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Foreword

On reading this wonderful text on Geophysical Fluid Dynamics (GFD) by
Benoit Cushman-Roisin and Jean-Marie Beckers, Antoine de Saint-Exupéry’s
memorable quote regarding artful simplification seems very appropriate:

In anything at all, perfection is finally attained not when there is no longer anything to
add, but when there is no longer anything to take away.

Any scientific endeavor, particularly one that addresses a system as impor-
tant and complex as the fluid earth, demands a hierarchy of approaches. One
must not only strip away extraneous detail to expose what lies beneath, but
also study the emergent behavior that results from the interaction of myriad
components. Today, sophisticated computer models simulate virtual earths so
comprehensively that even the effect of a cloud’s shadow cast on the ocean can
be represented. Such models are used to synthesize observations, make projec-
tions about the vagaries of the weather or the likely future evolution of earth’s
atmosphere and ocean under anthropogenic forcing.

But, as Jorge Luis Borges’ one-paragraph parable on “Exactitude in Science”
warns us, we should be wary of the danger of plunging headlong into complexity:

In that Empire the art of Cartography attained such Perfection that the map of a single
Province occupied the entirety of a city, and the map of the Empire the entirety of a
Province...In time it was realized that the vast Map was Useless.

Like the Empire’s perfect cartography, our virtual earths, although far from
useless!, are often not the most appropriate tools to figure out where we are,
or build understanding and intuition about what matters and what does not. In
short, complex models are rather poor pedagogical tools, yet that pedagogy is
vital if we are to make wise inferences from them.

In their updated GFD text, the art of intelligent simplification and clear expo-
sition is used by Cushman-Roisin and Beckers. Carefully chosen models are
presented and tailored to the phenomenon at hand so that the reader learns by
being taken up and down the modeling hierarchy. Moreover, the parallel devel-
opment of physical and numerical aspects of GFD, both reinforcing and echoing
the other, succeeds in breaking down artificial barriers between analytical and
numerical approaches.

John Marshall
Massachusetts Institute of Technology

August 2009
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Preface

The intent of Introduction to Geophysical Fluid Dynamics—Physical and
Numerical Aspects is to introduce its readers to the principles governing air
and water flows on large terrestrial scales and to the methods by which these
flows can be simulated on the computer. First and foremost, the book is directed
to students and scientists in dynamical meteorology and physical oceanography.
In addition, the environmental concerns raised by the possible impact of indus-
trial activities on climate and the accompanying variability of the atmosphere
and oceans create a strong desire on the part of atmospheric chemists, biologists,
engineers, and many others to understand the basic concepts of atmospheric and
oceanic dynamics. It is hoped that those will find here a readable reference text
that will provide them with the necessary fundamentals.

The present volume is a significantly enlarged and updated revision of Intro-
duction to Geophysical Fluid Dynamics published by Prentice-Hall in 1994, but
the objective has not changed, namely to provide an introductory textbook and
an approachable reference book. Simplicity and clarity have therefore remained
the guiding principles in writing the text. Whenever possible, the physical
principles are illustrated with the aid of the simplest existing models, and the
computer methods are shown in juxtaposition with the equations to which they
apply. The terminology and notation have also been selected to alleviate to a
maximum the intellectual effort necessary to extract the meaning from the text.
For example, the expressions planetary wave and stratification frequency are
preferred to Rossby wave and Brunt-Väisälä frequency, respectively.

The book is divided in five parts. Following a presentation of the funda-
mentals in Part I, the effects of rotation and of stratification are explored in
Parts II and III, respectively. Then, Part IV investigates the combined effects of
rotation and stratification, which are at the core of geophysical fluid dynamics.
The book closes with Part V, which gathers a group of more applied topics of
contemporary interest. Each part is divided into relatively well-contained chap-
ters to provide flexibility of coverage to the professor and ease of access to the
researcher. Physical principles and numerical topics are interspersed in order to
show the relation of the latter to the former, but a clear division in sections and
subsections makes it possible to separate the two if necessary.

Used as a textbook, the present volume should meet the needs of two
courses, which are almost always taught sequentially in oceanography and
meteorology curricula, namely Geophysical Fluid Dynamics and Numerical
Modeling of Geophysical Flows. The integration of both subjects here under
a single cover makes it possible to teach both courses with a unified notation
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xvi Preface

and clearer connection of one part to the other than the traditional use of two
textbooks, one for each subject. To facilitate the use as a textbook, a number
of exercises are offered at the end of every chapter, some more theoretical
to reinforce the understanding of the physical principles and others requiring
access to a computer to apply the numerical methods. An accompanying Web
site (http://booksite.academicpress.com/9780120887590/) contains an assort-
ment of data sets and Matlab™ codes that permit instructors to ask students
to perform realistic and challenging exercises. At the end of every chapter, the
reader will also find short biographies, which together form a history of the
intellectual developments of the subject matter and should inspire students to
achieve similar levels of distinction.

A general remark about notation is appropriate. Because mathematical
physics in general and this discipline in particular involve an array of symbols
to represent a multitude of variables and constants, with and without dimen-
sions, some conventions are desirable in order to maximize clarity and minimize
ambiguity. To this end, a systematic effort has been made to reserve classes
of symbols for certain types of variables: Dimensional variables are denoted
by lowercase Roman letters (such as u, v, and w for the three velocity compo-
nents), dimensional constants and parameters use uppercase Roman letters (such
as H for domain height and L for length scale), and dimensionless quantities are
assigned lowercase Greek letters (such as α for an angle and ε for a small dimen-
sionless ratio). In keeping with a well established convention in fluid mechanics,
dimensionless numbers credited to particular scientists are denoted by the first
two letters of their name (e.g., Ro for the Rossby number and Ek for the Ekman
number). Numerical notation is borrowed from Patrick J. Roache, and numerical
variables are represented by tildas ( ˜ ). Of course, rules breed exceptions (e.g.,
g for the gravitational acceleration, ω for frequency, and ψ for streamfunction).

We the authors wish to acknowledge the assistance from numerous col-
leagues across the globe, too many to permit an exhaustive list here. There is
one person, however, who deserves a very special note of recognition. Prof.
Eric Deleersnijder of the Université catholique de Louvain, Belgium, suggested
that the numerical aspects be intertwined with the physics of Geophysical Fluid
Dynamics. He also provided significant assistance during the writing of these
numerical topics. An additional debt of gratitude goes to our students, who
provided us not only with a testing ground for the teaching of this material but
also with numerous and valuable comments. The following people are acknowl-
edged for their pertinent remarks and suggestions made on earlier versions
of the text, all of which have improved the clarity and accuracy of the presenta-
tion: Aida Alvera-Azcárate, Alexander Barth, Emmanuel Boss, Pierre Brasseur,
Hans Burchard, Pierre Lermusiaux, Evan Mason, Anders Omstedt, Tamay
Özgökmen, Thomas Rossby, Charles Troupin, and Lars Umlauf. We also would
like to thank our wives Mary and Françoise for their patience and support.

Benoit Cushman-Roisin
Jean-Marie Beckers

January 2011



Preface of the First Edition

The intent of Introduction to Geophysical Fluid Dynamics is to introduce
readers to this developing field. In the late 1950s, this discipline emerged as
a few scientists, building on a miscellaneous heritage of fluid mechanics, mete-
orology, and oceanography, began to model complex atmospheric and oceanic
flows by relatively simple mathematical analysis, thereby unifying atmospheric
and oceanic physics. Turning from art to science, the discipline then matured
during the 1970s. Appropriately, a first treatise titled Geophysical Fluid Dynam-
ics by Joseph Pedlosky (Springer-Verlag) was published in 1979. Since then,
several other authoritative textbooks have become available, all aimed at grad-
uate students and researchers dedicated to the physics of the atmosphere and
oceans. It is my opinion that the teaching of geophysical fluid dynamics is
now making its way into science graduate curricula outside of meteorology
and oceanography (e.g., physics and engineering). Simultaneously and in view
of today’s concerns regarding global change, acid precipitations, sea-level rise,
and so forth, there is also a growing desire on the part of biologists, atmospheric
chemists, and engineers to understand the rudiments of climate and ocean
dynamics. In this perspective, I believe that the time has come for an introduc-
tory text aimed at upper-level undergraduate students, graduate students, and
researchers in environmental fluid dynamics.

In the hope of fulfilling this need, simplicity and clarity have been the guid-
ing principles in preparing this book. Whenever possible, the physical principles
are illustrated with the aid of the simplest existing models, and the terminology
and notation have been selected to maximize the physical interpretation of the
concepts and equations. For example, the expression planetary wave is preferred
to Rossby wave, and subscripts are avoided whenever not strictly indispensable.

The book is divided in five parts. After the fundamentals have been established
in Part I, the effects of rotation and stratification are explored separately in the
following two parts. Then, Part IV analyzes the combined effects of rotation
and stratification, and the book closes with Part V, on miscellaneous topics of
contemporary interest. Each part is divided into short, relatively well-contained
chapters to provide flexibility in the choice of materials to be discussed, according
to the needs of the curriculum or the reader’s interests. Each chapter corresponds
to one or two lectures, occasionally three, and the length is deemed suitable for
a one-semester course (45 lectures). Although it is also an inevitable reflection
of my personal choices, the selection of materials has been guided by the desire
to emphasize the physical principles at work behind observed phenomena. Such
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xviii Preface of the First Edition

emphasis is also much in keeping with the traditional teaching of geophysical fluid
dynamics. The scientist interested in the description of atmospheric and oceanic
phenomena will find available an abundance of introductory texts in meteorology
and oceanography.

Unlike existing texts in geophysical fluid dynamics, this book offers a num-
ber of exercises at the end of every chapter. There, the reader/teacher will also
find short biographies and suggestions for laboratory demonstrations. Finally,
the text ends with an appendix on wave kinematics, for it is my experience
that not all students are familiar with the concepts of wavenumber, dispersion
relation, and group velocity, whereas these are central to the understanding of
geophysical wave phenomena.

A general remark on the notation is appropriate. Because mathematical
physics in general and this discipline in particular involve symbols represent-
ing variables and constants, with and without dimensions, I believe that clarity
is brought to the mathematical description of the subject when certain classes of
symbols are reserved for certain types of terms. In that spirit, a systematic effort
has been placed to assign the notation according to the following rules: Dimen-
sional variables are denoted by lowercase Roman letters (such as u, v, and w for
the velocity components), dimensional constants and parameters use uppercase
Roman letters (such as H for the domain depth, L for length scale), and dimen-
sionless quantities are assigned lowercase Greek letters (such as θ for an angle).
In keeping with a well-established convention of fluid mechanics, dimension-
less numbers credited to particular scientists are denoted by the first two letters
of those scientists’ names (e.g., Ro for the Rossby number). Of course, conven-
tions breed exceptions (e.g., g for the constant gravitational acceleration, ω for
frequency, and ψ for streamfunction).

In closing, I wish to acknowledge inspiration from numerous colleagues
from across the globe, too many to permit an exhaustive list here. I am also
particularly indebted to my students at Dartmouth College; their thirst for
knowledge prompted the present text. Don L. Boyer, Arizona State University,
Pijush K. Kundu, Nova University, Peter D. Killworth, Robert Hooke Institute,
Fred Lutgens, Central Illinois College, Joseph Pedlosky, Woods Hole Oceano-
graphic Institution, and George Veronis, Yale University, made many detailed
and invaluable suggestions, which have improved both the clarity and accuracy
of the presentation. Finally, deep gratitude goes to Lori Terino for her expertise
and patience in typing the text.

