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Preface

The purpose of this text Is to present an introduction to Dynamic Physical
Oceznography at a level suitable for senior year undergraduate students in the
sciences and for graduate students eniering oceanography.

The aims are to introduce the basic objectives and procedures and fo state
some of the present |imitations cf dynamic oceanography and its relations to
. the material of descriptive oceanography. We hope that the presentation will
serve to introduce the field to physicists intending fo specialize in physical
oceanography, to help oceanographers in other disciplines to learn enough
about the ocean circulation to discuss with the physical oceanographer the
aspects which he needs to understand for his own work, and fo give those in
allied fields an appreciation of what the dynamic oceanographer is trying to
do in contributing to our overal!l knowledge of the oceans.

The presentation Tnvolves the use of mathematics, as the essence of the dynamic
approach is to deduce quantitative information about the movements of the ocean
from mathematical statements of the basic principles of physics. The level is
such that undergraduates who have taken a course in caiculus shouid be able fo
follow the essentials of the mathematical arguments, while studenys in the
physical sciences should have no difficulty at all. Non-physical science
students should not be disheartened by the mathematics because a course with
much of this material has been taken for many years by biclogical science
students, among others, at The University of British Columbia to complement a
course in descriptive physical oceanography. For students with littie calculus
background we emphasize the physical assumptions made in sefting up and in
solving the equations, so that the l|imitations inherent wiil be clear, and
then we stress the interpretation of the solutions obtained. The intermediate
mathematical steps are provided for those interested in following them, The
student with |imited mathematical background should concentrate on the verbal
physical Interpretations and not worry about the details of the equations.

The non-physicist may find parts of Chapter 7 somewhat difficult at first, |If
so rereading this chapter affer reading Chapters 8, 9 and, perhaps, [0 wouid
probably be worthwhile.

We have Trled to make the text self-contained but we feel that students inter-
ested in dynamic oceanography would find it beneficial to acquatnf themsel ves
first with the observational aspects of physical oceanography in order to be
aware of the characteristics of the ocean which the dynamic oceanographer is
endeavouring to understand and explain, A fext such as Deseriptive Physical
Oceanography by Pickard or other introductions to this aspect listed at the
end of the text would provide the desired background.

In assembiing the text we have added significanfly to the original course
material on which it was based so that it is unlikely that all of the present
material could-be covered - in a course of twenty-five or so lectures as we

have done in the past. However, we assume that an instructor will select what
is considered appropriate for the class and will leave the remaining material

xi



xii Preface

for later reference or will consider presenting the material in a longer
course.

The added material is not only to make the text more complete for the non-
physicist but also to try to make the text usable for physical science students
who are beginning graduate studies with the intention of pursuing careers as
physical oceanographers. The more detailed, extra material has been put to-
ward the ends of chapters when possible. For physical oceanography graduate
students the book will need to be supplemented either in lectures or with
references to the |iterature, e.g., turther discussion {(with more complete
mathematical theory) of such topics as turbulence, vorticity, equatorial
undercurrents, boundary layers, thermocline and fhermohaline circulation
theories, efc. The chapters here on waves and tides are for the non-specialist
audience as these topics require extensive individual treatment for the
physical cceanographer.

| ¥ the physicists find that some concepts are introduced in a rather elemen-
tary fashion we ask them to bear with us as these are ones which, In our
experience, have given frouble to non-physicists. The physicist might even
find the more extensive verbal explanations a pleasant relief from the
multitudes of equations with limited explanations sometimes encountered.

We have concentrated on the large-scale average circulation to provicde a focus
for the book. Coastal and estuarine dynamics have not been presented although
there is occasiona) mention of them. The Further Reading list gives some
suitable references for these aspects.

In an infroductery book we feel that detailed literature references are dis-
tracting and sc we have not used them extensively. We have used peopla's
names to identify major ideas and occasionally in the specialized sections we
have given |literature references as starting points for further stiudy. The
Suggestions for Further Reading at the end of the book have brief comments to
help the reader to judge the leve! of the works cited.

Finally it must be re-stated that this text is simply an introduction fo
dynamic oceanography. Much more sophisticated treatments are available for
many aspects, Good introductions fo the earlier mathematical studies are
Stomrel's The Gulf Stream (1964) and Robinson's compilation of papers (1963).
Most of the recent work is still in articles in journals such as those men-
tioned in the Further Reading list. Even the information on the physical
properties of sea water, e.g., density, conductivity, compressibility etc., is
being reviewed very carefully and new determinations are being made fo satisfy
the needs of the increasingly refined analytical treatments being developed.
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CHAPTER 1
introduction

Oceanography is the study of the ocean making use of the various basic
sciences, physics, chemistry, biclogy and geology, with mathematics being
used as an aid Yo parts of all these studies. Farficular atiention is paid
to the ocean as an environment both for the organisms which inhabit i+
naturatly and in relation to man's activities, and also fo its interacticn
with the atmesphere, the environment in which man |ives,

The physicist's contribution is to study the distributicn of properties such
as temperature, salinity, density, transparency, etc., which distinguish one
water mass from another, and to study and understand the motions of the ocean
in response to the forces acting.

Some of the problems which have been recognized and-studied are:

Why are fthe gross mid-latitude surface circulations in the ocean clock—
wise in the northern hemisphere but anti-clockwise in the southern
hemisphere?

Why are these circulations concentrated and swift at the western sides
{Gulf Siream, Kuroshio, efc.) but broad and slow elsewhere?

What is the reason for the eastward circulation of the Southern Ocean
around Antarctica? )

What is the distribution with depth of ocean currents?

What is {are) the reascn(s) for the complicated equatorial flow patterns?

What zre the details cf the mechanisms of ftransfer of momenium and energy
tetween air and water?

Wwhat are the characteristics and causes of surface and internal waves?

What are the relations between submarine earthquakes and fsuramis and
how do the latter behave in the deep ocean anc at the shore?

What are the characteristics and significances of turbulent motions in
the cceans?

To some of the questions we have answers, fo some we have partial answers, and
&5 our studies progress new problems become apparent.

Physica! studies are carried out both by direct observation of the properties
and movements-end alsc by epplying the basic physical principies of mechanics
and thermodynamics to. determine the motions. The observational approach is
called desoriptive. or: synoptic oceanography because the physicist tries to
recuce his observations to a simple summary or synopsis. The essential
feature of the second approach, dynamic oceanography, is to use physical laws
to endeavour to obtain mathematical relations between the forces acting on
fhe ocean waters and Their consequent motions. |In either case, the ultimate
objective is to learn enough about the structure and motion of the ocean to
be able to predict its future state.



2 Introductory Cynamic Oceanography

fn principle, to achieve this objective the dynamic approach is most likely
to be successful because it should result in analytic expressicns which can
be used for prediction into the future, whereas, the synoptic approach simply
describes what happened in the past. In practice, it furns out that some
characteristics of the oceans do not change much with time, or they repeat
themselves with recognized periods, so that a good description of the present
state may be applicabie for some time into the future. However, some features
do change and the amplitudes of cyclic variations may alter, so that a quan- .
titative understanding of the relation between the causative forces and the
reaction of the ocean is desirable. Therefore, the preliminary gquantitative
description of the ccean and ifs movements prepared by the synoptic ocean-
ographer is used by the dynamic oceancgrapher to suggest what kinds of moticn
he may expect and what forces may be causing them, so helping him to start
his thecretical study. Also, if he meets mathematical difficuities in his
analysis, as often heppens, the available observations may suggest what
mathematical approximations may be made while still keeping the investigation
physicaliy realistic. : ' :

When the dynamic oceanographer has made a preliminary analysis, it will
prebably suggest the need for more extensive or sophisticated obseivations;
when these have been made he may refine his analysis. Successions of irmproved
observations and analysis will hopefully lead to better and better under-
standing of the physics of the ocean, and improvement in our ability to
predict its fufure starte.

Systematic physical observations of the ccean have been mede for & century or
so, the rate of accumulztTion of data having increased enormously during the
fast fwenty vears. An introduction toc the available information is presented
in Degeriptive Physical Ocearograrhy by Pickard and cther texts listed in the
Suggestions for further Reading leter in this book. The purpcose of The pres=~
ent text is tc provide a peralie! irtroduciion to dynamic oceanography. The
systematic dynemical study of the circulation started at the end of the last
century when Scandinavian meteorclogists, recognizing the simiiarity between
the dynamics of the atmosphere and of the ocean, turned their attention to
the latter. Studies of some phencrena started much earlier with Newton's
(circa 1687) and Laplace's (circa 1775) studies of the tides, and Gerstner's
(1802) and Stokes' (1874) studies of waves, as exarples.

The skquence of Toplcs in this book starts with a description of the preper-
Ties of sea water relfevant tc dynamic cceanography, and & summary cf the

basic physical laws or principies which wil! be used. The grinciple of con-
servation of mass is used Iin the form of conservaticn of volume which, for

the incompressibility approximation used, places mild restrictions on the
pcssible motions., An exemple is given of iTs applicaticn. A cdefinition of
static stabiiity is presented and discussed, and the possibility of double
diffusive instability is mentioned. Then the fcrces which may be acting in
the sea are classified and some simple examples given. Following this
chapter, and occupying a large part of the present exposition is 2 discussion
of the appficaticn of Newton's Second Law of Motion fo relate the forces
gcting to the resultant motion of the sea on & rotating earth- the tield of
geophysical fluid dynamics. Because of aralytic {mathematical) difficuities
in solving some of the forms cf the equatiors of motion, numerical methocs

tor solving the equations are increasingiy being applied; the besic
principles, successes and limitations of thic technique are summarized. Short
accounts of the characteristics of waves and tides are given, anc finaliy some
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discussion is offered of what appear fo be the presently active and future
areas for research. :

Two appendices are included. The first is a brief review of mathematichl
techniques used and of simple hydrodynamical principies for the reader with

a limited background in these fields. The second is concerned with units.

In the mathematical solution of equations, when all quantities are represented
by letter symbels, the question of what physical sysiem of units should be
used in measurement does not arise. However, as soon as numerical caicula-
tions are -to be made, to compare the mathematics with observations made on the
real world, it is necessary to select a system of units. Unferiunately, in
most ‘of the physical oceanographic |iferature a mixed system of units has

been used. It is basically the CGS system using centimefres, grams, seconds
and calories as the fundamental units. However, although density is expressed
in grams cm'3, depths are expressed in metres, and horizonfal distances offen
in nautical miles, pressure is expressec in decibars, abbreviated as db,
{because the depth in meires and the pressure then have numerically almost The
same value) and a quantity called "dynamic height' expressed in 'dynamic
metres' is introduced although it is dimensionally work per unit mass. Because
the international System cof Units is now coming into general use, and is often
required for publication in many Jjournals, we have elected to cepart from the
conventional cceanographic units and introduce fthe S | units systematically

in this ftext. Appendix |l then contains a glossary of physical oceanographic
terms and conversion factors between the S | units and the old mixed system
units.

For coordinate axes we will use a right-handed system with fthe positive x-axis
directed horizontally to the east, the positive y-axis horizontally to the
north, and the positive z-axis vertically upwerd, with the origin normally at
mean sea level. MNote that the term 'depth', the distance belew the surface,
is taken to be positive as is the usual practice; thus with The origin at the
surface, z is the negative of the depth, i.e., for.'a depth of 100 m' then
z=-100m.



CHAPTER 2

Properties of Sea Water Relevant to
Physical Oceanography

INTRODUCT ION

The physical properties of pure water relevant to fliuid dynamics studies are
functions of pressure (p} and temperature (T) while Those of sea water are
functions of pressure, -temperature and salinity (S). (The salinity of see
water s a measure of the amount of dissolved salts expressed as the number
of grams ©of dissolved material in one kilogram of sea water. The average
value for sea water is about 35 grams per 1000 grams, expressed as S = 35 %o
(parts per thousand). Because of the variety of dissoived salts in sea water
and of the physicel/chemical problems associated with determining the amount
in a given sample, the exact definition of salinity (given in Appendix |1} is
slightly more complicated but as we are not concerned here with the techniques
of determination the above definition will be sufficient.

The effect of the dissolved salts is to alter the physical properties from
those of pure vazter in degree rather than to cdevelop new properties, e.g.,
smal | changes in compressibility, thermal expansion, refractivity and larger
changes in the freezing point, density, temperature of maximum density and
electrical conductivity. Although water is a very common substance it has
extreme values. for many physical properties, e.g., high specific heat so that
ocean currents carry much thermal energy, a high iatent heat of fusion so that
in polar regions where there is ice in the water the temperature is maintained
close to the melting point, a high letent heat of evaporation which s .
important in heat fransfer from sea to air, and a high mclecular heat con-
ductivity. (This latter property is over-shadowed under most circumstances
by 'eddy' transfer processes due tc the turbulent motion of ccean waters,

The 'eddy' or furbulent heat transfer effects are discussed briefly in
Chapter 10.)

DENS!ITY -

From the point of view of dynamic oceenocgraphy the most important aspect is
the quantitative manner in which the dengity varies with changes in temper-
ature, salinity and pressure. Density (p) decreases as temperature increases,
and increases as salinifé and pressure increase. The variation of density,
as g (= p-1{,0000kg m™~, is shown in Fig. 2.| for temperatures from -2 1o
30°C and salinities from 30 to 40% which cover the rangss of values found in
the open oceans. About 90% of the volume of the ocean has values in the much
smzller range from -2° to 10°C and 24 +o 35%, as showh in the figure. This is
mostly sub-surface water, The remainder of the range of properties in the
figure represents limited volumes of surface waters. The relation between
density. and the parameters temperature and salinity is non-linear, more so

4
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SALINITY

w. 20
ot

TEMPERATU

90 %-of OCEAN

Fig. 2.t. Values of density (as sigma-t) as a function of temperature and
salinity. over ranges appropriate to most of the ocean. ©0% of
the ocean vcluime has Temperafure and salinity values within the

dashed reyfangie Y

-

in temperature than.in salinity, and density is less sensitive to temperature
changes at low temperatures than at high temperatures. Note that pure water
has a density maximum close fo 4°C at atmospheric pressure but as salinity
increases this Temperafure decreases to about -1.4°C at salinity = 25%
(where the freez:no ‘paint has the same velue). A useful rule-of-thumb |s that
density increases by approximately 1 part in a thousand (i.e,,by 1 kg m=3)

for & change of temperature of -5°C, for a change of salinity of 19 or for

a change of pressure of +2000 kPa (k:IoPascaIs) (— +200 db equivalent fo a

depth change of about +200m),
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Measurement of Density, Temperature and Salinity

For many calculations, fhe physical oceanographer needs to know the distribu-
tion of density both horizontally and vertically in the sea but at present
there is nc method available for measuring it accurately in situ. |1 can be
measured directly in the laboratory but the standard methods are siow. In
practice, temperature, salinity and pressure are measured and the density is
deduced from tables which have been prepared from laboratory determinations
of this property.

- In situ temperature (T} Is measured either with a specially designed mercury-
in- glass thermometer which records the femperature at the moment when the
‘sample is taken at depth (reversing thermometer) or wrfh an electrical reslist-
ance thermometer.

Because sea water is slight{y compressible, & sampl2 brought from depth to

the surface witl expand and therefore tend to cool. The temperature of a
sample brought adigbatically +o the surface {i.e., without thermal contact
with the surrounding water) wili{ therefore be cooler than in situ. The
temperature which it would have at the surface in these circumstances is
called the potential temperature (8). This vaiue is used when comparing water
masses at significantly different depths or when ceonsidering vertical moiions
over considerable depth ranges.

Salinify is deftermined from measurements of the electrical conductivity and
_the temperature of a2 sample in the laboratory (because at constant pressure
conductivity is a function of temperature and salinity, i.e., conductivity =
f(T,5), a compact way of stating that conductivity is & funciion of, or varies
with, T and S). Pressure (p) is determined frocm the depth of sampling and the
density of the weter column, Aiternatively, conductivity, temperature, and
pressure senscrs may be mounfed together in an underwater unit which is
lowered through the depth range reguired and the instrument (C,T,D) either
reccras the dats internally cr fransmits them as electrical signals to
instruments cn deck where a continuous record of Temperature and conductivity
{or salinity) against depth -is cbtained. The relations between salinity,
conductivity and température were redetermined in 1966; absolute redetermin-
ations of conductivity and density are still tc be made.

Relative Density, Sigma-1 and Specific Volume

in their discussions, physical oceanogrephers sometimes use density {p), scme-
times relative density (d), sometimes specific volume (& =1/p) and sometimes
a quantity called 'sigma-t1' (0.

Although oceanographers tatk about the 'density' of see water, stricily speak-
Tng they should use the term 'relative density' (formeriy "specific gravity')
because the l|aboratory determinations on sea water of the effects of temper-
ature and salinity have consisTed of comparisons with pure water and the
direct determinations of p = p(T,S,p} are less precise. The relative density
can be given with an accuracy of abcut 3 in 0% but the density is only

accurate to about 10 in {0 Fortunately it is the density differences which
are important in most cases and for these the greater uncertainty in the
absoclute values is not significant. We will follow the cgmmon practice and

talk about p as density with the physncal dimensions [ML=3],
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.

it should be noted that in oceanographic practice, when specifying the con-
ditions for a water sample the quantity p refers to The hydrostatic pressure,
i.e., the pressure due only fo the column cf water above a point in the sea,.
so that p = 0 impiies that the sample is at atmospheric pressure.

Sigma-t, defined as ot = (DS,T,O - 1,000), was introduced simply for brevity.
The density of sea waTer at atmospheric pressure varies from about 1,000 kgm
(1.000 g em=3) for almost fresh water fo about 1,028 kg m=3 for the densest
ocean surface water. As the variation is entirely in the last two figures
(four if density is expressed to the second cecimal place) it is convenient
for descriptive purposes simply o use these two (or four) figures, e.qg,, for
sea water of T = 10.00°C, $=35.00°wand p = 0, then p = 1,026.97 kg m-° and
g+ = 26,97 kg m=3.  Although 0+ has units of kg m3 it is usual to omit them.
when quoting values. ;
I+ should aiso be noted that ot is the special case of the more general in
situ quantity 05 7., = {P5 T p - [,000) which inciudes the effect of pressure
but is less ofteh bLSed thah &y. Sigma-T is more often used because it allows
a much betier estimate of what tThe density difference between twc waier fTypes
would be when They are at the same level and hence it is & beffer indicator
of static stability (which will be discussed in Chapter 5). when one is
censidering the motion of a water parcel over a considerable depth range, it
may be desirable to eliminate the effect of adiabatic heating or cooling by
using the potential femperature 6 rather than the in situ temperature T and
calculating the potential density Ps,08,0 ©F dg = (pS,G,O - 1,000).

Specific voluwre (o) Is the reciprocal of density (a = 1/p) and has the units
m> kg™'. Two other density related quantities are used in cceanography.
These are specific vciume anomaly (8) and thermosteric anomaly {Ag 1) which

will be defined later in this chapter. The relations between the Inits for
densiTty and specific volume, ete. used here-and those used in previous Texts
are discussed later in the chapter and alsc in Appendix |I for reference.

For orientation and for comparison, some values for density for fresh water
and for sea water will be given. For the open ccean, temperatures range from
-2°C to +30°C, salinity from 30 to 38%.and hydrestatic pressure from O to
about 10° kPa (= (0% db, correspending to the maximum ocean depth of about
10,000 m), MNear rivers or melting ice, the salinity may fall to 0% in the
surface layer, while values of 40%, or more occur in the Red Sea. Valuves for
density are given in Table Z.].

"The density of fresh water at 0 kPa hydrostatic pressure (i.e., at standard
atmospheric pressure) has its maximum value cof 9992.97 kg m~3 at 3,98°C.
Values in brackets in Table 2.1 correspond to conditions which do not occur
in lakes or oceans. -

TABLES FOR CENSITY AND SPECIFIC VOLUME AS FUNCTIONS OF TEMPERATURE,
SALINITY AND-PRESSURE . ‘
YA .

For a one-ccmponent fluid, the specific vclume o = alt,p), i.e., it 1s 2
function of temperature and pressure only. For a perfect gas, the relation
(the Tequation of state') has the simpfe form « = R.T/p where R is the Gas.
Constant. For-fresh water, the relationship is more complicated, while for
sea water, which Is 2 multi-compenent fluid, the dissolved salts add further
complication and & = a(S,T,p). (The situation is simitar in the atmosphere
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TABLE 2.1 Values of Density In Situ for
Fresh and Sea Watér (kgm‘3) L

Average Red Sea

Fresh Water Sea Water {winter)
Hydrostatic  Approx. = 0% S = 35% S = 40%
Pressure Depth Temperature Temperature Temperature

10%kPa (03db m 0° 30°C 0° - 30°C. 18°C

0 0 0 999.8 995.9 1028, 1 1021.8 1029. 1

! | 1,000 [004.8 (1000.0) 1032.8 (1026.0)} 1033.5

4,000 (1019.3) (i012.8) 1046.3 (1038.1) 1045.9

10 i0 10,000 (1045.4) (1036.1) 1070.9 (1060.5) (1068.5)

where water vapour pliays an analogous role to salinity in sea water and
changes the relatively simple equation of state for dry gir To a more compli-
cated form for moist air.) The retationship e = a(5,T,p) can be, presented as
a complicated polynomial jn temperature, salinity and pressure but it is
usually expressed jn the form of tables.

The early cceancgraphers who measured the variation of density with .-tempera-
“ture, salinity and pressure found, by a process of trial and error, that the
mosT convenient way to express the results was in terms of the specific volume

{a = 1/p) as follows:

= a + 6.+ 8.+ 8

%, T,p ~ %35,0,p.F 85t Or t g, 7 v O Oyt Sg 1 e (z.1)

0 TP 5, T,p

or as
(GS,TJ)-G35,O,Q) = § = A + & + 4 + 6
In these expressions, as T p is the specific volume of a sample of water of
salinity S, temperature 'T’and pressure p (the hydrostatic pressure at the
depth of the sample in +he sea). a35 g,p IS the specific volume of sea water
~of S = 35%, T = 0°C and pressure p at Tﬁe depth of the sample. This term
-~ expresses. most of the effect of pressure on specific volume. The term §, the
specific volume anomaly, represents the sum of the six anomaly terms in
equation 2.1, The quantity &g 1 = 8¢ + 81 + 85,7 accounts for most of the
effect of salinity and temperature, dlsregérolng pressure, and is called the
thermosteric anomaly. The terms 65 and GT account respectively for most
of The combined eff ec+ of salinity and pressure and of temperature and pres-
sure. The last anomaly term, ég ,T.po is so smali that it is always neglected
with the present accuracy of detérmination of the parameters S, T and p, |In
water of depth less than about !,000 m the thermosteric anocmaly, 4g 1, is
the major component of § and the pressure terms 8g,p and 81, p may often be
neglected, &g 1 has, In recent years, tc a large extent replaced 0+ 3s a
parameter for descr:blng density characteristics in the upper layer of the
ocean because it can be used more directly than oy in first order dynamic
catculations,

From a_. l/(lOOO-rc } and o

5,7,0 - %s,1,0 s,7,0 - °35,0,0 * 85,7
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and noting That osg o = 0.97264 1073 m%kg™} it is easy to show that
1000 -3 3, -l _
AS,T [ Tﬁﬁﬁﬁra; - 0.97264 ) IQ m kg ~. A few values are as follows:
6, = 23.00 24.00 25.00 26.00 27.00 28.00 kg m°
Bg = 487.7 392.2 297.0 201.9 107.0  12.3 x 1070 m’ kg™

Sources of Data

Sources of tables of data are as foliows (see references at end of texi):

aBS,O,p - Sverdrup et al., Table | forp = 0 1o .9,900 db
(99,000kPa)
Neumann & Pierson, Table 1V ditto
N.G.0. 614, Table IV ditto
Bg 1 -~ Sverdrup et al., Table 11i| for oy = 23 to 28
' Neumann & Pierscon, Table | ’ ditto
N.C.0. 614, Table V for T = -1,9" t0 29.,9°C
S =21.0 to 37.9%
6T , 65 - Sverdrup et al., Tables IV &V
P »P Neumann & Pierson, Tables (I & !li
. N.0.0. 614, Tables VI and Vil
- ' T 5
o - Knudsen's Tables ~for -2 to 33°C 0 to 40 9%
N.0.O0. 614 -2 to 30 30 to 38
N,0.D. 615 -2 to 30 0 to 40
Fleming (S & T values for
unit values of GT) -2 to 30 22 to 4}
pS,T,p - reciprocal of aS,T,p'

it must be noted that the above sets of tables use the old mixed units system.
Using primed symbols (e.g., a') to represent mixed units numerical values as
in the tables, and unprimed symbols (e.g., @) for S| numerical values, then:

a = a' x 1073 2 = p''x 10
- t -3’ = '
AS,T = AS,T‘ x. 10 o, o'y,
67,p ~ 5} - x 1073 p(kPa) = p'(db) x 10
14 ?
8 b= 8¢ p % 073 T and S are the same.
- r ’ :

To indicate fthelr order of magnitude, Table 2.2 gives a selection of values
for the specific volume anomaly terms. Bianks in the table indicate that the
combinations of parameters co not cccur in the sea.
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TABLE 2.2 A Selection of Values for SpeCITIC Vo[ume
Anoma |y Terms in Units of [0=8 m3kg™!

Ag ¢ i Temperature Salinity: 3 . 32 34 35 36% =
-2°C bg 7 = 378 224 70 -7 -84
0 ’ 382 229 76 6 -75
10 480 33 183 109 36
20 681 535 390 318 245
8y Temperature  Pressure: v 1 2 5 0 x 10" kPa
+P (Depth = 0 [,000 2,000 5,000 10,000 m)
~50 o) = - -
2°C S 0 6 Il
0 0 0 0 o
0 6 o 22 38
10 0 21 41
Sq Salinity Pressure: 0 1 Z 5 10 x 16° kPa
hidd {(Cepth = 0 1,000 2,000 5,000 10,000 m)
30%e $ = 0 -8
/ S,p
34 0 -2 -3 -7
34,8 0 0 -1 -1 -2
35 0 0 0 0 0
36 0 2 3

Table 2.3 shows in the first column the current accuracy of routine measure-
“ment of the three parameters, saiinity (from cenductivity), temperature and
pressure, and in the second and tThird columns respectively the accuracy of
density and of specific volume corresponding 7o the variation of each para-
meter individually. For compariscn the values for density, etc., for water
of temperature 10°C and salinity 35.00%at zero hydrostatic pressure are
given at the botiom of the table. '
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TABLE 2.3 Accuracy of Measurement of Temperature, Salinity and Pressure
and Related Accuracies of Density and Specific Volume

Related Accuracies of

Accuracy
of Density in Specific Vogume n
Measurement kg m ‘ m3 kg=*
AS = £ 0.003% . Ap = Ao = % 0.002 ba = Albg T) =% 0.2 x 1078
AT = £ 3.02 C° dp = lo, = + 0.003(1) - Ao = A(AS T} =+0,3x 078
?
bp = * 50 kPa Ap +0.024(2) ba = F2.2x107®
(z Az = £ 5m, for upper }{,000 m)
For water of: T = 10.00°C then o = 1,026.97 kgm °
S = 35.00% C o, = 26.97 kgm °
p= 0 a = 0.97374 x 10 m3 kg™
_ Ca=8 3 -l
AS,T 109.7 x 10 "m kg .
Notes: . This velue is for T = 10.00°C; values for S = 35.00%range from
Ag, = * 0.002 at T = 2°C toc ¥ 0.006 at T = 25°C. -

1.

2. The uncertainty due fc pressure differences may be greater in deep
water because of greater uncertainty in pressure measurement.



CHAPTER 3
The Basic Physical Laws used in

Oceanography and Classifications of
Forces and Motions in the Sea

BASIC LAWS

The follbwlng basic laws of phyéics’are taken as axiomatic in developing the
study of the dynamics ofi~the ocean: -

(1) Conservation of mass,

(2) Conservaiion of energy, ‘

(3) Newton's First Law of Motion that it there Is no resultant force acting
on a body, There will be no change of motion of +the body,

(4) Newton's Second Law of Motion that the rate of change of motion of a
body is directly proportional to the resultant force upon it and is in
the direction of that force,

(5) Newton's Third Law of Motion that for any force acting con & body there
is an equal and opposite force acting on some other body,

{6) Conservation of .Angular Momenium,

(7) Newton's Law of Gravitation. )

Strictly speaking, The first fwo are related but in dynamic oceanography we

are not concerned with the Mass 5 Energy conversion and therefore it is

convenient to keep them separate. Conservation of mass is fundamental but
in oceanography it Is usually used in the form called the 'equation of
continuity! which actually expresses conservation of either mass/unlf volume

(density) or of volume.

The two types of energy whose conservation is important in oceanography are
heat and mechanical. Conservation of heat or the heat budget is most impor-
tant when discussing the distribution of temperature as a property of the
ocean waters In descrip¥ive cceanography and an acccunt of this. subject may

be found in Descriptive Physical Ocearnography by Pickard (see the Further
Reading list at the end of the text). Conservation of mechanical energy will
be considered when freating waves, while the conversion of mechanical to heat
energy will be taken for granted as a loss process for the former but will
not be discussed in*any detail in this text but left for more advanced treat-
ments, (This source of heat is negligible in the heat budget.)

Dynamic oceanrography is concerned with the forces acting on the ocean waters
and with the motions which ensue. In some cases the motions occur under &
system of forces which are in balance sc that no resultant force acts - this
is the case covered by Newfon's First Law of Motion. In other cases there is
a resultant force and acceleration occurs, the relations beitween them being !u
determined by Newton's Second Law. In this text, except in the cese of waves
and tides, we will be concerned almost entirely with unaccelerated mofcon, fj

|z
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ive. with appllcafions of fhe First Law, in interpreting the dynamic behavior

- of the oceans.

We will not use angular momentum directly in this ftreaiment but rather a
retated quantity called vorficity. |1 should be nofed that both tinear and
angular momentum may not be conserved when we measure them relative to the
earth because the latter is itself rofa?|ng in.space and the effects of
rotation must be taken into account in the development of the equations of
motion of The ccean waters.,

The Law of Gravitation, as such, is principaliy applied in discussing the
dynamics of the astronomical tides of the ocean, although it is also important
in determining the hydrostatic pressure. dlsfr:bufnon and in causing moticn
when density changes occur.

CLASSIFICATION OF FORCES AND MOTION

The important forces can be divided into iwo classes, prmmary which cause
motion, and gecondary which result from motion. The primary forces are .

(1) gravitation, both terrestrial, including pressure forces, and due to the
sun and the mocn, (2) wind stress which may be tangential (friction) and

normal (pressure) to -the sea surface, {3} atmospheric pressure, and (4) seismic
(from sea bottom movements). GravifaTion .is a body force in that it acts on
the total mass of the water, while the others are boundary forces, acting
first at a water. surface, although their effects may penetrate beyond the
surface into The body of the water. -

The secondary forces which come intc being when water starts fo move are

(5) Coriolis force, an apparent force on a moving body when ifs motion is
observed relative tc the rotating earth and (6} friction acting at the bound-
ary of the ftuid and tending to oppose its motion or acting within the fluid
and tending fo make the motion more uniform, Frictién also tends to dissipate
the mechanical energy of the motion, converting the kinetic energy of the
fluid into heat energy. -Again, Coriolis force is a body force whereas bound-
ary friction is initially & surface acting force whose effects penetrate in
diminishing degree into the body of the fluid.

A common classification of motion is as (1) thermohaline motion which resuiis
when. the density of water changes in a Iimited region so that the differential
action of gravity causes relative motion. The density changes will be due to
changes of temperature and/or salinity, hence 'thermchaline' motions.
(Thermosaline mightT appear to-be the more logical term but 'thermohaline' is
the more common one and is efymologically correct. I T dates back to the
earlier days of oceanography when the salt content was determined by a silver
nitrate ¥itration procedure which determined the total halogen content of The
sea water sample, and the salinity was then determined from this quantity.)
Evaporation, cooling and freezing (which raises the salinity of the unfrozen
water) all increase the-density of sea water and may cause it to sink vertic-
ally, with subsequent horizontal movement at its own density level or along
the bottom, (2) wind-driven motions such @s the major ocean circulations in
the upper layers, surface waves and upwelling, (3) tidal currents which are
essenfially horizontal,.and internal waves of tidal period,. (4) tswrami or
seismie sea'waves resulting from movements of the sea bottom during undersea
earthquakes, (5) turbulent motions resulting from velocity shear (change of
velocity with respect to one or more spatial coordinates), usually at the
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water boundaries, and (6) various motions such as internal waves, inertial
wvaves, Rossby or planetary waves, etc. ‘

It would also be possible to classify motions by their scale (from the small-
est turbulent eddies of miilimeire scale to the dimensions of the major ocean
circulations), by speed, or by the method of determination, but the classifi-
cation above in terms chiefly of the causal forces is the most used.

A few comments may be made on the variocus forces acting on the sea, before we
proceed to discuss the relations between forces and motion. Terrestrial

- gravity gives rise to the property possessed by mass near the earth which we
call weight, and there are two consequences. In the first place, weight gives
rise to the phenomenon of hydrostatic pressure in a fiuid. In the second
place, because a fluid has weight there will be a component down slope if a
ftuid surface is not horizental and as a fluid cannot withstand shear strain
it will tend to flow dowin-slope (see Appendix !). '

The astronomical gravitational forces due to the sun and mcon fiuctuate
periodiceily as tThe earth rotates and as these two bodies circulate around
the earth, and give rise to the periodic motions which we call tidal currents
and tides, (The gravitational forces due toc the other bodies in the solar
system are negligible compared to those of the earth's moon and of the sun.)

The wind, in blowing relative to ‘the water surface, transfers momentum and
energy to the upper layer of water glving rise both to the fluctuating
motions of waves and to the steadier ocean currents. The generation and
development of waves involves fluctuations of the normal stress {pressure) of
short period of the order of seccnds, and perhaps fluctuations cf the tangen-
tial stress on fthe water surface, but the ocean currents express an integrated
(averaged) effect of the stress.

Ditferences in atmospheric pressure can cause differences in water levels
(called the inverted barometer effect) and hence currents. For instance at
The centre of a cyclonic storm the air pressure is low and the water level
tends to rise; there is an infiow of water to raise the level. Then as the
storm moves, these petterns tend to follow and may cause inundaticns of low-
lying coastal areas.

Sudden movements of the ocean bottom, such as occur in @ dip-slip earthquake
when there is a component of motion perpendicular to the bottom, cause
corresponding movements of the sea surface above. |[f, for instance, a hump
is formed on the sea surface the water immediately begins to fiow outward
from the hump and a train of waves develops and moves outward from the earth-
quake lecation., These are tsunamis or seismic sea waves.

The 'Coriolis force' is an apparent force which acts perpendicular to the

velocity vector of 2 moving body on The SUFTace of—the—eartir—tt—T&te—name
given To a term which appears when The equation of motiom s transTormedfrom

@ fixed frame of reference (relative to the 'fixed' stars) tc a frame of ref-
erence fixed in the earth which is itself rotating about its axis. This -*
force will be discussed in Chapter 6.

The secondary frictional forces are not physically of a different nature from
the primary enes but are introduced as secondary forces because they do not
~arise until motion has been generated, and they then uysually tend to oppose
the motion rather +han maintain it. Fricticnal effects arise because of the

mclecular nature of the fluid and may be much enhanced i the flow is
turbulent, . .



CHAPTER 4
The Equation of Continuity of Volume

THE CONCEPT OF CONTINUITY OF YOLUME

I+ was stated in the -previous chapter that the law of conservation of mass
is used in oceanography in the form of an equation of continuity (of volume
or density). Before deriving this equation we will consider the physical
significance of volume continuity.

For a sfaflonary fluid th€ idea of confanITy of volume is irivial, so IeT us
censider a moving fluid which is assumed to be inccmpressible (i.e., the
volume is not affected by pressure, see Appendix {) and uniform in kind., (5ea
water is not exact'ly incompressible but this assumption is a good approxima-
tion for many applications because the volume changes are smali. . For instance,
a change ot pressure corresponding to a change of depth of 1,000 m would
change the volume of a semple of average sea water by less Than 0.5%. There
are few situations in ocean currents where depth (and therefore pressure)
changes as large as this occur along the flow path.)

Suppose that we had 2 hand basin with two taps, a waste pipe at fhe bottom

and an overflow pipe near the top. with the taps full on (and a good flow of

water from them) it is possible that the water level woulid rise in the basin.

We may reach a finzl state when the basin fills completely and water starts

fo drip over the edge - then we will have continuity of volume of water in the
basin, which could be expressed as:

Hot 4 Cold - - Waste + Overfiow - Drip out
inflow inflow outfliow pipe outflow over edge
or as
. 7 .
+ Hot '+ Cold - Waste - Overflow - Drip = 0 .

This is rather a domestic example. Consider now the tollowing. An ocezno-
grapher is-studying a fong, narrow ccastal inlet which has @ river at the
inland end. He notes. that the upper layer is tlowing fo seaward and fhat the
thickness of this layer is constant (within the observational errors of
-10-20%) from river to.sea. He alsc notes that the seaward flow is slow at

the river end of the inlet but becomes substantialiy faster toward the seaward
end. He wonders why, because this behaviour implies that for a section of the

inlet between AB and A'B' (Fig. 4.1a), where the water speed increases from
ug to uy, there must be mare volume of water flowing out across A'B'C'D' than
in across ABCD. |f we consider the horizontal flow cnly, there appears to be

a lack of continuity of volume. However, the inlet Is not emptying and to
produce a balance there must be an upward flow (wi from the lower fc the upper

15
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Fig. 4.1. .Continuity of volume for an inlet: (a) pian view cf uppger layer,
outfiow increases seaward, (b) perspective view - outflow in
upper layer, inflow in lower layer and upward flow from lower to

upper- layers.

layer across CDD'C' {(Fig. 4.1b) so that we have:

u x area ABCD + w x area CDD'C' = u x area A'5'C'D!
or 3 ‘ 4
u3 x area ABCD + w x area CCD'C' - uq x area A'B'C'D' = 0 ,

- expressing continuity of volume for the upper leyer. The weter which leaves
the iower layer must be replaced. Because there can be no flow through the
bottom of the inlet an inward horizontat flow from the sea must develop as
shown. This is an example of estuarine flow. Note that this is an idealiz-
ation of the average behaviour in an inlet. Real inlets are often more com
plicated, e.g., the return flow may be laterally adjacent 1o the outilow,
there may be more than cne region of outflow and/or inflow in a cross-section,
and wind-driven and tidal motions may be large enough 1o make observations cf
tThe average flow extremely difficult. However, the principle remains valid
that there must be replacement of the deeper water which the river flow picks
up qnd carries out of the inlet.

THE DERIVATION OF THE EQUATICK OF CONTINUITY OF VOLUME

We will now consider conservation of mass ir order to derive a general
equation for applying continuity of volume, In Fig. 4.2 is represented a
rectangular volume fixed in space with sides of lengths &x, 8y and 8z in a
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u + bu

0 x

Fig. 4.2. Continuity of volume - components of flow in x-direction,

moving fluid. Consider first the flow parallel fo the x axis. At the left
face the velociTy is u and the fluid density p, while at the right face the
velocity is u + 8u and the density p + 8p, These last two expressions may
be hr|tfen approximately as u + (3u/dx) + 8x and p + (dp/d3x) + §x where terms
in (8x)?%etc. have been neglected because they.will vanish when we take the
limit as §x + 0, (A reader unfamiliar with the notaticn being used should
read Appendix | up to the section on hydrostatic pressure befcre proceeding
further in the text.) Then, in the x-direction:

the mass flow into the volume = p + us 8y +48z (mass/unit time)
and the mass flow out of the volume = (p + %—- 6x)(u-+:r--5x) - 8y - 6z
so that the net flow out of the volume in the x direction is the difference

fu -§%~kp au gi 3;- &§x] - 8x - Gy §z = [

3("“) +0(6x)] - 6x « 8y * 6z .

Here, 0(8x) has been written for the last term in the brackets of the previous
equation and indicates that the term is of the order (size) éx times some
finite number., By taking éx sufficiently small (mathematically we take the
fimit as 6x - 0) this term must become negligible compared with the other term
in the square bracket provided That The muitiplier (9p/9x) * (3u/3x) is finite
as we expect it to be for a physical system.*

Then,’Taking intc-account the mass flow in all three component directions and
neglecting’ the terms which vanish in the limit as &x, 8y, 8§z » 0 the total

. . R
flew cut = [ g;OU) + g;QV) + g;pw)

Jedxe 8y -6z

* - .

The reader may be cencerned about treating a medium acfually made up of
molecules as continuous, and about whether taking the limit as 8x + 0 is real-
istic. [n fact, there'are no practical problems in this limiting process.

For further d:scusslon, which is beyond the scope of this book, the reader
may consult a text on continuum or fluid mechanics, such as that by Batcheior
(1987} in the Further Reading list at the end ot this book.
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where v and w are the velocifyvcomponenfs in the y and z directions
respectively.

The mass. remaining in the small volume &8x < 8y « 8z changes by (3p/dt)*8x+8y-8z
per unit time. 1f mass is to be conserved, the sum of the effecfs must be
zero, i.e., the change of mass per unit volume Is

_Jg + 2pu) | alpv) | dlpw) (4.0

9t ax By 9z )

Now the rate of change of density with the moving fiuid (the individual
derivative, see Appendix 1) is

do
ot

2
3t

‘ .a_p oa—p -ap °
tuegs v ay tweo— {4.2)

Combining equations 4.1 and 4.2 we have:

. 9 3y 3V 3w o
d+[3x+y+az] o . . (4.3)

Ojk

This is called the equation of continuity (of volume}. The first term is the
fractional rate of change {change/unit Time) of density for & small piece or
parcel -of the moving fluid (a 'fluid element'); the second fterm is the frac-
tional rate of change of volume for the element as we shall show in a moment.
The equation expresses conservation (continuity) of volume, i.e., the relation
between volume and density changes. Notice that we do not assume that the
fiuid has the same density everywhere (a homogeneous fluid}, which is impor-
tant-in application To the ocean whose water is not homogenecus. The effects
of pressure and heat exchange are included in equations 4.1 and 4.3 since

they do not affect the mass of 'a fluid element appreciably. Salt exchange
effects are not included; if we assume that an element exchanges an equal

mass of salt and water equation 4,3 gives the correct relation between density
and volume chenges.- However, in the more likely case that about the same
number of molecules of water are replaced by salt icns the mass increaSes and
the volume will not decrease as much as 4.3 predicts. In the ocean the effect.
is small enough to ignore when considering mass or volume conservation.. In
tact all of these -effects are quite small; here they may be ignored and the
voiume of a fluid element assumed to be constant, i.e., the fiuid may be
Treated as effectively incompressible. ‘

if a fivid is incompressible, as may be taken to be the case for sea water in
most circumstances, then (1/p) « (dp/dt) = 0, as shown in Appendix |, and the
equation of continuity becomes:

du BV .
T + W + 3; = 0 . (4.4}
‘We note that in deriving the equaticn of continuity, instead of considering
the rate of change of mass in a volume &x+ 8y 8z fixXed in space we could
consider the rafe of change of voiume of a fluid element. I!f we consider
the volume 8V = 8§x 8y -8z of Fig. 4.2 to be moving with the fluid, then in
Time 6t (even%ually we take the iimit as §t » 0 sowe neglect terms propor-
tional to (61)2 and higher powers) side 1 moves u - 6t while side 2 moves
Cu+(au/ax) - 6x1+61t. The change in volume is (3u/3x) » §x =+ 8y - 8z » 6t .
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VELOCITY
- fx— . GRADIENT
A B - §_U_= +
{a) ._G’ u+ g Ex
C D Su _
(b} Ty u - 6u & '
E F %g -4
(c) -(u + 8u) -u x

Fig. 4.3, Sign the of velocity gradient.

Consideration of movements in the y and z directions as well gives the rate of
change of the volume 6V = 8x - §y « 8z as d(8V)/dt = &V« (3u/dx + dv/dy + dw/5z).
This rate of change of volume must be balanced by a corresponding rate of
change of density, because the mass, ém, of the fluid element must be constant
(assuming salt exchange effects are negligible or balance) although its shape, .
density and volume may change. The signs are opposite as an increase in

volume decreases p and vice versa, Now p = 8m/8V and with the mass constant

= — = - _p.— . — T — —?E‘ Ei E-‘i
- E"[ 5V ] TV df e [ 5% 3y | 8z } as before.

It may be noted that terms like 3u/3x-or &u/éx may be positive or negative.
In Fig. 4.3, case (a), fluid is flowing from A where its velocity component
is u To B where it is (u + 8u), Then along the flow direction, 8u is +, &x
is + and therefore Su/dx is +. In case (b), the velocity decreases from C
to D and 8u is -, 8x is + and therefore Su/fx is -, ta case (c), the flow
is to the left from F to E, 8u is -, 8x is -, and therefore 8u/8x is +.

AN APPLICATION OF THE EQUATION OF CONTINUITY

As an example of the application of the equation of continuity, we consider
the determination of vertical velocities in the cpen ocean. These are
difficult to measure directly because they are very small in magnitude, but
some information about them may be deduced with the ajd of the equation of
centinuity from a knowledge of horizontal velocities which are larger and more
easily measured.- i

Sdu 9V, AW “_,.
We have B—X + W + E = O
. ., aw 3u , av
o€y 5z - " Lax*tay ]
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165° 160° : 155°W

300N
u=-0.25 u = -0.25
T Ty =0 A
V= v = =0.01
Sy = s . L _
5.4 x 107 m c ~Qr ] 25°
v =0.03} v = 0.05 .
RR L_'__..B
u=0.30 u = 0.25
20°

Sx = 5 x 105 m

500 km

Fig. 4.4. Example of horizental flows for calculation of vertical flow from
continuity of volume. (speeds in ms™1)

and from data about u and v (horizontal components} we may learn something
about w (vertical), near a point in the sea such as & in Fig. 4.4, where some
surface current data are presented from Pilot Charts for a tropic region.

(-0.25) - (-0.25) -1 ?
At point A : _%E. . L Jms -0 .
X 5 x 105 m .
. [(+0.25) - (+0.30)]ms~1
At point B : %5 = =-10 x 1078 g-1
x 5 x 105 m .

Here we are approximating the derivatives by taking velecity differences over
a finite (and by human size scale a very large) distance. Such Tfinife
difference' approximations are good if the velocities vary in a smooth, nearly
linear manner between the points where the velocities are measured, The test
of such methods is that they should give results consistent with observations;
in the case of vertical velocities which are very hard fo observe directly,
because they are so small, such tests must be indirect. We should also point
out that in this particular example the avaliable wvelocity informaticn only
consists of averages over approximately 5° squares at best, sc finer scale
estimates are not possible.

Therefore at the centre point E of the area, taking the mean of the values at
A and B : . '

Ju = -B ~1
£ -5 x 107% &
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Similarly, calculating av/3y at C and D and taking the mean for point E we
get

v . -8.3 x 10-8 s-1 |
2y ‘
Then from LI (§3-+ Eiﬁ
Y4 ax oy ’
we have B L (5x107% - 8.3x (078) 5~

9z ’
+ 13.3 x 107871

Mow 3w/3z is positive and w = 0 at the surface on the average. Therefore
below the surface w must be negative (i.e., downward) since it must increase.
{become less negative) as the surface is approached where the value is fo be
zero.  Thus {3u/3x + 3v/3y) being negative and hence aw/3z being positive i
imp|ies surface convergence at E.

Since w = 0 at the surface, where z = 0, the vertical velocity, Wi at depth,
h below the surface (i.e., at z = -h) is given by:

- “h -h
wh = J dw = J : N dz = - f [ g—u + % ] . dz
0 0 0 o

=

~N

(A reader not familiar with infegral notion is referred to Appendix 1.}

[n the numerical example above, if The-convergence were constant from the sea
surface to the bottom of the homogeneous layer, taken to be at 50 m depth,
the vertical velocity at 50 m depth would be: /

DF

-50

Wy = J (13.3 x 1078) « dz = -6.7 x 10~6ms-!
o -

0.58 m day~! down .

1

The fact that the layer is homogeneous and therefore presumably subject fo
considerable mixing (otherwise it would prcbably be stratified) provides some
evidence that the convergence is uniform. With sufficient stirring, the
horizontal velocities u and v should be independent of depth in the homogen--
eous layer. Then [3u/3x + 3v/3y] should also be independent of depih.

As the vertical velocities at shallower depths are correspondingly less, the
time for a particle of water to sink from the surface to 50 m depth would be
quite large.” As w = 13.3 x 10-8 + z and the time (1) to sink &z is 81 =éz/w,
then the time-to sink from z, to z,

]

-
w
X
o

o

S——

[
a
N

7.5 x.108 !n(zz/zl) sec
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= 87 in(zz/zl) days .

For example, the time to sink from1l m dep+h to 50 m depth would be
(87« In 50) = 340 days or almost one year!

't should be noted that this numerical example has been presented principally
to illustrate the use of the equation of continuity and is for an open ocean
situation. For regions of active upwelling, usuaily found along the east
sides of the oceans, the vertical velocities may be greater - recent measure-
ments indicate values of the order of 10~*ms-! or 10mday~! off the west
coast of North America. Nevertheless these speeds are much less than the
typical horizontal ones.

Continuity aiso shows why w << u or v, The ocean .is very thin, the depth to
width ratio being similar to that of a sheet of very thin paper! For uniform
convergence, the verfical velocity at z = -H, wy = H- U/L where U is a change
of horizontal veélocity component over a distance L. Since (H/L) = 0(1073) or
less for the whole ocean, then w = G(10-3 x U) or less, i.e., of the order of
one cne-thousandth of the horizontat velocities or less,

Finally the effects neglected in deriving the equation of continuity (4.4)

. are very small compared with (3u/3x + 3v/ay). Thus the assumpticn of constant
“volume allows us to estimate 3w/3z and hence w; in fact, the errors in the
estimation are much larger than the neglected effects.



CHAPTER 5
Stability and Double Diffusion

STATIC STABILITY

Here we consider whether or not the variation of density with depth in the
ocean is |ikely to cause the water tc move vertically. |f there is |ight
fluld on top of heavy fluid then there will be no tendency for motion to
occur. However, 17 there is heavy fluid above |light fluid there will be a
tendency for the heavy fluid 1o sink and the tight o rise - the density
distribution Is unstable, Thus we must examine the vertical density gradient
to determine whether the fluid is stable, i.e., resists vertical motion, is
neutral, 1.e., offers no resistance to vertical motion, or is unstable, i.e., .
tends to move verticelly of its own accord. |f gp/az < O {density _increases
with depth) we might expect the fluid to be statically stabie so that if ro
motion 1s cccurring the densffy distribution will not cause motion to occur.

If 9p/3z > 0, we expect the fluid to be unstable.

When considering the density distribution in relation to stability we cannot
ignore compressibility, i.e., the variation of density with pressure, which
means.with depth. In the case of neutral stability, 1f a fluid parcel is
moved up or down adlabaflcally (that 1s, with no heat exchange with its
surroundings) and without salt exchange with its surroundings and then brought

to a stop it will not tend to move further because wherever it is moved to it
will have the same density as the surrounding fluid. Density must increase
with depTth because a parcel which is moved down will be compressed but must

then have the came density as its surroundings. Thus in the neutral stability
case, 9p/9z < 0 and the fluid appears to be quite stable if the pressure
effecf is overlooked. At the same time, compression causes heaTina which
decreases density, although not nearly encugh fo overcome the increase of
density due to increased préssure and so, in the neutral stability case,
temperature increases with increased depth, assuming that saiinity effects
can be igncred. if we neglect pressure effects we might think that the fluid
vs sInghTIy unstable because we have colder fiuad above warmer fluid.

To Take ?he compressibility -into accoun? one might try to consider the poten-
tial density or its anomaly, og, defined in Chapter 2. |t is the density of
the fluid when Takenradiaba?ically 7o a reference pressure with.the adiabatic
temperature change “téken inte account. This procedure can be used in the
‘atmosphere (provided no condensation or evaporaflon cccurs). In fact, an
apparent or virtual potential temperature is used; This is the potential
temperature which dry-air would have if it had The same potential density as
the moist ‘air.. Unfortunafely, because of the complicated and non-linear
equation of state for sea waTer, using potential density to determine static
stability does not always work in the ocean. For example, North Atlantic
Deep Water has a slightly larger potential density than Antarctic BoTTom Water,

23
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-
SURROUND!ING
PARCEL WATER
(P) ' (W)
@ z r p, S, T, p|- . p, 5, T, p

1

o', S, T+8T, p+8p| 0, S, T,o P+

(i) (z + 6z)

Fig. 5.1. Water properties for calculation of stability.

However, the farmer is found above, not below, the |atter. The temperature
and salinity differences between these fwo water masses are sufficient that
the variation of compressibility with these parameters leads to the i# gitu
density (at the same depth) of the Antarctic water being slightly greater than
that of the North ATian+ic‘Wa+er} so that the Antarctic water flows under the
North Aflantic water.

The apparent instability in this case is caused by the fact that fthe reference
pressure for gg is taken at the surface (p=0). |f a reference pressure close
to the in situ préssure is used then zero vertical veariation of this potential
density will indicate neutral stability. However, to consider the stability .
over” the whole water column no single reference pressure is satisfactory in

all cases and it is necessary to calculate a local value of stability as a
function of depth as described below. -

Criterion for Static Stability (E)

Suppose that the density of a stationary water mass changes with depth in some
arbitrary manner and that at level 1 (Fig. 5.1}, depth=-z pressure=p, the
in situ water properties are (p, 5, T). Then a parcel of water is moved a
short distance vertically from level 1 to level 2 without exchanging heat or

" salt with its surroundings. At level 2, the depth = -(z+82) and pressure =
p + ép, and the surrcunding water properties are (pj, Sy, To). The weter
properties cf the parcel at level 2 will be {(p', S, T+48T) and its pressure =
p + 8p. Here 6T is the adiabatic change of temperature due o change of

H = gfv L] == - - L4 ra
pressure, |.ej,‘6T = [dp)adiaba+lc §p. As 8p=-p+g-dz (refer fo
. - aT , : L. :
Appendix |) &T = T.(dp)adiabafic p-ge8z=-T-82z where I' stands for the -

adiabatic femperature gradient. [T is the change in temperature with depth
caused by pressure change and Is positive, i.,e.,, compression causes the temper-
ature to increase. At level 2 the restoring force cn fhe parcel of volume

6V, will be: F. = bucyant upthrust - weight . '

By Archimedes! Principle, buoyanf upthrust = we[éhf of surrounding fluid
displaced. Hence:
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F o= 8V,2p,rg-8V,-p'+g ‘ - (5.1)
e 6V2 - g,. (pz_py)- )
. and its acceleration if released will be:
- - 1
P sV, g(p2 pt)
a = — -
~z M

(5.2)

- 1 3
°'[l+[3'a§_'52)P]

where the subscr:pf W refers to the surrounding water and the subscript P To
the parcel, :

In equation 5.2 the change of density of the surrounding water

[_a_o_.az)w - [a_s.as 3. 3T, 3 .32] 52
W

3z ‘ 3S "3z BT 8z ap} 9z =
and of the water parce! f
a . - —.-aio ap 0§E— Ll
{ 2z %7 ]P [ T Y ap 2z ]P 8z

because the salinlfy does not change as it is measured in g/kg and Is There-
fore independent of pressure effects.

Now (dp/dz)y = (dp/dz)p, and if the changes of salinity and temperature
between levels 1 and 2 are not targe, then (8p/3p)w = (3p/3p)p because the
6s,p and 87 , terms in the specific volume-anomaly (equation 2.1) are small
and slowly vary:no Also, (1/p)+ (3p/32)+ 82 in the denominator of equation
"5.2 vanishes in the 1imit as 8z + 0 and mey be neglected.

Then equation 5.2 becomes:

a .
z _ 1) 3 3S, 8, (ol . .
T T p {35 3z | AT [az”)] f/j , (5.3)

which is the ra+io of the restoring acceleration of the displaced parcel to
the acceleration due to gravity. Hesselberg defined the stability E of the
water column as: :

a .
E = {-?Z] for. 8z = unit length,

; . _L1f20 35, 2, |

i.e., E g [ 55 55 f 3T (32 )| m {5.4)

If B> 0, i.e., positive, the water is stable and a parcel displaced a short

distance vertically will tend to return to its original position. BRecause

it" has Tinertia it will tend tfo overshoot its original position and then fo

oscillate about it, hence the stability of the water may be related
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to the occurrence of. Internal waves (Chap. 12)., 1f E = 0, the waTer is neu-
trafty stable and a dlspiaced parcel will ftend tc remain in its dusplaced

position.. If E <0, i.e., negative, the water will be unstable and a parcel
which is displaced wii! fend to continue its displacement, i.e., overturn of

the water should. ocour. : o

Numerical Values for Sfabi]ifx

fn the open ocean, values of E in the upper 1,000 m are of the order of

100 x (0 8m~Yto 1,000 x 10-8m~1, +he largest values generally occurring in
the upper few hundred metres. -Below 1,000 m depth, values decrease to less
than 100 x 107%m~! and in deep Trenches valuesclose to 1 x 1078m™ are
found. In these latter cases, 35/%z is generally very small so that its

effect on stability is negligible. Then as £ > 0 This means that aT/dz+-T,
i.e., the temperature change with depth in siiu.is close to the adiabatic
rate due to change of pressure. The adiabatic rate increases from about
0.714C°/1,000 m at 5,000 m to 0.19C°/1,000 m at 9,000 m depth, the temperature
changes being positive for increase of depth, i.e., the in situ temperaiure
Increases with depth in deep trenches. :

Note that in equation 5.4, 3p/38S and 8p/3T are taken holding the other vari-
ables fixed (T,p and S,p respectively) at the focal Zn situ values. This
formula is not computationally very convenient because tables for densiiy are
‘not commonly available — it is the specific volume that is normally tabulatfed.
To use such tables we use the fact that o = 1/p and hence (i/e) » {da/3S) =
-(1/p) + (3p/3S) and (1/a) ~ (3a/3T) =—=(1/p) - (3p/3T). Naking use of the expan-
sion of w of equation 2.1 (omitting the &g ,Top Term which is negligible)

ad 94 as

equation 5.4 becomes
1 (5,7 85, s, T aT+ 5,p.,95, 01, . 8T . . 20s,T, T,p]J_ (5.5

E=3 [as az+—3T Tt e e

The first two terms usually dominmate and may be recognized as an expansicn of
(ddg, T/az) The term involving ¥ is generally quife small and may be igncred
‘excep+ Tn deep water where E is small. [f E = 0, the neutral sTabillfy case,
omitting the T term would glve an apparent E of about -2 x 10-8m-1 near the
surface and about -4 x 10~ at great depth, sc the water appears slightly
unstable |f the adiabatic temperature change with pressure (i.e., depth) is
neglected as_noted before. The importance of the other terms can be estimated
by comparing them with the first two. The first and third terms have

(1/a) » (35/32) as a common factor so we need only compare coefficients of this
common factor. (38g D/BS) is of opposite sign to (345 ¢/98S); its magnitude
1$ much smaller near’ the surface but increases to abou+ 10% of (3ag 7/3S) at
5,000 m depth and sbout |5% at 10,000 m depth. (aoT /3T) has thé same sign
as (34g T/oT) it also is relaTuver small near the surrace but beccmes
comparable at depths greater than about Z,000 m and may dominete at great
depTh.

It is not easy to give a general rule about the reiative importance of the
temperature and salinifty ferms. As a first approximation, the first two terms
of equation 5.5 may be used:

34 34 : 34
1 %5, T3S s, T 37 ] 5,7
o — o S —_—t e = a2 . ’
P O A az) ¢ sz - ¢5.6)

If the calculated values of £ are less than 50 x 1078 m~1 then the other terms
should be inciuded. . o v
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The thermosteric anomaly Ag T is normal ly calculated from ot since they are
directly related, as shown In Chap. 2, and oy IS usually calculated and ftabu-
lated afong with:S and T values during. The tirst stage of data processing.
Thus it is convenient to have an approxsmafe formula for E ia Terms of o4,
Suppose .that we expand the in situ density in a mapner similar to that used
for a { equation 2.1) as:

teg o : . (5.7

p = 1,000 +¢ ET,p

1.

where a term of the form €S, T, has been omitted because it will be negligible.
Substituting this expansion’ into 5.4 and using

1 35, T 804 es

35 @z | 91 ez 5z ¢ :

. ple] de )
o124, s es, Frp aT _.r] :

E = -5 l35z '3 az * 3T 8z ol ‘ (5.8)

The equivalent approximation fc equation 5.6 is:
£ o~ - L._T _ (5.9)
‘ ) -

From equations 5.6 and 5.9 we see that a first approximation to stabiiity is
that Ag 1 shall decrease with depth or that o4 shall increase with depth.

Thus oné can get an estimate of the sign of E just by looking at the fabulated
values of Ag 1 or o+. This is one of the reasons why o4 {cr As 71 is used
rather than ¢n situ values. (Another reason is that flow along constant o
surfaces is easy since It is not restricted by static stability when equation
5.9 is a good appreximation.) |f one. included the T' term of equation 5.8 in
equation 5.9 then it would essentially be equivalent to E = —(1/p)+(30g/32).
However, as we go a long way from the reference pressure {(p = 0) the tferms,
other than the T term, not in the approximate ecuatiens 5.6 and 5.9 become
more important. HNeglect of them leads to the apparent instability between
the Antarctic Bottom Water and the North Atlantic Deep Water mentioned
‘earlier.

Much of the effect of the pressure on the density cancelled cut in deriving
‘equation 5.4. Note afso that the part of the pressure effect which cancel led
is quite large. Suppose that we had just considered the gradient of in situ
density. If the water were neutral, this gradient must be the same for both

the water parcel and for the surrounding water:

1.2 - 1. {% I o)
p 3ZjP - p |opJediab 2z 9 dpjadiab ’
but ki3 ‘:;"z."'.'_l_. ' 1
u [ap}adiab o7 where C is the speed of sound,
50 ~1.8 o 8 7. 400 x 1078 m7?
g az CZ .

and as stated earlier using the in situ density gives a false impression of
quite sfable‘condifions when the stability is actually neutral! |If one wishes
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to use in situ density, ps T,p, then fo correct for compressibility The
~stability is given by:

£ = -L.%e_ ¢ - (5.10)
: p 9z c2
(Again, in practice, one would.usually have to use equation 2.1 tc cbtain a
and then take 1/a to get Ps T p.)
27

Although the water should be unstable and be expected to turn over whenever E
is negative, in practice it is not uncommon to find values of E = =25 to

-50 x 10-8 m=! in the upper 50'm of the sea with indications that the stratifi-
cation is stable. As already shown, the neglect of the adiabatic temperature
gradient and the other ferms which are in equations 5.5 and 5.8 buf not in

5.6 and 5.9 cannct account for such observations. |1 may be that some of
these cases are in fact associated with weak convection but the observations
are not detailed enough fo detect it. Such apparent unstable situations may
also be due to observational errors, In practice, E is calculated using
finite differences with observations from discrete levels.. The error in a

o+ observeiion may easily be 5 x 10™3 (see Chapter 2) and the error, b0+, in
the difference between twc levels could easily be 1072, With a depth differ-
ence Az of 20 m, the error in E = :(1/p)-(Aof/Az) may be AE = +50x [0~8m™ !
At greater depths where Az is larger (because the difference between observa- -
tion levels is usually greater) the errors will be smaller, e.g., for 42=500m

‘and an error in b0, of 102, the error in E is only 2 x (0-8m~1,

Tables of values of 9p/3S, %p/5T and T (as 36/3z) for the calculations of E
using equation 5.4 are given in Neumann and Pierson (]966) or cne may use
tables of AS 1 Gs o’ dT o in equation 5.5,

2 . 2 L4 -

The Brunt-Vaisdld frequency N is given by:

3p 30
2 - . = qe(-r._LsSp_ 9} L oo i 1
N (g- &) 8 { p 23z ’ 2 8 p 3z (radians s~1)2

C .
Py (5.11)

The frequency in cyeles sec™! (Hertz) is N/2r =(g- E)*/Zv. |t can be shown
that this is the maximum frequency of internal waves in water of stability E.
High values of N are usually found in the main pycnccline zone, i.e., where
the vertical density gradient is greatest, This is usually in the thermo-
cline In oceanic waters (where density variaticns are determined chiefly by
temperature variations) or in the halocling in coastal waters -(wvhere densiiy
variations may be determined chiefly by saliniiy variationsi.

DOUBLE DIFFUSION

Even though the water column may be statically stable at a particular time,
instabiiity may develop because sea wafer is @ multi-component fluid and the
rates at which heat and salt diffuse molecularly are different. A result is

; that if two water masses of the same density but different combinations of
temperature and salinity are in confact, one above the other, the differential
{'double') diffusion of these two properties may give rise to density changes-
which render the layers unstable. This is an active area of research and a
review of the subject may be found in Jurner (1973). The details are beyond

" the scope of the present bock but the general ideas are inferesting and double
ditfusion may play a significant role in small-scaie mixing in the oceans and
in the formation of 'fine' structure, the smali-scale (one to a few metres)
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variations in temperature and salinity gradients which have been found in +he
oceans as observations have improved with the use of continuously recording
STD or, CTD -instruments (Salinity, Tempenpfure, Depth, or Conductivity,
Temperature, Depth). -

We consider the stability, starting.with cases of positive static stability
but with no motion, because if there is motion, particularly turbulent motion
generated by velocity shear or strong static instability, furbulent diffusion
will dominate and probably prevent double diffusion effects from becoming
important. However, it seems that the ocean is sufficiently statically stable
in some parts that shear generated furbulence is suppressed and double
diffusive effects may be important. :

Suppose that there is a layer of warmer, saltier water above cooler, fresher
water, such that the upper layer is of the same density or less dense than
the lower layer. Then the saltier water at the interface will lose heat to
~tThe cooler water below faster than it will iose sait because the rate of
molecular diffusion of heat is about 100 times that of salt. I+ the density
difference between the layers is small, the saltier water above may become
heavier than the cooler, fresher layer below and sink downward into this
layer. Likewise the cold fresh water below the interface gains heat faster
than salt and may become |ight enough to rise into the upper layer. The
sifuation is referred to as one of 'double-diffusive instability'. The fall-
ing and rising motion occurs (in laboratory experiments) in the form of thin
columns and the phenomenon is cailed 'salt fingering'. There is evidence for
its occurrence in the ocean at the lower surface of “the outflow of warm, saline
Mediterrenean water from the Strait of Gibraltar into the cooler, fresher
Atlantic water.

I'f a layer of colder, fresher water is above a layer of warmer, saltier water,
the water just above the -interface becomes lighter than that above it and
tends to rise while water below gets heavier and tends to sink. This phe-
nomenon is called "layering' and may lead to fairly homogeneous fayers sepa-
rated by thinner regions of high gradients of temperature and salinity, - There
is evidence for its occurrence in the Arctic Ocean among other locations.

"Both of these processes could iead to the vertical transports of heat and sal+
being greater than the molecular diffusion rates, and to greater mixing than
would occur if these processes were not possibie. Of course, once the motion
begins i1 may become dynamically unstable and break down into smaller scale
turbulent motions and become very complicated. Dynamic instability is
discussed briefly in the next section and also in Chapter 7.

