting the with block. Failing to ensure
that files are closed will not cause problems in many small programs or scripts, but it
can be an issue in programs that need to interact with a large number of files.

If we had typed f = open(path, "w"), a new file at examples/segismundo.txt would
have been created (be careful!), overwriting any file in its place. There is also the

3.3 Files and the Operating System | 77



"x" file mode, which creates a writable file but fails if the file path already exists. See
Table 3-3 for a list of all valid file read/write modes.

Table 3-3. Python file modes

Mode Description
r Read-only mode
w Write-only mode; creates a new file (erasing the data for any file with the same name)
x Write-only mode; creates a new file but fails if the file path already exists
a Append to existing file (creates the file if it does not already exist)
r+ Read and write
b Add to mode for binary files (i.e., "rb" or "wb")
t Text mode for files (automatically decoding bytes to Unicode); this is the default if not specified

For readable files, some of the most commonly used methods are read, seek, and
tell. read returns a certain number of characters from the file. What constitutes a
“character” is determined by the file encoding or simply raw bytes if the file is opened
in binary mode:

In [239]: f1 = open(path)

In [240]: f1.read(10)
Out[240]: 'Sueña el r'

In [241]: f2 = open(path, mode="rb")  # Binary mode

In [242]: f2.read(10)
Out[242]: b'Sue\xc3\xb1a el '

The read method advances the file object position by the number of bytes read. tell
gives you the current position:

In [243]: f1.tell()
Out[243]: 11

In [244]: f2.tell()
Out[244]: 10

Even though we read 10 characters from the file f1 opened in text mode, the position
is 11 because it took that many bytes to decode 10 characters using the default
encoding. You can check the default encoding in the sys module:

In [245]: import sys

In [246]: sys.getdefaultencoding()
Out[246]: 'utf-8'

To get consistent behavior across platforms, it is best to pass an encoding (such as
encoding="utf-8", which is widely used) when opening files.

78 | Chapter 3: Built-In Data Structures, Functions, and Files



seek changes the file position to the indicated byte in the file:

In [247]: f1.seek(3)
Out[247]: 3

In [248]: f1.read(1)
Out[248]: 'ñ'

In [249]: f1.tell()
Out[249]: 5

Lastly, we remember to close the files:

In [250]: f1.close()

In [251]: f2.close()

To write text to a file, you can use the file’s write or writelines methods. For
example, we could create a version of examples/segismundo.txt with no blank lines
like so:

In [252]: path
Out[252]: 'examples/segismundo.txt'

In [253]: with open("tmp.txt", mode="w") as handle:
   .....:     handle.writelines(x for x in open(path) if len(x) > 1)

In [254]: with open("tmp.txt") as f:
   .....:     lines = f.readlines()

In [255]: lines
Out[255]: 
['Sueña el rico en su riqueza,\n',
 'que más cuidados le ofrece;\n',
 'sueña el pobre que padece\n',
 'su miseria y su pobreza;\n',
 'sueña el que a medrar empieza,\n',
 'sueña el que afana y pretende,\n',
 'sueña el que agravia y ofende,\n',
 'y en el mundo, en conclusión,\n',
 'todos sueñan lo que son,\n',
 'aunque ninguno lo entiende.\n']

See Table 3-4 for many of the most commonly used file methods.

Table 3-4. Important Python file methods or attributes

Method/attribute Description
read([size]) Return data from file as bytes or string depending on the file mode, with optional size

argument indicating the number of bytes or string characters to read
readable() Return True if the file supports read operations
readlines([size]) Return list of lines in the file, with optional size argument

3.3 Files and the Operating System | 79



Method/attribute Description
write(string) Write passed string to file
writable() Return True if the file supports write operations
writelines(strings) Write passed sequence of strings to the file
close() Close the file object
flush() Flush the internal I/O buffer to disk
seek(pos) Move to indicated file position (integer)
seekable() Return True if the file object supports seeking and thus random access (some file-like objects

do not)
tell() Return current file position as integer
closed True if the file is closed
encoding The encoding used to interpret bytes in the file as Unicode (typically UTF-8)

Bytes and Unicode with Files
The default behavior for Python files (whether readable or writable) is text mode,
which means that you intend to work with Python strings (i.e., Unicode). This
contrasts with binary mode, which you can obtain by appending b to the file mode.
Revisiting the file (which contains non-ASCII characters with UTF-8 encoding) from
the previous section, we have:

In [258]: with open(path) as f:
   .....:     chars = f.read(10)

In [259]: chars
Out[259]: 'Sueña el r'

In [260]: len(chars)
Out[260]: 10

UTF-8 is a variable-length Unicode encoding, so when I request some number of
characters from the file, Python reads enough bytes (which could be as few as 10 or
as many as 40 bytes) from the file to decode that many characters. If I open the file in
"rb" mode instead, read requests that exact number of bytes:

In [261]: with open(path, mode="rb") as f:
   .....:     data = f.read(10)

In [262]: data
Out[262]: b'Sue\xc3\xb1a el '

Depending on the text encoding, you may be able to decode the bytes to a str object
yourself, but only if each of the encoded Unicode characters is fully formed:

In [263]: data.decode("utf-8")
Out[263]: 'Sueña el '

In [264]: data[:4].decode("utf-8")

80 | Chapter 3: Built-In Data Structures, Functions, and Files



---------------------------------------------------------------------------
UnicodeDecodeError                        Traceback (most recent call last)
<ipython-input-264-846a5c2fed34> in <module>
----> 1 data[:4].decode("utf-8")
UnicodeDecodeError: 'utf-8' codec can't decode byte 0xc3 in position 3: unexpecte
d end of data

Text mode, combined with the encoding option of open, provides a convenient way
to convert from one Unicode encoding to another:

In [265]: sink_path = "sink.txt"

In [266]: with open(path) as source:
   .....:     with open(sink_path, "x", encoding="iso-8859-1") as sink:
   .....:         sink.write(source.read())

In [267]: with open(sink_path, encoding="iso-8859-1") as f:
   .....:     print(f.read(10))
Sueña el r

Beware using seek when opening files in any mode other than binary. If the file
position falls in the middle of the bytes defining a Unicode character, then subsequent
reads will result in an error:

In [269]: f = open(path, encoding='utf-8')

In [270]: f.read(5)
Out[270]: 'Sueña'

In [271]: f.seek(4)
Out[271]: 4

In [272]: f.read(1)
---------------------------------------------------------------------------
UnicodeDecodeError                        Traceback (most recent call last)
<ipython-input-272-5a354f952aa4> in <module>
----> 1 f.read(1)
/miniconda/envs/book-env/lib/python3.10/codecs.py in decode(self, input, final)
    320         # decode input (taking the buffer into account)
    321         data = self.buffer + input
--> 322         (result, consumed) = self._buffer_decode(data, self.errors, final
)
    323         # keep undecoded input until the next call
    324         self.buffer = data[consumed:]
UnicodeDecodeError: 'utf-8' codec can't decode byte 0xb1 in position 0: invalid s
tart byte

In [273]: f.close()

If you find yourself regularly doing data analysis on non-ASCII text data, mastering
Python’s Unicode functionality will prove valuable. See Python’s online documenta‐
tion for much more.

3.3 Files and the Operating System | 81

https://docs.python.org
https://docs.python.org


3.4 Conclusion
With some of the basics of the Python environment and language now under your
belt, it is time to move on and learn about NumPy and array-oriented computing in
Python.

82 | Chapter 3: Built-In Data Structures, Functions, and Files



CHAPTER 4

NumPy Basics: Arrays and
Vectorized Computation

NumPy, short for Numerical Python, is one of the most important foundational pack‐
ages for numerical computing in Python. Many computational packages providing
scientific functionality use NumPy’s array objects as one of the standard interface
lingua francas for data exchange. Much of the knowledge about NumPy that I cover is
transferable to pandas as well.

Here are some of the things you’ll find in NumPy:

• ndarray, an efficient multidimensional array providing fast array-oriented arith‐•
metic operations and flexible broadcasting capabilities

• Mathematical functions for fast operations on entire arrays of data without hav‐•
ing to write loops

• Tools for reading/writing array data to disk and working with memory-mapped•
files

• Linear algebra, random number generation, and Fourier transform capabilities•
• A C API for connecting NumPy with libraries written in C, C++, or FORTRAN•

Because NumPy provides a comprehensive and well-documented C API, it is
straightforward to pass data to external libraries written in a low-level language,
and for external libraries to return data to Python as NumPy arrays. This feature
has made Python a language of choice for wrapping legacy C, C++, or FORTRAN
codebases and giving them a dynamic and accessible interface.

While NumPy by itself does not provide modeling or scientific functionality, having
an understanding of NumPy arrays and array-oriented computing will help you use
tools with array computing semantics, like pandas, much more effectively. Since

83



NumPy is a large topic, I will cover many advanced NumPy features like broadcasting
in more depth later (see Appendix A). Many of these advanced features are not
needed to follow the rest of this book, but they may help you as you go deeper into
scientific computing in Python.