Benoit Cushman-Roisin
1993



Chapter 1

Introduction

ABSTRACT
This opening chapter defines the discipline known as geophysical fluid dynamics,
stresses its importance, and highlights its most distinctive attributes. A brief history of
numerical simulations in meteorology and oceanography is also presented. Scale analysis
and its relationship with finite differences are introduced to show how discrete numer-
ical grids depend on the scales under investigation and how finite differences permit
the approximation of derivatives at those scales. The problem of unresolved scales is
introduced as an aliasing problem in discretization.

1.1 OBJECTIVE

The object of geophysical fluid dynamics is the study of naturally occurring,
large-scale flows on Earth and elsewhere, but mostly on Earth. Although the
discipline encompasses the motions of both fluid phases – liquids (waters in the
ocean, molten rock in the outer core) and gases (air in our atmosphere, atmo-
spheres of other planets, ionized gases in stars) – a restriction is placed on the
scale of these motions. Only the large-scale motions fall within the scope of
geophysical fluid dynamics. For example, problems related to river flow, micro-
turbulence in the upper ocean, and convection in clouds are traditionally viewed
as topics specific to hydrology, oceanography, and meteorology, respectively.
Geophysical fluid dynamics deals exclusively with those motions observed in
various systems and under different guises but nonetheless governed by similar
dynamics. For example, large anticyclones of our weather are dynamically ger-
mane to vortices spun off by the Gulf Stream and to Jupiter’s Great Red Spot.
Most of these problems, it turns out, are at the large-scale end, where either the
ambient rotation (of Earth, planet, or star) or density differences (warm and
cold air masses, fresh and saline waters), or both assume some importance.
In this respect, geophysical fluid dynamics comprises rotating-stratified fluid
dynamics.

Typical problems in geophysical fluid dynamics concern the variability of
the atmosphere (weather and climate dynamics), ocean (waves, vortices, and
currents), and, to a lesser extent, the motions in the earth’s interior respons-
ible for the dynamo effect, vortices on other planets (such as Jupiter’s Great

3
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4 PART | I Fundamentals

Red Spot and Neptune’s Great Dark Spot), and convection in stars (the sun, in
particular).

1.2 IMPORTANCE OF GEOPHYSICAL FLUID DYNAMICS

Without its atmosphere and oceans, it is certain that our planet would not sustain
life. The natural fluid motions occurring in these systems are therefore of vital
importance to us, and their understanding extends beyond intellectual curios-
ity—it is a necessity. Historically, weather vagaries have baffled scientists and
laypersons alike since times immemorial. Likewise, conditions at sea have long
influenced a wide range of human activities, from exploration to commerce,
tourism, fisheries, and even wars.

Thanks in large part to advances in geophysical fluid dynamics, the ability
to predict with some confidence the paths of hurricanes (Figs. 1.1 and 1.2) has
led to the establishment of a warning system that, no doubt, has saved numerous
lives at sea and in coastal areas (Abbott, 2004). However, warning systems are
only useful if sufficiently dense observing systems are implemented, fast pre-
diction capabilities are available, and efficient flow of information is ensured.
A dreadful example of a situation in which a warning system was not yet
adequate to save lives was the earthquake off Indonesia’s Sumatra Island on

FIGURE 1.1 Hurricane Frances during her passage over Florida on 5 September 2004. The diam-
eter of the storm was about 830 km, and its top wind speed approached 200 km per hour. (Courtesy
of NOAA, Department of Commerce, Washington, D.C.)
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FIGURE 1.2 Computer prediction of the path of Hurricane Frances. The calculations were per-
formed on Friday, 3 September 2004, to predict the hurricane path and characteristics over the next
5 days (until Wednesday, 8 September). The outline surrounding the trajectory indicates the level
of uncertainty. Compare the position predicted for Sunday, 5 September, with the actual position
shown on Fig. 1.1. (Courtesy of NOAA, Department of Commerce, Washington, D.C.)

26 December 2004. The tsunami generated by the earthquake was not detected,
its consequences not assessed, and authorities not alerted within the 2 h needed
for the wave to reach beaches in the region. On a larger scale, the passage
every 3–5 years of an anomalously warm water mass along the tropical Pacific
Ocean and the western coast of South America, known as the El-Niño event,
has long been blamed for serious ecological damage and disastrous economical
consequences in some countries (Glantz, 2001; O’Brien, 1978). Now, thanks
to increased understanding of long oceanic waves, atmospheric convection,
and natural oscillations in air–sea interactions (D’Aleo, 2002; Philander, 1990),
scientists have successfully removed the veil of mystery on this complex event,
and numerical models (e.g., Chen, Cane, Kaplan, Zebiak & Huang, 2004) offer
reliable predictions with at least one year of lead time, that is, there is a year
between the moment the prediction is made and the time to which it applies.

Having acknowledged that our industrial society is placing a tremendous
burden on the planetary atmosphere and consequently on all of us, scientists,
engineers, and the public are becoming increasingly concerned about the fate
of pollutants and greenhouse gases dispersed in the environment and especially
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about their cumulative effect. Will the accumulation of greenhouse gases in the
atmosphere lead to global climatic changes that, in turn, will affect our lives
and societies? What are the various roles played by the oceans in maintain-
ing our present climate? Is it possible to reverse the trend toward depletion
of the ozone in the upper atmosphere? Is it safe to deposit hazardous wastes
on the ocean floor? Such pressing questions cannot find answers without, first,
an in-depth understanding of atmospheric and oceanic dynamics and, second,
the development of predictive models. In this twin endeavor, geophysical fluid
dynamics assumes an essential role, and the numerical aspects should not be
underestimated in view of the required predictive tools.

1.3 DISTINGUISHING ATTRIBUTES OF GEOPHYSICAL
FLOWS

Two main ingredients distinguish the discipline from traditional fluid mechan-
ics: the effects of rotation and those of stratification. The controlling influence of
one, the other, or both leads to peculiarities exhibited only by geophysical flows.
In a nutshell, this book can be viewed as an account of these peculiarities.

The presence of an ambient rotation, such as that due to the earth’s spin
about its axis, introduces in the equations of motion two acceleration terms that,
in the rotating framework, can be interpreted as forces. They are the Coriolis
force and the centrifugal force. Although the latter is the more palpable of the
two, it plays no role in geophysical flows; however, surprising this may be.1 The
former and less intuitive of the two turns out to be a crucial factor in geophysical
motions. For a detailed explanation of the Coriolis force, the reader is referred
to the following chapter in this book or to the book by Stommel and Moore
(1989). A more intuitive explanation and laboratory illustrations can be found
in Chapter 6 of Marshall and Plumb (2008).

In anticipation of the following chapters, it can be mentioned here (without
explanation) that a major effect of the Coriolis force is to impart a certain verti-
cal rigidity to the fluid. In rapidly rotating, homogeneous fluids, this effect can
be so strong that the flow displays strict columnar motions; that is, all particles
along the same vertical evolve in concert, thus retaining their vertical align-
ment over long periods of time. The discovery of this property is attributed to
Geoffrey I. Taylor, a British physicist famous for his varied contributions to
fluid dynamics. (See the short biography at the end of Chapter 7.) It is said that
Taylor first arrived at the rigidity property with mathematical arguments alone.
Not believing that this could be correct, he then performed laboratory experi-
ments that revealed, much to his amazement, that the theoretical prediction was
indeed correct. Drops of dye released in such rapidly rotating, homogeneous

1 Here we speak about the centrifugal force associated with the earth’s planetary rotation, not to be
confused with the centrifugal force associated with the strong rotation of eddies or hurricanes.
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Ω Ω

Several revolutions
later

Shortly after
injection of  dye

FIGURE 1.3 Experimental evidence of the rigidity of a rapidly rotating, homogeneous fluid. In a
spinning vessel filled with clear water, an initially amorphous cloud of aqueous dye is transformed
in the course of several rotations into perfectly vertical sheets, known as Taylor curtains.

fluids form vertical streaks, which, within a few rotations, shear laterally to form
spiral sheets of dyed fluid (Fig. 1.3). The vertical coherence of these sheets is
truly fascinating!

In large-scale atmospheric and oceanic flows, such state of perfect vertical
rigidity is not realized chiefly because the rotation rate is not sufficiently fast
and the density is not sufficiently uniform to mask other, ongoing processes.
Nonetheless, motions in the atmosphere, in the oceans, and on other planets
manifest a tendency toward columnar behavior. For example, currents in the
western North Atlantic have been observed to extend vertically over 4000 m
without significant change in amplitude and direction (Schmitz, 1980).

Stratification, the other distinguishing attribute of geophysical fluid dynam-
ics, arises because naturally occurring flows typically involve fluids of different
densities (e.g., warm and cold air masses, fresh and saline waters). Here, the
gravitational force is of great importance, for it tends to lower the heaviest fluid
and to raise the lightest. Under equilibrium conditions, the fluid is stably strat-
ified, consisting of vertically stacked horizontal layers. However, fluid motions
disturb this equilibrium, in which gravity systematically strives to restore. Small
perturbations generate internal waves, the three-dimensional analogue of sur-
face waves, with which we are all familiar. Large perturbations, especially those
maintained over time, may cause mixing and convection. For example, the pre-
vailing winds in our atmosphere are manifestations of the planetary convection
driven by the pole-to-equator temperature difference.

It is worth mentioning the perplexing situation in which a boat may expe-
rience strong resistance to forward motion while sailing under apparently
calm conditions. This phenomenon, called dead waters by mariners, was first
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FIGURE 1.4 A laboratory experiment by Ekman (1904) showing internal waves generated by a
model ship in a tank filled with two fluids of different densities. The heavier fluid at the bottom has
been colored to make the interface visible. The model ship (the superstructure of which was drawn
onto the original picture to depict Fridtjof Nansen’s Fram) is towed from right to left, causing a
wake of waves on the interface. The energy consumed by the generation of these waves produces
a drag that, for a real ship, would translate into a resistance to forward motion. The absence of any
significant surface wave has prompted sailors to call such situations dead waters. (From Ekman,
1904, and adapted by Gill, 1982)

documented by the Norwegian oceanographer Fridtjof Nansen, famous for his
epic expedition on the Fram through the Arctic Ocean, begun in 1893. Nansen
reported the problem to his Swedish colleague Vagn Walfrid Ekman who, after
performing laboratory simulations (Ekman, 1904), affirmed that internal waves
were to blame. The scenario is as follows: During times of dead waters, Nansen
must have been sailing in a layer of relatively fresh water capping the more
saline oceanic waters and of thickness, coincidently, comparable to the ship
draft; the ship created a wake of internal waves along the interface (Fig. 1.4),
unseen at the surface but radiating considerable energy and causing the noted
resistance to the forward motion of the ship.

1.4 SCALES OF MOTIONS

To discern whether a physical process is dynamically important in any partic-
ular situation, geophysical fluid dynamicists introduce scales of motion. These
are dimensional quantities expressing the overall magnitude of the variables
under consideration. They are estimates rather than precisely defined quantities
and are understood solely as orders of magnitude of physical variables. In most
situations, the key scales are those for time, length, and velocity. For example,
in the dead-water situation investigated by V.W. Ekman (Fig. 1.4), fluid motions
comprise a series of waves whose dominant wavelength is about the length of
the submerged ship hull; this length is the natural choice for the length scale L
of the problem; likewise, the ship speed provides a reference velocity that can
be taken as the velocity scale U; finally, the time taken for the ship to travel the
distance L at its speed U is the natural choice of time scale: T=L/U.
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As a second example, consider Hurricane Frances during her course over
the southeastern United States in early September 2004 (Fig. 1.1). The satel-
lite picture reveals a nearly circular feature spanning approximately 7.5◦ of
latitude (830 km). Sustained surface wind speeds of a category-4 hurricane
such as Frances range from 59 to 69 m/s. In general, hurricane tracks display
appreciable change in direction and speed of propagation over 2-day inter-
vals. Altogether, these elements suggest the following choice of scales for a
hurricane: L=800 km, U=60 m/s, and T=2×105 s (=55.6 h).

