
5
I F S T A T E M E N T S

Programming often involves examining
a set of conditions and deciding which

action to take based on those conditions.
Python’s if statement allows you to examine

the current state of a program and respond appro-
priately to that state.

In this chapter, you’ll learn to write conditional tests, which allow you
to check any condition of interest. You’ll learn to write simple if statements,
and you’ll learn how to create a more complex series of if statements to
identify when the exact conditions you want are present. You’ll then apply
this concept to lists, so you’ll be able to write a for loop that handles most
items in a list one way but handles certain items with specific values in a dif-
ferent way.

72 Chapter 5

A Simple Example
The following example shows how if tests let you respond to special situa-
tions correctly. Imagine you have a list of cars and you want to print out the
name of each car. Car names are proper names, so the names of most cars
should be printed in title case. However, the value 'bmw' should be printed
in all uppercase. The following code loops through a list of car names and
looks for the value 'bmw'. Whenever the value is 'bmw', it’s printed in upper-
case instead of title case:

cars.py cars = ['audi', 'bmw', 'subaru', 'toyota']

for car in cars:
1 if car == 'bmw':
 print(car.upper())
 else:
 print(car.title())

The loop in this example first checks if the current value of car is 'bmw' 1.
If it is, the value is printed in uppercase. If the value of car is anything other
than 'bmw', it’s printed in title case:

Audi
BMW
Subaru
Toyota

This example combines a number of the concepts you’ll learn about
in this chapter. Let’s begin by looking at the kinds of tests you can use to
examine the conditions in your program.

Conditional Tests
At the heart of every if statement is an expression that can be evaluated as
True or False and is called a conditional test. Python uses the values True and
False to decide whether the code in an if statement should be executed. If a
conditional test evaluates to True, Python executes the code following the if
statement. If the test evaluates to False, Python ignores the code following
the if statement.

Checking for Equality
Most conditional tests compare the current value of a variable to a specific
value of interest. The simplest conditional test checks whether the value of a
variable is equal to the value of interest:

>>> car = 'bmw'
>>> car == 'bmw'
True

if Statements 73

The first line sets the value of car to 'bmw' using a single equal sign, as
you’ve seen many times already. The next line checks whether the value of
car is 'bmw' by using a double equal sign (==). This equality operator returns
True if the values on the left and right side of the operator match, and False if
they don’t match. The values in this example match, so Python returns True.

When the value of car is anything other than 'bmw', this test returns False:

>>> car = 'audi'
>>> car == 'bmw'
False

A single equal sign is really a statement; you might read the first line
of code here as “Set the value of car equal to 'audi'.” On the other hand, a
double equal sign asks a question: “Is the value of car equal to 'bmw'?” Most
programming languages use equal signs in this way.

Ignoring Case When Checking for Equality
Testing for equality is case sensitive in Python. For example, two values with
different capitalization are not considered equal:

>>> car = 'Audi'
>>> car == 'audi'
False

If case matters, this behavior is advantageous. But if case doesn’t matter
and instead you just want to test the value of a variable, you can convert the
variable’s value to lowercase before doing the comparison:

>>> car = 'Audi'
>>> car.lower() == 'audi'
True

This test will return True no matter how the value 'Audi' is formatted
because the test is now case insensitive. The lower() method doesn’t change
the value that was originally stored in car, so you can do this kind of com-
parison without affecting the original variable:

>>> car = 'Audi'
>>> car.lower() == 'audi'
True
>>> car
'Audi'

We first assign the capitalized string 'Audi' to the variable car. Then,
we convert the value of car to lowercase and compare the lowercase value to
the string 'audi'. The two strings match, so Python returns True. We can see
that the value stored in car has not been affected by the lower() method.

Websites enforce certain rules for the data that users enter in a manner
similar to this. For example, a site might use a conditional test like this to

74 Chapter 5

ensure that every user has a truly unique username, not just a variation on
the capitalization of another person’s username. When someone submits a
new username, that new username is converted to lowercase and compared
to the lowercase versions of all existing usernames. During this check, a user-
name like 'John' will be rejected if any variation of 'john' is already in use.

Checking for Inequality
When you want to determine whether two values are not equal, you can use
the inequality operator (!=). Let’s use another if statement to examine how to
use the inequality operator. We’ll store a requested pizza topping in a vari-
able and then print a message if the person did not order anchovies:

toppings.py requested_topping = 'mushrooms'

if requested_topping != 'anchovies':
 print("Hold the anchovies!")

This code compares the value of requested_topping to the value 'anchovies'.
If these two values do not match, Python returns True and executes the code
following the if statement. If the two values match, Python returns False and
does not run the code following the if statement.

Because the value of requested_topping is not 'anchovies', the print()
function is executed:

Hold the anchovies!

Most of the conditional expressions you write will test for equality, but
sometimes you’ll find it more efficient to test for inequality.

Numerical Comparisons
Testing numerical values is pretty straightforward. For example, the follow-
ing code checks whether a person is 18 years old:

>>> age = 18
>>> age == 18
True

You can also test to see if two numbers are not equal. For example, the
following code prints a message if the given answer is not correct:

magic
_number.py

answer = 17
if answer != 42:
 print("That is not the correct answer. Please try again!")

The conditional test passes, because the value of answer (17) is not equal
to 42. Because the test passes, the indented code block is executed:

That is not the correct answer. Please try again!

if Statements 75

You can include various mathematical comparisons in your conditional
statements as well, such as less than, less than or equal to, greater than, and
greater than or equal to:

>>> age = 19
>>> age < 21
True
>>> age <= 21
True
>>> age > 21
False
>>> age >= 21
False

Each mathematical comparison can be used as part of an if statement,
which can help you detect the exact conditions of interest.

Checking Multiple Conditions
You may want to check multiple conditions at the same time. For example,
sometimes you might need two conditions to be True to take an action.
Other times, you might be satisfied with just one condition being True. The
keywords and and or can help you in these situations.

Using and to Check Multiple Conditions

To check whether two conditions are both True simultaneously, use the key-
word and to combine the two conditional tests; if each test passes, the overall
expression evaluates to True. If either test fails or if both tests fail, the expres-
sion evaluates to False.

For example, you can check whether two people are both over 21 by
using the following test:

>>> age_0 = 22
>>> age_1 = 18
1 >>> age_0 >= 21 and age_1 >= 21
False
2 >>> age_1 = 22
>>> age_0 >= 21 and age_1 >= 21
True

First, we define two ages, age_0 and age_1. Then we check whether both
ages are 21 or older 1. The test on the left passes, but the test on the right
fails, so the overall conditional expression evaluates to False. We then change
age_1 to 22 2. The value of age_1 is now greater than 21, so both individual
tests pass, causing the overall conditional expression to evaluate as True.

To improve readability, you can use parentheses around the individual
tests, but they are not required. If you use parentheses, your test would look
like this:

(age_0 >= 21) and (age_1 >= 21)

76 Chapter 5

Using or to Check Multiple Conditions

The keyword or allows you to check multiple conditions as well, but it passes
when either or both of the individual tests pass. An or expression fails only
when both individual tests fail.