The final possibility of a warmer, fresher layer above a cooler, salfier layer
does not allow a double~diffusive instability. The fresher water cools so
that i1 does not tend to ris> but it cannot get colder than the saltier water
betow and therefore it.does not tend to sink. Similarly, the saltier water
does not tend to move up or down. For double diffusion to occur, the gra-
dients of femperature’and salinity across the interface must have the same
sign; then, since They affect density oppositely, double diffusion may occur.-

£

DYNAMIC STABILITY

Even if the water is staticaily stable and double diffusion is not permitted
by the temperature and salinity distributions, if motion is initiated it may
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be-dynamically unstable and it may break down into sma!ler-sized irregular -
turbulent motions. This possibility will be discussed further affer we have
examined the equations of motion. a '

Turbulent fiows are famillar to everyone although they may not normally be
lebelled as such. Exampies are the flow in most rivers, the gusty wind and
the flow of water out of.a tap, among many others. All these fiows are very
irregular both as a function of time at a fixed point and from point to point
at a given time. The strong mixing caused by turbulent flow is often used,
e.g., in stirring mllk and sugar info coffee. After the stirring is stopped,
the flow wili gradually become more regular providing an example of non-
turbulent flow, a type of flow which is less familiar in everyday experience.



CHAPTER 6
The Equation of Motion in Oceanography

THE FORM OF THE EQUATION OF MOTION

‘Here we consider how Newton's Second Law of Motion (F = m+ a} can be written
in a form which can be applied in oceanography. (Underlining = symbol, e.g.,
F, indicates that IT is a vector quantity. Further discussion is given in

' Appendlx 1) . . : '

This relation says that if a resultant force F acfs on a body of mass m, the
body will acquire an acceleration or rate of change of velocity, a. Netice
the adjective *resultent', which means that more than one force may be acting
simultaneoys |y and we must first find the resultant of these, i.e., the ret
force, by appropriate vector addition; the acceleratjon 'will then be in the
direction of this resultant force. |n practice, vector equations such as
F=me+a are usually broken down into three component equations so that the
sum of The x-components of the forces equals the product of the mass times
the x-component of the acceleration, eic.

The relation implies that if £ = 0, then a =8, i.e,, there wil] be no
change of motion but there may be persistent motions™ This situation is
governed by Newton's First Law of Motion, @ special case of the Second Law.

Also, [if we obgserve that a = 0, we can conclude that the resultant E_— 0.

in principle, this conclusion could mean that no forces at all were acting
but in practice on earth this situation never occurs. For instance, there is
always weight acting and often a reacting force balancing it, and if there is
moticn there is generally friction acting. When unaccelerated motion occurs,
it we have information about some of the forces acting we can often learn
something about the other forces. Notice also that a = 0 implies motion in

a sTralghT line; whenever we observe thet the motion is curved there is a
centripetal acceleration (see Appendix I} and therefore a resulTanT force
must be ac*tng

It is convenient fo wriife a = E/m and think of the Law as stating that the
observed acceleration is due to the resultant force acting per unit mass. In
words we write: . - .

Acceleration = (pressure+gravity + frictiona! + tidal force)/unit mass.

To make physical-mathemetical deducticns from this statement of a physical
law we myst first wri+e”mafhemafical‘sfafemenTs of the forms of the forces;
then we can try to 'obtain solutions' fo the equations as explained below.

31
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In vector form the equation is:

oy

E—F = _U_-Vp - Qgﬁl + 9_ ,+ -E . ’ (6.1)
ot + + ¥ -
Pressure Coriolis  Gravity Other forces {(all per unit mass)
(We will explain shortiy how we arrived at this equation and the meaning of’

the symbols V and x, V is The total velocity.)

This equation can be written as three component equations with the coordinates
x, y and z and their respective velocity components u, v and w being positive
in the east, north and upward directions respectively and the crigin of
coordinates being at the sea surface:

Cther
Pressure . Coriolis Gravity forces/unit mass
o du_ L3 csingev = 20 .
(x) T 7% 3k + 20esing v | 20cosd o W -+ Fx‘
ﬂ;_ - «si . FV }
(y) 5 @3y 2Q ‘syn ¢ u | + y B.2)
(2) L I ZQecosdru o - g + F
dt 9z . z°

These equaffons 6.1 or 6,2 are called the equation{s) of motion; they are also
referred to as the equations of censervation of |inear momentum. Similar

equations may be written for conservation of angular momentum but we will use
a related quantity called 'vorticity' in this book, as is customary in fiuid
mechanics, and use of-the word 'momentum' will imply |linear momentum unless

otherwise stated.

OBTAINING SOLUTIONS TO THE EQUATIONS, INCLUDING BOUNDARY CONDITIONS

In these equations, the quantities u, v and w are the components of the velo-
city of the water and they describe the 'motion of the ccean' - they are
what the physical cceancgrapher, particulariy the dynamic oceanographer, wants
to learn about., Together with the pressure p, they form the four unkncwns in
the equations. |f we add the equation of continuity (4.4) we have four
equations and four unknowns. The other quantities assumed to be known are:
%X, ¥, z for position, a = specific volume (from the pressure (or depth) and
the observed distributions of temperature and salinity), & = the angular
velocity of rotation of the earth, ¢ = geographic latitude (from.y), while
F and its components F,, etc., represent frictional and tidal forces which we
will introduce later. We shall consider the more complicated situation when
S, T and o are also taken.to be unknown in Chapter 10 when discussing therme-
haline effects.

‘Then 'obtaining solutions' to the equations of motion means finding (&r guess-
ing) values for u, v and w, in terms of the known quantities, which 'satisfy
the equaticns'. This statement means that if cne subsiitutes these vaiues

for v, v and w in the equations, these will balance, i.e., the numerical .
value of the +ime differential 'of u Ci.e., du/dt} on the left of the first of
equations 6.2 must be identical with that of the right hand side when numeric-
al values for the quantities are substituted there. And similarly for the
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other two equations. Note that the same expressions for u, etc., must be
used in all equations where they occur.

1+ must alsc be noted that the expressions for u, v and w must simultaneous|y
satisfy two other conditions: .

(1Y +the equation of continuity -—-+ g; gg = 0 ,
and (2) the boundary condifions. ' '

With regard to-item (1), the assumption of incompressibility leading- fo this
simple form of conTInU|Ty eliminates acoustic or sound waves from the
possible sol{tions to equations €.2 because such waves depend for their
existence on the medium being compressible. We sha!l not discuss sound waves
explicitly Tn this book although many of the properties- of waves given in
Chap. |2 are also applicable to them.

IFem (2) above means that the velocity components, u, v.and w must behave in

a reasonable manner at the boundaries of the ocean, i.e., at the bot¥om, shore
and air/sea surface. For instance, if x occurs in the expression (solution)
for u, it must be in such a way that u becomes zero at a north-souih shore
and w must become zero at the ocean bottom if it is level. More generally,
there can be no flow through the boundaries, so the component of fiow normal
(i.e., perpendicular) to the boundary must venish. Next to solid boundaries’
the component of flow along the boundary (the 'tangential' component) must
vanish foec, i.e., there must be 'no s}ip' at solid boundaries. This condition
is based on the observed tehaviour of almost all real fluids and is a conse-
qguence of the molecular nature of maTerlals and the surface interactions
between the solid and fluid. :

Sometimes it may be possible to relax the 'no slip' condition, The velocity
along the boundary may decrease to zero at the boundary in a relatively thin
'boundary layer'. One may be able to find a solution for The interior region
of the ilow which does not saetisfy the no slip condition and a 'boundary layer
sclution' which goes from the interior solution fc ne slip in the thin layer.
1t cne is only interested in the interior then one can consider the interior
solution alone and use a 'free slip' boundary condition to find it. Caution
is required, however, because the assumption that the effects of the boundary
do not penetrate |n1o the region of lnTeresT may be incorrect and erroneous
solutions may resulf.

One procedure for obtaining & solution is simple (even crude) - invent one
and then see if it will satisfy all the conditions; then exemine it, using
observed lhfbrmaflon, to see if it describes a likely motion of the water.

We can ease the task by simplifying the equations by ignoring the F terms and
by |gnor|na ‘the. acceleration terms. A number of useful solutions for this
case aré known. and wi!l be discussed in Chapter-8..

The procedure becqmes more dxfflculf when expreSS|ons for fluid friction are
-introduced as F. terms, because we are still uncertain about the physical. '
details of turbulent flu:d friction except in a few special cases., Finding
solutions is even more difficult when the accelerafqon terms are included.
The equaticns then become ncn-linear and very difficult +o dea! with mathe-
maticatly if we need analytic sclufions, i.e., algebraic expressions for the
velocities. {The alternative procedure of solving the equations numerically
will be discussed in Chap*er bl .
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Fig. 6.1. For the derivetion of the pressure term in the equation of
motion.

YNon-1linear' means that the unknowns occur in combination in thé eguations,
e.g., as v+ (3u/3y), and non-linear equations seem fo be impossible to solve
in general. (One may be able to show that. unique sclutions should exist but
have no general way of finding them.) The non-linearity of the equations and
the presence of turbulence are not unrelated as we shall discuss in the next
chapter.

THE DERIVATION OF THE TERMS IN THE EQUATION OF MOT!ION

The Pressure Term

Imagine a rectanguiar volume, in & fluid, cf sides §x, 8y and 6z, fixed in a
coordinate system itself . fixed relative to the solid esrth (Fig. 6.1}, Then
the force in the x-direction on this volume due to the hydrostatic pressure
will be+p 8y~ 8z on the left face and —-(p+68p) - 8y - 6§z on the right face,
where the minus sign indicates that it acts in .the negative x-direction. The
net Tpressure force' in the x-direction is the sum of these two or

~i*8p-8y>6z = —j -« (3p/ox)« 6x+ 8y 8z, where the unit vector i denotes
the x-direction.* The force per unit volume is -i+ (3p/3x), and the force
per unit mass =~ j-(3p/3x} + {1/6) = —-i -« (3p/ax). Then considering a!l
directions, the total pressure force/unit mass will be:
SN PRS- | R - S
“('— ax T Ltay TRy @ 7p

*

Here, as usua!, we have omitted terms of higher order in 6x which vanish in
the limit as éx becomes small. From now on, this approach will be used where
appropriate without stating so explicitly every time. ’
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Here, v is shorf for (i-98/ox + j+23/dy + ke+23/32), called the 'gradient
operator' and j and k are unit vecTors denoting the y and z directions
respectively. ~The gradient of a quantity (e.g., ¥p) is always a vector and
therefore it 1s not necessary fo underliine it as we have done with other
vectors, such as. F or ¥. The minus sign indicates.that if p increases fo the
right, then +he pressure force acts fo the left, (Derivatives of quantities,
in this case p, in a particuler direction, e.g., #p/3x, are often called
gradients too, as a convenient term for the component in a particuler direc-
tion of the total gradient.)

Transforming from Axes Fixed in Space fo Axes Fixed in the Rotating Barth

The Coriolis term arises because we normally make observations relative to
axes fixed To the earth which is itself rotating about its axis. The equation
of motion F = m+ a however applies only when a is measured relafive fo axes
'fixed In space', (i.e., in what is called an inertial coordinate system
which is cne whose origin is not accelerating). For practical purposes this
is a system 'fixed relative to the distant stars'. Obviously it is more
convenient for The oceanographer 1o make his measurements relative to points
and directions on earth and so the equation of motion must be adJUSTed to suif
this roteting frame of reference.

A mathematically s+rai9hfforward and exact iransformation {from ideal axes
fixed in space to practical rotating earth axes (e.g., Neumann and Pierson,
Lacombe or Batchelor texts in the Further Reading list) gl%g;hTﬁ‘VéﬁTGF‘”
formsT T

et : et

a, = |2} L[ Lamavrax@xR , (6.3)
at |, dt LA R : .

where the subscript f means relative to fixed axes and the subscript e means
relative to the earth. On the right hand side, the first term is the acceler-
ation relative to axes fixed to the earth, the second term is the Corioiis
acceleration and the third term is the centripetal acceleration required to
make an object on the earth's surface rotate with the earth. The other
symbols are: V' = velocity relative To fixed axes, V = velocity relative To
‘the earth, R = the vector distance of +he body from The .centre of the earth,
and Q = angu!ar velocity of rotation of the earth. Its value is 27 radians

in one sidereal day or 7.29 x 10~° rad s™1. (One siderea! day (23 h 56 min4s,
or 86164 s} is the time required for the earth to rotate once about its axis,
relative to the fixed stars. Since The earth revolives about the sun it must
turn a [i7tle further to point back to the sun and complete one solar day -
hence the sciar day is a tittle }onger than the sidereal day.) The 'x' in a
term such as 20 x V¥ répresents what is called a vector product. The reader
unfamiliar with This vector operation need not be concerned because we will
write down and, use the components of this operation in the component
equafions.

The equaTion of mé+féﬁ&re!éfive to fixed axes is:
awyo. : + B (6.4)
F_f = —a-v;?_+gf f_. .
when franstormed to earth axes using 6.3 we get:

avl -
[E—'] TomerWio Zx ¥ o4ge - B8x@x B (6.5)

Y
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In this equation, the term on the left is the acceleration relative to the
earth and the terms on the right are the forces per unit mass acting, I.e.,
the accelerations due to-these forces. The franstormetion simply adds two
apparent forces/unit mass, i.e., =22 x V, termed the Coriolis force, and

- x (@ x R), the negative of the centripetal acceleration (which is some-
times called the centrifugal acceleration (force/unit mass), see Appendix | }.
The true forces in equation 6.4 are unchanged.

Gravitation and Gravity
Gravitation is the name given to the attractive force between masses, recog-
nized first by Newton. Its magnitude is expressed by F_ = G+ (M M) /r?
where M; and N, are the sizes of twe masses and r is thd distancé befween
their cenires. It is an attractive force acting along the line connecting
the centres of the masses. (This expression is only 1rue for two masses
whose sizes are small compared with r or for ftwo spheres whose density distri-
bution is radially symmetrical, These conditions are sufficiently well
satisfied in the case of the earth and & small object on i+, and for the
earth and moon when we consider tidal theory.) G is the Gravitational
Consfant, The gravitationa! force provides the g; in the absolute equation
of motion (6.4). In the relative equation (6.5), the term 2 x (@ x R) is the
centripetal acceleration required to make a body at a distance R from the
centre of the earth circulate about the earth's axis with angular velocity

2. As usual for bodies in contact with the earth it is provided by a portion
of the gravitational acceleration g¢, as shown in Fig. 6.Z2. {The maximum
value of the magnitude of the centfripetal acceleration is only about 0.3% of
the gravitational acceleration.) The difference, [g¢~0x (@xR}], is
referred to as the aceeleration due tc gravity, i.e., it 1s the tfamiliar
-acceleration g of a body falling freely near the earth (in the absence of
friction). In future we combine Eﬁf'gﬁ(ﬂiﬂ)] as g. At the surface of the
earth it depends only on geographical position. |t Ts a maximum at the poles
(where the needed centripetal acceleration vanishes and gt is also a meximum
because the polar radius is siight!ly less than the equatorial radius) and is
& minimum at the equator (where the needed centripets) acceleration is a
maximum and g¢ 1s a minimum). However, as the variation of g from pole 1o
equator is oﬁ]y about 0.5% we will neglect it, and also will negiect the very
smalt variation with depth below the ccean surface, and wil! take the value
of g as constant at 9.80 ms 2

Notice that in the component equations 6.2 the acceleration due fo gravity
occurs only in the z-component equation because the z axis is, by definition,
taken parallel to the lccal direction of this acceleration. It appears with
a minus sign because the acceleration is down while the positive direction
for z is taken as up-

The Coriclis Terms

The terms containing @ in equation 6.1 and @ in equation 6.2 and the (Q x V)
term in equation 6.5 are called the 'Coriolis' acceleration terms (named
after G. Coriolls, 1835, although they had been recognized by others betore
~him). As will be seen from equations 6.2 there are four terms. Of these, the
compenent 20 - cos ¢ - w in the x-equation is very small compared with the other
ferms in that component equation, because w is so small, and this component
of the Coriolis acceleration will be neglected. In addition, the Coriclis
term 22+ cos ¢« u in the z-equation is smalli compared with the pressure term
and with g, but is not necessarily small compared with their difference which
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AXIS OF ROTATION
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P

Fig. 6.2, Showing how the gravitational acceleration {(g¢) is reduced to the
acceleration due to gravity (g) in providing the centripetal
acceleration (Q@ x (@ x R) required. Note that the size of the
cenfrnpefa{ acceleration is exaggerated. lts ‘magnitude is

*R+cosé and it acts perpendicular to the axis of rotation.

is itse!f usuaily small in the sea. However, this z-component Coriolis term
is usually neglected in dynamic oceanography.

Only two Coriclis terms are leff and these are in the x- and y-component
equations, which depend only on the horizontal components of velocity. These
two terms can be combined as a horizontail Coriolis acceleration CH=2Q+sin¢ -
Yy x k where Vy = 1 -u + je+v = the horizontal component of the total
velocity. The direction Gf Cy must be perpendiculer to beth k (the unit
vector in the vertically upward direction) and 1o Vy, i.e., it is horizontal
and directed ai right angles fto and fo the right of Vy in the northern
hemisphere, ic the feft in the southern hemisphere. :

The factor 22+ sin¢ is often abbreviated t¢ f so that 22+« sin¢ *u = f » u,
etc.

The magnitude of Cy for a- _current speed of tms~! (or approxlmafely 2 knots)

which is falr!Z Typlcal for - major ocean currents is: at ¢ = 90° (pole),
Cy = 1.5 x 1C*m ; at ¢ = » CH=1x 100 ms~ ~2 and at ¢ = 0° (equator),
Cy = O These are smai [~ accelera?lons an acceleration of 107* ms=? would

take about 40 hours to give & body, starting from rest, a speed of 14ms-!

(= 50 km h™! or 30 miles per hour)! Another way to puT it is to say that a
body lying on a frictionless slope of 10~%/9.8 = 1 in 105 or 1cm drop in
1km horizontally would experience the acceleration of 10"%ms~2, This slope
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" is of the same magnitude as is calculated for the mean slopes of the sea
(neglecting wave slopes). '

Other Accelerations

The final term F (force per unit mass, i.e., acceleration, in the equations
of motion in this chapter) reminds us that there are other forces to be taken
into account, such as the gravitational attraction of the mocn and sun,
friction between wind and water, friction at solid boundaries, friction with~
in the water mass, etc. In Chapter 8, we will ignore these complicating
factors and just examine some soluticns to the equations which have been
simplified by assuming that F = 0.

Before looking at these soluticns we will examine in the next chapter some of

the characteristics and magnitudes of the ferms in the equations of motion,
affter briefly discussing in the next section, the coordinates to be used.

COORDINATE SYSTEMS

In writing the vector equation of motion (6.1) in component form (6.2} we
used rectanguiar or Cartesian ccordinates because the equations then have a
fairly simple expression. The vectior form of the equation (6.1} is valid in
any coordinate system, an advantage in using vecfor notation. (indeed, one
may derive an equation in component form in one system, e.g., our derivation
ot the pressure force in rectangular coordinates, fransform it o vector form
and expect i1 to be valid in any coordinate system when properly transformed.)

I f we are considering the motion of the ocean over the whole earth, then rec-~
Yanguiar coordinates are clearly not appropriate. Spherical coordinates must
be used. The earth is not exactly spherical but is approximately elliptical
in cross-section from north to south pole with an ellipticity of about 1/300,
(This shape or 'figure' of the earth is & consequence of the tact that the
gravitational acceteration is partially used to provide the required centrip-~
etal acceleration.} However, the error involved in using the equaticns in
spherical form is only about 0.5% and can be neglected.

In this bock, we shall write the component equations in rectangular form.

The equations are simplest in this form so that it is easiest to illustrate
the principles with them. Also, for many phenomena they are a consistent
approximation. |{ the horizontal area being considered is not too large then
we can work on a plane fangent fo the sphere and use a rectangular system
with negligible errors, For phenomena of relatively small scale, e.g.,

180 km or so, this tangent niane is called the f-plane because for such
small north-south distances the Coriclis parameter, ¥, may be taken 1o be
constant at the value at the centre of the area. (In the Arctic Ocean, where
f is near to its maximum and varying only slowly, this approximation of using
rectangular (or cylindrical) coordinates with f = constant may be used for
many phenomena over rather larger regicns.) For relatively larger areas,
with ¢ varying over a few tens of degrees, between mid-iatitudes and the
equator, the tangent plane approximation is called the B(beta/-plane . Here,
while a rectangular coordinate epproximation is used, the variation of f with
latitude is taken as f = (fg+8 - y) where fg is the value of §f at the mid-
fatitude of the region and B =2af/3y is given the value at the mid-latitude of
the area. The quantity B is the variation of the Coriolis parameter with
tatitude. '



CHAPTER 7

The Role of the Non-Linear Terms
in the Equations of Motion

Before discussing some specia! cases of the application of the equation of
motion, we will examine in this chapter the role of the non-lingar terms in
the equation and will make some estimates of their quantitative significance.

THE NON-LINEAR TERMS IN THE EQUAT!ON OF MOTION

The Friction Term fcr the lInstantaneous Velocity

Consider the equation of motion (equation 6,2) for the x-component:

%; = -0 %5—+ 20 sindgv v - 20 ecos¢+w + friction + tidal forces.

(7.1

The tidal force terms can be written down using Newton's Law of Gravitation
and can be taken to be kngwn, althocugh when this equation was being examined
in the early days of fluid mechanics attention was directed chiefly to labor--
atory flows where such terms are not important. We shall omit the tidal
terms until we consider their effects in Chapter 13. In order to get a
system which can be soived, an expression for the fricticn s needed. One
can consider a small element fixed in space and consider the forces on it
associated with the molecular nature of the fluid and differences in velocity
within the fluid. Based on observational evidence, Newton hypothesized and
it was later verified, using non-turbulent flows, that the fricticnal forces
were related to spatial derivatives of velocity (e.g., 32u/3y?) multiplied by
a viscosity coefficient which is a property of the fluid. Thus the frictional
effects could be expressed in terms of the velecity, and a closed system of
equations could be obtained. By this statement we mean that the number of
equations equals the number of unknowns and, at least in principle, they can
be soived. The friction term in equation 7.| fakes the form '

oo (B, 2%, 3%

ax?  ay?  3z?

where v is the kinematic molecular viscosity, v = v(S,T,p). A typical value
for water is 1078 m2s~! with a reange of 0.8 to |.8 times this value. In the
derivation of this expression it has been assumed that the fluid is incom-
pressible and terms of .the form (3v/3x)+(3u/3x) have been neglected because
they are smal! compared with those retained in realistic oceanographic cases.
The derivation of the friction term in this form was done by Navier and
Stokes and fhe equations of motion including-it are called the '"Navier-Stokes
equations’. (Details of the derivation which is mathematically straight-

39



40 ._ Introductory Dynamic Oceanography

forward, although the algebra may be complicated depending on the notation
used, may be found in more advanced texts or in fluid mechanics texts, e.g.,
Batchelor, 1967.,) We shall carry out a derivation of the v- (32u/3z2) term
tater when discussing the wind-driven circulation in Chapter 9. A term repre-
senting the resistance, due to molecular viscosity, to compression has been
omitted. It is not important for the solutions which we shall consider but
viscosity does lead to damping of sound waves and may need to be retained

when studying acoustics “in the sea. -

Equation 7.1 applies to the instanfaneous velocity of the fluid and is an
excel lent approximation to describe the behaviour of fluids such as water,
i.e., it agrees with all the experimental results within measurement error.
Howevér, real oceanic and atmospheric fiuid motions may be turbulent (very
irregular in space and time) so that it may not be practical to solve the
equations exactly for them. . (For example, the details of boundary conditions
and the initial state of the fluid are nevef well enough known.)

What is the Scurce of the Difficulty?

The term du/dT applies to the acceleration of a piece of the fluid. The terms
on the right hand side are written in Eulerian form {see Appendix 1). To use
the-equation we must wiite du/dt in Eulerian terms. (We couid attempt to
write the right hand side in Lagrangian terms but it is more difficult to do
so and the same problem arises as in the Eulerian approach.} In writing

du/dt in Eulerian terms (velocities at fixed points as functicns of Time) we
must take account of the fact that a particle of fluid, when it moves to
another poini, must arrive at that point at a later time with the velocity
appropriate to the new point and time.

The form which the acceleration term takes is then the 'total' or 'individual’
derivative discussed in Appendix ! for precisely this purpose and ecuation
7.1 becomes: : '

du | gLy L 8 L3 L Germs on fhe right (7.2)
dt 91 ax By 3z as in equation 7.1)
* + 4 +

local rate advective rates of

of change change dus to ’

due to motion

time

variation

The advective terms are called 'non-linear' because the velociTies occur as

squares (e.g., u- (d3u/9x) = {1/2)-[3(u?)/3x])or as products between d¢ifferent

velocity components and their derivatives (e.g., v+ (3u/3x). Because of these
- nan=linear fterms a smal!l perturbation (variation) may grow into a large

fluctuation - these terms can cause instability and lie behind the presence

of the turbulence which occurs whenever they are sufficiently large compared

with the frictional terms which tend to remove velocity differences.

- Scaling and the Reynolds Number

To estimate what is meant by 'large’ in this case, let us consider the ratio
(ue+3u/»)/ (v« 32u/3x?) of one of the non-linear terms to one of the molecular
friction Terms. |t we take both u and 2u to be of order U (a typical velocity



Role of Non-Linear Terms . 41

magnjtude) and ox of order L (a typical distance over which the velocity varies
by U), then the ratio. above is of the order (U2/L)/{v+U/LZ) =U« L/v which is
called the Reynolds Number (Re)-for a fluid flow. - It is & measure of the
ratio of the non-linear, also called inertial, terms to frictional terms in
the -equation of motion. ' .

This process of ’sealing' or 'ordering' terms is very often used in fluld
mechanics because we cannot solve the full equations. By doing This scaling
we may find that some terms may be neglected and thus simplify the analysis.
¥e shall lcok at all of the terms presently but here we want to use the .
Reynolds Number example to explain in detail the assumptions involved and the
limitations of the approach. “As a specific example consider flow in a pipe,
the problem on which Osborne Reynolds worked. Here the radius of the pipe
provides a length scale, L, for variations of velocity which goes from zero
at the pipe wall to 2 maximum at the centre. The flow rate at the centre, U,
provides a velocity magnitude. Now to estimate the size of the non-{inear
terms (velocity times velocity gradient) we use U2/L. The non-linear terms
will not be of exactiy this value and may vary i size from one part of the -
ilow to another but they should be proportional fo this quantity with a con-
stant of proportionality of order 1 (i.e., between G.! and 10) if we have
chosen our scales properly. Likewise, v+ (3%2u/3x%?) etc. should be proportion
al to vU/L2. Hence the ratio, the Reynolds Number, gives an estimate of the

. relative importance of the two terms. This is another example of a finite
difference approximatign ~ in this case a rather crude one.

This dimensioniess number, Re, is a very imporiant quantity in determining
the chacisjgj;gj_iba_i¢cu~ Indeed it can be shown that for a unlform density
“f1UTd with no rotfation the solution fo the equations is completely determined
by the geometry of the boundaries and the Reynclds Number (although we may
not be able to find the solution in & particular case).* Fflows which have
the same geometry and Reynoids Number are said to be "dynamically similar’',
that is when scaled properly, the flows are Identical.” As 2 speciflic example,

if we double the pipe diameter and adjust the total volume flow per unit tTime
so that the velocities are half as large, and U+ L/v remains the same, the two

flows will look the same. Thus dynamica! similarity can be used to organize
one's experimental efforts. For example, if we are trying to determine under
what conditions the flow in the pipe will change from smooth, laminar flow to

irregular, furbulent flow, the principie of dynamic similarity tells us that
the transition will, for @ given gecmetry, occur at some particular value of
Re. Thus to investigate the change we need to vary the flow rate only and
not the pipe size or viscosity which are more difficult. The flow in the
pipe will not-be turbulent if Re < 1,000, |f the entrance to the pipe is
smoothiy flared and care. is taken to reduce velocity fluctuations before the
fluid enters the pipe i1 is possible to maintain faminar flow for Re up to
about 100,000. This variation in the value of Re at trensition is caused by
changes in geometry, in this case the entrance conditions, The fact that
transition to turbulence does not occur untii Re = 1,000 shows that the non-
linear terms do not becdme of dominant importance until this value is reached.
In the pipe flow they are zero until transition to turbulence occurs but in
many flows (e.q., around objects in the fluid) they usually begin to modify
the solution (from the one obtained by assuming that they are zero) when

* [
If a free surtace, i.e., a non-solid boundary, is present, the dimensionless
parameter U?/g- L, calied the Froude Nuember, must be considered toc.
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Re = 1, although turbulence will not be produced until Re becomes much
larger. Once Re becomes larger than 10° to 106, depending on geometry,
turbulence is very likely to occur unless there is some stabilising influence
such as density stratification as.we shall discuss later in the chapter.

¥ we use the Gulf Stream as an oceanographic example, U~ 1ms~! and
L~ 100 km = 10°m and v ~ 107%m2 571, so that Re ~ 1011 and the flow will
definitely be turbulent.

We conclude from this example that the non~linear effects are very strong com-
pared with.the molecular friction effects. We can, in fact, ignore molecular
friction in the open sea; it only becomes important very close to-solid bound-
aries and in removing energy from turbulent flow at small scales to prevent it
from growing without limit, i.e., molecular friction is important only for

low values of Re which occur at low values of U and/or of L.

Reynolds' Stresses

Although moiecular friction may be neglected in most aspects of the dynamics
of -ocean motions, it must not be assumed that there are no forces opposing
the motions or giving rise to redisiribution of energy and other properties.
When the motion-is turbulent, so that it inciudes rapidly fluctuating compon-
ents in eddition to any mean flow, then the non-linear terms give rise to
terms in the equations of motion which have the physical character of friction
and they, and similar terms in the heat and salt conservation equaticns {dis-
cussed in Chapter 10),give rise to more rapid distribution of momenfum, heat
and salt than would cccur with purely moclecular processes. These are the so-
called 'Reynolds stresses' {(forces/unit area) and 'flures' (transports/unit
area) which appear in the equations for the mean or average motion of a
turbulent fluid (the Reynolds equations, named after Osborne Raynolds who
first derived them and the equaticons for heat and salt conservation).

EQUATIONS FCR THE MEAN OR AVERAGE MOTION

Because of the nature of turbulent flow it does not appear o be practical to
solve for the detailed veloccities so let us examine the possibility of writing
equations for the average motiocn. The average used will be taken to be a

time average over a suitable pericd (which might be a few minutes up to
several months, depending con the phenomencn). Foliowing Osborne Reynolds,

who first suggested the approach, the variables u, v, w and p are split into

a mean and a_fluctuating part, e.g., u = U + u' where the cverbar denotes an
average and u' = 0 by definition; T + u', etc., are then substituted into
equation 7.2 and the average is taken. :

Consider first the average of au/at:

where T is the averaging period.

o, 1T, . o [uM-uo]
at T 0 3t : e S

Now u must have some upper 1imit because the available energy sources are
limited and frictional losses always occur (and usually increase as u
increases). Thus as T gets large, this term will become negligible.
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Fig. 7.1. Time variation of some property P at a point. The scolid curve is
the total quentity _P(1) as a functior of time +, the dashed curveis
a possible mean P, while the difference between the fwo at any
instant would be taken %to be the fluctuating part P'.

In practice we might wish to consider separation into a time-varying mean and
fluctuations about i+, if we were interested in variations due to tides or in
seasonal changes. The sketch of Fig. 7.1 iliusfrates how we might do so.
(Note that the separation is not always as straightfcrward as shown in the
figure but such problems do net affect the general results of This section; a
more detailed discussion is left for more advanced texts.) thus we retain
2u/at in the average of equetion 7.2 so that later we can consider how
important this term is.in the equation for the mean flow. For fthe other terms
the order of averaging gnd difierenfiating may be interchanged if required.
First let us consider the terms on the right-hand side of equation 7.2.

The pressure term becomes:

- o ' - 5 - ' B '
(@ +a)-2p*p'Y 2 3P Z 800 0 2R, e 800
3x Ix ax ax IX

In the second ferm on the right, a is already an average and does not change
in the averaging process, so this term is &@- (3p'/3x) =0 because p' (=0} is
independent of x .. ‘Likewise, the third term vanishes. |In general, any
average cf a fterm which contains a single fluctuating quantity wi!l vanish,
The term a' » (3p'/3x) may not vanish if fluctuations in a' and p' are related
[e.g., a' might be either of the same or of the opposnfe sngn to (3p'/3x) on
average {although not always)] However, the « variations in_the ocean are
vegy smal | _compared ‘with &, and 3p'/ax will be of the order 3p/3x or less, so
'+ (3p'/3x) is negltigible compared with a« (35/8x).

The first Coriolis.term 20+ sin¢=(V+v') = 20+ sin¢ «(v+ V') because 2+ sind
Is a constant at a particular location and the average of a sum is the sum of

the averages. Now V' =0, so this Coriolis term becomes 20 - sin¢ - v; |lke-

wise The other Coriclis term becomes 2Q+ cos ¢ * w when averaged.,
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in the frictional term, for example:

because u' = 0 everywhere

2¢5 + 0t 2y 251 2=
L RAEr v'{au+au'}:vau

ax? ax?  ax? ax2
and therefore its spatial derivatives must vanish.

Thus a)] the terms on the right-hand side of equation 7.2 are of the same form
for both the total flow and for the mean flow, which is also true for The
corresponding ferms in the y and z equations.

Now et us. examine the advective acceleration terms on the left-hand side of
equation 7.2 which become:

- o 1 - - ' _ - .
(u + u') -§£2425—2-+ (v + v!) LAlutu') Fo(w+w) Jalu+u')
9% 3 3z

¥hen we average them any term which contains a single fluctuating quantity
will vanish on average, as we showed above. Hence the average becomes

7.3 ;.30 5.3 v, 2ut v 8ul o dut
[ Viax TV ¥ oWz ] * [ YT e v ay Y
The first three terms combined with 3u/3t give du/dt, the total or individual
derivative using the mean rather than the total velocity, leaving the other
three terms involving the fluctuating components.

Hence, if we collect everything together the Reynolds equaiion for u has the
same form as 7.2, with mean quaniities used for total quantities, plus the
three new terms above involving velecity fluctuations. These new ferms must
represent the effect of the velocity fluctuations or 'turbulence' on the mean
motion. Note that they arise from the non-iinear terms in the Navier-Stokes
equation; The non-linear nature of the equaticns and the possible existence
of turbulence and its possible frictional effects on the mean flow are not un-
related, as noted before. Note too that equaticns €.l and 6.2, because we

did not write a specific form for the friction, may be taken to be applicable
tc either the total or mean velocities.

We are still faced with the problem of writing down specific expressions for
the friction in order to produce a closed (i.e., complete) set of equations.
The approach of Navier and Stokes produces a2 set which is closed but which
cannot be applied to high Reynolds Number turbulent oceanic flows in practice.
Reynalds' approach shows how the nen-linear terms give rise to turbulence
effects on the mean flow and gives explicit expressions for these effects in
terms of the velocity fluctuations. However, the system is stil! not closed
because we have now added three more unknowns, u', v', and w', |In principle
one might attempt to observe these turbulence fterms. Such observations can be
made, with great difficulty, at a single location but to do so in the detail
required for a large region is simply not practical. To improve our under-
standing of turbulence effects and to be able to 'parameterize' these effects
in terms of mean flow quantities and their gradients (i.e., space derivatives)
many more observations will be needed. (By 'parameterize' we mean write down
expressions for the turbulence quantities in terms of quantities which we can
observe more easily or calculate from our equations, in this case the mean
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velocities and their gradients and the density distribution or perhaps the
static stability based on it.) This problem.of 'closure' - completing the
eguation set - remains as a fundamental problem in studying turbulent flows
and remains unsolved in any general way. It is possible fo work out from the
Navier-Stokes equation an equation describing the behaviour of such terms as
utu', u'v', u'w', etc., from which the turbulence terms above can be calculated.
However, These equations contain fterms involving averages of triple products
of fluctuating quantities which also come from the non-linear terms. An
equation for these can be obtained but it involves guadruple products and so
on ad infinitum. There are always more unknowns than equaticns. One must
use observational knowledce and physica! intuition to provide the necessary
additional equations. The test of any closure scheme is That predicticons
using it agree with observations. .In the following we shall outline the
simplest closure scheme - an analogy with molecular friction effects.

'ﬁeynolds Stresses and Eddy Viscosity

The analogy which will be discussed, of introducing an 'eddy' or 'turbulent!
viscosity of much greater macgnitude than the molecular one, does not produce
very exaci results except in special cases. However, if we can show using
this analogy that turbulent friction effects are small we can perhaps 'solve’
the equations ignoring friction and expect realistic results. Note alsoc that
in the mean flow or Reynolds equation the non-linear terms are not likely to
be dominant. The 'breakdown' into turbulence will mix momentum and reduce
the spatial derivatives of the mean flow to the point where the non-linear
terms based on the mean flow do not dominate, i.e., are net the largest terms.
Thus the mean flow equations are likely to be, at worst, weakiy non-linear.
Provided that we can overcome the closure problem in-a reasonable way we havea
goed chance of solving the equations, by numerical calculations on a computer
it necessary (as described in Chapter i} ) although many analytical methods
(i.e., writing down appropriate mathematical formulae) are available for
weakly norn-1inear equaticns. ’

First we shall rewrite the furbulence terms using the equation-of continuity
of volume for an incompressible fiuid, 3u/3x + 3v/dy + dw/dz = 0. |If we
average this equation then 3u/3x + av/dy + aw/3z = O; subtracting this
average equation from the original equation then 3u'/3x + 3v'/3y + aw'/3z = G
or ¥+ V' =0 in mathematical shorthand, Thus the fotal velocity, The mean
velocity and the fluctuating velocity all satisfy continuity of volume. To
the turbulence terms of the Reynolds equation we add u' « (V+ V') which is zero
and so does not change the value, only the mathematical form.” For the x

compenent: .
au'  3v' | aw' J .3

1 f 1
U"BU +V"ﬂ + |.a_u +U" _ % —U'U|+§_\/U'V'+g—g U'W'

ax ay. " ez ax 3y 3z X

and the equation for u is:

by - A% L _ 27 427 327
-3-5=—a-2—p+ 2Qesing s v-20-cosgewi v {_a_u{_g__u_+_':)__g]‘
X ax2 By2 322
_Z}_ lt_a__.ll_i_ (]
a3y U 3y u'y 57 U

This is the Reynclds equation for the x component of velocity.
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Now a term such as v+ (32u/0x?) can be written as 3(v - 3u/dx)/8x (the form
which this term hac before it was assumed that v is essentially uniform as
shown later in Chapter 9}, and p « v+ {3u/3x) is the stress (force/unit area)
in the x-direction due to molecular effects and a gradient of u in the x-
direction. We can therefore identify -p + uTu¥ as a stress due to the turbu~
lence. It is the derivatives of these stresses which produce net forces on a
small volume of fluid {just as does the derivative of the pressure as shown
~in Chapler 6). The stress mechanisms are qualitatively similar - the molecu-
lar effect is produced by molecules bouncing back and forth and exchanging
momentum, the turbulent stress is producec by 'chunks' of fluid moving back
and forth and exchanging momentum with the surrounding fluid, The latfer is
more effective because the distance moved and the mass involved are much
larger. Stresses such as -p-u'u', -p - utyT, -p-uTw' (and the other
averaged quadratic products of u', v' and w') are termed Reynolds stresses,
again after Osborne Reynolds who first derived them. By analogy with the
mclecular case we might suppose that these stresses are related to the mean
velocity gradients by some sort of 'viscosity' (an 'eddy' or 'turbulent’
viscosity),

- ou Ju
e sty A . . |,!.,' = A 2= . ufw' = A e—, 7.4)
G X ox Yy ay ’ Z 3z (

Unlike the molecular case we use different values of eddy viscosity (Ay etc.)
for different directions, since they may be different (particularly between
the vertical and horizonial directions because of static stability).*

Then a2 term such as - 2—»u'u' becomes 2 (A_ - 2y, itis quite common to
Ix ax X 9x

take A, outslide the derivative, either based on the argument (again in analogy
wlth molecular viscosity) that terms such as géﬁ- %& are less impcortant, or
that the analogy is crude {(which it is) and this further assumption is no
worse than the initial cne (which may or may not be true, depending on the
case). With this final neglect of space variations of the A's relative to the
other ferms, the turbulent friction terms become, in the x-direction:
27 27 2T :
A el | A, < (7.5)
2 Y ay2 322

Ix

where The A's are called 'eddy' viscosities. Note that they are, like v,
kinematic (dimensions [L2T 1] with units m2 e= 1) and the terms in expression
7.5 have dimensions of force/unit mass, i.e., acceleretion. One_must multiply
the A's by p to get dynamic viscosity which when multiplied by 320/3x% gives

a2 force acting on unit volume. In the CGS sysfem of units, where p ~ 1 gmcm‘{
the dynamic and kinematic viscosities have about the same numerical value but’
in S| withp of the order of [,000 kgm~3 they do not. [In the literature, the
symbol A (or other symbol for viscosity) has sometimes been used for kinematic
and sometimes for dynamic viscosity, sc some care is required when extracting
numerical values. In this book, kinematic viscosity will be used throughout,]

*This is the simplest way fo define the eddy viscosity. However, this defin-
ifion does not preserve the symmetry of the Reynolds' siresses, e.g.,

-vhat = A~ (3V/5x) is not necessarily the same as -u'v' =A_ - (3U/3y) although
it should"be. Usually either av/ax or 3u/3y will dominate 4nd one can pick
from the flow which is appropriate. [t is possible to get around this prob-
lem but equaticn 7.4 (and 7.5 following) are sufficient for our purposes and

we shall |eave further discussion of this point for more advanced texts,
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Unlike coefficients of molecular viscosity, the eddy viscosity ccefficients

are not constant for a particular fluid and demperature but vary from place

to place and from time to time, and with the particular motion involved. They
are not properties of the fluid but of the flow! Values are up to 16 times
those for kinematic molecular viscosity. Many atfempts have been made to
express Ay, etc., in terms of the mean velocities and their derivatives buf

no generally applicable results have been obtained. We must therefore remember
that the eddy viscosity terms in the above form are just in interim measure to
represent one of the effects of turbulence until we understand this feature of
fluid motion well enough to represent 11 more exactly.

The eddy viscosity approach does give good results in some cases, e.g., in the
atmospheric surface layer, the first few tens of metres above the surface.

In this layer A, varies linear!ly with z and the sclution of the equations
(which are the same as for the ocean) using the eddy viscosity form for the
friction term agrees very well with observations. Presumably the flow near
the ocean bottom could be treated in the same way but observations of the flow
in this part of the ocean are guite limited.

When we Tntroduce the eddy viscosity (including the molecular viscesity in
it), the equations of motion for the x and y components are:

!
du du su au Ju
_— = —_— 4 » — + - —_— . — =
dt at ~ YTax TV Ay *ow 9z
2 2 2
—a-%g—%- fev=-20ccos¢w + A LI 200y AP-B .
Xoax2 Y 52 " 522
(7.6)
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where u, v, w, a, and p are average quantities, the overbar having been omitted
for simplicity. (Unless otherwise stated we assume that we are discussing The
mean motion eguations from now on.)

SCALING THE EQUATIONS @F MOTION

The equations of motion in the form of equations 7.6 and the corresponding z
compenent equation (given shortiy) are compiicated and non-linear {although
usually only weakly) and are generally not solvable explicitly. Before giving
up in mathematical despalr, let us examine the varicus terms to make rough
estimates of their size' — it may be possible initially to neglect some of them
but still leave equaTlons which refer to physical reality in the ccean and
describe actual motions, even if only epproximately. Later, we can reintroduce
some of the neglected Terms anc obtain more exact mathematical descriptions of
The motion.

What we will do is refer to the data bank of descriptive oceanography to find
out what may be the sizes of the various terms so that we can decide which
are the most impertant in particular situations.



48 [ntroductery Dynamic Oceanography

First let us consider the main body of the oceans away from strong currents
(such as the Gulf Stream or Kuroshio) and away from the sea surface where the
frictional influence of the wind s important. We can return to these regions
later. ‘

The Pacific Ocean is roughly 12,000 km across and the Atlantic 6,000 km, so

let us take a horizontal length scale (L} of 1,000 km=10®m as typical of
large-scale features of the_ocean circulation. Typicai horizontal speeds {(U)
are of the order of 0.1ms™!. We will take a vertical scale length (H) of
103m, a reasonable fraction of the total depth (world ocean average = 4,000 m).

First we will estimate a typical vertical speed (W) using the equation of
continuity:

W v av

3z (Bx+8y)

for which the crder of magnitude of the terms is:

¥.u
H L
. UsH"_ 1071. 03" .
W = C = 5% = (0% ms™!
For a typical time scale (T) we take 10 days = (0% s, considering shorter

periods to be furbulent components for the moment. For the Coriolis acceler-
ation, at latitude ¢ = 45° then 20+ sin 45° = 2 x 7.3 x 107> x 0.7] = 1g=4s~!,

while g = [0ms=2. For the pressure term, a=10-3m3 kg=! and p = |0 kPa
= 107Pa for z = -103m from the hydrostatic equetion.

Values estimated for Ay and A, vary from.10_to 10°m?s~) and we will use
10°m? 571, For A, estimates Xange from 10=° o 10-1 m2s~! and we will use

107! m? s=1. By using maximum values for A A
limits for the size of the friction terms.

y? A, we should get upper

We see that these estimates for eddy viscosity vary widely. Part of this vari-
ation is due To the fact that they are properties of the fiow, not of the
fluid, and part is due to the way in which they are obtained. For example, by
measuring or estimating the other impertant terms in the equations one may
obtain the friction ferm by difference and then calculate the eddy viscosity
from A, = friction / (32u/5x2) . Alternetively, one may adjust the eddy vis-
cosities in a solution (either analytical or numerical) to make it fit the
observations as well as possible. A simple rough approach (probably good
within a factor of 100) is to use the fact that the non-linear terms are about
the same size as the turbulent friction terms which we pointed cut in the
previous section. Then:

2 u . u _ U . . _HZ
= Ax iz Ay Lz - AZ 72 or Ax = UsL and AZ = Ef. Ax
Thus with H/L = 1073, A_ = 10~ < A_ as for the estimates given, The fact

that A, << A  or A, Is due to the Static stability caused by stratificaticn
which gofh inhibif! vertical turbulent transfers and forces the flow to be
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nearly horizontal. (lndeed the generally stable stratification in the upper
part of the sea is essential in making typical vertical velocities W << U, and
leading to circulations with H << L.} Neote that A, = U-L is equivalent tfo
saying that a Reynolds Number based on eddy viscosity is of order 1. Using
U=0.1ms™! and L=10°m gives Ay and A, = 10°m?s~1, at the upper end of the
range of estimated values. Lower values may occur because the flows on which
they are based are of sma!ler scale (smaller L or U) or have an eddy viscosity
Reynolds Number > 1.

The vertical component equation of motion corresponding to equation 7.6 is:

dw _ oW Mo, L3 AW
A R T Y "z
. 2 2 2
-a-gP—+29-cos¢°u-g+A-BW+A--B—W+A-—3-—W 7.7
az X 2 Y 2 z 2
ax _ 8y 3z
and will have scale sizes as follows:
W UeW | Veu oW -
T YT YT T
xﬁ &7_ 3+ 20 oy - + ]05."" + 105;l+ 10—1__w_
" H wrcosé g 1z " 107z Wz
i.e., 1012 4+ 10-11 + 10-11 + 10-11 =
+ 10 + 10-5 - 10 + 10711 + 40—t 4+ 1071l
in this equation, all the terms are very much smaller than the pressure term
and g and so we can ignore all excepi these two and wili be left with the
hydrostatic equation (derived in.Appendix |), i.e., a~- (3p/32) =-g (7.8)
correct to about 1 part in 1 million, even when the water is moving with

typical open ocean speeds and even though we have chosen values for the eddy
viscosities at the high end of the observed range in order to have the
iricticnal forces at the high end of their range for the open ocean. (It is
left as an.exercise for the reader to show that the hydrostatic equation still
applies even in faster currents such as the Gulf Stream where the maximum
speed is about 3ms~! and the stream width is ~ 100 km.)

Note that the non-linear terms are all of the same size as a result of our
estimating the vertical speed W from the horizontal speeds using the equation
of continuity. Also the friction terms are al!l of the same (small) size as a
result of our choice of the H, L, A, and A; values, This result will hold
also for the othér compenent equations and therefore when examining them we
will need to look at only one non-l{inear and one friction.tferm to estimate
their size.

locking now at one of the horizontal component equations: -

i

T TR -G 224
5?»+.u o + = - o + fev-20-cosé w-+AX 7 + .
ax
The order of magnitude of-the terms is:
u u2 . - 3p -4, |06‘.U_ Foe v .
T + r— + = ‘0. ax'l'f Uu-10 W + >

L



50 Introductory Dynamic Oceanography

or 1077 + 1078 4+ - . - = 2 +107% - (0-8 + 408+ . . -

or relatively:
1072 + 10~3 4+ « « + = 7 +1 - (0=F 4+ 10"+ . .-

The pressure term has been represented by a query here because we do not have
direct measurements of 3p/3x . We see, however, that |f must be of the same
size as the Coriolis term (f « v) in order to balance the equation. Of the re-
maining ferms the local acceleration term 3u/3t is the largest but even it is
only about 1% of the Coriolis term for typical times of the order of |0 days
and will be smaller for longer Times. The second Coriclis term (22 - cos ¢ « w)
is small| because of the fypically smal! value of w. The non-linear terms for
the mean motion are negligibly small and sc are the friction terms in the
interior of the water mass. Therefore, to an crder of accuracy of 1% we have:

0 = -« -32-+ fov
Ix
0 = -o¢o- %% -f-u for the intferior of the ocean. ) (7.9}
= -g.fR_
0 @ra>-g

These equations describe the relationships between the horizontal pressure
disiributions and the horizontal velocity components in the ocean, and the
distribution of pressure as a function of depth and density (p) distribution
{a = 1/p) which is a function of the distribution of salinity, temperature and
pressure. In principie, if we observe the distribution of salinity and temp-
erature as a function of depth in the ocean we can celculate p from the z
equation 7.9 and use it to find u and v from the x and y equaticns. Alterna-
tively, for theoretica! studies we could express the temperature and salinity
distributions mathematically as functions of x, y and z, introduce the
equation cof state o« = alT,$,p) from iaboratory studies of the properties of
sea water and heat and salt conservation equations, and solve the set of
simgitancous equations (seven in all}, an approach which we shall discuss in
Chapter 10.

|t appears, therefore, that the interior region of the ocean is cdescribed by

a simple set of equations which can be solved, because non-linear effects are
negtigible. However, these simple eguations do not give us a complete
description because the boundary concitions for the interior of Fhe ccean
depend on the surface layers where wind friction acts, and on the lateral
boundary layers (e.g., the Gu!f Stream) where the dynamics are more complicated.
A complete sclution for the interior requires solutions for the outer regions,
so that the probiem is not fully solved. We can, however, ignore the boundary
condition preblem for a while and make use of the simple equations to find out
quite a ot about the motion in the interior.

In the next chapter we shall look at a simple case where there are no true
forces - just acceleration provided by the Coriolis effect. |In this case we
will be locking at a phenomenon of sma!ler linear scale because if:
_ Acceleration term = Coriolis acceleration
then ’

12

— = f+U or L = %- and for UL = O.ms™l, §= ot
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then L = 103m or 1km. In this example we have used a possible balance
between terms to determine what the length’scale must be, another way to use
. the scaling approach.

In the scaling of the large-scale flow in the interior we found that both non-
linear and friction effects were very small. In other regions they may be
more important. We found the Coriclis term to dominate - it turns out to be
important for almost all large-scale flcw phenomena.

To help to classify flow types in other regions it is useful to consicder the
ratics between non-linear and Coriolis terms and between friction and Corioiis
terms:

Non-linear term

2
U_ . - 1 = v = R .
L

Coriolis term

Here f, is a typical value of f for the region being considered and the ratio

R, s called the Fossby Number. The second non-dimensional ratio is:

Friction ‘term _ U 1 3 Ax -
- - T . - .12 4
Coriclis term x L fo u fo L X
A A
or = ———)L7; = Ey , or = _—“:;7; = Ez
fo- L fo- H

These E's are called Ekman Nuwwbers, e.g., E, is the vertical Ekman Number
because it depends on the friction term involving spatial derivatives with
respect to the vertical coordinate, offen termed for brevity vertical friction.
Likewise £, and Ey are horizontal!l Ekman numbers. In the interior, E, v Ey and
the symbol Ey is often used. For the interior Ry < 103, €, ~ Ey <10=3. 7 In
other regions they may not be so small but for the large scale circulation,

values of the order of X are an upper [imit.

DYNAMIC STABILITY

What determines when a flow will become unstable sc that it may break down
into irregular small-scaje motfions leading to friction effects which are much
larger than those. due to the molecular nature of the fluid? As we have. al-
“ready noted, such effects seem fo occur in the ocean because the apparent
friction effects, as quantified by the eddy viscosities, are much larger than
molecular cnes. The horizontal eddy viscosity values are 107 to 10 Yimes
molecular values while the vertical values are 10 o 10° times molecular
values. A a

First consider a fluid which is not rotating so that Coriolis terms can be
ignored. Also take the fluid to have constant and uniform density throughout,
so that derivatives of ‘density with respect fo space ccordinates vanish every-
where. This is'an idealiZad example requiring a truly incompressible fluid
and is often used without further explanation. [+ is quite easy, however, to
construct a realistic example with the same properties. Teke the salinity

and potential temperature to be constant throughout. Then the static stability
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is neutral - there 1s no buoyant resistance to vertical motion because a dis-
placed parcel always has the same density as the surrounding water. Alterna-
tively, one can say that there are now no buoyancy effects - displaced parceis
are never |ighter or heavier than their surroundings, The salinity is

uniform throughout but temperature and density both increase with depth and
are-not uniform., However, this real fluid case will behave exactly as the
ldeal constant density, +ruly incompressible, case so the results of the ideal
case are of practical value.

Now for this simple situation it is the ratio of the non-linear terms to the
molecuiar friction term, i.e., the Reynolds Number, which determines the
dynamic stability. |f Re > 10%, turbulent flow is likely. Suppose U = 0.0lm
s~!, a rather small /eIOCITy, Then taking v = 10-8m2 s~!, the characteristic
length to make Re = 108 is L = 100m. As this length is rather small compared
with the size of the ocean basins it would seem that turbulent flow is likely
to occur everywhere. However, even in this slmpfe case a large value of Re
is not sufficient for turbulénce to occur. In order that smail velocity
variations (also called 'perturbations') can grow they must have an energy
source, |t turns out that there is no energy source unless there are gradientis
in the flow. Thus if the flow is very uniform in velocity there is no energy

" source and molecular viscosnfy will smooth out the perturbations. Of course,
the ocean is finite and near sclid boundaries the velocity vanishes, leading
to gradients if there is any flow at all and therefore turbulence will probably

be present there. A+ the surface the wind acts, leacding to velocity gradients
and turbulence. )

Another possibility is that although the Reynolds Number is large and velocity
gradients are present, for a particular type of flow the non-linear terms
remain small and the breakdown tc turbulence does not occur. Surface waves
provide such a case. Although Re may easily be 107 or more they are weakly
non-linear and not turbulent until wave breaking occurs. While the non-linear
effects are small for surface waves they are not entirely negligibie, as we
shall discuss briefly in the chapter on waves.

The Effect of Density. Variafions on Dynamic Stability

When density variations occur In'the fluid ihey may enhance or diminish the

_mechanica] effects. The-static stability gives a measure of the effect. If
it is negative {unstable) the vertical component of velocity fluctuations is
enhanced. |If it is positive (stable) the vertical component is diminished.

It the turbulence persists it will fend to mix the fluid, that is, make the
density more uniform in the vertical. |In doing so light fluid Is mixed down
and heavy fluid up, raising the centre of gravity and increasing the gravi-
tational potential energy. This increase in potential energy comes from the
kinetic energy of the turbulence which in turn is usually derived from the

kKinetic energy of the mean flow. The furbulent fluid also loses some energy

to heat(internal energy} through molecular viscous effects. [f the rate of

turbulent energy loss exceeds the rate of gain, the turbulence will die out.

Indeed, if the static stability is sufficient, turbulence involving fluctua-
Tlons of the vertical component will no+ be possible.

How can we establish a criterion for The relative importance of static
stability and the tendency for instability due to the effects of the non-
linear terms? As mentioned earlier, generation of turbulence requires a
Yelocify gradient, First consider the case where v = w = 0 and u varies with’
z@but not x or y, Then the only velocity gradient possible is 3u/dz and it
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needs to be compared with the static stability. The possible generation of
turbulence does not. depend of the sign of 3u/3az; dynamic instability mey occur
if u is either increasing or decreasing from one level to another - only a
¢hange is required, so we consider (3u/3z)2 as an indicator of the strength of
mechanical generation. A measure of the static stebility is the Brumt-Vaisdld
Frequency (N)- given by N2 = g+ E (equation 5.11). (Then a measure of the
relative importance of mechanical and density effects is Ythe dimensioniess
Richardson Number Ri = N2/(3u/32)2, named after the person who introduced it.
1t Is sometimes called the *gradient! Richardson Number because it is based
on gradients of mean quantities; 1% is possible to-define a slightly different
Richardson Number based on the turbulence itself, but tThis extension is beyond
the scope of this book.) £ av/oz #0, avH/az would replace 8u/dz in the
Richardson Number. :

1§ Ri < 0, density variations enhance the furbulence; if Ri > 0 fhey tend to
Feduce it, |If only verfical variations of V_, occur.-and Ri becomes sufficiently
large, turbulence is not possible - the stabilizing effect of the density dis~
tribution overcomes the potential instability due to the non-linear terms.

The exact value of this 'critical' Richardson Number must be determined experi-
mentally. This measurement is difficult Yo do accurately because it is
necéssary to decide just when the fluid becomes barely turbulent and to account
for effects of horizontal.gradients (derivatives with respect o x and y) of
velocity which are impossible to eliminate entirely. Empirically (i.e.,
experimentally) it seems that when Ri is larger than about 174, turbuience
cannot be generated by vertical gredients of velocity (i.e., 3u/3z or 3v/dz}.
Of-course, if horizontal ‘gradients of velocity are presenf fluctuations of
essentially horizontal velocity may develop even when Ri is much larger than
the critical vaiue for damping vertical component fluctuations. An example is
the meandering of the Gulf Stream which is known to occur even though Ri is -
probably considerably larger than its critical value. ;

Note that the effect of the density variation, principally in the vertical
direction, on the mean flow is indirect. [+ acts on the turbulence modifying
the vertical eddy viscosity {(and similar coefficients for heat and salt turbu-
!ent transports). The reason is that the density variations are small (both
the fluctuations and in the mean velues). Indeed there are no cbvious effects
of density variation on the mean flow - there are no terms involving deriva-
. Tives of mean density (or specific volume) in the equations nor are there terms
involving specific volume fluctuations. Because these fluctuations are small
we neglected the terms involving them such as a' » (3p'/3x) in deriving the
Reynolds equaticns for the mean motion, e.g., eguation 7.3 for the x component.
. This approximation is consistent with what is termed ihe 'Boussinesq approxi-
mation’. Boussinesq said that, if the density variations are fairly small, to
e first approximation we can neglect their effect on the mass (ile., inertia)
of the fluid-but must retain their effect on the weight. That is, we mus¥
include the buoyancy effec%s but can neglect the variations in horlzonfai
accé?eraTlons for a glven torce due to the mass variations with density
twhich are at most 3% if we use an average over the whole ocean for p or al.
Thus in the' horlzonTaJ momentum equations (x and y directions) we can use an
average density over the region being considered but in the z equation, which
reduces to the hydrostatic equation, we must use the actual, in situ values
when calculating the pressure fieid. ' o
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EFFECTS OF ROTATION

In a non-rotating fluid the Reynolds and Richardson Numbers must be consider-
eds " Once Re s sufficiently large the flow will be turbulent, at least in the
horizontal, even though a large enough Ri will restrict fluctuations of the
vertical velocity component. Once Re is large enough for turbulence to occur
its velue is not importent for the mean flow directly, The valus of Re then
determines the scale size at which molecular viscous effects become important
for the turbulence itself and prevent fluctuations of smaller scales from
bécoming large. ‘

The rotation.provides another possibility, that the Coriolis terms may affect
the flow. For the ccean and atmosphere these appear to be important, often
dominant, compared with non-linear and friction terms. The Rossby and Ekman
Numbers then determine the relative importance of non-linear effects (for-the
mean flow) and frictional (usuaily turbulent) effects compared with the
Loriolis effects. While the Reynolds Number based on molecular friction is
" not important, the ratio of the non-{inear terms (for the mean) and the
Turpbutent friction, measured by the Reynolds Number based on eddy viscosity,
remains.an important parameter. ‘

Having discussed the significance of ‘the non-linear, frictional and rotational
terms -in the equations of motion, we will next examine the simple approximate
equations of motion (7.9) where both the Rossby and Ekman Numbers are so
smal | that for the mean flow both turbulent friction (non-linear effects in
the total flow) and, except for the first example of inertial oscililations,
non-linear terms involving mean velocity components may be |gnored.



CHAPTER 8

Currents without Friction:
Geostrophic Flow

In this chapter we will discuss scme of the characteristics of moticn which we
can deduce from the equations of motion when it is assumed that the F terrs in
equations 6.1 or 6.2 {i.e., friction, cravitation of the sun and moon, etc.:
are zeroc and that there is a steady state, that is the velocities at any point
do not change with time (i.e., au/at = dw/3t = 0). Except for the example of
inertial oscillations ve shall alsc assume that the advective acceleration
terms may be neglected, These approximaticns for the large-scale mean circu-
fation in the ocean's intericr were justified in the previous chapter.

HYDROSTATIC EQUILIBRIUM

As a preliminary to discussing moving fluvids, let us first look at stetionary
ones. Let us assume that (1) u = v = w =0 , i.e., thet the fluid is .
statiorary, (2} dV/dt = 0, i.e., the fluid remains stationary, and (3) all

the F terms are zero, Then, from eguations 6.2 we are [eft with only:

a B =g, 4.2 - o, LR {(8.1)
ox Iy oZ -

The first two mean that the isobaric {constant pressure) surfaces are horizon-
ta!, i.e., there is nc pressure term, in fact ro force at ail in this case, to
cause horizontal motion., The third can be written as

dp = =~ p e+ g~ dz (8.2)
which is the hydrostatic (pressure) equaiicn ir ciiferential form, i.,e., i+
gives the pressure dp due to a thin layer dz of fluid of density p . Ifpis
constant (indeperdent of depth) it beccmes p = -p+g+z. This is not a very

exciting result - really ali that it does is confirm that the equations of
motion do give a previcusly known answer (as shown from first prirciples in
Appendix |}, when the fluid is stationary. As we showed in Chapter 7, this
equation rerains an excelienrt approximation even for flows at typical ocean
speeds. ’ '

The reason for the minus sign is hecause we taxe the origin of coordinates at
the sea surface with z positive upward. Measurements up into the atmosphere
are given as, for example, "the masthead is at + 10m', whiie measurements down
into the sea are civen as, for example, 'the depith is 50m' or as 'z = -50m'.
The pressure at this depth is (+aking p = 1,025 kgm 3):

Pg = -(1,025 x 9.8 x =50) = +5.02 x 10°Pa = +502kPa .

58
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Fig. 8.1. Reiationship of Coriolis force and velocity for inertial
motion

An increase in depth of 1m yields an increase in pressure of about |0kPa.

INERTIAL FLOW ’ ’

We first assume that (1) .3p/3x = 3p/dy = 0 (i.e., there is no slope of the sea
surface and all the pressure surfaces inside the fiuld are aiso horizontal;
we shall look at the situation when these ferms are not zero presentlyl,
(2) +that we can ignore the F terms as stated sbove, and (3) that w = 0
(i.e., that there is only horizontal motion). Then the x and y equations of
motion become: -

L= 2mesinésv oand QL o= -Zassingeu . (8.3)

The equations 8.3 have solutions:

= Y eei e sind »
u /H sin (22 +sin¢ - +) (8.4)
v = VH- cos (20 sind « 1)
where V2 = u2 + v2. - Now these are the equetions of motion for a body in the
northern hemisphere travelling clockwise in & horizontal circie at constant
tinear speed Vy and angular speed 20« sin¢. |{ the radius of the circle is

B, then VA/B = 20-'sin¢ - Vy, i.e., the centripetal acceleration V3/B is
provided by the Coriolis acceleration 2@« sing¢ + Vy (Fig. B.i). Physically,
such motion might be generated when a wind biows steadily in one:direction for
a time, causing the water to acquire a speed Yy, and then the wind stops and
‘the motion continues without friction (to a first approximation}, as a conse-
quence of its 'inertia' (properly Its momentum), hence the term ‘inertial
motion'. Flow variations of inertial period are offen present in records from

current meters. The amp!itudes vary depending on the strength of generating
mechanisms and they decay due to friction when the generation stops.
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Note that equations 8.3 are non-linear but.do have solutions, equations 8.4,
so non-linear equations can someTimes be solved explicitly. Hote also, how-
ever, that if we regard the equations as lLagrangian equations for a fluid
parcel, they are lipear and the ferms which would be non~linear in lLagrangian
terms (friction) have been assumed to he small, making solution easy.

For a speed Vy = 0.1ms™! at latitude ¢ =45°, then B=1km. For Vy=1lms™1,
then B~ 10 km. The period of revolution = 2n/anguilar speed = 26/2Q +sin¢ =
(1 sidereal day/sin ¢)/2 = T;/2 because Q = 2w/l sidereal day. The quantity
T¢ = (1 sidereal day/sin ¢) |s called 'one pendulum day' because it is the
+ime required for the plane of vibration of a Foucault pendulum to rotate
through 27 radians. The value of 0.5 T¢ (cne-half pendulum day) is [1.97 h at
the pole, 16.93 h at 45° latitude and infinity at the equator.

The direction of rotation in the inertial circle is clockwise viewed from abowe
in the northern hemisphere and anticlockwise in the southern hemisphere. If
one thinks of observing the motion in the southern hemisphere by looking down
+through the earth from the northern hemisphere then the motion also appeears
clockwise. However, the cbserver in the southern hemisphere is upside-down
relative to the observer in the northern hemisphere and he calls the motion
anticlockwise. Likewise, he says that the Coriolis force acts to the left of
the velocity in the southern hemisphere. It is a matter of point of view,

In the terms used by meteorologists, the motion is anficyclonic In both hemi-
spheres. The term cyeclonic comes from cyclone, a STOTm Wifth dow pressure at
its centre about which the winds are anticlockwise in the northern hemisphere
and clockwise in the southern hemisphere. An anticyclonic system has high
pressure at its centre and winds circulate in the opposite way. The reason
for this behaviour will become clear when we discuss geostrophic flow. Equi-~
valeni terms eontra solem and cwn sole are occasionally used by oceanographers
in the colder |iterature meaning, respectively, against and with the direction
cf motion of the sun as seen by an observer facing the equator. These terms
are related in Fig. 8.2,

GEOPOTENTIAL

in preparation for the discussion of the geostrophic method for calculating
currents we must introduce the concept of geopotential. The quantity

d¥ = M-g-dz is the amount of work done (= potential energy gained) in rais-
ing & mass M through & vertical distance dz against the force of gravity
(ignoring-friction). We then define a quantity called 'geopotential' (&)

such that the change of geopofenflal d¢ over the vertical distance dz is given

by:

M-Go = di = Me+gsdz (Joules)

T4

or dd

g- dih(ﬁéufes kg™l = m? s72) (potential enefgy change/unit mass)

]

- a«dp (irom equation 8.2).

integrating from 21 to z, we have:

2 2 2
hde = fg-dz =~ fiardp .
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CYCLONIC | ANT1-CYCLONIC

©OR - OR
_CONTRA SOLEM CUM SOLE

NORTHERN
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'
"SOUTHERN
HEM! SPHERE

Fig. 8.2. Directions of rotation around low and high pressure regions in
northern and southern hemispheres. '

+ § from Chap. 2 we get:

Now writing a = a35’0’p
. 2 2
4, - % 7g-lzy -z = _fi ®35,0,p ~ P _fl o dp (8.5
= - Ad -89 .