As a third example, consider the famous Great Red Spot in Jupiter’s atmo-
sphere (Fig. 1.5), which is known to have existed at least several hundred years.
The structure is an elliptical vortex centered at 22◦S and spanning approxi-
mately 12◦ in latitude and 25◦ in longitude; its highest wind speeds exceed
110 m/s, and the entire feature slowly drifts zonally at a speed of 3 m/s (Dowling
& Ingersoll, 1988; Ingersoll et al., 1979). Knowing that the planet’s equato-
rial radius is 71,400 km, we determine the vortex semi-major and semi-minor
axes (14,400 km and 7,500 km, respectively) and deem L=10,000 km to be an
appropriate length scale. A natural velocity scale for the fluid is U=100 m/s.
The selection of a timescale is somewhat problematic in view of the nearly

FIGURE 1.5 Southern hemisphere of Jupiter as seen by the spacecraft Cassini in 2000. The
Jupiter moon Io, of size comparable to our moon, projects its shadow onto the zonal jets
between which the Great Red Spot of Jupiter is located (on the left). For further images, visit
http://photojournal.jpl.nasa.gov/target/Jupiter. (Image courtesy of NASA/JPL/University of Arizona)

http://photojournal.jpl.nasa.gov/target/Jupiter
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steady state of the vortex; one choice is the time taken by a fluid particle to
cover the distance L at the speed U (T=L/U=105 s), whereas another is the
time taken by the vortex to drift zonally over a distance equal to its longitudi-
nal extent (T=107 s). Additional information on the physics of the problem is
clearly needed before selecting a timescale. Such ambiguity is not uncommon
because many natural phenomena vary on different temporal scales (e.g., the
terrestrial atmosphere exhibits daily weather variation as well as decadal cli-
matic variations, among others). The selection of a timescale then reflects the
particular choice of physical processes being investigated in the system.

There are three additional scales that play important roles in analyzing
geophysical fluid problems. As we mentioned earlier, geophysical fluids gen-
erally exhibit a certain degree of density heterogeneity, called stratification.
The important parameters are then the average density ρ0, the range of den-
sity variations 1ρ, and the height H over which such density variations occur.
In the ocean, the weak compressibility of water under changes of pressure, tem-
perature, and salinity translates into values of 1ρ always much less than ρ0,
whereas the compressibility of air renders the selection of 1ρ in atmospheric
flows somewhat delicate. Because geophysical flows are generally bounded in
the vertical direction, the total depth of the fluid may be substituted for the height
scale H. Usually, the smaller of the two height scales is selected.

As an example, the density and height scales in the dead-water problem
(Fig. 1.4) can be chosen as follows: ρ0=1025 kg/m3, the density of either fluid
layer (almost the same);1ρ=1 kg/m3, the density difference between lower and
upper layers (much smaller than ρ0), and H=5 m, the depth of the upper layer.

As the person new to geophysical fluid dynamics has already realized, the
selection of scales for any given problem is more an art than a science. Choices
are rather subjective. The trick is to choose quantities that are relevant to the
problem, yet simple to establish. There is freedom. Fortunately, small inaccu-
racies are inconsequential because the scales are meant only to guide in the
clarification of the problem, whereas grossly inappropriate scales will usually
lead to flagrant contradictions. Practice, which forms intuition, is necessary to
build confidence.

1.5 IMPORTANCE OF ROTATION

Naturally, we may wonder at which scales the ambient rotation becomes an
important factor in controlling the fluid motions. To answer this question, we
must first know the ambient rotation rate, which we denote by � and define as

�= 2π radians

time of one revolution
. (1.1)

Since our planet Earth actually rotates in two ways simultaneously, once per
day about itself and once a year around the sun, the terrestrial value of �
consists of two terms, 2π /24 hours + 2π /365.24 days = 2π /1 sidereal day =
7.2921 × 10−5 s−1. The sidereal day, equal to 23 h 56 min and 4.1 s, is the
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period of time spanning the moment when a fixed (distant) star is seen one day
and the moment on the next day when it is seen at the same angle from the same
point on Earth. It is slightly shorter than the 24-hour solar day, the time elapsed
between the sun reaching its highest point in the sky two consecutive times,
because the earth’s orbital motion about the sun makes the earth rotate slightly
more than one full turn with respect to distant stars before reaching the same
Earth–Sun orientation.

If fluid motions evolve on a timescale comparable to or longer than the time
of one rotation, we anticipate that the fluid does feel the effect of the ambient
rotation. We thus define the dimensionless quantity

ω= time of one revolution

motion timescale
= 2π/�

T
= 2π

�T
, (1.2)

where T is used to denote the timescale of the flow. Our criterion is as follows:
If ω is on the order of or less than unity (ω.1), rotation effects should be
considered. On Earth, this occurs when T exceeds 24 h.

Yet, motions with shorter timescales (ω&1) but sufficiently large spatial
extent could also be influenced by rotation. A second and usually more useful
criterion results from considering the velocity and length scales of the motion.
Let us denote these by U and L, respectively. Naturally, if a particle traveling at
the speed U covers the distance L in a time longer than or comparable to a rota-
tion period, we expect the trajectory to be influenced by the ambient rotation, so
we write

ε= time of one revolution

time taken by particle to cover distance L at speed U

= 2π/�

L/U
= 2πU

�L
. (1.3)

If ε is on the order of or less than unity (ε . 1), we conclude that rotation is
important.

Let us now consider a variety of possible length scales, using the value �
for Earth. The corresponding velocity criteria are listed in Table 1.1.

Obviously, in most engineering applications, such as the flow of water at a
speed of 5 m/s in a turbine 1 m in diameter (ε∼4×105) or the air flow past a
5-m wing on an airplane flying at 100 m/s (ε∼2×106), the inequality is not
met, and the effects of rotation can be ignored. Likewise, the common task of
emptying a bathtub (horizontal scale of 1 m, draining speed in the order of
0.01 m/s and a lapse of about 1000 s, giving ω∼90 and ε∼900) does not fall
under the scope of geophysical fluid dynamics. On the contrary, geophysical
flows (such as an ocean current flowing at 10 cm/s and meandering over a dis-
tance of 10 km or a wind blowing at 10 m/s in a 1000-km-wide anticyclonic
formation) do meet the inequality. This demonstrates that rotation is usually
important in geophysical flows.
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TABLE 1.1 Length and Velocity Scales of Motions
in Which Rotation Effects are Important

L=1 m U≤0.012 mm/s

L=10 m U≤0.12 mm/s

L=100 m U≤1.2 mm/s

L=1 km U≤1.2 cm/s

L=10 km U≤12 cm/s

L=100 km U≤1.2 m/s

L=1000 km U≤12 m/s

L=Earth radius=6371 km U≤74 m/s

1.6 IMPORTANCE OF STRATIFICATION

The next question concerns the condition under which stratification effects are
expected to play an important dynamical role. Geophysical fluids typically con-
sist of fluid masses of different densities, which under gravitational action tend
to arrange themselves in vertical stacks (Fig. 1.6), corresponding to a state of
minimal potential energy. But, motions continuously disturb this equilibrium,
tending to raise dense fluid and lower light fluid. The corresponding increase of
potential energy is at the expense of kinetic energy, thereby slowing the flow.
On occasions, the opposite happens: Previously disturbed stratification returns
toward equilibrium, potential energy converts into kinetic energy, and the flow
gains momentum. In sum, the dynamical importance of stratification can be
evaluated by comparing potential and kinetic energies.

If1ρ is the scale of density variations in the fluid and H is its height scale, a
prototypical perturbation to the stratification consists in raising a fluid element
of density ρ0+1ρ over the height H and, in order to conserve volume, lowering
a lighter fluid element of density ρ0 over the same height. The corresponding
change in potential energy, per unit volume, is (ρ0+1ρ) gH−ρ0gH=1ρgH.
With a typical fluid velocity U, the kinetic energy available per unit volume is
1
2ρ0U2. Accordingly, we construct the comparative energy ratio

σ =
1
2ρ0U2

1ρgH
, (1.4)

to which we can give the following interpretation. If σ is on the order of unity
(σ ∼1), a typical potential-energy increase necessary to perturb the stratification
consumes a sizable portion of the available kinetic energy, thereby modifying
the flow field substantially. Stratification is then important. If σ is much less
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FIGURE 1.6 Vertical profile of density in the northern Adriatic Sea (43◦32′N, 14◦03′E) on
27 May 2003. Density increases downward by leaps and bounds, revealing the presence of different
water masses stacked on top of one another in such a way that lighter waters float above denser
waters. A region where the density increases significantly faster than above and below, marking the
transition from one water mass to the next, is called a pycnocline. (Data courtesy of Drs. Hartmut
Peters and Mirko Orlić)

than unity (σ�1), there is insufficient kinetic energy to perturb significantly
the stratification, and the latter greatly constrains the flow. Finally, if σ is much
greater than unity (σ�1), potential-energy modifications occur at very little
cost to the kinetic energy, and stratification hardly affects the flow. In conclu-
sion, stratification effects cannot be ignored in the first two cases—that is, when
the dimensionless ratio defined in Eq. (1.4) is on the order of or much less than
unity (σ . 1). In other words, σ is to stratification what the number ε, defined
in Eq. (1.3), is to rotation.

A most interesting situation arises in geophysical fluids when rotation and
stratification effects are simultaneously important, yet neither dominates over
the other. Mathematically, this occurs when ε∼1 and σ ∼1 and yields the
following relations among the various scales:

L ∼ U

�
and U ∼

√
1ρ

ρ0
gH. (1.5)

(The factors 2π and 1
2 have been omitted because they are secondary in a scale

analysis.) Elimination of the velocity U yields a fundamental length scale:

L ∼ 1

�

√
1ρ

ρ0
gH. (1.6)
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In a given fluid, of mean density ρ0 and density variation 1ρ, occupying a
height H on a planet rotating at rate � and exerting a gravitational accelera-
tion g, the scale L arises as a preferential length over which motions take place.
On Earth (�=7.29×10−5 s−1 and g=9.81 m/s2), typical conditions in the
atmosphere (ρ0=1.2 kg/m3, 1ρ=0.03 kg/m3, H=5000 m) and in the ocean
(ρ0=1028 kg/m3, 1ρ=2 kg/m3, H=1000 m) yield the following natural
length and velocity scales:

Latmosphere∼500 km Uatmosphere∼30 m/s
Locean ∼ 60 km Uocean ∼ 4 m/s.

Although these estimates are relatively crude, we can easily recognize here the
typical size and wind speed of weather patterns in the lower atmosphere and the
typical width and speed of major currents in the upper ocean.

1.7 DISTINCTION BETWEEN THE ATMOSPHERE
AND OCEANS

Generally, motions of the air in our atmosphere and of seawater in the oceans
that fall under the scope of geophysical fluid dynamics occur on scales of sev-
eral kilometers up to the size of the earth. Atmospheric phenomena comprise the
coastal sea breeze, local to regional processes associated with topography, the
cyclones, anticyclones, and fronts that form our daily weather, the general atmo-
spheric circulation, and the climatic variations. Oceanic phenomena of interest
include estuarine flow, coastal upwelling and other processes associated with the
presence of a coast, large eddies and fronts, major ocean currents such as the
Gulf Stream, and the large-scale circulation. Table 1.2 lists the typical veloc-
ity, length and time scales of these motions, whereas Fig. 1.7 ranks a sample
of atmospheric and oceanic processes according to their spatial and temporal
scales. As we can readily see, the general rule is that oceanic motions are slower
and slightly more confined than their atmospheric counterparts. Also, the ocean
tends to evolve more slowly than the atmosphere.