For most data analysis applications, the main areas of functionality I’ll focus on are:

• Fast array-based operations for data munging and cleaning, subsetting and filter‐•
ing, transformation, and any other kind of computation

• Common array algorithms like sorting, unique, and set operations•
• Efficient descriptive statistics and aggregating/summarizing data•
• Data alignment and relational data manipulations for merging and joining heter‐•

ogeneous datasets
• Expressing conditional logic as array expressions instead of loops with if-elif-•
else branches

• Group-wise data manipulations (aggregation, transformation, and function•
application)

While NumPy provides a computational foundation for general numerical data
processing, many readers will want to use pandas as the basis for most kinds of
statistics or analytics, especially on tabular data. Also, pandas provides some more
domain-specific functionality like time series manipulation, which is not present in
NumPy.

Array-oriented computing in Python traces its roots back to 1995,
when Jim Hugunin created the Numeric library. Over the next
10 years, many scientific programming communities began doing
array programming in Python, but the library ecosystem had
become fragmented in the early 2000s. In 2005, Travis Oliphant
was able to forge the NumPy project from the then Numeric and
Numarray projects to bring the community together around a sin‐
gle array computing framework.

One of the reasons NumPy is so important for numerical computations in Python is
because it is designed for efficiency on large arrays of data. There are a number of
reasons for this:

• NumPy internally stores data in a contiguous block of memory, independent of•
other built-in Python objects. NumPy’s library of algorithms written in the C lan‐
guage can operate on this memory without any type checking or other overhead.
NumPy arrays also use much less memory than built-in Python sequences.

84 | Chapter 4: NumPy Basics: Arrays and Vectorized Computation



• NumPy operations perform complex computations on entire arrays without the•
need for Python for loops, which can be slow for large sequences. NumPy is
faster than regular Python code because its C-based algorithms avoid overhead
present with regular interpreted Python code.

To give you an idea of the performance difference, consider a NumPy array of one
million integers, and the equivalent Python list:

In [7]: import numpy as np

In [8]: my_arr = np.arange(1_000_000)

In [9]: my_list = list(range(1_000_000))

Now let’s multiply each sequence by 2:

In [10]: %timeit my_arr2 = my_arr * 2
715 us +- 13.2 us per loop (mean +- std. dev. of 7 runs, 1000 loops each)

In [11]: %timeit my_list2 = [x * 2 for x in my_list]
48.8 ms +- 298 us per loop (mean +- std. dev. of 7 runs, 10 loops each)

NumPy-based algorithms are generally 10 to 100 times faster (or more) than their
pure Python counterparts and use significantly less memory.

4.1 The NumPy ndarray: A Multidimensional Array Object
One of the key features of NumPy is its N-dimensional array object, or ndarray,
which is a fast, flexible container for large datasets in Python. Arrays enable you to
perform mathematical operations on whole blocks of data using similar syntax to the
equivalent operations between scalar elements.

To give you a flavor of how NumPy enables batch computations with similar syntax
to scalar values on built-in Python objects, I first import NumPy and create a small
array:

In [12]: import numpy as np

In [13]: data = np.array([[1.5, -0.1, 3], [0, -3, 6.5]])

In [14]: data
Out[14]: 
array([[ 1.5, -0.1,  3. ],
       [ 0. , -3. ,  6.5]])

I then write mathematical operations with data:

In [15]: data * 10
Out[15]: 
array([[ 15.,  -1.,  30.],
       [  0., -30.,  65.]])

4.1 The NumPy ndarray: A Multidimensional Array Object | 85



In [16]: data + data
Out[16]: 
array([[ 3. , -0.2,  6. ],
       [ 0. , -6. , 13. ]])

In the first example, all of the elements have been multiplied by 10. In the second, the
corresponding values in each “cell” in the array have been added to each other.

In this chapter and throughout the book, I use the standard
NumPy convention of always using import numpy as np. It would
be possible to put from numpy import * in your code to avoid
having to write np., but I advise against making a habit of this.
The numpy namespace is large and contains a number of functions
whose names conflict with built-in Python functions (like min and
max). Following standard conventions like these is almost always a
good idea.

An ndarray is a generic multidimensional container for homogeneous data; that is, all
of the elements must be the same type. Every array has a shape, a tuple indicating the
size of each dimension, and a dtype, an object describing the data type of the array:

In [17]: data.shape
Out[17]: (2, 3)

In [18]: data.dtype
Out[18]: dtype('float64')

This chapter will introduce you to the basics of using NumPy arrays, and it should
be sufficient for following along with the rest of the book. While it’s not necessary to
have a deep understanding of NumPy for many data analytical applications, becom‐
ing proficient in array-oriented programming and thinking is a key step along the
way to becoming a scientific Python guru.

Whenever you see “array,” “NumPy array,” or “ndarray” in the book
text, in most cases they all refer to the ndarray object.

Creating ndarrays
The easiest way to create an array is to use the array function. This accepts any
sequence-like object (including other arrays) and produces a new NumPy array
containing the passed data. For example, a list is a good candidate for conversion:

In [19]: data1 = [6, 7.5, 8, 0, 1]

86 | Chapter 4: NumPy Basics: Arrays and Vectorized Computation



In [20]: arr1 = np.array(data1)

In [21]: arr1
Out[21]: array([6. , 7.5, 8. , 0. , 1. ])

Nested sequences, like a list of equal-length lists, will be converted into a multidimen‐
sional array:

In [22]: data2 = [[1, 2, 3, 4], [5, 6, 7, 8]]

In [23]: arr2 = np.array(data2)

In [24]: arr2
Out[24]: 
array([[1, 2, 3, 4],
       [5, 6, 7, 8]])

Since data2 was a list of lists, the NumPy array arr2 has two dimensions, with
shape inferred from the data. We can confirm this by inspecting the ndim and shape
attributes:

In [25]: arr2.ndim
Out[25]: 2

In [26]: arr2.shape
Out[26]: (2, 4)

Unless explicitly specified (discussed in “Data Types for ndarrays” on page 88),
numpy.array tries to infer a good data type for the array that it creates. The data
type is stored in a special dtype metadata object; for example, in the previous two
examples we have:

In [27]: arr1.dtype
Out[27]: dtype('float64')

In [28]: arr2.dtype
Out[28]: dtype('int64')

In addition to numpy.array, there are a number of other functions for creating
new arrays. As examples, numpy.zeros and numpy.ones create arrays of 0s or 1s,
respectively, with a given length or shape. numpy.empty creates an array without
initializing its values to any particular value. To create a higher dimensional array
with these methods, pass a tuple for the shape:

In [29]: np.zeros(10)
Out[29]: array([0., 0., 0., 0., 0., 0., 0., 0., 0., 0.])

In [30]: np.zeros((3, 6))
Out[30]: 
array([[0., 0., 0., 0., 0., 0.],
       [0., 0., 0., 0., 0., 0.],
       [0., 0., 0., 0., 0., 0.]])

4.1 The NumPy ndarray: A Multidimensional Array Object | 87



In [31]: np.empty((2, 3, 2))
Out[31]: 
array([[[0., 0.],
        [0., 0.],
        [0., 0.]],
       [[0., 0.],
        [0., 0.],
        [0., 0.]]])

It’s not safe to assume that numpy.empty will return an array of all
zeros. This function returns uninitialized memory and thus may
contain nonzero “garbage” values. You should use this function
only if you intend to populate the new array with data.

numpy.arange is an array-valued version of the built-in Python range function:

In [32]: np.arange(15)
Out[32]: array([ 0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14])

See Table 4-1 for a short list of standard array creation functions. Since NumPy is
focused on numerical computing, the data type, if not specified, will in many cases be
float64 (floating point).

Table 4-1. Some important NumPy array creation functions

Function Description
array Convert input data (list, tuple, array, or other sequence type) to an ndarray either by inferring a data

type or explicitly specifying a data type; copies the input data by default
asarray Convert input to ndarray, but do not copy if the input is already an ndarray
arange Like the built-in range but returns an ndarray instead of a list
ones, 

ones_like

Produce an array of all 1s with the given shape and data type; ones_like takes another array and
produces a ones array of the same shape and data type

zeros, 

zeros_like

Like ones and ones_like but producing arrays of 0s instead

empty, 

empty_like

Create new arrays by allocating new memory, but do not populate with any values like ones and
zeros

full, 

full_like

Produce an array of the given shape and data type with all values set to the indicated “fill value”;
full_like takes another array and produces a filled array of the same shape and data type

eye, identity Create a square N × N identity matrix (1s on the diagonal and 0s elsewhere)

Data Types for ndarrays
The data type or dtype is a special object containing the information (or metadata,
data about data) the ndarray needs to interpret a chunk of memory as a particular
type of data:

88 | Chapter 4: NumPy Basics: Arrays and Vectorized Computation



In [33]: arr1 = np.array([1, 2, 3], dtype=np.float64)

In [34]: arr2 = np.array([1, 2, 3], dtype=np.int32)

In [35]: arr1.dtype
Out[35]: dtype('float64')

In [36]: arr2.dtype
Out[36]: dtype('int32')

Data types are a source of NumPy’s flexibility for interacting with data coming from
other systems. In most cases they provide a mapping directly onto an underlying
disk or memory representation, which makes it possible to read and write binary
streams of data to disk and to connect to code written in a low-level language like
C or FORTRAN. The numerical data types are named the same way: a type name,
like float or int, followed by a number indicating the number of bits per element.
A standard double-precision floating-point value (what’s used under the hood in
Python’s float object) takes up 8 bytes or 64 bits. Thus, this type is known in NumPy
as float64. See Table 4-2 for a full listing of NumPy’s supported data types.