=1

The quantity (&, — ¢,) is calied the 'geopoiential distance' between the levels
z; and z, where the “pressures will be p, and p;. The first quantity on *he
right of equation 8.5 is calied the 'standard geopotentia! distance' (A%, a
function of p only) while the second is called the 'geopotential anomaly’

(a¢, a function of S, T and p). |In size, the second term is of the order of
cne-thousandth of the first.

The reader is reminded that although %, - &, is called the geopotential
'distance' in oceancgraphic jargon, it real%y has the units of energy per unit
mass (J kg~! or m? s72) and for g = 9.8ms™2 and 6z = 1m, then d¢=9.8J kg1,
For numerical! convenience, oceanogrephers in the past have used a unit of geo-
potential called the 'dynamic metre' such that 1ldynm = 10.0Jkg~l. To
indicate that this unit is being used, it is usual to use the symbo! D for
geopotential. The geopofential distance D, - [ is then numerically aimost
equal to z, - z, In mefres, e.g., relative to 7he sea surface:
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. S| units Mixed units
at a geometrical depth in the sea = _+100m + 100 m
then zZ, = ~ |00m - i00m
the pressure will be about p =+ 1,005 kPa + |00.5 db
and the geopotential distance
relative to the surface ¢, - ¢, = - 980 J kg™1, 0,-D0y = -~ 98 dyn m.

It is because of its use in the calculation of geopotential 'distance' that
tables of a as a function of S, T and p are more common than tables of p.

Géopefenfial Surfaces and lsebaric Surfaceg

A surface to which the force of gravity, i.e., the piumb line, is everywhere
perpendicuiar is called a geopotential surface because the valuz of the geo~
pofential must be the same everywhere on the surface. The term 'level surface'
is taken to mean the same thing. An exampie of such a surface is the smcoth
surface of a lake in which there are no currents and where there are no waves,
or of @ billiard table set up correctly. The reason for specifying 'no
currents! will be explained in the next section.

An isobariec surface is one on which the pressure is everywhere the same. In
the above stationary lake the water surface would be the isobaric surface

p = 0 (atmospheric pressure being assumed constant and ignored}. Iscbaric
surfaces for higher pressures would be deeper in the lake and would be geo-
potential (level) surfaces as long as the lake was stiti,

Iscbaric surfaces must be level in the stationary state. 'Suppose for the
moment that an isobaric surface (dashed line in Fig. 8.3a) were inclined to
the tevel surface (full line in Fig. 8.3a). The pressure force on a particle
of water A of unit mass will be a - 3p/3n as shown, (3 /3n means the gradieht
afong & normal, i.e., perpendicuiar, tc the surface and in the plane of the
paper.) ‘in eaddition, gravity acts on the particle. This is an unstable situ-
ation because the two forces cannot balance, as they are not exactly opposed,
but must have a resultant to the left. The situation is shown in more detail
for parficle B where the pressure force has been resclved into:

a vertical component a + (3p/3n) « cos i which balances g,

and & horizontal component a - (3p/an) = sini which is unbalanced and would
cause accelerated motion to the left, i.e., the situation is not stable.

The component fo the left is

C L sint E e cosine S o L tan
o an - sin i (a 5n cos i) o5 g tani .

To stop The acceleration to the left it is necessary to apply to the right a
force/unit mass, F/M, equal in size To g-tani (Fig. 8.3b), In Chapter 7 we
showed that the Coriclis force was likely to be important, so one way to apply
a force to the right would be +o generate a Coriolis force by having the water
move 'into the paper! aT speed V so that 29- sing -« V = F/M = g-tani

(Fig. 8.3c). . . -
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Fig. 8.3. Pressure terms in relaticn fo isobaric and to level surfaces.

THE GEQSTROPHIC EQUATICN

The Coriclis force is sometimes called the geos?rophlc' (= earth turned) force
and the equation

20+ s5ing . V1 = g- tan’i (8.6)
is one version of the geostrophic equation. '

In principle this geosfrophic equation shouid permit us to determine the speed
V, by measuring the slope i of the iscbaric surface. |In practice we cannot
defermlne p directly with the necessary accurascy. Instead we have to determine
p from the hydrostatic equation p = S pe+ g+ dz after having determined the
distribution of density g with depth, Even with this methed we cannot
determine the angle | absciutely. _The reason is that we make our measurements
from a ship on the surface of the sea and we do not know if the sea surface is
level or not (disregarding waves). |In fact, if there are currents in the
surface waters the sea surface will not be level because the geostrophic
equaTlon applies there, and motion gives rise to a Coriolls force which re-
quires the water surface to be sloping so that the horizontal component of the
pressure gradient can act to balance the Coriolis force. All that we can do
is determine the difference befween iy at level z) and i, at level z, as
described shortly, This difference will give us ~the ve%ocnfy at level
relative to that at level z,.

The slopes are small, e.g., 2@ +sin¢=10""% at 45° jatitude and for Vp=1lms~1,
tan i = 1075, i.,e., the slope rises Im in 100km, a distance typical of the
width of a strong current such as the Gulf STream. ‘
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The geostrophic equation applies equally to'the atmosphere but the meteoro-
loglst is more fortunate than the cceanographer. He can measure air pressure’
directly at a number of places on the ground or at known levels in the atmos-
phere and then determine the horizontal pressure gradient term [a-(3p/an)+sin il
directly and“so calculate the geostrophic wind speed. In addition, because
the speeds of currents in the ocean are small compared with wind speeds «in the
atmosphere,. the metéorologist can ignore the water slopes and use 'mean' sea
level as a reference level. : '

Why Worry About the Geos+ro§hic Equation?

The reason why the oceanographer concerns himself abodT using the geostrophic
equation To determine currents is because direct measurement &f ccean currents
Ain sufficient quantity to be useful is technically difficult and expengive.

In shallow water a ship can anchor and hang a current meter over the side to
measure the current, or can hang several meters to measure at several depths
simultaneously. However, this preocedure only gives information zbout the
currents at the one point where the ship is anchored. Also, a ship usvally
does not remain stationary when anchored but moves about (i.e., it surges and
swings) relative to the anchor. Part of this motion will be added to the water
motion measured by the current meter and constitutes a source of error for
which It is difficult to correct. In the deep ocean it is more difficult to
anchor and the ship motion error may be much larger than the real water motion.

Meny institutions are now using recording current meters which are hung in a
string from a moored buoy. A number of such buoys moored in a pattern in the
ocean will provide information abcut the three-dimensional distribution of
currents as a function of time. " However, because of the expense, the diffi-
culties of working at sea and the complicated nature of the currénfs when

examined in detail, it is not possible to obtain observations over as much
of the ocean as we would like.

#hy shouid we need to measure the currents over & period of time? Why is not
one measurement at each place sufficient? Simply because real ocean currents
are not steady. They fluctuate in speed and direction and the only way to
determine the mean and the variation with time is to make freguent measurements
for a sufficient pericd of time {(probably several months at feast).

The geostrophic method for calculating the current requires information on the
distribution of density in the ccean; it is easier to obtain this information
than it is fto measure currents directly. The method suffers from several
disadvantages, but when used intelligently and in parallel with other informa-
tion it can be very helpful. In fact, most of our knowledge of ocean circula-
tion below the surface has been obtained this way. The geostrophic method is
also useful in strong currents (e.g., the Gulf Stream as we shall show near

" the end of this chapter).-in which it is very difficult to moor recording
current meters, .

We should add that currents in the surface layer can be deduced from the
navigation records of ships, and most of our surface layer information has
been acquired from this source. The method of using navigation records js to
assume that the difference between the intended track and the one actually
followed is, after correction for 'windage' (the drift of the ship due to the
wind), due to the water motion. Obviously such data are 'noisy', that is any
one -observation may have a large error, By averaging over many years using
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Fig. 8.4. ' For the derivation of the geostrophic squation.

all the observations in a particular ares (usually 5° latitude by 5° longitude)
oné =an obtain the 'climatolegical' or long-term average motion. There are
undoubtedly significant verietions of the actual motions from these averages;
variations cf several times the mean seem commcn accerding to our [imifed
direci current obhservation data. There are probably cases of smaller scale
features in the flow than are resolved by such means. For example, the
pattern of flow in the eguatoria! Pacific deduced frocm observations has become
more and more comp!icated as more detailed cobservations have been made..
{Existing current meters dc not work well near the surface, so obtaining
better cobservations of surface currents remains a problem.) Better navigation
with the ‘improved elecfronic facilities now in use will help fo improve the
quality of this fype of data but one stitl does not get good coverage in time
and space over most of the ocean.

The Geostrophic Method for Calculating Relative Velocities

In Fig. 8.4, A and B represent the positions where oceanographic stations
have been taken so that the distribution of p or @ is known aleng each
vertical AA;A, and B3,B The |ine AB represents the sea surface which is
assumed not fo be level buT whose slope unfortunately is not xnown (and in
*the present stvate of the art is not measurable in the open sea). & and ¢
represent twc levei surfaces passing anough Ay and A2 at station A, and

C, and , at station B. The two isobaric surfaces P, and p, pass through A,
and A, at station A, and through B, and B, at station B, The slopes of

these twe isobaric surfaces are il and i2 relative to geopo*enftcl surfaces.
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{f the velocity component, relative to *he earth, of the water (into the paper
on surface p, is V, and on p, is V,, .then the geostrophic equations are:

n

Zn-s_in_¢-V] g~ tani

1

0o

ZQ-sinn:;‘Vz g-Taﬁiz"

Subtracting:

20 - sincﬁ:-(v1 —,_/Vz‘).‘ = g (fan i11 Tén iz)
B.C B C
171 272
i.e.,20<«singd (VN -V ) = g+ 47— -
» 1 2 Alcl AZCZ
= _g.. . = - = =
T (5182 CICZ) because Alcl AZCZ L
and BICl - BZC?_ = 8182 - CIC2
= % - (B,B, - AA,) because C\C, = AA,
= S.7 - - {7 - ]
= 2 L(z] 2,3) (z, Z‘L)] . (8.7}
Now from the hydrostatic equation:
g-dz = - a -« dp
5, P2
f g-dz = 9°(23'21) = —J o - dp
Bl P,
Py Py
= —[( 35 , ° d’p+j 8.+ dpJ from (8.5).
] ,0,p B
Py . Py

Note that the numerical vaiues of the z's are negative and hence glz, - 21) is
numerically negative as is the right-hand side of the cquation.

P, P,

A %35,0,p dp+j JRE

Similarly . g- (zq—z ) = - [f
1 P1

2

Then, muitiplying both equations by -1 to get the signs of the z terms the
same as in equations 8.7 and subtracting them, and noting that the two
“35.0,p" dp terms ‘aré ‘identical and therefore cancel, and dividing both sides
by (s’ ’ : -

) R
_%[(21'23)',(22"29)]“ t[[ 68'dp-J 5A-dp]
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. . . pz
theref (Vv ~V,) = 1 [fé-d-pzﬁ'c!]
eretore A IR N D A
1 1 - (8.8)
’ i
= Tromar 8% - 4% -
{In fex+5»u§ing mixed units this Is written: .
: 10 P2
- : - = 4
R ey EADB ADA] where 4D [ 3 < dp
] - ) pl
with L in metres, 6 .in cm3g~! and p in decibars, cvl-vz) will be inms~1 )

Equation 8.8 is the practical form of the geostrephic equation. The measure-
ment of temperdture and salinity at a series of depths at each station in
principle provides the infdtmation needed to calculate the fwo infegrals of
the specific volume znomalies &, and &, (i.e., A¢, and 4¢.) while L, the
distance between the staticons, "'is obtained from havigation. |In practice, the
variation of specific volume anomaly with depth is never available ina =
methematical form suitable for direct integration and it is necessary to
determine the values of the infegrals (or of aD in the mixed system) by
numerical summation (Appendix [, {ntegrais) as shown in the example in the
next section.

If L is expressed in metres, § in m®kg™, p in Pascals and 0=7,29x 135 57!

then (¥ -~ Vy) will be in metres per second. |In practice it is not necessary
acTualiz to calculate the pressure from p=—fp +g=+dz, it is sufficient fo use
=z {for z in metres, p will be in Pascals). The reason is simply that

over practical distances L, say up to about 100 km, the vertical density

" structures are genmrallz sufficiently similar that when the two Integrals
caiculated using p=~-10* + z are subiracted the remaining errcr will be neglig-
ible compared to the qbservafional errors, .

The result of the calculation with equation 8.8 is a value for (¥_ - Vz)' the
difference between the current ai level p, from that at level Py averaged
between the stations A and B.. its direction is perpendicular tc the [ine AB

aﬁd, inthe northern hemisphere, would be directed 'into the peper' 'in fig. 8.4
or 'out of the paper' in the southern hemisphere. With station B to the rignt
of station A as |n Fig. 8.4 a negative value of (A¢g-Adp) would indicate flow
‘out of the paper' in the northern hemisphere and 'info the paper' in the south-
ern hemisphere. In the figure as drawn, the slopes between the stations are
constant but this need not be the case. Equation 8.8 is based on the differ-
ence in distance between the isobaric surtaces at the fwo stations and there-
fore on the difference in the average siope so it gives the average value
between A and B of the difference (Y; -V3) in the horizonte!l velocity component
(perpendicutlar to AB}. MNote-also that equation 8.8 is.valid no matter what-
geographlcal direction the line AB has in the horizontai.
A}

A better way tfo state the current direction on one pressure surface is Yo say
that if this surface is sloping then, in the northern hemisphere, the current
will be along the slope in such a d:recfion that the surface is higher on the
right (and vice versa in the southern hemisphere). -Since the slopes of p,

P, and g, as shown would occur if the water on the rignt {station B} were
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TABLE 8.1a Qceanographic Data etc. and Calculation of Geopotential
Anomalies (4%) for Station A.

Station A: Units of Units of

41° 551N, 50° 09'W. ig-8 m: kg™l m3kg‘1Pal = m?s72
Depth - =
m  TC 5% o, IAS P8 6p 8 1 r_ ZiGA; ap)l
? ;P ,D ‘\<,‘ 8 5 x Ap A
0 5.99 33,71 26.56 148 0 0 148 6.638
146 ~  0.365
25  6.00 3378 26.61 144 0 0 144 » 6.273
-~ 135 0.338
50 10.30 33.78 26.8i 125 0 I 126 5.935
. ’ 126 0.315
75 10.30 34.88 26.83 123 O 2 125 5,620
122 0.305
100 10.10  .34.92 26.89 (17 0 2 119 , 5.315
: (12 0.560
150 10.25 35.17 27.06 10} 0 3 104 4,755
9g - 0.455 :
200 8.85 35.03 27.19 8- 0 4 93 4.300
83 0.830
300 6.85 34,93 27.4i 68 0 5 73 , 3.470
65 0.650 .
400  5.55 24.93 27.58 52 0 5 57 2.820
52 1.040
600  4.55 34,95 27.71 39 0 7 46 i.780
45 0.900
800 4.25 34.95 27.74 37 0 8 43 0.880
44 0.880
1,000  3.90 34.94 27.77 34 0 10 44 3 0

lichter (less dense) than on the left {(station A), the rule for diEécTiOﬂ, in.
the northern hemisphere, is that the current flows relative to the water below
it with the 'lighter water on its right' (and vice versa in the southern
hemisphere). (if fthe water is less dense af B than at A on the average, it
takes a deeper column of water to produce the same pressure change (py fo Py
and B, To pp) as shown In Fig. 8.4.) This rule, "iight on the right', has
excepTlons it the vertical flow patfern |s POmplncafed but is usually frue

for reai oceanic flows,

An r—'xample of The Calculafion of a Geostrophic VeIOC|Ty Proflle

In Table 8.1 a & b The frrs# three columns show the depths and observed
temperatures and salinities at two stations, A and B, in the region of the 3}
North Atlantic Drift (the extension of the Guif Stream toward Euﬁope) Cln
successive columns are given the corresponding values at each_depth for O, .
g, a,ﬁs {(¥he sum of the previous three columns), § _the mean value
of 8 be%ween egch successive pair of depths (all in makg‘l) T = Ap (in

m? kg™l Pa = m2 6~2) and finally £(¥ x ap} = A% which is the sum of the values
‘in the previous column from each successive level to the I, OOO m level, Note
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TABLE 8.1b  Oceanographic Data efc. and Calculation of Geopotential
Anomalies (A¢) for Station B.

Station B: Units of Units of
41° 28'N, 50° 09'W 108 mf kg~! m3kg-1Pa; = m? g~2
Depth . ' n L5 x ap)l
irl
(m) T°C. S9% 9. AS,T 6S,p 6T,p 8 5 Txoap ° Adg
)
0 13.04 35.62 26.88 g 0 ¢ 118 7.894
f19  0.298
25 13,09 35.63 26.88 g 0 [ s 7.596
. il 0.298
50 13.07 35.63 26.88 18 0 I 119 7.298
- 119 0.298
75 13.095 35.64 26.89 7z 0 2 118 7.000
120 0.300
100 13.05 35.62 26.88 g 0 3121 ) 6.700
t22  0.8l10
150 13.00 35.61 26.88 118 0 4 122 6,090
' 12z 0.610 -
200 12.65 35.54 26.90 e 0o 5 121 ‘ 5.480
' 17 C€.170
300 11,30 35.37 27.03 ic4 O 8 112 4.310
. 98  1.980
400 8.30 35.1C 27.33 75 0 8 83 - 3,330
70 1.400
600 5.20 324.93 27.6| 46 0 8 57 I .930
52 1.030
800 4.20 34.92 27.73 338 0 g 46 0,900
‘ 45  0.900 ,
1,000 4.20 34,97 27.77 34 0 ic 44 : 0
that &p = -az x (0" Pa = 10% x depth difference in metres has been used in
calculating a¢. This involves ean error of up %o abouf 1% in 4Ap, and hence
in A¢, but as the error will be almosi the same for both stations, when the
difference (4¢g-4%) is teken later ir the calculation it will also have an

error of about 1% which is small relative to the errors due to the |imited
accuracy of the observations.

in Table 8,2 the values calculated for A for stations B and A are listed and
then the difference between fthem (Adg-A%,). Fina!ly The reiative speed. is
calculated at each depth (relative fo zero speed at 1,000m) from equation 8.8
using L = 5 x 10* m because the stations are 27 minutes of latitude apart

(= 27nml = 50 km), the stations being at the same longitude, and the mean
value for sindé = 0,665,

The values of fhe speed relative to that at 1,000m are plotted against depth
in Fig. 8.5, The velocity component is directed to the east because relative
to 1,000m depth the isobars siope up from station A (north) to . station B
(south). :
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TABLE 8.2 Geopotential Ancmalies from Table 8.1 a,b and Calculated
"Mean Relative Velocities Between Stations A and B at
Various Depths.
A@B AQA (A@B—A¢A) Vrel
m =2 m? 52 m2s2 ;g
7.894 6:638 .256 0.26. Stn, A: 41° 55'N, $O°709'W
7.596 6.273 |.323 0.27 Stn. B: 41° 28N, 50° 03"y
7.298 5.935 1,363 0.28 Diff, = n 0
7.000 5.620 1.380 0.28 i.e., stations are 27 nmi apart
6.700  5.315  1.385  0.29 =50 km =5 x 10%m. '
6.09C 4.755 [.335 0.28
5.480 4.300 1.180 ~ G.24 sin 41° 28" = 0.682
4.310 3.470 0.840 0.17 sin 41° 55" = 0.668
3,330 2.820 0.510 O0.1i mean sin ¢ = 0,665
i.930 1.780  0.150 0.03
0.900  ©0.880  £.020  0.005 22+ sin ¢ =9.70 x 107
0 o 0 0
0 0.1 "' 0.2 0.3 m sl

200 ¢

400

600

800 1

1,000

m

Relative velocity profile as
and 8.2,

calculated from data of Tables 8.
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Note also that (Adg-Ady)/g gives an estimate of the height di fference(dynamic
topography) of isobaric surfaces at the two stations, e.g., at the sea surface
the difference is 0.13m, that s the depths of the water from the surface to
the pressure level of IOﬁ kPa (corresponding to about [,000m depth) differ by
only 0,13 m! |f the 0" kPa pressure surtace is also level, which it will be.
if the velocity there is zero, then the water surface is 0.13m higher at
station B than at stafion A. In the mixed units system which used dynamic
metres, AD/0.98 gave height differences in metres, so the AD values were
numerical ly almost the same as the height differences. 4¢/g is the difference
in depth over a given pressure difference frem +he depth the water would have
if it were standard water of S = 3%%, and T = 0°C.

An Alternative Derivation of the Geostrcphic Equation

The geosirophic equation mey also be derived directiy from the equations of
motion (6.2) as follows: ’

d dv dw

i u = = —— =

Assume: No é??elergf:on, i.e., prrl IF 0,

and the vertical velocity, w = small so that 22-cosd +w may be

neglected,

and no other forces, i.e., F = 0.
Justification for these assumpiions for the interior of the ocean was given in
Chapter 7. 4
The z equation becomes: 0 = 20+cosperu~-a -_%% - g

or: dp = =-p-8z{(g-20-cosd-u) ,

which is the hydrostatic equation with the addition of the z component of the
Coriolis acceleration. The latter, however,.is small, e.g., for ¢ = 45°, and
¢ =2.5ms™} (a high value), then the Coriolis term is about 2.6 x 10~% ms=2,
which is negligibie compared to g = 6.8ms™2. Thus the hydrostatic equation
(8.2) applies with all the accuracy needed even in water moving at realistic
ocean speeds. This fact is forftunate as otherwise the calculation of current
speeds by means cf the geostrophic equation would be rendered more compliceted,

Now the x and y equafions'become:

x) 0 = 20-sing.v-a-L :
‘ Comoonent geosirophic equations. (8.9}
y) 0 =-293Mn¢-u-u-§R

Y
These say that for purely horizontal motion:

Coriolis force + Pressure force = 0
Coriolis force = - Pressure force.

Notice that in the x and y equations we must not neglect the Coriolis term- it
is small but the only other term in each equation is the horizontal pressure
term which is also small but must be balanced. - (One can only neglect a small
term if there are other much larger terms in the eguation as in the equation
for the vertical component as shown above.)

Atso notice that in the component equations (and see Fig. 8.6 a, b):
the pressure gradient in the x direction, 3p/8x, is essociated with v, while
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the pressure gradient in the y direction, 3p/dy, is associated with u,

Geostrophic Flow

(a) : (b)
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2Q.sin ¢.u
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u
. ' 2.sin ¢.VH
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(a,b) Directional relationships of velocity components (u,v) to
pressure and Coriolis force terms (northern hemisphere), {(c}

directional relationship of tctal horizontal velecity (V) to

pressure and Coriciis force terms {northern hemisphere).

The

(8.10)

x and y equations can be combined into a single one:
2Q - sing - V = a - %
H any ‘
where VH = magnitude of the vector sum of U and v = ¥(u2 +v2) ,

and ap/anH

One way
is to th
. oy
~H2)
(3
(4)

direction of EH (see Fig. 8.6c).

the horizontal pressure ferm perpendicular to the

to remember the relative direction of the pressure ferce and velocity

ink of The sequence:

the pressure gradient is initiated somehow,

the fluid starts to move down the gradient,

the fluid then experiences the Coriolis force to the right
(in the northern hemisphere) and therefore swings fo the
right, »

the fluid eveniually moves along the iscbars, i.e., along
the slope, not down it, with the pressure force down the
slope balanced by the Coriolis force uwp the slope.

The equivalent si?uafiohlipyfhe atmosphere was shown in Fig. '8.2 to aid in

defining the terms cyclenic and anticyclonic.

IT is left as a simple exercise

for the reader to verify that the circulations in this figure are consistent
with geostrophy. -
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Notice that an alternative procedure would be to start a fluid moving in some
direction, Coriclis force would make it swing to the right (in the northern:
hemisphere) and pile up there (slope up to the right) sc developing a pressure
force to the left. Therefcre the geostrophic equation simpiy teills us that
the pressure force balances the Corioiis force - it does not Tel! us which
came first, the pressure gradient or the motion.

Equation 8.10 is actually applicable no matter in which direction we .take the
pressure derivatives. |If ny is taken in an arbitrary direction then V,; becomes
V,, the’component of the geostrophic velocity perpendicular fo fhe direction
ny. in the nerthern hemisphere, faking ny fo increase to the right the flow
is away from the observer if 3p/dny > 0 and toward The observer it 3p/3n, < 0.
This is another way of stating that 1f the isobars slcpe up To the right (as

in Fig. 8.4) the flow is 'into the paper'.

How do we get from equatidns 8.9 and 8.10 to 8,8, the practical form of the
geostrophic equation? The pressure derivatives in 8.9 and 8.10 are taken on
surfaces of constant z which are also surfaces of constant ¢. The pressure
derivatives in 8.9 and B.10 are not directly measurable, as already noted, so
we must introduce the geopotential. MNow using the rule from differential
calculus for implicit functions '

EE ) = - ﬂ 22
axfy,z or ¢ ccnstant Ix|ly,p consfanf// 3%,y constant
and remembering that 3¢/3p = - ¢ = - 1/p, we get 3p/ax = p + (3%/3x} where

this is the change in ¢ as we go aiong an iscbar in the x-directicn, Likewise
Ip/dy = p+ (39/3y) and 3p/Bny = ¢+ (3%/3ny). These relations between p and ¢
gradients can easily be obtained from first principies instead of the calculus
rule. Suppose thai one moves a small distance &ny, from the point A, in Fig.
8.4. OCver this distance the height on the p, iscbar will change by &z, the
pressure on &, will increase by p+ g+ 8z and ¢ will increase by g+ §z. Thus
8p = p - 8¢ and dividing both sides by dny and teking the timit as ény + 0
gives the seme relatior for the derivatives as does the calculus rule. Sub-
stituting the ¢ terms for the p terms in 8.9 and 8.10 gives an alternate form
for the geostrophic equaticns.

Now these ¢ gradients cannot be measured either, but differences from one. level
ta another can be obtained from the density field. From eguation 8.5 we have
=’ + i
Ql ¢2 A¢S + A¢
and A%, is the same at every station, sc its derivatives with respect to

horizontal coordinates are zlways zerc. Consider the x equation at levels 1
an¢ 2 of Fig. B.4: '

8¢ ad
. . ] 1 2, 3{ad)
20 . = —E = — = = .
@rsingsv) a[axJon 2, [ax ]on py  dx * 3K, » and
3¢,
20+ s . - d + L. .
Qesing-v, % and the difference is .
20+ sing (v, -v_ )} = 2{a3) Likewise
1 2 Ix

a
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and 20 sine-(v, -V, = XD gy,

3

: i

These are differential forms of the geostrophic eguation written in a way
which can be used with the kind of observations which we can make. Equation
8.8, the practical equation, appears to be a finite difference form of
equation 8.11 but in fact it Is an integral form. The average along a
direction n, from 0 fo L L .

is, by definition, = % . (quantity to be averaged) - dny’. Applying this
, 0 :

o equatlon 8.11, using f for 2@ -sin¢ and an overbar to indicate an average,

gives:

ZQ‘Sin,q’.(ul—'uz) I Z;A‘b)

. B
Ty - B[ 2
A

The only difference between equations B.12 and 8.8 is that averaging is nof
explicitly shown .in the latter and we must assume that f -« (Vy -Vy) =%+ (V] -V}
which it will be to a very gocd approximation since over the distances used in
practice f Is nearly constant. |In the example given in Table 8.2 with n, in
the southward direction (for which f variations with n, are a maximum}, f

e dn =

H - (AS_ - AG, ) . (8.12)

B A

(o 5

changed by only |% between A and B. H . ~
o o P i o Y =R <2k
The 'Thermal Wind' Eguations & S T e - p,x';;y L Bl

These are another variaticn of the geosfrophic equations originally derived to
show how temperature differences in the horizontal could lead fo vertical
variations in the geostrophic wind velocity hence the term thermal wind
equations. Consider the x equation of 8.9 with { introduced and both sides
multiplied by p:p+f+v = 3p/ox. Differentiation with respect to z gives:

3pf+v) _ 3 3p

9z 3z Ix -
Changing the crder of differentiation, which will be correct for a variable
such as p, and using the hydrostatic equation, 9p/3z = - p+ g, gives:

—-—-————.B(p.f“l) = 3._...-9-2 = __—g_a(-p. ) = - o—a-g-

az ax 8z ax 97 Bx

The same procedure can be followed for the y equation and the thermal wind
equations are:

3lp~fev) - 3p
2z T T8 o
(8,13)
olp v« £+ u) _ G . 20
5z - TSty

Again these show that from The density field we can only determine the verjic-
al variaqtion of velocity. The herizontal density gradients are large enough
Yo be observed. Because -of depth uncertainties, the derivatives {(based on
finite difference approximations) will not be exactly on level surfaces but
the errors are small whereas for 3p/ax, 3%/3x, etc., they are much |arger than
the actual values. In practice if one has tables for a rather than for p, as
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is the usuai case, one would use the fact that (L/al+(3a/3x) =- (1/p)-(3p/ax)
and liKkewise for the y derivative. In meteoroiogy, where p can be expressed
in terms of a virtual potential temperature, gradients of this quantity may be
used in place of p. In_the ocean, in the upper 1,000 m or so, as a first
approximation 30./3x and 304/3y can probably be used for 3p/3x and 3p/dy,
respectively. In deeper watér, this is not likely to be a good approximation
it temperature gradients are the dominant contribution to density gradients.
(See the discussion in Chapter 5 on the use of o4 in the static stability
equation as an approximation - the terms neglected compared with 3¢4/3T and
30+/3S are the same here as there, although they are now the ccefficients of
horizontal rather than vertical property gradients.) However, in deep water,
the 'thermal wind' equations are not likely fo give useful results.

When we discussed the Boussinesq approximation in Chapter 7 we said that den-
sity variations could be ignored in the horizontal equations. However, they
~enter the thermz! wind eguations because the buoyancy effects do aifect the
pressure field, as we also noted, and these equations were derived using the
hydrostatic equaticn in which density variations must be included. In the
terms 3lp < - v)/3z and 3(p » + u}/3z the effect of density variation is small
compared with the effect of verticat gradients of v and v and it would be con-
sistent with the Boussinesq (and be a good) approximation tc replace these
terms with p« £+ (3v/3z) and p » ¥+ (3u/3z) respectively. Here f also comes
ouiside the derivative because it does not depend on z.

ABSOLUTE VELOCITIES

The geostrophic calculation gives the relative velocity component (V, - ).
Therefore if we know the absolute value of either ¥, or Vo we will know the
absolute value of the other. There are several possibilities:

{a) assume that there is a lewel or depth of no motion ('reference level')
e.g., V2 = 0 In deep water say, and Then calculate vV, for various
leveis above this (the classical method);

(b} when there are stations available across the full width of a strait
or ocean, calculate the velocities and then apply the equation of
continuity o see if the resulting flow is reasonable and complies
with &11 facts already known about the fiow;

(c) use a'level of known motion', e.g., if surface currents are known

. frem GEK measurements, or if the current has been measured at some
depth by current meter. (The Geomagnetic ElectroKinetograph, or
GEK, invented by von Arx in 1950 is an instrument with which the
motion of the surface layer is estimated relative fo the earth's
magnetic field as a frame of reference.)

Since surface velocities are important and can be inferred quickly frem the
slope of the sea surface {which is assumed to be isobaric) it is common to
plot the geopotential (or dynamic) topography of the sea surface relative to
some deeper surface, 1f a sufficient grid of station data is available. The

relative current directions will be parailel to {ines of constant geopotential
and relative speeds will be inversely proportional to the spacing of the |ines
(i.e., close spacing = steep slope = large speed, e.g., Fig. 8.7). In the
northern hemisphere, regions of high fopography will be to the right when

fooking in the direction of the current as in Fig. 8.7. It is alsq possible
1o plot the geopotential topography of subsurface isobaric surfaces to deduce
the motion there.
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SURFACE DYNAM|C TOPOGRAPHY
(Northern Hemlsphere)
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FASTER ___ ~—SLOWER
CURRENTS CURRENTS

LOW

Fig. 8.7. Relation between surface dynamic topography and current direction
(northern hemisphere}. ( = |ines of constant geopotential.)

Remember that these geopotential topography plots are usually based on some
assumed level of no motion, generally in the deep water, unless adequate
direct current measurements are available which is rarely the case. If the
- average upper-layer currents are much larger than the average deep currents,
which may~often be the case, we may get quite good values for them even if
the deep currents are not exactly zero.

-Notice that there is one known velocity region which cannot be used as a level
of no motien. This is the sea bottom. The reason why this depth of no motion
cannot be ysed is that fthe velocity Tends Yo zero because ot The action of
friction, a force which was deliberateiy assumed to be negligible when deriv-
ing the geostrophic equation. Remember then that the geostrophic equation
dees not apply in regions where friction is important.

RELATIONS BETWEEN |SOBARIC AND LEVEL SURFACES

Classjcally the basis_for the assumpticn of a level of no moticon was the be-
fief that velocities are small in deep water. Observations Tn recent-years
with Swallow floats* have indicated thet this belief may not always be correct,
and ripple marks on sand boftoms recorded in photographs in deep water suggest
that bottom currents of 0.5ms~1 or more may occur, However, it is possible
that these indicate only loczl and or fransient (time varying} currents and in
many regicns there are indications from distributions of water properties that
speeds averaged over several days or more, or over tens or hundreds of ki'lo-
metres, are probably small in deep water, and the selection of a level of no

x ) .
These are sealed aluminum tubes which are balfasted +o sink-fc and then tcat
at a predetermined level where they then travel with the water; . they have a
socund source so that they ‘can be tracked from a ship or shore station. They
are named after their inventor, John Swallow. ‘

-
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motion at about 1,000 m depth may give quite good resulits for geostrophic
calculations.

In the Pacific, the uniformity of properties in the deep water suggests that:
assuming & level of no motion at 1,000 m or so is reasonable, with very slow
moTicn below. In the Atlantic, there is evidence of a level of no motion at
1,000 -2,000 m with significant currents above and below This level.

A selecticn of relations between isobaric and constant geopotential or level
surfaces is shown in Fig. 8.8. Fig. §.8a is typical cf the Pacitic and

Fig. 8.8b of the Atlentic with The characteristics described above. Fig. 8.8c
would indicate littie motion at the surface but increasing speed into the deep
water. This situation is unlikely in the real ccean, Fig. 8.8d shows a
situation where all the isobaric surfaces are paralle! and equally inclined
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~to level surfaces - +the so-called 'siope current' situation. The application
of the geostrophic calculation would yield zero relative velocity at al!

depths which would be correct although the absolute velocity would not be zero.
This situation is unlikely in The ocean because density variations due to
temperature -and salinitTy variations are likely fo lead to changes in the iso-
baric slopes with depth, The classical assumption is that the circulation is
mainly driven from the surface (by the wind) and the density distribution
adjusts to bring the current to zero at mid-depth. However, it is possible
that there may be a2 slope current in the deep water where T and 5 variations
are small, plus an acdditional vertical variation in the upper 1,000 m or so.

'f we added slopes |ike those of Fig. 8.8d to those of Fig, 8.8a we would

have such a situation and there would not be & level of no moticn at any depth.
Cbservations, though they tend to be indirect, suggest that deep-water slope
currents are at least considerably smaller than near-surface currents. While
the deep currenis may have lower speeds they may transport.large amounts of
water it they extend over a large depth range. Surface currents based on
geosirophic calculations are similar to Those of pilot charts (obtained inde-
pendently from navigation data), which is probably The best evidence that the
average speeds of the deep waters are at !east smal! comparec with near-surface
average speeds. b

RELATIONS BETWEEN [|SOBARIC AND |SOPYCNAL SURFACES

An isobaric surface in a fluid is one con which the hydrostatic pressure is
constant, ‘while an isopyenal surface (sometimes called {sosteriec) is one on
which the density of the fluid is constant. When the density of a fluid is a
function of pressure only [i.e., p = p{p)], as in fresh water of uniform
temperature, the isobaric and isopycnal surfaces are paralle! toc each other -
this is called a barotropte field of mass (Fig. 8.%a). |f the densify is a
function of other parameters as wel! and actuaily varies horizontally with
them, the iscbaric and isopycnal surfaces may be inciined fo each other - the
baroelinic field (Fig. 8.9b). This situaticn couid occur in a freshwater lake
where the density was a function of temperature as well as pressure [p =pe(T,p)]
or in the sea where density is a function of salinity, temperature and pressure
[ = p(5,T,p)]. With 2 barotropic field of mass the water may be stationary
but with & baroclinic field, having horizontal density gradients, such a siftu-
ation 1s not possible. In the ocean, the barotropic case is most common in
-deep water while the baroclinic cdase is most common in the upper !,000 m where
.most of the taster currents occur,

It should alsoc be noted that relative to {(geopotential) ievel surfaces, the
isobaric and isopycnal surfaces have opposite slopes (relative to the horizon-
tal) in the baroc!inic case (assuming no barotropic flow so that the velocity
vanishes in the deep water)., Thus in the northern hemisphere, isopycnals _—-
siope up to the left when one looks in the direction of the curvent. Likewise,
isotherms generally slope up to the leit in the northern hemisphere when look-
ing in the direction of the current because temperature is generally the domin-
ant factor in ‘determining. density in the open ocean. The siopes will be
opposite in the southern hemisphere.

Cfien in cceanography barotropic flow is thought of as the fiow due to a uni-
form tilt of the pressure surfaces |ike fthat of the deep water where the
density essentiaily depends-only on pressure, and velocity is uniform with
depth. Baroclinic flow is the part due to additional tilts of the pressure
surfaces caused by density variations. For example, in Fig. 8.10 if ABC is

1
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Fig. 8.9. Schematic examples of barotropic and baroclinic fields of mass

and pressure.

the vertical profile of the horizontal speed, it can be regarded as made up of
two parts, a barotropic part V, and a baroclinic part V., The baroclinic part
may be obtained from a geostrophic calculation but the barotropic part will
not appear in this calculation, it must be obtained by some other means. |+
appears that this separation is somewhat arbitrary but it is consistent with
the general definition of a barotropic fluid that p =p(p) which Is true in
deep water., However, some theoretical physical oceancgraphers take the sur-
face velocity as the barofropic part and variations from this value as the
baroclinic part, so it is important to make sure which system is being used in
any particular discussion. We shall always Take the deep water, essentially
‘depth-independent, velocity to be the barotropic part.
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Fig. 8.10. Horizontal speed (Vy) as a combinaT|on of barotropic (Vy) and
baroclinnc (Vo) parts.

COMMENTS ON THE GEOSTROPHIC EQUATION

The prccedure of calculating the geostrophic currents from the oceancographic
data at two stations, e.g., AB (Fig. B8.1la) yields only the component (u in
this case) of current perpendicular to the line AB. To obtain the toial
current it is necessary also to make calculations for a second pair of stations,
e.q., BC, to get another component (v). These may then be added vectorially fo
obtain the total current (V) as in Fig. 8.11b. Generally one has a grid of

- stations from which groups of three can be selected to give the total current
pattern. If one only needs the net transport through a strait, a straight

tine of stations across it will be sufficient.

The geostrophic method for calcutating currents suffers from several disadvan-
Tages:

(1} It yields only relative currents and the selection of an appropriate
level of no motion always presents a problem. (A number of methods
have been used and some of these are described by Sverdrup et al.
(1946) and Defant (1960). However, evidence suggests that when used
intelijgentiy the geosfrophic method gives reasonable values in deep
watér (e.g., tests by Wust with Pillsbury's data for the Florida
Straits, and by Knauss in the equatorial Pacific),

{2) One is taced with a problem when the selected level of no motion reaches
the ocean bottom as the stations get close to shore. The (rather arti-
ficial) procedures for dealing with this situation are discussed by
Sverdrup et al. (1946) and Defant (1960).
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(a) COMPONENTS (u,v) (b) VECTOR SUM ‘(!H)
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1
A

Fig. 8.11. Stations AB yield one velocity component (u), stations BC yield

(3)

(£}

(&)

another component {v); total horizontal velocity (!H) is the
vector sum of these.

It only yields meen velues between stations which are usually many
tens of kilometres apart. It is impractical to place stations
very close because:
{a) of the limitations on the accuracy of measurement of S, T, p

and hence of a (differences between station values must be

significantly larger than errors of measurement at an individ-

ual station},
(b} timited navigational accuracy means that the distance (L) be-

tween the stations may have a significeant error, Of course,

if the ship is equipped with accurate position determining

equipment this error will be minimised. Satellife navigation

can now be used to determine position to an accuracy of the

order of 100 m or betfer, for a sfationary ship, buf driff of

‘the ship while on station may introduce significant uncertainty

in the value of L to be used in the geostrophic calculation,
(c) irnternal wave movements complicate the measurement of the

density field by introducing periodic fluctuations for which

it is difficult to correct.
Actually, the fact that the geostrophic calculation only yields a mean’
value for the current over the distance between the stations introduces
some smocthing which may not be a disadvantage if one is only interested
in the bulk movements and does not wish 1o be confused by smafl-scale
or short-term variations.
Friction has been ignored in deducing the geostrophic equation, |1 may
actually be significant near the bottom or where there is current shear,
and therefore the eguation does . not apply in such situations.
The aquation breaks down near the equater where the Coriolis force becomes
so small| that the friction forces may be important. However, comparisons
by Knauss with direct measurements of currents indicate fthat this break-
dowrn is only imporfant within £0,.5° latitude (i.e., #5350 km) of the
equator,
The calculated geostrophic current will. Include eny lceng-period trans-
ient currents and even scme pert of the Tida! currents (although in the
open sea the density field cannot change rapidly enough at tidal pericds
for much of the tidal current tc shew up in the geostrophic computation).
It is not possible tc separate the transients or tidal components from
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the -'steady' ocean currents if the geostrophic current is calcuiated
from only two stations., In principle one can repeat stations at fre-
quent intervals and lock for periodic componenis of the current - it
is rarely practical to do so.

, Despite all these disadvantfages, it must be admitted that application of the

" geostrophic equation has provided us with much of ocur present knowledge of

the velocities of ocean currents., It is still the only technique for obtain-
ing information relatively quickly from a iarge area. Recent instrumental
developments have provided means for -spot observations, e.g., Swallow floats
and variants give a Lagrangian picfure of deep currents directly, current
meters from ships held stationary near fo mocred buoys yield (Eulerian) current
profiles and strings of current meters anchored in position are showing much
premise. All fhese techniques require a relatively large amount of effort .
for relatively localized returns. The data obtained from Swallow-type flcats:
and current meters show that there are large transieni currents with many

di fferent periods which have quite complicated variations in space sc that it
is difficult to get a good measure of the average flow to cbtain good checks
of the geostrophic equation and to establish levels of known motion for geo-
strophic calculeations over large regions.*

Some networks of anchored current meters, often with attached 7, S, efc. ,
recorders, have been [ccated in areas of interest fo permit fairly locng-term
studies of currents and to yield information on their variation with time,

As this approach is very expensive, and probably ceannot be justified econcmic-
ally for ocean-sized regions, perhaps the best approach wiil be to use numeric-
al modelling (as described in Chapter ||} with limited measurement programmes
in the ocean for adjusting the model parameters and checking the resuits,

JUSTIFICATICN FOR USING THE GEQSTROPHIC APPROACH TO OBTAIN THE
SPEEDS OF STRONG CURRENTS

‘Consider the Guif Stream as an example. It Is convenient io orient the co-
ordinates with the Stream so let us take the x-axis across the stream and the
y-axis along it. We use sceling arguments and friction terms written in eddy
viscosity form as in Chapter 7. For the width of the stream we use Ly, =100 km
= 10%m; tor the length we use Ly =1),000 km=10®m. For the along-siream, Y,
component of current we use V=1ms~! (maximum values are up to about 3 ms~1);
fer the cross-stream, x, component we use U=0.1ms~! since the stream may
'spread cut. Then taking the depth scale H=103m and using continuity, the
vertical velocity is O(U«H/L, =V - H/Ly =10"3ms~1), The vertical equation

will reduce to the hydrostatic equation as we noted and left as an exercise
in Chepter 7.  Assume a2 steady state (8u/3t=2av/st=0) and 1?ke maximurm
values for-eddy viscosity A, = 0.1 m?s™! and A = Ay = 0% m® s-1 and examine

the x equation:

Very recent|y Stommel and Schott have suggested an objective method for de-
termining the depth of no motion without the need for direct current measure-
ments. They obtain an additional equation by assuming that there is no {low
across Isopycnal surfaces, The example which they show looks-promising but
Thorough testing will bé needed to see if the approach is generally applicable,
It it is, then the geostrophic method would become much more useful.
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BU L LB LB L LB by o0 cos g
us = + v 3y + w 3z acas f fev=-20-cos¢ - w
n2 2 ) 2
+AX‘-°;+A -3;’+AZ-'§-%. A
ax Y ay 3z i
Introducing our scéles and taking f = 107%s™ ! (the vaiue for ¢ = 45°), the
order ot the terms is:
-2 -1 -4 -1 -1 -1
IO + 10 + 10 = 7 + ]0-“ - |0—7 + IOS'. E_ + |05.& + Fo-l.&
05«10 103 1010 1012 106

or by dividing through by IO;", the scale for f» v:
1073 + 1073 + 1073 =24 1 - [07F + 1072 £107 40T

The x or cross-stream equation therefore remazins geostrophic within 1%.
(Remember that we have used maximum values for eddy viscosity, so 1% or so
should be an upper limit for friction effects.) This equation can be used t&
obtain the downstream component (v} even in strong currents such as the Gulf

Stream.

Now consider the y equation :

2 2 2
U.g_v.+\,.gv+w.%lzl. = _a.%ﬂ_f.u+AX.M+A.M-+AZ.3_V
x y y ax? Y oay2 7 22
ie., 106+ 107 + 1078 = - 2 - 1075+ 075 + 1077 + 1077.

The non-linear terms are now about 10% of f+u and the largest friction term
is of about the same size as f-u. |f we use a maximum value of 3ms~! for Vv,
the neon-linear terms become of order 30% of f - u and the friction terms may

be up to three times f - u. (Using a larger value for v in the x equation

does not change the relative importance of the terms because v also comes into
the Coriolis term.) Thus the geostrophic approximation is not good fer the y
equation. While we can use geostrophy to compute the downstream velocity
component relative fo a reference level from the density distribution, we
cannot use this approximation in seeking a solution fo the equations in a
current as strong as the Gulf Stream. Friction, and perhaps non-linear ferms,
must be considered. Indeed, if friction is somewhat smaller than the maximum
values (which came from estimates of friction effects in the Antarctic Cjrcum-
polar Current) non-linear terms may be comparable to or even larger than the
friction terms. (In the terminology sometimes used by theoreticians, the
Rossby number (Ro) and horizontai Ekman number (Ey in this case) become of
order one in the y momentum equation in @ region such as the Gulf Stream.)



CHAPTER 9
Currents with Friction

WINC-CRIVEN CIRCULATIONS - INTRODUCTION

A notable feafure cf the gross surface—layer circulation of the oceans is that
itlis -¢lockwise in the northern hemisphere and anf:clockwnse In the southern.
This fact for the Nerth Atlantic was known to Spanish navigafors in the early
1500's and was subsequenfly recognized for the other oceans as navigational
records accumyiated. In the mid-1800's this circulation was attiributed to the
ditferential solar heating between The equatorial and polar regions but no one
produced any guantiftative theory of the process. About 1875 Croll became
convinced that this hypothesis was incorrect and suggested that the frictional
stress of the wind was the direci cause, although he did not present any
theory. In 1878, Zoppritz apparentiy demonsirated quantitatively that the
transfer of momentum and energy from wind to water was much too slow a process
to account for ccean currents but his demonstration was numerically in error,
gl though he cannot be blamed, In his calculation he used the molecular co-
efficient of viscosity (i.e., friction) as determined in the laboratory for
laminar {smooth) flow and showed *that apparentty it should teke months tor a
change of current ai a depth of only a few metres to follow a change of wind
at the surface. However, it was soon shown that current changes in the upper
tens of metres followed wind changes in a matter of hours, not months. The
reason is that in natural water bodies the flow is almost invariably turbulent
and in this tfype of flow fthe turbulent or ‘eddy' viscosity ccmes into play
with the effect of increasing the vertical transier of momentum and energy to
a rate up to hundrecs of thousgncs of times that due to molecular processes
alone. This effect was rot known in ZSGpritz time.

Both wind driving and the effects of density changes are important for the
overall circulation but the former probably dominates in the upper 1,000 m
or so in most regions of the ocean. We shall discuss the wind-driven flows
in this chapter and consider the gifferential density driving in the follow-
ing chapter.

Making use of the eddy coefficient of viscosity concept, there followed a
series of steps in the development of the theory ot the wind-driven circulation
which is now accepted, at least as @ start in the right direction:

(1) about 1898 Nansen explained qualitatively why wind-driven currents
flow not in the direction of the wind but at 20° to 40° fo the right
of it (in the northern hemisphere),

(2} in 1902 Ekman explained quantitatively for an idealized ocean how
the rotation of the earth was responsible for the deflection of the
current which Nansen had observed,
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Fig. 9.!1. Forces on a parcel of water in the surface layer.

(3} in 1947 Sverdrup showed how the main features of the equatorial
surface currents could be attributed to the wind as a driving agent,

(4) in 1948 Stomme! explained the westward |nTensuf|caf|on of the wind-
driven circulation,

(5) in 19350 Munk combined most of the above fo cbtain analytic expressicns
which described quantitatively the main features cf the wind-driven
circulation in terms of the rea! wind field,

(6} In recent years, numerous numerical models have been developed for
the circulaticn of individual ocean areas and for the world ocean.

We will discuss these developments in the stages indicated, leaving item &
for Chapter 1. .

NANSEN'S QUALITATIVE ARGUMENT

First we will present fhe essentials of a qualitative argument advanced by the
biologist Nansen to eipia:n why icebergs in the Arctic drifted in a direction
to the right of ‘he direction of the wind at the sea surface, not in the
direction of the wind itself.

ln'Fig. 9.! the square represents the view from above of a cube of water in
the surface layer, while the feathered arrow indicates the wind direction.
The wind friction gives rise to a tangential force Fy on the fop surface of

the water tending to move it in the.wind direction., As soon as it starts to
move, the Coriolis force Fe comes inte action directed to the right. In con-
sequence the motion will be in some direction beiween that of F4 and Fe. Also
when the surface water is moving relative to that below it, there will be a

retarding force of fluid friction Fy on the bottom of the cube in a direction
opposite fo the moticn. The combination of Fi and F. would cause the cube to
accelerate but as it does so the retarding force fb increases. Finally, a

steady state arises in which F4+, F. and Fy are in balance and the cube con-

14
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Fig. 9.2, Three forces in equilibrium on a water parcel.

tinues to move at steady speed V, in some direction between Fi and Fe, i.el

to the right of the wind direction. To determine the exact dlrecflon relafive
to the wind it is necessary fo spply a quantitative argument from the equaf:ons
of motion as Ekman did.

THE EQUATIONS OF MOTICON WITH FRICTION INCLUDED

The horizontal equations of moticn become, when friction is included (and the
Coriolis term involving w is omitted as noted in-Chapter & and justified in
Chapter 7):

du’ _ vy - ..9p
o T frvmenget By
(9.1
8 - f.y- gl
a1 f V] o ay+Fy

where Fx and Fy stand for the components of friction per unit mass in the
fluid, ’

[ ¥ there.are no accelerations (i.e., a steady stafe and zero, or at least neg- .
Ilglble, advective acce!era+|ons) “then du/dt = dv/dt = 0 and we are left with
a balance of three forces on uan mass:

f v+ F -a- =g
. , X . x
’ ‘ (9.2}
- f-.u + O F - a . = 0
‘ b ay

i.e., Coriolis + Friction + Pressure

0

as schematically shown in Fig. 9.2. Remember that these are forces and must
be added according to the rules for the addition of vectors. The Two equations
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Fig. 9.3. [I{llustrating velocity shear and absence of shear.

9.2 give the compeonent form which weuld normally be used if we were doing 3
numerical calculation; we can also add them graphically as in Fig. 9.2.

This situation differs from the geostrophic relation in that, with the third
force (friction)-acting;-the pressure and the Coriolis forces are no longer
directly opposed. Before we can look for solutions to these equations we must
write expressions for the frictional forces Fy and F,,. "Friction is essentially.
a force which comes into being when relative motion occurs or. tends to occur
between material objects. Friction between two solid bodies is well recog-

nized; in a fluid If two parts are in relative motion friction will also occur.
The two parts may ‘be moving in opposite directions, or may be moving in the |
same direction with cne going faster than the other (Fig. 9.3). In either

case, there is said to be 'velocity shear' in the fluid. The amount of shear
is measured, e.g., Fig. 9.3, by: (ug=-uy}/{z5-2y) = §u/éz which tends fo

.= 3u/dz as 6z tends to 0. Newton's Law of Friction states that in a fluid,
the friction stress T, which is the focrce per unit area on a plane parallel
to the flow, is given by*:

_ .—a..g- = . .a_u ' ! o]
T ues prveT . , (9.3)

The siress 1 acts on the surface befween the iwo layers which are moving at
different speeds, tending to slow down the faster and fo speed up the siowerq

The quantity u is the coefficient of (molecular) dynamic viscosity, while
v = u/p is the coefficient of kinematic molecular viscosity. For sea water

*

A fluid for which the friction law of equation 9.3 holds is called 'Newtonian'.
Water, including sea water, and air behave this way but molecularly more com-
plicated substances, such as fong-chain polymers, may have a more complicated
behaviour and be non-Newtonian.
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*Fig. 9.4. For‘derivafion of the friction term in the equation of motion

at 20 , u has a value of about 10=2kgm™!s™1, so that v has 2 value of about
106 s7!. Values vary from about 0,8 fo 1.8 times these values, with temper-.
afure varnafion being mainly responsible although there is a slight salinity.
effect. These are the molecular values and apply fo water in smooth, laminar
flow, as in 2 small diameter capillary tube, for Reynolds' Numbers (Re=U- L/v)
of !ess than sbout 1,000 as discussed in Chapter 7. In the ocean, where the
mction is generally furbulenf the effective value of kinematic viscosity is
the eddy viscosity discussed in Chapter 7 and having values of Ay, Ay of up

1o I0 m? s=1 for horizontal shear (e.g., 3u/dy, 3v/3x) or of A, of up to

10-1 m?2 571 for vertical shear (e.g., 3u/52) .

' The eddy friction stress t = p+ A, - (3u/3z) expresses the force of one Iayer
‘of fluid on an area of its neighbour above or below,jbut for substitution in
the equation of motion we need an expression for the force on a mass of fluid.
In Fig. 9.4 a small cube of fluid is shown with shear In the z-direction and
the required force would be (15 -1)) * 8s in the x-direction.

_ ot
As f? =T + 77 §z
e (1 -% )e8s = 2. (85 ¢ 82) = 3T . (V) where 8V = volume of cube.
2 3z 3z
' ré
In The Ilmlf as 65, 6z > &, so that &V -0,
fhe‘force per unit volume = %% and
» . 1 39t _ 9T  _ ] ! au
the force pef unit massgnf T3 T T (p AZ 'az)' - (9.4)

We use A, here because we are concerned with vertical shear (3u/3z or av/az).
The form of equation 3.4 where A, (s inside the bracket is appropriate when
the eddy friction coefficient varies with depth z. As we have very little
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information on the manner in which I3 * A, does vary with depth, we wiII [imif
ourselves to the case’ ‘where p « A, is assumed to be constant and we can there-
fore rewrite equation 9.4 as:
. . a2y
friction force per unit mass = Az - - . _ (9.5)
. 322
in expression 9.4 the effect of p variations which are very small are not im-
portant compared with variations of A, (3u/32) and we could have taken the o
outside at this point, an approxumaT}on consistent with the Boussinesq
approximation discussed in Chapter 7.

Then the horizontal equations of motion become:
T

2
fovtoer—t = f-v+A--a—£ :.a"?R
3z 822 dax

(9.6)
_ 9T . 2
—f'u+(’.“‘—l —_:_f-u+A -a—\{-: (1--3-9- .

3z d oy

322

.The vertical equation reduces to the hydrostatic equation as justified in
Chapter 7. The vertical velocity component, w, does not appean explicitly in
the equations of motion in this form. It is obtained using the equation of
continuity after first solving the equations of mofion for u and v. In Chapter
7 we showed that the friction terms are small enough to be neglected in the
interior of the ocean but we noted that they mrghf noT be negligible near the
sea surface or bottom. For a term like Az + (32u/3z2) to be significant in -‘the
equaflons of motion it must be comparable in size with the Coriolis ferm,

i. ;8- - (U/H2) = f - U. For instance, for A, =149 m2s™1, £=10"%s"1 then
HZ2 = A §f = [0°3/10°% = 103 m2 or H = 30 m, The triction term would -stidl -be
abouf iO% of the Coriolis term at about H = 10D m, so that we should be pre-

pared to take friction info account within this distance from the surface or
bottom. {In theoretical terminology, the vertical Ekman number, E,, becomes
of order one near fhe top and bottom of the ocean.) ’

i—

EKMAN'S SOLUTION TO THE EQUATIONS OF MOTION WITH FRICTION PRESENT

A difficulty with equaiions 9.6 is that there are fwo causative forces for
motion, the distribution of mass (i.e., density) which givés rise to the pres-
sure terms, and the wind friction ferm. HNpte that we can think of the velocity,
as having two paris, one associated with the horizontal pressure gradient and
one with vertical friction. Each part can be solved for separately and the
two added together, i.e., : -

. ) 2%u
f o = i + = .—R_ " —_—
v (vg‘ ve) e Az 2 (9.7)
where )
v, = a e % \% beihg the geostrophic velocity,
‘ q M. 9
and
2 .
Frve =-A Chll Ve being the Ekman velocity associated with

3z2 ' vertical shear friction.
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This separation is possible because the equations are.linear. It provides an
example of the principle of superposition, T.e.; for a linear system the sum -
of fwo solutions is also a solution. |f ron-linear effects become important
this separation scheme does not work.

To simplify the problem, Ekman assumed the water to be homogeneous and that
there was no slope at the surface, so that the pressure tTerms would be zerc
and v therefore also zero, i.e., he soclved for vp only. He aiso assumed an
infinite ocean to avoid the complications associated with the lateral friction
at the boundaries and the diversion of the flow there.

At Nansen's suggestion, Ekman first studied the effect of the frictional
stress at the sea surface due fo the wind blowing over it. Aitogether he
assumed:

(1) no boundaries,’

(2) infinitely deep water (to avo:d the bottom friction term),

(3) A; constant,

(4) a steady wind blowing for & long time .

{5) homogeneous water so that 3p/dx = 3p/3y = 0 as long as the sea surface is
fevel and density depends only on pressure, l.e., a baroiropic
cendition.

The reason for assumption (Z2) was because there was reason 1o believe that the
wind-driven current would decrease as depth increases and therefore in very
deep vwater the speed would become negligible. Hence the shear would also be
negligible and so the fluid friction wouid vanish and there would be only the
friction near the surface fo take into account. The resson for assumption (3)
was partly fo simplify the probiem and partly because so little was known
about the variation of A, with z.

The equations then became:

2
feven o2& g
3z?2
) Ekman's equations (9.8)
~teu+ A 2Y =0 : ' '
9z
i.e., Coriolis + Fficfion = 0 as in Fig. 9.5s.

If, for simplicity, we assume the wind to be blowing in the y direction

(Fig. 9.5b0,”ihe‘solhfions to Ekman's equations are: ‘.
U = +V_ scosld + v z)e exp(—’i-- z) + for northern
Q R D b , .
¢ L E E hemisphere,
' R ‘ ‘ (9.9}
v, = ,VO- sin(%-+ éL. z) ~exp(éL' 2) C - for.soufhern
A E ‘ hemisphere.
where V= (/2 . 7. T/ Og e |£])is the fotai surface current, (9.10)
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= magnitude of the wind stress on the sea surface (approxij

yn mately proportional fo the wind speed squared and acting
in the direction of the wind), [|f| = magnitude of f]
‘DE = meVzZeA/ f[ the Ekman depth or deptH of frietional

influence (discussed below).

We will interpret these solutions:
(1) at the sea surface where z=0, the solutions become:
= . o - . el o
u = ivo cos 45°, v VO sin 45

which means that the surface curvent flows at 45° 4o the right (lef+) ot
the wind direction in the northern {southern) hemisphere (Fig. 9.5b).

(2) below the surface, where z Is no longer zero, the tctal current speed’
= V) »exp(n+ z2/Dg) becomes smaller as depth increases, i.e., as z becomes
more negative, while the direction changes clockwise (anticlockwise) in
the northern (southern} hemisphere. The perspective drawing of Fig. 9.5¢
shows these two changes.

(3) +the direction.of flow becomes opposite to that at the surface at z=-10C¢
where the speed has fallen to exp( - w) =0.04 of that at the surface. The
depth Dg is usually arbitrarily taken as the effective depth of The wind-
driven current, the Ekman layer. When viewed in plan, the tips of the
current vector arrows form a decreasing spiral called the 'Ekman current
spiral' (Fig. 9.5d). ‘

We made the assumption that the wind was blowing along the y direction to keep
the solutions relatively simple in form for our first look at them. [f the
wind is blowing in some other direcfion the current pattern will be the same
re[afive\?o the wind direction.

In order to obtain numerical relations between the surface current, Vo, the

wind speed, W, and fthe depth Dg, we make use of fwo experimental observations:

Obs. I: The wind stress magnitude 14 = o5+ Cp - w2 where Py = the density of
air, the drag coefficient Cp = 1.4 x 10~3 (non-dimensional), and W
is the wind speed in ms=!.  Then 1, = 1.3 kgm™3 x 1.4 x 1072 x w2

= 1.8 x 1073 w2 Pa. If we substitute this expression in equation
9.10 we obtain:

v = Y2 xmox 1.8 x 1073 x w? -

- w2
0.79 x 107° ms
© D x 1025 kg m x |f] ' o D A

Obs, 2: Field observations analysed by Ekman indicate that the surface current
and the wind speed are related as:

Lo

v 1
W?' = ~9491%Z-4 cutside #10° Jatitude from the equator, (9.12
Ysin |¢! ' . : . ]
Substituting this expression in equation 2.1!| (aﬁd'remembering that
f =20+sin é) we get: . o .
' 4.3 W : _ . . :
O = A2 metres (with W in m s~ 1), . 9.13)
sin {¢ : . .

- Theréfore, if we know W at latitude ¢ we can calculate Vo and Dg, and the
velocity at any depth below the surface. The fact that Dp depends on W
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suggests that the eddy viscosity A, increases as W increases; if we know Dp we

can estimate a value for AZ.

Some numericzl values ftrom the above relations are given below:

b, =

V /W =

W = 10ms™!? O =
20m s7} C. =

10°
0.030
100

200

45° 80°

0.015 0.013
50 45 m
100 0 m
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Comments on the Above Experimental Observations

I+ should be noted that while Obs. | and Z are believed to be reasonable, they
may nof.be-exact. For instance, there is still some uncertainty about the
vatue for Cp, the present estimates suggesting values from 1.3 fo .5 x 1073
+20%7for wind speeds up to about 1Sms~l. There is also some quesTion as

to whether W2 is correct in the expression for t_ or whether the power should
be something other than 2 (although probably not very different.)

The three -figure accuracy implied by the constant in Ekman's expression (9.12)
for VO/W probably overstates its accuracy because more extensive data yield .
vaiues ranging from 2 to 5% in mid-latitude. In addition, time-dependent
effects and the mixed layer depth are probably important.

Very often, values for Dg have been estimated from or compared with the depth
of the upper mixed layer,; although the assumption that this 'mixed layer
depth' is- identical with the Ekman depth Is not correct very often. The mixed
Tayer depth depends on the past history of the wind in the locality rather
-more than on the wind speed at the time of observation. I also depends on
the stability of the underlying water and on the heat balance through the
surface (which determines convective effects). The formation of the mixed

layer is a complicated time-dependent process which is still not fully under-
stood = 1t is an active area of research In physical oceanography at the
pregent time. (A brief discussion will be given at the end of the next )

chapter.) One would expect the Ekman depth to be rather less than the mixed
layer depth in most cases, because the latter may be much influenced by even
short periods of strong winds. |t follows that values for A, which are
calculated from the apparent D¢ are, ip.general, probably too [arge.

Finally, all these detailed results depend on the assumptions that A, is con--
stant with depth and that the wind is constant, neither of which is likely. -
Thus, although the main features of the current turning to the right and de-
‘creasing with depth are probably correct,. the detaiis are not to be taken too .
seriously. You wlll notice that we say 'probably correct! because there zare
very few measured current profiles which are zdequate to test the fheory. It
is difficult to make accurate current measurements in the open, deep ccean,
the only region where the Ekman theory applies, and difficult tc get suffic-
iently steady wind conditions. At the seme time, iT must be recognized that
a version“of the Ekman theory also applies to the velocity struciure in the
atmosphere above the earth's surface and there are some observaticns to show
that the theory applies fairly well in this case. Time dependent effects ~{
remain a problem because #helwind does not often blow with a steady speed and
direction for a long enough pericd {a few penduium days) to produce the steady
state situation. Stability may also be important.

?

As we mentioned in Chapter 7, in the atmosphere near the ground A, increases
linearly with height at first. Higher up it is probably constant for some
distance and then decreases to zero as the shear and friciional effects
diminish. This layer is spoken of as the planetary bowndary or Ekman layer,
or sometimes the region of frictional influence. Assumption of a similar
variation for A, in the ccean might lead fo more realistic results althougn
the presence of surface waves maey make the region near ihe surface behave
differently in the ocean fThan in the atmosphere. The surface waves also make
measurement of currents near the surface extremely difficult and one would
have to separate the Ekman flow from the gecstrophic and Timé»varying flows

Fl
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(e.qg., tidal), so verifying thecretical results Jn deTall would be a non-~
trivial problem To say the leasT, .

AcTualIy, provnced that the flow Is reasonably uniform in the horizontal, the
time-dependent problems can be solved. 1f u and v do not vary with horizontal
position x and y, then by the continuity equation w = 0 and all the non-linear
terms for the mean flow are zerc. While the real flows in the ocean and
atmosphere will not be exactly horizontally uniform fhey should be sufficientiy
so that the non-iinear terms are neglligible in most cases, Thus the equaticns
including time variations remain linear and can be solved (by numerica! methods
if analytical sclutions cannot be found). The problem remains of chocsing a
‘sultable behaviour for A,. Solutions fcor the atmosphere and also for the
ocean have been obtajned using various dependencies of A, on z but such de-
tails are beyond the scope of this book.