Besides notable scale disparities, the atmosphere and oceans also have their
own peculiarities. For example, a number of oceanic processes are caused by
the presence of lateral boundaries (continents, islands), a constraint practically
nonexistent in the atmosphere, except in stratified flows where mountain ridges
can sometimes play such a role, exactly as do mid-ocean ridges for stratified
ocean currents. On the other hand, atmospheric motions are sometimes strongly
dependent on the moisture content of the air (clouds, precipitation), a character-
istic without oceanic counterpart.

Flow patterns in the atmosphere and oceans are generated by vastly different
mechanisms. By and large, the atmosphere is thermodynamically driven, that is,
its primary source of energy is the solar radiation. Briefly, this shortwave solar
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TABLE 1.2 Length, Velocity and Time Scales in the Earth’s Atmosphere and
Oceans

Phenomenon Length Scale Velocity Scale Timescale
L U T

Atmosphere

Microturbulence 10–100 cm 5–50 cm/s few seconds

Thunderstorms few km 1–10 m/s few hours

Sea breeze 5–50 km 1–10 m/s 6 h

Tornado 10–500 m 30–100 m/s 10–60 min

Hurricane 300–500 km 30–60 m/s Days to weeks

Mountain waves 10–100 km 1–20 m/s Days

Weather patterns 100–5000 km 1–50 m/s Days to weeks

Prevailing winds Global 5–50 m/s Seasons to years

Climatic variations Global 1–50 m/s Decades and beyond

Ocean

Microturbulence 1–100 cm 1–10 cm/s 10–100 s

Internal waves 1–20 km 0.05–0.5 m/s Minutes to hours

Tides Basin scale 1–100 m/s Hours

Coastal upwelling 1–10 km 0.1–1 m/s Several days

Fronts 1–20 km 0.5–5 m/s Few days

Eddies 5–100 km 0.1–1 m/s Days to weeks

Major currents 50–500 km 0.5–2 m/s Weeks to seasons

Large-scale gyres Basin scale 0.01–0.1 m/s Decades and beyond

radiation traverses the air layer to be partially absorbed by the continents and
oceans, which in turn re-emit a radiation at longer wavelengths. This second-
hand radiation effectively heats the atmosphere from below, and the resulting
convection drives the winds.

In contrast, the oceans are forced by a variety of mechanisms. In addition
to the periodic gravitational forces of the moon and sun that generate the tides,
the ocean surface is subjected to a wind stress that drives most ocean currents.
Finally, local differences between air and sea temperatures generate heat fluxes,
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evaporation, and precipitation, which in turn act as thermodynamical forcings
capable of modifying the wind-driven currents or producing additional currents.

In passing, while we are contrasting the atmosphere with the oceans, it is
appropriate to mention an enduring difference in terminology. Because mete-
orologists and laypeople alike are generally interested in knowing from where
the winds are blowing, it is common in meteorology to refer to air velocities
by their direction of origin, such as easterly (from the east—that is, toward
the west). On the contrary, sailors and navigators are interested in knowing
where ocean currents may take them. Hence, oceanographers designate cur-
rents by their downstream direction, such as westward (from the east or to the
west). However, meteorologists and oceanographers agree on the terminology
for vertical motions: upward or downward.

1.8 DATA ACQUISITION

Because geophysical fluid dynamics deals exclusively with naturally occurring
flows and, moreover, those of rather sizable proportions, full-scale experimenta-
tion must be ruled out. Indeed, how could one conceive of changing the weather,
even locally, for the sake of a scientific inquiry? Also, the Gulf Stream deter-
mines its own fancy path, irrespective of what oceanographers wish to study
about it. In that respect, the situation is somewhat analogous to that of the
economist who may not ask the government to prompt a disastrous recession for
the sake of determining some parameters of the national economy. The inabil-
ity to control the system under study is greatly alleviated by simulations. In
geophysical fluid dynamics, these investigations are conducted via laboratory
experiments and numerical models.

As well as being reduced to noting the whims of nature, observers of geo-
physical flows also face length and timescales that can be impractically large. A
typical challenge is the survey of an oceanic feature several hundred kilometers
wide. With a single ship (which is already quite expensive, especially if the fea-
ture is far away from the home shore), a typical survey can take several weeks,
a time interval during which the feature might translate, distort, or otherwise
evolve substantially. A faster survey might not reveal details with a sufficiently
fine horizontal representation. Advances in satellite imagery and other methods
of remote sensing (Conway & the Maryland Space Grant Consortium, 1997;
Marzano & Visconti, 2002) do provide synoptic (i.e., quasi-instantaneous)
fields, but those are usually restricted to specific levels in the vertical (e.g., cloud
tops and ocean surface) or provide vertically integrated quantities. Also, some
quantities simply defy measurement, such as the heat flux and vorticity. Those
quantities can only be derived by an analysis on sets of proxy observations.

Finally, there are processes for which the timescale is well beyond the span
of human life if not the age of civilization. For example, climate studies require a
certain understanding of glaciation cycles. Our only recourse here is to be clever
and to identify today some traces of past glaciation events, such as geological
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records. Such an indirect approach usually requires a number of assumptions,
some of which may never be adequately tested. Finally, exploration of other
planets and of the sun is even more arduous.

At this point one may ask: What can we actually measure in the atmo-
sphere and oceans with a reasonable degree of confidence? First and foremost,
a number of scalar properties can be measured directly and with conventional
instruments. For both the atmosphere and ocean, it is generally not difficult to
measure the pressure and temperature. In fact, in the ocean, the pressure can
be measured so much more accurately than depth that, typically, depth is calcu-
lated from measured pressure on instruments that are gradually lowered into the
sea. In the atmosphere, one can also accurately measure the water vapor, rain-
fall, and some radiative heat fluxes (Marzano & Visconti, 2002; Rao, Holmes,
Anderson, Winston & Lehr, 1990). Similarly, the salinity of seawater can be
either determined directly or inferred from electrical conductivity (Pickard &
Emery, 1990). Also, the sea level can be monitored at shore stations. The typi-
cal problem, however, is that the measured quantities are not necessarily those
preferred from a physical perspective. For example, one would prefer direct
measurements of the vorticity field, Bernoulli function, diffusion coefficients,
and turbulent correlation quantities.

Vectorial quantities are usually more difficult to obtain than scalars. Hor-
izontal winds and currents can now be determined routinely by anemometers
and current meters of various types, including some without rotating compo-
nents (Lutgens & Tarbuck, 1986; Pickard & Emery, 1990) although usually
not with the desired degree of spatial resolution. Fixed instruments, such as
anemometers atop buildings and oceanic current meters at specific depths along
a mooring line, offer fine temporal coverage, but adequate spatial coverage
typically requires a prohibitive number of such instruments. To remedy the
situation, instruments on drifting platforms (e.g., balloons in the atmosphere and
drifters or floats in the ocean) are routinely deployed. However, these instru-
ments provide information that is mixed in time and space and thus is not
ideally suited to most purposes. A persistent problem is the measurements of
the vertical velocity. Although vertical speeds can be measured with acoustic
Doppler current profilers, the meaningful signal is often buried below the level
of ambient turbulence and instrumental error (position and sensitivity). Measur-
ing the vector vorticity, so dear to theoreticians, is out of the question as is the
three-dimensional heat flux.

Also, some uncertainty resides in the interpretation of the measured quanti-
ties. For example, can the wind measured in the vicinity of a building be taken
as representative of the prevailing wind over the city and so be used in weather
forecasting, or is it more representative of a small-scale flow pattern resulting
from the obstruction of the wind by the building?

Finally, sampling frequencies might not always permit the unambiguous
identification of a process. Measuring quantities at a given location every week
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might well lead to a data set that includes also residual information on faster
processes than weekly variations or a slower signal that we would like to capture
with our measurements. For example, if we measure temperature on Monday at
3 o’clock in the afternoon one week and Monday at 7 o’clock in the morning the
next week, the measurement will include a diurnal heating component super-
imposed on the weekly variation. The measurements are thus not necessarily
representative of the process of interest.

1.9 THE EMERGENCE OF NUMERICAL SIMULATIONS

Given the complexity of weather patterns and ocean currents, one can easily
anticipate that the equations governing geophysical fluid motions, which we are
going to establish in this book, are formidable and not amenable to analytical
solution except in rare instances and after much simplification. Thus, one faces
the tall challenge of having to solve the apparently unsolvable. The advent of the
electronic computer has come to the rescue, but at a definite cost. Indeed, com-
puters cannot solve differential equations but can only perform the most basic
arithmetic operations. The partial differential equations (PDEs) of geophysical
fluid dynamics (GFD) need therefore to be transformed into a sequence of arith-
metic operations. This process requires careful transformations and attention to
details.

The purpose of numerical simulations of GFD flows is not limited to weather
prediction, operational ocean forecasting, and climate studies. There are situa-
tions when one desires to gain insight and understanding of a specific process,
such as a particular form of instability or the role of friction under particular con-
ditions. Computer simulations are our only way to experiment with the planet.
Also, there is the occasional need to experiment with a novel numerical technique
in order to assess its speed and accuracy. Simulations increasingly go hand in
hand with observations in the sense that the latter can point to places in which
the model needs refinements while model results can suggest optimal placing of
observational platforms or help to define sampling strategies. Finally, simulations
can be a retracing of the past (hindcasting) or a smart interpolation of scattered
data (nowcasting), as well as the prediction of future states (forecasting).

Models of GFD flows in meteorology, oceanography, and climate studies
come in all types and sizes, depending on the geographical domain of interest
(local, regional, continental, basinwide, or global) and the desired level of phys-
ical realism. Regional models are far too numerous to list here, and we only
mention the existence of Atmospheric General Circulations Models (AGCMs),
Oceanic General Circulation Models (OGCMs) and coupled General Circula-
tion Models (GCMs). A truly comprehensive model does not exist because the
coupling of air, sea, ice, and land physics over the entire planet is always open
to the inclusion of yet one more process heretofore excluded from the model. In
developing a numerical model of some GFD system, the question immediately
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arises as to what actually needs to be simulated. The answer largely dictates the
level of details necessary and, therefore also, the level of physical approximation
and the degree of numerical resolution.

Geophysical flows are governed by a set of coupled, nonlinear equations in
four-dimensional space-time and exhibit a high sensitivity to details. In mathe-
matical terms, it is said that the system possesses chaotic properties, and the
consequence is that geophysical flows are inherently unpredictable as Lorenz
demonstrated for the atmosphere several decades ago (Lorenz, 1963). The phys-
ical reality is that geophysical fluid systems are replete with instabilities, which
amplify in a finite time minor details into significant structures (the butterfly-
causing-a-tempest syndrome). The cyclones and anticyclones of midlatitude
weather and the meandering of the coastal currents are but a couple of examples
among many. Needless to say, the simulation of atmospheric and oceanographic
fluid motions is a highly challenging task.

The initial impetus for geophysical fluid simulations was, not surprisingly,
weather prediction, an aspiration as old as mankind. More recently, climate stud-
ies have become another leading force in model development because of their
need for extremely large and complex models.

The first decisive step in the quest for weather prediction was made by
Vilhelm Bjerknes (1904) in a paper titled “The problem of weather prediction
considered from the point of view of mechanics and physics.” He was the first
to pose the problem as a set of time-dependent equations derived from physics
and to be solved from a given, and hopefully complete, set of initial conditions.
Bjerknes immediately faced the daunting task of integrating complicated partial
differential equations, and, because this was well before electronic computers,
resorted to graphical methods of solution. Unfortunately, these had little prac-
tical value and never surpassed the art of subjective forecasting by a trained
person pouring over weather charts.