Don’t worry about memorizing the NumPy data types, especially if
you’re a new user. It’s often only necessary to care about the general
kind of data you’re dealing with, whether floating point, complex,
integer, Boolean, string, or general Python object. When you need
more control over how data is stored in memory and on disk,
especially large datasets, it is good to know that you have control
over the storage type.

Table 4-2. NumPy data types

Type Type code Description
int8, uint8 i1, u1 Signed and unsigned 8-bit (1 byte) integer types
int16, uint16 i2, u2 Signed and unsigned 16-bit integer types
int32, uint32 i4, u4 Signed and unsigned 32-bit integer types
int64, uint64 i8, u8 Signed and unsigned 64-bit integer types
float16 f2 Half-precision floating point
float32 f4 or f Standard single-precision floating point; compatible with C float
float64 f8 or d Standard double-precision floating point; compatible with C double and

Python float object
float128 f16 or g Extended-precision floating point
complex64,
complex128,
complex256

c8, c16, 

c32

Complex numbers represented by two 32, 64, or 128 floats, respectively

bool ? Boolean type storing True and False values
object O Python object type; a value can be any Python object

4.1 The NumPy ndarray: A Multidimensional Array Object | 89



Type Type code Description
string_ S Fixed-length ASCII string type (1 byte per character); for example, to create a

string data type with length 10, use 'S10'
unicode_ U Fixed-length Unicode type (number of bytes platform specific); same

specification semantics as string_ (e.g., 'U10')

There are both signed and unsigned integer types, and many readers
will not be familiar with this terminology. A signed integer can
represent both positive and negative integers, while an unsigned
integer can only represent nonzero integers. For example, int8
(signed 8-bit integer) can represent integers from -128 to 127
(inclusive), while uint8 (unsigned 8-bit integer) can represent 0
through 255.

You can explicitly convert or cast an array from one data type to another using
ndarray’s astype method:

In [37]: arr = np.array([1, 2, 3, 4, 5])

In [38]: arr.dtype
Out[38]: dtype('int64')

In [39]: float_arr = arr.astype(np.float64)

In [40]: float_arr
Out[40]: array([1., 2., 3., 4., 5.])

In [41]: float_arr.dtype
Out[41]: dtype('float64')

In this example, integers were cast to floating point. If I cast some floating-point
numbers to be of integer data type, the decimal part will be truncated:

In [42]: arr = np.array([3.7, -1.2, -2.6, 0.5, 12.9, 10.1])

In [43]: arr
Out[43]: array([ 3.7, -1.2, -2.6,  0.5, 12.9, 10.1])

In [44]: arr.astype(np.int32)
Out[44]: array([ 3, -1, -2,  0, 12, 10], dtype=int32)

If you have an array of strings representing numbers, you can use astype to convert
them to numeric form:

In [45]: numeric_strings = np.array(["1.25", "-9.6", "42"], dtype=np.string_)

In [46]: numeric_strings.astype(float)
Out[46]: array([ 1.25, -9.6 , 42.  ])

90 | Chapter 4: NumPy Basics: Arrays and Vectorized Computation



Be cautious when using the numpy.string_ type, as string data in
NumPy is fixed size and may truncate input without warning. pan‐
das has more intuitive out-of-the-box behavior on non-numeric
data.

If casting were to fail for some reason (like a string that cannot be converted to
float64), a ValueError will be raised. Before, I was a bit lazy and wrote float
instead of np.float64; NumPy aliases the Python types to its own equivalent data
types.

You can also use another array’s dtype attribute:

In [47]: int_array = np.arange(10)

In [48]: calibers = np.array([.22, .270, .357, .380, .44, .50], dtype=np.float64)

In [49]: int_array.astype(calibers.dtype)
Out[49]: array([0., 1., 2., 3., 4., 5., 6., 7., 8., 9.])

There are shorthand type code strings you can also use to refer to a dtype:

In [50]: zeros_uint32 = np.zeros(8, dtype="u4")

In [51]: zeros_uint32
Out[51]: array([0, 0, 0, 0, 0, 0, 0, 0], dtype=uint32)

Calling astype always creates a new array (a copy of the data), even
if the new data type is the same as the old data type.

Arithmetic with NumPy Arrays
Arrays are important because they enable you to express batch operations on data
without writing any for loops. NumPy users call this vectorization. Any arithmetic
operations between equal-size arrays apply the operation element-wise:

In [52]: arr = np.array([[1., 2., 3.], [4., 5., 6.]])

In [53]: arr
Out[53]: 
array([[1., 2., 3.],
       [4., 5., 6.]])

In [54]: arr * arr
Out[54]: 
array([[ 1.,  4.,  9.],
       [16., 25., 36.]])

4.1 The NumPy ndarray: A Multidimensional Array Object | 91



In [55]: arr - arr
Out[55]: 
array([[0., 0., 0.],
       [0., 0., 0.]])

Arithmetic operations with scalars propagate the scalar argument to each element in
the array:

In [56]: 1 / arr
Out[56]: 
array([[1.    , 0.5   , 0.3333],
       [0.25  , 0.2   , 0.1667]])

In [57]: arr ** 2
Out[57]: 
array([[ 1.,  4.,  9.],
       [16., 25., 36.]])

Comparisons between arrays of the same size yield Boolean arrays:

In [58]: arr2 = np.array([[0., 4., 1.], [7., 2., 12.]])

In [59]: arr2
Out[59]: 
array([[ 0.,  4.,  1.],
       [ 7.,  2., 12.]])

In [60]: arr2 > arr
Out[60]: 
array([[False,  True, False],
       [ True, False,  True]])

Evaluating operations between differently sized arrays is called broadcasting and
will be discussed in more detail in Appendix A. Having a deep understanding of
broadcasting is not necessary for most of this book.

Basic Indexing and Slicing
NumPy array indexing is a deep topic, as there are many ways you may want to select
a subset of your data or individual elements. One-dimensional arrays are simple; on
the surface they act similarly to Python lists:

In [61]: arr = np.arange(10)

In [62]: arr
Out[62]: array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])

In [63]: arr[5]
Out[63]: 5

In [64]: arr[5:8]
Out[64]: array([5, 6, 7])

92 | Chapter 4: NumPy Basics: Arrays and Vectorized Computation



In [65]: arr[5:8] = 12

In [66]: arr
Out[66]: array([ 0,  1,  2,  3,  4, 12, 12, 12,  8,  9])

As you can see, if you assign a scalar value to a slice, as in arr[5:8] = 12, the value is
propagated (or broadcast henceforth) to the entire selection.

An important first distinction from Python’s built-in lists is that
array slices are views on the original array. This means that the data
is not copied, and any modifications to the view will be reflected in
the source array.

To give an example of this, I first create a slice of arr:

In [67]: arr_slice = arr[5:8]

In [68]: arr_slice
Out[68]: array([12, 12, 12])

Now, when I change values in arr_slice, the mutations are reflected in the original
array arr:

In [69]: arr_slice[1] = 12345

In [70]: arr
Out[70]: 
array([    0,     1,     2,     3,     4,    12, 12345,    12,     8,
           9])

The “bare” slice [:] will assign to all values in an array:

In [71]: arr_slice[:] = 64

In [72]: arr
Out[72]: array([ 0,  1,  2,  3,  4, 64, 64, 64,  8,  9])

If you are new to NumPy, you might be surprised by this, especially if you have used
other array programming languages that copy data more eagerly. As NumPy has been
designed to be able to work with very large arrays, you could imagine performance
and memory problems if NumPy insisted on always copying data.

If you want a copy of a slice of an ndarray instead of a
view, you will need to explicitly copy the array—for example,
arr[5:8].copy(). As you will see, pandas works this way, too.

4.1 The NumPy ndarray: A Multidimensional Array Object | 93



With higher dimensional arrays, you have many more options. In a two-dimensional
array, the elements at each index are no longer scalars but rather one-dimensional
arrays:

In [73]: arr2d = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])

In [74]: arr2d[2]
Out[74]: array([7, 8, 9])

Thus, individual elements can be accessed recursively. But that is a bit too much
work, so you can pass a comma-separated list of indices to select individual elements.
So these are equivalent:

In [75]: arr2d[0][2]
Out[75]: 3

In [76]: arr2d[0, 2]
Out[76]: 3

See Figure 4-1 for an illustration of indexing on a two-dimensional array. I find it
helpful to think of axis 0 as the “rows” of the array and axis 1 as the “columns.”

Figure 4-1. Indexing elements in a NumPy array

In multidimensional arrays, if you omit later indices, the returned object will be a
lower dimensional ndarray consisting of all the data along the higher dimensions. So
in the 2 × 2 × 3 array arr3d:

In [77]: arr3d = np.array([[[1, 2, 3], [4, 5, 6]], [[7, 8, 9], [10, 11, 12]]])

In [78]: arr3d
Out[78]: 
array([[[ 1,  2,  3],
        [ 4,  5,  6]],
       [[ 7,  8,  9],
        [10, 11, 12]]])

arr3d[0] is a 2 × 3 array:

94 | Chapter 4: NumPy Basics: Arrays and Vectorized Computation



In [79]: arr3d[0]
Out[79]: 
array([[1, 2, 3],
       [4, 5, 6]])

Both scalar values and arrays can be assigned to arr3d[0]:

In [80]: old_values = arr3d[0].copy()

In [81]: arr3d[0] = 42

In [82]: arr3d
Out[82]: 
array([[[42, 42, 42],
        [42, 42, 42]],
       [[ 7,  8,  9],
        [10, 11, 12]]])

In [83]: arr3d[0] = old_values

In [84]: arr3d
Out[84]: 
array([[[ 1,  2,  3],
        [ 4,  5,  6]],
       [[ 7,  8,  9],
        [10, 11, 12]]])

Similarly, arr3d[1, 0] gives you all of the values whose indices start with (1, 0),
forming a one-dimensional array:

In [85]: arr3d[1, 0]
Out[85]: array([7, 8, 9])

This expression is the same as though we had indexed in two steps:

In [86]: x = arr3d[1]

In [87]: x
Out[87]: 
array([[ 7,  8,  9],
       [10, 11, 12]])

In [88]: x[0]
Out[88]: array([7, 8, 9])

Note that in all of these cases where subsections of the array have been selected, the
returned arrays are views.