Transport and Upwelling

The wind-driven Ekman current has its maximum speed at the surface and the
~speed decreases with depth-increase. Because +he strongest currents are to.
the right (or left) of the wind direction, it is easy to appreciate that the
net fransport will be to the right {or left) of the wind direction; in fact it
will be shown to be at right angles to the wind direction.

The basic form of the equaticns for horizontal motion (equations 9.6) in the
absence of any pressure gradient is:

ot
p-f-v+§z—=0 p-f-v-dz=—-drx v
which we can write as: (9.14)
S’ry ’ . .
- . . + —t = - . . - = - o
pefru 32 0 ' pefeu-dz dry

Now p » v+ dz is the mass flowing per second in the y direction through a ver-
tical area of depth dz and width one metre in the x direction, and é?p = v+ gz
will be the Total mass flowing in the y direction from the level z to the sur-
face for this strip 1 m wide, whiie J;)p- 2- dz iirbl be the total mass trans-

port per unit width in the x direction. |f we chcose the lower level deep

- enough, then the integrals will include. the whole wind-driven current. We
choose a2 valug z = ~ 2D where the speed will be exp(-27) = 0.002 of that at
the surface, i.e., substantially zero. |f we use the symbols M, r and Mg to

represent the Ekman'(i.e., wind-driven) TransporTs in the x and y directions
respectively, then:

feM ‘=f;jo prvedz = -f 6t = (T e, *+ (1) oo C(9.15)
v 2 2, xsic * (Y20,

~

. : . . o ‘
foM = cu-dz = dr, = (), - (),
E f IOZD P . : J—ZDE y y'Sfc y—ZDE,.
Now (Ty)_pp. and (1) _op_ T witl be essentially zero because the velocity below

the wind driven layer JstsubsTanTiaIIy,zero and therefore there can be no
shear and no friction. Sc we have:

-
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FeMg = T fole = -0 . (9.16)

where we use n to indicate surface values.

" The variations of p are small and so the p's may be taken outside the lntegtals
in equation 9.15 with negligible error; the value then used for p would be a
typical one, e.g., @ vertical average over 20¢ in the region being considered,

Q

Y
alternative to the mass transpori. Then MyE = p -QyE and Myp = p * OxE and
alternative forms of equations 9.6 are:

= %?v- 6z is a volume transport (per unit width) which is often used as an

- = -' » = - . . .'
f OxE a Tyn ' f OVE @ T . (9.16")

These results are correct even if the details of the Ekman spiral are not.

In,our example, where the wind is entirely in The y-direction, Ty = ¢ and
therefore Myg = 0, but M, > 0 because Ty, > O, showing that the net Yrans-
port is fo Xhe right of and at right angYes to the wind direction (in the
northern hemisphere and vite versa in the southern hemisphere), This result
remains correct for wind in any direction.

The equation of continuity then requires that there must be inflow from the -
left of the wind direction to replace the flow away to the right. For Ekman's
infinite ocean there is no trouble in supplying this inflow in the surface
layer. However,?if the wind is blowing parallel to s coastline which is on
the left of the wind (in the northern hemisphere) a difficulty arises. The
wind causes the surface or Ekman layer toc move to the right, i.e., away from
the coast but because of the coast there is no supply of surface water on the
left of the wind for replacement. What happens in nature is that, as the
Ekman layer is skimmed away from the coast, water from below the surface comes
up to replace it - this behaviour is called wwelling and the region near the
coast is one of divergence. This phenomenon cccurs at times along many regions
ot the eastern sicdes of the oceans. In the northern hemisphere the wind must
blow along the coast in a southerly direction, which usually happens during

the summer. In the southern hemisphere, the transport is to the left of the
wind and so it must blow in & northerly direction for’upwelling to occur. fin
general we can say what upwelling will occur when the wind blows equator-

ward along an eastern boundary of the ocean in either hemisphere or poieward
along a western boundary, although this latter situation is less common.

The upwelled water does not come from great depths. Studies of fhe properties
of upwelled water Indicate that it comes from depths not greater than 200-300 m.
When the upwelled water has high nutrient content plankton production may be
promoted and the.process is therefore important biologicalliy.. Some 90% of
the world's fisheries are in 2-3% of the ocean's areas, mostiy in upwelling
regions. However, not ali subsurface waters are high in nutrient content and
0 upwelling does not invariably promote bicological production.

[f the wind blows away from the equator along the eastern boundary of the
ocean, then water will be forced toward the coast and the level will rise.
This process may then give rise to a surface slope and a geestrophic current.
In upwelling regions also, a surface slope is usually caused, in this case
down toward the coast. The induced geostrophic currents along the coast
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Fig. 9.6. (a) Convergences and divergences related to wind shear, North

Atlantic Ocean, (b) related geostrophic flow:

genera!ly have considerably higher speeds than the wind-induced onshore-of f-
shore currents making the latter difficult fo measure. On an eastern boundary,
the downward:slope toward the coast requires an equatorward flow at the
surface if the pressure gradient is fo be balanced, at least mainly, by the
Coriolis force. We say "mainly' because near shore and/or in shallow water
friction is likely to become impcrtant and the current may not be purely geo-
strophic., ~ As the 'deasity of the water near the coast is higher than that ofi-
shore at the same level, baroclinic compensation will cccur, i.e., the long-
shore flow will decrease with depth. Sometimes 'overcompensation' may occur
-and ‘the offshore pressure gradient changes sign at depth, requiring a pole-
ward undercurrent to provide a balancing (or partially balancing) Coriolis
force.
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preiiing or.. Downwe! 1ing Away from Boundaries

Over the real ocean, the wind is not uniform: as assumed by Ekman but varies
"with position. For example, 1f the wind remains constant in direction but
varies in speed acfoss the direction of the wind, then the Ekman fransport
perpendicular to the wind will vary and the upper layer waters will be"forced
toward or away from each other, i.e., convergences or divergences will devetop.
Continuity then requires. that a convergence be accompanied by downward moTnon
while & divergence te accompanied by upwaro motion.

cs
- . .

For Tnsfance, in the North Atlantic the general direction of the wind is to
the east at higher latitudes and to the west at lower latitudes. (The former
are called 'westeriies' because they come from fhe west to the observer while
the ltatter are called 'easterlies’,) Fig. 9.6a shows the main winds in
simplified form, the ‘lengths of the wind arrows indicating the wind speed.
The Ekman transport due to the wind will be in the southward direction from
the westeriies and in the northward directicn for the easterlies, and the
trensport will be greater for greater wind speeds. .The result is that the
.Ekman transport tc the south will increase frem A fo B. To supply the in-
crease, water must upwell from beiow the Ekman layer and there will be a zone
of divergence. From B Yo C the southward Ekman fiow will decrease to zero

- and from C o D it will be in a northward direction, increasing as one goes
toward D. [n consequence, the region around C will be cne of convergence and
water must descend belew the surface. Between D and E there will be a region
of diveragence and upwelling.

A wind blowing to the west along the equatorial zone will cause divergence and
upwel ling &t the equaTor, because the Ekman layer transport will be toc -the
rignt north of the eguator and to the left south of The equator, i.e., away

from the equator in both cases.

As mentioned in the preceding section there will be an additional effect. In
the region of convergence the surface level will tend o be high, while in
the divergence regions it will fend to be {ow (Fig. 9.6b) and there will be

consequent pressure gradients and geostrophic flows g setT up as shown.

Bottom Friction and Shallow Water Effects

I a current is flowing over the sea bottom, friction there will generate an
Ekman spiral current pattern above the botiom hut with the direction of
rotation of the spiral reversed relative to the wind-driven near-surface Ekman
fayer. The current pattern is shown in Fig. 2.7 for friction acting at the
sea bottom, in percpecflve and plan views.

Assuming that A, is constant, Ekman's equations 9.8 still apply but the bound-
ary conditicns are diiferent. The tangential velocity must vanish at the
boftom (i.e., u =.v = 0) and must go to a constant value above the region of
friction effects (the Ekman layer), assuming that the geostrophic flow abeve
this layer is, deependenf of z. If, as a specific example, we take u = ug
v=20,in thé ‘geostrophic region (alfhough again the general results of
rotation reiative to the direction of the geostrophic current do not depend on
its direction) the sclution (for the northern hemisphere) is:

u s [1 - expl~n - 2/Dg) » coslm» z/DE)] : .

(9.17)

v ug * exp(-7 ¢« z/0g) « sin(m - 2/D;)
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Fig. 9.7. Frictional effects on a gecstrophic current near the bottom of

the ocean (northern hemisphere).

where z = 0 is taken at the bottom (assumed level) in this case to make the
formulae simpler, and DF = 7 V(2 « A,/[f]) as before. Equations 9.17 satisfy
9.8 (as the reader may verify by substitution). At z =0, u=v =0 as re-
quired. As z beccmes iarge compared with Dg/w, exp{-m - 7/Dg) goes fo zero

and u = ug, v = 0 as required. Near,; but not right at, the surface -+ z/Dp <<1
and expansion of exponential, sine and cosine terms, keeping terms proportional
to 7w - 2/0g but neglecting higher powers, gives u=w+2z* ug/Dg = v. Thus near
the bottom u and v vary linearly with z and the near-surface current direction
is 45° Yo the left of the geostrophic current (in the northern hemisphere and
viee versa in the southern hemisphere). The current rotates from the geo-
strophic direction to 45° to the {eft of it and the speed goes tc zero at the
bottom.

Using e qualitative argument similar o Nansen's for the swing of the surtface
current to the right, it is easy to see why the current near the botiom swings
to the left. Before friction begins to act we have a geostrophic current with
the Coriclis force acting to the right and the pressure gradient force to the
left. With a barotropié case (reasonable near the ocean botfom) the pressure
gradient is independent of depth. As the bottom is approached, friction sjows
the. flow; the Coriclis force (proportional to speed} decreases and the pres-
sure gradient fo the teff is not completely balanced. The flow swings to the
left until the sum of the .Coriolis and friction forces cen balance the pres-
sure gradient force.

The same solution is valid (under the same assumption) for wind blowing over
the sea or land, Since in the northern hemisphere the surface wind is at 45°
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To the ieft of the geostrophic wind and the surface (water) current is at 45°
to the right of the surface wind, the surface surrent will be in the same
direction as the geostrophic wind (i.e., the wind above the Ekman layer). In
the southern hemisphere, the rotation directions are cpposite in both cases
and the final result is the same. Again because of the simple form chosen
for A, .the details should nct be taken too seriously. The direction of
rotation to the left in the atmosphere is usually less than 45°, 10-20° is
more commonly observed over the ocean. This discrepancy may be due to neglect
of time-dependent and stebility effects as well as to the simpie form for A;.
leeW|se, the wind-driven surface (water) current is |ikely to be to the .
right of the wind direction but not exactly 45°, '

I+ is worth noting that the near-surface wnnd speed is sTill an appreciable
fraction of the geostrophic speed. At [0 m height it is 60-70% of the geo-
strophic speed; mcst of the reduction fo zero occurs very close to the surface,
The Ekman layer thickness-in the atmosphere is typically 10 times that in the
ocean. Thus the kinematic eddy viscosity based on this depth will be about
100 times the eddy viscosity for the ocean surface Ekman layer. This differ-
.ence is a consequence of the greater speeds of flow in the atmosphere leading
to greater shears and strcnger TurbuienT friction effects, at least as
evidenced by the value of A .

A more complicated situation might consist of & combination of a geostrophic
current with a wind-driven Ekman spiral superimposed at the surface (and

with the Ekman bottom layer if the water were shallow and the geostrophic
current extended near fo the bottom)., MNow imagine a tidal current superim-
posed, the direction of which might alsc be rotating, and it will be epprec-
iated that the things can get quite cempiicated in the real ocean. It may be
very difficult to analyse info its components a current system consisting of
all three, geostrophic, wind driven and tidal, particularly if they are ail
changing with time.

if you visualize the water becoming shallow and the depth decreasing to the
order of Dg or less, you can see that the surface Ekman layer and the bottom
Ekman layer will close up and even overiap. |In shailow water the two spirals
Tend 10 cancel each other so that the total transport ts more In the direc-
tion of the surface wind rather than_at right angles to it. When the water
depth decreases to zbout Dg/I0 then the transport is essentially Zn the wind
direction, the effect of. The Coriclis force being swamped by the friction.

Limitations of the Ekman Theory

The above thecry is quite elegant in ifs way but-in fact it is doubtful If
anyore has actualiy observed a well-devetoped Ekman spirat current distribution
in the sea as even Ekman in one of his last papers admitted. .However, this is
not fTo say that the theory s incorrect - the Ekman spiral is well known and
clearly observable in the laboratory where the viscosity is molecular and con-
stant, and there is evidence for such behaviour in the atmosphere as already
discussed. Fusthermore, some of the integrated effects, such as the upwelling
consequence, “ateé well known and common phenomena which support the Ekman

theory on broad grounds, Then why is the Ekman spiral so elusive in the sea?

The first reason is that the problem in the form soived by Ekman is very much
idealized. Commenting on his assumptions: »
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(1) No boundaries - not realistic, but probably not too bad an assumption
away from the coast, and the consequences near the coast do support
the solution obtained.

(2) Infinitely deep water - again not exactly true but presents only a
small source of error in the open ocean (cf. D vaiues of the order of
100-200 m compared with the average ocean depth cf 4,000 m,

(3) A, constant - probably not true but at present we do not really know
encugh about it to say whether cr not this assumpticn leads to much
error. |t probably does not, because Rossby et al. have solved the
equations with A, = f(2) in likely ways and found only detailed differ-
ences from Ekmgn's solution, e.g., the angle between the wina and the
current at the surface became siightly smailler and a function of
latitude and wind speed,

(4) Steady state scluticn and steady wind - probaebly a real source of
difficulty, since neither wind nor sea is really steady (except approxi-
mately in the trade wind zones). Furthermore, there are other sources
of motion in the sea (thermchalire, tidal, internal waves) and a
current meter placed in the sed cannot distinguish one from ancther.

It records the sum and the oceanographer has to try to sort them ouf.

To do so it is necessary to have long series of measurements (say

hourly or even more frequently, for months); these we lack in suffic-
ient detail to test Ekman's theory adequately. Addec to this deficiency
are the practical difficulties of measuring currents In deep water, the
only region where it is reasonable to seek the Ekman spiral.

(5) Homogeneous water - eistincily unreal and one essumption that should be
criticised although as noted the wing friction part of the flow can be
calculeted separately. Sverdrup was probably the first to try to do
something to correct this tault, as will be described in the next
section.

Despite its idealized nature this theory of wind-driven currents, stimulated
by Nansen and worked out by Ekman, opened the way Yo the understanding of the
mechanism giving rise to the upper-layer currents. The key to Ekman's “Success
here was the use of the large eddy coefficient of viscosity rather than the
much smalier molecular one which rendered Zdppritz' earlier attempt sterile,

SVERCRUP'S SCLUTION FOR THE WIND-DRIVEN CIRCULATION

The equations of motion assuming negligible accelerations and friction from
horizontal gradients of velocity are: '

P BTX
. = . + . ——
a 3 fevw a 37
‘ " (9.6")
p .- Ty
- = - - + -
« 3y feu a7 ,

i.e., Fressure Coriclis + Friction (forces) .

Ekman simply ignored the pressure gradient terms on the left side, assuming an
unrealistic homogeneous ocean with level isobars. Here we ignore herizontal
friction terms which would be important in currents such as the Gulf Stream,
so the solutions are not valid there. However, we have added wind driving
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and can examine its possible effecfs'away from coastal boundaries.

Essentiaily what -Sverdrup did was to retain the pressure terms but abandon
any attempt to determine the detalls of the velocities u and v as a function
of z. He was satisfied to determine the fotal transport in the x and y
directions in the whole layer affected by the wind (M, and M, when expressed
as mass transport). He .integrated the equations from z = - h {(assumed to be
above the ocean bottom)} where the wind-driven motion had become zerco. Such =
_motion would include not only the Ekman flow but any geostrophic flows caused
by divergence of the Ekman flow, so h >> Dg, In the first stage of integra-
tion the equations fake the form:

e} 3p o) , . ;
J i dz = f pefevedz + Txn = fo My + Tn
-h -h ‘
(9.18)
lo} p o
e d = - - . . + et e M+
Lh 3y z Lh p+teu-dz Tyn » Tyn

Here, T and T n represent the wind friction stress at the sea surface, all
that remains of the friction terms in the previous pair cf equations 9.6'.

The reason is that when the derivative of a continuous function is integrated
between limits, the values at the fwo limits determine the vaiue of the in-
tegral., In this cese the value of the friction stress in the water is equal
to the wind stress at the surface, taken to be at z = 0 (the 1 values) &nd is
zero at z = - h because it was selected to be where the motion had becoms zero,
and with no motion in a fluid there is no friction. To simplify the notaticn
we shall omit the n subscript in the rest of this section and use 1, and Ty
for the surface stress componenis.

We shall-carry out a more general derivation which includes Sverdrup's simpler
one as a special case presently, so we shall use some results without proof
here. i we differentiate the first of equations 9.18 with respect to y and
the 'second with respect to x, then the differentiation of the pressure terms
can be taken inside the integrals since the |imits are constanis. (The
surface is not exactly level but This variation does not matter, as we wilt
show later, and we ignere {T.) The two pressure terms are ther the same
except for the order of differentiation which can be interchenged for a vari-
able such as p, so the pressure terms are the same. - Then subtracting the two
equations, noting that the term M, + (3f/3x) which appears is zero (because
the Coriolis term, f, does not change in the x-dirgction (east-west) and that
(aMy/ay)+-(3Mx/ax) = 0 by continuity, The resulting equaTion is:

3f E:X aTx ’
My . 3y ol il R (9,19

and, Togefher"wifh the equation of continuity for mass transport

_a_rl M F

these form a pair of equations describing the mass transports Mx and My.
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Sverdrup's procedure assumes elther that there is zerc velocity in the deep
water or that the bottom is level and that the friction there is small com-
pared with that at the surface. |If there is a barotropic current and a
variable bottom depth where the water is moving there will be additional terms
which we shall discuss later. The interesting feature of equation 9.19 is
that 1t is not the components themselves, 1, and t1,, of the wind surface stress
Iy which appear but fheir horizontal gradients 3t4/3y and 3t,/3x. in equation
9.19 “the combination (31,/8x=-31,/8y) is the vertical component (curl,ty) of
the curl of the wind stress (V x 1), the only component which is non-zero for
a horizontal-wind. The symbol B is offen used for 3f/3y and with these changes
of notation, equation 9.19 becomes:

8 -My = cur‘lz_'c_n (3.21)

which is called the Sverdrup equation.

At scome places'curl T_will vanish (eqgual zero} and there will be no north-
south transport (al%ﬁSﬂgh there may be flows which when added up cancel).®
“Lines along which curl_t_ = 0 provide natural boundaries which separate the

. . N Z
circulation into 'gyres'.

The quantities M, and My are the total mass fransports in the wind-influenced

= Q . - = e . . . '.‘ i
layer, defined as M, {41p u-dz and N& {419 vedz., We write

M = M + M
x x

xE g

where the first term on the right is the Ekman wind-driven transport while the
second is the geostrophic fransport, and similarly for M e and M (just as we
separated v into vg and vg). : 4 ¥8

Then equations 9. |8 becoms:

f.MyE !.th.vE.dZ = _Tx

(9.22)

]

1l
S——— |
| o]

=
Qo
1
L]
(=%
N
-

f-M f- [O pev_-dz
Yd h g

and similarly for Mx'

Orders of Magnitude of the Terms

It is useful‘?o-look at the magnitudes of some of the terms. We use a position
in the North Atlantic at about 35° N with a wind of 7-8ms~} (about |5 knots)

from the west. Then t, = 10" Nm™? (or Pa) and T =0,
2T~ - -1 -2 '
L X _JOtNme ey -3
curl, In* "% " T To00 W - 'O MM
f o= q074s"l,. g =2 x 10" UplgTl,

From these values we get, using equation S.16:
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Fig. 9.8, For derivation of the Sverdrup transport on the east side of
an ocean.

M

T
YE = -F = - 103 kgm!

S'l

(where the - sign indicates fiow to the south} and, using equation 9.2I:

: curlzl~n 10-7 , . -
M = M _ +M T et 2 - e = S5 107 kgmT s
y YE © Tvg B Z x 10711 d
We see that M, =-4 x 103 kgm~! s-1 which is caused by the north-south vari-

ation of the wind and consequent convergence of MyE and is considerably larger
than MyE as is often the case. :

The value for M, above is for only a 1 mwide strip, so that for the width of
an ocean of 5,050 km= 5 x 108 m, the southward flow would be 25 x 10% kgs~!
=25 x 108m3s™! in volume = 25 Sverdrups. (Here, as is common practice In
oceanography, we use {,000 kgﬂf3 for p when converting from mass to volume
transport since the error is negligible compared with the uncertainty in the
estimates of transport.)

-~

Application of the Sverdrup Equations

“~

Sverdrup applied these equations to the trade-wind zones in lower latitudes
where T,, and 87,/8x can be assumed to be negligible (i.e., much smaller than
the fer%s retained), and v, variations with x are averaged out. Substituting
f =22-sin¢ and noting thatdy = R+ dé where R = radius of the earth, then

B = df/dy = d(2Q-sin¢)/R-dp = 20 » cos ¢/R and eguation 9.19 gives My while
using 9.20 gives

M M 227 aT
x v 1 X X

—_— T e e = R - + - tap ¢ ]

ax 3y 261 - cos ¢ ay2 Sy

which can be integrated from x = 0, the coast, where Mx =0, Finally we have:
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Fig. 9.9. Smoothed representation of the east-west components of wind speed
and stress term, and related currents at low latitudes, eestern
Pacitic Ocean,
3 T 321
Me = 20« cos ¢ 9y 'Tan¢+ay2.-R] ’
Y
- 23}
M = R __-. i:ﬁl
y 20+ cos$ -3y '
Here, x is the distance from a north-south coastiine at the east side of the
ocean westward o a point P in the ocean as in Fig. 9.8, so that the numerical
value entered in the expression will be negative. The bars over the stress
terms indicate that mean values are taken over the distance x and the values
for Nx and N are for the point P. -

Comparing the C«man and the Sverdrup solutions, Sverdrup i{ost the detzils of

the current velocities with depth but gained the po
coastal boundary at one side of the ocean, a
situation than Ekman's horizontaltly infinite, i.e.

ssibility of having e

step foward a more realistic

, boundaryless, ocean.

Sverdrup's solution, also is no longer tound by The homogeneous.ocean assumption
and the solufuons *herefore have this additional feature of the real oceans.
Referring to fhe expression for My in equation 9.23 above, it turns out in
practice that in the Trade wind and equatorial zones, the important term of

the fwo on the right is 32 Tx/ay Figure 9.9 shows for the eastern Pacific

the character of the mean x- componenf of The wind as the fuil line while the
corresponding character of 3%1,/3y2 1s shown by the dashed line. By 'character!

we mean schematically - the actual wind variation with latitude is not as
regular as shown,
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Fig. 9.10. Mass transport components in the eastern Pacific calculated from
the mean wind stress (lines) compared to those from geostrophic
calculations from oceanographic data (dots). My, and M, in fonnes
per second through a verticzl area 1 m wide and 1,000 m deep
(approximately equivalent to 0, Sv per degree latitude). {From
R.O. Reid, J. Man. Res., 7, 90 & 91, 1948.) '

i+ will be seen that:

{a} north of about I5°N and south of about 2°N, +he value of
2= 2 . : . e -
31, /oy is + and x is -, Mx is -, E
i.e., flow is to the WEST (North Equatoria! Current end

Equatorial Current). '
{b) between 15°N and 2°N (doldrums), the value of

-

§2T,/3y? is - &nd x is -, T+ M ois+,
i.e., flow is to the EAST (North Equeatorial Counter-Current).

The figure shows gualitatively how Sverdrup's solution explains the existence
of the equatorial current system consisting of two westward flowing currents
(N.E.C. and E.C.) with an eastward flowing current (N.E.C.C.)} between them.
It will be noted that this system is not symmetrical about the equator but is
displaced to the north of it, because the trade wind system is displaced this
way, (1t should be mentioned that Sverdrup referred to the three currents as
the North Equatorial Current, the-Equaterial Counter Current:and the South
Equatorial Current, in order from north to south. However, the equatorial
current system is now known fo be more complicated than was recognized by
Sverdrup and we have used the present names for the three currents.)
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Fig. 9.11. Stream|ines of mass transport in the eastern Pacific from the
mean wind stress (from R.0O. Reid, J. Har. Res., 7, 95, 1948).

Sverdrup went on to test the solutions quantitatively by:

ta) calculating 1, from the known mean winds and then calculating the curl,
etc., and thence values for M, and My at selected positions defined by
x {distance from the eastern boundary},

(b) determining M, and indépendenfly by the gecstrophic method from
oceanographic gafa and adding the Ekman transport o get the total
transport,

(¢) comparing these Two independent calculations.

The result of this calculation, as revised by Reid, is shown in Fig., 9.10
where the values for My are shown on the left and for My on the right. Because
M, is smaller, the relative errors in obtaining iT from the density field. are
greater which may: be at least part of the reason for the poorer agreement in
the two methods for M, than for M,. Note that azfx/ayz, which is proportional
to My, has a more complicated structure when the actual winds are used than
that in the schematic piciure shown in Fig. 9.9,

Note that M, = 10 M, which is fairly typical, particulerly for equatorial
regions. The reasofi.lies in the difference between the east-west and north-
south length scales of the gyre systems. The east-wesT scale (L,) is deter-
mined by continental barriers, the norfth-south (L,) by the lines of curl, 1, =0.
Typically there is appro&imafely 2 10 to 1 ratio zf lengths Lx/Ly' Because by

continuity
aMx M Mx Lx 10
-a—x—+-—iay.= O, tThen W:[_—y—gT -
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Looking at it in another way, water which goes north or south in a gyre must
then go east or west to close the gyre. Thus' the total transpert north-south
equals that east-west, i.e., M, -L, =M +L,. This gives the same result
using the idea of continuity of volume Tn an integral rather than a differen-
fial sense.

Figure 9.11 shows an analytic solution by R.O. Reid calculated from a simpli-
fied form for the wind stress but for the real coastline in the eastern
equatorial Pacific. Presentation cf flow patterns in this way is discussed In
Appendix |. The stream function $ will be defined presently. For the moment,
take it to be a horizontally integrated mass transport. The water flows in
the direction indicated bZ the arrows on the lines; between any 4wo lines the
total transport is 5 x 10° tonnes per second (or about 5 Sv).

The calculation (a) above in Sverdrup's test was from the mean wind over a long
period while the calculation (b) was for specific cruise data, However, the
equatorial current system seems to be a permanent feature and the trade wind
pattern is aiso a regular feature. Therefore the correspondence between +the
known current patterns and that obtained from the wind stress vig Sverdrup's
theory is tazken as strong support for the theory, which is now accepted as
providing the basic explanation for the equatorial current systems in each of

~ the oceans, and also for its application tc other parts of The oceean.

At the same time one must recognize the limifations of the Svérdrup theory as
he applied it:

(17 It is limited in application to the neighbourhood of the east coast of
the ocean, because the x in the expression for M, (equation 9.23) would
appear to make M, increase in direct proportion to the distance 1o the
west, My does increase somewhat to the west but not as fast as the
expression would suggest. Prcbably the reascon for this discrepancy is
that lateral friction (between the currents) has been ignored. It will-
increase as the currents increase and therefore in the real ocean M, does
not gc on increasing to the west as rapidlg as the Sverdrup relation
suggests. The stress terms 1y and Bzrx/ay no doubt also have some x
variation which was not inciuded.

(2} The difterentiai equations allow only one boundary condition to be satis-
fied; in the solution given it is that there shall be no flow *through
the coast. To be able to apply more boundary conditions (e.g., no siip
on the eastern boundary and perhaps conditions at a western boundary) it
is necessary to go to more complicated equations, as will be described
tater. ’

(3) The solutions give the integrated mass transport but no details of the
velocity distribution with depth.

THE GENERAL FORM OF THE SVERDRUP EQUATION

Aswe have already seen when using mass fransports, we need an equation of con-
tinuity for them. Consider a column of fluid with sides §x and &y extending
from the sea surface to z = -h, To be completely general we denote *he value
of z at the surface by n because we know that the surface may have smal |
variations from the level surface z = 0 which we may take to be the average
level of the sea surface over the region being examined. Mass transports

in the x and y directions respectively are: :
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: _ n
J-p v u-dz and My = J pevedz .-
-h -h '

The mass flow into The column in the x-d|rec+|on is Mx’ dy and the flow out is
[, + (3M, /Bx)e 8x]+8y . (This calculation is just iike that used in the
derivation of the equation of continuity in Chapter 4, except that now we have
a column of height (h+n) instead of height §z.) The net flow out in the
x~-direction is (3M,/9x) *» 8x+» 8y . Similarly in the y-direction it is

(3M,/3y) « 8x » 8y . At the bottom of the column (z = ~h) there may be flow
cut’'if the vertical velocity is not zero; it will be -p *W_p v 6x - 8y (where -
the minus sign is required because we want flow out while w positive is upl.
At the top there may be an effective outflow velocity wy If There is a net

di fference between evaporation and precipitation., We shall negiect this effect
but it could be included as a driving term. 1f the value of n is changing
with time then the equivalent mass flow out is p - (3n/31) « 8x -8y . As we are
considering steady state cases we shall take it to be zero. (1t would be im-
pertant in Time-dependent calculations for such phenomena as tides and storm

surges.) Because mass must be conserved the net flow of mass out must be zero,
i.e.: ‘
BMX 3M
[ > 5y LA ] *6éx-8y = 0

and divfding through by 8x « 8y gives:

BMX BM )
ax * ¥y pPr¥y T 0
(9.24)

or

VHAE - p.w—h = 0
where V,,» = [| « {3/3x)+ ] - (8.3y)] is the horizontal dtvergence operator and
Mis The vector mass transport.
If the velocity is zero at z = ~h and deeper, then the last term of equation
9.24 is zero and we get the form used by Sverdrup. If h = -zg is the Total
depth (which in general will be variablie) then the last term also vanishes .

because there can be no fiow through the bottom.

Sometimes 1t is convenient to Take the point of view that the vertical velocity
associatec with the ‘divergence of one type of transport provides a driving
force for the convergence of another type of ftranspert. For example, consider
the Ekman flow, then (ang/ax)-f(aM¥E/ay) -p+wg = 0. Here, wg is the
vertical velpcity at the bottom of the Ekman layer associated with convergence
or divergence of the Ekman transport. If wg # 0, it requires a corréesponding
divergence or convergence of the flow below. Denoting this flow by Mgy (g for
geostrophic) and assuming for the present that the flow vanishes below z=-h,
so that w_y, = 0, then vy« M = ¥y« (Mc+M.) = 0. Thus VH' Mys =V Mg ==pow
The process Is somef:mes spoken of as Eﬁ%an punping. 1?@ f!ow does not gg
to zero before approachirg the bottom, there may be a boffom Ekman layer,

Then Vi« Mgg + p - wgg = 0 where p - wgg Is added now since it is flow up through
the top and V- Mg = -p(wg ~wgg). We expect wgg o be rather small compared
with wg as a general rule. Note that wg is a good approximation to the total
vertical velocity at the base of the layer. There may be divergence of the
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part of M, occurring in the relatively thin Ekman layer. The total dlvergence
Vy*Mis only =p+wg and, since the Ekman layer Is onily a small fraction of
the region of geostrophic flow, the divergence of M, in the Ekman layer wilil
be a small part of the total and may be neglected.

| f we use voiume transports, Qg = {? ue*dz and Q, = t? v » dz,and assume in-
compressibility, the net voiume flow out must vanish, By the same sort of
derivation and neglecting the possible flows at the surface, we have:

3. 89
Xy Y = 5
%t ey Yo 0. (9.25)

Let us now integrate the equations of motion 9.6 vertically from the boticm

z = zg 1o the surface z = n. In the equations 9.6 accelerations and friction
from velocity variations in the horizontal have been assumed small; this
should be a good approximation except in streng currents (usually near the
wastern boundary) such as the Gulf Stream. We obtain:

n
.B_p. . = . + ’ -
IZ I dz f My Txﬂ 8
B (9.26)
n - . -
I ap ., d =-f MX + ry“ TyB
3y
z

where we have retained the possibility of friction occurring at the botfom
although we expect it not to be important. The symbol n in the subscript for
a stress component indicates a surface value while B denotes a value at the
bottom.

We cannot directly follow Sverdrup's procedure cf cross-differentiating the
pressure terms because the {imifs of integration are not independent of x and
y now. To get around this problem we must write the pressure terms in a some-
what different form.  Here we follow Fofonoff's article in The Sea, Vol. 1
(M,N. Hill, Ed., 1962} and do not derive all the results in detail; the inter-
ested reader should consult the article which also contains other valuable

information. We define a new function Ep = fz pedz. It can be shown {by

integrating by paris tsking p = 0 at the surface and using the hydrostatic
equation) thet: o
n

E = J p+g- (z-—zB)- dz = work done to pile up The water above the
p .
g bottcm, - :

f.e., it is a measure of the potential ensrgy. Now
n )

E =
P

[fR 1

-J (pea)ep-g+-dz is the original definition rewritten,
z
B

Using the hydrostatic equation dp = -p+ge-dz andp =0at z=1n, p = pg at
Z = zg we have: .

Pr Py Pg :
E = }--f pra-«dp = == [ pragedp + L. f ped-dp =2+ x . (9.27)

i
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- P
We have removed the minus sign using ﬂ? = 3-IOB. E° is a function of the
bottom pressure only; it is equal to Tﬁ% potential energy ot sea water of

$ = 35%x, T =0°. x is the potential energy ancmaly - the difference from
EC associated with the difference between the reference specific volume and
Tgé actual specific volume; it is sometimes a useful function to consider in
synoptic physical oceanography. This separation Is similar to the on2 made
when discussing the geopotential in the previous chapter and x c¢an be calcu-
tated from oceanographic observations in a similar way fo that used to obtain

A¢. Now consider aEp/ax:
n n : .
9 . _ 29_ k 3n dZpy
_?&LP = Jz ax ~ 92T Pyt kT Pe T ox
B B :
The terms P (an/3%x) and pB-(azB/Bx) occur because n and zg vary with x.

Since we take Py = ¢, the first of these vanishes. (It can be retained if
important, e.g., in storm surge caiculations, but is not normally Important
for the large-scale, steady-state circulation.) Rearranging:

n ap 3k azB
I x 9% 7 3 tPs o3k

z

B

' 5 aE° 3z ,

= 2+ Bxe + Pg ° Ix (5.28)
The last two terms may be combined (see Fofonoff) tc give:

yl P. 0O 3p -

3,4, = X, 8 B8 1+ B (9.25)
, 9% ax g X )

where (apB/axh means the change of pressure on a level surface at the bottom.
The same equation will hold with y replacing %, so we can substitute these
equaticns in 9.26 to give:

— feM - _9_&_?8_.:__(_12- ﬁ- + T - T
y ax g ax ), xn x6 7’
. - . (9.30)
FoM :_.B_X_.._E_B.[—-HB—] + 1 -1 .
X By 9 3y J, yn ¥B

The tirst terms are associated with variations in the density distribution;
they arise.from the baroclinic part of the geostrophic velocity, i.e.,

. :_a_x. o :_.a_x_ 1 H
f Myc 7.’ f MXC Ty The stress terms may be associated with Ekman
transports as we did earlier:
T MyE = - Txn; fe MyEB LY f 'MXE = Tyn; fe MxEB = = TyB . The

terms involving bottom pressure are the barotropic transports times f.
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n n .
Myb = j PV © dz = Vp sz~dz because Vb does not vary with z.
‘B B -
" ° Vb " Pg
Now p » dz = - dp/g, so f p+dz = - f dp/g = Pg/9, and Myb ==
, ‘8 P8 |
The barotropic flow is-the geostrophic flow in the deep water, so
f e = - ap_B and pB i aB . a—pB— = .]L_M = feM
Yo T %87 B3 7 d ax ), g yb

Likewise, the pg ferm in the second equation of 9.30 is -+ My . Thus
equation 6.30 may be written as: -

M =M £ M _  + M + M '
y yc yb yE yEB (9. 30"

Mo = Moo F My & Me + Mg

These equations simply divide the total transport into components which are
related to the density field, bottom pressure gradient and stress terms of
equation 9.30.

Now, fellowing Sverdrup's approach we take

3 3 aMx Eﬁl
E(f.MX) + -'a—y-(f'My) = f.[37-+ay]+8.My = B'MY (G8.321)

because by continuity (aMxlax + 3M _/3y) = O for the total transport from sur—
face to bottom. Following the samé procedure for the right-hand sides of
equations 9.30 gives:

, . BZB BZB )
. = - - ' - L - r—— .
B My cur]Z L curlZ Ig~P f {ub P + Vi 5y } (9.32)
or in vector form;
= - -t e f. .
B-M (v x En)k (v x TB)k p ey 1428
PB (oa
where ¥, = 1+ (3/3x)+j-(3/3y) and p'=p.+[1+— i=— 1 (see Fofonoft
H - . B ag 3p 5

for a partial derivation of the last term). The x terms cancel out just as
did the pressure gradient terms in Sverdrup's derivation because he assumed
the deep flow (barotropic part}.to be zerc. With no flow near the bottom
there is no stress there either, and 9.32 reduces to the simpler form of 9.2i
derived by Sverdrup. |f the bottom is level and the bottom stress negligible
one also gets the simpler form (9,21). Finally, if the flow is along the
bottom contours, i.e., is entirely horizontal so that ¥, is perpendicular to
Vyzg, then the terms Involving zg also vanish. It has been quite common to
neglect the bottom stress; this approximaticn Is probably good in most cases.

It has also been quite common io neglect the Vp +Vyzg term based on the idea
that the velocities vanish at great depths since the driving for the flow is _
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from the surface. It Is only possible fo inciude this effect in analytic
treafments (with suitably idealized bottom topography) [f the baroclinicity is
also excluded, [.e., the geostrophic part of the fiow is depth independenf,
“another reason for leaving it out. Even if we take the density field as given
from observations, the dlff|cut+y remains that we cannot obtain Vp observation-
ally because we cannot obtain it from geostrophic calculations, and deep
current meter observations are too few and of tco short duration to help much.
As we shall see. in Chapter !l on numerical models, the Vb-VHzB Term may be
important in the real ocean,

THE MASS TRANSPORT STREAM FUNCTICN

By integrating along the vertical we have produced the mass transport per unit
width of current (the density times the vertically averaged velocity times the
depth) which depends on x and y but not on z. when we have such a flow,

which depends on only two space variablies (and is either incompressible or
steady state), it is possible to use a scalar function called a strean function
from which the velocity may be derived. This approach can provide a useful
simpiification because it may be easier to find a single scalar function than
the two components of a vector, We put

T A V. 1 : (9.33)

where ¥ is the sfream function. The flow is paraliel to lines on which ¥ is a
constant, which means that plots showing such lines are convenient for dispiay
purposes as mentioned earlier in connection with Fig. 9.1l and described
somewhat more fully in Appendix |.%

: a M 2 2
Consi Xy Y o ¥ 27w
Consider i + 5y 5xay T

Now by continulty, if we take the total transport this quantity should vanish
and the order of differentiation of ¢ can be interchanged (which is a mathe-
matical condition for ¥ to be well behaved, as the interested reader may see
by consulting a book on fluid mechanics, e.g., Batchelor). In practice, 1f

we can find an equation for § from the equations of motion, usually in the
form of the Sverdrup equation 9.21, or equation 9.32 the more general form, or
extensions discussed presently, the solution will automatically be such that
continuity is satjsfied. To get an equation for y in the case where the
Sverdrup equation holds we simply replace the 8 *My term by - B « (3p/ax).

*

The reader should note that some writers infroduce the minus sign in the M,
equation of 9.33 - we have chosen to fcilow what we believe is the more common
practice in fluid mechanjics although not, unfortunately, in physical oceano-
graphy which is rather divided on this matter. 1% the opposi1e sign conven-
tion fo ours is used and a § = 0 streamline is used, as is common, the signs
of the ¥ values in our convention must be multiplied by -1 to.convert., Norm-
ally there is no problem in interpreting the plots because arrows are usually
placed on the lines to show The direction of flow.
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Fig. 9.12, . Flow patterns {streamlines) for simplified wind-driven circulation
with: (a) Coriolis feorce zero or constant, (b) Coriclis force
increasing !inearly with latitude (from Stommel, Trams. 4.G.U.,
29, 205, 19483,

while the total transport is non~divergent (i.e.,continuity takes the form
(oM /8x) + (3My,/ay) = 94+ M = 0) the individual transports, Ekman, Baroclinic,
Barotropic (|¥ any) and Boftom Ekman (if any) may not be so; it may not be
pessible to represent them by stream functions, The negative of the potential
energy anomaly (-x} is aimost a stream function for the barocliinic transport.
Actually, contours of (-x) are 'streamlines' for f+« M. but since f varies
slowly the baroclinic flow will aimost be along the contours. The relation
between the contour spacing and The strength of the transport will vary with
f and hence with latitude.

"Similarly, a confour plot of 4% {or 8D in the mixed units system) shows the
pattern of +he horizontal geostrophic flow (relative to that at the reference
level)., |t is not a true stream function unless (3u/3x) + (3v/3y) = 0 15 also
true, but it provides the same useful display features as a stream function.

WESTWARD INTENSIFICATION — STOMMEL'S CONTRIBUTICON

A feature of the ocean circulation seen as a whole is the so-called westward
intensification, for example as shown in Fig. A.3 {Appendix |} for the North
-Pacific where the flow lines are close together in the west or north-west off
Japan, whereas they are more widely separated over most of the rest of the
ocean. Where the flow lines are close, The flow must be swift, and vice versa.
Similar flow patterns are evident in the North and South Atlantic, preobabty in
the indian Ocean, but less evident in the South Pacific. (In the latter case
the flow is complicated by the islands Tn the west.) Stommel was the first .
to present an adequate explanation for this feaiure.

His demonstration was done with a simplified theoretical mode! of an ocean and
wind pattern. He took a rectangular ocean of constant depth and all on one
‘'side of the equatcr, and assumed the earth to be flat for convenience, i.e.,
he used the tangent plane approximation mentioned in Chapter 6. He also
assumed @ wind stress which varied with latitude as shown in Fig. 9.12, so
that it was to the west at the south and to the east at the north. This is a
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Fig. 9.13. General peftern of global winds and mean E-W wind components,

reasonable approximation to the real wind stress which will be discussed

shortly., He also included e simple friction term to prevent acceleration so

that he could investigate the steady state. Basicaliy he used Sverdrup's

equation (9.2)) with friction added. He calculated the flow patterns in This
ocean for three ccnditions: ’

:"(a) non-rotating occean (i.e., non-rotating earth), .

(b)Y rotating ocean but Coriolis parameter f constant (the f-plane
approximationl,

(c) rotating ocean with Ceoriolls parameter varying with latitude
¢ in a simple but realistic fashion, i,e,, linearly with ¢
from 10° to 50° latijude (the B-plane approximation}.

The flow pattferns which he obtained then appeared as in Fig. 9.12, the second
being the most like the ilow pattern in the real oceans (e.g., as in Fig.
A.3). in case (a) the surface remained neerly level. |In case (b), tc balance
the Coriolis eftfect a higher water level was found at the centre fo provide
the necessary pressure gradient. A similar high level was tfound in case (c)
but it was not symmetric in the east-west direction as in case (b)),

|t was therefore clear that the variation with latitude, 9f/%¢, of the Coriolis
parameter was responsible for the westward intensificavion. Nowadays, this
result is discussed.in terms of vorticity as wiil be described shortiy.
(Basically, wind streéss pufs vorticity, (.e., spin, into The ocean and friciion
is required to take it out. When f varies with latitude, streng friction in
the west is needed to take out the vorficity and for this strong friction to
occur strong ‘currents with streng shear are needed.)

This result of Stommel's was obtained for a very simplified version of the
real ocean, but it is clear that the variation of the Coriolis parameter is a
fundamental feature of the dynamics which must be taken into account in any
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Fig. 9.14.  Form of drag ccefficient (Cp) for wind over water as a function
: of wind speed, as used for many calculations of wind-driven
circulation.

large ocean circulations. In addition, Stommel's addition of a friction term
permitted a solution with a closed circulation, which Sverdrup's assumptions
did not. Stommel's model was not intended fo represent a real ocean but to
illustrate a principle, as is often the case with medels which are much ideal-
ized from the real world. The mathematical detaiis are not important, pro-
vided that one believes the result (as we do in this case), and we have not
given them here. The interested reader may consult Stommel's book (1964)
which also contains much other interesting information.

THE PLANETARY WIND FIELD

Having indicated the development of the wind stress explanation for the upper
layer currents we should look for a few moments at the general character of
the winds on a globa! scale. The main features are shown in Fig. S.13. On
the teft are shown the main wind systems which are distributed in a zonal
fashion. The graph of the east-west component of the wind on the right shows
that Stommel's form for the wind stress as a function of latitude is a reason-
able approximation to the real stress between about 10° and S0°N,

This graph Is an average across the whole width of the ocean, i.e,, east-wast
variations are igncred. In more recent freatments, particularly the numerical
ones {(Chap. i1}, vatues for the wind stress for a grid of points over the
ocean are used so that a better approximation to the real wind stress both
north-south and east-west is applied, Of course, it is still a Time-averaged
distribution.

The presently available wind stress results are probably not very represen-
tative in detail. The procedure is to use the relation that wind stress

T =p-Cp+W? in the direction of the wind W. One problem is in the value fo
use for the drag coefficient Cp. As far as we know, most stress calculations

1
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for oceanographic purposes have used a step.or smoothed step function for Cp
as in Fig. 9.14. More recent and more accurate measurements suggest that '
Cp=1.3 to 1.5 x10-3 for wind speeds up to about 15ms-1 is better, with per-
haps a slight tendency to increase over this speed range. Recently, new
measurements at wind speeds up to 20ms~! or so have been obtained but analysis
of these results is still in progress. Once analysis is completed, calcule-
tions of wind stress over the oceans should be better because winds above
20ms~! are too infrequent fo make much contribution to the average stress in
most regions of the ocean. (Of course, very strong winds do have dramatic
effects locally while they last and accurate determination of their effects
will still be uncertain until direct measurements are obtained.)

The presently available indirect measurements at high wind speeds on which the
step or smoothed step function is based are now considered 1o be unreliable.
They were based on 'set-up' of the water level, l.e., rise above predicted
tidal level. Unfortunately the problem is more complicated than a simpie
balance between fhe pressure gradieni associated with the set-up and the wind
stress at the surface. Time variations, the effect of bottom topography and
non-!inear effects in shallow wafer on the waves associated with the strong
winds where the set-up measuremenis were made are all important factors. The
step function for Cp is bazsed on the apparent large values of Cp from such
measurements and the lower values ai tight wind speeds from more direct
measurements obtained initiatly., These low values may be too [ow because it
is the difference in air-water velccity that is important. Under light winds,
a relatively thin layer of water may be moving relatively quickly due to the
wind and the value of W used to calculate Cp may be too large. The jump of
Cp as shown in Fig. 9.14 was rationalized on the basis that wave breaking or
'white capping' becomes obvious at winds of about 7.5ms™! (15 knots) and the
water surface becomes 'rougher' leading to higher vaiues for Cp.

The use of the step function persisted long past the time when it was known
not to be realistic. This provides an example of the unforfunate use, by
peopie not fully conversant with the development of a particular field, of
preliminary results as though they were setiled matters.

Another difficulty is fthat fhe wind speed appears in the siress expression as
a power of W, |If we have frequent measurements of W, e.g., daily or more
frequently) we can calculate the siress for each measurement and add these
stress values vectorially to obtain the total effect. Unfortunately, in the
early calculations mean values (W) for the wind speed over periods of a month
or more were used. . |f the values of W change much during the averaging
period, the square of this mean value [i.e., ({)2] is not the same as the

mean of the squared values [i.e., (W2)J. The relation between the two is:

(W2) = (W2 + o2 where o2 Is the variance of the values of W. The correction
is not negligible. For instance, if g, = 0.5W, not unlikely in mid-latitudes
if averages of a month are used, then the quantify which we need for the wind
stress (W2)'=1.25 (W)2. As a simple example, if the wind were to blow at
Srng:} for 9 days and then af i15ms~! for one day, the relative values of
tl(W2) x1] to [(¥12xt] are in the ratio of 1.25 o 1, i.e., the use of long-~
term mean values tends to underestimate the effect ot the wind stress. Another
way to put it is to point cut that for momentum transfer (i.e., frictionai
stress), for a constant drag coefficient, 1 day at 25ms~! is equivalent to
about 1 week at 10ms~! or about 1 month at Sms”l,

Variabilify in mid-letitudes is rather greater than in the trade wind regions
and cannot be neglected. Climatological wind data are summarized in the form
of wind roses which show the percentage of the time for which the wind blows
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in particular directions (usually eight) in each of a.number of speed ranges,
as well as the overall frequency distribution of speeds regardless of direc-
tion. Using wind roses one c¢an calculate the contribution to the stress from
each direction in each speed range and add them vectorially to obtaln the
climatolegical average stress. A few tests, using detailed wind data to
calculate the stress both from the detailed data and from the same data put
into wind rose form, show that both methods give the same results within a
few percent. Thus once Cp is better known (hopefully soon) calculations of
the climatological average stress over the ocean should be possible with
reasonable accuracy.

MUNK'S SOLUTION

\

Munk combined the basic features confributed by Exkman, Sverdrup and Stommel to
provide the first comprehensive solution of fthe wind-driven circulaticn,

using the real wind field, albeit with less detailed wind roses than preseatly
aveilable and with the step function Cp. He used two friction terms:

(a) vertical, asscciated with vertical shear to convey momentum from the
wind stress applied at the surface into the Ekman layer,

(b) iateral, associated with horizonta! shear so that the ocean would
remain in a steady state cf circulation.

He finished up with a fourth order differential equation describing the
circulation as:

Ay - (Bﬁ—“’—J —curl_ 1 = O (9,34)
ax Z =n
where A = +the eddy viscosity ccefficient for lateral friction for mass
Transports, o 4 a4
¥4 = +the twe-dimensional biharmonic operator = — + 2 - + —,
: ax 3x%ay? eyt
¢ = the mass transport siream function which describes the siream

lines (really trajectories in the steady state) of flow around
the ocean.

The eguation must be solved for ¥ ancé then:

In words, equation 9.34 can be written:
Vorticity from lateral stress - Planetary vorticity - Wind stress curl = 0.
(Vorticity will be discussed shortiy.)

The three terms in the equation are not equally important all over the ocean,
In the west, where the currents are strong, the first and second are the im-
portant ones while in the remainder of the ocean the second and third are
important. The lateral stress is determined by the lateral shear in The
currents and is larce in the west because the currents and shear are large
there. Elsewhere the currents are so much tess that the terms arising from
the shear can never be {arge as we showed in Chapter 7,
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Munk sclved the differential equation, i.e.,.obtained an expression for ¥ .in
terms of the dimensions of the ocean, of R and of Ip- For the latter he used
values for the east-west wind siress component (averaged across the ocean)
onty, ignoring the north-south component. For the solution, ¢ is best shown
in the form of the flow pattern as..in. Fig. 9.15a. This is the sclution for a
rectengular ocean and is somewhat stylised. Later, Munk and Carrier solved
for a triangular ocean which more nearly represen*s the real shape of the
North Pacific as shown in Fig. 9.15b.

Note that the second and third terms are just the Sverdrup equation 9.2[ with
- 3Y/3x substituted for MYL The zdditional terms in the generalized Sverdrup
equetion 9.32 do not appear beceuse Munk assumed that the currents went to
zero above the bottom or that the boifom was level and the bottom stress was
negligible because the currents ought to be very small In the deep water.

Munk assumed that in the west the friction terms associated with horizonta!l
shears in the currents would become important but that non-linear terms would
remain small. Mear the end of Chapter 8 we showed thaT this assumption may
be reasonable if the horizontal eddy viscosity is =sufficientiy farge.

To see how Munks' equation 9.34 is obtained we write down the verticaliy
integrated equations 9.30 but add the lateral friction terms from equation 7.6.
For simplicity we omit the bottom pressure and stress terms as under Munk's
assumpticns they are taken to be zero:

n 2 n 2
- f- My = - gé + Ten * f P Ax— al gz + { p - Ay- Gl dz
ZB Ix? ,ZB ayz
. n 2 n 2
for, = -%+ryn+[ p-Ax-M-dz+J p.Ay-i—‘i-cz.

2 2
Z5 Ix 28 ay

n 324 ~ 3%y

Now assume that Ax = A = AH and that fz pe AH- e dz = A and
4 B ax2 ax2

likewise for the other ferms. Now if zg = constant as Munk assumed and A
dces not vary with z, the result i1s nearly exact because the n variations are
Too smell to matter and density variations can alsoc be ignored in this case |,
(by The Boussinesqg approximation discussed in Chapter 7). Recall that we have
alreacy assumed that A, and A, variations with x and y may be ignored. [f,
some of the assumptions are nXT exactly correct then we argue by analogy that
friction for transports may be represented by A« (32M_/ax2}, etc., with

A = Ay. Recall also, however, that the use of the edéy viscosity, particular—
ly a constent value, is a crude way to represent the effects of turbuience.
Any results which depend strongly on this assumption must be viewed with
suspicion until verified by observations.

Using the eddy Vtsc05|fy representation gives fricflon terms A - VﬁM in the
first eguation and A V%f in the second (where VH = 3%/ + aZ/ayZ) Now we
take [9(f - M/ax + 3t ﬂhz)/ay] as we did earlier. Except for the friction
term we already know the résult (8 - My = curly 1) so we just work out its
form assuming that A is constant:

.2 g2 - . 9 (o2;
A o (VHMy) A 3y (VHMX) .
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Fig. 9.15.

{a) on Jeft - mean annual wind stress over the Pacific, 1, (full
line) and its curl, IOBBTxlay (dashed line); on right - computed
mass transport streamiines (P) for a rectangular ocean (from
W.H. Munk, J. Met., 7, 82, 1950}, (b) computed transport stream-
lines for a triangular ocean from !5° to 60°N {from W.H. Munk &
G.F. Carrier, Tellus, 2, (63, 1950). (1 dyne an™?2 = 0,1 Pa;

1 dyne cm~3 = 10 Pam-1,) : ‘
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Using M_ = ap/ay , MY = ~ 3P/9x and writing-out in full we have:
o (a2 2 2 2
A g_(a_+1_].§.'u+_;;(a__+9__}.%y
k__x 3X2 ay2 x Y 3X2 ay2 Y
oy 4 Q.
= — A M+g._3_“i._+a_}i = - AV
ax" axZay?  ay*
and we have finally:
. R - APy
B My B ax curlZ In A V'Y

which is Mupk's eguation,

Note that this is a fourth order equation {i.e., it contains fourth:partial
cerivatives) and therefore its solution can satisiy four boundary conditions -
no flow through and ne-slip along both east and west boundaries. The vanish-
ing of curl 1y at cerfain latitudes breaks the flow into gyres as in Fig.
9.15. In Sfonmel’s model, because of the simpler form which he assumed for
the friction term, nis equation was only of second order and he could not
satisfy The no-slip condition. Also because of the nigher order, Munk's
sotution allows for the counter current {(a fairly strong southward flow
observed to the east of the Kuroshio and the Guit Stream). In Fig. §.15, the
western boundary current is where the streamlines are close ‘tcgether indica-
tTing strong currenfts. The counter current is indicated in the largest gyre
by the swing to The south cf the sireemiines as they enter and ieave this
region. Stommel's mode! (Fig. 9.12b) dces shcow the western intensification
but not the counter current. Munk's soluticn is more realistic in these
regards.

Commenis on Munk's Solution

These solutions show a series of 'gyres' which include the equatorial current
sysTem and the westward intensitfication. Quantitatively, for the iarger
currents such as the Gulf Stream and the Kuroshio, Nunk's calculated values
for the transports are only about one-halt of the observed values from geo-
strophic calculations., The celculated transports ere based on integrating
M, obtained from the Sverdrup equation {9.2)) across the ocean in the x-
direction &nd finding the maximum valuve. Thus these values do not depend on
the eddy viscosity at &ll but only on the validity of equation 9.21. The
geostrophic calculations are done across the boundary currents themselwves®
and have uncertiinty because the level of no moticn is uncertain. Direct
observations of the transport of the Gulf Stream suggest even !arger dis-
agreement. Part of this disagreement may be due to an underestimate of tha
vwind stress and more particulariy its curl which is estimated-Using finite
ditferences. The stress used is usually calculated et 5° intervals of
latitude and longitude and the curl may be underestimated using such large
separations, perticularly where it has maxima and minima.

!n addition, there is the cdoubt about the value to use for Cp. Munk noted
that using Cp = 2.6 x 10~3 everywhere would give better results. This value
seems high, particularly in view of more recent estimates, but the winds
which are used are somewhat everaged. Also, the observations are irom ships'
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reports and merchant and passenger ships try fo avoid strong winds, leading
tco some bias toward tow wind-speeds 1n the datea and consequent underestimates
of the stress. Using a larger Cp would tend fo correct the underestimate but
a factor of almost 2 larger seems excessive.

The wind stress estimates are based on wind data over many years, the curl
being estimated from fthese stresses. !n addition tc the possible error be-
cause the finite differences used are based on large separations, the Joca-
tions of the regions of maxima and minima of wind stress curl will vary
seasonally and also from year tc year in a given season. Thus the maxima and
minima of north-south transport integrated across the ocean calculated from
climatological data will be of smaller magnitude than the values which one
would obtain by averaging the maxima or minima of the integrated ftransport
(regardless of latitude) ‘for a pearticular gyre based on daily values of the
stress. How important this effect might be is unknown because, as far as we
know, such calculations have not been made. Overasll, a factor of two effect
is probebly an upper limit. Daidly stress values could only be estimated by
extrapoiafing the geostrephic wind from surface pressure maps tc a surface
wind. To do such a calculation for a few years would be a large task, Also
there is uncertainty both in the maps anc¢ in the extrapolation, However,
csuch a calculation over the range of tatitudes in which the largest southward
integirated transport in the Gulf Siream gyre is likeiy could prove io be
quite useful, ‘

In summary, it appears that there is a real discrepancy between the calculated
purely wind-driven ocean circulation and that In the real ocean.

Munk neglects the thermchaline circuiation entirely but does not think that it
is a significant socurce of error. Stommel has suggesied that the thermchalire
circulation may provide a significant contribution to the totat flow. Further-
more, the neglect of the non-iinear terms in the acceleration, such as

u e (3u/3x) + v+ (Bu/3y) + we (3u/dz), may not be justifiable in the western
boundary current region. Including these terms makes the equations non-tinear
but attempts have been made by Morgan and by Charney to develop analytic
theories in which the inertial terms are included. WNo fuily satisfactory
theory has yet develcoped but it appears that the inertial or non-linear terms
must be taken into account in scme circumstances and may then be just as
imporfant in the west as the lateral friction ferm. More recent attempts at
calculating the ocean circulation have been made with numerical models in
which all the effects, including the inertial ones, can te included. Friction
is still approximated with constant eddy viscosity in most cases although
other formulations are possible (e.g., larger values where velocity gradients
are larger which, from what we know of turbulent motion, seems more realistic).
These more 'sophisticated' eddy viscesities have been used more in models of
the atmosphere which are scmewhat more advanced fthan mocels cf the ocean.
Numerical models have shown that inertial effecis may increese the boundary
current Fransport sbove that of the interior Sverdrup transport {i.e., that
calculated using the Sverdrup equetion 9.21). The effect of bottom Topography
in a realistic baroclinic ocean according to some model results may also be
responsible for the enhanced boundary current fiow (in the sense of being
targer than predicted by the simple wind theory just described). Observations
of salinity and temperature in the deep water are not accurate enough tc show
clearly whether this mechanism is really important. There are other possible
enhancement mechanisms also. Features of numericai models will be discussed
in Chapter (1. '
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Fig. 9.16. For discussion of vorticify: (a) relaficn between relative
vorticity (g) and velocity shear, (b) planetary vorticity (f)
at various latitudes on a rotating earth.

VORTICITY

Relative Vorticity (&)

Expressed simply, vorticity is a characteristic of the kinematics of fiuid
flow which expresses the tendency for portions of the fluid to rotate. It is
directly associated with the quantity called 'velocity shear'. To illustrate
this relationship, Fig. 9.16 shows on The left & plan view of some fiuid
which Ts flowing to the right (east) with velecity uly), the variation with y
being such that from top to bottom of the figure, (A) the velocity first
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Fig. 9.17. Change of absolute vorticity associated with (a) convergence,
(b} divergence.

increases, then (B} is constant for a space and then (C) decreases. A small
object floating in the water in zone A would tend to rotate in an anticlock-
wise direction as it drifted toc the right as shown successively for times

t+ =+, fp, t3, etc. An object in zone C would tend to rotaete clockwise, and
one in the centre zone B would not tend tc rotate either way. The rotation

of the fluid, in this case measured by 3u/3y, is called the vorticity. When
it is measured relative to the earth it is called relative vorticity (g, zeta)l.
When it is measured relative to axes fixed in space it is called 'absclute
vorticity' (discussed iater).

The sign convention for direction is that the vorticity is positive when it is
anticlockwise (zone A) as viewed from above (the same direction as the rota-
tion of the earth as viewed from above the North Pole), and negative when
clockwise (zone C). -

In. the generél case, the relative vorticity in the horizontal plane (the
vertical component) is ¢ = curl,V = (3v/ox-3u/ay).

Planetary Vorticity (i}

for a rotating solid object, The'vortlccfy 2 x angular velocity. By virtue
of the rotation of the earth in space, at latitude ¢ a portion of its surface’
has angular velocity £+ sing about a vertical axis and therefore vorticity
20-siné. This is called planetary vorticity. |t is the quantity f appear-
ing in some of the Coriolis terms and we will continue to use the symbol
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t = 20+sin¢. A body of water which is stationary reiative to the earth will
then automatically possess planetary vorticity ¢; Fig. 9.16b shows how this
quantity varies with posifion on the surface of the earth. Note that the
planetary vorticity varies only with latitude ¢ and therefore a parcel ot
water at latitude ¢, can have only f, = 20+ sin¢,, no other value is possible,
Also notice that f is zero at the equator, increasing to + 22 at the north
pole and decreasing to - 292 at the South Pole. :

Absolute Yorticity (g + 1)

The equations for the horizontal components of motion without friction are:

ﬂ - £ . = - .—Ra
a3 ¥ v a 3

dv i sy = - e gR
37 ¢ feou 43 ay

i+ we cross-differentiate these equations and subtract them, o eliminate the
pressure terms, we get:

.

d y = - NN U] V-
IF (g + 1) = (g + 1) [ax + ay] (g + f) vV Yu (9.35}
where Yy stands for the horizontal velocity and V-« Vg, will be recognized as a

measure of the fendency for heorizontal flow Yo diverge or converge., The
quantity (L + f), the sum of the relative and planetary verticities, is called
the absolute vorticity, Equation 9.36 expresses the Principle of Conservation
of Absolute Vorticity for flows on the earth when frictional effects are ne-
glected. Here we have neglected derivatives of a with respect to x and y as
usual. Censistent with this approximation, ferms involving vertical shear
are neglectec. (In the ocean, for vorticity one may treat the fiow as baro-
tiopic, taking v, v and T as independent of z as a good approximation.) HMNote
also that df/dt = v (3f/3y) = B+v since f is independent of x, z and t,

In a divergence, where ¥V -V, is positive, the magnitude of the absolute vor-
ticity decreases with time, whereas in a convergence where ¥« Vy Is negative,
the absolute vorticity magnifude increases with Time.  We comsider the magnli-
tude because (f +1{) may be positive or negative. As f is usually much larger
than g, positive vatues for (g +f) will usually be found in the porthern
hemisphere and vice versa. With V+Vy > 0, If (g+f) > 0 then d(g+ f)/dt < 0,
so (5 +¢) decreases with *time, but if (g+4) < 0, dlg+£)/dt > 0/"i.e., (g +f)
becomes more positive with fime but as (g4 f) < O to start with, Ifs magnitude
decreases, -

To get a physical plcture of this process, imagine a body of water in the form
of a vertical cyilnder of smali height whigh is initlally stationary relative
to the earth so that it has planetary vorticity f only, as in Fig., 9.17a. |f
the fluid now starts Yo fiow inward (converges) toward the axis of the .cylin-
der it must alsc elongate because volume [s conserved; because V -+ V, [s
negative, the absoiute vorticity must increasé, In this case the water wilil
acquire some relative vorticity ¢, so that its abscolute vorticity increases
from f to (f+¢g) as the cylinder shrinks and elongates. In Fig. 9.17b is
shown the opposite situation in which a tall, narrow cylinder expands (diver-
ges) *tc form a low, wide one. 1% its initial vorticity was simply f its final
vorticlty will decrease to (f-|g|). In both cases we have assumed that the
cylinder of water remains at the same position on the earfth's surface so that
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the planetary vorticity f does not change. MNote also that the curved arrows
showing the motion of the water as it converges or diverges are drawn for the
northern hemisphere case. .

If one is more used fo thinking in terms of conservation of-angular momentum,
then in the first case the moment of inertia is decreased; as the angular
momentum (moment of inertia x angular velocity) is not changing, there being
no applled torques in this case, the angular velocity must increase. Similar-
ly, in the second case the momenT of inertia increases and the angular velo-
city decreases.,

Potential Vorticity {Sﬁgfq

Let us consider a layer of thickness D in the sea whose density is-uniform so
that the horizontal velocity components are independent of depth., (This
thickness D is not specifically identified with the Ekman depth Dg. D would
more likely be the whole layer from the surface to the permanent thermocline
or from the thermocline to the bottom. This is an idealization of the real
situation in the ocean to one of two homogeneous layers. Clearly it is an
approximation but the general features of tThe results will be correct and

so it 1s offten a-useful one to make. Then the equation of continuity of
volume for the layer is: oo

1 4o du . v
10, t__+.__J =0 . (9.37)

If we combine this eqhafion with 8.36, eliminating the horizental divergence.
term, we get

. %— {Sigiq = 0', i.e., FL%ijJ = constant (9;38?

for the motion of a water body in the ocean provided that there is no input
of vorficity (such as might come from a2 wind stress or other frictional
effects), The quentiiy (g-#f)/D is called the potential vortieity of the
vater. :

This relation permits us to make some predictions about vorticity changes
" when a parcel of water moves frem one place to ano*ner Let us consider some
pessibilities:

(a) if D remains constant:

(1) then if a cclumn of water moves zonally (along a paralie! of
latitude so that ¢ remains constant), then ¥ remains constant
and. sc must T;

(i) t a cotumn of water moves meridionally (along'a line of censtant
' longitude) toward the rorth pole, then ft au:o«a+|cally increases

and £ must decrease tc keep (L +f) consfanf i.e., the water
acquires more negative -(clockwise) rotation relative to the
earth; :

“(iiiy conversely, if a column of water moves toward the south poie
then it scquires more positive (anticiockwise) rotation,

(b £ D increases, then (g+f) must increese if it is pesitive Inin%!ly,
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(i} so if the water moves zonally, then f remains censtant so ¢
myst increase, i.e., The water acquires more positive{anti-
clockwise) rotation;

{ii) if the water moves meridionally toward the north pole, then
f automatically increases, and it is not irmediately obvious
what ¢ will co;

(iii) if the weter moves mericionally foward the scuth pale, f dge-
creases and % must increase, i.e., the cofumn acquires more
positive (anticlccxkwise? rotation.