Let’s consider two ages again, but this time we’ll look for only one per-
son to be over 21:

>>> age_0 = 22
>>> age_1 = 18
1 >>> age_0 >= 21 or age_1 >= 21
True
2 >>> age_0 = 18
>>> age_0 >= 21 or age_1 >= 21
False

We start with two age variables again. Because the test for age_0 1 passes,
the overall expression evaluates to True. We then lower age_0 to 18. In the final
test 2, both tests now fail and the overall expression evaluates to False.

Checking Whether a Value Is in a List
Sometimes it’s important to check whether a list contains a certain value
before taking an action. For example, you might want to check whether a
new username already exists in a list of current usernames before completing
someone’s registration on a website. In a mapping project, you might want to
check whether a submitted location already exists in a list of known locations.

To find out whether a particular value is already in a list, use the key-
word in. Let’s consider some code you might write for a pizzeria. We’ll
make a list of toppings a customer has requested for a pizza and then check
whether certain toppings are in the list.

>>> requested_toppings = ['mushrooms', 'onions', 'pineapple']
>>> 'mushrooms' in requested_toppings
True
>>> 'pepperoni' in requested_toppings
False

The keyword in tells Python to check for the existence of 'mushrooms'
and 'pepperoni' in the list requested_toppings. This technique is quite power-
ful because you can create a list of essential values, and then easily check
whether the value you’re testing matches one of the values in the list.

Checking Whether a Value Is Not in a List
Other times, it’s important to know if a value does not appear in a list. You
can use the keyword not in this situation. For example, consider a list of
users who are banned from commenting in a forum. You can check whether
a user has been banned before allowing that person to submit a comment:

banned_users.py banned_users = ['andrew', 'carolina', 'david']
user = 'marie'

if Statements 77

if user not in banned_users:
 print(f"{user.title()}, you can post a response if you wish.")

The if statement here reads quite clearly. If the value of user is not in
the list banned_users, Python returns True and executes the indented line.

The user 'marie' is not in the list banned_users, so she sees a message
inviting her to post a response:

Marie, you can post a response if you wish.

Boolean Expressions
As you learn more about programming, you’ll hear the term Boolean expression
at some point. A Boolean expression is just another name for a conditional
test. A Boolean value is either True or False, just like the value of a conditional
expression after it has been evaluated.

Boolean values are often used to keep track of certain conditions, such
as whether a game is running or whether a user can edit certain content on
a website:

game_active = True
can_edit = False

Boolean values provide an efficient way to track the state of a program
or a particular condition that is important in your program.

T RY IT YOURSEL F

5-1. Conditional Tests: Write a series of conditional tests. Print a statement
describing each test and your prediction for the results of each test. Your code
should look something like this:

car = 'subaru'
print("Is car == 'subaru'? I predict True.")
print(car == 'subaru')

print("\nIs car == 'audi'? I predict False.")
print(car == 'audi')

•	 Look closely at your results, and make sure you understand why each line
evaluates to True or False.

•	 Create at least 10 tests. Have at least 5 tests evaluate to True and another
5 tests evaluate to False.

(continued)

78 Chapter 5

5-2. More Conditional Tests: You don’t have to limit the number of tests you cre-
ate to 10. If you want to try more comparisons, write more tests and add them
to conditional_tests.py. Have at least one True and one False result for each of
the following:

•	 Tests for equality and inequality with strings

•	 Tests using the lower() method

•	 Numerical tests involving equality and inequality, greater than and less
than, greater than or equal to, and less than or equal to

•	 Tests using the and keyword and the or keyword

•	 Test whether an item is in a list

•	 Test whether an item is not in a list

if Statements
When you understand conditional tests, you can start writing if statements.
Several different kinds of if statements exist, and your choice of which to
use depends on the number of conditions you need to test. You saw several
examples of if statements in the discussion about conditional tests, but now
let’s dig deeper into the topic.

Simple if Statements
The simplest kind of if statement has one test and one action:

if conditional_test:
 do something

You can put any conditional test in the first line and just about any action
in the indented block following the test. If the conditional test evaluates to
True, Python executes the code following the if statement. If the test evaluates
to False, Python ignores the code following the if statement.

Let’s say we have a variable representing a person’s age, and we want to
know if that person is old enough to vote. The following code tests whether
the person can vote:

voting.py age = 19
if age >= 18:
 print("You are old enough to vote!")

Python checks to see whether the value of age is greater than or equal
to 18. It is, so Python executes the indented print() call:

You are old enough to vote!

if Statements 79

Indentation plays the same role in if statements as it did in for loops. All
indented lines after an if statement will be executed if the test passes, and
the entire block of indented lines will be ignored if the test does not pass.

You can have as many lines of code as you want in the block follow-
ing the if statement. Let’s add another line of output if the person is old
enough to vote, asking if the individual has registered to vote yet:

age = 19
if age >= 18:
 print("You are old enough to vote!")
 print("Have you registered to vote yet?")

The conditional test passes, and both print() calls are indented, so both
lines are printed:

You are old enough to vote!
Have you registered to vote yet?

If the value of age is less than 18, this program would produce no output.

if-else Statements
Often, you’ll want to take one action when a conditional test passes and a dif-
ferent action in all other cases. Python’s if-else syntax makes this possible. An
if-else block is similar to a simple if statement, but the else statement allows
you to define an action or set of actions that are executed when the condi-
tional test fails.

We’ll display the same message we had previously if the person is old
enough to vote, but this time we’ll add a message for anyone who is not
old enough to vote:

age = 17
1 if age >= 18:
 print("You are old enough to vote!")
 print("Have you registered to vote yet?")
2 else:
 print("Sorry, you are too young to vote.")
 print("Please register to vote as soon as you turn 18!")

If the conditional test 1 passes, the first block of indented print()
calls is executed. If the test evaluates to False, the else block 2 is executed.
Because age is less than 18 this time, the conditional test fails and the code
in the else block is executed:

Sorry, you are too young to vote.
Please register to vote as soon as you turn 18!

This code works because it has only two possible situations to evaluate:
a person is either old enough to vote or not old enough to vote. The if-else

80 Chapter 5

structure works well in situations in which you want Python to always exe-
cute one of two possible actions. In a simple if-else chain like this, one of
the two actions will always be executed.

The if-elif-else Chain
Often, you’ll need to test more than two possible situations, and to evaluate
these you can use Python’s if-elif-else syntax. Python executes only one
block in an if-elif-else chain. It runs each conditional test in order, until
one passes. When a test passes, the code following that test is executed and
Python skips the rest of the tests.

Many real-world situations involve more than two possible conditions.
For example, consider an amusement park that charges different rates for
different age groups:

•	 Admission for anyone under age 4 is free.

•	 Admission for anyone between the ages of 4 and 18 is $25.

•	 Admission for anyone age 18 or older is $40.

How can we use an if statement to determine a person’s admission rate?
The following code tests for the age group of a person and then prints an
admission price message:

amusement
_park.py

age = 12
1 if age < 4:
 print("Your admission cost is $0.")
2 elif age < 18:
 print("Your admission cost is $25.")
3 else:
 print("Your admission cost is $40.")