This multidimensional indexing syntax for NumPy arrays will not
work with regular Python objects, such as lists of lists.

4.1 The NumPy ndarray: A Multidimensional Array Object | 95



Indexing with slices
Like one-dimensional objects such as Python lists, ndarrays can be sliced with the
familiar syntax:

In [89]: arr
Out[89]: array([ 0,  1,  2,  3,  4, 64, 64, 64,  8,  9])

In [90]: arr[1:6]
Out[90]: array([ 1,  2,  3,  4, 64])

Consider the two-dimensional array from before, arr2d. Slicing this array is a bit
different:

In [91]: arr2d
Out[91]: 
array([[1, 2, 3],
       [4, 5, 6],
       [7, 8, 9]])

In [92]: arr2d[:2]
Out[92]: 
array([[1, 2, 3],
       [4, 5, 6]])

As you can see, it has sliced along axis 0, the first axis. A slice, therefore, selects a
range of elements along an axis. It can be helpful to read the expression arr2d[:2] as
“select the first two rows of arr2d.”

You can pass multiple slices just like you can pass multiple indexes:

In [93]: arr2d[:2, 1:]
Out[93]: 
array([[2, 3],
       [5, 6]])

When slicing like this, you always obtain array views of the same number of dimen‐
sions. By mixing integer indexes and slices, you get lower dimensional slices.

For example, I can select the second row but only the first two columns, like so:

In [94]: lower_dim_slice = arr2d[1, :2]

Here, while arr2d is two-dimensional, lower_dim_slice is one-dimensional, and its
shape is a tuple with one axis size:

In [95]: lower_dim_slice.shape
Out[95]: (2,)

Similarly, I can select the third column but only the first two rows, like so:

In [96]: arr2d[:2, 2]
Out[96]: array([3, 6])

96 | Chapter 4: NumPy Basics: Arrays and Vectorized Computation



See Figure 4-2 for an illustration. Note that a colon by itself means to take the entire
axis, so you can slice only higher dimensional axes by doing:

In [97]: arr2d[:, :1]
Out[97]: 
array([[1],
       [4],
       [7]])

Of course, assigning to a slice expression assigns to the whole selection:

In [98]: arr2d[:2, 1:] = 0

In [99]: arr2d
Out[99]: 
array([[1, 0, 0],
       [4, 0, 0],
       [7, 8, 9]])

Figure 4-2. Two-dimensional array slicing

Boolean Indexing
Let’s consider an example where we have some data in an array and an array of names
with duplicates:

4.1 The NumPy ndarray: A Multidimensional Array Object | 97



In [100]: names = np.array(["Bob", "Joe", "Will", "Bob", "Will", "Joe", "Joe"])

In [101]: data = np.array([[4, 7], [0, 2], [-5, 6], [0, 0], [1, 2],
   .....:                  [-12, -4], [3, 4]])

In [102]: names
Out[102]: array(['Bob', 'Joe', 'Will', 'Bob', 'Will', 'Joe', 'Joe'], dtype='<U4')

In [103]: data
Out[103]: 
array([[  4,   7],
       [  0,   2],
       [ -5,   6],
       [  0,   0],
       [  1,   2],
       [-12,  -4],
       [  3,   4]])

Suppose each name corresponds to a row in the data array and we wanted to
select all the rows with the corresponding name "Bob". Like arithmetic operations,
comparisons (such as ==) with arrays are also vectorized. Thus, comparing names
with the string "Bob" yields a Boolean array:

In [104]: names == "Bob"
Out[104]: array([ True, False, False,  True, False, False, False])

This Boolean array can be passed when indexing the array:

In [105]: data[names == "Bob"]
Out[105]: 
array([[4, 7],
       [0, 0]])

The Boolean array must be of the same length as the array axis it’s indexing. You can
even mix and match Boolean arrays with slices or integers (or sequences of integers;
more on this later).

In these examples, I select from the rows where names == "Bob" and index the
columns, too:

In [106]: data[names == "Bob", 1:]
Out[106]: 
array([[7],
       [0]])

In [107]: data[names == "Bob", 1]
Out[107]: array([7, 0])

To select everything but "Bob" you can either use != or negate the condition using ~:

In [108]: names != "Bob"
Out[108]: array([False,  True,  True, False,  True,  True,  True])

98 | Chapter 4: NumPy Basics: Arrays and Vectorized Computation



In [109]: ~(names == "Bob")
Out[109]: array([False,  True,  True, False,  True,  True,  True])

In [110]: data[~(names == "Bob")]
Out[110]: 
array([[  0,   2],
       [ -5,   6],
       [  1,   2],
       [-12,  -4],
       [  3,   4]])

The ~ operator can be useful when you want to invert a Boolean array referenced by a
variable:

In [111]: cond = names == "Bob"

In [112]: data[~cond]
Out[112]: 
array([[  0,   2],
       [ -5,   6],
       [  1,   2],
       [-12,  -4],
       [  3,   4]])

To select two of the three names to combine multiple Boolean conditions, use
Boolean arithmetic operators like & (and) and | (or):

In [113]: mask = (names == "Bob") | (names == "Will")

In [114]: mask
Out[114]: array([ True, False,  True,  True,  True, False, False])

In [115]: data[mask]
Out[115]: 
array([[ 4,  7],
       [-5,  6],
       [ 0,  0],
       [ 1,  2]])

Selecting data from an array by Boolean indexing and assigning the result to a new
variable always creates a copy of the data, even if the returned array is unchanged.

The Python keywords and and or do not work with Boolean arrays.
Use & (and) and | (or) instead.

Setting values with Boolean arrays works by substituting the value or values on the
righthand side into the locations where the Boolean array’s values are True. To set all
of the negative values in data to 0, we need only do:

4.1 The NumPy ndarray: A Multidimensional Array Object | 99



In [116]: data[data < 0] = 0

In [117]: data
Out[117]: 
array([[4, 7],
       [0, 2],
       [0, 6],
       [0, 0],
       [1, 2],
       [0, 0],
       [3, 4]])

You can also set whole rows or columns using a one-dimensional Boolean array:

In [118]: data[names != "Joe"] = 7

In [119]: data
Out[119]: 
array([[7, 7],
       [0, 2],
       [7, 7],
       [7, 7],
       [7, 7],
       [0, 0],
       [3, 4]])

As we will see later, these types of operations on two-dimensional data are convenient
to do with pandas.

Fancy Indexing
Fancy indexing is a term adopted by NumPy to describe indexing using integer arrays.
Suppose we had an 8 × 4 array:

In [120]: arr = np.zeros((8, 4))

In [121]: for i in range(8):
   .....:     arr[i] = i

In [122]: arr
Out[122]: 
array([[0., 0., 0., 0.],
       [1., 1., 1., 1.],
       [2., 2., 2., 2.],
       [3., 3., 3., 3.],
       [4., 4., 4., 4.],
       [5., 5., 5., 5.],
       [6., 6., 6., 6.],
       [7., 7., 7., 7.]])

To select a subset of the rows in a particular order, you can simply pass a list or
ndarray of integers specifying the desired order:

100 | Chapter 4: NumPy Basics: Arrays and Vectorized Computation



In [123]: arr[[4, 3, 0, 6]]
Out[123]: 
array([[4., 4., 4., 4.],
       [3., 3., 3., 3.],
       [0., 0., 0., 0.],
       [6., 6., 6., 6.]])

Hopefully this code did what you expected! Using negative indices selects rows from
the end:

In [124]: arr[[-3, -5, -7]]
Out[124]: 
array([[5., 5., 5., 5.],
       [3., 3., 3., 3.],
       [1., 1., 1., 1.]])

Passing multiple index arrays does something slightly different; it selects a one-
dimensional array of elements corresponding to each tuple of indices:

In [125]: arr = np.arange(32).reshape((8, 4))

In [126]: arr
Out[126]: 
array([[ 0,  1,  2,  3],
       [ 4,  5,  6,  7],
       [ 8,  9, 10, 11],
       [12, 13, 14, 15],
       [16, 17, 18, 19],
       [20, 21, 22, 23],
       [24, 25, 26, 27],
       [28, 29, 30, 31]])

In [127]: arr[[1, 5, 7, 2], [0, 3, 1, 2]]
Out[127]: array([ 4, 23, 29, 10])

To learn more about the reshape method, have a look at Appendix A.

Here the elements (1, 0), (5, 3), (7, 1), and (2, 2) were selected. The
result of fancy indexing with as many integer arrays as there are axes is always
one-dimensional.