(c) if D decreases, then (4 + f) must cdecrease if i1 is initially positive.
The reader is Jef1 to work cut what will happen to ¢ for zonal and *or
meridional flow in this case and also for D changes when (g +7) is
initially negative. )

In the interior of the ocean, fcr large scele processes, f is negligible com
pared with 7. In consequence, conservation of potential vorticity becomes

£/D = constant. For instance, i+ a water column stretches (D increases) then
f must increase in magnitude: the water must move foward the nearest pole,
north or south (because * is & function of latiTude only), and vice versa.

One way in which a water cclumn can stretch is for it to pass over & troucgh

in the bottem, or it can contract by passing over & ricge. The condition

t/C = constant permits us to predict which way a current will swing on passing
over bottom irregularities - equatorwara ovér ridges and poleward over iroighs
in both hemispheres, The deflection of the tlow reguired to keep f/0 constant
is sometimes termed topographic steering: - :

Note finally that severel of ‘the equations derived earlier in *he chapter are
vertically integrated forms of fthe vorticiTy eguation. The Sverdrup equation
in both simple and general torm is a vertically integrated¢ torm and includes
wind friction. Stommel's equation (not given explicitly) and Munk's equation
are of the same {form and include lateral friction as well as wind friction,
e.g., in equetion 9.32 with v taken as independent of z, (3 gocd approximation
as noted), B+M,=peBsveD=p+D-(dt/dgt); D = n - zg and variations in C
will be dominated by zg variations, sc the final term of equation 9.32 is
o'« f-{dD/dt). Because non-linear ferms were neglected, £ ferms do not
appear in eguation §.32; in equations 9.36 and 9.38 they arise from the non-
linear terms of equation .35, The curl terms of equation 9,32 do not appear
in equations 9.36 and 9.38 because we left out friction.

WESTWARD INTENSIFICATION OF QCEAN CURRENTS EXPLAINED USING
CONSERVATION CF PCTENTIAL VORTICITY

Let us consider a norfhern hemisphere ocean and assume, for simplicity, that
the depth D of the circulation is constant so 1hat (¢ +{) = constant. The
general character of the winds, to the west in the south anc to the east in
the nor+th, causes the upper layer circulation to be clockwise (i.e., the
anculer rotation is negative.) Then on the west side of the ocean the flow
will be to the north (Fig. 9.18a2) and there will be a2 loss of refative vor-
ticity (i.e., - tp) due to the northward movement which causes f o increase,
and a loss of relative vorticity (~¢;) due to the wind stress (which provides
clockwise, i.e., negative vorticity). There is, therefore, a net loss of
vorticity (-t, -4, <0) on the west side. On the east side (Fig. 9.18b) the
tlow is to the south end so there is a cgain cf relative vorticity (+¢£,) due
to the decrease of f, and a loss of relative vorticity (-¢g.) due to Tge
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wind stress., . Now Sverdrup demonstrated that on the east side of the ocean,
g - MY = curl, 1, (eguation 9.21), i.e., the gain and loss terms for relative
vorticity will %e about equal in the east and there wilfsbe no change during
the southward flow, i.e., +Cp"Cr = 0 in the east.

Therefore, for the complete circulation it is necessary to supply vorticity
to make up for that lost In the west, in order to keep the total vorticity
constant. The way to do so is through friction on the west side only, so
that the loss of planetary vorticity and loss of vorticity due to the wind
stress are made up by gain of vorticity from lateral shear in the water
currents, i.e., - Lp = Crtty 0. For this balance we need a velocity struc-
ture such as in Fig, 9.18b where there are strong currents with much shear in
the west but slower currents with littie shear in the east, i.e., westward
intensification of the ocean currents. Strong currents in the middle or east
of the ocean do not introduce vorticity ot the correct sign to provide a
balance. (Strong currents on the west and friction acting at the bottom would
also work but this possibility seems less likely than lateral shear acting on
the upper layer flcw.)

where the wind stress causes an anticlockwise circulation (the larger ones
being in Tthe southern hemisphere), similar arguments again lead to westward
intensification.

Note that there are two essential features: ¥ must be al lowed to vary with
fatitude (as Stommel showed) ancd ¢ must be small compared with f. |i the
winds were very much stronger so that [ became large compared with f, then f
could be ignored and we would return To & symmetrical circulation with wind
vorticity input balanced by some other frictional effect (lateral or bottom)
throughout the whole ocean. However, in the earth's oceans g <<f for the
large-scale flow and therefore westward intensification occurs.

EQUATORIAL UNDERCURRENTS

Beneath the surface and embedded in the westward flowing Pacific Equatcrial
Current there exists a most remarkable current - +the Equatorial Undercurrent.
This current flows eastward, centrec on the equator. Maximum speeds are
1ms~! or more at a depth of about 100 m; the tota! transport is estimated

at 40 Sv. The current is like a fthin ribbon, about 0.2 km thick and 300 km
wide. 1t can be followed for some 14,000 km across most of the Facific! Its
exfstence has teen recognized for only 25 years, although once it was kncwn to
exist, evidence for It was found in earlier data.

A similar current exists in the Atlantic, and wes actually first recognized

in 1886 by Buchanan but his accounts were ignered. There is also evidence for
an equatorial undercurrent in the Indian Ccean during the north-east monscon
period (November-March), More complete descriptions of these currents may be
found in Pickard (1973) or Neumann and Pierson (15966).

Before the observational discovery of these undercurrenis there were no theo-
retical predictions to suggest their existence. How do they arise? Consider
first what is happening right at the equator where the Corieclis effect is
zero. The wind is blowing with a westerly comporent and the surface current
is To the west. Because there are land barriers at the western side the
water tends to pile uvp there producing & surface slope up towards the west
and consequently a pressure gradient force develops toward the east. The
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surface layer will tend to be thicker in tThe west with the thermocline (and
pycnociine) sloping opposite to the surfzce slope, i.e., upward to The east.
A+ some considerable depth the opposite slope of the isopycnals relative to
+he surface can lead to baroclinic compensation and a reduction of the east-
ward pressure gradient to zero. AT the surface the westward component of the
wind stress can balance the eastward pressure gradient. As one goes beiow
the surface, the stress caused by the surface wind decreases, particularly as.
one gets into the pycnocline where the strong static stability inhibits
turbulence and downward iransfer of westward momentum. The eastward pressure
gradient can no longer be balanced by the downward momentum transfer and pro-
duces the eastward flowing undercurrent in the pycnocline region. Because of
the strong eastward current there will be frictional forces (and perhaps in-
ertial effects) which wiil balance the pressure gradient and allow a steady-
state flow fo occur. ) - :

As one goes away from the equator, Coriolis effects become important. 1In the
surface layer with a westward directed wind, the Ekman transpert will be away
from the eguator on poth north and south sides so there will be'a surface
divergence (with consegquent upwelling and increased biological production).
Below the surface layer there must be convergence (flow toward the equator}
to balance the surface divergence, North or south of about (.5° latitude the
Coriolis force asscciated with this equatorward flow can balance the eastward
prescure gradient. (!t is only very near to the ecuator that the Coriclis
effect is so weak that the undercurrent is possible.?

Note that although the Coriclis force vanishes at the equator its variation
with latitude is a maximum there and tends to stabilize the current. (The
Cariolis factor = 22+ siné which fends to zero as ¢ +0° but

320+ sind) /3% = 20+ cos d which tends to ifs maximum value of 2Q as ¢ =+ 0°.) -
I f the eastward current wanders scuthward the Coriolis force will be to the
left pushing it back toward the equator; if it goes northward the Coriclis
force is Yo the right, agein bringing it back toward the equator. in fact,
the variation of the Coriolis force witn latitude will tend o stabilize
eastward flowing currents anywhere in the ocean and to accentuate meandering
" in westward flowing currents with the strongest effects at the eguator where
the variation is a maximum.

Evidence for north-south osciilations in the equatorial currents has been
found. They. are prcbably associated with the variation of the Coriolls effect
with latitude and may be thought of as Rossby waves superimposed on the aver-
age current. These waves, which are possible because of the Coriclis effect
variation, will be discussed in Chapter 12,

Note that the discussicn above is not a complete theory of the undercurrent,
by any meens., However,.it does suggest how such a current can occur and

what physical effects must be included in 3 complete Thecry which should be
able to predict, for example, the detailed velocity distribution in the currentf.
Both horizontal and vertical friction terms would need Yo be included in the
equations. Because of the strength of the current and its smali vertical and
fateral {ncrith-south) scales, non-linear terms might well be.important too,
At present there is no accepted complete thecry of the uncercurrenf. (The
reader wanting more details could consult the literature. A paper by
Philander in the Reviews of Gecphysics and Space Physics, t1, 513-570, 1973,
provides a fairly recent review of the subject.)
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THE BOUNDARY LAYER APPRDACH

When we examined the sizes of fthe terms in the equations of motion in Chapter
7 we found that many terms were negligible. The equation for the vertical
component became the hydrostatic equation; the local time derivatives were
shown to be small for motions with periods greater than a few days. it
appeared that friction from turbulence and non-linear terms might be impor-
tant in some reglons. |f we divide through by the magnitude of the Coriolis
term we find that fhe non-linear terms and friction terms have smal! coeftic-
ients ~ the Rossby (Ro = U/fg+ L) and Ekman LEy = Ap/ify = L2); B, = AL/ (4 - HA]
numbers, respectively, which were defined in Chapter 7.

Whenever higher order derivatives in the equations exist but have smail co-
efficients we expect boundary layers to occur. These are relatively. thin
regions near the boundary where some of the Terms with higher order deriva-
tives wili become important, Simple equations will hold in the inferior of
the fluid; In the oceanographic case they are the geostrophic eguations.
(The same approach is used in other fluid mechanics problems where rotation
effects do not occur but we shall only look at the cceanographic case.) How-
ever, solutions to the geostrophic equations do not usually satisfy all the
boundary conditions. Therefore near the boundaries some higher order term
or terms must become large because the length scale rormal fo the boundary
becomes small. Eventually some extra term or terms tecome large enough to
allow the boundary conditions to be satisfied,

To use The boundary layer approach we re-scale the equations, changing the
appropriate length scale to one relevant to the boundary fayer thickness. The
advantage of this approach is that only the higher order terms which matter
will become important. Unimportant terms remain small and the 'boundary
layer' equations will be simpler than the full equations and hopeful ly easier
To solve. We expect the boundary layer effects 1o disappear a few boundary
layer scale lengths from the boundary. We make the boundary layer solution
satisfy the boundary conditions and then approach the interior solution as
the boundary layer coordinate beccmes very large, Because the boundary layer
is very thin relative to fthe whole ocean and the interior solution is slowly
varying, we can match o the interior sclution effectively right at the
toundary. Once one becomes convinced that this 'connecting' of boundary
layer and interior regions is possible one can concentrate on examining a
range of boundary layer solutions without worrying about the matching. This
approach has been a very useful tool in analytical studies and has helped

to improve cur understanding of what dynamical effects may be important even
when the solutions are tco idealized to be applied in detail toc the real
ocean. The-boundary layer approach may also show how the thickness of the
boundary layer depends on the parameters of the system. Here we shall not
give an exhaustive treatment of this approach but illustrate ihe method with
a few fairly simple exampies.

The Ekman sclution for the wind-driven currents given earlier in the chapter
is a boundary layer solution. The geostrophic equations describe the part of
the motion associated with the horizontal pressure gradients. However, these
sclutions cannot satisfy the surface boundary condition {(that the shear stress
at the surface must be continucus) when there is an applied wind stress.

Near the surface the vertical length scale for fhe vertical friction term
becomas small and these vertical friction terms become large encugh to balance
the Coriolis term associated with the directly wind-driven flow, With the
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stress in the y-direction, as in the soiution presenfed, the boundéry con-
dition at the surface is: '

stress in the water at the surface in the y-direction
= wind stress at the surface in the y direction ,

i.e., p- Az' (av/az)z=0' = Tyn .
The reader may verify that the solution given satisfies this egquation and
that (3u/d3z);=n = 0 since there is no stress in the x-direction. (In the more
generz! case, p * A, + {3u/32) ;=g = x component of the wind stress must hold
also.) Indeed the speed of the surface flow V5 in the golution Is deTermin-
ed by this boundary condition. .

The solution has the proper boundary layer character. [n addition to satisfy-
ing the surface boundary condition, the speed of flow in"the solution decays
rapidly with depth and is essentially zero at the bottom of a very thin layer
relative to the total ocean depth.

The matching with the interior is very straightforward in this case. |If the
Ekman flow is.non-divergent then the Ekman and geostrophic flows are complete-
ly independent and may simply be added together as noted earlier. |f the
Ekman flow is convergent or divergent fthen the vertical velocity at the

bottom of the Ekman Layer provides one of the boundary conditions which the
geostrophic flow must satisfy as described in the section op the generalized
Sverdrup equation earlier in the chapter, Because the Ekman layer is so thin
one may, with negligible error, take this boundary condition on the geostro-
phic flow fo be at z = 0 rather than at the ‘boftom' of the Ekman layer.

The Use of the Boundary Layer Approach to Obtain a Solution to Murk's Equation

Munk's equation (9.34) lcoks quite formidablie. Although he did solve the
comp lete equation for ‘the rectangular ocean model, it is much easier to obtain
an approximate, but sufficienfly accurate, solution using the boundary layer
approach. For the soiution with the triangular ocean shape of Munk and
Carrier the boundary layer approach had f¢ be used because a solution to the
full equation could not be found. Here we shall obtain the solution for the
rectangular basin case. As noted earlier, in the interior A« 9%y can be
neglected but in the side boundary-tayers 3/s9x fterms (derivatives with respect
to the co-ordinate normal to the boundary) become important so that boundary
conditions of no flow through and no slip at the side boundaries can be
satisfied.

i
Now instead of just looking at the sizes of terms we shall pui Munk's equation
(9.34) in non-dimensional form. This is a very useful procedure, often done
in theoretical studies {both in geophysical fluid dynamics, i.e., oceano-
graphy and meteorology, and in other branches of fluid mechanics). The terms
involving non-dimensional variables are then of order 1 and their non-dimen-
sional coefficients, based on the sceles of the system being studied, deter-
mine the i{mportance of various Yerms. In the non-dimensional equations of
motion the Rossby and Ekman numbers are important as meniicned earlier. Here
we are going to non-dimensicnaiize Munk's form of the vertically integrated
vorticity equation, We consider finding a solution applicable to a region
such as the Gulf Stream gyre system. Now in the interior away from the
western boundary (under Munk's assumptions given earlier) the simple Sverdrup
balance (equation 9.21) holds. Infegrating this equation with respect fo x
gives:
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4-. = -

: fcur!zzn cdx + C (9.,39).

w|

where the subscript i indicates the stream function in the interior, C is a
constant of integration and curl, 1, , as before, stands for (3ty,/8x - 31,,/3y).
Now the size of § from equation 9.39 or 9.21, or more precisely the change o
¥ from the outer edge of the western boundary layer o the eastern side of
the ocean, will be of order 145/8, where ¢, is a typical wind-stress magnitude
(or the total change in 14, from north to south in the gyre) and 8, takel to
be constant in this B-plane modei, is the vaiue of di/dy at the centre of the
gyre. We notfe that the change in the value of y across the western boundary
mustalso be of the same size because the boundary current is returning the
interior flow and the change in ¢ in each region gives & measure of the total
transport. We put:

= . Ut = 7 !
Y o= (T /By and L T I (9.40)
where the primes indicate non-dimensional variables with & range of order 1,
The magnifude of curl, 1, will be to/L where L is the distance over which 1
changes by 15, in this case the north-south dimension of the gyre, For x and
¥y vie put: .

Xx = E W and y = v - L (5.41)

where £ and y are non-dimensiona! variabies. In the interior, W is 0(L}.

(For simplicity we shall assume a square basin so x and y both go from 0 o L
but the east-west width could be a multiple of L without changing the results.)
in the western boundary, W << L because the becundary current is lpng and
narrow. As x goes to a small fraction of L, £ will become very large it W is
taken to be the width of fthe western bouncary region. [If we substitute Egs.
9.40 and 9.41 into 9.34 we get:

AR . [1 LAty 2 gyt . 2 a‘*w] o At
- T L P
8 W BC:LP WZLZ 2 3y L‘+ 3y W 1A

Multipiying by W/To,and some rearranging gives:

Yy 2 4,y w b sl -
A .[3 E‘ N 2(%01_ LAY PR L ] _

22 T 4 .
Bew lae R TR 3
. at! at! .
=W b _yn (9.42)
" W eE 3y

Note that (L/W)-(ar§n/8€) remains of 0(1) both in fthe interior, where W = L,
and in fhe boundary’ layer because the magnitude of curl, 1, is the same in both
regions., In the western poundary region where W << L and & changes rapidly,
31§n/a£ becomes very small, of O(W/L), Recall that arxn/ay is the dominant
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term in the wind-stress curl everywhere, so the term coming from'ar n/Bx
cannot become important no matter how we non-dimensionalize the equgfion.

Following Munk we take A=5x103m?s™! and 8=1.9x10"Um1s1. For the
interior take W=5x 108 m=5,000 km. "Then A/(B «W3) =2x10-%, so the friction
terms are negligibie and the simple Sverdrup balaence holds. To make the
friction terms of 0(1) to balance 3y'/3E we must take :

W= (A/B)1/3 = (5x103/1.9x 10711/ 326 x i0%m = 60km,

This is an exampie of how the scaling can be used to find out how the 'width!
of the western boundary current must depend on the other parameters in the
system, Now with W = 60 km, the friction term is 0(1) and so is ¢'/3E. How-
ever, the wind-stress terfm is now O(W/L) or 0(0.01) and mey be neglected to

a goocd- approximation. This resuit should not be tco surprising. The wind
distribution is quite uniform and symmetric; thus the local wind-driving in

the western boundary region will be similar fo that in the interior. With
the much higher velocities and transport/unit width in the western boundary
the relatively smail local wind~-induced transports can be ignored. Further-

more, not all of the higher order terms are equally important. With W/L=0.0!,
only the first term is 0(1), the next largest one being 0(10~*) and therefore
negligible. Thus in the western boundary we have, to a good approximation
(about 1% which is rather good by geophysical fluid dynamics standards):

H

Loyt '
3‘: - .;i&é_ =0 . (3.43)
13

The use of the bourdary layer approach has simplified Eq. 9.34 to Eq. 9.43,
which shows the strength of the method.

Equation 2.43 has a quite simple solution (8 sum of exponential functions
which is usually the first type of solution tried for a linsar differential
equation with constant coefficients because it often works}): -

n=3 :
L. . .
¥ C, + ¥ AL -exp e+ &) (9.44)
n=1 .
where the a,'s are the roots of ag = 1 which ere a; =1, a, =-1/2 + j«/3/2
and a3 = -1/2 - j«V3/2 where j = ¥=1. Now A; = 0 must be chosen because

expt is divergent (becomes very larce} as & becomes large (mathematicaliy as

£ +w. The solution with a; = 1 can be used on the eastern boundary to
satisfy the ro-slip condition as we shall show presently. Using ¢ = 0 (no
flow through the boundary) and ag/ax = 0 ( =0 or no slip or flo4 along the
boundary) at x = 0, determines A, and A, and we have ’

LA [l—exp (-g/2) « {cos;(@' £/2} +________sln(/_’—>- £/2) }}

£ {9.45)

1

C, - &)

T(g) goes fo 1 as £ becomes very large (as we go from *he boundary layer to
the interior}.
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Thus u' + C, as we move to the interior and, in dimensional units, Co must be
the value of The interior transport sfream-func ion at the edge of the
boundary layer. Because W/L << 1, we can, to a good approximation, use y; at

X

x = 0. Thus ¢ = wi(X,Y)‘ T(x/W} and from before ¥; =—(1/B)-[ curl, I dx +C.
L °

Jo curl t . dx and finally:

Using wi=0 gt x=L, the eastern bouncary, gives C=

w|—

L
y = [(1/6) 'J curl, T, -dx] « T{x/W) (9.46)
. x

where T(x/W) is given by the expression multiplying C, in equation 9.45 with

¢ replaced by x/W. To complete the soluticn fully, we add to the right-hand
side of equation 9.46 (W'/8}+(curl, 1) +exp{{x- L)/W'} which is negligible
except near the eastern boundary and whlck makes 3§/8x vanish at x=Ll. W' is
an easiern boundary width and W' << L. Since A in the eastern boundary will
probably be smaller than in the west, friction probabiy being weaker here

W' (prepertional to Alr3) s iikely fo be smaller than W of the western
boundary.

Now from the solution, the actual width of the western bcoundary current is
three to four times (A/B)1/3 or, for the values chosen by Murk, about 200 km.
This width is probably reasonable for the climatoiogical average Gulf Stream
or Kuroshio. However, at any one time these streams are only 50-60 km wide.
Using the Munk thecory with A-(B »%W3) suggests for the short-ferm average
stream *hat A is of order 102m2s~!, Now the inertial or non-linear terms
are of order 103/A =10 times the TurbulenT friction terms. Thus for the
short-term average western boundary current, inertial or non-linear effects
are probably not negligible.

A Simple lnertial Theory by Stommel

This is an idealized mode! used to see (¥ a predominantly inertially control-
ed Gulf Stream is a reasonable appreximation. Stommel assumes a two-layer
system. The upper layer has density p, and is moving; the lower layer has
density p, and is at rest. The thickness of the upper layer, D, is 0 at tThe
coast (x = 0) and increases to D, at the outer edge of the western boundary
layer. The x axis is taken across the stream and fhe y axis along it.

Before proceeding with Stommel's model we need to develop expressions for the
prassure gradients in terms of gradients of the layer thickness. Consider
the pressure in’'the lower layer:

z - d z
p = _]p-godz ;,—fpl.g-dz_Jpzng.dz
n " n d

where n is the surface elevation from the rest state with z=0 at the surface
and d is the level of the interface between the layers measured from the z=0
reference. Now CH and p, are constants and may be taken ocutside the integrals

giving:
P = pyrg-(n-d +02°g'(d—z)

= pl'g'n+(92—91)'9.(1-02.9.2 .
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p igedn ep. ) e g9 in thi
Then - P19y + (p2 pl) 9 in the lower layer. Buf in this

layer there is no flow (by assumption) and therefore the horizontal pressure
force must be zerc, i.e.:

ad Py an ’

Ix | 0y

If we want to use the fotal upper layer thickness, taken to be positive,
D=mn-d and

30 _ 3n _3d _ (+ __El.__) L __EEL__ .
Ix ax ax £~ pl 3% P,m Py 23

Now (p,~py) <<p,, e.g., in the Gulf Stream (p,-p;)=2x1073+p . Thus the
slope of the interface is much larger than the slopé of the surface and is of
opposite sign. Here we have derived the result for an idealized two-layer
system, In the more general case of continuous density variation, the resuits
would be similar. |f The horizontal pressure gradients go to zero at depth,
the fsopycnal slopes will mainly be opposite to the surface siope and much

larger.
In the upper layer above z =d:

- v (n- L L
p = P g+ (n-2) and Pyt9t g -

Alsc as we showed near the end of Chapter 8, the x momentum equation remains
geostrophic to a good approximation:

Po =P { 3D
e fey = A 3% - 2 g+ I q' - = (G.47)
o ax p Ix ax
1 2
where g' = g -(pz--bl)/p2 is termed the 'reduced gravity'. The total trans-

port of the stream T = fg Oy * 6x where W is the value of x at The seaward

edge of the stream. As the upper layer is homogeneous, v 1s independent of
depth within the upper layer and zero below i+, so Qy = ve+D, Substituting
this expression and using equation 9.47 gives:

LI LI 2 ' D?
To= f 9 .p-Lge - J g . Wiz 0. g0
0 0 b 3X 1 2

since D=0 at x=0 and D=D° at <=4,

Now following Siommel we assume that tThe potential vorticity is essentialiy
constant. This assumption should be valid if friction effects are small
enough 1o be neglected. The importent inertial ferms are retained. Observa-
tions in the Gulf Stream do show that the potential verticity remains nearly
constant. For ithe relative vorticity 3u/dy is negligible compared with 3v/3x
both because v >>u and because the stream is long and narrow. Thus constent
potential vorticity (Eg. 9.38) reduces to (fi-av/ax)/D==cons+anﬁ'=€/Do since
at the 'edge' of the stream av/3x will be sma!l. Taking 3/9x of equation
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9.47* and substituting for av/ax in the potential vorticity equation gives:

t 2 2 (D-D)
(f +9-. E—Q)/D = f/0_. Rearrangement gives . o
H 2 o 2 2
ax ax A _
where A = v{g' + Og)/f is called the Rossby radius of deformation and gives a
length scale based on the parameters of The system. The solution is

D = D ¢[l-expl-x/1)], v = /g7 - D, * expl=x/A) .

With Dy = 800m, ¢ = 107 s™!, and (p,-p,}/p, =2 x1073, T=63Sv and the
maximum value-of v=4ms~!, Also A =40 km which gives a length scale for the
'width' of the stream.

This simple inertial boundary layer model gives a iransport closer to that of
observations than the [inear theory of Munk and, in the outer part of the
stream, the velocity calculated from the mode! solution fits the vetocity
calculated using the geostrophic equation and observations of Jemperature and
salinity reasonably well. Near the inshore edge the observed velocity
decreases while the model velocity continues to increase.

¥hile the model is too simple to represent the actuai Gulf Stream in detail
it does indicate that inertia!l effects need to be incliuded, particularly on
the outer side of the stream south of where the transport is a maximum. On
the inshore edge, friction probably becomes important and beyond the latitude
of maximum fransporf the sftream shows much more meandering so a more compli-
cated model is needed, As mentioned earlier, Morgan and Charney developed
more complete inertial models but these do not work north of the latitude of
maximum transpert either.

A frictionless, purely inertial, model is not likely to be compiletely satis~
tactory. As originally noted by R.W, Stewart, fhe fact that the no-slip
boundary conditfion is not satisfied allows the stream to transport relative
vorticity. Thus in the inertial models a considerable amount of relative
vorticity is moved to the northwest corner of the gyre, probably making the
dynamics used incorrect there and perhaps Throughout much of the gyre.
Analytical models with both inertial and friction effects seem very difticult
to cdeal with so, as noted before, recent attempts at complete ocean models
have been done with numerical techniques which are discussed in Chapter 11.

The Rossby radius, A, is named after Rossby who first introduced it in his
wake siream theory of the Guif Stream, an attempt to explain the counter-
‘currents both inshore and offshore of the Gulf Stream. Stommel's model
indicates that it is an important length scale in the inertially dominated
part of the main stream itself. |1 also appears to be the relevant size
scale for 'meso-scale eddies', the fransient mofions with quite farge veicc-
ities which will be described briefly in Chapter 1.

*
1f the stream does not flow north-south so that x is not east-west, a term
involving the variation of f with latitude would occur but it is negligible.



CHAPTER 10
- Thermohaline Effects

THE DEEP CIRCULATION

This is much less well known and less well described dynamically than the
upper layer circulation. From water property distributions it has been
accepted for some time that the main source of the deep water and its circu-
lation is slinking off Greenland in the North Atfantic and/or in the Norwegian
Sea, and in the Weddef| Sea area (South Atftantic). ~The process is a thermo-
haline one, the sinking being due to increase of density conseguent on de-
crease of temperature (North Atiantic) or on increase of salinity due to
freezing out of ice (South Atiantic). For a long time the deep water motion
was envisaged as a very slow flow (miflimetres per day) of the entire mass.
However, Wist in (955 showed for the Atiantic, both from the oxygen distri-
bution and from geostrophic calculations, that much of the volume Transport
occurred in a relatively narrow band on the west side of the ocean, to tfhe
south in the North Aflantic Deep Water and to the north in the Antarctic
Bottom Water., Other observations with Swallow floats and of ripple marks on
the deep ocean botiom in some areas add further evidence of fast currents in
the deep and botiom water, althcugh the climatclogical average in most regions
is very slow. 5o much is fact,

Z

4
Stomme! has advenced ideas for a model of the circulation of the deep waters.
He brings in arfother feature of the ocean structure ~ that the depth of the
thermocline at any locality remains substantially constant. Because in low
latitudes there is a net annual inflow of heat through the surface info fhe
water, the upper warm layer, and its boundary the thermociine, should deepen
with time. As this deepening does nrot happen, scme mechanism must be opposing
the tendency, and Stommel suggests that this mechanism is slow upward flow of
cool deep water. Continuity requires that the sinking weter in the North and
South Aflantic must be balanced by rising, and Stomme! suggests that while
the sinking is very localized, the rising is spread over most of the low and
middle latitude arecas of the oceans. His model of the character of the deep
circulation is shown in Fig. 10.1. ’

The sinking -regions (Sl, S,) are shown feeding relatively intense western
boundary currents (required by conservation of vorticity in a sifuation in
which the relative vorticity, g, is known to be smzll in fthe interior). OQut=-
ward from these flow gentler geostrophic currents intfo the bodies of the
oceans 1o supply the slow upward flow tc maintain the thermocline depth con-
stanf. In the interior, upward motion causes D to increase; water moves pole-
ward and the magnitude of f increases; r stays smali. To get back south or
north as necessary with ¢ small requires input of vorticity of the appropriate
sign. This input may be achieved with a strong flow and shear on the west
again. Fig. 10,2 shows that the sirong flow and shear must be on the west

134
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Fig. 10.1. Mode! for deep ocean circutation aftfer Siommel
(Deep-Sea Res., 5, 82, 1958).
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rather than on The east when the boundary refurn fiow is o the south, since

southward flow requires input of negative vorficity to keep I small.

WEST EAST

‘ vd

/// FLOW Flow |7

s

7K B

1 4

; L/

A, ' 4
- PRODUGES PRODUCES

(=) vorTiCHTY {(+) vorTiciTy
L% M

Fig. 10.2. Relative vorticity suppliied by velocity shear at west and east

sides of the ocean.
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In discussing the western boundary surface currents in the last chapter we
showed that a northward return flow also had to be on the west. Observations
reported in 1977 by Warren indicate an additional feature of the deep flow in
the Indian Ocean. Eartier observations had shown the northward flow expected
from Stommel's mode! along the west side of the ocean off Madagascar while
the new observations showed a northward flow along the Ninefyeast Ridge which
rises to about 4,000 m depth along that meridian which is to the east of the
centre of the Indian Ocean. The inference is that a western boundary type
tlow can be associated with the mid-ocean ridges, if high enough above the
boitom, as well as with the western boundary itse!f.

An aspect of this model relates to the different strengths of the surtace
layer western boundary currents. \here the deep currents are cpposite in
direction to the surface flows, the latter may be expected to be stronger to
maintain continuity. The sinking water must be replaced by water which has
come up through the thermociine and returns in the upper layer. Conservation
of vorvicity again requires western boundary currents in the return flow.
Above the thermociine the upward flow causes D to decrease. To keep ¢ small
the flow is equatorward, i.e., opposite fo the deep flow and likewise to con-
serve vorticity the western boundary flows in the upper layer will be opposite
to those in the lower layer. The strong Gulf Stream to the northeast in the
upper layer is consistent with the strong southwest flow in the deep water
from 5, (Fig. 10.1), while the less strong Kuroshio is associated with the
weaker deep flow in The Pacific, although the thermohaline flow does still
enhance the Kuroshic in the surface region compared with the purety wind-
criven values., (Note that there is no large source of deep water in the
Pacific. There is now believed to be some outflow from the Ross Sea in the
Antarctic but the volume appears to be much smaller than that from the Wedde!l
Sea.} Again, the relatively weak southward Brazil Current in the upper |ayer
in The Scuth Atlantic is consistent with the southward deep flow below it.
Stommel suggests that the flow in the deep current under the Gulf Stream is
about 30 Sv. The equal surface return flow would then almost double the

Gutf Stream transport associated with wind driving. Even addition of such

a thermohaline {lew fo the wind-driven fiow does not make the transport
-targe enough to match vaiues from recent fairiy direct measurements.

Stommel makes it clear that he does not regard the above as a theory but as

a model for quantitative study which might form the basis for a theory. A
limited number of deep current measurements with Swailow floats have in scme
cases supported -the medel and in scme cases opposed it. However, the number
of measurements yet available is small and must be much increased before
deciding whether it would be profitable to develop a more detailed theory from
the model or fo develop a new modei and theory. -

To produce @ theory with thermohaline effects included mey require taking T
and S (end hence o) not as given by observations but as unknowns which must
be solved for, in the problem, along with velocity. |+ T and § are to be
unknowns then we require equations for them, -

EQUATIONS FOR SALT AND TEMPERATURE (HEAT) CONSERVATION

The differential equations for salinity and temperature (representing heat)
are:
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ds :
F g c s (10, 1)
dT

F o< oA V2T + o (10.2)

where kg and xy are molecular kinematic diffusivities for salt and for temper-
ature (or heat) respectively, and v2 = 32/3x2 +32/3Z2 +32/322. The diffusiv—
ities have the same units as kinematic viscosity (m 571y Ky is about v/10
and kg is about v/1000%,

It has been assumed that kg and kT vary with position siowly_enough that such
variations can be ignored, i.e., terms such as a[xs- (35/3x)1/3x which arise
in deriving fhese equations are approximated by xg + (325/9x2). Qt represents
a source function. For example solar radiation is absorbed over a signiiicant
depth range and causes heating and Qr represents such effects. A similar
function for 5 is not required because processes affecting salinity occur oniy
at boundaries, e.q., river inputs, effects of freezing or the difference
between evaporation and precipitation. Such effects would be inciuded as
boundary conditions, i.e., for the river one would specify the incoming veloc-
ity, salinity (it any) and temperature of the river water, for the other two
processes one would specify the equivalent salt {lux at the boundary as mass
of salt per unit arees per unit time. Q7 and boundary conditions will be taken
to be given. (In practice, detailed specification might be difficult. If we
were considering vertical averages between a number of levels, as in a finite
difference numerical mcdel, and the solar radiation were all absorbed in the
top layer, then the solar raciation could be included as part of the net heat
flux at the surtface.)

Note that on the left-hand sice we have the total derivative. These equations
apply to an individua!, smaill (mathematically infinitesimal) fluid element,
indeed they mey be easily cerived by considering the net flux of the quantity
of interest in all directions for a small element and equating it with the
total rate of change of the quantity inside the element. For example, the
flux of salt in the x-direction is -xg+ (35/3x) and the net flux in (as

8x - 0) is 3lkg * 35/3x}/9x and similarly for the other directions. These
equations are similar to the Navier-Stokes eguations for mementum but are
rather simpler in that many of the types of terms occurring in the latter do
not appear (e.c., Terms like those invciving pressure, Coriolis force and
gravity). )

Note alsc that a fluid eiement can only change its salinity by molecular pro-
cesses. Except where Q7 is importent, the same is true for temperature (and
thus heat). Molecular viscous effects are usually important for fluid elements
too, although pressure, Coriolis and gravitational forces are also acting.
vihen we deal with the averaged equations, as we are forced fo do because we

*

+ These differences arise from the motecular nature of a liquid (water in this
case). 11 is harder for the molecules to exchange kinetic energy (which de-

termines the temperature) than momentum (for frictional stress). 1t is even

harder to move a different type of molecule {e.g., salt) through the fairly’

closely packed water molecules. For gases at standard temperature and pres-

sure, which are loosely packed, the kinematic viscosity and the diffusivities
are approximately equal,
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cannot solve the equations for the instantaneous quantities, such details get
obscured. Nevertheless, it remains true that molecular effects are always
important and often dominant for fluid elements. When these elements are in
turbulent flow, the furbulence, in *stirring' the fluid, makes the instantan-
eous property gradients very large and greatly increases the rate of change
of properties of the elements compared with the rate in a non-turbulent fluid
with a comparable mean gradient. In the averaged equations the mixing is
described by the Reynolds stresses for momentum (and Reynolds fluxes for salt
and temperature es we shall show presentiy). To get actual solutions these
Reyrnolds stresses and fluxes are related to the mean gradients by introducing
eddy viscesity (or diffusivity for salt and temperature) as a necessary
approximation for rather detailed processes which we cannot deal with

ccemp letely.

Equations like 10.]1 or 10.2 also apply to other scalar properties. For exam-
ple, oxygen concenfration would be represented by an equaticn of the form of

0.2 with oxygen concentration replacing T. Qpy could be either @ scurce or

sink depending on what biological processes are occurring.

When we regarded S and T as aiven, we had four eguations in four unknowns
{Chapter 6). We have now added equations for S and T. With S and T unkrown,
¢ {or a) must alsc be regarded as unknown but 1t can be cbtained from S, T
and p through the eguation of state. (While *his relaticn is often given in
table form it is possibie to write it as a polynomial in S, T andé p for
numerical calcuiation if needed.) Thus we now have seven equations in seven
unknowns. With appropriate boundary conditions {(which may include initia!
conditions if necessary) it is possible in principie to cbtain soluticns. In
practice, the non-linear terms in the Navier-5tokes equetions present ditfi-
culties as we have already seen. The addition of three more eguations and
unknowns is noT iikely fo help, and indeed things get worse as we shall see.

EQUATIONS FOR THE AVERAGE SALINITY AND TEMPERATURE

. Equatiorns 10.1 and 10.2 apply to the fota! instantaneous values of S end T.

If we recall the Euierian form of the jotal derivative (e.g., 4S/dt = 35/3f -
u+B8S/ax + v+ 35/3y .+ we 35/3z) The probler is c¢lear. We must use Eularian
equations for velocity and hence for $ and T aiso. Terms such as u -« 35/9x
arise; they are called advective terms pecause They represent changes caused
by the motion of the fluid, Here u, v and w are the fota! instentaneous
velocity components. We cannot solve for them in practice as discussed in
Chapter 7; therefore we cannct use the equations 1C.1 end 0.2 directiy. (As
with velocity, the fact that boundary and initial conditions for $ and T would
never be xnown sufficiently well to solve for instan®anecus values is a fur-
ther difficulty.) The problem arises from the presence of the advective terms
involving cress-products of velocity components znd the scalar quantity to-
gether with the inability to calcuiate the veloczity.

As we did in Chapter 7, we adopt Reyrolds! approach of splitting the fo%ai'
guantities into mean and tluctuating parts: S =5+ 35', u= 0 + d', etc.,
and take the average of the equation.®* Recalling that zverages of terms

The procedure here is very similar to that used in Chapter.7 to obtain the
Reyrnolds equstion, so less detail will be given here.
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involving a single fluctuating QUanfify vanish, we get from equation 10.1:

355 - a5 .~ 35 . — 3% 25" 35" 28"
oS+ . —_— . + e 4 gt e =2 4t . 2 LA
5T T UTEx T Y Ty TR T T TV gy Y e
= . 2<c
<o < 775 . (10.3)

The first four terms may be written as dS/dT for the total derivative fol!cw-
ing the mean flow. The next three represent the effects of turbulence on the
salinity field. The diffusivify ferm looks ihe seme as beiore except that S
replaces S.

Reynolds Fiuxes and Edcy Ciffusivity

Using the continuity equation fer the fluctuating velocity (9« ¥' = 0) we can
rewrite the turbulent terms by adding S' + ¥+ V' (which = 0) to the three
terms in 0.3 which become 3(uTST)/3x + a(V'ST}/8y + 8(w'S")/8z. By analogy
with the molecular case we-suppose vhat the furbulent fluxes u'S', ST,

W'ST (also cailed Reynolds fluxes because they arise when the Reynolds
eppreach is used) arg/rela?ed Yo' the mean gredients in a similar fashion.

(As in Chapter 7 we (Use the simplest anaiogy, leaving more complex formuia-
+tions tc more advanced texts.) The analogy gives:

e aS/ny. . TTET - e 8E/5y . CTET = _ . 28/,
“ 35/8x; w'S KSy aS/3y; w'S KSZ asS/3sz
(10,4}

and Ky, are kinematic ecdy diffusivities (units m? ™ 1y,

¢St = - KS

where KSx’ KSy
Now the turbulent mixing is dominated by the turbulent flow field so iT is
common jto assume that the eddy diffusivity is *the same for all scalars {un-
like the molecular values}. Becadse of the static stability, KSz will be
much smaller than Kg,, Kg, but these two should be simijar. Thus we replace
Kgz by Kz, vertical eddy diffusivity, and the other two by Ky, +the horizontal
eddy diffusivity, The ranges of values for K, and Ky are similar o those
for A; and Ay respectively (the addy viscosities) because they are properties
of the turbujent flow field: |In a particular case, K; and A, or Ky and Aj
may not have the same values but they probably have The same corder of magni-
tude. Finally, neglecting the variations of the K's with space coordinates,
reglecting the xg term compared with the turbulence terms and dropping the
overbar for simplicity, equation 10.3 becomes:

a5 . 325 . a2s) -, . 375 '
L ‘H',[*-_‘z“".““T yr B (10.5)
.. 9x .9y 3z

Here S is now The average saiinity. Equation 10.5 looks quite similar to
(0.1 for the instantaneous salinity.

In the saﬁe mannet, & equation for The average temperature may be obtained.
Cverbars are omitted but all quantities are now averages including QT:

daT _ . 82T 82 ny il
F - r<H.L_F+__é-]+KZ.--—?+QT . (10.56)
X ay ¥4

However, we have made bold assumptions in inserting the eddy diffusivities.
All the cautions in Chapter 7 with regard to the eddy viscosities apply. Any



140 Introductory Dynamic Oceanography

results which depend strongly on the assumption of the eddy diffusivity (or
viscosity) represenTaTlon must be viewed with suspicion until confirmed by
observations. Use of K, = A, in the atmospheric surface layer is an example
of a flow for which the approach does work well.

THERMOCL INES AND THE THERMOHAL!NE C1RCULATION

Let us consider the steady state case and lgnore Q1 because we are interested
in the main thermoc|ine. Then equation (0.6 becomes:

. . = . g2 . 32 2 D
yH VHT + we3T/d2 KH VHT + Kz 3<T/az (1o
where Vy is the horizontal velocity (i-u+ j-v) and vy and Vﬁ are the hori-
zontal gradient and Laplacian respecflvely. n words, equation 10.7 states that
horizoé%al advection plus vertical advecticn equals horizontal plus vertical
diffusion,

Our knowledge of the deep circulation is net sufficient to allow us io drop
any of the terms as being smali. Stommel's conceptual model suggests that.
both advective terms are needed in a thermohaline circulation theory and at
least the vertical diffusion term. Lateral diffusion may well be important
too. It is possible to try to balance pairs of these four terms while neg-
lecting the other two to see what soluticns are possible. At least five of
the six possibilities have been tried and more than one of the possible
balances can produce a reasonable locking thermocline structure.

The idea that vertical advection is balanced mainly by vertical diffusion with
the other terms being fairly small has been considered a reaseneble possibil-
Ity for a long time. Assuming that this balance is correct we gei:

a1
322

w aT
'3z ¢ (10.8)

|f we assume w/KZ to be independent of z, then the solution is T = T, exp
(wz/K;) where T, is the temperature at z = 0 which is taken to be at the

bottom of the mixed layer., Adding a mixed layer on top and adjusting w/K,
one can produce a reasonable fit to cbserved veriical temperature profiles,

In the_interior of the ocean we can use the geostrophic approximation
(equation 8.9). |f we cross—differentiate to eliminate the pressure terms
(i.e., take 3/3y of the x equation and -3/3x of fThe y equation) we get:

Bev + fe(Bu/dx+ 3v/3y) = 0. Using The continuity equation gives:
Bev = f.(3w/52)

To have north-south flow, w must vary with z. As argued earlier, we must have
north-south flow in the interior to keep the relative vorticity smali, In

the interior, w is thought to be upward. It could increase from zero at great
depth to a maximum.in the thermocline and decrease to zero at the base of the
mixed layer (or to wg if we include wind-driving). This vertical dependence
of w would give the north-scuth flows needed to keep relative vorticity small.
For our solution to equation 10.8 we require w/K, to be constant. Thus K,
would have to be a maximum in the thermocline foo, This behaviour for K,

seems contrary to the expectation that K; will be iower in the region of
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sfrongest static stability. However, we do not know how K, depends on height,
Also there are [ikely to be internal waves in the Thermocllne and breaking of
these waves could lead fo sufficient mixing to make K, {arger there.

To keep things In perspective, remember that reasonable looking solutions have
been found with K; = 0. Clearly it is difficult to find satisfactory solutions
even in the interior. To obtain a closed basin solution (which has not yet
been achieved) lateral boundary laye€rs would have to be added.

Further discussion of thermocline and thermohaline circulation theories is
left for more advanced texts, both because the mathematics rapidiy becomes
fairly compficated and because the observational data are so limifed that it
is difficult to tell whether.or not the thecries are realistic. A review
article by P. Welander provides a starting point in the literature (Phil.
Trans., Roy. Soc. lond.;, Ser. A, 270,69-73, 1971). Numerical modeiling may
eventually help in obtaining more complete analytical solutions by showing
which terms must be retained and which may be neglected in the equations.

THE MIXED LAYER OF THE OCEAN
The top few tens of- meTres of the océan are- usualiy cbserved to be fairly well
mixed, i.e., the temperature and sallnify -are fairly uniform. Below this
region There is a thermocl-ine (and pethaps a halocline} and hence a pycno-
cline region. The top layer is the oceanic planetary boundary layer where
vertical friction effects are important. It is also called, as we did earlier,
the Ekman layer. The dynamics governing the formation of this layer are of
considerable intersst, Convergences and a:vergences in the layer lead fo
circulations in the deeper water (Ekman pumping effect). This is also the
region of (biological) primary productivity. The depth of the layer and
mixing up of nuirients from beiow will be imporfant facters in determining
the productivity.

—

in addition, there are meteorological effects both for weather and climate,
Much of the solar radiation, which is the ultimate source of energy for both
afmospheric and oceanic motions (except tides), is first absorbed in the
ocean's upper layer. A large part of the atmosphere's energy supply comes
from heat exchange with this layer, mainly in the form oif the la¥ent heat

of the water evaporated at the surface which is released when the water con-
denses higher in the a‘mosphere. For weather forecasting for a day or two
ahead these energy inputs can be ignored. As the {orecast period is increased
the energy inputs become increasingly important. For an atmospheric medel,
the bottom boundary conditicns require knowledge of the surface temperature
(and the albedo which is reasonably well known for the ocean). From the
surface temperature and Humidlfy {which is determined by surface tempera-
ture) and the predicted air temperature, humidity and wind at the lowest level
in the atmospheric, model one can calculate surface friciion, heat fluxes and
back radiation aiThough there is stil! some uncertainty in the coefficients
used (e.g.; the drag coefficient and equivalent coeificients for heat fluxes).
To get the surface temperature, the evolution of the ocean mixed layer must
be predicted ftoo. For-weather, or refatively short time scales of a few

days to perhaps a month, vertical transfers, probably dominate and horizontal
advection and diffusion may be neglected. For climatic time-scales of a
month to a few years the whole upper layer circulation (based on present -
mean values) would need to be included because a sizable part of the poleward
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heat transport required to maintzin ithe global heat batance is provided by the
ocean circulation in the top few hundred metres. For decades to centuries the
whoie ocean circulation must be included - a formidable task as we have shown.

Here we shall consider the short time-scale problem only. Without geing into
the mathematical details we shall try fo indicate the processes which are in-
cluded and the approach being taken in this continuing aspect of dynamic
oceanography research. The concepiual model presented here comes from P.
Niiler (J. Mar. Res., 33, 405-422, 1975). The temperature is assumed uniform
within the mixed layer with a thin transition zone at the bottom where the
temperature changes rapidiy toc the value in the fhermocline below the mixed
layer. (If saliniiy variations are important in determining density the effect
may be included by defining an equivalent temperature.) The temperature
structure below the mixed layer must be specified (presumabiy it can be
obtained from observations with geographical and seasonal variations included)
but hopefuliy it will be slowly varying on the time scaie for which predic-
tions are required. The velocity is also assumed fo be independent of depth
throughout the buik of the layer. There is a jump in the transition zone at
the bottom to the value of zero in the non-turbulent thermocline region. (If
8 geostrophic flow is present in this region, it would have to be specified
and the velocity considered would be the difference from the gecstrophic
value. There is alsc a thin shear zone in the surface wave zone. The stress
at the surface is specified.

With horizontal gradients assumed negiigible, by continuity and w = 0 at the
surface there is no vertical velocity and all the non-linear terms involving
the mean velocity vanish. The equations for the horizontal velociiy are:

du _ 8—777*
at frv = —gqzuwt 5

{16.10

v
R E-
X Teu

Primed quantities are fluctuations, unprimed are means. Fus F
terms added to make. inertial oscillations die out.

y are damping

In the temperature equavion the advective terms vanish because of the assump-
ticn of no horizontal gredients and the consequence that w = 0. The scurce
term (solar radiation) is included in the specified surface heat flux since
we are Treating the layer as a whole and the femperature equation is:

%% + LW o= 0 (1o.th)

Now in the layer u, v, T, F, &nc F,, are independeni of z (by assumption}.

Thus 3/3z of u'w', v'w' and w'T' must aisc be independent of z and the stresses
and the heat flux are linear functions of z, going frem the specified values

at the surface to the values at ihe top ot the transiticn zone required to
bring fluid being mixed intc the layer to the velues of u, v and T within the
layer. These expressions for u'w', viw! and w'T' may be puf into equations
10.10 and 10.11. In Fhis process an additional unknown, the layer depth h,

is introduced. Thus we have three equations in four unknowns and therefcre

a closure problem as is usual in a turbulence problem. The equation for
conservation of furbulent kinefic energy is added and to close the system it
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is assumed thaT a fraction of the energy input by *he wind coming from the
upper shear layer is diffused downward and used Yo mix fluid up from below
the mixed layer, the remainder being dissipated, 1f the surface is being
cooled then this convective instaebility can provide mixing energy; if it is
being heated some of the mechanical mixing energy is used tc overcome this
stabilizing effect. The velocity ' jump' at The bottom may also cause mixing.
It causes layer deepening only if the layer is initially sufficiently thin
and only for the first hal{-penduium-day after @ change in the wind. By that
time the initial rapid deepening has thickened the layer and reduced the
velocity jump; the Richardson number (based on the velocity and Temperature
changes across the transition zone) becomes too large and the static stability
prevenis mixing from this source. (f the initial layer depth is tco large
(greater than fhe depth to which it would have mixed if iT were initially
thin} the velocity 'jump® at the boftom is never large envugh to produce
mixing. The fraction of furbulent energy from the surface zone which is
assumed to diffuse cown and cause mixing causes & slower continual deepening
of the layer after the initial rapid deepening (if it occurs).

This model and similar models have not been tested very much with real obser-
vations because data sufficiently detailed 7o Fest them fully are not avail-
able in the historical records. What testing has been done suggests that
the approach has promise. |t seems to work fairly well during the heating
season when the summer or seascnal thermocline is being formed. Curing the
cooling season the continual slow erosion {rom the constant fraction of sur-
face generated turbulent energy, which is assumed te get to the bottom no
matter how deep, makes ihe mcdel mixed-layer too deep end the annual cycle
does not close. in reality it is probable thet when the layer gets suffic-
iently deep the curface generated turtulent energy is ali dissipated within
the layer and none is left To deepen the layer further.

ATtempts 7o modify the closure scheme and to examine the possibie imporiance
of the diurnal cycle in the heating have been made in a recent model which
produces a closed annual cycle (for igdealized rather than real forcing) and
shows that added diurns! variestion does affect the resulis. Special observa-
tional programmes to obtein better field data are in progress. Eventuzlly,
with further testing and modification a setisfactory model should emerge,

By 'satisfactory' we mean fhat it predicts what we want to know with accepi-
able accuracy - it need not reproduce ai| the details of the field data.



CHAPTER 11
Numerical Models

INTRODUCTICN

Models such as those of Stomme! and Munk described in Chapter 9 were attempts
to reproduce the general or climatological (long-term average) circulation and
seemed to give qualitatively correct results. However, the actual magnitude
of the transport seemed too small., Stommel, in "The Gulf Stream", suggested
that addition of thermohaline effects and perhaps some adjusiment of the wind
stress, because of its uncertainty, might give better agreement between Munk's
model and the observations. At that Time the transport estimates were based
on geosirophic caicuiations and so could be changed by varying the level of no
motion which could also heip to reduce the discrepancy. Subsequently, more
direct transport measurements have shown that the discrepancy is even bigger
than had been thought and probhabiy cannot be explained by simple addition of
thermohaline circulation and adjustment of the wind stress. Of course, it
had been known for a long time that 1f one looks at the Gulf Stream and simi-
lar currents over a short period of time they are much narrower and faster
than the currents in the models. Nowadays, one can locate such features from
surface temperature measurements obtained by satellites because the surface
temperature field gives an indication of the location of the current. The
currents are also known to meander, that is their position changes with time,
and they follow quite a curved path at times. |t was hoped that if these
time-varying effects were averaged out then this average current would lock
like the currents in the models,

Stommel also suggested another possible cause for the discrepancy which needed
further examination. As noted, the actval 'instantaneous' Gulf Siream is
quite narrow and strong. One can look at the sizes of the terms in the
equations of motion just as we did in Chapter 7 for the interior flow and as
we did at the end of Chapter 8 for & strong current such as the Gulf Stream,
¥e took the y coordinate along the stream and the x coordinate across the
stream. When we examined the x momentum equation, the Coriclis term f v

still dominated because v i< so large; it must be balanced by the pressure
gradient term « - (3p/3x) because none of the other terms are large enough.
Thus, the geostrophic balance stiil holds for this equation and this fact is

the basis for using the gecstrophic calculation to obtain the v or downstream
velocity component as we noted before. 1n the y momentum equation we expect
friction to be important and estimate the eddy viscosity from the observed
width, ¥, of the stream using the relationship from Munk's mode! Ay = B » W3
devetoped at the end of Chapter 9. |f we examine the other terms in fhis
equation using this estimate for Ay, rather than the maximum value as we did
in Chapter 8, the non-linear terms are larger than the friction terms as noted
in Chapter 9 and both effects are important (as the reader may easily verify
for himself). Thus to model the Gulf Stream as it actually occurs, non-
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tinear terms must be included. Furthermore, if including these terms makes
the stream stronger than it would be without them, a long-time average, while
simiiar To the Munk model, would have a larger transport. Some attempts were
made fo actually solve the equations analytically with the non-linear ferms
included as noted in Chapter 9. However, only solutions restricted to very
special cases could be obtained. 1 was the desire to include the non-linear
terms in a more adequate fashion that led to the early numerical models. Thus
one tried to obtain solutions using approximate equations which could be ’
solved numerical ly using a computer; hence the term numerical modelling.

There were other parallel developments which also led fo numerical modelling
attempts. Numerical or computer medeliing of the atmospheric circulation had
begun before these attempis at numerical models of the ocean were made. Now-
adays such models of the atmosphere are used to aid in operational weather
forecasting as well as for research. purposes to try to understand the atmos-
pheric circulation better, Quite powerful computers are required for this
purpose. The usefuiness of such modeis for atmospheric circulation naturalliy
led to the idea of using them to medel the ocean circulation. Because such
medels, particularly the more detailed ones, require very powerful and fast
computers the ocean modelling is often done in the same laborateries that are
doing the afmospheric modelling. The atmospheric modellers are also inferes-
ted in the ocean and in modeiling it because the ocean forms 70% of the
bottom boundary of the aimespheric models.

Another parallel development is numerica! modelling of coastal regions, semi-
enclosed seas and estuaries. This type of modelling has developed as an
extension of numerical modelling of rivers. [t is often done for engineering
purposes as cpposed to research purposes., Examples are fer predicting the
eifects of construction or determining the best lccation for waste disposal.
Prediction of tidal elevations and currents as an aid To navigation is
another example. |In addition, prediction of storm surges produced by the
combined effects of wind and tide is also of considerable practical interest.

Since This introduction to dynamical oceanography is primarily concerned with
the mzin features of the ocean circulation, neither coastal nor atmospheric
mcdelling will be described, but the results of these fypes of models may be
mentionéd when they help us to understand the ccean models or when the results
of such modelting provide some insight to the future potential of ocean
models.

Two broad categories of models of the ocean circulation may be defined: mech-
anistie models and simulation models., In mechanistic models the geomeiry is
made as simple as possible and no terms are included in the model equations
which are not essential tc answering the question at hand. In such models
ohe may try to examine the importance, for example, of the non-linear terms
or the effect of bottom fopography on the circuiation. In simuiation models
one attempts Yo reproduce the circulation of an actual ccean for comparison
viith oceanogrephic observations. In such models the actual geometry of the
ocean basins is included with all the possible driving effects and terms in
the equations. Simulation models produce an enormous amount of data and it
may be difficult to untangle which dynamic effects are most important, and

a great deal of analysis of the output of the model is required. Both types
of models are important in increasing our understanding of ocean circulation.
Mechanistic models are easier Yo -inferpret and help to advance our under-
standing ot particular aspects of ocean circulation dynamics. On the ofher
hand, simulation models allow direct comparison with nature which is essential
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to prove that ocean mcdels really do represent nature and that the mechanis-
tic models which form the basis of the simulation models lead to an under-
standing of the dynamics of ihe real world. -

A detailed discussion of numerical methods is of course beyond the scope of
this book. However, because many of the readers may be unfamiliar with the
approaches taken, the next section wili give a very general description of
the more common approaches used. Then we will describe & number of ocean
models and their results.

NUMERICAL METHODS

The method most commeoniy used in numerical models, particularly in the simu-
lation modeis, is that of ]zrtte dtjférences. We have already made use of
some finite difference approximations, for example, in calculating the hori-
zontai divergence approximately in Chapter 4,

In such methods we do not attempt to find equations which will allow us o
give the velocity at a particular time at any position, but to find values

en a grid of pcints. For example, a two-dimensional grid may be used if we
are considering the case in which we either deal with variables vertically
avereged over the water column or assume that There is no vertical veriation
in the flow, or assume that there is no variation in the cross-stream direc-
tion and consider only variations in the along-stream and vertical directions.
We- need a three-dimensional grid if we allow variations in all spatial dimen-
sions, We shall also calculate values at discrete times Ty, T2 e T
rafher than continuousiy.

To calculate values at a new time from values atf a previous fime, using the
equations of mofion, we have to be eble to calculate spatial gradients of
quantities. For example, suppose we want to defermine 5u/3x at the point x;:
We could approximate this valtie by (“1"“ _1)/8x, where 6x is the grid saahlng
in the x direction, u; is the value al x; and u; is the value at x;_y. This
is called a backizard ﬁ* Fference. e ccufd use {u 41 7 Y] Y/tx, a Jozwar
difference. A Taylor serles expansion around o a|veb

Ju .1 32y 2 1 33 1l 3
u. U, T e AX F D e (AX)Z + = S (Ax) 3 4 .
41 3 7
J J ax 2 ax2 6 3x3 i ax
au 1 u 2 1 3% 1 3% u
u. - u S e AX - S s (AX)S + = «{ax)3 - = - (ax)® +0(ax)5
- 2 »
J J=1 x z ax 6 3x3 24 3t

where derivatives are evaluated at x:;,and 0(a)" means that the term is a
finite number times &", called 'of oFder aM'. The largest term of the error
in the gradienf in either the foruerd or backward approximations of 3u/dx is
(3%u/ox?) » Ax/2, that is proportional to ax. Such schemes are said to be
first order accurate, because the error in the approximation depends on ax 1o
the first power. A more accurate approximation fo (du/3x), obtained by
adding the equations and dividing by 2ax, is:

_ LAy o By 1 3y 2 y
(Uj+l Uj—l) /2 bx = =" z ;;; (Ax)% + 0 (Ax)

The .largest error term is now 0(Ax}2 and +his scheme also called a centred
dszérence since it uses a value cn either side of Xj, is called second order
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accurate. The next higher term is 0(Ax)" because the terms 0(Ax)3 cancel.
Higher accuracy approximations can be obtained using two points on either
sige of the point where we want an approximaticn to the derivative. Again
using Taylor series expansions we have:

Ju 4A 33y 2 y
(u.,, = u, S)/48x = =+ == —x° (Ax)< + 0(ax)
J+./_ J-—-Z 3x 6 9%
U, .- U T 4 =U.
u _ 4 (Jjxr Ty-a) 1 (_JT_?___.LZ 4
Then ™ 3 [ 5 A ] 5 1 B + 0(ax)

is fourth order accurate because now the a3u/ax? terms cancel.

Qne could continue this procegdure but the computer programming would get more
complicated and the treatment near boundaries becomes more complicated too.
For example, if we use The cenfred fourth order scheme for 3u/3dx the first
two points near a north-south boundary musi be given special treatment.

Likewise, higher derivatives such as 32u/5x2 can be approximated. A second
crder accurate approximation can be obtained by teking

'\2
- - (y. - = + - A 52 4 &
(uJ+1 JJ) (LJ‘j Uj—l) Uj+l uJ._l %uJ axz {Ax) 0(ax)

Higher order approximetTions can bte obtained using more points.

Given that we can calcutate tirst and second crder spatial derivatives we can
then approximate the femporal derivatives in the equations to follow The time
evolution in our model. The simplest approach is to use a forward differ-
ence approximation, using values at the past time step fo calculate the
spatial gradients, That is (upyy - u,)/8t = a tuncticon of spatial derivatives
at time t = n- AT, where At is the 1ime step. (Here the subscripts indicate
the *ime &t which we evaluate u a¥ each point. For simpliciiy we have omitted
a second subscript indicating the spatial location.) Such a scheme is first
order accurate in At. A scheme which is second order accurate (Time errors
proportional to (A1)2} is the leap frog scheme (up4y - up-1'/2 - &1 = function
of derivatives at time + = n e« a&t, This scheme is more accurate buf involves
storing values in the computer at three time levels rather than iwo.

These schemes where the values at new times are calculated from vaiues at
previous times, are called explicit. One can proceed from grid point to grid
poinT caiculating values for the next time step. |t is also possible to
devise schemes in which the values at the new fTime step depand on spatial
gradients of.'vaiues at the new Time step. One then writes down eqiations

for each grid poinT gnd must soive the whole set of linear equations simultan-
ecusly. - Such mgjhpds are called implicit. Because for a large grid, a large
system of equations must be sclved one may require mere high-speed storage
area in-one's computer for such s scheme than for explicit methods.

There are many ways in,yhfch the equations of motion and continuity can be
formulated in finite difference form. The guestion arises as to whether
these various formulations may be distinguished on grounds of relative merit.
Broadly speaking, the assessment of a particular scheme is carried out by
comparing the solutions obtained using a finite difference representation of
the linearised equations of motion and continuity with known simple analytical
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solutions. in this menner there emerge a number of criteria crucial to the
ability of the numerical mode! to simulate oceanographic phenomena correctly.
Thus, for example, there existis the problem of |inear computational instabil-
ity. In the case of straightforward explicit schemes there is an upper limit
on the time step which is determined by the distance step and the maximum
wave propagation speed Cpax in the model according fo the relation

At < Ax/Cpgy. |f this time step is exceeded there results an expiosive
growth of small errors inevitably present In the numerical operations. Im-
plicit methods seem to have better computational stability and it may be
possible to use larger times steps than those given by the condition abcve.
However, if one makes the time step too large it may be that the implicit
solution obtained, while it is stable, is not a true solution.

Further problems can.occur in that the amplitude and speed of a wave in the
numerical model can differ significantly from that in nature, and further
That spurious oscillations may be introduced which are entirely of computa-
tional origin. [nstances of the latter have been enccuntered, for example,
in scheres using centra! differences in time. In addition, non-linear terms
such &s the advective accelerations may lead to non-linear instability, e.qg.,
a rapid spurious increase of energy at small scales which is unrelated to any

real physical phenomenon. In practice, various techniques have been developed
over the years to deal with these numerical problems. [+ is important o
emphasize, however, that a particular model is limited to a certain range of
motions within the sea which it will simulate satisfactority.

Further discussion of these aspects of numerical modelling is beyond the scope
of this book, Here we have tried to present an outline of the approach used;
the reader desiring further information should consuli the literature. The
symposium proceedings on Numerical Modeiling (Reid, 1975) given in the Further
Reading list would provide & good starting point.:

GENERAL APPROACH TO NUMERICAL MODELL{NG OF OCEAN CIRCULATIONS

The equations of motion, continuity and, where applicable, heat and sait con-
servation, are put in finite difference torm. All terms including the non-
linear ones, can be incorporated simultanecusly, a real advantage over ana-
lytical methods. Some suitable grid in two or three dimensions is chosen.
Boundary conditions, for example wind stress, temperature and salinity at the
sea surface, and temperature, salinity and velocity on iateral boundaries, are
chosen. Initial conditions at time t = 0 must also be chosen.- Often 2 state
of rest, that is all velocities initially zero, is assumed. The temperature
and salinity values may be faken to be uniform in the inferior but it is more
usual to prescribe a depth distribution approximating that in the real ocean.
The calculation then proceeds by stepping forward in +ime, one step at a time
and the process is spoken of as time 'integration'.

s
As the spatial resolution is increased (i.e., separation between grid points
is reduced) the time step must be decreased to maintain computational stab-
ility, at least for the explicit techniques that are usually used. Thus, for
a two-dimensional grid, doubling the resolution probably requires an eight-
fold increase in the computational time; in three dimensions it the number of
vertical leveis is alsoc doubled the amount of work goes up sixteenfoid. Thus
it is easy fo see why a desire to improve the resolution of a model may be
limited by the speed and storage capacity of the computer.
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Sufficient friction is generally reguired for computational stability in these
non-linear models, either built into the numerica! scheme or included in the
equations being used. Nafure works this way too, of course; as the motion
becomes stronger, frictionat effects increase unti! there is a balance between
the rate at which energy is being put into the motion and the rate at which

it is being tost through friction. Because energy sources are finite the
‘motion remains bounded although it may be quite strong and have large varia-
ticns in both fime and space.

As discussed in Chapter 7 for momentum and Chapter |0 for heat and salt, the
system of equations is not closed. Some additional equations must be incor-
porated to relate the frictionat effects to the calculated large-scale veioc-
ity field, and the diffusive effects to the gradients of The temperature and
salinity fields. These effects are produced in some furbulence-like fashion
by motions on scales *oo small to be resolved by the grid. These are called
sub-grid scale phenomena. To close the system the effects of these scales
are usually parameterized in a simple way through fhe use of eddy viscosities
and diffusivities. Typically, constant values are used (with different
values in the horizontal and vertical, of course}.

The eddy viscosity and the grid specing or the resoiution cf the model are
related to some extent. As noted, friction must be kept at a reasonable level
and at the same time velocity differences between adjacent grid points must
not become too large. Thus if we use larger grid spacing the maximum veioc-
ity gradient is limited. Because the frictional stress is taken as equal to
the eddy viscosity times ihe velocity gradient (e.g., equation 7.4), then to
maintain friction approximately constant the eddy viscosity must be increased
as the grid spacing is increased. Because the resolution is limited by the
speed of available computers the eddy viscosities used are cften [arger than
interred on the basis of our |imited observations and may prevent fthe non-
linear terms from playing a proper role

Recently in some atmospheric models, variable-eddy viscosity has been adopted.
It is made proportional to the rcot mean sgquare rate oi strain in a calcuiated
flow (the rate of strain is derived from the calculated shears). Physicallty,
this variable viscosity with friction being larger where the shears or veloc-
ity gredients are larger seems a better representation than constant eddy
viscosity and it seems fo improve the aimospheric mocdels. As yet this epproach
has had Iittle use in oceanic models. ({(C'Brien's model, described iater, is
one exception.} Also, the variable eddy viscosity seems to damp scales of
motion near the grid scale more strongly relative fo larger scaies than con-
stant eddy viscosity. Thus,computation stability can be maintained with
lower, more realistic average viscosity values. The use of variable viscosity
may be helpful in ailowing non-iinear effects to be more reazlistic with the
resolution capabilities of present computers.