Taking a different tack, Lewis Fry Richardson (1922; see biography at the
end of Chapter 14) decided that it would be better to reduce the differential
equations to a set of arithmetic operations (additions, subtractions, multiplica-
tions, and divisions exclusively) so that a step-by-step method of solution may
be followed and performed by people not necessarily trained in meteorology.
Such reduction could be accomplished, he reasoned, by seeking the solution at
only selected points in the domain and by approximating spatial derivatives of
the unknown variables by finite differences across those points. Likewise, time
could be divided into finite intervals, and temporal derivatives be approximated
as differences across those time intervals, and thus was born numerical analysis.
Richardson’s work culminated in his 1922 book entitled Weather Prediction by
Numerical Process. His first grid, to forecast weather over western Europe, is
reproduced here as Fig. 1.8. After the equations of motion had been dissected
into a sequence of individual arithmetic operations, the first algorithm before
the word existed, computations were performed by a large group of people,
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FIGURE 1.8 Model grid used by Lewis Fry Richardson as reported in his 1922 book Weather Pre-
diction by Numerical Process. The grid was designed to optimize the fit between cells and existing
meteorological stations, with observed surface pressures being used at the center of every shaded
cell and winds at the center of every white cell.

called computers, sitting around an auditorium equipped with slide rules and
passing their results to their neighbors. Synchronization was accomplished by
a leader in the pit of the auditorium as a conductor leads an orchestra. Needless
to say, the work was tedious and slow, requiring an impractically large number
of people to conduct the calculations quickly enough so that a 24-h forecast
could be obtained in less than 24 h.
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Despite an enormous effort on Richardson’s part, the enterprise was a failure,
with predicted pressure variations rapidly drifting away from meteorologically
acceptable values. In retrospective, we now know that Richardson’s model was
improperly initiated for lack of upper level data and that its 6-h time step
was exceeding the limit required by numerical stability, of which, of course,
he was not aware. The concept of numerical stability was not known until 1928
when it was elucidated by Richard Courant, Karl Friedrichs and Hans Lewy.

The work of Richardson was abandoned and relegated to the status of a curio-
sity or, as he put it himself, “a dream,” only to be picked up again seriously at
the advent of electronic computers. In the 1940s, the mathematician John von
Neumann (see biography at end of Chapter 5) became interested in hydrodyna-
mics and was seeking mathematical aids to solve nonlinear differential equa-
tions. Contact with Alan Turing, the inventor of the electronic computer, gave
him the idea to build an automated electronic machine that could perform sequen-
tial calculations at a speed greatly surpassing that of humans. He collaborated
with Howard Aiken at Harvard University, who built the first electronic calcu-
lator, named the Automatic Sequence Controlled Calculator (ASCC). In 1943,
von Neumann helped build the Electronic Numerical Integrator and Computer
(ENIAC) at the University of Pennsylvania and, in 1945, the Electronic Discrete
Variable Calculator (EDVAC) at Princeton University. Primarily because of the
wartime need for improved weather forecasts and also out of personal challenge,
von Neumann paired with Jule Charney (see biography at end of Chapter 16) and
selected weather forecasting as the scientific challenge. But, unlike Richardson
before them, von Neumann and Charney started humbly with a much reduced
set of dynamics, a single equation to predict the pressure at mid-level in the
troposphere. The results (Charney, Fjörtoft & von Neumann, 1950) exceeded
expectations.

Success with a much reduced set of dynamics only encouraged further devel-
opment. Phillips (1956) developed a two-layer quasi-geostrophic2 model over a
hemispheric domain. The results did not predict actual weather but did behave
like weather, with realistic cyclones generated at the wrong places and times. This
was nonetheless quite encouraging. A major limitation of the quasi-geostrophic
simplification is that it fails near the equator, and the only remedy was a return to
the full equations (called primitive equations), back to where Richardson started.
The main problem, it was found by then, is that primitive equations retain fast-
moving gravity waves, and although these hold only a small amount of energy,
their resolution demands both a much shorter time step of integration and a far
better set of initial conditions than were available at the time.

From then on, the major intellectual challenges were overcome, and steady
progress (Fig. 1.9) has been achieved, thanks to ever-faster and larger computers

2 Quasi-geostrophic dynamics are described in Chapter 16. It suffices here to say that the formalism
eliminates the velocity components under the assumption that rotational effects are very strong. The
result is a drastic reduction in the number of equations.
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FIGURE 1.9 Historical improvement of weather forecasting skill over North America. The S1
score shown here is a measure of the relative error in the pressure gradient predictions at mid-height
in the troposphere. (From Kalnay, Lord & McPherson, 1998, reproduction with the kind permission
of the American Meteorological Society)

(Fig. 1.10) and to the gathering of an ever-denser array of data around the globe.
The reader interested in the historical developments of weather forecasting will
find an excellent book-length account in Nebeker (1995).

1.10 SCALES ANALYSIS AND FINITE DIFFERENCES

In the preceding section, we saw that computers are used to solve numerically
equations otherwise difficult to apprehend. Yet, even with the latest supercom-
puters and unchanged physical laws, scientists are requesting more computer
power than ever, and we may rightfully ask what is the root cause of this
unquenchable demand. To answer, we introduce a simple numerical technique
(finite differences) that shows the strong relationship between scale analysis and
numerical requirement. It is a prototypical example foreshowing a characteris-
tic of more elaborate numerical methods that will be introduced in later chapters
for more realistic problems.

When performing a timescale analysis, we assume that a physical variable u
changes significantly over a timescale T by a typical value U (Fig. 1.11). With
this definition of scales, the time derivative is on the order of

du

dt
∼ U

T
. (1.7)

If we then assume that the timescale over which the function u changes is
also the one over which its derivative changes (in other words, we assume the
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FIGURE 1.11 Timescale analysis of a variable u. The timescale T is the time interval over which
the variable u exhibits variations comparable to its standard deviation U.

timescale T to be representative of all types of variabilities, including differen-
tiated fields), we can also estimate the order of magnitude of variations of the
second derivative

d2u

dt2
= d

dt

(
du

dt

)
∼ U/T

T
= U

T2
, (1.8)

and so on for higher-order derivatives. This approach is the basis for estimat-
ing the relative importance of different terms in time-marching equations, an
exercise we will repeat several times in the following chapters.

We now turn our attention to the question of estimating derivatives with
more accuracy than by a mere order of magnitude. Typically, this problem
arises on discretizing equations, a process by which all derivatives are replaced
by algebraic approximations based on a few discrete values of the function u
(Fig. 1.12). Such discretization is necessary because computers possess a finite
memory and are incapable of manipulating derivatives. We then face the fol-
lowing problem: Having stored only a few values of the function, how can we
retrieve the value of the function’s derivatives that appear in the equations?

First, it is necessary to discretize the independent variable time t, since the
first dynamical equations that we shall solve numerically are time-evolving
equations. For simplicity, we shall suppose that the discrete time moments tn,
at which the function values are to be known, are uniformly distributed with a
constant time step 1t

tn= t0+n1t, n=1,2, . . . . (1.9)

where the superscript index (not an exponent) n identifies the discrete time.
Then, we note by un the value of u at time tn, that is, un=u(tn). We now would
like to determine the value of the derivative du/dt at time tn knowing only the
discrete values un. From the definition of a derivative

du

dt
= lim
1t→0

u(t+1t)−u(t)

1t
, (1.10)
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FIGURE 1.12 Representation of a function by a finite number of sampled values and approxima-
tion of a first derivative by a finite difference over 1t.

we could directly deduce an approximation by allowing 1t to remain the finite
time step

du

dt
' u(t+1t)−u(t)

1t
→ du

dt

∣∣∣∣
tn
' un+1−un

1t
. (1.11)

The accuracy of this approximation can be determined with the help of a
Taylor series:

u(t+1t)=u(t)+1t
du

dt

∣∣∣∣
t
+1t2

2

d2u

dt2

∣∣∣∣∣
t︸ ︷︷ ︸

1t2 U
T2

+1t3

6

d3u

dt3

∣∣∣∣∣
t︸ ︷︷ ︸

1t3 U
T3

+O(1t4)︸ ︷︷ ︸
1t4 U

T4

. (1.12)

To the leading order for small 1t, we obtain the following estimate

du

dt
= u(t+1t)−u(t)

1t
+O

(
1t

T

U

T

)
. (1.13)

The relative error on the derivative (the difference between the finite-difference
approximation and the actual derivative, divided by the scale U/T) is there-
fore of the order 1t/T . For the approximation to be acceptable, this relative
error should be much smaller than 1, which demands that the time step 1t be
sufficiently short compared to the timescale at hand:

1t�T. (1.14)

This condition can be visualized graphically by considering the effect of various
values of1t on the resulting estimation of the time derivative (Fig. 1.13). In the
following, we write the formal approximation as

du

dt

∣∣∣∣
tn
= un+1−un

1t
+O(1t), (1.15)
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FIGURE 1.13 Finite differencing with
various 1t values. Only when the time step
is sufficiently short compared to the time
scale, 1t�T , is the finite-difference slope
close to the derivative, that is, the true slope.

where it is understood that the measure of whether or not 1t is “small enough”
must be based on the timescale T of the variability of the variable u. Since in the
simple finite difference (1.15), the error, called truncation error, is proportional
to 1t, the approximation is said to be of first order. For an error proportional to
1t2, the approximation is said of second order and so on.

For spatial derivatives, the preceding analysis is easily applicable, and we
obtain a condition on the horizontal grid size 1x relatively to the horizontal
length scale L, while the vertical grid space 1z is constrained by the vertical
length scale H of the variable under investigation:

1x�L, 1z�H. (1.16)

With these constraints on time steps and grid sizes, we can begin to under-
stand the need for significant computer resources in GFD simulations: The
number of grid points M in a 3D domain of surface S and height H is

M= H

1z

S
1x2

, (1.17)

while the total number of time steps N needed to cover a time period P is

N= P

1t
. (1.18)

For a model covering the Atlantic Ocean (S∼1014 m2), resolving
geostrophic eddies (see Fig. 1.7: 1x∼1y≤104 m) and stratified water masses
(H/1z∼50), the number of grid points is about M∼5×107. Then, at each
of these points, several variables need to be stored and calculated (three-
dimensional velocity, pressure, temperature, etc.). Since each variable takes
4 or 8 bytes of memory depending on the desired number of significant digits,
2 Gigabytes of RAM is required. The number of floating point operations to be
executed to simulate a single year can be estimated by taking a time step resolv-
ing the rotational period of Earth 1t∼103 s, leading to N∼30000 time steps.
The total number of operations to simulate a full year can then be estimated by
observing that for every grid point and time step, a series of calculations must be
performed (typically several hundreds) so that the total number of calculations
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amounts to 1014−1015. Therefore, on a contemporary supercomputer (one of the
top 500 machines) with 1 Teraflops=1012 floating operations per second exclu-
sively dedicated to the simulation, less than half an hour would pass before the
response is available, whereas on a PC delivering 1-2 Gigaflops, we would need
to wait several days before getting our results. And yet, even with such a large
model, we can only resolve the largest scales of motion (see Fig. 1.7) while
motions on shorter spatial and temporal scales simply cannot be simulated with
this level of grid resolution. However, this does not mean that those shorter scale
motions may altogether be neglected and, as we will see (e.g., Chapter 14), one
of the problems of large-scale oceanic and atmospheric models is the need for
appropriate parameterization of shorter scale motions so that they may properly
bear their effects onto the larger scale motions.

Should we dream to avoid such a parameterization by explicitly calculat-
ing all scales, we would need about M∼1024 grid points demanding 5×1016

Gigabytes of computer memory and N ∼3×107 time steps, for a total num-
ber of operations on the order of 1034. Willing to wait only for 106 s before
obtaining the results, we would need a computer delivering 1028 flops. This is a
factor 1016=253 higher than the present capabilities, both for speed and mem-
ory requirements. Using Moore’s Law, the celebrated rule that forecasts a factor
2 in gain of computing power every 18 months, we would have to wait 53 times
18 months, that is, for about 80 years before computers could handle such a
task.