The behavior of fancy indexing in this case is a bit different from what some users
might have expected (myself included), which is the rectangular region formed by
selecting a subset of the matrix’s rows and columns. Here is one way to get that:

In [128]: arr[[1, 5, 7, 2]][:, [0, 3, 1, 2]]
Out[128]: 
array([[ 4,  7,  5,  6],
       [20, 23, 21, 22],
       [28, 31, 29, 30],
       [ 8, 11,  9, 10]])

4.1 The NumPy ndarray: A Multidimensional Array Object | 101



Keep in mind that fancy indexing, unlike slicing, always copies the data into a new
array when assigning the result to a new variable. If you assign values with fancy
indexing, the indexed values will be modified:

In [129]: arr[[1, 5, 7, 2], [0, 3, 1, 2]]
Out[129]: array([ 4, 23, 29, 10])

In [130]: arr[[1, 5, 7, 2], [0, 3, 1, 2]] = 0

In [131]: arr
Out[131]: 
array([[ 0,  1,  2,  3],
       [ 0,  5,  6,  7],
       [ 8,  9,  0, 11],
       [12, 13, 14, 15],
       [16, 17, 18, 19],
       [20, 21, 22,  0],
       [24, 25, 26, 27],
       [28,  0, 30, 31]])

Transposing Arrays and Swapping Axes
Transposing is a special form of reshaping that similarly returns a view on the
underlying data without copying anything. Arrays have the transpose method and
the special T attribute:

In [132]: arr = np.arange(15).reshape((3, 5))

In [133]: arr
Out[133]: 
array([[ 0,  1,  2,  3,  4],
       [ 5,  6,  7,  8,  9],
       [10, 11, 12, 13, 14]])

In [134]: arr.T
Out[134]: 
array([[ 0,  5, 10],
       [ 1,  6, 11],
       [ 2,  7, 12],
       [ 3,  8, 13],
       [ 4,  9, 14]])

When doing matrix computations, you may do this very often—for example, when
computing the inner matrix product using numpy.dot:

In [135]: arr = np.array([[0, 1, 0], [1, 2, -2], [6, 3, 2], [-1, 0, -1], [1, 0, 1
]])

In [136]: arr
Out[136]: 
array([[ 0,  1,  0],
       [ 1,  2, -2],

102 | Chapter 4: NumPy Basics: Arrays and Vectorized Computation



       [ 6,  3,  2],
       [-1,  0, -1],
       [ 1,  0,  1]])

In [137]: np.dot(arr.T, arr)
Out[137]: 
array([[39, 20, 12],
       [20, 14,  2],
       [12,  2, 10]])

The @ infix operator is another way to do matrix multiplication:

In [138]: arr.T @ arr
Out[138]: 
array([[39, 20, 12],
       [20, 14,  2],
       [12,  2, 10]])

Simple transposing with .T is a special case of swapping axes. ndarray has the method
swapaxes, which takes a pair of axis numbers and switches the indicated axes to
rearrange the data:

In [139]: arr
Out[139]: 
array([[ 0,  1,  0],
       [ 1,  2, -2],
       [ 6,  3,  2],
       [-1,  0, -1],
       [ 1,  0,  1]])

In [140]: arr.swapaxes(0, 1)
Out[140]: 
array([[ 0,  1,  6, -1,  1],
       [ 1,  2,  3,  0,  0],
       [ 0, -2,  2, -1,  1]])

swapaxes similarly returns a view on the data without making a copy.

4.2 Pseudorandom Number Generation
The numpy.random module supplements the built-in Python random module with
functions for efficiently generating whole arrays of sample values from many kinds of
probability distributions. For example, you can get a 4 × 4 array of samples from the
standard normal distribution using numpy.random.standard_normal:

In [141]: samples = np.random.standard_normal(size=(4, 4))

In [142]: samples
Out[142]: 
array([[-0.2047,  0.4789, -0.5194, -0.5557],
       [ 1.9658,  1.3934,  0.0929,  0.2817],

4.2 Pseudorandom Number Generation | 103



       [ 0.769 ,  1.2464,  1.0072, -1.2962],
       [ 0.275 ,  0.2289,  1.3529,  0.8864]])

Python’s built-in random module, by contrast, samples only one value at a time. As
you can see from this benchmark, numpy.random is well over an order of magnitude
faster for generating very large samples:

In [143]: from random import normalvariate

In [144]: N = 1_000_000

In [145]: %timeit samples = [normalvariate(0, 1) for _ in range(N)]
1.04 s +- 11.4 ms per loop (mean +- std. dev. of 7 runs, 1 loop each)

In [146]: %timeit np.random.standard_normal(N)
21.9 ms +- 155 us per loop (mean +- std. dev. of 7 runs, 10 loops each)

These random numbers are not truly random (rather, pseudorandom) but instead
are generated by a configurable random number generator that determines determin‐
istically what values are created. Functions like numpy.random.standard_normal use
the numpy.random module’s default random number generator, but your code can be
configured to use an explicit generator:

In [147]: rng = np.random.default_rng(seed=12345)

In [148]: data = rng.standard_normal((2, 3))

The seed argument is what determines the initial state of the generator, and the state
changes each time the rng object is used to generate data. The generator object rng is
also isolated from other code which might use the numpy.random module:

In [149]: type(rng)
Out[149]: numpy.random._generator.Generator

See Table 4-3 for a partial list of methods available on random generator objects like
rng. I will use the rng object I created above to generate random data throughout the
rest of the chapter.

Table 4-3. NumPy random number generator methods

Method Description
permutation Return a random permutation of a sequence, or return a permuted range
shuffle Randomly permute a sequence in place
uniform Draw samples from a uniform distribution
integers Draw random integers from a given low-to-high range
standard_normal Draw samples from a normal distribution with mean 0 and standard deviation 1
binomial Draw samples from a binomial distribution
normal Draw samples from a normal (Gaussian) distribution
beta Draw samples from a beta distribution

104 | Chapter 4: NumPy Basics: Arrays and Vectorized Computation



Method Description
chisquare Draw samples from a chi-square distribution
gamma Draw samples from a gamma distribution
uniform Draw samples from a uniform [0, 1) distribution

4.3 Universal Functions: Fast Element-Wise Array
Functions
A universal function, or ufunc, is a function that performs element-wise operations
on data in ndarrays. You can think of them as fast vectorized wrappers for simple
functions that take one or more scalar values and produce one or more scalar results.

Many ufuncs are simple element-wise transformations, like numpy.sqrt or
numpy.exp:

In [150]: arr = np.arange(10)

In [151]: arr
Out[151]: array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])

In [152]: np.sqrt(arr)
Out[152]: 
array([0.    , 1.    , 1.4142, 1.7321, 2.    , 2.2361, 2.4495, 2.6458,
       2.8284, 3.    ])

In [153]: np.exp(arr)
Out[153]: 
array([   1.    ,    2.7183,    7.3891,   20.0855,   54.5982,  148.4132,
        403.4288, 1096.6332, 2980.958 , 8103.0839])

These are referred to as unary ufuncs. Others, such as numpy.add or numpy.maximum,
take two arrays (thus, binary ufuncs) and return a single array as the result:

In [154]: x = rng.standard_normal(8)

In [155]: y = rng.standard_normal(8)

In [156]: x
Out[156]: 
array([-1.3678,  0.6489,  0.3611, -1.9529,  2.3474,  0.9685, -0.7594,
        0.9022])

In [157]: y
Out[157]: 
array([-0.467 , -0.0607,  0.7888, -1.2567,  0.5759,  1.399 ,  1.3223,
       -0.2997])

In [158]: np.maximum(x, y)
Out[158]: 

4.3 Universal Functions: Fast Element-Wise Array Functions | 105



array([-0.467 ,  0.6489,  0.7888, -1.2567,  2.3474,  1.399 ,  1.3223,
        0.9022])

In this example, numpy.maximum computed the element-wise maximum of the ele‐
ments in x and y.

While not common, a ufunc can return multiple arrays. numpy.modf is one example:
a vectorized version of the built-in Python math.modf, it returns the fractional and
integral parts of a floating-point array:

In [159]: arr = rng.standard_normal(7) * 5

In [160]: arr
Out[160]: array([ 4.5146, -8.1079, -0.7909,  2.2474, -6.718 , -0.4084,  8.6237])

In [161]: remainder, whole_part = np.modf(arr)

In [162]: remainder
Out[162]: array([ 0.5146, -0.1079, -0.7909,  0.2474, -0.718 , -0.4084,  0.6237])

In [163]: whole_part
Out[163]: array([ 4., -8., -0.,  2., -6., -0.,  8.])

Ufuncs accept an optional out argument that allows them to assign their results into
an existing array rather than create a new one:

In [164]: arr
Out[164]: array([ 4.5146, -8.1079, -0.7909,  2.2474, -6.718 , -0.4084,  8.6237])

In [165]: out = np.zeros_like(arr)

In [166]: np.add(arr, 1)
Out[166]: array([ 5.5146, -7.1079,  0.2091,  3.2474, -5.718 ,  0.5916,  9.6237])

In [167]: np.add(arr, 1, out=out)
Out[167]: array([ 5.5146, -7.1079,  0.2091,  3.2474, -5.718 ,  0.5916,  9.6237])

In [168]: out
Out[168]: array([ 5.5146, -7.1079,  0.2091,  3.2474, -5.718 ,  0.5916,  9.6237])

See Tables 4-4 and 4-5 for a listing of some of NumPy’s ufuncs. New ufuncs continue
to be added to NumPy, so consulting the online NumPy documentation is the best
way to get a comprehensive listing and stay up to date.