As noted above, .one of the boundary condifions to be imposed is the forcing

by the wind stress. “As discussed in Chapter 9, the procedure for calculating
the wind-stress from thé observed wind velocities is still not well estab-
lished, particulariy for stronger winds. In the models to be described in the
nex? section the |mnosed wind stress 'is usually based on computations made by
Hellerman. These computations are based on ciimatological wind data and have
been carefully done in an attempt to take into account the variations in wing
speed and direction at a given location. The.drag coefficient formulation
that Hel lerman used in these computfations was the smooth version of the siep
function with values for Cp of about 0.8 x 1073 at low wind speed rising
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rapidly but smoothly in the vicinity of 7 m/sec to 2.4 x 1073, It was known
at the time (about {965) that Hellerman did the calculation that the drag
coefficient does not have this rapid transition, bul Helterman was not aware
of the more recent results. Thus this calculation may have overestimated
scmewhat the contribution of strong winds and also perhaps underestimated

the contributions in regions of light winds, that is in the regions in the
middle of gyres where the stress changes sign and the curi of the wind stress
is 2 maximum, although even here, climatoiogically, winds less than 6-8 ms=1
are unimpcrtant. The spatial resolution of Hellerman's stress values is also
limited because of the way The climatological data are compiled as described
in Chapter 9. cause of this limited resclution the stress gradients or the
curl of the wind stress may also be underestimated. It is difficult to know
how serious these errors are but it is not likeiy that the frue values of the
maximum of the cur!.zre mere than about 50% larger than Hellerman's calcula-
tions. Some more detailed celculations for the regicns of maximum curl in
the Norih Atlantic, which have better spatial resolution and use rore up-to-
date drag coefficient values, give simiiar vaiues for the maximum curl o
those obtained using calculations similar to those of Hellerman. However,
these caiculations produce a long-time average and do not take into account
seasonai variations in The position of maximum curl. As noted in Chepter 9
such & calculation may give & lower value than if we calculated a maximum curl
on a daily, weekly or monthly basis and then averaged these maximum values
tcgether regardless of the latitnde of the maximum curt. It is the latter
value of the maximum curl which is probably most appropriate for cazicuiating
the maximum transport due 1o the wind using the simplified Sverdrup equavion
(9.711.

-\ DESCRIPTIONS OF SOMZ MODELS QF IMDiVIDUAL CCEANS

N3

in this section we shal! ocutiine The features and main results of a few numer-
ical simuloticon mode!s 1o show The sort of resuits which can be achieved and
also some of the !imitaticns. We start with a fairly simple model and proceed
to semewhat more defailed models culminating in 2 description of two mocels

of ‘the whcie wor!ld ccean.

C'Brien's Two-2imensicoral Wind-Driven Mocel of the North Pacific

This is a rather simple vertically averaged mode! similar to the classic Munk
analytical model described in Chapter 9, except that it uses more realistic
gecmetry and incluces non-iinear effects., i+ has the following features:

I. Density is taken fc be uniform, that is, the mode! is barotropic; the vel-
ocities are independent of depth, recucing the precbiem to two dimensions.

2, i1 is driven by The wind using the climatclogical average wind stress
calculated by Hellerman.

3. The =sguations are in spherical polar form, insfead of using the beta plane
approximation as Munk did.

4. The Tyrid" is 2° in {atitude &nd longitude.

5. BotTtom Topogrephy is Tncluded above 2000 m, the assumed depth of the
occean.

6. Leteral friction is used with & variable eddy viscosity as in some atmos-
pheric mogels - the only ccean model that we know of which includes this
feature.
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Fig. Il1.l. Mass transport stream function () compuied for a wind-driven
model of uniform density (North Peciiic): (a2) the circuletion
pattern at the western boundary in units ot 10® tonnes s™1 #
= Sverdrup (I05m3s"1), (b) the pattern over the entire basin.
(From J.J. O'Brien, Invest. Pesgu., 35, 341, 344, 1971.) {(See
note in the fext on the signs for .}

The medel is started frem e state of rest. As ihe integration proceeds, flow
begins to cccur and to build up intc a series of gyres. This process is
spoken of as "spinning up'. After scme time & fairly steady circulation is
apparent but there are fiuctuations superimposed uvpon it. The transport
pattern after 72 days of integration is shown in Figure [l.,1. Figure {l.le
shows the defailed structure at the western boundary eénc Figure [}.1b the
broad-scaie pattern cover the whole ocean basin. Note that the sign convention
for the siream funcfion in this figure is opposite ic ithat which we acopted in
Chapter 9. This difference s present in all the figures in this chapter, so
that the modellers whose work is reporied here are all consistent but contrary
to the usuai fluid mechanics convention. |In this chapter, a gyre with a
pesitive ¥ value at its centre indicates a clockwise gyre. There are arrows
in some of the tiguyres but in any case the reader should know the directions
of the main circulations by now and be prepared for the lack of consistency

in the literature. ’

The mode! seems to produce known features of the circulation reasonably well,
although there are differences in detail. The Kuroshio leaves the coast at
35°N and has & transport of about 60 Sv in reasonabie asgreement with observa-
tions. Earlier estimates from geosirophic calculations suggested & transpert
of 65 Sv but more recent estimates are somewhat higher, perhaps 80 to G0 Sv.
Munk's calculations gave a transport of 3§ Sv and the current did not leave



152 ' Introductory Dynamic Oceanography

the coast until about 45°N. The numerical model thus seems to give better
results. The departure from the coast at 35°N is partially an eftfect of the
topography. (Topographic effects may be overemphasized in barotropic models
as we shall see. However, in this case, -the bottom is taken to be flat for
real depths greater than 2000 m so the problem is probably not serious in
this modet.)

The greater transport, compared fo Munk's linear model, is probably due 1o
enhancement of the flow by non-lipear effects (the advective acceleration
terms). The early numerical models mentioned previous!y which were used fo
investigate the effect of the non-linear terms showed quite clearly that the
flow could be enhanced by these effects by comparison with the results obtain-
ed when the non-linear terms were omitfed. Thus, as Stomme! suggested, non-
linear or inertial enhancement can lead to sironger circulation. Much of the
additional transport is a local recirculation, that is, the additional flow

in the western boundary current is mainly returned in a fairly strong counter-
current close fo the boundary current. O'Brien's result (Fig. Il.}) shows
this behaviour with about /3 of the Kuroshio transport associated with local
recirculation, The southward flow in the interior for fhe main gyre is about
40 Sv, just what one would calculate using the Sverdrup equation as must be
the case for a model with a flat bottom, provided that the non-linear and
bottom friction effects are unimportant in the interior as we expect o be the
case.

As we shall see, other numerical models of the North Pacitic of similar
resolution, with constant eddy viscosity and with the same wind stress, give
transports more |ike that of Munk's study. |t appears that the variable eddy
viscosity allows lower overall viscosity and hence more impcertant non-iinear
effects, and leads to enhancement of the transport of the Kuroshio to more
realistic values.

While 0'Brien's model seems to produce results fairly consistent with our
limited knowledge of the actual circulaticn, the maximum transport values
prcduced are still somewhat lower than the most recent estimates although
there is uncertainty both in these transport estimates and in the wind stress
O'Brien used in his caiculstions. However, The assumption of constant density
leaves out any thermohaline circulation completely. This separation has
always been necessary in anaiytical work because the whole system cannot be
treated at once. in addition to the non-lfinear nature of the equations
describing the velocity field, there is a fundamental non-linearity - the
advective terms in the equaticns for salt and heat conservation as discussed
in Chapter 0. [t seems most unlikely that the flows produced by the two
driving forces do not interact, which provides, as we shal! see, another
possible enhancement mechanism, in addition to the simple |inear addition of
the thermohaline flow to the wind-driven fiow that was originally suggested by
Stomrel. C'Brien's model shows the effect of inertial enhancement in a
simulation mode! and how Munk's approach works when treated more realistic-
ally.

Cox's Model of the Indian Qcean

This model is an attempt to see if the current reversals in *he Indian Ocean
that occur as the Monsoon winds change can be reproduced in a numerical model,
The model is three-dimensional with up'to 7 leveis in the vertical depending
on The depth, [t incorporates the fcllowing features:
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Wind driving is seasonz!, based on three-month averages over each of the

* four seasons using The Hellerman wind s¥ress. The sfress is made to vary

smoothly from season to season.

Thermohaline driving is included by imposing the surface temperatures and
saiinities. While surface fluxes of heat and salt would be preferable,
the surface sali and temperature values are imposed because Fhe fluxes

are not nearly as well known. Temperatures are imposed with smooth varia-
tion from winfer to summer vaiues. The salinity field is hel¢ constant
because the seasconal variation of the surface salinity appears t¢ be small.

The 'rigid !id' approximation is. imposed as is quite commen in ocean
mocels {(O'Brien's model is an exception). This approximation is achieved
by requiring that the vertical velocity at the surface be zero. The
effects of real variations of sea surface elevations appear as the equi-
valent pressure distribution on the rigid, level, upper surface of the
model. The purpose of this approximation is to allow longer time steps
to be used; with a rigid upper surface, surface gravity waves which have
rapid propagation speeds are not allowed. Rossby waves in which the
variation of the Coriolis force with latitude provides the restoring
force (see Chap. 12) are still permitted bui are modified somewhat by the
presence of a rigid lid instead of a free suriace. |t is believed that
this medification produces no impertant errcrs. 1t may modify the initial
'spin up' processes buf probably produces no sericus errors in the final
quasi-steady state.

The mcdel is started from a state of rest, the initial salinity and
temperature values are taken 1o be horizontally uniform but with a vertic-
al distribution based on observed data. On open boundaries salinity and
tempersture are specified at all depths using observed data. The baro-
fropic {vhat is depth independent) and barozlinic (depth varying) flows
are calculated separately subject fo no net vertically integrated flow
through the open boundary to the south.

The friction and diffusion of heat and salt are parameterized with con-
stant eddy viscosity and diffusivity. A,, eddy viscosity for vertical
friction, = 1072m? s=1 for the top layer (50m) and = 10-% m2s-1 for the
remaining layers. Ay, eddy viscosity for horizontal friciion, is large
at first, 2 x 105m2 51, but is tinally recuced to 5 x 103 m2 s=! as +the
grid is refired (as described belcw). Vertical eddy diffusivity is taken
to be constant at 107% m? s™1 throughout; horizontal eddy diffusivity is
Tnitially 10"m2s™! and finally 5 x 183m2s™1,

The density field is not allowed to be statically unstable. Whenever

such @ state is predicted in a new time step it is assumed that vertical
mixing occurs immediately to produce a2 neutral density structure with

heat and salt conserved. This mixing hypothesis is commonly used to avoid
the proeblem of static instablility in numericel models of the ocean (and

of the atmosphere).

Becsuse of the long .response time cf the density field in the interior

{of the order of 200 years) the calculations are done in three stages
First, bottom topegraphy is ignored and computations are carried out for
2 4° grid. The intedration proceeds for 130 years of model time. (I!7
takes 0.2 hours of computer time per year of mode! ocean time.) |In the
next stage fhe grid is reduced to 2° and the integration proceeds using
the vatues from the first stege as a starting point. Bottom topography

is included in this stage and the integration proceeds from (30 to (85
years in the model (at 1.7 hours of computer time per year of model time).
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Fig. 1.2, Cross-sections showing the long-shore velocity component (cm s~
near the Somali coast in an Indian Ocean model: {a) during The
south-west monsoon (May-Sepfember), (b} during the north-east
monscon (November-March). (From M.G, Cox, Deep-Sea Jes., |7,

68, 71, 1970).

In The third and final stage which proceeds using the second stege as 2
starting point the grid is reduced ic {°, the surface layer is split into
two layers and integration from 165 to 192 years is done (at 22 h/yeer}.
Thus the total computation reguires about 270 hours of computer Time on &
Univac 1108, Refinement to a 0.5° grid would reguire 200 to 300 hours cf
computer time per year of model time. Faster computers have now become
available but at the time Cox did nis work, resoluficn beiter than the
cf his final stage was clearly impractical.

| [+

The general features of the solution for the final year of the computation
agree fairly well with the rather sparse cbservations. A Somali current
(western boundary) appears in the mede! and shows the proper seasonz!| varia-
tions. Figure 1.2 shows the lcngshore component ot the velocity in vertical
sections normal to the Somali coest. The Somaii current is well developed in
the northern summer solution and absent in the northern winter. One cannot
compare the calcuiated transport in the Scmali current with an cbserved value
because of insufficient field data. This example illustrates the serious and
typical problem of insufficient verification data. ’
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Although the transports and general features of the density field look reason-
able the computed velocities in the Somali current are foo small and the
horizontal density gradients are not as large as in nature. These discrepan-
cies are probably due to using eddy viscosity and diffusivity values that are
larger than they should be, causing the boundary current to be 'smeared out',
To see if these effects -are serious in the sense that the solution is not
correct to the first order {(that is it is not a smoothed version of what cne
would obtain with finer resolution but something quite different because, for
example, of suppression of non-linear terms) the calculation wouid have to be
continued at finer resolution. With the new, faster computers that have now
come into use, such calculations will be feasible.

While the seasonal response seems to have been correctly reproduced here, ihe
question of whether or not models with large eddy viscosities and diffusiv-
ities produce results correct to first order is far from simple. For exampie,
in a model of_ the North Atlantic done by Holland which uses the same vajue
for the horizontal eddy ditfusiviiy of heat as the Cox mode!l, the vertical
circulation is quite different from what we expect, The mode| produces down-
welling in the vicinity of the main thermocline, but i+ is generally believed
(although with no good cobservaticnal procf) that ithere is upward flow over
most of the ocean at this level, This assumption was made by Stommel in his
abyssal circulation models which seem to be consisient with the limited cbser-
vational data, although as discussed in Chapter |0 the way in which the
thermociine is maintained is not ciear. Such a difference in the vertical
fiow field requires a modification of the horizontai flow tc maintain the
thermocline. In a later calculation with a smaller diffusivity {103 me s~ 1)
upwelling in the interiocr was obtained in agreement with Stommei's hypotheses.
Because of the large horizontal temperature gradient in the western boundary
region in Holland's model, the large horizontal diffusivity produces sfrong
diffusion normel to the potential densify suriaces. The effective diffusivity
across the surfaces is about 5 x 1073m2 s™1 in an essentizlly vertical direc-
tion. To balance this strong effective verticzl diffusion, strong upward
advection is required in the western boundary. By continuify, downwelling

is forced in the interior. Reducing the diffusivity reduces the effect and
upwelling in the inferior is then found in the mode! as is believed to be the
case in nature.

This example iilustrates that the values of eddy viscosity and diffusivity
which must cften be-chesen for computaticnal stability rather than to agree.
with values inferred from observational data may be criticai to obtaining
reglistic results. The large vaiues of eddy viscosity which are used probably
do not produce such dramatic effects because the surfaces of constant velocity
are less {ikely fo have tilts comparable tc those of the isothermal surfaces.
£ the surfaces-of ‘constant velocity were tilted then the same sort of effect
would occur 'and the effective vertical diffusion of momentum might be stronger
than that in reality, leading to greater coupling of the layers in the vertic-
al fhan Is realistic. To answer such guestions requires running the models
with finer resolutiqn and lower viscosity and diffusivity to see if the
results are different from those from the coarser resolution models.

Hol land and Hirschmann'é Model of the Atlantic Ocean

The computational scheme used in this model is similar to that of the Cox
mode| of the Indian Ocean. However, unlike the Cox model it is what is called
a diagnostic model rather than a predictive or prognostic model. The density
field is prescribed, that is it is based on observed data and is held fixed
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rather than predicted as part of the calculation. The North Atlantic is
chosen because it.is the area of the world ocean with the best observed
density data, and also the best knowledge of the circulation, although our
knowledge is still limited, even here. The great advantage of the ciagnostic
model is that it takes & smell fraction of the computer time of a prognostic
model. The model ocean reaches its state of statistical equilibrium in. about
a month instead of several hundred yeers. Thus, more parameters can be varied
and finer resolution can be used than in & prognostic model.

The features incorporated in this mode! are:

t. Horizontal resolution of 1° in latitude and longitude and 4 levels In
the vertical.

2. The basin extends from 1{.,5°5 to 50.5°N, including the equatorial region,
to test the model there.

3. Climatologicat density data are used, smoothed to the |° grid.
4. Climatological wind-driving, based on the Hellerman wind stress.

Vertical eddy viscosity is taken to be 107* m? s~!; some tests have
indicated that this value is not crifical in a diagnostic calculation.

6. The horizontal eddy viscosity is 4x 10" mé s~1, (Some celculations were
attempted with the smaller vaiue of 10*m? s~} but eddies with size
comparable to the grid spacing began ic appear. To prevent accumulation
of energy in eddies of the smallest size that can be resolved, which
could lead to non-linear computational instability, the larger value of
eddy viscosity is required.)

This model seems to produce the main features of the circulation rather well.
However, the surface currents of the equetorial region and the region south

of the equator appear rather more broken up than observations suggest. This
characteristic of the model is perhaps due fo insufficient resolution and to
inadequate density data. Transport through the Florida Straits is much smaller
than observations indicate because of the limited resolution. The Gulf Stream
gyre, both the surface circulation and the fTransport (maximum value 81 SvJ,
looks reasonably correct although the Gulf Stream is broadenecd and the veloc-
ity values are low due to the large eddy viscesity. Recent observations based:
on direct measurements suggest maximum transports of (03 to 150 Sv so the
calculated value is still below what the observetions indicate although it is
over twice that of the classical |inear theory of Munk,

The calculated Gulf Stream transport is much larger than the Sverdrup trans-
port due to the wind (calculated from the simplified Sverdrup equation 9.21).
This transport would be about 25 Sv, simiiar to but somewhat smaller than the
value obtained by Munk. It is of course based on the Hellerman wind stress
and may be somewhat lower than it should be, but even doubling the value,
which is probably the outer limit, would not produce a balance between the
Sverdrup fransport and the Gulf Stream fransport.

The reason for the enhancement of the Gulf Stream in this model has been quite
cleariy demonstrated by doing computations with simplified versions of the
model. Figure 1.3 shows the transport stream function for three cases.
Figure |1.3a shows the case in which the density is taken to be constant, ail
other features of the model being unchanged. Thus, this is the barofropic
case but with the real bottom topography within the resolution limifs of the
model. The Gulf Stream transport for this case is only 14 Sv. The bottom
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fopography has reduced the flow below whal one would expect using the simpli-
fied Sverdrup equation (9.21). As discussed in Chapter 9, when the current

Fig. 11.3.
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‘Tfénsporf stream functions (in Sverdrups) for the Atlantic Ocean

trom diagnostic calculations based on the cbserved density field:
(a) for uniform density, (b) for the observed density field but

.uniform depth of 1,273 m, (c) realistic case of observed density

field and bottom topography, allowing bottom pressure torques.
(From W.R. Holland & A.D, Hirschmann, J. Phys. Oe,, 2, 342, 343,
348, 1972.)
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extends to the bottom and the bottom is not level, an additional term has to
be added to the simplified Sverdrup equation. As is To be expected, topo-
graphic steering of the currents (s very important and is probably much
stronger than -in reality. In Figure I1.3b the transport pattern is shown for
the cese in which the observed density field is used but the bottom is assumed
to be level at a depth of |,273 matres. The transport pattern is quite smooth
and much 11ke-the results of the classical Munk theory-except for a little
distortion-because of the more realistic geometry. This result could have
been anticipated since the mode! s now essentially the same as the Munk

mode! except for the more realistic coasts., The transport is virtually the
same as that-calculated using the simplified Sverdrup equation for the inter-
ior transport as expected. Figure Jl.3c shows the transport stream function
ior the case.in which all the features ¢f the model are included. The tfrans-
port pattern has become quite comp!icated and in addition the maximum trans-
port in the Gulf Sf¥ream has increzsed to 81 Sv.as noted earlier. Tnis enhence-
ment of the Gulf .Siream is produced by whai has been cailed the joint effect.
ot baroclinicity and bottom topography. BarqcliniCi?y and thermohalline
driving are required to produce deep currents that interact with the bottom
topography. through the. term fnvolving the deep current and the bottom slopes
in the case of a non-level botiom. A purely barotropic case is not correct
because topographic effects reach to the surface Instead of modifying the deep
ilow, which then interacts with the upper layer. The inferaction of the deep
currents with the sloping bottom produces pressure torgues which can acceler-
ete the flow and put vorficity into The flow just as the wind stress curl
dogs. In the model this effect can be larger *han the wind stress curl in
sore regions, particulariy in the Western Atlantic. This effect has also

been demonstrated in a mechanistic model with idealized geometry by Hollanc,
and in a diagnostic model of The North Aflentic done by Sarkisyan and |vanov.
There is an analog of this effect in the atmospheric flow, where the presence
of mountaing can, through pressure torques, add vorticity to the flow.

Unforrunately, now impertant this effect is in the real ocean is not certain.
The possible errors.in the input density data prevent the-.diagnostic calcula-
tions from being coaclusive. These errors arise both from insirumentation
limits and from the difficulty of obtaining good values of 'a time-varying
field. |t seems that +here is encugh evidence for the possible imporiance

of this mechanism.to justify o carefully planned observational experiment.

The tramspert pafterr preduced by the full model is rather compliceted, much
more so than we expect from the classical pictures of Chapter 9. However,

we con't kncw, in fact, whether the real transport patterh is like the one of
the model or not.. Our krowledge of the large-scale flow of the ocean below
the surface is based almost entirely on indirect evidence either from trying
to guess what the tlow must be like to produce the observed property distri-
butions, or frem geostrophic calculafions which are always uncertain because
of lack of knowledge of the level of no motion. The only direct observations
of currents that we have for large regions are of the surface drift. The
surface drift values are based on snips' navigation reccrds and any indivic-
ual observations may have quite a lot cf error, so a great deal of averaging
and ccnsequent smcothing is done in fthe process of producing charts of these
currents. In spife of *he compl!icaled transport pattern, the resulis of the
Holland and Hirschmann model are not inconsistent with our iimited observetion-
al knowledge. Figure [1,4a shows the surface pressure distritution (as
{0/pg) for fthe full model. The model is & rigid Iid one, so this surface
pressure distribution 1f divided by g would be the eguivalent surface eleva-
tion. Although it is slightly smocother it shows strong similarities to the
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‘For the diagnostic model of the Atlantic Ocean: (a) the surface

pressure (p/pg) calculated from the results for Fig. Il.3c

atter -reaching a steady state {after 35 days), contour interval
1m? 5=2.(0.) dynm), (b) the dynamic topography based on a |,000 m
reference level, contour interval 1m? s~2, {continued)
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Fig. tl.4. (continued) Oiagnostic mocel of the Atlantic Ocean: (c) horizon-
. . tal velocity vectors for the surface layer; the lengths of the
vectors in the Gulf Stream and equatorial regions are limited jo
a maximum of 0.75ms-1 in order nct fo obscure-smaller scale
features, the largest velocity being .1 ms=! in the Gulf Stream
{from W.R, Holiand & A.B. Hirschmann, J. Phys. Oe., 2, 345, 346,
1972).

dynamic height based on & 1,000m reference level, which is shown in Figure
t1.4b. Although in the model 1,000 m is not a level of no motion the dynamic
height variaticns at this level are smali compared with those of the surface,
so the model| pattern of equivalent surface elevation is very similar to that
of the dynamic height computation. 1+ is worth noting that the dynamic topo-
graphy is not as smooth and simple as the classical pictures that we showed
in Chapter 9. Excepi near the eguator the flow:-is nearly, gedstrophic and so
is more or less along the contours and the Gulf.Stream is qui{e evident in
both Figure Il.4a and b. Finally, Figure |l.4c-shows the surface current
calculated from the model and except .for the equatorial region it is fairly
simiiar to the currents shown on pilot charts based on ships' records.

The large eddy viscosity (near the upper end of the likely range) is a probliem
in a model such as this. Non-iinear effects are undoubtedly suppressed. In
addition, the resolution is insufficient fo allow for the presence of meso-
scale eddies, recently discovered to exist in the ocean, which may be impor-
tant fo the dynamics of the large-scate flow. |1 would be interesting to

know if either inertial enhancement or the etfects of mesoscale eddies or

some combinations are large enough to give the additional enhancement of the
Gulf Stream needed to match the observations.
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TWO MODELS OF THE CleULATION or THE WORLD OCEAh

The first by Bryan and Cox is. a consfanf densnTy or. barofroplc model_ The
second by Cox is an extension of the first model to the diagnostic.barociinic
case (temperature and salinity based on observed mean ‘values and. held fixed)
and tinally to a short period (2.3 years of model. ocean:time) of & fully
predictive baroclinic case: using the final state of the dlagnosflc model for
initial conditions. it was not pcssuble to run the predictive: case to final
equi librium because Thls calculation would have required several centuries of
ocean “time-at 10 hours of computer time per year of ocean time. Howevar, the
initial adjustment. in boundary currenfs tc removing the |mposed denSITy fleld
wnjch takes abou+ a year, can be examined. ‘

The models have the following features:

i. Realistic fopograpny and coasts within the resquTuon llmnfs of the
models,

2. :In the baroclinic case, up to 9 levels depending on thé dep?h.'

3. Hoﬁizonfal eddy viscosity of 8 x 10" m2s™!; with the-resclution-that can
be used in this mode!,. smafler values of eddy v&scosafy iead tc smalli-
scale compuTaTuona! noise.

4. Verticai eddy v&scosn*y of IO “ 2

5. and stress. based en. .he Hellerman compu?afnon wnTh exfen31on fo “the
Polar rea|0ﬂs T - Y : :

8, Re;o!uflon of 2° irom: 62°S to 62°N. SeparaTe 2° spherlcal grlds are used
for both higher |af1+ude regions with considerable over|ap between these
grids.and the iower latituce grid. Each. grid is integrated separafely
foriseveral Time steps and the boundary conditions .are. updated in the
overlap region. This approach is required because, on a full spherical
grid, the grid spacing becomes smali near the. poles requnrlng unreason-
ably small Time sTeps everywhere. : : »

No conditions on open boundaries (fluid boundarles within The ocean's in-
terior) are required as all lateral-boundary openings are included in a
world ocean model.  Such boundary condifions are aiways somewhat arbi-
trary due tc a lack of adequate observations and are a problem when
a%Tempilng to model a parT of the world ocean.

~J

The transport: pdrTern for fhe barotropic case Is shown in -Figure {[,5a. Topo~
graphic.steering effects on The current appear to be much stronger than they
should bejy western boundaryvcurrenfs such as the Kuroshio and Gulf Stream are
‘too w;ak‘,u{he Anfcrc+1 ar Current is particular!y ‘weak (about

21 sv). " In-a sepcrafe calciigtion (with the different horizontal eddy visco-
sity of 4 x 10*m2s 1) the barotropic modei was run with a leve! bottom and
the Kuroshio and Culf Stream then had tfransports similar fo those calculated
by Munk, as can’ be-seen in Figure |1.5b. As can also be seen in this figure
the Antarctic Circumpolar Current is very farge (greater than 600 Sv and s¥ill
increasing slowly at the end of the calculation).

In The North' Pacific, the level bottom case is almost equivalent to O'Brien's
North Pacific medef shown in Figure il.1, except for the difference in eddy
viscosity. The difference in the strengths of the Kuroshio Current in these
Two models provides evidence for our eariier suggestion that inertial enhance~
ment produces the larger transport in the 0'8rien model.
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Fig. 11.5. World ocean circulation:

(a) horizontel mass transpor® streem
function for uniform dersity with realistic topography {positive
values indicate clockwise flow), Antarctic Circumpolar Current

= 22 x 105 tonnes s=! = 21 Sv. (from M.D. Cox,NMum. Mod. Oe.
Cire., p. 11, 1975.) (b} Transport streamlines icr uniform
density and depth with much larger Antarctic Circumpolar Current
{n~ 600 Sv) (from K, Bryan & M.D. Cox, J. Phays Oc., 2, 326, 1972.}
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Fig. 11.6 World ocean circuiation: (a) pattern of mass transport for the
diaghostic case based on the observed density field, (b) pattern
of mass transport for the predictive case based on a 2.3 year
numerijcal integration of a three-dimensional mcdel using observed
density.and the mass fransport of Fig. i1.6a as initial conditions.
(From M.D. Cox, Mum, Mod. Oc. Cir., pp. 112, 113, 1975).

The transport pattern from the baroclinic diagnostic model by Cox is shown

in Figure ||,6a. The results appear to be much more realistic with more
reasonable Transport values for the western boundary currents, although they
are still smaller than observed values and the currents are broader and weaker
because of the limited resolution and large eddy viscosity. The Antarctic
Circumpolar Current appears more reasonable too, with a transport value of
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184 x 10° tonnes s~! = §80 Sv, near the upper end of the range of values
suggested by obsérvaticn. Again, the ‘fnclusion of barocllniCITy and bottom
topography has enhanced the western’ boundary curients to leveis beyond what is
expected -from the SImp||fied Sverdrup equation (9.21). ‘The- enhancement (to
about 60.Sv) is not as farge.'in the Gulf Stream as found ' in: Hoiland and
Hzrschman s.model, perhaps because of the larger vlscosufy and. lower ‘resolu-
tion, Many comparisons may ‘be’ made befween the model and observed ‘features

of the .ocean; good agreewﬂnf is obtained in some regions and nof in “others.

The model:-is-only a first step toward a model represenfaruve of the- worlc
ocean, " buT it is an Impor1anT one, .

The TransporT pafTern for the predictive model isishown in Figure 11.6b.

There is a smcothing.out cf various cdetails, probably due in part to inaccur-
ate denS|Ty values; in addition the large eddy vnscos:Ty and diffusivity
which must be used probably lead to oversmoothing and fo the redueflon in the

transport values of The Gulf Stream and Kuroshio.

MODELS OF MESQOSCALE EDDIES

Recently a considerabie emount of evidence has been collected for the exist-
ence of mesoscale eddies in the ocean. These eddies seem to have charactier-
Istic sizes of the order of 200 10500 kmp,. time 'scales. of -1 to a. few months
and klneflc energies befween |0 and 100-+imes that of the mean flow in the
interior.. Most of the. energy associated with the mean flow is. ‘the pofenTr i
energy- of the tilted |sobaric surfaces; this erergy is perhaps as ‘much’ as
|,000 fimes the kinetic energy - However, the pofenflal energy of the. eddies
is more Comparable fo the kinetic energy, so the total energy of the mwean
flow 1S probably larger than.the total energy of the eddies even if they are
found everywhere How prevalent these eddies are and their imporiance fo

‘the meanvflow is not established as yet. The aimospheric analogues of the
oceanic ‘eddies are the storm systems in mid-latiiudes. On a weather map they
locok tike a series of. large eddies. These ecddies can. be considered to be
geostrophic turbulence: which behaves |ike two-dimensional turbulence. In the
atmosphere i+ is krown that the eddies gain energy from the available mean
potentia!l energy and fransfer kinefic energy and momentum to larger scales
and to the mean flow, They are important in defermining the s*rength of the
westeriies and the jet stream, for example. !{ one tries to parameterize the
effects of these eddies by an eddy viscosity in the usual.simple way, the
vaiue is negative because they accelerate the flow in contrast o the more
famiiiar smaller scale three-dimensional turbulence which acts to retard the
flow. |f the oceanic eddies are fairly common and have similar dynam!c be-
haviour o their atmospheric counterparts they may be important in the dynam-
ics of the mean fiow.

The first evidence for' these eddies that was taken seriously was obtained by
Swallow when he {irst used his floats in an attempt in 1959-60 to observe the
expected very slow flow in deep water. Indeed, more recent but very iimited
observations sugges+ That if he had gore further into the inlerior he might
have found the quiet oceen which he expected - there do seem to be some quiet
reglons fn any case, much to his surprise he found that his floats went off
in various cirections at speeds at least 10 times greater than expected, so
that he was unable fo follow them for long. Once one accepts the idea that
eddies are a feature of the ocean, one can find lots of evidence in the histor-
ical records. Wnile much of the early data had station spacing toc iarge to
show the eddies clearly, 4here were some detailed observations. |In these
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the eddies can be seen in the density field (and in the temperature tield as
the dominant factor determining density in the open sea) because the flow
around the eddies is nearly geostrophic., (As in western boundary currents

and atmospheric weather systems, the Coriolis force associated with the along-
stream component dominates the cross-stream momentum equation.) In many ways
it is curious that oceanographers did not consider the possible importance of
eddies and look for them sooner. Everyone is well aware of the meteorclogical
analogue - the weather may easily make a pleasant climate unbearable. Oceano-
graphers continued fo try to find and undersfand the ocean climate {(the mean
state) perhaps rather longer than they should have. Eddy effects were mis-
interpreted as internal wave noise or observation errors or were just

ignored.

Up to now it has not been possibie fo use fine enough resolution in a simula-~
tion mode! to allow for fthe presence of mesoscale eddies., However, mechanis-~
tic models with simplified geometry of sufficient resolution have been
examined and have shown that the mesoscale eddies may produce important
effects on the general circulation. For example, they can extract energy
from the potential energy of the mean flow of the upper layer wind-driven
circulaticon, fransfer it to eddies and mean circulation in the deep layer of
the ocean, and in this way increase the total transpert of the system. '

The instability mechanism which allows these eddies to grow with their energy
supply coming directly from the mean potential energy field is called baro-
clinie instability. Baroclinic flow with vertical shear is requiréd for this
mechanism to be possible., 1t is different from dynamic instability (Chap. 7}
in which eddies may be generated by shear in the mean flow and gain their
energy from the mean flow kinetic energy. In contrast to baroclinic instabil-
ity, this shear instability is called barotropie; as there is no vertical
shear, horizontal shear is required for disturbances fo grow. Both of these
instability mechanisms are imporfant in the atmosphere; their relative impor-
tance in the ocean has not been established but as eddies exist ejther or
perhaps both types of instability are likely sources.

With barotfropic instability, energy comes from the mean flow but the mean flow
may extract energy from the potential energy field so that indirectiy the
energy for barotropic instability may be supplied from the mean potential
energy field. Rotation, while i+ does not directly affect dynamic stability
as ncted in Chapter 7, plays an indirect role. Because of the importance of
the Coriolis ferm much larger isobar slopes are required than in the non-
rotating case so that the pressure gradient can balance most of thé Coriolis
term. The largér isobaric slopes lead o a much larger mean potential
energy. Thus rotation leads to a large mean potential energy and provides

@ much bigger possible energy source for instatility than that available in
the non-rotating case.

COMMENTS ON THE NLMERJCAL MODEL SOLUTIONS

Many models use the Heiierman wind-siress calculation aithough it is not the
best calculation that could be done as discussed earlier in this chapter.
Nevertheless, using the same stress values for different models is useful for
comparison and the lInaccuracy is probably not too critical at the present
stage of modelling. However, cne cannot make quantitative arguments about
the accuracy of the Sverdrup equation (9.2} using this computation. Heller-
man is presenfly redoing his stress computation with more extensive data and
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using a constant drag coefficient. As noted in Chapter 9 the dependence of
the drag coeificient on wind speed and other parameters is not well estab-

| ished as yet. However, if new measurements should show that a linear depen-
dence on wind speed is a better representation for the drag coefficient it
should be possible to scale this new calculation of Hellerman's because at a
given location the range of wind speeds which coniribute to the stress is
fairly narrow. :

Some modelling to test the sensitivity of the results to variations in the
stress input would be most helpful in determining how well this fercing
function needs to be known. This information would also be useful to those
attempting to make better measurements of the drag coefficient. In diagnostic
modeis this stress function seems to be almost immaterial; the information is
in the imposed density -field that the wind is partially responsible {or set-
ting up. For example, in the mode! of Holland and Hirschman, putting the wind
stress to zero only lowered the Gu!f Stream transport by 5%,

in principle, the advantage of the numerical model!ing approach is that al}
terms in the eguation can be included and the topography. and coastline can

be realistic. At present, ‘at least in the simulation models, the friction
seems too large to allow the non-linear terms to play a realistic role. Ex~-
ploration of possible parameter ranges has also been |imited by the speed of
available computers. . |f the mescscale eddies are as important in the dynamics
ot The ocean as they are in the atmocsphere, then they present a sericus reso-
lution proeblem. It is known in atmospheric models That 250 km resolution
gives rather better results than 503 km resclution. Then all scales that
make important contributions to the fotal kinetic energy, inciuding the storms
or mescscale eddies, are fairly well resclved. The scale of these eddies y
seems to be proporticnal to the Rossbhy radius of deformation, »=[glap/p}D]%/F,
where g is the acceleration of gravity, 8p is the density difference between
the two main fayers of the fluid, D is the thickness of the layer, and f is
the Cortolis parameter, For the afmosphere, } is the order of },000 km. For
the ocean, A is of the order of 100 km because both Ap/p and D are smeller.
Thus, it appears that a resolution of order 25 km is required in an ocean
model fo recolve all energetic scales. To model the worid ocean with such
resoluticn is impossible at present. However, modelling of limited regions
can and no doubt will be done {although the region cannot be too iimited
because the results may then depend mainiy on the poorly known conditions on
open boundaries). All these probiems are related to the limitations of the
size and speed of avalilable computers; however, the new faster machines that
have now become available and new numerical techniques that are being de-
veloped should help to overcome them.

As noted et the beginning of This chapter there appears to be a real discrep-
ancy between the cbservations and the predictions of the linear wind-driven
theory presented in Chapter 9. Simple linear addition of the thermohaline
circulation discussed in Chapter 10 probabiy cannot resolve the discrepancy
either. While the numerical models discussed in this chapter do not provide
the final enswer, they have suggested a number of mechanisms which might
explain the discrepancy. The three possibilities are: inertial enhancement,
bottom topography - baroclinicity, and mesoscale eddies. Ancther possibility
which has been demonstrated in a mechanistic numerical model is the effect of
fluctuations in the wind stress; these fluctuations can produce additional
mean currents through non-linear rectification effects. |t may well be that
all these machanisms are important at least in some regions, but how impor-
tant they are in the real ocean remains to be demonstrated.
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Finaily a cautionary note about this discrepancy. Our observations are still
very limited and have considerable uncertainties. Some rcceri fests cf The
simplified Sverdrup relation (equation 9.21) in the interior, with the wind~
stress curl calculated with more up-to-date drag coetficients and better
spatial resclution, seem to give good results. The flow was calculated by the
geostrophic method and assumed to be barcclinic, (In the intferior, if the
bottom is level the Sverdrup relation tells us that vhe net ncrth-south trans-
port is given by curl T.. Any additionzl thermohatine flow must have zero
rnet transport over the whole depth - the polewarcd deep flow is exectiy balan-
ced by the equatorward flow in the upper layer. Of course the bottom is not
level and indeed is quite rough in places (e.g., the mid-Atlantic Ridge) so
the baroclinicity - bottom topography effect may play a rote. [n This case,
separation into interior and western boundary regions may be difficult.! The
calculated geostrophic transport agreed very wel! with the transpert caicu-
lated from the wind-siress curl. When extrapoleaied fer the fuill width of the
ocear, the sections being taken well within fhe interior tc avoid lateral
bouncary effects, the calculated *transporis aisc agreed very well with the
transports in the Florida Straits which are 30-35 Sv; it is oaly much Furiher
downstream that the very large Gulf Siream transporis (in excess of 100 Sv)
have been otserved. This test of the Svercrup relation was dore where it
ought to be done, in the interior, as was the feirly successiul tes! in the
eastern equatorial Paciiic given in Chepter ¢. Scme direci cneck on the geo-
strophic calculation is reatly needed also, of course, but the test described
zbove is much betier ihan Trying to compare the intericr Sverdrup fransport
fo the Gulf Stream transport which may not te sutficiently well observed,
With the possibilities of enhancement due 1o inertial effects, mescscele
eddies, baroclinicity-bottom topcgraghy interactions anc¢ perheps oiher
effects, ihe western boundary regicn may be rether more exiensive than i1 is
presently considered to be. The cobserved Gulf Stream and Xuroshio iransporis
(directiy cbserved or geostrophically <alculeTed with some direct obscrvations
to fix the level of no moiion between hyorograghic sielions} may be besec on
cbservations which do not extend far encugh offshore to detect all fhe

ccuntei-ilows which must be subtracted befcre compariscn with fThe interior
transport calculated frem the wind-siress curd using the Sverdrup relation
(9.2:}). There is some avidence for a strong sub-surface courter-curren® off-

shore of the Gu!f Stream, This end other ccunter flows have not been well
ovserved, Thus the oiscrepancy beiweer *he net western boundary recion
transport anc the Sverdrup iransport may nct be as lorge as presently thought
and further investigation is clearly needed.



CHAPTER 12
Waves

INTRODUCTION

The word waves usually brings o mind 2 picture of undulations on the surface
of the sea or a lake, offen with some sembiance of regularity, and-usually
progressing from a region of formation fo a coast where they are general ly
dissipated as surf or may, in part, be reflected. Less evident are the re-
lated movemenis of the water below the surface, waves which are entirely
beneath the air/water surface (internal waves) and a variety of waves which
are not usually evident by visual observations. The main classes of waves
and their ceuses are:

ripples, wind waves and swell - due to the effects of the wind on the
air/water interface, ’

internal waves -~ which may occur when vertical density variations are
present - various causes, €.9., current shear, surface disturbances,

tsunamis - generated by seismic disturbances of the sea bottem or shore,

7 4. gyroscBpié-gravity waves - (surface and internal) of sufficiently long
period that the Coriolis effect is important - varicus causes, e.g., wind
B - stress changes, atmospheric pressure changes,
5% ' Posshy or planetary waves - large-scale and long period, evident as time-
. “varying currents - various causes, e.g., Time variaticns in wind stress
and perhaps baroclinic and/or barotropic instability (mentionecd in /
Chapter 11}, ‘ )
6. tidss - due to fluctuating gravitationa| forces of the sun and moon.
In this chapter we will discuss some of the characteristics of the first three

classes above, describe the fourth and fifth classes briefly and lesve the
discussion of tides to Chapter [3.

The classical approach to the study of waves is to consider the fluid dynamics
of ideal waves which, in side view, have a sinusoida! shape, and To progress
to other reqular surface shapes. This approach gives a yreat deal of informa-
tion about the relations between the surface shape, the progress-of the waves
and the motions of the water belcw the surface. The least satisfactory
feature of this epproach is that the ideal, regular waves thus studied bear
only & limited resemblance to real waves observed at sea which are character-
ised by their irregularity in form and period.

A more recent and pragmatic approach is-fo start from observations of the
shape of the irregular sea surface, regard it as a composite of a wide range
of possible ideal components anc carry cuf spectral analysis to determine the

168
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“Fig. 12.1. Terms related to idea! (sine) waves.

characteristics of the spectrum of components, with particular emphasis on
the energy associated with the various compcnents.y For example, if we have
cbservations of the surface elevation, n, at a2 point for a pericd of time, we
can consider this recerd to be the sum of sine waves of different amplitudes,
phases and frequencies. Spectral analysis then consists of finding the
amp | i tudes and phases as a function of frequency. A plot of amplitude souared
(proportional to the energy) versus frequency is called. a wave energy 4 ‘
spectrum. From the spectrum and the classical theory for each component we .
should be able, in principle, o calcuiate the total effect of the wave field
by summing over all the components using. the’ approprlafe amplitudes. and
phases.. To get a complete picture, the direction of travel should be con-
sidered as well and a spectrum including the direction of fravel information
is called 2 directional spectrwn. This statistical approach is required in
applications of our knowledge of waves, e. g., fo determine the total effects
of waves on sh|ps and eng1neer|1g structures near the sea surface.

: Here we will sfarf W|fh the classical approach in which the wave shape is
assumed to be a: sine wave.

i Lo
L PR

'SOME GENERAL CHARACTERISTICS OF WAVES

+
Assuming that the waves en the sea surface are simple sine waves (in vertical
section) some terms which we will use are illustrated in Fig. 12.i. The
gquantity (H), called. the height of a wave (the vertical disfance from trough

“to crest), is twice'what the physicist cails the ampilfude (A} of the
verTécal osciliaTory motion of the surface {(the maximum dlsplacemenT) ‘above
below The mean water level) :
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For all waves, the speed C=l/T where L is the wavelength (distance from
crest to crest or trough fo trough) and T'is the period; the height H is
basically independent of C, L or T. (The symbol C comes from the alternative
word 'celerity' used in the oider literature.)

For convenience in referring to them, it is common tc ciassify surface waves
according to their periods as follows:

Tabie 12.1 Waves Classified by Period
Period Wavelength Name

0 - 0.2s centimetres ripples

0.2 - 9 S “fc about 130 m wind waves

9 -15 s hundreds of metres swel |

15 - 30 s many hundreds of metres long swell cor fcrerunners
0.5 min - hours . to thousands of km long pericc waves

. : including tsunamis

12.5, 25 h etc. thousands of km tides.

In atl These surface waves gravity is the primary restoring force, allowing
oscillations to occur. (if some water is lifted up and allowed to feall back
under the action of gravity its inertia will cause it to overshoot the equi-
librium position; pressure forces will then push it back up and osciltlations
will occur.}) The ripples are aiso affected by surface tensicn; these waves
are of very small amplitude and will nct be discussed here. For surface waves
with periods of several hours, the Coriolis fcrce must also be included in the
analysis as wili be discussed briefly near the end of the chapter. Tides will

be discussed in Chepter |3.

The ranges of periods of wind waves and swell actualiy overlep considerably -
wind waves mey have pericds up to |15 seconds or so if The wind speed is very
““large, while swell with periods of only a few seconds is possibie. Wind waves
“are the locally generated waves.  As they have & feirly wide range cf direc-
tions ‘he sea surface is quite irregular. Swell is the Term for waves which

have been genarated elsewhere; it +iravels in one direction and is much mere

regular. Alsc, as we sha!l shcw, the longer waves trevel faster than shorter
ones ‘and so &t some distance fror The source area, at aay one time, the swell
has a narrow range of f{requencies which &lso mekes i+ more regular than wind

waves.

SMALL AMPLITUDZ WAVES N

The word 'smali' here is uced in a comparative manner and refers o the
'relative height' or steepness, /L. For the simple thecry to be correct
within a few percent, this ratic should be less than about /20 and in many
cases for rea! waves is /50 or less. (for clarify in Fig. 1Z.| and other
figures we have exaggerated the wave.height in reletion to the wavelength.)
Here we shal! usually consider the first order theory, i.e., we neglect terms
which are cf order H/L (or hicher powers, e.g., H2/L¢) fimes the terms re-
tained. (The extra terms arise from the nen-lirear Terms in the equaticn of
moticn but the non-linear ones remain small compared with the other terms,
i.e., are of higher order in H/L.?
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Fig, 1Z.2. Properties of deep ard shallcw water weves.

For @ progressive sine wave, the dispiacement n of ihe *ree curface irom the
mear level is given in terms of time * and displacemert in the X directicn
(4cr a wave travellirg in tne x airecticn) by:

\

. . t x
n = Assin Zn [T‘I,I . ] (2.1

For such weves it can be shown that the speed:

-~ hY
—"/[ %‘L « 4anh ‘:'—h (12.2)
E o)

w~ncre ¢ = acceieration due tec gravivy, 'tanh! is the hyperhelic tangent and
h is the water depth. For h/L > /2, tanh 2Zah/L = 1 within 0.5% whiie for
h/L < 1720, tanh 2nh/L = Z2zh/L within 3%, sc that the expression for C may be
simplified as followes: )

[
1

{1y for n > /2 , called CEEP water weves, ther CO = vg e L/27 ,

. : {i2.3})
(2) focr h < (./2C, called SHALLCW water waves, then C_ = vg-h . -
=
Some authors refer to deep~water waves as 'snori' waves, i.e., L is short
compared with h, and 1o shal [ow-water waves as 'long' waves, i.e., L is long
compared with h., tig., 12.2 illustrates these nomercilatures.

Fig, 12.3 shows piots of equation (2.2 as speed C eqainst water depth h for a
selection of wavelengths from i0 m to (0 km. The left-hand (straight) line is
the plet of C; = Yc-h (shallow-water wave speea). Then the line for

L =200 m (for example) shows that the speed follows the shzllow-water line

up tc about 10 m water depth (h = L/20) where it commences o curve To [ower
values, eventually reaching its constant valus of Cy = 17.7ms™ ! 2t about

100 m water depth (h = L/2). The zcne on the graph tc the right of the dashed
line is where the deep~water speed approximaticn holds, and the intermediate
zone beitween the shallow-water speed line and the dashed line is where the
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Fig. 12.3. Wave speed versus water depth for various wavelengfhs.

full expression of eguation 12,2 must be used to calculate the speed. |In

practice, the shallow and deep water approximations find most use, the inter-

mediate zone applies chiefly in studies of the surf zone.
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It we introduce the values for the constents in the two expressions for the

wave speed we obtain the expressions in Table 12,2 in which are also included
a few numerical values for wave properties,

Table 12.2 Deep and Shaliow Water Wave Formulae and Sample Values

OEEP SHALLOW
Cd = Jg- Ld/2n CS = vg-h
Cy = 1.56T = 1.25@ = 3.43 vh
= 2
Ly 1.56 T
(L&hinm Tins, Cinms !, g=9.8ms"2)
Exzmp les
T = 5 5 s h = 5 20 4,000 m
wind swel!l (tsunami)
wave
c, = 7.8 23m s} c o= 7 14 200 m s”1
or = 28 84 km h~1 = 25 50 710 km h71
Ly = 39 350 m if L, = 200 km
then T = [7 min.

The numerical values for the deep-water waves give an idea of the properties

of wind waves and swelil, while the first twc examples for shallow-water waves.
show the retarding effect of shoaling water on such waves. The last example,
for h = 4,000 m, may seem out of line for ghallow water, but it is ihcluded

tc emphasize that the term 'shaliow' is only relative (see Figs. 12.2 and
12.3). The example is typical for the (quite fong) tsunami waves generated

by underwater seismic disturbances.

Anather point fo notice is that the speed of deep-water waves depends cn their
waveiength and so on their pericd, i.e., they are dispersive waves. This term
refers to separation in speed along their direction of travel, not to separ-
ation in direction, although it glso occurs. The speed of the longer deep-
water waves is greater than that of the shorfer ones. Therefore, if a number
of waves of different wavelengths (a specirum of wavelengtis) are generated
simuitanecus|y, the longer ones will move ahead of the sherter ones and be
observed first at a ‘distant point (hence the term 'fererunners’ for the

longer period, i.&., ltonger wavelength, waves generated by the wind). Also,
shorter waves tend to -lose their energy by fricticnal effects somewnat faster
and die out sconer than longer cones, and so do not travel so far.

A conseguence of this dispersion is that by observing the swell for a few

days at cne location it is often possible to determine how tar away was the
storm which genersted the waves. If the spectrum of swell pericds is deter-
mined at ‘intervals of a few hcurs at the wave reccrding station (in relatively
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Fig. (2.4, Orbits of water particle motion for ceep anc shal low water waves.

deep waier) it will be observed that the mean period decreases steadily wifth
time. Because the speed of trave! oi deep-water waves is preportional to
their perioc (Teble 12.2), the difference between the times of arrival of the
lorger period (early arrival) and the chorter period (late arrival) swell is
due to their different speeds. ;IT is then possibie to calculate from what
cdistance tne sweli must have ccme fo yield the observed time separation at
the wave station. Tne reader should note that in practice the wave records
Wwill provide information about mean periods for groups of waves, not waves of
a single period, and¢ rne calculation is a liitle mcre compiicated than might
appeor at tirst sight. For a grcup cf waves it is necessary to use the 'group
speed', Cq, not thke 'pnase speed'. For deep-water waves, i+ can be shown

- thai the group speed is one-half ¢f the phase speed (Cg = Cy4/2), while for
shallow-water waves it is the same as *he phase speed ?Cg = Gl

The observa*ions givie only the cisiance “o ihe point of generation, pot the
direction, but if cbservations are available at twc separate wave stations
“for the same generaiion eveni, then the intersection of the twc radia!l
distances trom tne stations will incicefe the location of generatlion,

Oruital doticn of the Woter Particles

it is only the shaps o7 the wave which roves forward a7 7vhe sgeed C4 or Cg;
ike weter parlicles themselves co not travel across the ocean but rotate in
ortiis, circelaor for desp-weier waves and elliptical for zhallow-water waves.
These orbits cecrezse in size with increase in geptTiFig. 12.4). For deep-
water waves *he ciameler of +he orbit is Db, - ?:_iﬁﬂizl;jL) where H is the
wave neight &t the surface and ¢ is +ne levei (rurerically negative with

z = 0 at the average surface leve! as usual). lor examplie, at z = ~L. the
orbit diameter will be only 2.00Z of that 2t the surface (Fig. 12.4a2). Ffor
shallow-water waves fhe orbiis are already elliptical at the surface (Fig.
[2.45); the horizontal dimension decreases only slightly while the vertical
dimension decreases marxedly with increasing depth, untit at the bottom (if
iv is fiat) The motion wil! simply be back and forth.
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DEEP = WATER

SHORE A" A - 8" 8

Fig. 12.5. Retrection of waves approeching a smwothiy shelving beacn,

I we consider higher orcer corrections the orbits are not quite clesed; in
deep water there is a net flow, in the directiorn of travel of the wave, of
magnituce (a2 o HI/L2) *Cqrexplérn » 2/L). Tnis nei transport is called the
Stokes drift. for L = 100 m, H = 3 m, then Cy = 12.5ms™! whiie the Stokes
drift at the surface is only 0.!ms™!, The speed of the orbital motion in
deep water is (n +H/L) »Cq - expiZn - z/L), so the net fiow is orniy a3 smell
fraction {{w e+ H/L} » exp{2r - z/L)] of the crbital speed. |p sha!low water
there is also a Stokes cériit and asdiiional effects cue to botiom friction.
In €ither cose, as the wave reaches breaking condifions ihe Stoxes ¢rift may
be several percent of the phase specc, (n the surf zone, the el onshore
transport must, by continuity, Be bzlenced by ofishore trarspori, which oiten
takes the form of narrow ‘ets to seawerd, called rip currents, which individ-
yally last for only a few minutes. Such rip currenis are ctten toc fasi o
swim against toward the shcre - the best tactic if caught in one is to swim
either way parellel to fhe shore tc get out of the usually narrow outward
current,

?
'f the waves are epproaching the shcore ai an angle (outside *the refraction
zone, see next section), the net transport may have a component along the
shere giving a longshcre curren®. 11 will be slow but may be significant
over a long period in fransportinc sand, efc., along beaches af{ter the rater-
ial has been stirred up by the waves.

Refraction and Bresking in Shaliow Water; Ditfractfion

Shal low water waves al! travel at the same speed Cs =Yg+ h in water of a
given depth h, and therefore do not show dispersion of speed, but where the
bottom depth is charging their direction of travel may change. More gererally,
a5 waves move into shallow water their perioc remains constant but C decrazses
anc therefore L decreases, As an exarnple, Tabie 12,3 shows the decrease of
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Fig. 12.6. Wave refraction on sppreaching an underwater ridge (left) and a
i valley (cenire). ODashed lines represent depth contcurs, full
lines represent wave orthogonals (directions of travel of waves).

speed and wavelength for waves of period 8 seconds on entering shoaling
water.

Jable 12.3 Decrease of Speed ard Wavelength in Sheoaling wWater for Waves
of Period 8 s and Leanh 100 m in Deep. Water

h = 50+ 10 5 ? m
= 12.5 8.9 6.6 4.3 m s-!
= 100 710 53 35 m
1
Hence, ii a series of peraliel crested waves approaches at an angle to a
straight shoreline (Fig. 12.5) over a smooth sea botiom which shoals grad-

ually, they progressively change direction as the end of the wave nearer the
shore (A in Fig., 12.5) slows down earlier than that farther away (B in Fig.
12.5). As a result, the waves become nearly parallel fo the shore by the
time that they pile up as surf. . The change of direction asscciated with
change of speed is called refraction.. The same phencmencn occurs abruptly
to I|ghf waves travelling from air 10 water but gradually, as for water -
waves in this case, for light coming from the sun and entering the upper
atmosphere at an angle to the vertical. . .
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(a) DEEP WATER' ‘
H/L SMALL : /\/’—_\

b) SHOALING WATER -~ =~ o~

H/L INCREASES

{c) NEAR BEACH
H/L + 1/12

(N.B. H/L exaggerated above)

Fig. 12.7. Shape of weaves: (2) in deep water, (b) in shoaling wa#er;
(c) ciose to beach. -

I the sea boitom does not have a uniferm slcpe along the full length of. the
shore, the refraction may be mcre complicated. Two simple examples are where
there is an underwater ridge running out at right angles to the shore, and an
underwater valley. The refraction pattern for waves coming straight in from
offshore would then be as in Fig. 12.6. In this figure are shown not the
wave crests but the wave orthogenale which Tndicate the direction of travel
of the waves, as do the arrows in Fig. 12.5.

Refraction of waves round a head!and, for instance, occurs if the water
deepens gradually 1o seaward from ihe land, but not if the water is of rel-
atively uniform cepth off the headland. Waves are often cobserved to be re-
fractec round islands and cne can someTimes see an interference patiern set
up where the waves which are reifractec around the two sides of a small istand
‘meet behind iTg, ’

As the waves rove inshore and slow cown, not only does the wavelength decrease
but also the wave height changes. |1 can be shown that the product of the
wave energy per square mefre times the group speed (Cq) is constant as the
waves move inshore {unti! they break), with a velue averaged between twc
successive crests of (p e g« He«C,)/8 Joules per metre width of crest per
seccnd. 1 f the waves are inivially long (e.g., fTsunamis) C, = Cg, both
decrease and H-increases. However, if the waves are ini%ia?ly short, at

firsi Cg increases, -reaching a maximum value of .2 times the deep-water value
when h/T = 0,19 whereL"7s the local value, not the deep-water value . In
this zcne, H decreases to a minimum of about 90% of the deep-water value when
Co s @ maximum. H/L is nearly constant at first but begins to increase
before h/L = 0.19 because L decreases faster than H. AT h/L = 0.19, the
steepness H/L is about (0% greater than the deep-weter value. As C, decreases
as the waves wove further inshore, H must increase. However, the décrease
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in L dominates H/L changés. in the example given in Table 12.3 when h = 2 m,
L is about 35% of the deep-water value but the increase in K is only about
25%. For initially long waves, L decreases proportionally fo.Cg = Y¥g+h
while H increases proportionally to (CS)‘%. There is a limit to how much
H/L may increase. Theory pufs this limit at H/L = 1/7 but in practice it is
rare for waves to get steeper than H/L = 1/|2Z. When the wave steepness
approaches this |imit the waves tend to change from a symmetrical’ sine shape
(Fig. 12.7a) to a more peaked shape (Fig. 12.7b) and finally as H/L reaches
about 1/12 the waves become unstable and break as surf (Fig. 12.7¢). 'In the
very shallow water where the ratio H/L is spproaching the practical limit of
about 1/12, the waves tend to behave as individuais, rather than as a succes-
sive train, and they become progressively more unsymmetrical in side view
until they break. Usuzlly, rather shallow water must be reached; breaking
does not occur until the wave height is comparable to the water depth or un-
til H/L = 1/12, whichever occurs first. .

Diffracition can also occur with water waves, as for light waves., For example,
if waves arrive at a harbour enfrance, some of their energy will continue

into the harbour in the original direction of wave travel, but near the sides
of the opening, scme wave energy will be diffracted into the geometrical
'shedow' area behind the harbour walls. This phenomenon is most conspicous
when the gap in a sea wall or reef is narrow compared with fhe wavelength of
the waves. Then most of ihe energy entering the harbour is that which has
been diffracted and if the harbour has a fairiy uniform depth, the pattern of
diffracted waves will be in the form of circuler arcs centred on the gap.

THE GENERATION OF WAVES

Wind waves are started by a wind blowing for scme hours duration cver a sea
surfdce many miles long called a fetch. The fitful gusts of wind generate a
choppy and irregular sea. These osciliations, once set up, continue to run
acrcss the surface- of the sea far beyond the direct influence of the wind.
Under these conditions they are called swell. Swel! consists of uniform wave
trains with a broad sideways extent of the indivicual crests. Because it is
cemparatively uniform we can numerically describe the height and period of &
wave al the beginning cf the swell zone (i.e., &t the end of the fetch) and
during its subsequent progress. The sweil decays for a loag distance while
its wavelength incresses and wave height decrezses. As the swell enters
shallow water it feeis bottom and & rejuvenation takes place. The wave speed
and length decreazse and the height increases, but the period remains constant.
The swell finally peaks up into waves, breaks, and is dissipated as surf.

The above paragreph gives a trief sketch of the generation and dissipation of
wind waves. Clearly, the wind is responsibie for the generation of surface
waves which are almosi always present. How are we to get more quantitative
information on what sort of waves wil! be present under given conditions of
tfetch, duration and wind speed? Later we shall descrite an empirical
approach, based on observations of The waves Themselves under a variety of
conditions, which still has to be used for practical purposes because a
quantitatively accurate theory based on physical laws has yet to be produced.
Here we shall describeé some of the steps that have been teken toward a
satisfactory theory, (A more extensive discussion can be found in LeBlond
and Mysak, 1978, given in the Further Reading list.)} :
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First, consicer a turbulent wind flowing over a solid surface. Somewhat
above the surface, the stress {or downward momentum flux} is due to the turbu-
fent Reynolds stresses (-p -« u'w' and -p - v'w' as shown in Chapter 7). As the
surface is approachea, the amplitudes of the turbulent velocity iluctuations
are suppressed by the boundary condition of no flow parallel or perpendicular
to the surface. At the same time, the mean shears (3u/3z and 3v/3z) increase.
If the surface is smooth (e.q., a sheet of glass) the finai stress transfer
at the surface is by molecular viscous stresses (p e 3u/3z ancé p - 3v/3z in the
x and y directions, respectively). |f the surface is rcuch (e.g., a sand
beach) the bumps on the suriace wil! cause the air flow To separate from them
leaving stagnant regions behird them. There will be a pcsitive pressure

di fference irom the upwind to the dowhwind sides of the 'rocuchness' elements.
Part, and perhaps most, of the {inal stress transfer will De due to these
pressure differences or what is termec 'form draa'. As pressure is a normal
stress (force/unit aree perpendicular rather than parallel to a surface) cne
may alsc say that the final momentum fransfer (#lux} is mainly by normal
rather than shear stresses for a rough surface.

Now surface waves are nearly irrotfaticnal (i.e., have almost zero vorticity).
Irrotational motions are produced by normal stresses while rotational motions
are prcduced by shear stresses. Thus, most of the wave generation musi be due
*c normal stresses (pressure). The facts that waves are neerly irrotational
and nearly linear (the advective acceleraticn ferms are cf higher order in
H/L tnan the local acceleration terms) are impcrtant in explaining why waves
outside active generation areas, where wave breaking is importani, decay very
slowly. Thus, swell is not likely to produce turbulence and hence turbulent
frictien to camp it. Further, for exactly irrctationzl motion the molecular
viscous terms vanish identically. Swell generated near Antarctica has been
traced acrcss the whole Pacific 1o Alaska, alteit with censiderable Icss of
amplitude over this very long distence. The decrease in amplitude may be due
to spreading of the energy because of differences in cirection of travel as
well as to viscous losses.

One of the fairly early theories for wave generation, once the waves already
existed, was that they grew by form drag with flow separaticn at their crests.
This theory was proposec by Jefireys in the mic-1920's. Tests with flows over
solid models showed that the effect was too small fto explain observed rates of
wave grcewth. A problem with these tests, not clearly recognizec at the tTime,
is that results for solid surfaces cannot be applied cirectly to a moving
- fluid surface such as thet of the ocean. Anocther problem, not recognized for
2 long tire, is thet a condition for flow separation is that wave breeking
must occur, which may be of fundamental importance as we shal!l see.

Renewed attempts to solve the problem were made in the late [950's and early
19€0's. First, Phillips suggested a means for getting waves started on an
initlaily undisturbeZ surface. He points out that as the air flow is furbu-
lent, not only aré there velocity fluctuations but pressure fluctuations as
well. These pressure fluctuations may start wave motion; they lead to a
crowth of wave energy proportional to time, t. (There is some observatiocnal
evidence to support Phillips' theory of initial growth.) Once the waves
exist they may modify the air flow so that the growth rate becomes proportion-
al to the wave amplitude (cr energy) and hence exponential in time, Assuming
that waves of small amplitude have been formed, the growth process may be
calculated using linearized stability theory as was done by Miles. However,
his calculated agrpwth rate, though exponential, was soon found to be much
smz}ler Than observations indicated. The observations themselves show
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considerable variation but there is little doubt that there is a real dis-
crepancy.

Further ideas have been suggested in attempts to overcome This disagreement
between observations and theory, e.g., that the momentum input fo the waves is
largely to the very short waves and ripples and that these in turn become very
steep and perhaps break (a-very non-linear process) and transfer at least some
of their momentum and energy to the larger waves. Again, while this mechanism
may.-play a role, it does not resolve the observational-theoretical discrepancy
either,

Recentiy, numerical calculations have been made showing the air flow over
water waves in more detail. The rate of growth due to pressure depends quite
strongly on the wave sfeepness H/L. These calculations also show that about
one-hatf of the total momentum transfer is through the pressure iield (normat
stresses). These results are supported by cobservationa! dota as well as by
the argument that, to expiain observed growth rates, much of the total siress
must go into the waves by normal siresses to prcduce nearfy irrotational wave
motions. The shear stress is also greatest near the crest, giving some
support to the i1dea of initial irput to short waves which then transfer their
momentum fto longer waves. iiowever, even these resuits do not lead to growth
rates large encugh fo explain the observed values.

Other very recent observations have suggested that the momentum transfer is
much increased when wave breaking occurs. Thus, Jeffreys' original argument
may be reasonably correct if breaking is taken into account {which Jeffreys
did not do explicitly). Non-linear transfer from shorter to longer waves no
doubt plays & rcle too. -A quantitatively correct wave generation theory
remains to be established but the recent results suggest further research
which may lead to it.

Other approaches-are being taken too. |f one observes the growth of the wave
~ spectrum and calculates the non-linear transfer and viscous dissipation, the
input function can be calculated by differencing. Attempis at the direct
measurement of the input have been and continue to be made, Such measurements
are difficult as the reader may appreciate if he considers how fo make obser--
vaticons in a breaking-wave field while trying o keep instruments af the
moving surface. Of course, neither sort of observation 'explains' the wave
generation process but they do give The theoretician scmething te Try o
reproduce.

Non-linear effects in surface waves are weak but ‘they are not negligiblie. In
a fully developed sea tone fcr which fetch and duration are not limitfing, and
in which further growth no longer occurs because wave bresking balances the
input from the wind) there are components in the spectrum whose phase speeds
are agreater ‘than the wind speed a few metres from the surface. Indeed, the
peak vaiues cf the spectrum have this characteristic. |f one transiates to

“ coordinates moving at the phase speed of the waves near the spéctral peak then
the sir flow is contrary to them and it is very difficult to imagine how the
wind can enhance them. However, this argument may nct be correct. !n reatity,
cne always deals with groups of waves. In coordinates moving at the group
speed of the waves near the spectral peaak, the air flow is still such that it
may do werk on the waves and enhance them. {In Phillips' original study of
the initiation of waves he considered the phase speed and got a growth rate
proportional o 12, but because the waves fravel in groups ai the group speed
they are zlways falling behind or geiting out of phase with the pressure
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fluctuations, and the growth rate is really proportional fo t.) The calcula-
t+ions on non-linear transfers also indicate that the longer waves in the
spectrum gain energy from non-iinear transfer frcm shorter waves.