Increasing resolution will therefore continue to call for the most powerful
computers available, and models will need to include parameterization of tur-
bulence or other unresolved motions for quite some time. Grid spacing will thus
remain a crucial aspect of all GFD models, simply because of the large domain
sizes and broad range of scales.

1.11 HIGHER-ORDER METHODS

Rather than to increase resolution to better represent structures, we may wonder
whether using other approximations for derivatives than our simple finite differ-
ence (1.11) would allow larger time steps or higher quality approximations and
improved model results. Based on a Taylor series

un+1=un+1t
du

dt

∣∣∣∣
tn
+1t2

2

d2u

dt2

∣∣∣∣∣
tn

+1t3

6

d3u

dt3

∣∣∣∣∣
tn

+O(1t4) (1.19)

un−1=un−1t
du

dt

∣∣∣∣
tn
+1t2

2

d2u

dt2

∣∣∣∣∣
tn

−1t3

6

d3u

dt3

∣∣∣∣∣
tn

+O(1t4), (1.20)

we can imagine that instead of using a forward-difference approximation of
the time derivative (1.11), we try a backward Taylor series (1.20) to design
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a backward-difference approximation. This approximation is obviously still of
first order because of its truncation error:

du

dt

∣∣∣∣
tn
= un−un−1

1t
+O(1t). (1.21)

Comparing Eq. (1.19) with Eq. (1.20), we observe that the truncation errors
of the first-order forward and backward finite differences are the same but have
opposite signs so that by averaging both, we obtain a second-order truncation
error (you can verify this statement by taking the difference between Eqs. (1.19)
and (1.20)):

du

dt

∣∣∣∣
tn
= un+1−un−1

21t
+O(1t2). (1.22)

Before considering higher-order approximations, let us first check whether
the increase in order of approximation actually leads to improved approxima-
tions of the derivatives. To do so, consider the sinusoidal function of period T
(and associated frequency ω)

u=U sin

(
2π

t

T

)
=U sin(ωt), ω= 2π

T
. (1.23)

Knowing that the exact derivative is ωU cos(ωt), we can calculate the errors
made by the various finite-difference approximations (Fig. 1.14). Both the
forward and backward finite differences converge toward the exact value for
ω1t→0, with errors decreasing proportionally to1t. As expected, the second-
order approximation (1.22) exhibits a second-order convergence (the slope is 2
in a log–log graph).

The convergence rate obeys our theoretical estimate for ω1t�1. How-
ever, when the time step is relatively large (Fig. 1.15), the error associated with
the finite-difference approximations can be as large as the derivative itself. For
coarse resolution, ω1t∼O(1), the relative error is of order 1 so that we expect
a 100% error on the finite-difference approximation. Obviously, even with a
second-order finite difference, we need at least ω1t≤0.8 to keep the relative
error below 10%. In terms of the period of the signal T= (2π)/ω, we need a
time step not larger than1t .T/8, which implies that 8 points are needed along
one period to resolve its derivatives within a 10% error level. Even a fourth-
order method (to be shown shortly) cannot reconstruct derivatives correctly
from a function sampled with fewer than several points per period.

The design of the second-order difference was accomplished simply by
inspection of a Taylor series, a technique that cannot be extended to obtain
higher-order approximations. An alternate method exists to obtain in a system-
atic way finite-difference approximations to any desired order, and it can be
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FIGURE 1.14 Relative error ε of various finite-difference approximations of the first derivative of
the sinusoidal function as function of ω1t when ωt=1. Scales are logarithmic and continuous lines
of slope 1, 2, and 4 are added. First-order methods have a slope of 1, and the second-order method
a slope of 2. The error behaves as expected for decreasing 1t.

illustrated with the design of a fourth-order centered finite-difference approxi-
mation of the first derivative. Expecting that higher-order approximations need
more information about a function in order to estimate its derivative at time tn,
we will combine values over a longer time interval, including tn−2, tn−1, tn, tn+1,
and tn+2:

du

dt

∣∣∣∣
tn
'a−2un−2+a−1un−1+a0un+a1un+1+a2un+2. (1.24)

Expanding un+2 and the other values around tn by Taylor series, we can write

du

dt

∣∣∣∣
tn
= (a−2+a−1+a0+a1+a2) un

+(−2a−2−a−1+a1+2a2)1t
du

dt

∣∣∣∣
tn

+(4a−2+a−1+a1+4a2)
1t2

2

d2u

dt2

∣∣∣∣∣
tn
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FIGURE 1.15 Relative error ε of various finite-difference approximations of the first derivative
of the sinusoidal function as function of ω1t when ωt=1. For coarse resolution ω1t∼O(1), the
relative error is of order 1 so that we expect a 100% error on the finite-difference approximation.

+(−8a−2−a−1+a1+8a2)
1t3

6

d3u

dt3

∣∣∣∣∣
tn

+(16a−2+a−1+a1+16a2)
1t4

24

d4u

dt4

∣∣∣∣∣
tn

+(−32a−2−a−1+a1+32a2)
1t5

120

d5u

dt5

∣∣∣∣∣
tn

+ O(1t6). (1.25)

There are five coefficients, a−2 to a2, to be determined. Two conditions must
be satisfied to obtain an approximation that tends to be the first derivative as
1t→0:

a−2+a−1+a0+a1+a2=0,

(−2a−2−a−1+a1+2a2)1t=1.

After satisfying these two necessary conditions, we have three parameters that
can be freely chosen so as to obtain the highest possible level of accuracy. This
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is achieved by imposing that the coefficients of the next three truncation errors
be zero:

4a−2+a−1+a1+4a2=0

−8a−2−a−1+a1+8a2=0

16a−2+a−1+a1+16a2=0.

Equipped with five equations for five unknowns, we can proceed with the
solution:

−a−1=a1=
8

121t
, a0=0, −a−2=a2=−

1

121t
,

so that the fourth-order finite-difference approximation of the first derivative is

du

dt

∣∣∣∣
tn
' 4

3

(
un+1−un−1

21t

)
− 1

3

(
un+2−un−2

41t

)
. (1.26)

This formula can be interpreted as a linear combination of two centered differ-
ences, one across 21t and the other across 41t. The truncation error can be
assessed by looking at the next term in the series (1.25)

(−32a−2−a−1+a1+32a2)
1t5

120

d5u

dt5

∣∣∣∣∣
tn

=−1t4

30

d5u

dt5

∣∣∣∣∣
tn

, (1.27)

which shows that the approximation is indeed of fourth order.
The method can be generalized to approximate a derivative of any order p at

time tn using the current value un, m points in the past (before tn) and m points
in the future (after tn):

dpu

dtp

∣∣∣∣
tn

=a−mun−m+·· ·+a−1un−1+a0un+a1un+1+·· ·+amun+m. (1.28)

The discrete points n−m to n+m involved in the approximation define the so-
called numerical stencil of the operator. Using a Taylor expansion for each term

un+q=un+q1t
du

dt

∣∣∣∣
tn
+q21t2

2

d2u

dt2

∣∣∣∣∣
tn

+·· ·+qp1tp

p!

dpu

dtp

∣∣∣∣
tn
+O(1tp+1)

(1.29)

and injecting Eq. (1.29) for q=−m, ...,m into the approximation (1.28), we
have on the left-hand side the derivative we want to approximate and on the
right a sum of derivatives. We impose that the sum of coefficients multiplying
a derivative lower than order p be zero, whereas the sum of the coefficients
multiplying the pth derivative be 1. This forms a set of p+1 equations for the
2m+1 unknown coefficients aq (q=−m, . . . ,m). All constraints can be satisfied
simultaneously only if we use a number 2m+1 of points equal to or greater than
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p+1, that is, 2m≥p. When there are more points than necessary, we can take
advantage of the remaining degrees of freedom to cancel the next few terms in
the truncation errors. With 2m+1 points, we can then obtain a finite difference
of order 2m−p+1. For example, with m=1 and p=1, we obtained Eq. (1.22),
a second-order approximation of the first derivative, and with m=2 and p=1,
Eq. (1.26), a fourth-order approximation.

Let us now turn to the second derivative, a very common occurrence, at least
when considering spatial derivatives. With p=2, m must be at least 1, that is,
three values of the function are required as a minimum: one old, one current,
and one future values. Applying the preceding method, we immediately obtain

d2u

dt2

∣∣∣∣∣
tn

'
(

un−1−2un+un+1

1t2

)
, (1.30)

a result we could also have obtained by direct inspection of Eqs. (1.19) and
(1.20).

Appendix C recapitulates a variety of discretization schemes for different
orders of derivatives and various levels of accuracy. It also includes skewed
schemes, which are not symmetric between past and future values but can be
constructed in a way similar to the fourth-order finite-difference approximation
of the first derivative.

1.12 ALIASING

We learned that the accuracy of a finite-difference approximation of the first
derivative degrades rapidly when the time step1t is not kept much shorter than
the timescale T of the variable, and we might wonder what would happen if 1t
should by some misfortune be larger than T . To answer this question, we return
to a physical signal u of period T ,

u=U sin(ωt+φ), ω= 2π

T
, (1.31)

sampled on a uniform grid of time step 1t,

un=U sin(n ω1t+φ), (1.32)

and assume that there exists another signal v of higher frequency ω̃ given by

v=U sin(ω̃t+φ), ω̃=ω+ 2π

1t
. (1.33)

The sampling of this other function at the same time intervals yields a discrete
set of values

vn=U sin(n ω̃1t+φ)=U sin(n ω1t+2nπ+φ)=un, (1.34)
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FIGURE 1.16 Shortest wave (at cutoff frequency π/1t or
period 21t) resolved by uniform grid in time.

which cannot be distinguished from the discrete values un of the first signal
although the two signals are clearly not equal to each other. Thus, frequencies ω
and ω+2π/1t cannot be separated in a sampling with time interval1t because
the higher-frequency signal masquerades as the lower-frequency signal. This
unavoidable consequence of sampling is called aliasing.

Since signals of frequency ω+2π/1t and ω cannot be distinguished from
each other, it appears that only frequencies within the following range

− π

1t
≤ ω ≤ π

1t
(1.35)

can be recognized with a sampling interval 1t, and all other frequencies should
preferably be absent, lest they contaminate the sampling process.

Since a negative frequency corresponds to a 180◦ phase shift, because
sin(−ωt+φ)= sin(ωt−φ+π), the useful range is actually 0 ≤ ω ≤ π/1t,
and to sample a wave of frequency ω, the time step 1t may not exceed
1tmax=π/ω=T/2, which implies that at least two samples of the signal must
be taken per period. This minimum required sampling frequency is called the
Nyquist frequency. Looking at the problem in a different way, with a given sam-
pling interval 1t (rather than a given frequency), we recognize that the highest
resolved frequency is π/1t, called the cutoff frequency (Fig. 1.16).

Should higher frequencies be present and sampled, aliasing inevitably
occurs, as illustrated by a sinusoidal function sampled with increasingly
fewer points per period (Fig. 1.17). The reader is invited to experiment with
Matlab™ script aliasanim.m. Up to 1t=T/2, the signal is recognizable,
but, beyond that, lines connecting consecutive sampled values appear to tunnel
through crests and troughs, giving the impression of a signal with longer period.

Aliasing is a major concern, and the danger it poses is often underestimated.
This is because we do not know whether the signal being represented by the
discretization scheme contains frequencies higher than the cutoff frequency,
precisely because variability at those frequencies is not retained and computed.
In geophysical situations, the time step and grid spacing are most often set not
by the physics of the problem but by computer-hardware limits. This forces the
modeler to discard variability at unresolved frequencies and wavelengths and
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FIGURE 1.17 Aliasing illustrated by sampling a given signal (gray sinusoidal curve) with an
increasing time interval. A high sampling rate (top row of images) resolves the signal properly. The
boxed image on the bottom row corresponds to the cutoff frequency, and the sampled signal appears
as a seesaw. The last two images correspond to excessively long time intervals that alias the signal,
making it appear as if it had a longer period than it actually has.

creates aliasing. Methods to overcome the undesired effects of aliasing will be
presented in subsequent chapters.