106 | Chapter 4: NumPy Basics: Arrays and Vectorized Computation



Table 4-4. Some unary universal functions

Function Description
abs, fabs Compute the absolute value element-wise for integer, floating-point, or complex values
sqrt Compute the square root of each element (equivalent to arr ** 0.5)
square Compute the square of each element (equivalent to arr ** 2)
exp Compute the exponent ex of each element
log, log10, 

log2, log1p

Natural logarithm (base e), log base 10, log base 2, and log(1 + x), respectively

sign Compute the sign of each element: 1 (positive), 0 (zero), or –1 (negative)
ceil Compute the ceiling of each element (i.e., the smallest integer greater than or equal to that

number)
floor Compute the floor of each element (i.e., the largest integer less than or equal to each element)
rint Round elements to the nearest integer, preserving the dtype
modf Return fractional and integral parts of array as separate arrays
isnan Return Boolean array indicating whether each value is NaN (Not a Number)
isfinite, isinf Return Boolean array indicating whether each element is finite (non-inf, non-NaN) or infinite,

respectively
cos, cosh, sin, 

sinh, tan, tanh

Regular and hyperbolic trigonometric functions

arccos, arccosh, 

arcsin, arcsinh, 

arctan, arctanh

Inverse trigonometric functions

logical_not Compute truth value of not x element-wise (equivalent to ~arr)

Table 4-5. Some binary universal functions

Function Description
add Add corresponding elements in arrays
subtract Subtract elements in second array from first array
multiply Multiply array elements
divide, floor_divide Divide or floor divide (truncating the remainder)
power Raise elements in first array to powers indicated in second array
maximum, fmax Element-wise maximum; fmax ignores NaN
minimum, fmin Element-wise minimum; fmin ignores NaN
mod Element-wise modulus (remainder of division)
copysign Copy sign of values in second argument to values in first argument
greater, 

greater_equal, less, 

less_equal, equal, 

not_equal

Perform element-wise comparison, yielding Boolean array (equivalent to infix operators
>, >=, <, <=, ==, !=)

logical_and Compute element-wise truth value of AND (&) logical operation
logical_or Compute element-wise truth value of OR (|) logical operation
logical_xor Compute element-wise truth value of XOR (^) logical operation

4.3 Universal Functions: Fast Element-Wise Array Functions | 107



4.4 Array-Oriented Programming with Arrays
Using NumPy arrays enables you to express many kinds of data processing tasks as
concise array expressions that might otherwise require writing loops. This practice
of replacing explicit loops with array expressions is referred to by some people
as vectorization. In general, vectorized array operations will usually be significantly
faster than their pure Python equivalents, with the biggest impact in any kind of
numerical computations. Later, in Appendix A, I explain broadcasting, a powerful
method for vectorizing computations.

As a simple example, suppose we wished to evaluate the function sqrt(x^2 +

y^2) across a regular grid of values. The numpy.meshgrid function takes two one-
dimensional arrays and produces two two-dimensional matrices corresponding to all
pairs of (x, y) in the two arrays:

In [169]: points = np.arange(-5, 5, 0.01) # 100 equally spaced points

In [170]: xs, ys = np.meshgrid(points, points)

In [171]: ys
Out[171]: 
array([[-5.  , -5.  , -5.  , ..., -5.  , -5.  , -5.  ],
       [-4.99, -4.99, -4.99, ..., -4.99, -4.99, -4.99],
       [-4.98, -4.98, -4.98, ..., -4.98, -4.98, -4.98],
       ...,
       [ 4.97,  4.97,  4.97, ...,  4.97,  4.97,  4.97],
       [ 4.98,  4.98,  4.98, ...,  4.98,  4.98,  4.98],
       [ 4.99,  4.99,  4.99, ...,  4.99,  4.99,  4.99]])

Now, evaluating the function is a matter of writing the same expression you would
write with two points:

In [172]: z = np.sqrt(xs ** 2 + ys ** 2)

In [173]: z
Out[173]: 
array([[7.0711, 7.064 , 7.0569, ..., 7.0499, 7.0569, 7.064 ],
       [7.064 , 7.0569, 7.0499, ..., 7.0428, 7.0499, 7.0569],
       [7.0569, 7.0499, 7.0428, ..., 7.0357, 7.0428, 7.0499],
       ...,
       [7.0499, 7.0428, 7.0357, ..., 7.0286, 7.0357, 7.0428],
       [7.0569, 7.0499, 7.0428, ..., 7.0357, 7.0428, 7.0499],
       [7.064 , 7.0569, 7.0499, ..., 7.0428, 7.0499, 7.0569]])

As a preview of Chapter 9, I use matplotlib to create visualizations of this two-
dimensional array:

In [174]: import matplotlib.pyplot as plt

In [175]: plt.imshow(z, cmap=plt.cm.gray, extent=[-5, 5, -5, 5])
Out[175]: <matplotlib.image.AxesImage at 0x7f624ae73b20>

108 | Chapter 4: NumPy Basics: Arrays and Vectorized Computation



In [176]: plt.colorbar()
Out[176]: <matplotlib.colorbar.Colorbar at 0x7f6253e43ee0>

In [177]: plt.title("Image plot of $\sqrt{x^2 + y^2}$ for a grid of values")
Out[177]: Text(0.5, 1.0, 'Image plot of $\\sqrt{x^2 + y^2}$ for a grid of values'
)

In Figure 4-3, I used the matplotlib function imshow to create an image plot from a
two-dimensional array of function values.

Figure 4-3. Plot of function evaluated on a grid

If you’re working in IPython, you can close all open plot windows by executing
plt.close("all"):

In [179]: plt.close("all")

4.4 Array-Oriented Programming with Arrays | 109



The term vectorization is used to describe some other computer
science concepts, but in this book I use it to describe operations on
whole arrays of data at once rather than going value by value using
a Python for loop.

Expressing Conditional Logic as Array Operations
The numpy.where function is a vectorized version of the ternary expression x if
condition else y. Suppose we had a Boolean array and two arrays of values:

In [180]: xarr = np.array([1.1, 1.2, 1.3, 1.4, 1.5])

In [181]: yarr = np.array([2.1, 2.2, 2.3, 2.4, 2.5])

In [182]: cond = np.array([True, False, True, True, False])

Suppose we wanted to take a value from xarr whenever the corresponding value in
cond is True, and otherwise take the value from yarr. A list comprehension doing
this might look like:

In [183]: result = [(x if c else y)
   .....:           for x, y, c in zip(xarr, yarr, cond)]

In [184]: result
Out[184]: [1.1, 2.2, 1.3, 1.4, 2.5]

This has multiple problems. First, it will not be very fast for large arrays (because all
the work is being done in interpreted Python code). Second, it will not work with
multidimensional arrays. With numpy.where you can do this with a single function
call:

In [185]: result = np.where(cond, xarr, yarr)

In [186]: result
Out[186]: array([1.1, 2.2, 1.3, 1.4, 2.5])

The second and third arguments to numpy.where don’t need to be arrays; one or
both of them can be scalars. A typical use of where in data analysis is to produce a
new array of values based on another array. Suppose you had a matrix of randomly
generated data and you wanted to replace all positive values with 2 and all negative
values with –2. This is possible to do with numpy.where:

In [187]: arr = rng.standard_normal((4, 4))

In [188]: arr
Out[188]: 
array([[ 2.6182,  0.7774,  0.8286, -0.959 ],
       [-1.2094, -1.4123,  0.5415,  0.7519],
       [-0.6588, -1.2287,  0.2576,  0.3129],
       [-0.1308,  1.27  , -0.093 , -0.0662]])

110 | Chapter 4: NumPy Basics: Arrays and Vectorized Computation



In [189]: arr > 0
Out[189]: 
array([[ True,  True,  True, False],
       [False, False,  True,  True],
       [False, False,  True,  True],
       [False,  True, False, False]])

In [190]: np.where(arr > 0, 2, -2)
Out[190]: 
array([[ 2,  2,  2, -2],
       [-2, -2,  2,  2],
       [-2, -2,  2,  2],
       [-2,  2, -2, -2]])

You can combine scalars and arrays when using numpy.where. For example, I can
replace all positive values in arr with the constant 2, like so:

In [191]: np.where(arr > 0, 2, arr) # set only positive values to 2
Out[191]: 
array([[ 2.    ,  2.    ,  2.    , -0.959 ],
       [-1.2094, -1.4123,  2.    ,  2.    ],
       [-0.6588, -1.2287,  2.    ,  2.    ],
       [-0.1308,  2.    , -0.093 , -0.0662]])

Mathematical and Statistical Methods
A set of mathematical functions that compute statistics about an entire array or
about the data along an axis are accessible as methods of the array class. You can
use aggregations (sometimes called reductions) like sum, mean, and std (standard
deviation) either by calling the array instance method or using the top-level NumPy
function. When you use the NumPy function, like numpy.sum, you have to pass the
array you want to aggregate as the first argument.