The if test 1 checks whether a person is under 4 years old. When the
test passes, an appropriate message is printed and Python skips the rest of
the tests. The elif line 2 is really another if test, which runs only if the
previous test failed. At this point in the chain, we know the person is at least
4 years old because the first test failed. If the person is under 18, an appro-
priate message is printed and Python skips the else block. If both the if
and elif tests fail, Python runs the code in the else block 3.

In this example the if test 1 evaluates to False, so its code block is not
executed. However, the elif test evaluates to True (12 is less than 18) so its
code is executed. The output is one sentence, informing the user of the
admission cost:

Your admission cost is $25.

Any age greater than 17 would cause the first two tests to fail. In these
situations, the else block would be executed and the admission price would
be $40.

Rather than printing the admission price within the if-elif-else block,
it would be more concise to set just the price inside the if-elif-else chain

if Statements 81

and then have a single print() call that runs after the chain has been
evaluated:

age = 12

if age < 4:
 price = 0
elif age < 18:
 price = 25
else:
 price = 40

print(f"Your admission cost is ${price}.")

The indented lines set the value of price according to the person’s age,
as in the previous example. After the price is set by the if-elif-else chain, a
separate unindented print() call uses this value to display a message report-
ing the person’s admission price.

This code produces the same output as the previous example, but the
purpose of the if-elif-else chain is narrower. Instead of determining a price
and displaying a message, it simply determines the admission price. In addi-
tion to being more efficient, this revised code is easier to modify than the
original approach. To change the text of the output message, you would
need to change only one print() call rather than three separate print() calls.

Using Multiple elif Blocks
You can use as many elif blocks in your code as you like. For example, if the
amusement park were to implement a discount for seniors, you could add
one more conditional test to the code to determine whether someone quali-
fies for the senior discount. Let’s say that anyone 65 or older pays half the
regular admission, or $20:

age = 12

if age < 4:
 price = 0
elif age < 18:
 price = 25
elif age < 65:
 price = 40
else:
 price = 20

print(f"Your admission cost is ${price}.")

Most of this code is unchanged. The second elif block now checks to
make sure a person is less than age 65 before assigning them the full admis-
sion rate of $40. Notice that the value assigned in the else block needs to
be changed to $20, because the only ages that make it to this block are for
people 65 or older.

82 Chapter 5

Omitting the else Block
Python does not require an else block at the end of an if-elif chain.
Sometimes, an else block is useful. Other times, it’s clearer to use an addi-
tional elif statement that catches the specific condition of interest:

age = 12

if age < 4:
 price = 0
elif age < 18:
 price = 25
elif age < 65:
 price = 40
elif age >= 65:
 price = 20

print(f"Your admission cost is ${price}.")

The final elif block assigns a price of $20 when the person is 65 or
older, which is a little clearer than the general else block. With this change,
every block of code must pass a specific test in order to be executed.

The else block is a catchall statement. It matches any condition that
wasn’t matched by a specific if or elif test, and that can sometimes include
invalid or even malicious data. If you have a specific final condition you’re
testing for, consider using a final elif block and omit the else block. As a
result, you’ll be more confident that your code will run only under the cor-
rect conditions.

Testing Multiple Conditions
The if-elif-else chain is powerful, but it’s only appropriate to use when you
just need one test to pass. As soon as Python finds one test that passes, it
skips the rest of the tests. This behavior is beneficial, because it’s efficient
and allows you to test for one specific condition.

However, sometimes it’s important to check all conditions of interest. In
this case, you should use a series of simple if statements with no elif or else
blocks. This technique makes sense when more than one condition could
be True, and you want to act on every condition that is True.

Let’s reconsider the pizzeria example. If someone requests a two-topping
pizza, you’ll need to be sure to include both toppings on their pizza:

toppings.py requested_toppings = ['mushrooms', 'extra cheese']

if 'mushrooms' in requested_toppings:
 print("Adding mushrooms.")
1 if 'pepperoni' in requested_toppings:
 print("Adding pepperoni.")

if Statements 83

if 'extra cheese' in requested_toppings:
 print("Adding extra cheese.")

print("\nFinished making your pizza!")

We start with a list containing the requested toppings. The first if
statement checks to see whether the person requested mushrooms on their
pizza. If so, a message is printed confirming that topping. The test for pep-
peroni 1 is another simple if statement, not an elif or else statement, so
this test is run regardless of whether the previous test passed or not. The
last if statement checks whether extra cheese was requested, regardless of
the results from the first two tests. These three independent tests are exe-
cuted every time this program is run.

Because every condition in this example is evaluated, both mushrooms
and extra cheese are added to the pizza:

Adding mushrooms.
Adding extra cheese.

Finished making your pizza!

This code would not work properly if we used an if-elif-else block,
because the code would stop running after only one test passes. Here’s
what that would look like:

requested_toppings = ['mushrooms', 'extra cheese']

if 'mushrooms' in requested_toppings:
 print("Adding mushrooms.")
elif 'pepperoni' in requested_toppings:
 print("Adding pepperoni.")
elif 'extra cheese' in requested_toppings:
 print("Adding extra cheese.")

print("\nFinished making your pizza!")

The test for 'mushrooms' is the first test to pass, so mushrooms are added
to the pizza. However, the values 'extra cheese' and 'pepperoni' are never
checked, because Python doesn’t run any tests beyond the first test that
passes in an if-elif-else chain. The customer’s first topping will be added,
but all of their other toppings will be missed:

Adding mushrooms.

Finished making your pizza!

In summary, if you want only one block of code to run, use an if-elif-else
chain. If more than one block of code needs to run, use a series of indepen-
dent if statements.

84 Chapter 5

T RY IT YOURSEL F

5-3. Alien Colors #1: Imagine an alien was just shot down in a game. Create a
variable called alien_color and assign it a value of 'green', 'yellow', or 'red'.

•	 Write an if statement to test whether the alien’s color is green. If it is, print
a message that the player just earned 5 points.

•	 Write one version of this program that passes the if test and another that
fails. (The version that fails will have no output.)

5-4. Alien Colors #2: Choose a color for an alien as you did in Exercise 5-3,
and write an if-else chain.

•	 If the alien’s color is green, print a statement that the player just earned 5
points for shooting the alien.

•	 If the alien’s color isn’t green, print a statement that the player just earned
10 points.

•	 Write one version of this program that runs the if block and another that
runs the else block.

5-5. Alien Colors #3: Turn your if-else chain from Exercise 5-4 into an if-elif-
else chain.

•	 If the alien is green, print a message that the player earned 5 points.

•	 If the alien is yellow, print a message that the player earned 10 points.

•	 If the alien is red, print a message that the player earned 15 points.

•	 Write three versions of this program, making sure each message is printed
for the appropriate color alien.

5-6. Stages of Life: Write an if-elif-else chain that determines a person’s stage
of life. Set a value for the variable age, and then:

•	 If the person is less than 2 years old, print a message that the person is
a baby.