ANALYTICAL PROBLEMS

1.1. Name three naturally occurring flows in the atmosphere.

1.2. How did geophysical flows contribute to Christopher Columbus’ discovery
of the New World and to the subsequent exploration of the eastern shore
of North America? (Think of both large-scale winds and major ocean
currents.)

1.3. The sea breeze is a light wind blowing from the sea as the result of a tem-
perature difference between land and sea. As this temperature difference
reverses from day to night, the daytime sea breeze turns into a nighttime
land breeze. If you were to construct a numerical model of the sea–land
breeze, should you include the effects of the planetary rotation?

1.4. The Great Red Spot of Jupiter, centered at 22◦S and spanning 12◦ in lat-
itude and 25◦ in longitude, exhibits wind speeds of about 100 m/s. The
planet’s equatorial radius and rotation rates are, respectively, 71,400 km
and 1.763 × 10−4 s−1. Is the Great Red Spot influenced by planetary
rotation?

1.5. Can you think of a technique for measuring wind speeds and ocean veloc-
ities with an instrument that has no rotating component? (Hint: Think of
measurable quantities whose values are affected by translation.)

NUMERICAL EXERCISES

1.1. Using the temperature measurements of Nansen (Fig. 1.18 left), estimate
typical vertical temperature gradient values and typical temperature values.
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Compare those values to the estimates based on a Mediterranean profile
(Fig. 1.18 right). Which temperature scale do you need for the estimation
of gradients in each case?

1.2. Perform a numerical differentiation of e−ω(t+|t|) using ω1t=0.1,0.01,
0.001. Compare the first-order forward, first-order backward, and second-
order centered schemes at t=1/ω. Then, repeat the derivation with
t=0.000001/ω and compare. What do you conclude?

1.3. Apply forward, backward, second-order, and fourth-order discretizations
to sinh(kx) at x = 1/k for values of k1x covering the range [10−4,1]. Plot
errors on a logarithmic scale and verify the convergence rates. Repeat the
exercise for x = 0. What strange effect do you observe and why?

1.4. Establish a purely forward, finite-difference approximation of a first
derivative that is of second or higher-order in accuracy. How many
sampling points are required as a function of the order of accuracy?

1.5. Suppose you need to evaluate ∂u/∂x not at grid node i, but at mid-distance
between nodes xi= i1x and xi+1= (i+1)1x. Establish second-order and
fourth-order finite-difference approximations to do so and compare the
truncation errors to the corresponding discretizations centered on the nodal
point i. What does this analysis suggest?

1.6. Assume that a spatial two-dimensional domain is covered by a uniform
grid with spacing1x in the x-direction and1y in the y-direction. How can
you discretize ∂2u/∂x∂y to second order? Does the approximation satisfy
a similar property as its mathematical counterpart ∂2u/∂x∂y= ∂2u/∂y∂x ?

1.7. Determine how a wave of wavelength 4
31x and period 5

31t is interpreted
in a uniform grid of mesh 1x and time step 1t. How does the computed
propagation speed resulting from the discrete sampling compare to the true
speed?
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FIGURE 1.18 Temperature values measured by Nansen during his 1894 North Pole expedition
(left) and a typical temperature profile in the Mediterranean Sea (from Medar© data base, right).
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1.8. Suppose you use numerical finite differencing to estimate derivatives of a
function that was sampled with some noise. Assuming the noise is uncor-
related (i.e., purely randomly distributed, independently of the sampling
interval), what do you expect would happen during the finite differencing
of first-order derivatives, second derivatives etc.? Devise a numerical pro-
gram that verifies your assertion, by adding a random noise of intensity
10−5A to the function Asin(ωt), where the frequency ω is well resolved by
the numerical sampling (ω1t=0.05). Did you correctly guess what would
happen? Now plot the convergence as a function of ω1t for noise levels
of 10−5A and 10−4A.
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Walsh Cottage, Woods Hole, Massachusetts
1962–present

Every summer since 1962, this unassuming building of the Woods Hole
Oceanographic Institution (Falmouth, Massachusetts, USA) has been home
to the Geophysical Fluid Dynamics Summer Program, which has gathered
oceanographers, meteorologists, physicists, and mathematicians from around
the world. This program (begun in 1959) has single-handedly been responsible
for many of the developments of geophysical fluid dynamics, from its humble
beginnings to its present status as a recognized discipline in physical sciences.
(Drawing by Ryuji Kimura, reproduced with permission)
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UK Meteorological Office, Exeter, England
1854–present

The Meteorological Office in the United Kingdom was established in 1854 to
provide meteorological information and sea currents by telegraph to people at
sea and, within a few years, began also to issue storm warnings to seaports and
weather forecasts to the press. In 1920, separate meteorological military ser-
vices established during World War I were merged with the civilian office under
the Air Ministry. World War II led to another large increase in both personnel
and resources, including the use of balloons. The “Met Office” has an outstand-
ing record of capitalizing on new technologies, beginning broadcasts on radio
(in 1922) and then on television (in 1936 by means of simple captions and live
broadcasts in 1954). The first electronic computer was installed in 1962, and
satellite imagery was incorporated in 1964.

As weather forecasts began to depend less on trained meteorologists draw-
ing weather maps and more on computational models, the need for the latest
and best performing computer platform became a driving force, leading to the
acquisition of a Cyber supercomputer in 1981 and a series of ever faster Cray
supercomputers in the 1990s.

The impact of the Met Office can hardly be underestimated: Its numerical
activities have contributed enormously not only to the field of meteorology
but also to the development of computational fluid dynamics and physical
oceanography, while the scope of its data analyses and forecasts has spread
well beyond tomorrow’s weather to other areas such as the impact of the
weather on the environment and human health. (For additional information, see
http://www.metoffice.gov.uk/about-us/who/our-history)

http://www.metoffice.gov.uk/about-us/who/our-history


Chapter 2

The Coriolis Force

ABSTRACT
The objective of this chapter is to examine the Coriolis force, a fictitious force arising
from the choice of a rotating framework of reference. Some physical considerations are
offered to provide insight on this nonintuitive but essential element of geophysical flows.
The numerical section of this chapter treats time stepping introduced in the particular
case of inertial oscillations and generalized afterwards.

2.1 ROTATING FRAMEWORK OF REFERENCE

From a theoretical point of view, all equations governing geophysical fluid pro-
cesses could be stated with respect to an inertial framework of reference, fixed
with respect to distant stars. But, we people on Earth observe fluid motions with
respect to this rotating system. Also, mountains and ocean boundaries are sta-
tionary with respect to Earth. Common sense therefore dictates that we write
the governing equations in a reference framework rotating with our planet.
(The same can be said for other planets and stars.) The trouble arising from
the additional terms in the equations of motion is less than that which would
arise from having to reckon with moving boundaries and the need to subtract
systematically the ambient rotation from the resulting flow.

To facilitate the mathematical developments, let us first investigate the two-
dimensional case (Fig. 2.1). Let the X– and Y–axes form the inertial framework
of reference and the x– and y–axes be those of a framework with the same
origin but rotating at the angular rate� (defined as positive in the trigonometric
sense). The corresponding unit vectors are denoted (I, J) and (i, j). At any time
t, the rotating x–axis makes an angle �t with the fixed X–axis. It follows that

i=+ I cos�t + J sin�t (2.1a)

j=− I sin�t + J cos�t (2.1b)

I=+i cos�t− j sin�t (2.2a)

J=+i sin�t+ j cos�t, (2.2b)
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FIGURE 2.1 Fixed (X, Y) and rotating (x, y) frameworks of reference.

and that the coordinates of the position vector r=XI+YJ= xi+yj of any point
in the plane are related by

x=+X cos�t + Y sin�t (2.3a)

y=−X sin�t + Y cos�t. (2.3b)

The first time derivative of the preceding expressions yields

dx

dt
=+ dX

dt
cos�t + dY

dt
sin�t

+�y︷ ︸︸ ︷
− �X sin�t + �Y cos�t (2.4a)

dy

dt
=− dX

dt
sin�t + dY

dt
cos�t − �X cos�t − �Y sin�t︸ ︷︷ ︸

−�x

. (2.4b)

The quantities dx/dt and dy/dt give the rates of change of the coordinates rela-
tive to the moving frame as time evolves. They are thus the components of the
relative velocity:

u= dx

dt
i + dy

dt
j=ui+vj. (2.5)

Similarly, dX/dt and dY/dt give the rates of change of the absolute
coordinates and form the absolute velocity:

U= dX

dt
I + dY

dt
J.
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Writing the absolute velocity in terms of the rotating unit vectors, we obtain
[using Eq. (2.2)]

U=
(

dX

dt
cos�t + dY

dt
sin�t

)
i +

(
−dX

dt
sin�t + dY

dt
cos�t

)
j

=Ui+Vj. (2.6)

Thus, dX/dt and dY/dt are the components of the absolute velocity U in the
inertial frame, whereas U and V are the components of the same vector in the
rotating frame. Use of Eqs. (2.4) and (2.3) in the preceding expression yields
the following relations between absolute and relative velocities:

U = u−�y, V = v + �x. (2.7)

These equalities simply state that the absolute velocity is the relative velocity
plus the entraining velocity due to the rotation of the reference framework.

A second derivative with respect to time provides in a similar manner:

d2x

dt2
=
(

d2X

dt2
cos�t + d2Y

dt2
sin�t

)
+ 2�

(
−dX

dt
sin�t + dY

dt
cos�t

)
︸ ︷︷ ︸

V

−�2 (X cos�t + Y sin�t)︸ ︷︷ ︸
x

(2.8a)

d2y

dt2
=
(
−d2X

dt2
sin�t + d2Y

dt2
cos�t

)
−2�

(
dX

dt
cos�t + dY

dt
sin�t

)
︸ ︷︷ ︸

U

−�2 (−X sin�t + Y cos�t)︸ ︷︷ ︸
y

. (2.8b)

Expressed in terms of the relative and absolute accelerations

a= d2x

dt2
i + d2y

dt2
j= du

dt
i + dv

dt
j=ai + bj

A= d2X

dt2
I + d2Y

dt2
J

=
(

d2X

dt2
cos�t + d2Y

dt2
sin�t

)
i+

(
d2Y

dt2
cos�t − d2X

dt2
sin�t

)
j = Ai+ Bj,

expressions (2.8) condense to

a=A+2�V−�2x, b=B−2�U−�2y.
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In analogy with the absolute velocity vector, d2X/dt2 and d2Y/dt2 are the com-
ponents of the absolute acceleration A in the inertial frame, whereas A and B are
the components of the same vector in the rotating frame. The absolute acceler-
ation components, necessary later to formulate Newton’s law, are obtained by
solving for A and B and using Eq. (2.7):

A=a−2�v−�2x, B=b+2�u−�2y. (2.9)

We now see that the difference between absolute and relative acceleration
consists of two contributions. The first, proportional to � and to the relative
velocity, is called the Coriolis acceleration; the other, proportional to �2 and
to the coordinates, is called the centrifugal acceleration. When placed on the
other side of the equality in Newton’s law, these terms can be assimilated to
forces (per unit mass). The centrifugal force acts as an outward pull, whereas the
Coriolis force depends on the direction and magnitude of the relative velocity.