Here I generate some normally distributed random data and compute some aggregate
statistics:

In [192]: arr = rng.standard_normal((5, 4))

In [193]: arr
Out[193]: 
array([[-1.1082,  0.136 ,  1.3471,  0.0611],
       [ 0.0709,  0.4337,  0.2775,  0.5303],
       [ 0.5367,  0.6184, -0.795 ,  0.3   ],
       [-1.6027,  0.2668, -1.2616, -0.0713],
       [ 0.474 , -0.4149,  0.0977, -1.6404]])

In [194]: arr.mean()
Out[194]: -0.08719744457434529

In [195]: np.mean(arr)

4.4 Array-Oriented Programming with Arrays | 111



Out[195]: -0.08719744457434529

In [196]: arr.sum()
Out[196]: -1.743948891486906

Functions like mean and sum take an optional axis argument that computes the
statistic over the given axis, resulting in an array with one less dimension:

In [197]: arr.mean(axis=1)
Out[197]: array([ 0.109 ,  0.3281,  0.165 , -0.6672, -0.3709])

In [198]: arr.sum(axis=0)
Out[198]: array([-1.6292,  1.0399, -0.3344, -0.8203])

Here, arr.mean(axis=1) means “compute mean across the columns,” where
arr.sum(axis=0) means “compute sum down the rows.”

Other methods like cumsum and cumprod do not aggregate, instead producing an array
of the intermediate results:

In [199]: arr = np.array([0, 1, 2, 3, 4, 5, 6, 7])

In [200]: arr.cumsum()
Out[200]: array([ 0,  1,  3,  6, 10, 15, 21, 28])

In multidimensional arrays, accumulation functions like cumsum return an array of
the same size but with the partial aggregates computed along the indicated axis
according to each lower dimensional slice:

In [201]: arr = np.array([[0, 1, 2], [3, 4, 5], [6, 7, 8]])

In [202]: arr
Out[202]: 
array([[0, 1, 2],
       [3, 4, 5],
       [6, 7, 8]])

The expression arr.cumsum(axis=0) computes the cumulative sum along the rows,
while arr.cumsum(axis=1) computes the sums along the columns:

In [203]: arr.cumsum(axis=0)
Out[203]: 
array([[ 0,  1,  2],
       [ 3,  5,  7],
       [ 9, 12, 15]])

In [204]: arr.cumsum(axis=1)
Out[204]: 
array([[ 0,  1,  3],
       [ 3,  7, 12],
       [ 6, 13, 21]])

112 | Chapter 4: NumPy Basics: Arrays and Vectorized Computation



See Table 4-6 for a full listing. We’ll see many examples of these methods in action in
later chapters.

Table 4-6. Basic array statistical methods

Method Description
sum Sum of all the elements in the array or along an axis; zero-length arrays have sum 0
mean Arithmetic mean; invalid (returns NaN) on zero-length arrays
std, var Standard deviation and variance, respectively
min, max Minimum and maximum
argmin, argmax Indices of minimum and maximum elements, respectively
cumsum Cumulative sum of elements starting from 0
cumprod Cumulative product of elements starting from 1

Methods for Boolean Arrays
Boolean values are coerced to 1 (True) and 0 (False) in the preceding methods. Thus,
sum is often used as a means of counting True values in a Boolean array:

In [205]: arr = rng.standard_normal(100)

In [206]: (arr > 0).sum() # Number of positive values
Out[206]: 48

In [207]: (arr <= 0).sum() # Number of non-positive values
Out[207]: 52

The parentheses here in the expression (arr > 0).sum() are necessary to be able to
call sum() on the temporary result of arr > 0.

Two additional methods, any and all, are useful especially for Boolean arrays. any
tests whether one or more values in an array is True, while all checks if every value is
True:

In [208]: bools = np.array([False, False, True, False])

In [209]: bools.any()
Out[209]: True

In [210]: bools.all()
Out[210]: False

These methods also work with non-Boolean arrays, where nonzero elements are
treated as True.

4.4 Array-Oriented Programming with Arrays | 113



Sorting
Like Python’s built-in list type, NumPy arrays can be sorted in place with the sort
method:

In [211]: arr = rng.standard_normal(6)

In [212]: arr
Out[212]: array([ 0.0773, -0.6839, -0.7208,  1.1206, -0.0548, -0.0824])

In [213]: arr.sort()

In [214]: arr
Out[214]: array([-0.7208, -0.6839, -0.0824, -0.0548,  0.0773,  1.1206])

You can sort each one-dimensional section of values in a multidimensional array in
place along an axis by passing the axis number to sort. In this example data:

In [215]: arr = rng.standard_normal((5, 3))

In [216]: arr
Out[216]: 
array([[ 0.936 ,  1.2385,  1.2728],
       [ 0.4059, -0.0503,  0.2893],
       [ 0.1793,  1.3975,  0.292 ],
       [ 0.6384, -0.0279,  1.3711],
       [-2.0528,  0.3805,  0.7554]])

arr.sort(axis=0) sorts the values within each column, while arr.sort(axis=1)
sorts across each row:

In [217]: arr.sort(axis=0)

In [218]: arr
Out[218]: 
array([[-2.0528, -0.0503,  0.2893],
       [ 0.1793, -0.0279,  0.292 ],
       [ 0.4059,  0.3805,  0.7554],
       [ 0.6384,  1.2385,  1.2728],
       [ 0.936 ,  1.3975,  1.3711]])

In [219]: arr.sort(axis=1)

In [220]: arr
Out[220]: 
array([[-2.0528, -0.0503,  0.2893],
       [-0.0279,  0.1793,  0.292 ],
       [ 0.3805,  0.4059,  0.7554],
       [ 0.6384,  1.2385,  1.2728],
       [ 0.936 ,  1.3711,  1.3975]])

The top-level method numpy.sort returns a sorted copy of an array (like the Python
built-in function sorted) instead of modifying the array in place. For example:

114 | Chapter 4: NumPy Basics: Arrays and Vectorized Computation



In [221]: arr2 = np.array([5, -10, 7, 1, 0, -3])

In [222]: sorted_arr2 = np.sort(arr2)

In [223]: sorted_arr2
Out[223]: array([-10,  -3,   0,   1,   5,   7])

For more details on using NumPy’s sorting methods, and more advanced techniques
like indirect sorts, see Appendix A. Several other kinds of data manipulations related
to sorting (e.g., sorting a table of data by one or more columns) can also be found in
pandas.

Unique and Other Set Logic
NumPy has some basic set operations for one-dimensional ndarrays. A commonly
used one is numpy.unique, which returns the sorted unique values in an array:

In [224]: names = np.array(["Bob", "Will", "Joe", "Bob", "Will", "Joe", "Joe"])

In [225]: np.unique(names)
Out[225]: array(['Bob', 'Joe', 'Will'], dtype='<U4')

In [226]: ints = np.array([3, 3, 3, 2, 2, 1, 1, 4, 4])

In [227]: np.unique(ints)
Out[227]: array([1, 2, 3, 4])

Contrast numpy.unique with the pure Python alternative:

In [228]: sorted(set(names))
Out[228]: ['Bob', 'Joe', 'Will']

In many cases, the NumPy version is faster and returns a NumPy array rather than a
Python list.

Another function, numpy.in1d, tests membership of the values in one array in
another, returning a Boolean array:

In [229]: values = np.array([6, 0, 0, 3, 2, 5, 6])

In [230]: np.in1d(values, [2, 3, 6])
Out[230]: array([ True, False, False,  True,  True, False,  True])

See Table 4-7 for a listing of array set operations in NumPy.

Table 4-7. Array set operations

Method Description
unique(x) Compute the sorted, unique elements in x
intersect1d(x, y) Compute the sorted, common elements in x and y
union1d(x, y) Compute the sorted union of elements

4.4 Array-Oriented Programming with Arrays | 115



Method Description
in1d(x, y) Compute a Boolean array indicating whether each element of x is contained in y
setdiff1d(x, y) Set difference, elements in x that are not in y
setxor1d(x, y) Set symmetric differences; elements that are in either of the arrays, but not both

4.5 File Input and Output with Arrays
NumPy is able to save and load data to and from disk in some text or binary formats.
In this section I discuss only NumPy’s built-in binary format, since most users will
prefer pandas and other tools for loading text or tabular data (see Chapter 6 for much
more).

numpy.save and numpy.load are the two workhorse functions for efficiently saving
and loading array data on disk. Arrays are saved by default in an uncompressed raw
binary format with file extension .npy:

In [231]: arr = np.arange(10)

In [232]: np.save("some_array", arr)

If the file path does not already end in .npy, the extension will be appended. The array
on disk can then be loaded with numpy.load:

In [233]: np.load("some_array.npy")
Out[233]: array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])

You can save multiple arrays in an uncompressed archive using numpy.savez and
passing the arrays as keyword arguments:

In [234]: np.savez("array_archive.npz", a=arr, b=arr)

When loading an .npz file, you get back a dictionary-like object that loads the
individual arrays lazily:

In [235]: arch = np.load("array_archive.npz")

In [236]: arch["b"]
Out[236]: array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])

If your data compresses well, you may wish to use numpy.savez_compressed instead:

In [237]: np.savez_compressed("arrays_compressed.npz", a=arr, b=arr)

4.6 Linear Algebra
Linear algebra operations, like matrix multiplication, decompositions, determinants,
and other square matrix math, are an important part of many array libraries. Multi‐
plying two two-dimensional arrays with * is an element-wise product, while matrix

116 | Chapter 4: NumPy Basics: Arrays and Vectorized Computation



multiplications require using a function. Thus, there is a function dot, both an array
method and a function in the numpy namespace, for matrix multiplication:

In [241]: x = np.array([[1., 2., 3.], [4., 5., 6.]])