Considering that much of the momentum input at the surface goes, at least
initially, into the waves one may wonder about using the total stress as a
forcing functicn for large-scale ocean circulations. What if the waves
radiate away and take theii momentum scmewhere else cor even fo a distant
shore? |1 seems that this possibility is not serious. The wave ficld devei-
ops quite rapidly; in the developed stage the momentum input to the waves is
transferred through wave breaking to the current quite quickly (with franster
to longer waves a possible intermediate stage). Only in rather small regions
of rather strong winds is significant radiation of momentum out of the area
likeiy; ever +hen on a global scale most of the momenium goes into the
currents locally., Thus, although much of the momentum input from the wind
passes through the wave field, the net input fo the wind-driven circulation is
probably rnot affected significantly.

Finally, 2 comment should be made on the constancy or near constancy of the
drag coefficient. For a solid rough surface the drag coefficient (defined in
Chapter 9) is constant (provided that increased wind speed does not change
the geometry, e.q., @ hay field becomes flatter and 'smoother' as the wind
becomes strenger, but a fieid of boufders does not). The drag coefficient
over the ccean is constant or perhaps slowiy increasing as wind speed in-
creases. Thus, to the air flow the ses presents a constant (or nearly con-
stant) roughness. (An observer riding on a ship wouid hardly agree with the
air flow on this point!) Perhaps the apparent roughness is due 1o the short
vaves which develop quite quickiy; perheps the effect(s) of filow separation
cceurring over longer distances with longer waves at higher winds gives an
eque! effect, Further investigetions are ciearly in order. There is some
evidence that the drag cosificient is higher when the wave steepness is
greaver although the scatter in values is sc large that disagreemenis about
this interpretation are possible. Again, further investigation is neesded.

MEASUREMENT OF WAVES

A number of methods are available for cbtaining informaticn on wave heights
and periods, some approximate and some accurate.

The simplest way of all is simply 1o look at the sea and make & visual estim-
ate. 11 takes a lgt of practice with comparisons with actual measurements tfo
obtain reliable date in this way. The next simplest way is to make visual
cbservations of the water surface against a vertica! scale mounted cn a pier
in shailow water or, in deep water, on a float with a deep horizonial plate
"dainper' to limit vertical movements ot the float and scale. Because the
period of wind waves is retatively shert, only a few seconds, such visual
measurements-are |limited to estimates of the height of only a proportion of
the waves. Because of the variety oi heiaghts present in most real wave con-
ditions it is common to quote the mean height of the highest one-third of the
waves (called the significant wave height, Hg)vas & descriptive characteristic.
For many purpcses, althcugh not for all, this value is more useful than the
value for ihe single highest wave, for exemple.

A third method is to use a fixed pressure-sensor mounted below the depth of
the deepest troughs. The hydrostatic pressure below surface waves varies
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periodically as the depth of water from the surface to the senscr varies and
so a continuous record of pressure against time will give information on the
surface shape. This method is only practical when the sensor can be mounted
in a fixed position at @ relatively small distance below the troughs because
tor deep-water waves the pressure variations decrease rapidly with depth in
the same manner as the orbit radius, so that the deeper the sensor, the
smaller are the pressure variations avaiiable to measure. For shallow water
waves, a sensor mounted on the bottom will record almost the full pressure
variations due to the variation of the height of fthe water column as the waves
pass over the instrument, so that pressure sensors can be used effectively
near shore. They can also be used even in the deep cceen (thousands of metres)
to measure tsunamis because these are shallow-water waves. .

tnformation about the details of the surface height variations when waves are
present has been obtained with electrical devices mounted to penetrate the

sea surface. Cne method is tc mount on a vertical rod, at intervals of a few
centimteres, a series of pairs of wires with a sma!l gap between the wires of
each pair. Then the wire pairs which are immersed in the conducting sea water
will be short-circuited, and by recording continuously against time the number
of pairs from the bottom which are short-circuited & record of sea surface
level is obtained. An zlternative method is to use & vertical, bare resistance *
wire and then a record ageinst time of the value of the resistance from the
top of the wire to the seas will yie!d a record of the height variations of the
sea surface. A third alternative is to mocunt a thin, insulated wiré vertic-
ally through the sea surface and to measure the electrical capacitence between
the wire as one electrode and the sea as the other. Of course, there are
technicsl difficulties to be overcome. For the first method, drops of water
may remain befween the wires when the surface falls below them, or in the
other two methods a thin film of water may be left behind briefly as the water
leve! falls, so indicating too great a water height. (Remember that we would
be deaiing with fluctuations of water level of only seconds duration.) The
use of a hydrophobic wire for the capacitance wire system helps to minimise
this source of errer.

A method developed by the National Institute of Oceanography (now the Institute
of Oceanographic Sciences) in England makes i1 possible to measure waves atT
sea from a ship. The water pressure is measured at a low point on the hull,
normaliy below even the troughs of the waves, to give the wave height relative
7o the ship. At the same time, the vertical moticn of the ship is measured
with an asccelerometer {(integratecd fwice to show vertica! height variations)
and addec algebraically to the pressure record. Wave prcfiles may also be
obtained from the records of a vertical accelerometer mounted on a buoy float-
ing on the surface of the sea.

All of the above methcds have a major failing - they provide information at

one point only. [f real surface waves were & sum of pure sine waves travelling
in a single direction the problem would not be serious, but even a few minutes
cbservaticn will show that the real water surface is usually gquite irregutar,

smal |l waves superimposed on larger waves superimposed on swell, and the crests
cf the waves generally are quite short (cnly a few wavelengths at mosi) so
that the real! water surface varies with both x and y and with time. To obtain
more complete information, siereo-photogrephs of the sea surface may be made.
However, the analysis of such photographs is a very laborious process and this
method has not been used much.
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Fig. 12.8. Character of real wave shape (profile) to compare with iceal
sine waves of Figs. 12.1 and 12.2. Note .that the vertical scale
is much exaggereated as before.

Another method to obtain information on the spatial structure has been to fly
cver the sea at as nearly constant altitude as possible {imeasuring and
correcting for variaticns) and record the shape of the sea surface with a
narrow-beam radar aitimeter, or more recently, a pulsed laser altimefer (4o
look at only a very smal! area of the sea surface at a time). This method
only yields the surface elevation along the flight path but flights can be
made in severel directions and & statistical pictfure built up of the sea
surface shape.

Finallﬁ, to test some sspects of wave theory it is desirable fo obtain infor-
mation on the directicn of prcpagation of waves. In principle this informa-
tion can be cbtained by mounting a number of wave recorders in a geometrical
pattern and examining the phase relationships between the records. The
results are limited by the number of measuring points and the analysis is com-
plicated. In principle, this directional information can also be obtained
from the stereo-photographs or laser altimeter records.

Real Waves

The records from such instruments and procedures make it clear that The sea
surface rarely has the ideal sine shape as in Fig. 2.1 and 12.2 except for
swell, but is more {ikely to look like Fig. 12.8 because there are usually &
_ large number of wave components present simultaneously. The only practicel

way to deal with this sitfuation is the statistical one mentioned earlier in
which the spectrum of wave energy is related fo wave perlod, as in Fig. 12.9
{to be discussed shortly).

WAVE GENERATION BY THE WIND; SEMI-EMPIRICAL RELATIONS

Although there i'ss¥ill uncertainty in our knowledge of many details of the
actual mechanisms of wave generation at the sea surface by the wind, many
observational data on related wind and wave properties have been accumulated
and graphical relations assembled. Some features of one of the sets of rela-
tions (Fierson, Neumannr’& James, 1955) will be described to illustrate their
character. The wind factors are wind speed, fetch (the linear distance over
which the wind is blowing over the sea) and the duration (the time for which
the wind has been blowing over that fetch). Wave properties are the signifi-
cant wave height Hg (the average heighT of the cne-third highest waves} and
the range of wave per@ods or fregquemcies in the wave spectrum.
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period for three wind speeds for a fully ceveloped sea.

Fig. 12.9 shows three plots of the square of wave height (H?) against fre-
quency, for & wave system developed on the sea by winds of I, 13 and 20ms”,
respectively. OCne feature of these curves is that the quantity Hz, which is
related Yo wave energy, increases very much more repidly Than wind speed;
another feature is that the specirum of wave energy as a function of frequency
is peaxed and That the peak cccurs at lower frequenciss (longer pericds) ef
higher wind speeds. These curves are for a fully developed sea, i.e., when
the wind has been blowing for long enough and with a sufficient fetch for The
steady state to be established with the energy spectrum at a maximum for that
speed. The numerical informaticn on which such spectra are based is obtained
from measured wave records ot sea at various wind speeds.

From such energy spectrum curves are developed co-cumulative spectrum curves
such as those in Fig, 12.10 (full lires for wind speeds of 10, 15 and 20ms™1).
The ordinate for any point on each curve is proportional tc the total cumula-
tive wave energy from infinite frequency (zero pericd) to the frequency repre-
sented by the point on the curve. (Note that the freguency scale increases io
the right but the pericd scale increases to the ieft.) |In thesz plots the
ordinaie {(energy scale) hac been arrangec so that it is linear in significant
wave heichT while the abscissz is {inear in period from zerc o 20 seconds

and then compressed ior lorger periods.
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Fig. 12.10. Co-cumuletive wave spectra as significaent wave height (Hg) and
wave energy against frequency ({) and pericd (T) for three wind
speeds (full lines), four fetches {dotted lines) and four dura-
tions (cdashed lines) (adapted from W.J. Pierson, G. Neumann &
R.W. James, U.5.N.7.0. Publ. 603, pp. 068, 69, 1955).

To illustraie the information avaiiable in this plet we will take the 15 ms—1!
wind-speed curve (full !ine) as an example. FReading from the right, the
curve Indicates that the cumulative wave energy (and the significeni wave
height Hg) increases with period slowiy at first, then more rapidly, then more
slowly and finally levels oui (expressed as Hg at about Hy = 6.3 m) a littfle
pefore 20 s pericd. ‘The fact that there is a maximum vaiue indicates that

for any given wind Speed there is a maximum total energy possible (wave break-
ing causing the [imiT). -This maximum is seen Yo increase with increased wind
speed. The steepest part of the curve (at about 12 s period for the i15ms™}
wind speed) corresponds to the peak of the H? spectrum curve of Fig. 12.9.

In Fig. 12,10, in additicn to the three sample wind-speed curves (full lines),
there are two sets of cross tines, dashed lines for 10, 20, 30 and 40 hours
duration (assumirg un!imited fetch) and detted lines for 100, 500, 1,000 and
1,500 km fetch (assuming uniimited gduration). These lines indicate the pro-
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gressive development of wave height and period with These parameters. For
instance, the 20 h duration line intersects the i5ms—}! wind speed line at
5.8 m significent wave height and |4 s period. The former indicates that
this value of Hg is reached after 20 h and the latter Indicates that the
majority of the wave energy will be present at periods of 4 s or less.
Alternatively, In terms of fetch the (dotted) 500 km line indicates that at
the end of this distance, for a steady wind of [5ms™!, the value of Hg will
be 6.2 m and most of the wave energy will be at periods cf i7 s or less.

The levelling off of the wind speed lines indicates that the sea is fully de-
veloped, i.e., that the rate of input of energy and momentum by the wind is
balanced by the rate of loss due to wave breaking. In principle, this fully
developed state requires infinite duration and fetch but in practice it is
considered to be effectively reached in a finite duration and fefch as shown
in Table 12.4: .

Table 12.4 Effective Duration and Fetch for a Fully Develuped Sea, With
Corresponding Significent Wave Height and Range of Wave Periods

wWind speed {ms=1) 5 10 15 20 25
Duration (h) 2.3 5.5 22 40 64
Fetch (km) 20 130 480 | 200 2400
Hg (m) 0.4 z.2 6. I3 22
Range of - TU 6 | 16 21 26
periods (s) T | 3 5 & 2

The wave periods in Table 12.4 are cdefined such that 5% of the total energy
will be at periods grester than Ty and 3% at periods less than T/, i.e., 92%
will be between these two pericds. For a non-fully developed sea, either Tthe
duraticn or fetch may be +he limiting factor; which should be used will be
determined by the conditions for which the wave calculations are to be made.

Statistica! studies ‘indicete that for a long series of waves the average
height of all waves, the significant wave height (highest one-third) and *he
average of the one-tenth highest waves will be in the rafijos 0.6:1.0:1.3. It
must also be realized that there will be & range of heichts in the highest
cne-third waves and it is tc be expscted thet the longer the series of waves
cbserved, the higher will be the highest cnes. For instance, for |00 waves
observed there is a /20 chance that the highest witf be over 1.9 H., while
for 1,000 waves there is a 1/20 chance that the highest wiil be over 2.2 HS.

The above examples have been drawn from the Pierson, Neumann & James procedure.
I+ should be pointed out that other investigators have also analysed wave
observations and develcpec wind/wave relationship graphs and calculation pro-
cedures and that all methods do not give identical results. The diiferences
may be due to differences in the wave characferistics in the diiferent regions
from which the data were drawn, to difterences in observing techniques or to
differences in the treatment of data. However, the procedure described above
gives an indication of how an empirica! approach may be employed tc obtain
useful resulis even though the generation mechanism is not understocd in
detail,
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There are numeroug applications for wind/wave relationships. One of the needs
which led to the develcopment of such procedures (by Sverdrup and Munk in the
first instance) was to forecast wave conditicns, from forecast winds, for
beach landings during VWorld War |l. The forecasting of wave conditions for
other coperations, such as for laying undersea cables and pipes is a more
recent application. The calculation of wave characteristics for regions for
which wind data are available, but for which no wave data are available, cen
be important for ship huill design or for ship routing (because ship speeds are
decreased by increased wave heighfs}. For structures such as cil driliing
rigs at sea, an important prediction from wave statistics is the probeble
highest wave over & period of, say, |0 or 100 yeers to avoid going to the
often considerable extra expense of building the structure stronger fhan it
need be. : .

ENERGY OF WAVES

It is cbvious that a water surface with waves will have more potential energy
than when the surface is level, because one can consider that the water in the
Troughs has been raised vertically tc form the crests. Also, as the water
particles are moving, there must be kinetic energy associeted with waves. It
can be shown that for sinusoidal waves, when averaged over a whole wave, the
average energy is E = p - g-H2/8 Joules m™2, of which cne-half is potentiat
and one-half kinetic energy. Notice that this expression is independent of
wave length or pericd.

I+ can also be shown that the wave energy travels at the group speed which, in
deep weter, is equal to one-ha!f the phase (wave) speed {i.e., in deep water,
wave energy travels af Cd/2). In shal low water the energy travels at the
phase speed (CS).

R.S. Arthur estimated that the surface wave energy of the world cceans at any
time is about 108J and that the rate at which energy reaches the west coast
of the United States (wave power) is about 4 x 1093 s~ =4 x 107 kiloWatts
(5 x 107 horsepower) or about 25 times the power generated by a fairly large
hydroelectric station. The power reaching the total shoreline of aii the
oceans was estimated at about 2 x 103 kW. |If all this energy were converted
to heat and distributed without loss uniformiy through the cceans it would
Take about 90,000 years to raise their temperature by 1C°, i.e., the rate

of heat confribution o the oceans by dissipation of wave energy is negligible
compared with the solar contribution (about 3 x 102kW). The rate will be
higher in the suri zone where the wave energy is dissipated but even there it
will be small and likely To be removed by circulation too quickly to be
detected; measurements have not shown any significant temperature rise in the
surt zone.

TSUNAMTS  OR SEISMIC SEA WAVES

Tsunami is the trans!iteration of z Japanese word meaning 'harbour wave' (as
distinct frem the ordinary tidal rise and fall}, and it is now generally used
to refer fo long water<waves generated by sea pottom movements associated
with earthquakes. The term 'seismic sea wave' is also used. The older term
'tidal wave' is incorrect and should not be used because the generating

- mechanism for tsunamis is quite different from that for the normal tides. |+
is known that virtually all tsunamis follow earthquakes occurring under the
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sea or near the shore, but not all earthguakes generate Tsunamis. It is con-
sidered probable +hat only those earthquakes which Involve a significant
component of motion perpendicular to the bottom, i.e., & rise, fall or tilt,
are likeiy to be generators, while those in which the motion is horizontal do
not generate Tsunamis.

Occasionally, tsunemis are generated by other earth movements, such as large
lands|ides into the sea, or are possibly associated with marine volcanic
activity, but the effects are usually not wide-spread, whersas “tTsunamis
generated by seismic activity on one side of the Pacific have caused devasta-
tion on the other side, as in the case of the (260 earthquake in Chile which
caused serious damage there and also in Japan nearly 20,000 km away.

Tsunamis behave in the open sea just like other surface waves but because of
their tong wavelength, 'of the order of 200 km, they behave as shallow-water
waves even in the deep ocean because the ratio h/L ~ 1/50. Their calculated
amplitude on the deep ocesn is of the order of 1 m and so they are of no
significance to ships there. !t is only when they slow down and peak up near
shore that they become dangerous. The effect cbserved is an abnormal rise
and tall cof sea level of up to several metres amplitude and pericd of about
19 min. Scmetimes thers is an initial rise, sometimes an initial fall, and
the unusua! oscillaticns may continue for hours, occasionally for a day or
two. Curing the abnormal fall of sea [evel, ships may be leit aground, Tip
on their side and be swamped on the succeeding rise. Ouring an abnormal rise
there will be little significant effect at a steep cliff shoreline, but
where the shore is flat and only slightly above normal high tide level, the
sea may pour across the flat lands and sweep away buildings or carry ships
inland and strand them there. Refraction efiects also play a2 significant
role near shore and make certain ports particuiariy susceptible to damage,
while others may be less so.

Tsunami amplitudes are measurable along a coast from tide gauge records, by
special tsunami recording gauges, and from surveys of damage caused. There
have not yet been any reporis of direct measurements of the amplitude of

tsuramis in deep water but gauges for this purpose are in experimentz! use.

In the Pacific Ocean, where most tsunamis occur pecause of the large number of
earthquake zonss, there is a Tsunani Warning System in operation based in
Hawaii and with input from many countries around the Pacific. For this
System, seismological cbservateries around the ocean provide information to a
Centre near Honolulu within about cne he!i-hour of any earthquake occurring
under or near the sea. From the earthgquake epicentre informetion, if a
tsunami is generated its time of arrival! at any point can be calculated to an
accuracy of a few minutes because the depth distribution in the Pacific is
sufficiently well known for tnis purpose. Because it is not yet possivie to
predict whether or not a tsunami will be generated, the procedure is to alert
observing stations along the coast on either side of *he epicentre and they
report to Hawaii immediately if a significani wave is observed. In this case,
all other countries in the System are warned of the possibility of a tsunami
arriving and they can take whatever precautions have been planned. |f no
significant waves are observed, the alert can be cancel'led.
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Fig. (2,11, Internal waves at *the bouncdary petween two layers of water of
different densities. MNote that h; and the wave height are

exaggerated for clarifty.

iINTERNAL WAYES

Thus far we have cconsidered so-called 'surface' waves occurring al the air/
water In#er[ace.f Similar waves can cccur at surfesces beiween djfferent
censity leyers within the sea, i.e., internal waves, because the density
difference leads to a gravitational or hydrostatic pressurc (caused by gravity)
restoring force it fluid is displaced vertically.f Parlicular surfaces are in
the thermocline in oceanic waters, where the density difterence is chiefly
due to termperature difference, or at the halocline in coastal waters where
the density difference is mainly duc *o & salinity difference. Qf course,
+the water movements are not limited 7o the interface itself, but extend
through the water above and below it. For surface waves, ihe density of air
is sc smal!l compared with thet of water (rotio about 1/800) that the former
could be ignored and the air density did not appear in the formulae for wave
speed. However, for internz] waves, the densitics of the fwo water layers
are nearly tre same. Theory indicates, for exzmple,Mthat for o relatively
thin layer, h, < 1,/20}, of water of lower density p, over a deep layer,

ko (> L /2) of ﬁa1er of density p, (Fig. 12.11), the speed of an internal wave
of langTh Ly is:

R 1/2
{a'-:hi '{—2 i }] /. (12.4)

- - Pa

For exampie, for ccastal waters with S, = 0% (fresh water}, 52;:30°m,

T,=T, = 10°C and h, =5m, then C; = 1.1 ms™), while for the open sea with
$, =5, =33%, T,=25°C, T,=20°C and n) =50m, tnen C, =0.8ms~!. These

speeds are much less than those for surface waves, a typical feature of in-
ternal waves. AT the same time, The small density difference between layers
(23.4 kg w73 for the coastal case and 1.4 kg m~3 for the cpen sea case above)
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permits the height of the infernal waves to be quite large even for a smell
energy content. (in the open sea, the condition L, > 20h, may not be satis-
fied for al! the waves and equation 12.4 must be modified for the shorter
wavas (L, <20h,); these waves are also dispersive.)

The theoretical analysis leading Yo equation 12.4 indicetes that there will
also be a wave system at the sea surface associated with the internal waves
{and independent of any wind waves at the surface) but the amplitude of this
surface system is normally too smail to see and difficult to measure. How-
ever, the presence of The internal waves can often be detected visually by
secondary effects if the upper layer is not very thick. As the internal waves
travel along, the upper layer alternately gets thicker and thinner. Thus
there are convergences and divergences in this layer. The convergences may
cause bands of irregular ripples on the sea surface above them (perhaps by
compressing short surface waves making them steeper and more visible), while
there is smoother water over the divergences. The ripples are positioned
Jjust behind the crests of the internal waves. |In other circumstances, gener-
ally when the upper layer is somewhat thicker, the convergence in the upper
layer brings together organic material on the surface of the sea and thus
changes its surface tension, tending to suppress any ripples which would be
formed by a light wind at the surface. The result is a smcoth band over the
convergent area with wind ripples elsewhere. Thus, if a pattern of alternate
bands of smooth and rippled water is seen on the sea surface, (1 is quite
probable that there is an interna! wave train below the surface. Another
characteristic which may reveal the presence of internal waves is 1ight-
coloured silt in the upper fayer, as from a river. I f the upper layer is
thin (a few metres) then over the troughs of the internal waves there will
be a thicker layer of silty water which looks lighter in colour than ‘the
thinner layer over the crests of the internal waves (which generally have
clear, dark water below).

In the upper layers of coastal waters, internal wave periods of 1 to 3 min.
and amplitudes of several metres are often observed:; in ccean waters where
the density differences are smalifer, periods of up to 12 hours and amalitudes
of 10 to 30 m or more have been recorded.

The above discussion has been of the simple two-layer situation in which there
is assumed 1Q5be a relatively thin fayer of water of uniform lower density
over a deep layer of uniform higher density, leading to a simple internal wave
system. This model is quite realistic for coastal regions where there is a
significant river runoff giving rise to an upper layer of low salinity over

3 deep layer of much higher satinity, with a steep gradient of salinify

{i.e., density) between them. However, in most of the oceans, the density
varies less abruptly with depth. In such cases internal waves still occur

but the analysis is more complicated and a broader spectrum of internal waves
with a greafer range of periods and amplitudes may be preseni. (A range of
periods may be present in the coastal case too, but the surface manifestations
often show a fairly simple wave patterp.}? Also, with a more comp | i cated
vertical density distribution thevariation of the internal wave amp | itude
with depth may become much more complex than the variation which occurs in

the simpler two-layer situation. As noted in Chapter 5, the Brunit-Vaisals
frequency, N (equation 5.il), gives an upper limit for the internal wave
frequency in the case of continuous density stratification (or a minimum
period of 2n/N).
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Knowledge of the causes of these infernal waves is incomplete. FPossible
causes. are instability of flow where there is a strong vertical shear of
velocity (e.g., strong tidal currents fthrough passes or over bottom irregu-
lerities), and inverfed barometer effects associated with moving low atmos-
pheric pressure systems, and related short-period variations in wind stress.

Because of the associated vertical oscillations of the water, internal waves
can be a considerable nuisance when one is attempting tc determine the steady

- state distribution of water properties. They are also probably & significant
facter in promoting mixing between the upper and lower layers if they break o
form internal 'surf!,

EFFECTS OF ROTATION

Consider the pessible oscillatory (wavelike) moticns of a thin layer of fluid
under the aciion of gravitational and Coriolis forces when the fluid is taken
to cover the whole earth. This possibility was first considered in connec-
tion with tidal theory. The possible motions fall into two classes. In the
first class are gravity waves, which may be modified by rotation if they are
sufficiently long. In the second class are motions, generally with periods
greater than a day, associated with the variation of the Coriolis parareter
(f = 20+sin¢) with iatitude. 1{ the rotation rate goes 1o zero, the first
class of waves become ordinary gravity waves while the seccond class of waves
become steady currents. !f a lateral boundary is added, an additional special
type of wave may exist, calied a Kelvin wave after Lord Kelvin who first
found the solution describing it.

The second class of waves are aiso called planetary waves or Rossby waves
since Rossby was the first to investigate them on the B-plane (where

f=1f,+ By is used with fy and B both taken to be constani). In the follow~
ing, we shall discuss scme of the basic characteristics of such waves.

Modified Gravity Waves

For gravity waves with periods (T} approaching orne-halfi pendulum day (2x/f),
the Corioclis terms (f+u, f+v) become comparable in size fo the lccal time-
rate of change (3u/3t or 3v/3t). For example, if u, v vary as sin {27 - +/7),
then the iocal time derivatives have amplitudes proportional to (2n/T) - u or
(2n/T) » v which are equal to the Cerioclis term for T = 28/f. For much shorter
periods (e.g., wind waves and swell and reletively short-period internai
waves) the Coriclis ferms may be ignored since T<<2a/f. For & heorizontally
infinite ocean with.f = constant, it can be shown that the free modified
gravity waves have periods T <2n/f for both surface and internal fypes of
gravity wave. Such waves may be Termed gravitaiional-gyroscopic waves 1o
indicate that both gravity and rotation are important. {(Sometimes the term
inertial waves . is.used when the periods are near the inertial pericd but to
aveid confusion with' inertial oscillations (Chapter 8) the first ferm is to
be preferred.) Forced gravity waves, e.g., those produced by the tidai
forcing with T>2x/f may occur. Free waves are the possible motions which
may occur after some disturbance has occurred, e.g., a change of wind stress.

tet us take the ccean tc be of uniform density {(a valid mode}l for a baro-
tropic case as discussed in Chapter 7 at the beginning of the section on

. dynamic stability}. The horizontal pressure gradients are then given by the
surface elevation gradients (as near the end of Chapter 9). The equations

'
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for horizontal motion, neg!ecflng the advernlve accelerations which we Take
7o be smali, are:

du Ly, - - 3”
3T v -9
(12.5)
v - an
—a—_t_' + f u = g-

while the equation of continuity with the time average depth, h, constant and
n << h is:

an du . BV

-_— = - + . 2.6

at A (ax 5y] . t )
Taking f = constant, a solution for a wave (which will be a long wave since T

is large) Travelllnu in the % direction is:

u = [cg/h>/<1-52>]1/2-no-cos 20(+/T = x/U)
. 1/2 '
voo= [tg/n) +s2/(1-52) ] g e sin 2n(t/T = x/L)
no= n -cos 2r « (/T - x/L)
where s = {+7T/2a. The phase speed is:
C = [g-n/l1 -52)]1/2

Clearly s <1 or T < 2u/f (one-half penculum day) for physically possible
solutions. We see that the phese speed is increased by rofaticn and &
horizontal componéni ot motion perpendicular to the direction of prepagetion
‘is introduced. This latter behaviour shouid not be teo surprising. As a

particle moves forward it will tend to be deflectec te +the right {or lefi) by
the Coriolis force and vice versa as it moves back. Wnen the period is com-
parable to 2a/f, the Coriolis effect will be important; when ihe pericd is

much shorter it will not. Likewise, infernal waves with periods comparable
to 2n/f will be affected by the roTarlon

Kelvin Waves I
't a lateral -{vertical) boundary exists, then the Ketvin wave solution to
equations [2.57and 12.6 is possible. IT is, with the boundary parailel ‘o
the x axis (i.e., east-west):

u = (/Y. v=0, n-= N " expl-f - y/C) « cos 2a(t/T-x/L)
with C = Yg+h and h = constant, In general, Kelvin waves propagate for-
ward with the boundary on the right in the northern hemisphere (and on 1he
left in the southern hemisphere’. The smplitude is greatest at the boundaryi
and decays exponentially away from it (a characteristic which identifies it

as a type of boundary wave). At each point at any time, the Coriolis force

balances the pressure force due to the suriace siope. Keivin waves may alsq

!
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occur along the equator, where f changes sign, propagating from west to east,
and over abrupt changes in bottom topegraphy {(where they are cailed 'double!
Kelvin waves because there is motion on both sides of the depth change),

Planetary or Rossby Waves

These are waves of long period which are associated with the '8-effect', the
. variation of the Ceoriolis paremeter f with lafifude. Here we sha!l indicate
some properties of the solutions on a RB-plane, leaving more complete discus-
sions for more advanced texts (e.g., leBlond and Mysak, 1978).

First we should ccnsider how f variations with latitude may lead fo cscilla-
tory motions. When discussing equatorial under-currents in Chapter 9 we
pointed out how an eastward current might oscillate if perfurbed. More
generally, suppose that we move northward a parcel of water whose initial
relative vorticity is zero, with no effects such as friction or depth changes

which will cause ifs potential vorticity 1o change. As f increases, the
parcel will have negative relative voriicity when displaced (northward) and
will circulate clockwise. Because of its variation, the Coriolis force will

be a maximum in size on the poleward part cf the parcel and 2 minimum on the
equatcrward part, the variafion cf f thus leads to a net southward force tend-
ing to produce scuthward displacement, i.e., & restoring force; if this force
pushes the parcel south of the latitude of zero relative verticity (over-
shoots) the circutation becomes anticlockwise, and considering f variations
the parce! now has a net northward force, i.e., again a restoring force, Thus
the variation of f provides a restoring force (in the horizontal) allowing
oscillations to occur just as the effect of gravity does (in the verticat)

for surface or internal waves. The flow will be nearly horizontal and for
T >> /21 will be essentially geostrophic (often termed 'quasi-geostrophic!)
since the time derivatives (and advective accelerations) will be small
compared with the Coriolis terms. Thus with sufficiently detailed observa-
tions, such flows (or waves) may be shown by geosirophic calculations.
Assuming the flow 1o be non-divergent in the horizontal and barotropic

(gepth independent) it can be shown that:
C, = -8+ L?/en? 2.7
where Cy is the phase veiocity in the x direction (east-west) and L is the
wave-length. The minus sign indicates that the phase velocity is always in
the minus x direction (to the west) although the group velocity (direction of
energy prapagation) may be in any direction. |f fthe wave is moving wesiward
with crests north-south then the peried T = L/Cy = 4n2/A8-L). The period in-
creases as L cdecreases in contrast to surface gravity waves, This result
remains true for wave crests in any given direction; the shorfer waves are of
Jlonger period. For 6 = 2 x 1011 m~Us~Y and L = 1,000 km, Cy =-0.51ms™}
and. with crests north-south, T = 23 days.

I f we take the civergence into account (cr equivaiently do not neglect the
surface elevation) equation 2.7 becomes

C, = -8/0Ar/LiF f2AgRT]

thus the divergence effects are only important for the longer wavelength
(shorter period) waves. With f = IC~" (about 45° latitude), h = 4 km and
L < 2,008 km, then fz/(g-h)= 2.5 x 1078 ang may be ignored refative to
4n2/12 > 100 x 10713,
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The mesoscale 'eddies' observed in the POLYGON and MODE ‘experiments may be
interpreted as |inear superpositions of Rossby waves (including internal
types). |f such interpretations are correct then the eddies are nearly lin-
ear phencmena and would have little effect on fthe large-scale mean flow.
Eddies may be generated by baroclinic or barotropic instability. |f non-
linear effects are important they tend to grow in size (behaving like two-
dimensional furbulence). However, if they grow sufficiently they may becoms
nearly linear (a superposition of Rossby waves) before they interact with

the mean flow and will radiate thelir energy away (perhaps to be dissipated or
reflected at boundaries). 1% they grow to the size where the dynamics are
linsar before interacting with the mean flow they may not be very important
for the mean flow except perhaps as an energy sink. Since the eddies seem

to start out rather small in the ocean, compared with those in the atmosphere,
the eddies may not be very imporfant for the mean flcw except as a loss
process in contrast to fhe atmospheric case. Their imporiance has not yet
been established, as noted before in Chapter I!.

Topographic Effects

More generally, it is not f variations which matter but variations of /D.
When depth variations dominate (as often occurs near coasts) the pessible
Rossby waves are termed topographic, indeed, in laboratery scale models,
where the rotation rate cannot be varied with position, the 8-effect can be
simuiated by varying O,

Variations in fopography may lezd to wave tTrapping (concentration of wave
energy in certain regions), (Variaticn of 1 may alsc lead To trapping,
particularly near the eguater.) Trapping may occur with gravity waves for
which the ferm edge waves is used or with Rossby-iype waves for which the ‘erm
is shelf waves. Kelvin waves may aiso be considersd a special case; their
very existence depends on the presence of a boundary {or on f changing sign

at the equator or on an abrupt depth change). They are a boundary phenomenon
in the sense that the oscitlations are large near the boundary and decay

away from it.

As an exemple, consider gravity waves approaching a shore at an angie (as in
Fig. 12.5} with the depth decreasing but with a vertical boundary (clif#) so
that the depth cdoes not go to zero. By refraciion, the wave cresis wil!
become more nearly parailel to the shore. If they do not break they will be
essentially totally reilectec at the cliff ar an angie equal ¢ the incident
angle.

They will then trave! outward, with refraction csusing the crests o become
perpendicular fo the shcre and then will Turn inwarc again To be reflected
once again. The wave orthogonals will form a series of arcs as in Fig. 12Z2.12.

For planetary waves, f/D variations may produce similar behaviour.
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Fig. 12.12. Refraction teading to wave frapping when reflection océurs
before wave breaking. One wave orthogonal is shown,



CHAPTER 13
Tides

INTRODUCT ION

.The tide is the name given to the alternating rise and fall of sea level with
‘a period of about 12% hcurs (about 25 hours in a few places).> The rise and
fall is the most obvious feature to most observers but fundamentally the
prime phenomena are horizontal tidal moticns (currents); the rise and fall

at the coast is simply a consequence of the -convergence or divergence occur-
ring there when the tidal currents flow foward or away from the shore. This
aspect of tldal theory, vertical versus horizontal motion, wili be discussed
in more deteil later.

I+ should be noted that tidal movements occur in the atmosphere and in the

'solid' earth as well as in the sea but we wiil only be concerned with the
oceanic tides in This text.

TIDE-PRODUCING FORCES

Tides are a consequence of the simuitanecus action of the mcon's gravitaticnal
tforce, the sun's gravitaticnal force, and the revolution sbout one ancther of
the earth and moon and the earth and sun. |In principle, the other planets in
the solar system also exert tidai forces on the earth but their values are so
small compared to those of the moon and sun that fhey are quite regligible.

The magnitude of the total tide-producing force is only of the order of (077
times that due to earth's gravity but as it is a body force, acting on the
total mass of the ocean, and has horizontal components, it is & very signifi-
cant ore. ' '

we will follow the procecure suggested by Jarwin (911, see the Further Reacd-
ing list} to explain the salient characteristics of the tide-producing forces,
looking at the earth/moon pair first. ’

I we imzgine ourseives away from the earth and looking down on it and its
moon from above the north pole, the retative arrangement wiil be as in

Fig. 13.la which is rot to scale, the moon having been broughi close to the
earth for cenvenience. From this point of view the earth will appear fo
rotate anti-clockwise about its axis and the earth/moon pair will also rotate
anti-clockwise like an assymeiric dumbbell. As the centre of mass of the
earth/moon pair is about one-quarter earth radius inside ihe earth, the -

rotation of the pair will be sbout an axis at the position Z and perpendicuiar
to the paper. To understand the effect of The moon's gravitation plus the
earth/moon rotation, we will assume for the moment that the earth is not

196
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(@) ROTATION OF EARTH ROTATION OF
ABOUT POLAR AXIS EARTH - MOON PAIR

<)

MOON

actuatlly 60 times
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Fig. 13.1. (&) Earth-moon pair rotrates sbout & common centre of mass at Z,
(b) successive positions of earth-mcon pair with earth's diurnal
rotation suppressed, (c¢) motfions of fwo poinis on earth's surface.

rotating on its axis. Fig. |3.1b shows the character of the motion now in
four stages (i) to (iv) ot cone complete rotation of the moon ebout the axis
through Z. The motion of the earth now is an upusual one in that its orien-
tation remains fixed-{the face is drawn to emphasize this characteristic)

but every part ci the earfh rotates in a circle of radius equal to the dis-
Tence from the earih centre to the axis Z., (The easiest way to observe such
a motion is fo place your hand flat on a table, fingers culstretched, and o
move it so that one point, e.g., the tip of the thumb, rotates in a horizon-
tal circle of about |0 cm diameter, keeping your forearm pointing in the same
direction all the time. You wiil see that every part of your hand describes
the same sized circle, fingertips and palm alike). fig. 13.1c shows the
circles described by points A and B on the earth (Fig. 13.1b). For all pcints
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cx = (F_~- EF) M
(F_-CP) cF a E )
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fForces schematic
only (not to scale)
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(b}
Sl
TO MOON
T1DE~PRODUCING
FORCES
o (sizes reiative)
Fig. 13.2. {a) Directions of centripetal force per unit mass (CF) and moon's

gravitationa! force per unit mass (F) at points on earth (not
o scale), (b} directions of residuals of CF &nd F at various
points on the earth's surface and their magnitudes relative to
values at A or C taken as unity. .
{Correct to tirst order - see text.)
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on the earth fo move in a circle of this'size it is necessary for there to be
a centripetal-acceleration (or force/unit mass) of the same magnitude every~
where and directed parallel to the earth/moon axis toward the moon. This
centripetal acceleration is, on average, provided by the gravitational
attraction of the moon but as this attraction is not quite uniform over the
surface of the earth, there is a siight excess of gravitational acceleration
on the near side Yo the moon and a slight defect on the cpposite side. (The
gravitational acceleration is not unifcorm because the distance from the moon
to points on the earth's surface varies from place to place).

Fig. 13.2a shows the earth/moon pair, with the moon close to the earth to
emphasize some of the angles for convenience in showing components of forces

" (per unit mass, i.e., accelerations) later. (In the following, the ferm
"force' will be taken to be per unit mass without stating so explicitly every
time.) We will| consider the forces at four points on the earth's surface, A
and C which are the nearest and farthest points from the moon, and B and D
which are equidistant from the moen, AT points B and D, the gravitatiional
force of the moon on unit mass on the earth is shown by arrows Fy and Fg, re-
spectively. These iwo forces will be equa! in magnitude because of their
egual distance from the moon. Because 'they occur at very nearly the same
distance from the moon as is the centre of the earth (remembering thei the
angle BME Is grossly exaggerated in Fig. {3.2a}, the value of this gravita-
tional force will be almoST exactly equal to the average value for The force
of the moon.con & uq‘k—mac oP earth (F/ha) ‘given from Newton's Law ot Gravi-
tation by: F/Mg = G+ hm/r “where G is the Gravitational Constani (= 6.67

x 107N kg2 m?), He and hm are the masses of the earth and moon respectively,
and r is the distance befween their cenires. The moon's gravitational force
per unit mass (F_)<af point A will be larger than the average value F/Mg
because it is nearer to the moon, while the value at C(F ) will be less than
F/Mg. The differences are about +3%. The values of the four forces Fj,, Fp,
Fer @nd Fy are shown semi-quantitatively by the full-line arrows in Fig.
13.2a. The total centripetal force which keeps the earth and moon at their
constant distance apart while roteting is provided by their gravitational
attraction and so must be equal to the value F, or F/V per unit mass (=CF),
as is shown in Fig. [3.2a by the dashed arrows.

At B, by Newion's law of gravitation, the force/unit mass Fq = %m/(r +R2)
‘where R is the radius of the earth. Rewriting the denominafor as ri(l +R%/r2)
and expanding in series gives Fq = (G +Mp/r2)«(1 -R%/r2+..-), As R/r=1/60,
Fq is very nearly equal tc CF in size, the difference being 1 part in 3,600.
-Resolving Fy JHTO comgonenfs parallel and Eerpendicular to the line EM, i.e,
Faxt = Fygr l/(r +R%)1/2) and Fay( =Fg - R/{re + R2)1/2) respeCTlvely, wve get,
again using series expansion:

F (G- Mm/rz)-[l-(3/2)-(R2/r2)+'-'] and

dx

F.
oY
To an accuracy of 1/2&00 we may take Fy. = CF and the residual to be Fyq
CF/60 directed trward. (Note however that the size of (Fy, -CF) is abou¥ 1/40
of Fa,.) Similarly at B there will be the resrduai force Fy, of exactly +he
same size as Fy, also-directed ‘mward. AT A, F; =G+ M /\r-ﬁ) is directed
outward (toward’ the moon)., Expanding we have : '

(G-m - R/F3Y[1 - (3/2)+ (R2/r2) 4 + e+ ]

Fa = (G -Mm/rz)-(l-+2R/r-+3R2/r2-+---), and the residua]
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Fox = Fy — CF = (2G-M - R/r33-[1 + (3/2)~(R/r) ++++] directed outward.
To first order (i.e., neglecting ferms of Q(R/r) compered Yo unity) Fgy =CF/30
= 2Fpy. The neglected ferm is about 1/40 of F,,. At C the moon's gravite-
tional force F. will be slightly less Than neaded to provide CF so that a mass
there will behave as though there were an cutward force

F = F <CF=0GM /(r+RZ-CF = ~(2+G+M «R/r[2~(3/2)(R/r)++-].
cx c m m
Again to first order, F., = - CF/30 although its size is really about 2.5%
smal ler than CF/30 or about 5% smaller than Fax. For our purposes, to iilusi-
rate the principles, we need cniy use the residual!l forces correct 1o first
order. (The higher order terms can be retained for more detailed calculations
if necessary. Remember glsc that althcugh the furces are really slightly
assymmetric, Fax being slightly targer than -F.,, the sum of the residuals
(integral) over the whcle earth's surface is zero. This result is obvious
tor the direction perpendicular To EM because for each pcint there is a
corresponding point where the force component con a unit mass perpendicular to
EM is exactly equal and opposite, e.g., points B and D. In the parallel
direction, the result is not sc cbvious and it is left as an exercise for the
reader with the necessary mathematical background to show that the integral
of the force components in this direction propertional to R2/r" does vanish.)
) t

Between pcints B or D and A or C, the residual force will gradually change
from an inward direction to an outward direction. Fig. 13.2b shows the
directions of.the residual forces for a series of points on the earth's sur-
face in the plane of the drawing, and shows iheir magnitudes relative to the
values at A or C taken as unity. ‘The distribution of the residual forces
over the rest of the surface of the earth can be obiained by rotating Fig.
I3.2b about the EM axis. These residual torces, then, zre the tide-preducing
forces. ‘

t#hat we have as the result of the analysis so far is a pattern of residual
forces directed outward from ihe earth's surface over areas on the near and
far sides toc the moon, but directed inward in between these arsas. This
pattern is tied to the earth/moon axis, but the earth has been assumed not

to be roteting. 1f wé now restore the rotation of the ear=h about its polar
axis, each point on the earth's surfece wiil, in one day, pass through the
whole pattern of residual fcrces and so experience & cycie of tide-producing
forces as in Fig. 13.2b with two passages of outward forces and @wo passaces .
of inward forces. That is, the Tide-producing forces will have a perioc of
ore-half day even though fhe earth has a rotation period of cne day. This is
the basic reason for the existence of semi-diurral tides for a diurnal rote-
tion of the earth. (The day here is the lunar gay cf about 24.8 h because
the moon is zlso moving with & 27.3 day periocd around the earth compared with
the earth's rotation in 24.0 h reiative tc the sun.)

Components of the Tide-Preducing Forces

The earth/sun pair sets up a similar pattern of forces to that for the earth/
moon pair but it differs from ithe latter in +wo respects: the maximum effect
due to the sun is only about one-half of that due to the moon (becazuse its
greater distance outweighs its greater mass), and as the sun and mcon do not
rotate in synchronism the force patterns rotate independently and hence give
rise to a rather complicated resultant. )
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The facts that the paths of rotetion of the sun and moon about the earth are
not circles but ellipses, and that the planes of rotaticn are not in the
equatorial plane but move north and south with an annual cycle for the sun
and 2 monthly cycle for the moon add further complications to the resultant
“tide-producing forces. However, the motions of the sun and mocn are known
very exactly and it is possible to express the resultant tide-producing forces
as the sum of a number of constant simple-harmonic compcnents (sine waves),
each of which has its own characteristic (constant) ampiitude, phase and
period ot fluctuation. Some of the more important components with their size
relative tc the largest, the principal lunar force, taken as 100 are given in
Table I3.1:

TABLE 3.1 Characteristics of Some of the Principal Tide-
Producing force Components

. Period Relative
Neme ) Symbol (Scler Hours) Size
Semi—-diurnal: . . -
Principal tunar : My 12.4 100
Principal soler ~ - Sp 12.00 ] 47
Larger funer elliptic No i2.7 19
Luni-solar semi-diurnal Ko 11.97 13
Diurnal o
Luni~-solar diurnal ’ Ky 23.9 58
Principal lunar diurnal 03 25.8 42
Principal solar diurnal P 24,0 . 19
‘Larger lunar elliptic ()] 26.9 8
Long pericd: .
Lunar forinightly M, 328 17
Lunar monthly M% 661 9
Solar semi-annual S 2191 8

sa

There are up to 65 components which are recognized as signi-ficant in some
circumstences, e.q., in cdescribing tides in river esfuaries,

OCEAN RESPONSES TO THE TiDE-PRODUCING FCRCES - TIDAL THEORIES

There are two tidzl theories, the equilibrium theory and the dynamic theory.

“ln the equilibrium theory, the vertical ccmponents of the Tide producing -
torces are regarded as the significant ones and the ocean surface is supposed
to be lifted where the resultant force is outward from the centre of the
earth, i.e., upward, and to be depressed where the resultant force is down-
ward lef. Fig. 13.2b). Then, as the force patterns revolve with the moon and
sun, so do the high and low waters, fo produce the observed tides. However,
the rise and fall predicted by this theory are fco small (about 0.35 and
0.18 m respectively) compared to the observed tides. Alsc the theory, in
effect, requires the mass of the water to be subject to gravitational attrac-
tion but to have no inertia, that is, to respond instantaneocusly to the tide-
producing ferces - a very unreal situation. This theory may be satisfactory
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for application to tides in the solid earth but for the oceans it has been
replaced by the dynamical approach.

The dynamic theory srgues that the horizontal components of The tide-producing
forces are more important, since water Is a fluid and can be moved in the
horizontal directicn with relatively little effort. The water flows in re-
sponse to the tide-producing forces, forming tidal currents in the whole of
the ocean. [n effect, the tide-producing forces generate 'forced' waves in
the ocean. (These are motions which follow the period of The acting force
rather than having 2 periodic moticn determined by the mass and restoring
force of the system itself,) The rise and fall at the boundary is simply a
result of the flow convergence or divergence there. in principle, then, one
could apply the equations of motion and calculate the tidal currents anywhere
in the ocean, and the rise and fall at the shore. Unfortunately, the real
ocean basins are very complicated in shape and ii is not possible to obtain
exact solutions to the equations of motion. However, it is possible to solve
the equations numerically and promising results have been obtained for simpli-
fied models of the ocean basins. The limitetions to obtaining detailed sclu-
tions {ie in the large amount of high-capacity computer time required.
vhether refinements of this direct approach wil! be practicat, or whether
novel approcaches may prove less laborious, is-not known at the present time.

THE PRACTICAL APPROACH TO TIDE PREDICTION

1¥ present theory is inadequate Yo predict tides from dynamic principles, how
is it that one can buy, for a modest sum, books of tide tables (predictions
of times and heights of the tides and in some places for tidal currents) .for
a large proportion of the ports of the world? |In effect, one uses the ocean
itse!lf empiricaily as a computer to sclve the equations of motion. One
records the rise and fail of the water as a function of time at a particular
focation for a pericd of time, analyses the resulting tide height curve for
its ccmponent characteristics and uses them fo perform the precdiction into
The future. This procedure was used empirically even before the deveicpment
of the present tidal theory. :

The recerded tTide curveg is a complex harmonic, i.e., the sum of many simpie
harmonics of different periods and amplitudes, |7 is resolved intfo its
simple harmonic 'constituents' by mathematical procecdures which are straight-
forward (but tedicus if done by hanc). Each constituent can be represented
by @ sine curve with its own period and phase, whose amplitude represents its
contribution (above or below mean sea level) to the fotai tide. These con-
stituents can be drawn for as far intc the future as we wish, and then for any
future Time we can determine the expected tidel heicht simply by adding tc-
gether ali the constituents for that time. |In practice, our cbservations of
the tide curve have a [imited accuracy sc there is a limit to the accuracy
with which we can determine the constituents and cur predictions into the
future become less eccurate the further ahead in time that we go. Naturally,
the longer the series of cbservations that we have, the more accurate are
likely to be the constituents and therefore our predictions.

Although tidal theory ifself cannot yet predict the tides to a satisfactory
accuracy, it can tell the practical man what constituents to look for, each
constituent correspending to one of the components of the tide-producing
forces (and perhaps components at sum and difference frequencies which arise
when non-linear effects become important, usually in coastal areas). It was
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this contribution from tidal theory which changed tidal prediction from a
purely empirical procedure to one based on sound physical principtes.

Until the recent past, the hAarmonic analysts of the recorded tide curve into
its constituents was carried out by paper-and-pencil methods on tabuiations

of hourly water heights, but it is now done by digital compuier. The pre-
diction into the future was carried out by an analogue device, invented by
Lord Kelvin, in which the constituents were represented by rotating eccenirics
(cams) whose throw was proportional tc the amplitucde and whose rate of rotation
was inversely proportional to the pericd. A steel tape passing over alt the
cams totalled their displacements and this total was recorded cn a paper strip,
the result being a Tidal height versus time curve for the future. This step
is now carried out by digital computer, which is prcgrammed to compute The
times and heights of high and low weters and tc assembie them Into tasbutar
form with appropriate headings, etc., ready for printing.

An imporiant point to note here is that the tide height consiituents observed
at a parficular locality do not necessarily have the same relative propor—
tions as the tide-producing jorca components. The particular shape of the
ocean basin in the vicinity causes the water ¥c respcond more resdily To some
components than tc others, which is the main reason for the differences
beitween tides in different parts of the ocean. The purpose of recording the
tide for a period is effectively an snalegue procedure for determining the
local response, when eur theoretical techniques are not strong enough 1o do
so.

The number of constituents used for predicticn depends on the accuracy requir-
ed. Often, the use of the first ssven in Tadble 3.1 (i.e., My, Sy, Ny, Ky,
Ky, 01 and Py) will be sufficient to precict the tide within about 10%, but
generally 20 fo 30 constituents are used for predicting twe or three years
ahead for poris close to the ocean and sixty cor mocre for those in river
estuaries where the tide is rendered more complicated by bottom topography.

It is usual to use a continuous tide record for 369 days for arnalysis info
20 to 30 constituents, and to repeat the anaiysis for several 'years' to
improve accuracy. Analysis for fewer constituents may be done with as few

as 29 or even |5 days' continucus records. The number of constituents which
can be calculated {(or ‘resclved' as the process is often termed) depends con
the record lengih. The reader needing more detziled information on the prac-
ticai limits of tidal analysis should consult a text cn the subject (e.g.,
that by Godin in the Further Reading list).

It should be remembered that sea ievel is affected by other factors as well
as the tide-producing forces, e.g., afmospheric pressure anc wind set-up.
These sc-called meteorological tides are left as a residual by the harmonic
analysis process and cannct be predicted (unless they have a tidal period,
e.g., land-sea breeze‘effects which will be included as peart of the S, tide).
In the absence of such disturbances, the tide predictions are generally
accurate to about +3 cm.and *5 min. Meteorological effects, leaving out
extremes such as hurricanes, may cause differences of tens of centimetres and
tens of minutes, e B
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THE MEASUREMENT OF TIDES

The simplest procedure for recording tides is to mount a vertical scale cn a
pier or wharf and to note visually the height of the water at, say, hourly -
intervals for long enough to cbtain a record sultable for analysis. This is
a tedious procedure.

The great proportion of tide records have been cbtained with 2 float-type
recorder, A stilling well is mounted in the water with a recorder on fop of-
1t. The stilling well is a vertical pipe with only a smal! hole at the
bottom, below the lowest water-level, sc that the effects of waves cof periods
much shorter than tidel are damped out and the rise and fall of water in the
well follows chiefly the tidal rise and fall. (Longer period waves, such as
tsunamis, will be recorded to scme degree.} A fioat on the water in The well
is connected by a wire to a pulley which drives, fthrough & reducing mechanism,
a pencil which then moves back and forth parallie! to the axis of a drum,
carrying paper, which is rotated by a clockwork drive. The pencil then
records on the paper .z graph of-tide height versus time,

In other instruments, a pressure sensor is mounted in the water below low
tide level and connected to a shore-mounted instrument which records the
variations of hydrostatic pressure with time. The pressure can then be con-
verted to water depth. Suitable damping is used To make the sensor or the
recorder insensitive to waves. In the bubbler-fype gauge, a tank of air under-
pressure !s connected through a pressure-reducing mechanism to a pipe whose
open end is fixed in the water below low tide. The shore instrument then
measures the air pressure needed to just cause air fo bubble out of {he ‘open
cend of the pipe, thus measuring the water pressure there and hence the water
depth. Again, a record of pressure versus ftime yields the desired tide
height curve. The advantage of this type of tide gauge over the remote
pressure senser type is that the instrumentaticn is on shere and accessible
for servicing. All that is in the water is a length of hose.

For use in cold régions, where sea ice in winler might demage any siructure
mounted through the water surface, the pressure sensor type may be used with
shore recording, the connecting cable being buried in a *rench. For severe
ice conditions, a self-contained pressure/Time recorder can be mounted on

the sea bottom, being placed in pesition guring one ice-free season and re-
covered during the next. These self-recording instruments are now being used
also to record. tides over the cortinentai shelf and slope, on seamounts and
even in the deep sea.

The tidal ranges (vertical differences between successive high and low waters)
to be measured vary frem almost zero, e.g., in places in The Faeroes, to 13 m,
in the Bay of andy in Canada, :

TYPES OF TIDES

The simplest classification of Tides uses, as the distinguishing feature, the
emphasis on respense to the diurnal or to the semi-diurnal components of the
-tide-producing forces, In Fig. i3.3 &re shown the two basic types with var-
ieties of the second. For diurmal tides (Fig. 13.3a) there is one high water
and one low water in each tunar day (about 24.8 h), while for gemi-diwrnal
tides (Fig. 13.3b,c) there are two high and two low waters in the same time



Tides 205
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Fig. 13.53. Simple clessification of tides as: (a) diurnal, (b) semi-diurnal
{equal), (¢} semi-diurnal (unequal). HW - high waier, LW - low
water, HHW - higher high water, LLW - lower low wa1er, LHW. -
lower high water, HLW = hlgher low water.

interval. Tor semi-diurnel 1ides, in some regions Two successive high waters
will heve nearlv the samz height and two successive low waters will have
nearly the same {lower) height (Fig. 13.3b, semi-aiwnal equal tides); in

“other regions, successive high waters and successive low waters will =ach
have different heights (Fig. 13.3c, semi-diurnal wequal tides). In scme
locations, a predominantly semi-diurnal tide becomes diurnal for a short time
each month curing neap tides.

As the forces due to the sun and meen come into phase, the range of the tide
increases tc & maximum {(spring tides). This maximum occurs when the sun and
moon are both on the same or on cppcsite sides of ihe earth. When the sun

and mcon are nesrest to 90° to each other the resultent forces have their
minimum value ard the tides have their. minimum range (reap fides). Successive
spring cr neap tides occur at intervals of about 15 days. ’

Often the same fype of tice is found for long distances along a coast so ihet
a tide record at .one port in the region will be sufficient to determine ihe
type of tide. The main differences to be expected are in the phase ang
amplitude of the tide at cther points in the region. |t is therefore suifi-
cient tc collect long-term reccrds at a few (principal) points, usually
ports, 1o determine the imporient constituents and then to make shorter term
observaticns at-subsidiary points 1o determine the relative nhases (times of
high or iow water relatjve to thcse ot the principal points) anrd relative
tidal ranges. This procedure.works for an open coast with simpie bottom
topography. Along a.complicated coss?, such as that of British Columbia or
of southern Chile, or in-an islend archipelago, 1T may be necessary fo have
The principa! ports for tong-term observations closer together. Only measure-
ments in the field can determine just how close together or far apart need be
" the recording stations.
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For practical reasons, almost all of our information about tidal rise and

fall is for the coast, because here there are fixed structures fo which one
can mount tide gauges of a simple mechanical type which have good reliability
and will record unatfended for long periods of time. 1In the last ten years

or so, considerable effort has been expended in obfaining tide records in
water of some hundreds of metres depth on the continental shelf or slope.
These are for periods of a few weeks. For.the deep ocean, there are at pres-
ent just a few records obtained with self-contained instruments of or similar
fo the type designed for recording tsunamis in deep water.

TIDAL CURRENTS

Although tidal currents are the basic phenomenon, they have been less studied
than the tidal rise and fall. There are Two reasons. The insirumentation re-
quired is rather mcre complicated and less |ikely to operaie satisfactorily
fer long periods unattended, and secondly the current characteristics may

vary markedly over distances of hundreds or even tens of metres horizontally
and over depths of only a few metres, In consequence, and for practical
reasons, most tidal current information is for locations in narrow passages in
shipping routes wher= the currents are strong and have a significant effect

on the navigation of ships. In such locations, The Tidal current speeds iend
to be ebout 90° out of phase with the tidal rise and fall, i.e., the maximum
current speeds will be at the middle of the rise or fail, with slack water
near high or low water, although considerable varietions from this pattern
occur near comlicated coast!ines.

* The common patiern in narrow waterways is of a flcod current in one direction
as the tide is rising and an ebb current in the opposite direction when it is
falling., However, in the more open waters of the continental shelf and in
shallow seas, the characteristics of the tidal currents are that as they vary
in speed, often never decreasing to zero, their direction rotates, usually
with a semi-diurnal period dcminating.

TIDES [N BAYS. - RESONANCE

In some bays, the tidal range is very large compared with the tidal range in
the ocean near to the mcuth of the bay. This phenomencn is often attributed
1o resonance - the water in the bay having a natural period of osciliation
close to that of the astronomical tides znd therefore accumulating energy from
them. The Bay of Fundy in eastern Canada is & frequently quoted example.

Ltet us examine the conditions necessary for resonance to occur. First, con-
sider a long, nelrrow body of waeter (Fig. 13.4a) of length L, of depth h when
the water is still, and of constant width. For simplicity we assume that the
bottom is 7lat and the ends are vertical. Such a body of water can be caused
tc oscillate, and the simplest mode is one in which +he water at the ends

(A, E) goes up and down parallel to the end walls (anti-nodes}), that at the
middle C goes back and ferth with no vertical motion (node), while that in
between, as at B and D, moves both up and down and horizontaily. The lines
I, 2 and 3 show three successive positions of the water surface. |7 is Guite
easy to demonstrate this phenomencn in an ordinary household bath by moving
one's hand back and forth through a few centimetres near the middle (C) or

vp and down at one end. |1 can also be done in a swimming pool, though
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Fig. 13.4. Tidal resonance in bays of different lengths.

here it needs a concerted effort by severa! pecple moving their bodies to get
the water to oscillate satisfaciorily. In either case it will be founcd that
it is necessary to apply the stimulus at a fairly specific frequancy or period
to generate and maintain the oscillations., For the household bath the period
will be of the order of two to three seconds, while for the pocl it would be
of the order of ten seconds. in the bath you could also determine that the
period of oscillation depends on the depth of water, becoming less as the
depth increases.

The reason for these so-called 'standing waves' or seiches is that waves
travelling along the body of water are reflected at the far end and the two
sets of waves travelling in opposite directions can interfere constructively
with each other, i.e., their amplitudes will add together, if the wave speed
and the length of the water body are appropriately related. It can be shown
that for +he simplest type of oscillation {the fundamental) shown in Fig.
13.4a2 then the period

T, = 2, //g R, END
Because the length Ly in this case is one~half the length of the travelling
waves, this arrangement is called a 'half-wave oscillator'. A few values for
the period T¢ for variocus values of L, and h are shown in Table 13.2:
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TABLE_|3.2  Values of T¢ = 2L, /¥g+h in hours for
Combinations of L.~ (km) and h (m)

h L. = 100 500 t,000 km
b Feriod
S0 m 2.5 12.6 25.1 hours
100 1.8 8.9 b7.7
200 .3 5.3 12.6
500 0.8 4.0 7.9
i,000 0.6 2.8 5.6

Now suppose that inctead of having & body of water closed at both ends (a
'closed basin') we have one which is open to a tidal sea at cne end (an "open
basin') as in Fig. 13.4b so that water can flow in during the ficod .tide and
out curing the ebb. It wouid be possible for the shorter length bay, CE, to
behave |ike the right hand half of that in Fig. i3.4a and osciliate with 3
specific natural pericd. This bcdy of water wouid be called a 'quarter-wave
osciliater’ as its length L. is one-quarter of the length of the travelling
wave. Then L. = 0.5L, so that the natural period of osciliation

T = 4L /¥Yg-h. (13.2)

c C

. The situation in fig. 13.4b is rather arvificial| because we have imagined
water flowing in and out at the node C without any vertical moticn. This
arrangement might be set up in the laboratory but is not likely in nafure.
A more probable situation s that In Fig. 13.4c where the end of the bay is
inside the rnode C so that the sea goes up and down as well as flowing in and
out at the same time. The important feature of this arrangement is that the
vertical amplitude of surface motion (tidal range) is greater at the closed
(head} end E than.at the open {(mouth) end of the tay near C; in other words,
amplification of the tidal range cccurs. For such amplification, the resonant
length of the bay L. is related tc the depth by equaticn 13.2, and for & semi-
divrnal Tidal period-of 12.4 h scme related values cf L. and h are given in

Table 13.3:

TABLE 13.3 Related Values o? Length L. end Depth h for the Fundamentz|
Period of Oscillation of an Open Bay to be 2.4 h

h = 100 200 500 1,000 m

e

L, S 350 490 780 {,100 km

Real bays, etc., of ccurse, cc not have flat bottoms of uniform depth nor flat,
vertical ends, but it is possibie to calculate the resonant length for an
irreguiar bay to reascnable accuracy by a step-by-step calculation to allow
for the varying depth. However, we can compare the ideal calculations of
Table t3.3 with the dimensions cof fjords (as in the coasts of 8ritish Columbia/
Alaska, Norway or Chile) using their mean depth and actual length. We find
that for these 'bays', a typical mean depth is about 500 m with a length of

100 km. They are therefore much shorter then the critical length for largs
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amplification (Table 13.3), Their dimensions are more like these of Fig.
13.4d, and only:a small amplification occurs (about 5%).

The Bay of Fundy in eastern Canada is much shallower than the fjords {of the
order of J00 m) and ifs actual length (of the order of 300 km for the Bay
itself) is nearer to the critical length for resonance to the semi-diurnal
tide components. It has offten been quoted as an example of resonant ampli-
fication because tidal ranges of some 15 m occur near the head compared with

5 m near the mouth. Some investigators have disputed this hypothesis, calcu-
iating a resonent period as low as 9.0 h which would be too far from the semi-
diurnal components for significant amplification to occur. It was suggested
that the ferge ranges at the head were simply due to the funnelling effect of
the bay toward the head, i.e., 1o volume continuity. At the same time we
should point cut that cne difficuliy in meking a step-by-step calculation of
the resonant period is tc decide where to take the mouth of the bay. Ffor a
long, narrow fjord which opens suddenly into the ocean, there is not much
vncertainty but for a wide-mouthed bay sysiem, such as the Bay of Fundy to-
gether with the Guif of Maine (for which also the axis is not perpendicular
to the shorelinel), there may be 2 temptation to select a length for the bay
system which will yield a resonant period which suits one's preconceived

. ideas! However, C. Garrett compared the ratios of the major semi-diurnal tide
characteristics inside and outside the bay system, i.e., compared the response
characteristics of the sysiem with the forcing characteristics of the ocean
tide.. From this calculation he concluded that the rescnant period for the
system is about 13.3 h which is close encugh to the probable chief forcing
periods (12.0, 12.4 and 12,7 h) for the resonant response explanation fo be
acceptable. In"this example, the mouth of the bay system is determined by
where the depth increases rapidly on the shelf, causing a sharp impedance
change, rather than by the position of a narrow cpening to the sea.

STORM SURGES

These are mentioned here to emphasize that unusual rises of sea level may
occur due to other causes than exceptionally high tides (and tsunamis as
discussed in Chapfer 12). Storm surges are the result of the frictional
stress of strong winds biowing foward the land and causing the water level

to be 'set up' by as much as several metres. This effect has caused severe
flooding of low-lying areas at the south end of the North Sea during strong
northerly winds and in areas at the north of the Bay of Bengal during cyclones.
In the latter case, the low atmospheric pressure at the centre of the cyclone
can additiopally raise the sea level {(the 'inverted barometer effect'). A
drop of pressure of 3 kPa ( =30 millibars) can raise sea level by 0.3 m,

This vaiue is The response to an atmospheric pressure change for a stationary
system after & long enough time for equilibrium tc be reached. The actual
response may be greater or lesser than this amount depending on the topa-
graphy of the areas.and the speed at which the storm centre moves. The only
connection with the éé?rohomical tides is thet if these various other causes
of - increased- sea level occur during & period of high tide then the disastrous
effects will be compounded,

{n bounded bodies of water, such as lakes or smeal! seas, after the wind stress
decreases, relaxation oscillations may take pizce. These are standing waves
or seiches and they die cut as the mechanical energy of the water Is dissi-
pated. ‘



CHAPTER 14
Some Presently Active and Future Work

e have described many modeis which aitempt fo demonstrate the importance of
perticular dynamic effects. A medel is always a simplification of the real
system and attempts to include only the effects which are important in pro-
ducing a particular phenomgnon. Such models are useful in improving our
understanding even when they do not represent the details of the real ocean.
For example, Stommel's rectangular ocean model, discussed in Chapter 9, is
clearly not intended to represent a real ocean; however, it does cdemonstrate
the importance of the variation of +the Coriolis parameter with latitude. The
more complicated and detafled numerical simulation models described in
Chapter |! attempt to represent the ocean more realistically.