•	 If the person is at least 2 years old but less than 4, print a message that the
person is a toddler.

•	 If the person is at least 4 years old but less than 13, print a message that
the person is a kid.

•	 If the person is at least 13 years old but less than 20, print a message that
the person is a teenager.

•	 If the person is at least 20 years old but less than 65, print a message that
the person is an adult.

•	 If the person is age 65 or older, print a message that the person is an elder.

if Statements 85

5-7. Favorite Fruit: Make a list of your favorite fruits, and then write a series of
independent if statements that check for certain fruits in your list.

•	 Make a list of your three favorite fruits and call it favorite_fruits.

•	 Write five if statements. Each should check whether a certain kind of fruit
is in your list. If the fruit is in your list, the if block should print a statement,
such as You really like bananas!

Using if Statements with Lists
You can do some interesting work when you combine lists and if statements.
You can watch for special values that need to be treated differently than
other values in the list. You can efficiently manage changing conditions,
such as the availability of certain items in a restaurant throughout a shift.
You can also begin to prove that your code works as you expect it to in all
possible situations.

Checking for Special Items
This chapter began with a simple example that showed how to handle a spe-
cial value like 'bmw', which needed to be printed in a different format than
other values in the list. Now that you have a basic understanding of condi-
tional tests and if statements, let’s take a closer look at how you can watch
for special values in a list and handle those values appropriately.

Let’s continue with the pizzeria example. The pizzeria displays a mes-
sage whenever a topping is added to your pizza, as it’s being made. The code
for this action can be written very efficiently by making a list of toppings the
customer has requested and using a loop to announce each topping as it’s
added to the pizza:

toppings.py requested_toppings = ['mushrooms', 'green peppers', 'extra cheese']

for requested_topping in requested_toppings:
 print(f"Adding {requested_topping}.")

print("\nFinished making your pizza!")

The output is straightforward because this code is just a simple for loop:

Adding mushrooms.
Adding green peppers.
Adding extra cheese.

Finished making your pizza!

86 Chapter 5

But what if the pizzeria runs out of green peppers? An if statement
inside the for loop can handle this situation appropriately:

requested_toppings = ['mushrooms', 'green peppers', 'extra cheese']

for requested_topping in requested_toppings:
 if requested_topping == 'green peppers':
 print("Sorry, we are out of green peppers right now.")
 else:
 print(f"Adding {requested_topping}.")

print("\nFinished making your pizza!")

This time, we check each requested item before adding it to the pizza.
The if statement checks to see if the person requested green peppers. If so,
we display a message informing them why they can’t have green peppers.
The else block ensures that all other toppings will be added to the pizza.

The output shows that each requested topping is handled appropriately.

Adding mushrooms.
Sorry, we are out of green peppers right now.
Adding extra cheese.

Finished making your pizza!

Checking That a List Is Not Empty
We’ve made a simple assumption about every list we’ve worked with so far:
we’ve assumed that each list has at least one item in it. Soon we’ll let users
provide the information that’s stored in a list, so we won’t be able to assume
that a list has any items in it each time a loop is run. In this situation, it’s
useful to check whether a list is empty before running a for loop.

As an example, let’s check whether the list of requested toppings is
empty before building the pizza. If the list is empty, we’ll prompt the user
and make sure they want a plain pizza. If the list is not empty, we’ll build
the pizza just as we did in the previous examples:

requested_toppings = []

if requested_toppings:
 for requested_topping in requested_toppings:
 print(f"Adding {requested_topping}.")
 print("\nFinished making your pizza!")
else:
 print("Are you sure you want a plain pizza?")

This time we start out with an empty list of requested toppings. Instead
of jumping right into a for loop, we do a quick check first. When the name
of a list is used in an if statement, Python returns True if the list contains at
least one item; an empty list evaluates to False. If requested_toppings passes
the conditional test, we run the same for loop we used in the previous

if Statements 87

example. If the conditional test fails, we print a message asking the cus-
tomer if they really want a plain pizza with no toppings.

The list is empty in this case, so the output asks if the user really wants
a plain pizza:

Are you sure you want a plain pizza?

If the list is not empty, the output will show each requested topping
being added to the pizza.

Using Multiple Lists
People will ask for just about anything, especially when it comes to pizza
toppings. What if a customer actually wants french fries on their pizza? You
can use lists and if statements to make sure your input makes sense before
you act on it.

Let’s watch out for unusual topping requests before we build a pizza.
The following example defines two lists. The first is a list of available top-
pings at the pizzeria, and the second is the list of toppings that the user has
requested. This time, each item in requested_toppings is checked against the
list of available toppings before it’s added to the pizza:

available_toppings = ['mushrooms', 'olives', 'green peppers',
 'pepperoni', 'pineapple', 'extra cheese']

1 requested_toppings = ['mushrooms', 'french fries', 'extra cheese']

for requested_topping in requested_toppings:
2 if requested_topping in available_toppings:
 print(f"Adding {requested_topping}.")
3 else:
 print(f"Sorry, we don't have {requested_topping}.")

print("\nFinished making your pizza!")

First, we define a list of available toppings at this pizzeria. Note that this
could be a tuple if the pizzeria has a stable selection of toppings. Then, we
make a list of toppings that a customer has requested. There’s an unusual
request for a topping in this example: 'french fries' 1. Next we loop
through the list of requested toppings. Inside the loop, we check to see if
each requested topping is actually in the list of available toppings 2. If it is,
we add that topping to the pizza. If the requested topping is not in the list
of available toppings, the else block will run 3. The else block prints a mes-
sage telling the user which toppings are unavailable.

This code syntax produces clean, informative output:

Adding mushrooms.
Sorry, we don't have french fries.
Adding extra cheese.

Finished making your pizza!

88 Chapter 5

In just a few lines of code, we’ve managed a real-world situation pretty
effectively!

T RY IT YOURSEL F

5-8. Hello Admin: Make a list of five or more usernames, including the name
'admin'. Imagine you are writing code that will print a greeting to each user
after they log in to a website. Loop through the list, and print a greeting to
each user.

•	 If the username is 'admin', print a special greeting, such as Hello admin,
would you like to see a status report?

•	 Otherwise, print a generic greeting, such as Hello Jaden, thank you for
logging in again.

5-9. No Users: Add an if test to hello_admin.py to make sure the list of users is
not empty.

•	 If the list is empty, print the message We need to find some users!

•	 Remove all of the usernames from your list, and make sure the correct mes-
sage is printed.

5-10. Checking Usernames: Do the following to create a program that simulates
how websites ensure that everyone has a unique username.

•	 Make a list of five or more usernames called current_users.

•	 Make another list of five usernames called new_users. Make sure one or
two of the new usernames are also in the current_users list.

•	 Loop through the new_users list to see if each new username has already
been used. If it has, print a message that the person will need to enter a
new username. If a username has not been used, print a message saying
that the username is available.

•	 Make sure your comparison is case insensitive. If 'John' has been used,
'JOHN' should not be accepted. (To do this, you’ll need to make a copy of
current_users containing the lowercase versions of all existing users.)