In [242]: y = np.array([[6., 23.], [-1, 7], [8, 9]])

In [243]: x
Out[243]: 
array([[1., 2., 3.],
       [4., 5., 6.]])

In [244]: y
Out[244]: 
array([[ 6., 23.],
       [-1.,  7.],
       [ 8.,  9.]])

In [245]: x.dot(y)
Out[245]: 
array([[ 28.,  64.],
       [ 67., 181.]])

x.dot(y) is equivalent to np.dot(x, y):

In [246]: np.dot(x, y)
Out[246]: 
array([[ 28.,  64.],
       [ 67., 181.]])

A matrix product between a two-dimensional array and a suitably sized one-
dimensional array results in a one-dimensional array:

In [247]: x @ np.ones(3)
Out[247]: array([ 6., 15.])

numpy.linalg has a standard set of matrix decompositions and things like inverse
and determinant:

In [248]: from numpy.linalg import inv, qr

In [249]: X = rng.standard_normal((5, 5))

In [250]: mat = X.T @ X

In [251]: inv(mat)
Out[251]: 
array([[  3.4993,   2.8444,   3.5956, -16.5538,   4.4733],
       [  2.8444,   2.5667,   2.9002, -13.5774,   3.7678],
       [  3.5956,   2.9002,   4.4823, -18.3453,   4.7066],
       [-16.5538, -13.5774, -18.3453,  84.0102, -22.0484],
       [  4.4733,   3.7678,   4.7066, -22.0484,   6.0525]])

4.6 Linear Algebra | 117



In [252]: mat @ inv(mat)
Out[252]: 
array([[ 1.,  0., -0.,  0., -0.],
       [ 0.,  1.,  0.,  0., -0.],
       [ 0., -0.,  1., -0., -0.],
       [ 0., -0.,  0.,  1., -0.],
       [ 0., -0.,  0., -0.,  1.]])

The expression X.T.dot(X) computes the dot product of X with its transpose X.T.

See Table 4-8 for a list of some of the most commonly used linear algebra functions.

Table 4-8. Commonly used numpy.linalg functions

Function Description
diag Return the diagonal (or off-diagonal) elements of a square matrix as a 1D array, or convert a 1D array into a

square matrix with zeros on the off-diagonal
dot Matrix multiplication
trace Compute the sum of the diagonal elements
det Compute the matrix determinant
eig Compute the eigenvalues and eigenvectors of a square matrix
inv Compute the inverse of a square matrix
pinv Compute the Moore-Penrose pseudoinverse of a matrix
qr Compute the QR decomposition
svd Compute the singular value decomposition (SVD)
solve Solve the linear system Ax = b for x, where A is a square matrix
lstsq Compute the least-squares solution to Ax = b

4.7 Example: Random Walks
The simulation of random walks provides an illustrative application of utilizing array
operations. Let’s first consider a simple random walk starting at 0 with steps of 1 and
–1 occurring with equal probability.

Here is a pure Python way to implement a single random walk with 1,000 steps using
the built-in random module:

#! blockstart
import random
position = 0
walk = [position]
nsteps = 1000
for _ in range(nsteps):
    step = 1 if random.randint(0, 1) else -1
    position += step
    walk.append(position)
#! blockend

118 | Chapter 4: NumPy Basics: Arrays and Vectorized Computation

https://en.wikipedia.org/wiki/Random_walk


See Figure 4-4 for an example plot of the first 100 values on one of these random
walks:

In [255]: plt.plot(walk[:100])

Figure 4-4. A simple random walk

You might make the observation that walk is the cumulative sum of the random steps
and could be evaluated as an array expression. Thus, I use the numpy.random module
to draw 1,000 coin flips at once, set these to 1 and –1, and compute the cumulative
sum:

In [256]: nsteps = 1000

In [257]: rng = np.random.default_rng(seed=12345)  # fresh random generator

In [258]: draws = rng.integers(0, 2, size=nsteps)

In [259]: steps = np.where(draws == 0, 1, -1)

In [260]: walk = steps.cumsum()

From this we can begin to extract statistics like the minimum and maximum value
along the walk’s trajectory:

In [261]: walk.min()
Out[261]: -8

In [262]: walk.max()
Out[262]: 50

4.7 Example: Random Walks | 119



A more complicated statistic is the first crossing time, the step at which the random
walk reaches a particular value. Here we might want to know how long it took the
random walk to get at least 10 steps away from the origin 0 in either direction.
np.abs(walk) >= 10 gives us a Boolean array indicating where the walk has reached
or exceeded 10, but we want the index of the first 10 or –10. Turns out, we can
compute this using argmax, which returns the first index of the maximum value in
the Boolean array (True is the maximum value):

In [263]: (np.abs(walk) >= 10).argmax()
Out[263]: 155

Note that using argmax here is not always efficient because it always makes a full
scan of the array. In this special case, once a True is observed we know it to be the
maximum value.

Simulating Many Random Walks at Once
If your goal was to simulate many random walks, say five thousand of them, you can
generate all of the random walks with minor modifications to the preceding code. If
passed a 2-tuple, the numpy.random functions will generate a two-dimensional array
of draws, and we can compute the cumulative sum for each row to compute all five
thousand random walks in one shot:

In [264]: nwalks = 5000

In [265]: nsteps = 1000

In [266]: draws = rng.integers(0, 2, size=(nwalks, nsteps)) # 0 or 1

In [267]: steps = np.where(draws > 0, 1, -1)

In [268]: walks = steps.cumsum(axis=1)

In [269]: walks
Out[269]: 
array([[  1,   2,   3, ...,  22,  23,  22],
       [  1,   0,  -1, ..., -50, -49, -48],
       [  1,   2,   3, ...,  50,  49,  48],
       ...,
       [ -1,  -2,  -1, ..., -10,  -9, -10],
       [ -1,  -2,  -3, ...,   8,   9,   8],
       [ -1,   0,   1, ...,  -4,  -3,  -2]])

Now, we can compute the maximum and minimum values obtained over all of the
walks:

In [270]: walks.max()
Out[270]: 114

120 | Chapter 4: NumPy Basics: Arrays and Vectorized Computation



In [271]: walks.min()
Out[271]: -120

Out of these walks, let’s compute the minimum crossing time to 30 or –30. This is
slightly tricky because not all 5,000 of them reach 30. We can check this using the any
method:

In [272]: hits30 = (np.abs(walks) >= 30).any(axis=1)

In [273]: hits30
Out[273]: array([False,  True,  True, ...,  True, False,  True])

In [274]: hits30.sum() # Number that hit 30 or -30
Out[274]: 3395

We can use this Boolean array to select the rows of walks that actually cross the
absolute 30 level, and call argmax across axis 1 to get the crossing times:

In [275]: crossing_times = (np.abs(walks[hits30]) >= 30).argmax(axis=1)

In [276]: crossing_times
Out[276]: array([201, 491, 283, ..., 219, 259, 541])

Lastly, we compute the average minimum crossing time:

In [277]: crossing_times.mean()
Out[277]: 500.5699558173785

Feel free to experiment with other distributions for the steps other than equal-
sized coin flips. You need only use a different random generator method, like stan
dard_normal to generate normally distributed steps with some mean and standard
deviation:

In [278]: draws = 0.25 * rng.standard_normal((nwalks, nsteps))

Keep in mind that this vectorized approach requires creating an
array with nwalks * nsteps elements, which may use a large
amount of memory for large simulations. If memory is more con‐
strained, then a different approach will be required.

4.8 Conclusion
While much of the rest of the book will focus on building data wrangling skills
with pandas, we will continue to work in a similar array-based style. In Appendix A,
we will dig deeper into NumPy features to help you further develop your array
computing skills.

4.8 Conclusion | 121




	Chapter 3. Built-In Data Structures, Functions, and Files
	3.1 Data Structures and Sequences
	Tuple
	List
	Dictionary
	Set
	Built-In Sequence Functions
	List, Set, and Dictionary Comprehensions

	3.2 Functions
	Namespaces, Scope, and Local Functions
	Returning Multiple Values
	Functions Are Objects
	Anonymous (Lambda) Functions
	Generators
	Errors and Exception Handling

	3.3 Files and the Operating System
	Bytes and Unicode with Files

	3.4 Conclusion

	Chapter 4. NumPy Basics: Arrays and Vectorized
  Computation
	4.1 The NumPy ndarray: A Multidimensional Array Object
	Creating ndarrays
	Data Types for ndarrays
	Arithmetic with NumPy Arrays
	Basic Indexing and Slicing
	Boolean Indexing
	Fancy Indexing
	Transposing Arrays and Swapping Axes

	4.2 Pseudorandom Number Generation
	4.3 Universal Functions: Fast Element-Wise Array Functions
	4.4 Array-Oriented Programming with Arrays
	Expressing Conditional Logic as Array Operations
	Mathematical and Statistical Methods
	Methods for Boolean Arrays
	Sorting
	Unique and Other Set Logic

	4.5 File Input and Output with Arrays
	4.6 Linear Algebra
	4.7 Example: Random Walks
	Simulating Many Random Walks at Once

	4.8 Conclusion