Because of the complicated geometry and the imporfance of non-linear effects,
analytical mode!l ling has not and probabiy cannoi produce a complete ccean
model. While the numerical mode!s can be more representative and show- promise,
none of them, &s yet, has produced a quanfitatively correct model of the
general ocean circulation. Both tfypes of modelling have been used fo demon-
strete possible mechanisms to expiain certain features cf the ocean circula-
Tion. It is clear that much work remzins to be done before we can be

certain that we have an adequate quentitative understanding of oceen dynamics.
- It is also quite clear that cur observationai data base is inadequate., {71 is
difficult to understand a system theoretically which one cannot describe
sufficiently well,

Exploration of possible parameter ranges has been limited by the speed of
availzble computers, particularly in models attempting to simulate the actual
ocean. But the new, faster machines which have become available should help
to reduce This problem. By running models of sufficient resolution that all
dynamic effects are permitted, and comparing them critically with observetions,
it may be possible to determine which effects are important. The necessary
verification observations will probably have to be collected specially for the
comparisons, and obtaining them wiil be a non-trivial problem, to say the
least. (Models of smaller regions such as rivers, estuaries and coastal seas
provide exampies of how such models may be adjusted to simulate a geophysical
flow acdequately, that is, to predict the information which we want, such as
tidal currents, height of storm surges or the effects of engineering struc-
tures on the circulation. We are still a long way from having the necessary
data base to follow this sort of procedure in the open sea.) Once an

adequate mode! of a reasonably large ccean region (for example the North
Atlantic) is achieved, parameterization schemes that allow simulation of the
desired larger-scale features with lower resolution can be expiarec and

larger regions on lcrnger time-scales can be studied. Until the fine resolu-
tion to allow all important dynamic effects is achieved, and adequate de-
tailed verification datz are obtained allowing modellers to work back up fo
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limited resofution, it may be difficult tc devise paramsterization schemes
that will allow adequate simulaticns of the rea! ocean for large regions and
long time-scales. Work fowards these goais will no doubt continue.

There is also the question of whether or not a complex non-linear system, such
as the ocean or the atmosphere or the combined ocean-atmosphere system, has a
unique statistically steady solution. Examples of much simpler non-linear
systems which are always oscillating con be consiructed. The decade~to-
decade variations in climate that occur with apparently the same externa!
_solar and tidal forcing suggest that the combined system may be able o exist
in a number of guasi-steady states with jumps from one to another when a

lerge perturbation occurs. There are variations in the forcing, however, (for
example, variations in the sciar wind with the sun spot ¢ycle and the earth's
orbital parameters) sc the system may be predictable given the right asta.
There is some evidence that very long-term climatic fluctuations are assoc-
jated with the periodicities of the earth's corbital variations. Much more
work will have to te done before this question of uniqueness can be answered
wiTh any assurance.

Much work has been gone on the time-dependent motions, which we have mentioned
only briefly, as our concern has been with the large-scale average circula-
tion. This work starts with consideraticns of planetary or Rcssby waves
mentioned in Chapter 12, and includes such things as effecis of topography on
these waves and their interacticon with one another as non-linear effects be-
comz more important. I leads uitimately, using numerical simulations, to an
investigation of the behaviour of The strongly non-linear case cof guasi-two-
dimensicnal or geostrophic turbulence. The mesoscale eddies, as they are
termed by cceanographers, are probably phenomena of fthis type. Because these
eddies may inferact with the mean flow, this work on time-dependent motions
may be very helpful in our search for & fuller understanding of how the
general circulation works, -

Much more information is needed about this kind of furbulence and also the
smaller-scale three-~-dimensional turbulence which is responsible for frictionai
anc mixing effects. AT present, parameterizaetion of these effects is crude,
targely due tc the lack of knowledge of these phenomena in the ocean and how
they interact with the largs-scale flow. Further work examining various
turbulence models and how these different turbulence models affect the large-
scale circulation is needed. Then observational programmes need to be con-
ducted to gather data to determine which type of turbulence model is most
representative.

Because of the smzll spatial scale and the long time-scale, the logistics
of getting good observations of such phenomena as the oceanic eddies are
extremely difficult. Large efforts have been made by groups from the USSR
(the POLYGON Experiment) and the USA-UK (the Mid-Ocean Dynamics Experiment,
or MODE). Each has observed one eddy fairly wel! and fringes of others.
More of this observational work is underway; POLYMODE, a combination of the
USSR-USA-UK efforts, has begun. As part of these projects a considerable
amount of theoretical work, both analytical and numerical, has been done to
help to design the sensor arrays to optimize the data that have been and are
being collected. in addition to these detailed array studies, examinaticn
of historical bathythermecgraph (a temperature-depth recorder) data and new
more detalled bathythermograph secticns are being examined to get a better
idea of the statistics of the existence and intensity of such eddies in
various ocean regions. These relatively large projects !ike POLYMODE, in-
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volving many scientists and strong interactions between thecretical and
observational oceanographers, are likely to be a common method of future
oceanographic investigations. In the past, most oceanograzphic investigations
have invclved rather smaller groups of people working independently on partic-
ular problems. While this traditional method will continue fo be used, many
oceanographic problems will require the much larger project approach to solve
them. These large programmes of direct observations of deep ocean circulation
are likely fo continue for many years. The results of theory, both analytical
and numerical, must be used to design the observational programme so that data
can critically test the theory. The observational results will no doubt lead
to more modifications of our theoretical ideas until we achieve a better
understanding of the ocean than we presently have.

Studies of the upper mixed layer of the ocean, mentioned briefly in Chapter |0,
will continue. As noted there, understanding of the development and evolution
of this layer, e.g., the formation and breakdown of the seasonal Thermocline
at mid-latitudes, is important for cceanographic purpcses, both physical and
biological, and for meteorologicel purposes.

On the longer time-scale the ocean must play an imporfant role in defermining
the earth's climate and its variations. Thus, a better understanding of the
ocean general circulation is required if we are to obtain a sufficient under-
standing of the physical basis of climate to be abie to predict climatic
variations. Because of the effect of climate variations on human activities,
particularly agriculture, the study of climate and the role the ocean pilays
in it has become an active area of research which is likely to continue for
many years to come.

The problem of generation of surface gravity waves by the wind continues 1o

be an area of active research. We siill do not have an accurate quantitative
understanding of this process. However, the new work described briefly in
Chapter 12 has suggested some interesting new possibilities. Further javesti-
gation of these possibilities may in future lead to a beiter understanding of
this process.

While the dynamic cceanography of coastal and estuarine regions is beyond the
scope of this book it should be noted that the study of dynamic oceanography
in These reglons is also an active area of research, Studies of coastal up-
welling regions and estuaries have important applications because they are
such biologically important regions. The need for better navigation and for
better knowledge of the transport of materials both natural and man-made are
other applications of the study of physical oceanography of coastal regions,

Attempts to calcuiate the tidal response of the oceans from the basic equations
of motion erpe continuing. Such aftempts for the deep ocean are being alded

by the data.cbiained with deep-ses internally-recording ftide gauges. Attempts
at calculating tides and mecre particularly tidal currents are also being made
in ccastal areas. VYhile we can always make tidal predictions empiricaily as
described in Chapter 13, modelling which aliows prediction of Tidal currents

is very important because measurement of these currents in detail is difficulf,
time-consuming and expensive.

Development of new fTools to assist the dynamic oceancgrapher in his investi-
gations is also continuing. The continued development of better moored
current meters is an example, They will provide longer term measurements
more reliably., The data provided by satellites is another example. Sea
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surface temperatures and infrared phoTbgraphs obtained from satellites help
to show the paths of ocean currents. The technique 6f obtaining sea surface
elevations with a relative accuracy of about !0 cm may soon be available.

Such observations would give information on the tides and, with suitable
averaging, information about the stronger currents of the general circulation.
1f an accuracy of the order of 1 cm could be achieved then such observations
along with geostrophic calculations would provide a powertul fool for deter-
mining the general ocean circulation for comparison with theory.

The study of fine structure (vertical variations with scales of one to a few
metres) and of microstructure (scales of centimetres to mil!imetres, i.e.,
the small-scale turbulence) is another area of active research. Such studies
should eventually lead fo a better description and understanding of the
details of the mixing and friction processes and better parameterizations for
vertical eddy viscosity and diffusivity. Better parameterization for the
horizontal eddy processes for small scales should resuilt too. For large
scales, such parameterization may well come from the study of mesoscale
eddies.

The study of the Antarctic region end the Circumpclar Current which we
mentioned briefly in Chapter 1| has been receiving renewed attention in the
International Southern Ocean Study (1S0S) which is part of the International
Decade of Ocean Exploration (1DOE) sponsored by the United States of America
Nationai Science Foundation. (The Coastal Upweiling Ecosystems Analysis
programme (CUEA) is another example of a large scale programme with physical
oceanographic aspects. MODE was and POLYMODE is also partially supported by
IDOE.) The Antarctic Circumpolar Current is the main feature of the only
ocean circulaticn system which has no complete meridional boundary, and is
therefore extremely interesting. Wwhile it is agreed that wind-driving is
very important, there is a very wide range of transport estimafes for the
current and controversy over the importance of other possible driving mechan-
isms. With the more extensive moored current meter dasta being collected in
ISOS as wel! as other cbservaticns, a better description and understanding
of this circulation system sheculd be achieved in the near future.

Clearly, our knowledge of the sea is incomplete at present ernd much remains
to be done. Thus for vhe student interested in observing and interpreting
the oceans there are still many opportunities.



APPENDIX 1

Mathematical Review with Some
Elementary Fluid Mechanics

INTRODUCTION

The purpose of this Appendix is to provide a brief review of some symbolism,
mathematical procedures and some aspects of fluid mechanics relevant o the
text, primarily for students whose field is noft in the physical sciences.

The main syrbols used to represent physical cuanfities in equations in this
text have been given at the beginning of the book (List of Symbols).

For cocrdinate axes we use a right-handed system (Fig. A.la) with the positive
x-axis directed horizentally to the east, the positive y-axis horizontally to
‘the north, and the positive z-axis vertically upward., The corresponding
velocity components are then u positive to the east, v positive to The north
and w positive upward, (! should be noted that The Oceans (Sverdrup et al,,
1946) uses a left-handed system with the z-axis positive downward.)

SCALARS AND VECTORS

Sealar quantities are those which are expressed by a number and a unit only
{e.g., temperaturs, mass) while veetor quantities possess direction in
addition (e.g., veiocity, acceleration, force). The underlining of a8 symbo!
is used fo indicate that it is a vector, e.g., V. |f we use the same symbol
without the undertine it weans the megnitude or size of the vector quantity
regardless of directicn. [For veiocity (V), the magnitude (V) is called the
'speed'. in some texis 'velocity' is used where 'speed' would be sppropriate;
we have tried not to do so.] T is otften cenvenient to split a vector guan-
tTity into comporents, e.g., in Fig. A.lb the vector V, which is directed at
an angle 8 to the x-axis can be resolved into components: Ve« cos®=u to the
east and V+sin@=v o the north. When we wish to be specific about direc-
tien we write V-cos 8 as i+ uwhere i is a 'unit vector' directed o the
east (posijiye x directicn). Then -li u would represent a component u direc~
ted to the_west (negative x directioni. Similarly j and k are unit vectors
in The north (+y) and upward { +2z) directions respectively. Another example
(Fig. A.lc) is where the acceleration due to gravity g, which acts vertically,
is resclved intc a component g-sin@ down the sloping surface which is at
angle 0 to the horizontal and a component g cos & perpendicular to the
surface. In oceancgraphic applications of this resoluticon the angle 9 is
generally small so that g-sin8 is a small quantity while g+ cos8 is large
(rearly equal to g).
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(a) ' (b)

VERTﬁgALLY v = V.sin 8
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Fig. A.l. (a) Orientation of axes used in this text with corresponding
velocity components (u, v, w}, (b) rectangular components cof a
vector (V), (c) compcnents of g on a siope, (d) gradient 8z/6x)
of a slope. -

DERIVATIVES

The abbreviation &z means 'a small distance in the z direction' and éx means
'a smal! distance in the x direction'. Then the quotient §z/8x is physically
a measure of the slope of the surface (e.g., Fig. A.ld) reletive to the horiz-
ontal, i.e., 82/8x = tan 8. In the |imit, when éx is assumed to approach
zero (3x + 0) so thetT we are looking at a point in space, §z/8x is written as
3z/9x which is called the 'derivative', 'gradient' or 'rate of change' of z
with respect to x. Examples of other derivatives common in physical oceano-
graphy are 38S/8x, 3T/ax, 8S/3z, 3p/sz etc. when the derivative is written
with 3, e.g., 35/3x, it implies that the quantity S is known to vary with x,
y, z and t [[i.e., S = Si{x,y,z,1t)] but in this case we are only interesfed in
the change with respect to x and are assuming that v, z and T remain {ixed.

One special.case is when the derivative 3/3t of & quantity is zero, e.g.,
3S/3t = 0, 3u/dt = 0. There is no change of the quantity with time, but it
does not imply that the quantity itfselt is zero, e.g., 3u/3t = 0 means that
there is no.change of'u with respect fto Time at any point in the region under
study but u need not be zero, i.e., the water may be moving but at a censtant
(steady) speed at each point. This situation is referred to as the steady
state. Note also that the combined statements § = S(x,y,z), 35/31t = 0 imply
that § dces not change with fTime anythere but the value of S may differ from
cne point To another,
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The Individual or Total Derivative

in fiuid dynamics a special case arises when a quantity q varies with position
(x,y,2) and with time (1), i.e., q = qlx,y,z,t). Then we will show that the
time derivative dg/dt, called the 'individual' or 'total' derivative (because
it is the time change of g following a particular piece of the fluid) is given
by:

9 . 39 .39 .39 w04 (A.1)
at A A A A !
Loca!l Advective
term terms

Physical ly this equation sfetes that q may vary with time (3g/3t) at a posi-
tion (x,v,z) and alsc vary as the fiuid moves irom this point to another point
{x + 8x, y + 8y, z + §z). The first term on the right of equation A.l is
then called the 'local' ferm and the other three are the 'advective' terms
because they are related to the flcw (advection) components u, v and w.

Tc derive this expression, consider first a case in which the value of q at
all points does not change with Time - the steady state. Mathematically we
write 39q/3t = U0, However, q may stiil change with position. In this case,
a smal! 'parcel' of fluid or 'fluid element' moving through the field must
undergo changes, 1.e., dg/dt # 0 unless q is the same everywhere, initially
we will suppose that there is motion only in the x direction and variations
only in the x direction sc that at time 1 a particle is at point x with
preperty gix) while at a slightly later +ime (t + 81) it is at. (x + 6x) with
property q(x + &x). Now using Taylor's series expansicn we can write:

qlx + §x) = ql{x) + (39/9x) » dx + terms of orcer (proporticnal ‘o)

(6x)2 or smaller

which can be neglected (since in the limit as 8x+ 0 these terms wil| vanish).
The property change trom x To (x + 8x} is therefore (3g/ax) « §x and the rate
of change following the motion is:

)

9, ,
property change . _ (g " 8% _9g

X
time change ) 5+ I

In the limit, as &t + 0, 6x/é+ » u, and the rate of change = u =+ 3q/3ax in the
X direction. |In fthe more genera! case when there are atso v and w components
of velocity and variations in all three component directions, the rate of
change associated with the motion of the fluid is

u - 39 v . 59 + oW o 29
9x 3y 9z

This is the 'advective' component of the property change.

Fd

* we now include changes with time at the point itself in the fluid, i.e
3g/3% {ihe 'locai' rate of change) the 'lotal' derivative will be:

dq _ 29 39 2g 39
-t = 2 4 . - . .
d 3t e TV 3y o 3z

e
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Fig. A.2. (a) Significance of an integral, (b) area under curve obtained

by summation of areas of strips.

The reason for the alternative name 'individual' derivative is because it is
the derivative following the motion of an individual particle of the fluid.

The guantity q may be a scalar property of the fluid, e.g., salinity (S) or
femperature (T), or it may be a vector quantity, e.g., velocity (V). In the
latter case, there will in general be three components to the individual
derivative as:

. . du _ 3du U Qu T, 8u

x direction: T - B -t X + v 5;‘ f W,
. . dv av v v av
: —_— = —_— e —— 4+ . « —

y direction T e + wu ox v 3y + W 2z
. . dw dw aw Iw W
ion: 2w X LS Ve oo oW oo
z direction: 1 5T + u % + ay 3z

INTEGRALS

Integration essentially means summation.- For instance, in Fig.-A.2a we may
want tc determine the velue of the singie-shaded area between the curve, the
x axis and the vertical lines at x = x; and X = xp. We can do so by dividing
the area into narrow strips, such as the double shaded one whose height is vy
and width 8x, and whose area is therefore §A = y; « 6x and then summing the
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areas of all the strips sc that the fotal area

A = S8A = Exly'ﬁx )

and then summing the areas of all the strips so that the total area

x

1
Ify is a simple function of x there are standard rules for 'integrating Y
with respect to x', i.e., determining the value of the integral, but if y is

a complicated or irregular function ot x, as in Fig., A.2b, Fhere may be no
known rule. [T will then be necessary %o go back to the besic procedure

A= 2:2 y * 6x by dividing tre fotal area info a number of thin strips anc
1

adding the individual areas so that A = 8A] + 8A; + 8A3 efc. = y; - déx t y2 » 8x
+ y3+48x + etc. This procedure is used in Chapter 8 in gecstrophic current
calculations.

FIELDS

Physicists use the word field for the disfribution of a quantity in space,
€.g., gecgraphical distribuiions of temperature or salinity are scalar fields
while current distribution patterns represent vector fields, e.g., Fig. A.3b.
|t must be noted that in such field patterns, isopleths (lines of equal value)
ot the property generaily cannot crcss or touch because this would mean that
the quantity had Two different vaiues at the same point,

DESCRIPTICNS OF FLUID FLOW

There ars iwo ways of describing the paitern of fiow in a region: Lagrangian
in which we describe or plot the path (trajectory} follcwed by each fluid
particle, specifying when each particle reaches each point ir its path, and
Eulerian in which we describe the veiccity {speed end direction?) of the fluid
at every point in the fiuid at every insvent cf Time.

These are iflustrated graphically in Fig. A.3 using the North Pacific Ocean
as an example. ¢ The circulation does not chenge with time, then these fwo
figures will be related very simply - eech arrow of the Eulerian paifern will

be a tangent to a continucus line of the Lagrangian pattern. Therefcre, if
current measurements are made at a series of points to cofain initially an
Eulerian picture, the Lagrasngian one may be constructed by drawing continuous
{ines through the arrows so fthat the latter are tangents to the lines. in
this cese the Lagrangian lines will also be true streamlines (lines which at
any given time are everywhere tangent tc the Zulerian velocityl. However, if
the currents are changing with Time, then the streamline partern, which is an

instantaneous feature, will be continually changing and the lLagrangian pattern,
which shows the history of the flow, wiil be a step-by-step summation of the
tulerian pattern and will rot be the same as the streamline pattern for any
time.

it may be noted That the North Pacific exampie which we hawve chosen, The main
{long-time average) character of the clockwise circulation probably does not
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(a)

LAGRANG | AN

(b}

EULERIAN

Fig. A.3. Flow pattern cescribed in (&) Lagrangian manner (flow lines),
(b) Euleriar. ranner (velocities at points).

change much, and the difference petween the Lagrangian trajectories and
individual stream!ine patterns may not be large. However, in oTher places,
such as the western Coral Sea or the Equatorial Indian Oceen, the direction
of the currents reverses during its annual cycle and there is a considerable
difference between streamlire and trajectory patterns.
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CONVERGENCE | DIVERGENCE
(a) _ (b}
at a \\\\//{/
POINT -t >
FLOW DOWN AT CENTRE FLOW UP AT CENTRE
) ’ ' (d)

N S we A A s
::f\i:'//' /}(/’* LINE ﬁ\\‘\\ 4‘\\\\

FLOW DOWN AT LINE FLOW UP AT LINE

Fig. A.4. Flow patterns at convergence and divergence at (a,b) a poinft,
(¢c,d) a line, (continued)

The Lagrangian method is commonly used for descriptions of ocean circulaticn,
using separate patterns for the different seasons if there is a marked seascn-
al variation. |t is the form in which information comes from measurements
made by following driffing floats or buoys. However, it is difficult to
handle mathematically. The Eulerian description is obtained by putting current
meters at a number of fixed points and recording speed and directicn at every
point simultaneously. It is mere tractable mathematicaliy and we use it when
investigating the equations of motion in fthe seas. In principle one can con-
vert from one to the other; in practice one rareiy has enough observations to
do so confidently.

CONVERGENCES AND DIVERGENCES

A commen feature of flow patterns at the sea surface is cne where the flow
converges toward a point or line (Fig. A.4a,c) or diverges from a point or
line (Fig. A.4b,d). In the convergent patterns, because the water cannot just
disappear it must flow downward at the point or line of convergence. For the
divergences, the water must™ come up from below the csurface and then flow out-
ward. These patterns are mathematical idealizations because the down or up
flow has infinitesimal cross-seciion, which is not possible in the real worid
where water is, 1o a first approximaticon, incompressible and where the flow

is not just in a mathematically thin surface layer bui actual!ly has a signifi-
cant depth. In reality, convergence or divergence generally occurs over an
area as shown in Figs. A.4e,f. These are plan views of the surface with the
arrow lengths representing the flow in the convergent or divergent upper
fayer. Figs. A.4g,h show vertical! cross-sections of the ilows above them,
Note that Figs. A.de,f, which show an integrated upper iayer volume flow,
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Flow patterns at convergence and divergence for (e,f)

- plan view, (g,h) area - side view.

are an Eulerian type of representation while Figs. A.4g,h are a Lagrangian

form.

Another point to note is that for @ convergence or divergence along a line,
it is not essential that the fiow be in opposite directions at either side of
the line. For instance, a flow from the left might meet & stationary body of
water on the righi.te.g., a river flowing cut into the sea), or a faster
moving body of<water on the left might be overtaking a slower maving water
body on the right. Also the convergence area may be moving, not stationary.

It is often easy to.identify convergences in the sea because objects floating
at the surface are corncentrated close to the cenire or line of convergence.
Divergences are less commcnly rencered visible but in coastal waters where
there ere strong tidal currents, the subsurface water is sometimes forced to
the surface by bottom irregularities and 'boils' ot water come up to the
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Fig. A.5. Pressure in a fluid: (a} density (p) constant, (b} density (p,)

varying in steps, (c) density {p,) varying smoothly with depth.

suriace and low outward, offen too rapidly to row against. The surfaces of
these boils are usually smocther than the surrounding water and are visible
for this reason,

HYDROSTATIC PRESSURE

The fotal pressure at s point below the water surface is equal to the sum of
The atrmospheric pressure at the surface and the pressure due to The weight
of fiuid above the point. In most dynamic oceansgraphy calcuiations it is
usual to neglect the atmospheric presscure term and use only the pressure due
io the weight of fluid, the hydrostatiec pressure term. The rationaie for
this procedure is that the total aimospheric pressure is eguivalent 1o the
hydrostatic pressure due +o a column of about |0 m of water, while the normal
veriations of atmospheric pressure are eqguivalent +o only about 0.3 m of
water pressure, which is negligible for most purposes.

Referrfng to Fig. A58 if the water is uniform in density o (ignoring the

compressibiliiy effect) the hydrostatic pressure at level z {depth h = -z)

is pz = ~p -g-zwhere g is the acceleration duc to gravity which is here
essumed to te independent of depth. This simple situation is rerely found in
the sea where the density generally increases with depth. |+ the water column
were made up, for example, of three layers each of uniform density as in

Fig. A.5b then the pressure at z = zy +2z; 4 z3 would be P, ==fp1 -2y +ppezpt
p3*Z3) +g. More generglly in The ocean, the density increases with depth in

The manner shown at the right in Figure A.5c with an upper mixed layer of
nearly uniform density, then a zons of increasing density (the 'pycnocline’
zone} grading into a deeper zone of more slowly increasing density. In this
case, if we write do = -p, + g+ dz for the pressure due to a small layer of
water thickress dz where the density is o,, then the fotal hydrostatic
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Fig. A.6. Forces related to a sloping surface.
z
pressure at level z will be p, = fo-pz cg-dz. The minuys signs occur

because z increases upward; with z = 0 at the surface, z is negative below
the surface while p, must be positive. |f the density happens to vary with
depth according to some mathematical! function which can be integrated, then
this integral may be evaluated directly. ricwever, it is usually necessary

to use the procedure of Fig. A.5b, dividing the total water column into a
sufficient number of thin layers, each of essentizliy uniform density, to
represent closely the real distribution with depth. For analytical purposes,
the shape of density variation of Fig. A.5c has somefimes been represented by
an upper mixed-layer cf depth h of uniform density py) and a lower laver of
density py = Py ~{pg-p1) - exp(l+z/h) for z < -h, so that in the icwer iayer
the density approaches asymptotically the deep water value pg.

SLOPE EFFECTS

I a block of wood ,(mass, m) were placed on a sloping surface (Fig. A.6a) it
is quite likely that it wou!d remain stationary because the component
mg+sin8 of ifs weight (mg) down the slope would be less than the possible
friction force up the slope. However, if water were poured on the slope

(Fig. A.6b), the fricticnal force between it and the slope would be much
smaller than the weight component down The slope initially since there is nc
friction until motion begins; the water would flow down the siope with in-
creasing speed until the friction associated with the flow balanced the weight
compenent down slope. |f we had a container of water and established a slope
on the surface (Fig. A.6c) not only would the surface water move to the {efft,
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but the whole body of water would tend to move to the left (assuming that
t+he water were uniform in density). The reason is that at any level in the
water, the pressure pr on the right side of a small cube of water (Fig, A.5d)
would be greater than fhat on the left side py because of the greater depth
on the right. Therefore there would be a net force to the left and a conse-
quent tendency for the cube to move to the [eft. For a fluid of uniform
density this argument applies at all depths from the surface to the boftom.
I+ is an exampie of a barctropic force system, in which the isobaric (equal
pressure) surfaces are all parallel tc each other (and to the surface).

The above statements apply to the situation when the water is Initially
stationary. It is shown in the text that if the water is moving appropriately
(into the paper in the northern hemisphere in this case) the Coriclis force
(see Chapter 8) to the right may be sufficient to balance the hydrostafic
pressure force to the left and the slope may be maintained.

A situation in which the ret horizontal hydrostatic force does not penetrate
to the bottom couid occur if the densiiy of the water in the upper layer
above level AA' in Fig. A.6c decreased progressively fo the right so that the

z
hydrostatic pressure Pp = -fCA p + g+ dz remained constant along AA'. Then

there would still be a tendency for the water above AA' to move to the lett
but if the density were uniform below AA' there would be no resultant hydro-
static pressure force and no tendency for the deep water to move. In the
layer above AA', where the density varies with position, the isobaric surfaces
will be inclined to each other, rather than paraliel, and the force sysiem is
then described as barvelinie.

COMPRESSIBILITY

]

The compressibility K of a fluid is defined as K = - %—- %% where V is volume
and p is pressure, and for a fluid to be incompressible K = 0. Now we can
write

K - _L.ev oo fi ) (ef) | _ (1, av) (o

Vv dp vV dt dp v dt av

where dV/dt and dp/dt are changes with time of volume and pressure respective-
ly, following a small parcel (in the limit infinitesimal) of fluid, If the
pressure is changing but K = 0, we conclude that %. %¥'= 0. Now for a cen-

stant mass m of fluid of volume V and hence density p = m/V:

L,d _ v d ol 1 dv
p 4t m dt |V vV o dt

so that we can regard incompressibiiify as meaning either %n :¥ =0, or
1,4

p dt 0
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CENTRIPETAL AND CENTRIFUGAL FORCES

Acceleration is defined as the rate of change of the velocity ci a body and
may consist of a rate of change of the speed and/or of the direction. 1f the
bedy has mass, a resultant force along the direction of motion is required to
cause the change ct speed. [1f fthe direction of moficr is changing, the body
must be fravelling on a curved path and there must be ancther resultant fcrce
cirected inward toward the cenire of curvalure of the path. This force, whicn
acts on the body itself, is celled the centripetal torce. Kow Newicn's Thirg
Law of Motion states that to every acting force there must be a reacting
torce, equal in magnituce, oppesite in direciion and acting on another budy.
This reaction is called the centrifugal force end it is important to note
that it ¢oes not act on The body itself, but on something else.

A simple examdle of this force pair is provided when a small mass attached
t¢ a8 string is whiried round in a circle the inner end of the string being
held in the hana. Then the inward force of the string provides the centrip-
etal force on the mass, while the outwarg pull of the sitring on the hand is
the cenirifugal icrce.

Scre euthors study the dynamics ci such a system by vsing 2 fictional outwarc
*orce on the mass {(equal! to its mass x its acceleration) and cail this a
‘centrifuga! force'. While ™ e procedure of using an outward 'mass acceler-
ation' is a legitimate (and cfter convenient) device for solving the dynamics,
it is incorrect to cal! this the 'centrifugai' fcrce. we prefer to treat
sroblems in rotation in terms of the Zrward directec centripetal force on the
Tass ivself,

In the exegmp'!e sbove, the tension in the siring acting on the rotating mass
provides the centripetal force while in the astrecnomical case, the gravitation-
al atirection of the earth on the moon, for example, praovidas the centripetfal
force needed t¢ main*ain The moen in orbit., Likesnise, the reciprocal
gravitational atiraction of the moon «n the earth provices the centripetal
force needed o make the earth revoive about the centre of mass of the earth-
nocn system,



APPENDIX 2
Units used in Physical Oceanography -

INTRODUCTION

Hitherto, physical oceanographers have used a mixed system of units which has
its advantages for those thoroughly familiar with i+ but which offers some
difficulties for the beginner in this field¢. Beceause the International System
of Units (zbbreviated Si) is now coming into general use we have used i1 in
this text. In S! there are base units and derived units (from the base

units}, and a number of temporary units are accepted bui wiil be phased out
of use eventually. In the following we will first list the base, derivecd and
temporary units used in dynamic oceancgraphy and then will relate them fo the

older mixed units. Our basic reference for S| practice is the Metric Practice
Guide published by the Standards Council of Canada (reference CAN-3-001-02-73,
CSA Z234.1-1973).

BASE UNITS

The base units used ir this text, their abbreviations and physicai dimensicns
are:

Quantity Base uUnit Apbbreviation Dimension
Length - metre m I
Mass . - kilogram kg (3
Time - second s T2
Thermodynamic

temperature - Kelvin K [«]

DERIYED AND TEMPORARY UNITS

The units are given with their abbreviations and under ihe name of The unit
is given the symbol used in equations in this text. On the right are given
the physical dimensions of the unit in terms of length (L), mass (M), time
(T} and thermodynamic temperature {above absolute zero) (K).

Length: 1 centimetre {cm) = 1072 m Fe]
(D) 1 decimetre {Gm) 0=t m
1 kilometre (k) = 10 m
1 lInternational nautical mife (n ml) = 1,852.0 m {femporary unit)
Mass: 1 gram (g} = 1073 kg [M]
(m, M) 1 tonne (t) = 10% kg



Time: © 1 minute
(t,T) 1 hour
1 day
1 year
Area; -
(A}
Volume:
)

Speed; components:
(V; u,v,w; C)

Acceleration:
(a)

Censity:
(p)

Relative density:
(d)

Specific volume:
(a)

Force:

(F)

Pressure:
(p)

Energy:
(E, W)

Bynamic Viscosity:
(u? '

Kinematic viscosity:

(v = pyp~ 1)

Kinematic diffhsf#i%y:

(x)

Temperature:
(M

Units
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[7]

(86,164 s = 1 sidereal day)

knot (kn) = | neut ml b~} = 0.5{4ms™!
(temp. unit) . : T T

1ms?

1 kgm3=10"3gcm?

Value given relative to water for liquids
and to air for gases - fermerly 'specific
gravity' (pure number ~ no units)

1m kg_1 = 103 cm? g'l

Newfon (N) =1 kgms'2 = force required

to give 1 kg mass an acceleration of
1ms 2 (=105 dynes - not in 51).

|2

1 Pascal (Pa) =1 Nm=2 (= 10 dyn em™2)

1 Joule (JY =1 N-m

1 Pascal sécond (Pa s) = {0 poise (P)
(not in SI)
1m? g7l = 0% om? 571 = (0% Stokes (St)

(not in Si)

" ..The Celsius temperature (°C) is the differ-

ence between the thernodynamic temperature
T and the femperature T, = 273.15K
{unit = 1K)

23

L33

CLr-1]

(min) = 60 s
(h) = 60 min .
(d) = 24 h = 86,400 s (mean solar day)
{a) = not defined in S!, here taken as
365 d.
1 m?
1 md
1 litre (2) = ) dm3 = 1073 m3
(not used for high precision measurements, not SI)
Lms™! = 102cms™!
i

[LT-2]

mL=3]

[M-1i3]

[MLT-2]

[ML-1t1-23
CrL27-23
ML-1771]
fLzr-13
CL2r 1]

[K3
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UNITS USED [N DYNAMIC OCEANOGRARHY AND SOME NUMERICAL VALUES

Some of these units are peculiar to physical oceanography; numerical values
for some of the quantities are given for illustration.

Sverdrup : a unit of volume fiow = 106 g3 s~1 CLiT-1]

Salinity : the physical definition is: 'The tota! quantity of scolid

(S) material in grams contained in one kilogram of sea water when
all the carbonate has teen converted to oxide, the bromine and
icdine replaced by chlorine and all organic matter completely
oxidised.' |t is expressed as parts per thousand (%) and
has no units. The mean value for the oceans is about 34.7 %,
with values in the Red Sea up to 40 %, and vaiues close to
0 % in coastal regions near rivers. In practice, salinity
is now determined by measuring the electrical conductivity
relative fo a standard sea water and converting to safinity
using tables prepared from laboratory determinations of the

conductivity/salinity relationship. ) [pure number ]
Density: s a function of §, T and p, i.e., p = p(5,T,p). mL=3]
(p} For sea water of salinity 35.00 %, temperature [0.00 °C at

stapdard atmospheric pressure (= zero hydrostatic pressure),

p35s 199 = !,026.97 kg m~3, Strictly speaking, the quantity

which the oceanographer calls 'density' is operationally
measured relative to pure water as the standard and is really
‘relative density'. However, in physical equations it must be
treated dimensicnally as density.

Sigma-t: This quantity is introduced for convenience and is de- [ML'3]
(o) fined as: o4 = (pg 1. 0 - 1,000.00). For the sample of sea

water above, the valué of oy = 26.97. (It is usual to omit the
units (kgm~ %) when stating values for o4, which is usuzlly used
for descriptive purposes rather than as a component in equations.)

In the mixed unit s%sfem, with p in g cm~3, sigma-t is defined
as gy = (p-1) x 0%, which gives the same numerical value as
the S1 unit definition given above.

Note that although sea water density may be stated to six
significant figures, and o4 to four figures, the absoclute values
are not known To this accuracy. Differences between densities
for typicak oceanic waters may be accurate fo the second decimal
place (0.01 kg m™3) but absolute values only fo the first
decimal place (0.1 kg m3), i.e., five significant figures in p
or three in Ope

Specific volume: Is a function of S, T and p, i.e., a(S,T,p). (M 137
(a=1/p) For sea water of salinity 35.00 %, temperature 10.00°C -
at standard atmospheric pressure, asc 1,5 = 0-973738 x 1073 m3kg™1
Note that in the symbol a,s ;4,0 The zerc for p indicates that
the value is for zero hyarOSTafic pressure (but at atmospheric
pressure as would be the casé in a laboratory determination).

Specific volume anomely: Oefined as & = ag ¢ , - ag, [v1L3]
(&) with units m3 kg"l. e 35:0-P
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Thermosteric anomaly: A term in the expansnon of § (see text, Im112]

(AS,T)

Pressure:
(p)

Geopotential:

(®)

Viscosity:
(u, v,
Ax,Ay,AZ)

Diffusivity
(KT, KS)

Chapter 2). SI units £2re m3 kg 1; tor o4 = 26.97, the value

of Ag 1 = 109.8 x 1078 m3 kg1, |n The old mixed units system
the corresponding value is t09 8 x 1075 cm3 g~!, or 109.8 cI

(centilitres) tonne™! to avoid having to write The power of 10.

(Here 1 fonne = 1,000 kg, 1 cl +=1 = 10-8 m3 kg-1),
1 bar = 103 mb (= (0% dyn cm™2) = 105 Pa = 100 kPa, (ML-1T-2]
(not St) © 1 declbar = 1 db = 10% Pa = [0 kPa,

Standard atmospheric pressure = 1,013.25 mb = 10(.325 kPa,
in the open ocean, the pressure at a geometrical depth of
1,000 m is about {,010 db = {0,100 kPa.

The work done per unit mass to raise a body vertic- [L2772]
ally through a smatl dxsfance z in The vicinity of the
earth = g+ z Joules kg=l. In S| the unit of ¢ is 1Jkg"l=1m2 52
and the acceleration due 1o gravity g 9.80 m 5”2, then for a
vertical lift of 1 m, 8¢ = 9,80 J kg~! ’

In the past in dynamic oceanography, a quanTITy catled *dynamic
height' (D) has been used. This is geopotential expressed in
units such that 1 dynamic metre = 10.0 J kg~! = [0.0 m? s~ 2,
Then the dynamic height difference between the sea surface and
1,000 m geometrical depth = -980 dyn m for g = 9.80 m s~2,

For sea water of S = 35% at T = 10°C,

Molecular viscosity - Dynamic w=1.4x)073 kg m—1 51
- Kinematic : v=p.p-l = |.4 xIO"6 2 g-1
Eddy viscosity - Kinematic : A, A, up fo 105 més™l,
A, up tc 10~ m2s-l,

: For sea water, kinematic:
Molecular diffusivity: for heat, xy v 1 x 10-7 m?s™1
for salt, k ~ 1 X 1079 2 s 1,

Eddy diffusivity: same ranges as eddy viscosity above.
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Goldberg, E.D. et al. (Eds.); The Sea: Ideas and Observations, Wiley-
Interscience, Yol. 6, 1977, p. (048, Marine Modeling, A collection of
papers on modeling of physical, geological, chemical and biological
systems in the sea. :

Hill, M.N. (Ed.); The Sea: Ideas and Observations, Wiley-Interscience,
Vol, 1, (962, p. 864. Physical Oceanography. A collection of advanced
papers on dynamical oceanography.
Vol. 2, 1963, p. 554. The Composition of Sea Water; Comparative and
Descriptive Oceanography. A series of mainly descriptive papers on the
chemistry, biology and physics of the oceans.

Hinze, J.0.; Turbulence, McGraw Hill, New York, 2nd Edition, 1975, p. 790.
A comprehensive advanced text.

Ippen, A.l.; Estuary and Coastline Hydrodynamics, Mcbraw Hill, New York, 1968,
p. 744. A coflection of papers summarizing wave and tide thecry,
harbour resonance and many aspects of estuarine dynamics,

Kinsman, B.; Wind waves, their generation and propagation on the ocean
surface, Prentice-Hall, 1965, p. 676. A detailed mathematical review
of wind-wave generation and characteristics,

Lacombe, H.; Cours d'Océanographie Physique, Gauthier-Villars, Paris, 1965,
p. 392. Covers many of the subjects in the preseni text (not tides rnor
mode!ling) but in more mathematical detail.

Lamb, H.; Bydrodynamies, Dover (Reprint), 6th Edn., 1932, p. 738," The basic
reference on classical fluid dynamics.

LeBlond, P.H. and L.A. Mysak; Waves in the Ccean, Eisevier, Amsterdam, in
press 1978. A comprehensive, up-~to-date, advanced text.

Macmiilan, D.H.; Tides, American Elsevier, New York, 1966, p. 240. A non-
mathematical description of ccean tides, observing instruments, bores,
efc., with photographs.

Mclellan, Hugh J.; Elements of Physical Oceancgraphy, Pergamon, 1963, p. 150.
An introduction tc descriptive and dynamic physical oceanography.

Neumann, G. and %.J. Pierson; Principles of Physical Oceanography, Prentice-
Hall, 1966, p. 545. Moderately advanced text on dynamic and descriptive
oceanography. '

Oceanography - Readings from Scientific American; Freeman, 1971, p. 417. A
collection of stimulating articles from Scientific American on many
aspects.of. oceanography. ’

Officer, C.8.; Physidal oceanography of estuartes and assceiated coastal
waters, Wiley, 1976, p. 465. A moderately advenced account of the
physical theory, and zpplications to typical areas around the world,

Phillips, O.M.; The Dynamiecs of the Upper Ocean, Cambridge University Press,
1966, p. 261. A greduate level text on surface and interna! waves and
on oceanic turbulence.
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Pickard, G.L.; Descriptive Physical Oceanography, Pergamon, 2nd Edn., (975,
p- 214, An infroduction fo descriptive (synoptic) oceanography for
science undergraduates or graduates.

Pierson, W.Jj., G. Neumann and R.W. James; Practicql Methods for Observing
and Forecasting Ocean Waves, U.S. Naval Oceanographic COffice, Publ. 603,
1955, p. 284. A technical treatise with applications and a chapter on
wave refraction plotting. ' :

Proudman, J., Dynamical Oceanography, Methuen, 1953, p. 409. A basic mathe-
matical treatise with much detail about waves and tides.

Reid, R.0. (Ed.); Numerical Models of Ocean Circulation, National Academy of
Sciences, Washington, D.C., 1975, p. 364. Proceedings of a symposium
on numerical modelling. Advanced level but does include several review
papers on the character of ocean circulation and some discussion on
directions for future study.

Robinson, A.R. (Ed.); Wind-driven ocean circulation, Blaisdell, 1963, p. 16].
A coliection of reprints of papers on the theory of this subject.

Rotl, H.U.; Physics of the Marine Atmosphere, Academic Press, New York, 1965,
p. 426. An advanced descripticn of the influence of the sea on the
atmosphere above it, characteristics and turbulent flow of the atmos-
phere, thermodynamics.

Russell, R.C.M. and D.M. MacMillan; WYaves and Tides, Hutchinscon, 1952, p. 348,
Mainly descriptive, with illustrations,

Stern, M.E.; Ocean Circulation Fhysics, Academic Press, 1975, p. 246,
Geophysical fluid dynamics for graduate physical oceanographers - mathe-
matical.

Stommel, H.; The Gulj Stream, University cf California Press, 2nd Ecn., 1964,
p. 248. Both a description of this ccean feature and a review of
theoretical stydies of it., An excellent introduction to physical oceano-
graphy for upper year undergraduates and graduate students in physics.

Sverdrup, H.U., M.W. Johnson and R.H. Fleming; The Oceans, their Physics,
Chemistry and General Biology, Prentice-Hall, New York, 1946, p. I087.

A comprehensive reference ‘text on all aspects of oceanography.

Tennekes, H. and J.L. Lumley; A first course in turbulence, MIT Press, 1972,
p.- 300. A first course for graduate students,

Tricker, R.A.R.; Bores, Breakers, Waves and Wakes, Elsevier, 1965, p. 250,
An interesting account of waves near the shore and of bores in rivers.

Turner, J.S.; Buoyancy effects in jluids, Cambridge University Press, 1973,
p. 367. Discusses various consequences of gravity acting on small
density differences in fluids, e.g., internal waves, instability of
shear flow, buoyant convection, double diffusion and mixing. Graduate
level
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Veronis, G.; 'lLarge-scale ocean circutations' in Advances in Applied
Mgchanies, 13, 1-92, 1973. A review of analytic theory with careful
attention to approximations used, some discussion of attempts at labora-
tory simulation of oceanic flows,

Yon Arx, W.S.; An Introduction to Physical Oceanography, Addison-Vesley, 1962,
p. 422, A stimulating introduction 1o physical oceanography, with spec-
ial emphasis on current measurements and the use ot physical scale
models.

Wiegel, R.L.; Oceanographical Engineering, Prentice-Mall, 1964, p. 532,

Some of the applications of physical oceanographic knowledge, particutar-
ly with relation jo coastal structures and with emphasis cn waves,

JOURNALS

Recent papers in dynamical physical oceancgraphy may be found in these
(and in many others as the reader may find on examining the references):

Deep-Séa Research. Pergamen Press, Oxford (since 1953),

Journal of Geophysical Research - Cceans and Atmosphere. Amer, Geophys.
Union, Washington, D.C. (since 1959). (former!y Truns. A.G.U., see
below,) A

Journal of Marine Research. Sears Foundation for Marine Research, New Haven,
Connecticut (since 1939).

Journal of Physical Oceanography. Amer. Meteoroiogical Society, Lancaster,
Pa. {since 1971).

Oceanus. Woods Hole Oceanographic Institution, Woods Hole, Mass. ({from
1952). Has shori, up~to-date, non-mathematical accounts of recent
developments in most aspects of oceanography.

Tellus. Stockhoim, Sweden (since 1949),

Trensactions. Amer. Geophys. Union, Washington, D.C. (1920 to 1958),

Two annual reviews of various aspects of oceanography are:

Barnes, Harold (Ed.); Oceanography and Marine Biolegy. An Annual Review.
George Allen and Unwin, London. (from Volume |, [1963).

Warren, B.A. (Eé;s; Progress in Oceanography, Fergamon Press, Oxford.
(from Yolume 1, 1964).
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TABLES
Sets of numerical data useful in the numerical practice of dynamic

oceanography may be found in:
Fleming, R.H.; Tables for Sigma~t, Jowrnal of‘MarineAResearch, 2, 9-11,
Tables of values of temperature and salinity for whole number

(1939). _
of values of sigma-t.

Handbook of Oceanographic Tables; U.S. Naval Oceanographic Office, Special

Publication 68, Washington, D.C., p. 712, (1966). A collection of
tables of use to oceanographers.

Instruetion Manual for Obtaining Uceancgraphic Data; U.S. Naval Oceanographic
Office Publication 637, Washington, D.C., p. 2i0, Third Edition (i%68),
Reprint (1970}, A description of routine oceanographic procedures and
of standard instruments.

International Oceanographic Tables; Unesco, Paris, & National Institute of

128, (1966). For the con-

Ocearography, Wormley, England, Vol. i, p.
version of conductivity ratic to salinity.

Knudsen, M.; Hydrographical Tables, C.E.C. Gad, Copenhagen, p. 63, (1901).
Tables for the calculation of sigma-t from values of salinity and

temperature.
Lafond, E.C.; Processing Ocewiographic Data, U.S. Naval Oceanographic Cffice
114, (I1851). A compilaticn of

[

Publication 614, Washingten, D.C., p.
tables needed for correcting thermometers, calculating censity, specific
volume, etc.
Tables for Sea Water Denmsity; U.S. Naval Oceanographic Cffice Publication
Tebles for calculating sigma-t

615, Washington, D.C., o. 265, (1952].
from values of salinity and temperaiure.
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Acceleration,

advecfive,44,83,l48,I52,I79,192,l93.

centripetal,36-38,56,199.
Coriolis,55,68,

due to gravity,36,37.
gravitational, 36,37,
local ,216. _

Adiabatic change,6,7,23-28.

Advection, 140,141,

Advective term,138,14Z.

Analyfic solutions, 32,33,9!, 118,145,
147.

Angular momentum,12,13,32,122.

Anticyclenic,57.

Axes,
coordinate,3,32,38,55,214,215,
fixed, 35.
rotating, 35.

Baroctinic,
compensation,93,126.

distribution,75,76,109,118,153,158,

161,163,164,166,167,191,224.
Barotropic distribution,75,76,87,153,
158,161,193,224.
B(beta), 38,193,194,
plane,38,111,150,191,193.
Biharmonic operator, 114,
Biological production,$2,126,141.
Boundary,
conditions,32,94,104,117,128,137,
138,141,148,149,161,179.
eastern, 130, 131.
layer,32,90,127-130,133, 141,
western, 118,129-131,134,136,151,
152,154,155, 167.

Boussinesg approximation,53,72,86,115.

Brunt-Vais3 |, frequency,28,53,190.
Buoyancy,?24,52,53,72.

Circulation,
atmospheric, 145.
deep, | 34-136,140,155,158,165.
surface,81-83,123,158,160.
Thermohaline,ll8,134—l44,152,|66.

wind-driven thecry,81-133,1656,181.
Ekman, 8!,86-97,101,127.
Munk, 82,1 14=-118,131.
Stommel , B2, 110-112.
Sverdrup,82,97-110.
worid ocean, !61-164,181.
Climate, atmospheric,212. .
Climatalogical average, |14,134,144,150,
156.
Closure, 44,143,149,
Compressibility,23,24,224,
Conservation,
energy, | 2.
heat, 12,136-140, 142,148, 152.
mass, 12,15, 16,105.
salt,!36-140,148,152.
volume,2,15-22,121.
vorticity, 121,136,
Continuity,equation of (see Equation}
Contra solem,>7
Convergence,21,22,93,IOS,l20,|22,I4I,
190, 196,202,220,221,
Coordinate systems,
Cartesian, 38.
rectangular,38.
spherical, 38,153, 161.
Coriolis
force,I3,I4,36,56,57,59,60,68,70,78,
82,87,89,93,96,97,!I0,|25,I26,I37,
i53,165,170,191,192,193,224.
parameTer,SB,lil,l66,l93,2f0.
Terms,32,35—37,43,48,50,5I,54,80,83,
86,98,120,127,144,165,191.
c,T,0,6.
Cim sole,27.
Current,
Antarctic Circumpolar,SD,l6l-|63,2|3.
baroclinic, 107.
barotropic,99, 152Z.
boundary, 155,161,
Ekman,9l.
equatorial,82,102,117,156.
geosTrophic,77—79,92—96,I02,I03,[34,
“151. ‘
fongshore, 75,
measurement,bl.
North Eguatorial, 102,

235



236 I ndex

North Equatorial Counter, |02.

rip,175.

slope,75.

Somali,|54,155.

tidal, I3 78 96,196,202,206,210,
212,

western boundary,lOé,lI7,[30,|3I,
134,136,151,152,154,161, 163~
165.

wind=-driven,81-133,

Cyclonic,57.

Day,
lunar, 200.
pendulum,57,143,191,192
sidereal, 35,57,
solar, 35,200.

Density,4-11,222,
gradient,23,27,71,72,75.
in situ,7,24,27,28.
potential,23,24,
relative,b6.

Bepth,
definition,3.
of frictional influence,88,90.

Derivative, 127,215,

" ‘individual or total,40,137-139,

216,217.

Di fference,
backward, 46,
centred, 146,147,
finite,20,146, 147,
forward, 146,147,

Diffusion, 140,141,153,
double,23,28,29.
molecular,29,

Diffusivity (salt,heatl,
eddy, 1 38-140, 149,153,155, 164,

213,
mo lecular, 137,

Divergence, 93,98, 105,106,120, 121,126,

i41,146,190,193,196,202,220,221.

Downwel ling,94,155.

Drag coefficient (Cpl),88,90,112,113,
117,118,141,149,166,167,181.
step~function, | |3-114,149,

Dynamic metre,58,68.

Elstability,Hesselberg),25-28.
Eddy, mesoscale, |33, 160, 164-167, 194,
211.
Eddy transfer,4. :
Ekman,
current spiral,88,89,92,96.

depth, 88,90,97, 122,
layer,88,90,92,94,96,105,106,114,
128,141.
Number,51,54,80,86,127,128.
“pumping, 105, 141.
transport,94,99, 105,107,110, 126.
Energy,
kinetic, 164,166,187,
mesoscale eddy,f64
potential,52,106, 107, IIO 164,165,
- 187,
Equation
of continuity,15-22,32,33,45,72,79,
61,52,98,104,109,122,134,139,
142,147,148,192.
Ekman, 87.
geostrophi¢,60-80, (27,132,
hydrostatic,49,53,55, 60 68,79,806,
106,127,222-224.
Murk, 117,123, 128.
non~dimensiona|,128.
rnon-|inear,32,33,44,57.
of motion,31-55,83,86,91,106,121,
127,142,144,147,148,202.
of state,7,23,50.
Reynolds,44,45,53,138.
Sverdrup,99, 100, 104 (see also under
Sverdrup Equation simplified).
application, |00-104.
vorticity, 128,
Estuary, 16,145,212,
Eulerian flow pattern,40,79,218,219,
220,221.
Evaporation, 105.

>

f (Coriolis parameter),37,38,98,107,
111,120,121,125, 133,

f-plane, 38.

Field,218.

Fjord,208,209.

Flow,
baroctinic,75-77,107,110,165.
barotropic,75~77,107, 108, 110.
bottom Ekman, |10,
dynamically similar,41,
Ekman, 90,98, 128,
estuarine, 16.
geostrophic,60-80,90,94,98,99, 105,

106-108,110,128,142,158,160, 165,
167.

inertial,56.
feminar,4!.
thermchaline, 134-135, |67.
tidal,9],
turbulent, 41,139,
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Fluid,
homogeneous 18.
mechanics, elerenfary,218 -224,
‘Newtenian,84.

Force,
centrifugal,225. :
centripetal, 198,199,225,
gravifafional,l98,599.
pressure,85.
primary, 3.
secondary, 13.
t1de-producing, 196,200-204.

Form drag, | 79.

f-plane, 38.

Frame, fixed, 4.

Friction, bottom,94,125,152.
fluid, 13,39,48,73,79,81-118,

126-131,141,166,

lateral ,87,104,114,115,118,124,
125,150.

vertical,l14.

(see atsc Viscosity.)
Froude Number,41.
Fundy, Bay of,206,209.

GEK, 72.

Gecpotential ,57-59,62,63-67, 70-73,
107,110.
anomaly,58,65-67.
distance,58,59.

Topography,?Z 75.

Geostrophic relation,G0-80,84,109,
117,127,134,140, 144,151, 167 I93
213,

Gradient, 99,

Gravitation, 36,191,
225,
astronomiceal, 4.
Constant of,36,199.

Newton's Law of,12,13,39.

Gravity, acceleraflon due to, 4,137,
197.
reduced, 132.

Grid, 146,148, 161,

Gul f Siream,42,48-50,53,60, 6i 78,
180,97,106,117, 118 128, l3|—|33
136, |44 I56 I58 160,161,164,166,
167.

Gyre,99,103,|O4,II7,|18,128,|29,|33,
151. ’

138-140,215.
196, 198,200,201,

Halocline, l41,189.
Harmonic analysis,203.
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Hemisphere,
northern, 37,57,58,64,65, 69 70,72,
75,81,87- 89 92,95, |2I-123 I92
224.
southern, 37,57,58,64,65,75,81,87,
88,92,95,96, 192,
lncompre55|b|I|Ty,l5 18,32,106,108.
inertial,
enhancemenT,lSZ,lﬁO,lél
motion,56.
terms, 41,167,
theory, 131-133,
Instability, 43,165,191,
baroclinic, 165,168,194,
barotropic, 165,168, 194.
computational, 156.
double diffusive,2S.
dynamic,29,40,53.
static,27-29,153.
Integrat, 217,218,225,
Integration, tims,[48.
interior of ocean,50,51,55,68,86,123,
127,129, ISI‘I34 l40 l4| l44 I53
i55,l6l,l64,167.
Inverted barometer effect, 4,191,209,

, 166.

Kurcshic,48, 117,136,151,
167.

152,161, {64

Lagrangian flow pattern,40,79,218,219-
221.

Latent heat of evaporation,4,4l.

Layer, -
boundary, 90, 128-130.
hcmogeneous , 21 .
mixed,90, 140-143,212,223.
upper, 131,132,141,
wind-driven,8I[.

Laws, basic,!Z.

Layering,29.

Level of no motion,72-75,77,117,144,
158-160,167.
reference,72,l59,!60.

Loca! term,Z2i6.

Mathematical review,2i4-225.
Measurement accuracy,il,78.

MODE experimenf,l94,2!|,2|3.
Mocel, .
anaiytical, 110,113,

8ryan & Cox, 161,152,
Cox,152-155, 161-164.
diagnostic, 155-161,163,166.
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Holtand'& Hirschman, |55~160, 164, .synoptic,l.
166. " Operator,
inertial, 131,133, biharmonic, 114,

mechanistic, 145,146,165,166.

Munk,}14-118,144,145,150-152,156,
158, 16].

Niiler,42.

numerical ,82,118,144-167,210,

O'Brien, 150-153, (61.

prognostic, 155,156,161,163,164.

simulation, 145,146,152,165,166,210.

Stomme !, 110,117,134,210.
verification, 54,
Monsoon, 152, 54,
Motion,
mean,42,45,62,
meridional, 22,23,
thermohaline, 3,118, 134~136, 140,
141,
zonal , 122,i23.
(see also Circuletion,Current)

Nansen's argument,B82,83,95.
Navier-Stokes equations,39,44,45,137,

138.
“Newton's .

First Law,12,3l.

Second Law,2,12,3l

Third Law, 12,225,

Law of fricfion,94.

Law of gravitation,!12,39,199,
Non-1linear

effects, 54,160,211

process, 180,181,

terms, 34,40,41,44,45,4%,53,80,87,

Ql1,115,118,123,126,127,131,142,
144,145,148, 152,1€6,170.

No-slip condition,32,104,117,128,130,

133,
Numerical

methods,91, 146~148.

model ling,144~-167.

Ocean
Atiantic,48,74,99,110,125, l34 i35,
155-160, 167 210,
hemogeneous, 87,97, 101,
Indian,10,125,136,152,154,219.
Pacific,48,62,74,i0t-104,110,116,

125,136,151,152,161,167,179,
188,218,219,
Oceanography,
- descriptive,|,2,12,47.
dynamic,i.

"Rotation of earth,13,54,81,111

divergence, 105,121.

gradient,35.
Oscillator,

hal f-wave, 207,208,

quarter-wave, 208,

Parameterization,44,153,210,211,213.
POLYGON experiment, 194,201 :
POLYMODE experiment,211,213.
Precipitation,105.
Pressure, 6,34,
atmospheric, [3, 4.
force, 32-35,83,95,97,106,125,132.
gradient,93,97,108, 11,126,131,
144,191, .
hydrostatic, 7,55, 181,222-224.
Properties of sea water,4-I1.
measurement accuracy,||.
tables, 7-9.
Pycnocline, 126,141,222,

Radiation,solar, 137,141,142,

Reference lével,72.

Reynolds
Nurmber,40-42,49,52,54,85.
flux, 42 38, I39
sTress 42 46,138,179,

Richardson Number,53,54,l43.

Rigid |id approximation,|55,158.

Ripples, 169,170, 180,190.

Rossby
Number, 5I 54,80,127,128.
radgius, I33 I66

S119,

191,192,197, 200.

Salinity,definition,4.

Salt fingering,29,

Satellite data,l44,212,213,
Scalar,214,217,218,

Scale IengThs, typical,48,49,54,80,

103,127,133,
5ca|lng,A| 47-57,79,130.
Scheme,

explicit, 147,148,
implicit,147,148.

Sea, 1 78,
fully developed, 180,184,186,
siope, 38,

Seiche,207,209.
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Seismic sea wave,|87. torerunners of, 170,173.
Shear,current (velocnfy) 29,84,85 87 System, International (units),3,226-
1EL,114,115,119,121,125,134, I35 228,

143,[44,[49,]79,I9l.
Sigma-t (g4),6-9,11,27.

Sigma-8 {(ogl,7. Tangent plane,38,110.

Slope effects,223,224. ' Temperature,

Source function,!37,138. in situ,5,26.

Specific volume,7-9,11,26,107, potential,6,7,23.
anomaly,7-11,25-64. Term, local,2i6.

Spectrum,wave co-cumulative, 84,185, Thermal wind equations, 71,72,
wave directional, [69. Thermocline, 126,134,136, 140-143,155,
wave energy, (69,184, 189,212.

Spin-up, 151,153, ' Thermohal ine

Stability, : driving, 153,158,

‘ computational, 148,149,155, . effects,32,134-144,
dynamic,51,52,165,(91. Thermosfer:c anomaly,7 i, 27
E, Hesselberg,25-28. : Tide, 168,187,156-209,212.
neutral ,23,24,26,27. classificafion,ZOS.
static,23-30,45,46,48,51-53,90, constituents, 202,203,
126,139,141, l43 currents, 196,202,206,210,212.
| values 26 deep ocean,206.
. Steady state,97,105,109,110, |I4 159, diurnat, 204,205,
215,216. ebb,206.

Stokes! drift,175. : flood, 206.

Storm surge, 107,145,209,210. in bays,Z206-2089.

Stratification,42,48,49,190. measurement, 204,205,

Stream function, 104,1{09,110,114,129, neap,205.
131,151,156-158, 162, prediction, 202,203,212,

aTreamllne 109,110,114, l!6 117,162, range, 204-206, 208,209,

218,219. resonance, 206-209.

Stress, semi-diurnal,204-206,209.
boffom,108,|!5. spring, 205.
friction,85,87,89,101. theory, 196,201-203.
normal,13,14,179,180. : Types,204-206.

Tangenf:al 13,114,179, Time,

Structure, average,42,112.
fine,28,213. : step, 147, I48 161,
micro,ZiS. ’ Topographic sfeer|n5,123 158, 161.

Surf, 172,178,191, : Topography,

Surface, hottom, 109,113,118,123,i45,150, 152,
geopotentiai,b9, 62 74. 153,157,158,164,166,167,193,194.
isobaric,59,62, 64 68-70,72-75, dynamic,68,72,158,160.

165,222, geopotential 72,73,
isopycnal,75,79,126. Transport,G!t,130-133,1306,144,152, 154~

isosteric,75.
level,59, 60 62,71, 73-75.

158, 161,164, 165,167,175,213.
Ekman, 94,99, 105, 107,110,126,

Sverdrup equafxon, heat,29. .
simplified, 99,109,111, IIS 117, mass,91,98-105,109,114,116-118, 151,
118,123,125,128, t30 150, I52 162, 163,
i56~158,164,165,167. K salt,29.

generalized l04 |09 115,123,
Sverdrup, unif,l00,228.
Swallow float,73,79,134,136,164.
Swell,€8,170, 173 174,178, I79 182,
183 I9I

Sverdrup, 100.
volume,92,98,100,106,107,134.
Tsunami, |3, 14,168,170,173,187,204.

Warning System, 188.
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Turbulence, { 3,29, 30, 34,40~42,44-47,
-52-54,8],115,118,127,131,138,139,
142,143,149,164,179,211.
geostrophic, |64,

Undercurrent,93,126.
Equatorizl, 125,126.
Units, 226-22G.
base,226.
derived,226,227.
dynamic oceanography, 228,229
mixed,2,9,64,68.
. §81,3,9,226-229.
temporary,226,227.
Unwelling,22,9),92,94,126,155,212,
213.

Vector,3(,214,215,217,218.
Velocity,
absclute, 72,75,
angular, 120.
Ekman, 86.
.geostrophic,65-67,70,86, 107.
group, {93,
horizontal,19-21,78..
phase, 193, .
. relative,62, 72 77.
vertical, 19-22,105.
Viscosity, i
dynamic,46,84.
eddy,46-45,51,53,54,80,81,85,89,
90,96,97,114,115,117,118,138~
140,144,149,152,153,155,156,
160,161,164,213.
"eddy, negative,!64,
eddy, variable, 49,150, (52,
kinematic,39,46,47,84,85,137.
molecular,39,40-42,46,52,8),84,
96,137,179,
Volume continuity (see Equation of)
VorticiTy, 13,32, 111,114,119-125, 34~
136,158,
absolute, 120,121,
planetary, 114,119-122,125,
potential,122-124,132,193,
relative, | 15-125, 132 l33 135,140,
193.

Water,deep,73,75,87,97,99,115,118,
158,164,212,
homogeneous,87,97.
shallow,93-86.

Water masses,

Antarctic Bottom, 23 24, 27 134,
Mediterranean,29.
North Atlantic Deep,23,24 27

Wave, 168-195.

anpllfude 169.

boundary, 192, 194.

breaking,175,178-180, 186.

co-cumuiative speﬂirum 184,185.

decay, 178,

deep-water, 171-174,177,187.

diffraction, 75,178.

direction, 183.

dispersion, 173 75,

edge, 194.

energy, 169, 177-179, 184-|87 194,

forecasting, 187, :

generation,|68,{74,178~181,183-187,
212,

gravitational- gyroscopnc 168, 151.

gravity,|53,170,191,193,

heigh+,169,l77.,
significant,idl,

ideal, 168.

inertial, 14,191.

interference, |77.

internal,14,26,78,141,165,168, |89~
193,

irrotational, 179,180,

Ketvin,191-193.

length, (70-173,175,178,193.

long,171.

measurement, 180, 181,

orbital motion,174,172,182.

orthogonal, 176,177,194, 195,

period, 170,173,174,176,183,186, 190,
193,

planetary,14,168,191,194,211.

quasi-geostrophic, 193,

real, |68, 181-183.

‘gzracﬂon, 175-177, 188,194, 195,
ssby,14,126,153,168,191,194,211,

rotation effects,i9{-194.

seismic sea, [87.

shallow water, 171-178, !8! |88

shelf, 194,

short, 1714

sine,168,l69,i7|,l78,183.

smail ampiitude,|70~178.

spectrum, [69,173,180,183, 184, 130.

speed, 1 70-175, 186,

standing,207-209.

statistics, 169,186,

steepness (H/L) 170,177, I78 181.

surface,52,193.

topographic, 194.

i83,185, |86.
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trapping, 195.
tsunami, 173,182,187, 1886.
wind, 168,170,173,178,191.

Jave generation theories,
Jeffreys,179,180.

Miles, t79.

Phillips,!179,180.

semi-empiricai,l?&,I83,I86.
tlave speed,

phase,l?O,I74,|77,|78,l87,l92.

group,l74,|77,l80,|87.

westward infensification,82,110-112,
117,123-125.

Wind,
duration,!76,180,183,185,186.
easterlies,94.
tetch,178,180,181,185,186.
tield, planetary,112-114.
friction,50,86,97,98.
set-up, 113,203,209,
speed, 183.
s?ress,l3,88,98,104,lIO—IIS,I23—

129, 144,148,152,153,166,191,
209,213,
stress, curl of,59,103,114-118,
123,125,129,130,150, 158, 167.
stress, Hellerman, 149,150,153,
156,161,165,166.
wnesterlies, 94,

Zone,
equaterial,|01-104,125,126, 160,
+rade wind, 100-102, 104,113,
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Introduction to Dynamic Physical Oceanography at a level
senior year undergraduate students in the sciences and for
dents entering oceanography. The aims are to introduce
bjectives and procedures-and to state some of the present
of dynamic oceanography andiits relations to the material
ve oceanography.. The authors intend that the presentation
o introduce thefield to physicists intending to specialize
foceanography; to tielpoceanographers in other.disciplines
0 ugh about'the ocean circulationto discuss'with the .
eanographer the aspects which he needs to understand for
rk,-and to give thosein allied fields an appreciation of what
lc.oceanographer is trying.to do in contributina to our A
ledge of the oceans. o
t is.intended to be seif- contamed students |n’t‘§rested in
\/:—'-"-* nography would find it beneficialto acquamt themselves
o /observanonal aspects of physical'oceanography in‘orderto be
~/« aware of the characteristics of the ocean'which the dynamlc

"7 gceaniographer is trying to explain:

- ~“The-desired background is provided by atext such as Professor
Be Pickard’s bestselling DESCRIPTIVE PHYSICAL OCEANOGRAPH\\(

2nd ed|t|on

““This new edition of a 1964 publication is stifl one of the few, if nqt the only
volume, on physical oceanography that explains the many facets®f this
science without involving the reader in esoteric mathematics. Any person
wanting an introduction to the subject would do well tq read this book”
3 Choice

\.

A . the teacher first faced with a group of beginning students-elgcting to
study e/emenfeary physical oceanography will find Pickard a good xt 10
~use, and the &eacher who-must-try to present a survey of afl.océanography 4
(biology, physics, chemistry, geology)in oneiterm will find Pickard an Y
excellent resource. | am most grateful to Proféssor Pickard for.his care and |
interestin-revising his book”
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