5-11. Ordinal Numbers: Ordinal numbers indicate their position in a list, such as
1st or 2nd. Most ordinal numbers end in th, except 1, 2, and 3.

•	 Store the numbers 1 through 9 in a list.

•	 Loop through the list.

•	 Use an if-elif-else chain inside the loop to print the proper ordinal ending
for each number. Your output should read "1st 2nd 3rd 4th 5th 6th 7th
8th 9th", and each result should be on a separate line.

if Statements 89

Styling Your if Statements
In every example in this chapter, you’ve seen good styling habits. The only
recommendation PEP 8 provides for styling conditional tests is to use a single
space around comparison operators, such as ==, >=, and <=. For example:

if age < 4:

is better than:

if age<4:

Such spacing does not affect the way Python interprets your code; it just
makes your code easier for you and others to read.

T RY IT YOURSEL F

5-12. Styling if Statements: Review the programs you wrote in this chapter, and
make sure you styled your conditional tests appropriately.

5-13. Your Ideas: At this point, you’re a more capable programmer than you
were when you started this book. Now that you have a better sense of how
real-world situations are modeled in programs, you might be thinking of some
problems you could solve with your own programs. Record any new ideas you
have about problems you might want to solve as your programming skills con-
tinue to improve. Consider games you might want to write, datasets you might
want to explore, and web applications you’d like to create.

Summary
In this chapter you learned how to write conditional tests, which always
evaluate to True or False. You learned to write simple if statements, if-else
chains, and if-elif-else chains. You began using these structures to identify
particular conditions you need to test and to know when those conditions
have been met in your programs. You learned to handle certain items in a
list differently than all other items while continuing to utilize the efficiency
of a for loop. You also revisited Python’s style recommendations to ensure
that your increasingly complex programs are still relatively easy to read and
understand.

In Chapter 6 you’ll learn about Python’s dictionaries. A dictionary is
similar to a list, but it allows you to connect pieces of information. You’ll
learn how to build dictionaries, loop through them, and use them in combi-
nation with lists and if statements. Learning about dictionaries will enable
you to model an even wider variety of real-world situations.

7
U S E R I N P U T A N D W H I L E L O O P S

Most programs are written to solve an end
user’s problem. To do so, you usually need

to get some information from the user. For
example, say someone wants to find out whether

they’re old enough to vote. If you write a program to
answer this question, you need to know the user’s age
before you can provide an answer. The program will need to ask the user
to enter, or input, their age; once the program has this input, it can com-
pare it to the voting age to determine if the user is old enough and then
report the result.

In this chapter you’ll learn how to accept user input so your program
can then work with it. When your program needs a name, you’ll be able
to prompt the user for a name. When your program needs a list of names,
you’ll be able to prompt the user for a series of names. To do this, you’ll use
the input() function.

You’ll also learn how to keep programs running as long as users want
them to, so they can enter as much information as they need to; then, your

114 Chapter 7

program can work with that information. You’ll use Python’s while loop to
keep programs running as long as certain conditions remain true.

With the ability to work with user input and the ability to control how
long your programs run, you’ll be able to write fully interactive programs.

How the input() Function Works
The input() function pauses your program and waits for the user to enter
some text. Once Python receives the user’s input, it assigns that input to a
variable to make it convenient for you to work with.

For example, the following program asks the user to enter some text,
then displays that message back to the user:

parrot.py message = input("Tell me something, and I will repeat it back to you: ")
print(message)

The input() function takes one argument: the prompt that we want to
display to the user, so they know what kind of information to enter. In this
example, when Python runs the first line, the user sees the prompt Tell me
something, and I will repeat it back to you: . The program waits while the
user enters their response and continues after the user presses ENTER. The
response is assigned to the variable message, then print(message) displays the
input back to the user:

Tell me something, and I will repeat it back to you: Hello everyone!
Hello everyone!

N O T E 	 Some text editors won’t run programs that prompt the user for input. You can use these
editors to write programs that prompt for input, but you’ll need to run these programs
from a terminal. See “Running Python Programs from a Terminal” on page 11.

Writing Clear Prompts
Each time you use the input() function, you should include a clear, easy-to-
follow prompt that tells the user exactly what kind of information you’re
looking for. Any statement that tells the user what to enter should work. For
example:

greeter.py name = input("Please enter your name: ")
print(f"\nHello, {name}!")

Add a space at the end of your prompts (after the colon in the preced-
ing example) to separate the prompt from the user’s response and to make
it clear to your user where to enter their text. For example:

Please enter your name: Eric
Hello, Eric!

User Input and while Loops 115

Sometimes you’ll want to write a prompt that’s longer than one line.
For example, you might want to tell the user why you’re asking for certain
input. You can assign your prompt to a variable and pass that variable to the
input() function. This allows you to build your prompt over several lines,
then write a clean input() statement.

greeter.py prompt = "If you share your name, we can personalize the messages you see."
prompt += "\nWhat is your first name? "

name = input(prompt)
print(f"\nHello, {name}!")

This example shows one way to build a multiline string. The first line
assigns the first part of the message to the variable prompt. In the second
line, the operator += takes the string that was assigned to prompt and adds
the new string onto the end.

The prompt now spans two lines, again with space after the question
mark for clarity:

If you share your name, we can personalize the messages you see.
What is your first name? Eric

Hello, Eric!

Using int() to Accept Numerical Input
When you use the input() function, Python interprets everything the user
enters as a string. Consider the following interpreter session, which asks for
the user’s age:

>>> age = input("How old are you? ")
How old are you? 21
>>> age
'21'

The user enters the number 21, but when we ask Python for the value of
age, it returns '21', the string representation of the numerical value entered.
We know Python interpreted the input as a string because the number is
now enclosed in quotes. If all you want to do is print the input, this works
well. But if you try to use the input as a number, you’ll get an error:

>>> age = input("How old are you? ")
How old are you? 21
1 >>> age >= 18
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
2 TypeError: '>=' not supported between instances of 'str' and 'int'

When you try to use the input to do a numerical comparison 1, Python
produces an error because it can’t compare a string to an integer: the string
'21' that’s assigned to age can’t be compared to the numerical value 18 2.

116 Chapter 7

We can resolve this issue by using the int() function, which converts
the input string to a numerical value. This allows the comparison to run
successfully:

>>> age = input("How old are you? ")
How old are you? 21
1 >>> age = int(age)
>>> age >= 18
True

In this example, when we enter 21 at the prompt, Python interprets the
number as a string, but the value is then converted to a numerical represen-
tation by int() 1. Now Python can run the conditional test: it compares age
(which now represents the numerical value 21) and 18 to see if age is greater
than or equal to 18. This test evaluates to True.

How do you use the int() function in an actual program? Consider a
program that determines whether people are tall enough to ride a roller
coaster:

rollercoaster.py height = input("How tall are you, in inches? ")
height = int(height)

if height >= 48:
 print("\nYou're tall enough to ride!")
else:
 print("\nYou'll be able to ride when you're a little older.")

The program can compare height to 48 because height = int(height)
converts the input value to a numerical representation before the compari-
son is made. If the number entered is greater than or equal to 48, we tell
the user that they’re tall enough:

How tall are you, in inches? 71

You're tall enough to ride!

When you use numerical input to do calculations and comparisons, be
sure to convert the input value to a numerical representation first.

The Modulo Operator
A useful tool for working with numerical information is the modulo operator (%),
which divides one number by another number and returns the remainder:

>>> 4 % 3
1
>>> 5 % 3
2
>>> 6 % 3
0
>>> 7 % 3
1

User Input and while Loops 117

The modulo operator doesn’t tell you how many times one number fits
into another; it only tells you what the remainder is.

When one number is divisible by another number, the remainder is 0,
so the modulo operator always returns 0. You can use this fact to determine
if a number is even or odd:

even_or_odd.py number = input("Enter a number, and I'll tell you if it's even or odd: ")
number = int(number)

if number % 2 == 0:
 print(f"\nThe number {number} is even.")
else:
 print(f"\nThe number {number} is odd.")

Even numbers are always divisible by two, so if the modulo of a number
and two is zero (here, if number % 2 == 0) the number is even. Otherwise,
it’s odd.

Enter a number, and I'll tell you if it's even or odd: 42

The number 42 is even.

T RY IT YOURSEL F

7-1. Rental Car: Write a program that asks the user what kind of rental car they
would like. Print a message about that car, such as “Let me see if I can find you
a Subaru.”

7-2. Restaurant Seating: Write a program that asks the user how many people
are in their dinner group. If the answer is more than eight, print a message say-
ing they’ll have to wait for a table. Otherwise, report that their table is ready.

7-3. Multiples of Ten: Ask the user for a number, and then report whether the
number is a multiple of 10 or not.

Introducing while Loops
The for loop takes a collection of items and executes a block of code once
for each item in the collection. In contrast, the while loop runs as long as, or
while, a certain condition is true.

The while Loop in Action
You can use a while loop to count up through a series of numbers. For example,
the following while loop counts from 1 to 5:

counting.py current_number = 1
while current_number <= 5:

118 Chapter 7

 print(current_number)
 current_number += 1

In the first line, we start counting from 1 by assigning current_number the
value 1. The while loop is then set to keep running as long as the value of
current_number is less than or equal to 5. The code inside the loop prints the
value of current_number and then adds 1 to that value with current_number += 1.
(The += operator is shorthand for current_number = current_number + 1.)

Python repeats the loop as long as the condition current_number <= 5
is true. Because 1 is less than 5, Python prints 1 and then adds 1, making
the current number 2. Because 2 is less than 5, Python prints 2 and adds 1
again, making the current number 3, and so on. Once the value of current
_number is greater than 5, the loop stops running and the program ends:

1
2
3
4
5

The programs you use every day most likely contain while loops. For
example, a game needs a while loop to keep running as long as you want
to keep playing, and so it can stop running as soon as you ask it to quit.
Programs wouldn’t be fun to use if they stopped running before we told
them to or kept running even after we wanted to quit, so while loops are
quite useful.

Letting the User Choose When to Quit
We can make the parrot.py program run as long as the user wants by putting
most of the program inside a while loop. We’ll define a quit value and then
keep the program running as long as the user has not entered the quit value:

parrot.py prompt = "\nTell me something, and I will repeat it back to you:"
prompt += "\nEnter 'quit' to end the program. "

message = ""
while message != 'quit':
 message = input(prompt)
 print(message)

We first define a prompt that tells the user their two options: entering
a message or entering the quit value (in this case, 'quit'). Then we set up a
variable message to keep track of whatever value the user enters. We define
message as an empty string, "", so Python has something to check the first
time it reaches the while line. The first time the program runs and Python
reaches the while statement, it needs to compare the value of message to
'quit', but no user input has been entered yet. If Python has nothing to
compare, it won’t be able to continue running the program. To solve this

User Input and while Loops 119

problem, we make sure to give message an initial value. Although it’s just an
empty string, it will make sense to Python and allow it to perform the com-
parison that makes the while loop work. This while loop runs as long as the
value of message is not 'quit'.

The first time through the loop, message is just an empty string, so Python
enters the loop. At message = input(prompt), Python displays the prompt and
waits for the user to enter their input. Whatever they enter is assigned to
message and printed; then, Python reevaluates the condition in the while
statement. As long as the user has not entered the word 'quit', the prompt
is displayed again and Python waits for more input. When the user finally
enters 'quit', Python stops executing the while loop and the program ends:

Tell me something, and I will repeat it back to you:
Enter 'quit' to end the program. Hello everyone!
Hello everyone!

Tell me something, and I will repeat it back to you:
Enter 'quit' to end the program. Hello again.
Hello again.

Tell me something, and I will repeat it back to you:
Enter 'quit' to end the program. quit
quit

This program works well, except that it prints the word 'quit' as if it
were an actual message. A simple if test fixes this:

prompt = "\nTell me something, and I will repeat it back to you:"
prompt += "\nEnter 'quit' to end the program. "

message = ""
while message != 'quit':
 message = input(prompt)

 if message != 'quit':
 print(message)

Now the program makes a quick check before displaying the message
and only prints the message if it does not match the quit value:

Tell me something, and I will repeat it back to you:
Enter 'quit' to end the program. Hello everyone!
Hello everyone!

Tell me something, and I will repeat it back to you:
Enter 'quit' to end the program. Hello again.
Hello again.

Tell me something, and I will repeat it back to you:
Enter 'quit' to end the program. quit

120 Chapter 7

Using a Flag
In the previous example, we had the program perform certain tasks while
a given condition was true. But what about more complicated programs in
which many different events could cause the program to stop running?

For example, in a game, several different events can end the game.
When the player runs out of ships, their time runs out, or the cities they
were supposed to protect are all destroyed, the game should end. It needs
to end if any one of these events happens. If many possible events might
occur to stop the program, trying to test all these conditions in one while
statement becomes complicated and difficult.

For a program that should run only as long as many conditions are
true, you can define one variable that determines whether or not the entire
program is active. This variable, called a flag, acts as a signal to the pro-
gram. We can write our programs so they run while the flag is set to True
and stop running when any of several events sets the value of the flag to
False. As a result, our overall while statement needs to check only one condi-
tion: whether the flag is currently True. Then, all our other tests (to see if an
event has occurred that should set the flag to False) can be neatly organized
in the rest of the program.

Let’s add a flag to parrot.py from the previous section. This flag, which
we’ll call active (though you can call it anything), will monitor whether or
not the program should continue running:

prompt = "\nTell me something, and I will repeat it back to you:"
prompt += "\nEnter 'quit' to end the program. "

active = True
1 while active:
 message = input(prompt)

 if message == 'quit':
 active = False
 else:
 print(message)

We set the variable active to True so the program starts in an active
state. Doing so makes the while statement simpler because no comparison is
made in the while statement itself; the logic is taken care of in other parts of
the program. As long as the active variable remains True, the loop will con-
tinue running 1.

In the if statement inside the while loop, we check the value of message
once the user enters their input. If the user enters 'quit', we set active to
False, and the while loop stops. If the user enters anything other than 'quit',
we print their input as a message.

This program has the same output as the previous example where we
placed the conditional test directly in the while statement. But now that we

User Input and while Loops 121

have a flag to indicate whether the overall program is in an active state, it
would be easy to add more tests (such as elif statements) for events that
should cause active to become False. This is useful in complicated programs
like games, in which there may be many events that should each make the
program stop running. When any of these events causes the active flag to
become False, the main game loop will exit, a Game Over message can be
displayed, and the player can be given the option to play again.

Using break to Exit a Loop
To exit a while loop immediately without running any remaining code in
the loop, regardless of the results of any conditional test, use the break state-
ment. The break statement directs the flow of your program; you can use it
to control which lines of code are executed and which aren’t, so the program
only executes code that you want it to, when you want it to.

For example, consider a program that asks the user about places they’ve
visited. We can stop the while loop in this program by calling break as soon
as the user enters the 'quit' value:

cities.py prompt = "\nPlease enter the name of a city you have visited:"
prompt += "\n(Enter 'quit' when you are finished.) "

1 while True:
 city = input(prompt)

 if city == 'quit':
 break
 else:
 print(f"I'd love to go to {city.title()}!")

A loop that starts with while True 1 will run forever unless it reaches a
break statement. The loop in this program continues asking the user to enter
the names of cities they’ve been to until they enter 'quit'. When they enter
'quit', the break statement runs, causing Python to exit the loop:

Please enter the name of a city you have visited:
(Enter 'quit' when you are finished.) New York
I'd love to go to New York!

Please enter the name of a city you have visited:
(Enter 'quit' when you are finished.) San Francisco
I'd love to go to San Francisco!

Please enter the name of a city you have visited:
(Enter 'quit' when you are finished.) quit

N O T E 	 You can use the break statement in any of Python’s loops. For example, you could use
break to quit a for loop that’s working through a list or a dictionary.

122 Chapter 7

Using continue in a Loop
Rather than breaking out of a loop entirely without executing the rest of its
code, you can use the continue statement to return to the beginning of the
loop, based on the result of a conditional test. For example, consider a loop
that counts from 1 to 10 but prints only the odd numbers in that range:

counting.py current_number = 0
while current_number < 10:
1 current_number += 1
 if current_number % 2 == 0:
 continue

 print(current_number)

First, we set current_number to 0. Because it’s less than 10, Python enters
the while loop. Once inside the loop, we increment the count by 1 1, so
current_number is 1. The if statement then checks the modulo of current_number
and 2. If the modulo is 0 (which means current_number is divisible by 2), the
continue statement tells Python to ignore the rest of the loop and return to
the beginning. If the current number is not divisible by 2, the rest of the
loop is executed and Python prints the current number:

1
3
5
7
9

Avoiding Infinite Loops
Every while loop needs a way to stop running so it won’t continue to run for-
ever. For example, this counting loop should count from 1 to 5:

counting.py x = 1
while x <= 5:
 print(x)
 x += 1

However, if you accidentally omit the line x += 1, the loop will run
forever:

This loop runs forever!
x = 1
while x <= 5:
 print(x)

User Input and while Loops 123

Now the value of x will start at 1 but never change. As a result, the con-
ditional test x <= 5 will always evaluate to True and the while loop will run
forever, printing a series of 1s, like this:

1
1
1
1
--snip--

Every programmer accidentally writes an infinite while loop from time
to time, especially when a program’s loops have subtle exit conditions. If
your program gets stuck in an infinite loop, press CTRL-C or just close the
terminal window displaying your program’s output.

To avoid writing infinite loops, test every while loop and make sure the loop
stops when you expect it to. If you want your program to end when the user
enters a certain input value, run the program and enter that value. If the
program doesn’t end, scrutinize the way your program handles the value that
should cause the loop to exit. Make sure at least one part of the program can
make the loop’s condition False or cause it to reach a break statement.

N O T E 	 VS Code, like many editors, displays output in an embedded terminal window. To
cancel an infinite loop, make sure you click in the output area of the editor before
pressing CTRL-C.

T RY IT YOURSEL F

7-4. Pizza Toppings: Write a loop that prompts the user to enter a series of
pizza toppings until they enter a 'quit' value. As they enter each topping, print
a message saying you’ll add that topping to their pizza.

7-5. Movie Tickets: A movie theater charges different ticket prices depending on
a person’s age. If a person is under the age of 3, the ticket is free; if they are
between 3 and 12, the ticket is $10; and if they are over age 12, the ticket is
$15. Write a loop in which you ask users their age, and then tell them the cost
of their movie ticket.

7-6. Three Exits: Write different versions of either Exercise 7-4 or 7-5 that do
each of the following at least once:

•	 Use a conditional test in the while statement to stop the loop.

•	 Use an active variable to control how long the loop runs.

•	 Use a break statement to exit the loop when the user enters a 'quit' value.

7-7. Infinity: Write a loop that never ends, and run it. (To end the loop, press
CTRL-C or close the window displaying the output.)

124 Chapter 7

Using a while Loop with Lists and Dictionaries
So far, we’ve worked with only one piece of user information at a time. We
received the user’s input and then printed the input or a response to it.
The next time through the while loop, we’d receive another input value and
respond to that. But to keep track of many users and pieces of information,
we’ll need to use lists and dictionaries with our while loops.

A for loop is effective for looping through a list, but you shouldn’t mod-
ify a list inside a for loop because Python will have trouble keeping track of
the items in the list. To modify a list as you work through it, use a while loop.
Using while loops with lists and dictionaries allows you to collect, store, and
organize lots of input to examine and report on later.

Moving Items from One List to Another
Consider a list of newly registered but unverified users of a website. After
we verify these users, how can we move them to a separate list of confirmed
users? One way would be to use a while loop to pull users from the list of
unconfirmed users as we verify them and then add them to a separate list of
confirmed users. Here’s what that code might look like:

confirmed
_users.py

Start with users that need to be verified,
and an empty list to hold confirmed users.
1 unconfirmed_users = ['alice', 'brian', 'candace']
confirmed_users = []

Verify each user until there are no more unconfirmed users.
Move each verified user into the list of confirmed users.
2 while unconfirmed_users:
3 current_user = unconfirmed_users.pop()

 print(f"Verifying user: {current_user.title()}")
4 confirmed_users.append(current_user)

Display all confirmed users.
print("\nThe following users have been confirmed:")
for confirmed_user in confirmed_users:
 print(confirmed_user.title())

We begin with a list of unconfirmed users 1 (Alice, Brian, and Candace)
and an empty list to hold confirmed users. The while loop runs as long as
the list unconfirmed_users is not empty 2. Within this loop, the pop() method
removes unverified users one at a time from the end of unconfirmed_users 3.
Because Candace is last in the unconfirmed_users list, her name will be the
first to be removed, assigned to current_user, and added to the confirmed_users
list 4. Next is Brian, then Alice.

We simulate confirming each user by printing a verification message
and then adding them to the list of confirmed users. As the list of uncon-
firmed users shrinks, the list of confirmed users grows. When the list of

User Input and while Loops 125

unconfirmed users is empty, the loop stops and the list of confirmed users
is printed:

Verifying user: Candace
Verifying user: Brian
Verifying user: Alice

The following users have been confirmed:
Candace
Brian
Alice

Removing All Instances of Specific Values from a List
In Chapter 3, we used remove() to remove a specific value from a list. The
remove() function worked because the value we were interested in appeared
only once in the list. But what if you want to remove all instances of a value
from a list?

Say you have a list of pets with the value 'cat' repeated several times. To
remove all instances of that value, you can run a while loop until 'cat' is no
longer in the list, as shown here:

pets.py pets = ['dog', 'cat', 'dog', 'goldfish', 'cat', 'rabbit', 'cat']
print(pets)

while 'cat' in pets:
 pets.remove('cat')

print(pets)

We start with a list containing multiple instances of 'cat'. After printing
the list, Python enters the while loop because it finds the value 'cat' in the list
at least once. Once inside the loop, Python removes the first instance of 'cat',
returns to the while line, and then reenters the loop when it finds that 'cat' is
still in the list. It removes each instance of 'cat' until the value is no longer in
the list, at which point Python exits the loop and prints the list again:

['dog', 'cat', 'dog', 'goldfish', 'cat', 'rabbit', 'cat']
['dog', 'dog', 'goldfish', 'rabbit']

Filling a Dictionary with User Input
You can prompt for as much input as you need in each pass through a while
loop. Let’s make a polling program in which each pass through the loop
prompts for the participant’s name and response. We’ll store the data we
gather in a dictionary, because we want to connect each response with a
particular user:

mountain_poll.py responses = {}
Set a flag to indicate that polling is active.
polling_active = True

126 Chapter 7

while polling_active:
 # Prompt for the person's name and response.
1 name = input("\nWhat is your name? ")
 response = input("Which mountain would you like to climb someday? ")

 # Store the response in the dictionary.
2 responses[name] = response

 # Find out if anyone else is going to take the poll.
3 repeat = input("Would you like to let another person respond? (yes/ no) ")
 if repeat == 'no':
 polling_active = False

Polling is complete. Show the results.
print("\n--- Poll Results ---")
4 for name, response in responses.items():
 print(f"{name} would like to climb {response}.")

The program first defines an empty dictionary (responses) and sets a flag
(polling_active) to indicate that polling is active. As long as polling_active is
True, Python will run the code in the while loop.

Within the loop, the user is prompted to enter their name and a moun-
tain they’d like to climb 1. That information is stored in the responses
dictionary 2, and the user is asked whether or not to keep the poll run-
ning 3. If they enter yes, the program enters the while loop again. If they
enter no, the polling_active flag is set to False, the while loop stops running,
and the final code block 4 displays the results of the poll.

If you run this program and enter sample responses, you should see
output like this:

What is your name? Eric
Which mountain would you like to climb someday? Denali
Would you like to let another person respond? (yes/ no) yes

What is your name? Lynn
Which mountain would you like to climb someday? Devil's Thumb
Would you like to let another person respond? (yes/ no) no

--- Poll Results ---
Eric would like to climb Denali.
Lynn would like to climb Devil's Thumb.

User Input and while Loops 127

T RY IT YOURSEL F

7-8. Deli: Make a list called sandwich_orders and fill it with the names of various
sandwiches. Then make an empty list called finished_sandwiches. Loop through
the list of sandwich orders and print a message for each order, such as I made
your tuna sandwich. As each sandwich is made, move it to the list of finished
sandwiches. After all the sandwiches have been made, print a message listing
each sandwich that was made.

7-9. No Pastrami: Using the list sandwich_orders from Exercise 7-8, make sure
the sandwich 'pastrami' appears in the list at least three times. Add code
near the beginning of your program to print a message saying the deli has
run out of pastrami, and then use a while loop to remove all occurrences of
'pastrami' from sandwich_orders. Make sure no pastrami sandwiches end up
in finished_sandwiches.

7-10. Dream Vacation: Write a program that polls users about their dream vaca-
tion. Write a prompt similar to If you could visit one place in the world, where
would you go? Include a block of code that prints the results of the poll.

Summary
In this chapter, you learned how to use input() to allow users to provide
their own information in your programs. You learned to work with both
text and numerical input and how to use while loops to make your programs
run as long as your users want them to. You saw several ways to control the
flow of a while loop by setting an active flag, using the break statement, and
using the continue statement. You learned how to use a while loop to move
items from one list to another and how to remove all instances of a value
from a list. You also learned how while loops can be used with dictionaries.

In Chapter 8 you’ll learn about functions. Functions allow you to break
your programs into small parts, each of which does one specific job. You
can call a function as many times as you want, and you can store your
functions in separate files. By using functions, you’ll be able to write more
efficient code that’s easier to troubleshoot and maintain and that can be
reused in many different programs.

	Part I: Basics
	Chapter 5: if Statements
	A Simple Example
	Conditional Tests
	Checking for Equality
	Ignoring Case When Checking for Equality
	Checking for Inequality
	Numerical Comparisons
	Checking Multiple Conditions
	Checking Whether a Value Is in a List
	Checking Whether a Value Is Not in a List
	Boolean Expressions
	Exercise 5-1: Conditional Tests
	Exercise 5-2: More Conditional Tests

	if Statements
	Simple if Statements
	if-else Statements
	The if-elif-else Chain
	Using Multiple elif Blocks
	Omitting the else Block
	Testing Multiple Conditions
	Exercise 5-3: Alien Colors #1
	Exercise 5-4: Alien Colors #2
	Exercise 5-5: Alien Colors #3
	Exercise 5-6: Stages of Life
	Exercise 5-7: Favorite Fruit

	Using if Statements with Lists
	Checking for Special Items
	Checking That a List Is Not Empty
	Using Multiple Lists
	Exercise 5-8: Hello Admin
	Exercise 5-9: No Users
	Exercise 5-10: Checking Usernames
	Exercise 5-11: Ordinal Numbers

	Styling Your if Statements
	Exercise 5-12: Styling if Statements
	Exercise 5-13: Your Ideas

	Summary

	Chapter 7: User Input and while Loops
	How the input() Function Works
	Writing Clear Prompts
	Using int() to Accept Numerical Input
	The Modulo Operator
	Exercise 7-1: Rental Car
	Exercise 7-2: Restaurant Seating
	Exercise 7-3: Multiples of Ten

	Introducing while Loops
	The while Loop in Action
	Letting the User Choose When to Quit
	Using a Flag
	Using break to Exit a Loop
	Using continue in a Loop
	Avoiding Infinite Loops
	Exercise 7-4: Pizza Toppings
	Exercise 7-5: Movie Tickets
	Exercise 7-6: Three Exits
	Exercise 7-7: Infinity

	Using a while Loop with Lists and Dictionaries
	Moving Items from One List to Another
	Removing All Instances of Specific Values from a List
	Filling a Dictionary with User Input
	Exercise 7-8: Deli
	Exercise 7-9: No Pastrami
	Exercise 7-10: Dream Vacation

	Summary