Formally, the preceding results could have been derived in a vector form.
Defining the vector rotation

�=�k,

where k is the unit vector in the third dimension (which is common to both
systems of reference), we can write Eqs. (2.7) and (2.9) as

U= u + �×r

A= a + 2�×u + �×(�×r), (2.10)

where the symbol × indicates the vectorial product. This implies that taking a
time derivative of a vector with respect to the inertial framework is equivalent
to applying the operator

d

dt
+ �×

in the rotating framework of reference.
A very detailed exposition of the Coriolis and centrifugal accelerations can

be found in the book by Stommel and Moore (1989). In addition, the reader
will find a historical perspective in Ripa (1994) and laboratory illustrations in
Marshall and Plumb (2008).

2.2 UNIMPORTANCE OF THE CENTRIFUGAL FORCE

Unlike the Coriolis force, which is proportional to the velocity, the centrifugal
force depends solely on the rotation rate and the distance of the particle to the
rotation axis. Even at rest with respect to the rotating planet, particles experience
an outward pull. Yet, on the earth as on other planetary bodies, objects don’t fly
out to space. How is that possible? Obviously, gravity keeps everything together.
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FIGURE 2.2 How the flattening of the rotating earth (grossly exaggerated in this drawing) causes
the gravitational and centrifugal forces to combine into a net force aligned with the local vertical,
so that equilibrium is reached.

In the absence of rotation, gravitational forces keep the matter together to
form a spherical body (with the denser materials at the center and the lighter
ones on the periphery). The outward pull caused by the centrifugal force distorts
this spherical equilibrium, and the planet assumes a slightly flattened shape.
The degree of flattening is precisely that necessary to keep the planet in
equilibrium for its rotation rate.

The situation is depicted in Fig. 2.2. By its nature, the centrifugal force is
directed outward, perpendicular to the axis of rotation, whereas the gravitational
force points toward the planet’s center. The resulting force assumes an interme-
diate direction, and this direction is precisely the direction of the local vertical.
Indeed, under this condition, a loose particle would have no tendency of its own
to fly away from the planet. In other words, every particle at rest on the surface
will remain at rest unless it is subjected to additional forces.

The flattening of the earth, as well as that of other celestial bodies in rota-
tion, is important to neutralize the centrifugal force. But, this is not to say that
it greatly distorts the geometry. On the earth, for example, the distortion is very
slight because gravity by far exceeds the centrifugal force; the terrestrial equa-
torial radius is 6378 km, slightly greater than its polar radius of 6357 km. The
shape of the rotating oblate earth is treated in detail by Stommel and Moore
(1989) and by Ripa (1994).

For the sake of simplicity in all that follows, we will call the gravitational
force the resultant force, aligned with the vertical and equal to the sum of the
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true gravitational force and the centrifugal force. Due to inhomogeneous distri-
butions of rocks and magma on Earth, the true gravitational force is not directed
toward the center of the earth. For the same reason as the centrifugal force has
rendered the earth surface oblate, this inhomogeneous true gravity has deformed
the earth surface until the total (apparent) gravitational force is perpendicular
to it. The surface so obtained is called a geoid and can be interpreted as the
surface of an ocean at rest (with a continuous extension on land). This virtual
continuous surface is perpendicular at every point to the direction of gravity
(including the centrifugal force) and forms an equipotential surface, meaning
that a particle moving on that surface undergoes no change in potential energy.
The value of this potential energy per unit mass is called the geopotential, and
the geoid is thus a surface of constant geopotential. This surface will be the
reference surface from which land elevations, (dynamic) sea surface elevations,
and ocean depth will be defined. For more on the geoid, the reader is referred to
Robinson (2004), Chapter 11.

In a rotating laboratory tank, the situation is similar but not identical. The
rotation causes a displacement of the fluid toward the periphery. This proceeds
until the resulting inward pressure gradient prevents any further displacement.
Equilibrium then requires that at any point on the surface, the downward grav-
itational force and the outward centrifugal force combine into a resultant force
normal to the surface (Fig. 2.3), so that the surface becomes an equipotential
surface. Although the surface curvature is crucial in neutralizing the centrifugal
force, the vertical displacements are rather small. In a tank rotating at the rate of
one revolution every 2 s (30 rpm) and 40 cm in diameter, the difference in fluid
height between the rim and the center is a modest 2 cm.

Net
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�

FIGURE 2.3 Equilibrium surface of a rotating fluid in an open container. The surface slope is such
that gravitational and centrifugal forces combine into a net force everywhere aligned with the local
normal to the surface.
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2.3 FREE MOTION ON A ROTATING PLANE

The preceding argument allows us to combine the centrifugal force with the
gravitational force, but the Coriolis force remains. To have an idea of what this
force can cause, let us examine the motion of a free particle, that is, a particle not
subject to any external force other than apparent gravity (true gravity combined
with centrifugal force) on the horizontal plane extending from the North Pole.

If the particle is free of any force in this plane, its acceleration in the inertial
frame is nil, by Newton’s law. According to Eq. (2.9), with the centrifugal-
acceleration terms no longer present, the equations governing the velocity
components of the particle are

du

dt
−2�v = 0,

dv

dt
+ 2�u = 0. (2.11)

The general solution to this system of linear equations is

u = V sin( ft+φ), v = V cos(ft+φ), (2.12)

where f =2�, called the Coriolis parameter, has been introduced for conve-
nience, and V and φ are two arbitrary constants of integration. Without loss
of generality, V can always be chosen as nonnegative. (Do not confuse this
constant V with the y–component of the absolute velocity introduced in Sec-
tion 2.1.) A first result is that the particle speed (u2+v2)1/2 remains unchanged
in time. It is equal to V , a constant determined by the initial conditions.

Although the speed remains unchanged, the components u and v do depend
on time, implying a change in direction. To document this curving effect, it
is most instructive to derive the trajectory of the particle. The coordinates of
the particle position change, by definition of the vector velocity, according to
dx/dt=u and dy/dt=v, and a second time integration provides

x= x0−
V

f
cos(ft + φ) (2.13a)

y= y0 +
V

f
sin(ft + φ), (2.13b)

where x0 and y0 are additional constants of integration to be determined from
the initial coordinates of the particle. From the last relations, it follows directly
that

(x−x0)
2 + (y−y0)

2 =
(

V

f

)2

. (2.14)

This implies that the trajectory is a circle centered at (x0, y0) and of radius V/| f |.
The situation is depicted in Fig. 2.4.

In the absence of rotation (f =0), this radius is infinite, and the particle
follows a straight path, as we could have anticipated. But, in the presence of



48 PART | I Fundamentals

V

(x0, y0)

f
2

V
f

R=

�=

FIGURE 2.4 Inertial oscillation of a free par-
ticle on a rotating plane. The orbital period is
exactly half of the ambient revolution period.
This figure has been drawn with a positive
Coriolis parameter, f , representative of the
northern hemisphere. If f were negative (as in
the southern hemisphere), the particle would
veer to the left.

rotation (f 6= 0), the particle turns constantly. A quick examination of Eq. (2.13)
reveals that the particle turns to the right (clockwise) if f is positive or to the
left (counterclockwise) if f is negative. In sum, the rule is that the particle turns
in the sense opposite to that of the ambient rotation.

At this point, we may wonder whether this particle rotation is none other than
the negative of the ambient rotation, in such a way as to keep the particle at rest
in the absolute frame of reference. But, there are at least two reasons why this is
not so. The first is that the coordinates of the center of the particle’s circular path
are arbitrary and are therefore not required to coincide with those of the axis of
rotation. The second and most compelling reason is that the two frequencies
of rotation are simply not the same: the ambient rotating plane completes one
revolution in a time equal to Ta=2π/�, whereas the particle covers a full circle
in a time equal to Tp=2π/f =π/�, called inertial period. Thus, the particle
goes around its orbit twice as the plane accomplishes a single revolution.

The spontaneous circling of a free particle endowed with an initial velocity
in a rotating environment bears the name of inertial oscillation. Note that, since
the particle speed can vary, so can the inertial radius, V/| f |, whereas the fre-
quency, | f |=2|�|, is a property of the rotating environment and is independent
of the initial conditions.

The preceding exercise may appear rather mathematical and devoid of any
physical interpretation. There exists, however, a geometric argument and a phys-
ical analogy. Let us first discuss the geometric argument. Consider a rotating
table and, on it, a particle initially (t = 0) at a distance R from the axis of rota-
tion, approaching the latter at a speed u (Fig. 2.5). At some later time t, the
particle has approached the axis of rotation by a distance ut while it has covered
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FIGURE 2.5 Geometrical interpretation of the apparent veering of a particle trajectory viewed in
a rotating framework. The veering is to the right when the ambient rotation is counterclockwise, as
shown here for two particular trajectories, one originating from the rim and the other from the axis
of rotation.

the distance �Rt laterally. It now lies at the position indicated by a solid dot.
During the lapse t, the table has rotated by an angle �t, and to an observer
rotating with the table, the particle seems to have originated from the point on
the rim indicated by the open circle. The construction shows that, although the
actual trajectory is perfectly straight, the apparent path as noted by the observer
rotating with the table curves to the right. A similar conclusion holds for a par-
ticle radially pushed away from the center with a speed u. In absolute axes, the
trajectory is a straight line covering a distance ut from the center. During the
lapse t, the table has rotated and for an observer on the rotating platform, the
particle, instead of arriving in the location of the asterisk, apparently veered to
the right.

The problem with this argument is that to construct the absolute trajectory,
we chose a straight path, that is, we implicitly considered the total absolute
acceleration, which in the rotating framework includes the centrifugal accelera-
tion. The latter, however, should not have been retained for consistency with the
case of terrestrial rotation, but because it is a radial force, it does not account
for the transverse displacement. Therefore, the apparent veering is, at least for a
short interval of time, entirely due to the Coriolis effect.
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FIGURE 2.6 Side view (a) and top view (b) of a mass on a paraboloid surface.

2.4 ANALOGY AND PHYSICAL INTERPRETATION

Consider1 a particle of a certain mass in a gravitational field g on a paraboloid
surface (Fig. 2.6) of elevation Z given by

Z = �
2

2g

(
X2 + Y2

)
. (2.15)

Provided that the paraboloid is sufficiently flat compared to its radius R
(�2R/2g�1), the equations of motions of the mass are easily derived

d2X

dt2
= −g

∂Z

∂X
= −�2X,

d2Y

dt2
= −g

∂Z

∂Y
= −�2Y, (2.16)

and describe a pendulum motion.
The frequency�measures the curvature of the surface and is the pendulum’s

natural frequency of oscillation. Note how the gravitational restoring force takes
on the form of a negative centrifugal force. Without loss of generality, we can
choose the initial position of the particle as X=X0, Y=0. In that location, we
launch the particle with an initial velocity of dX/dt=U0 and dY/dt=V0 in
absolute axes. The trajectory in absolute axes is easily found as the solution of
Eq. (2.16)

X = X0 cos�t+ U0

�
sin�t (2.17a)

Y = V0

�
sin�t. (2.17b)

1A similar analogy was suggested to the authors by Prof. Satoshi Sakai at Kyoto University.
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Two particular solutions are noteworthy. If the initial condition is a pure
radial displacement (V0=0), the particle forever oscillates along the line Y=0.
The oscillation, of period 2π/�, takes it to the center twice per period, that is,
every π/� time interval. At the other extreme, the particle can be imparted an
initial azimuthal velocity of magnitude such that the outward centrifugal force
of the ensuing circling motion exactly cancels the inward gravitational pull at
that radial distance:

U0 = 0, V0 = ±�X0, (2.18)

in which case the particle remains at a fixed distance from the center (X2+Y2=
X2

0) and circles at a constant angular rate �, counterclockwise or clockwise,
depending on the direction of the initial azimuthal velocity.

Outside of these two extreme behaviors, the particle describes an elliptical
trajectory of size, eccentricity, and phase related to the initial condition. The
orbit does not take it through the center but brings it, twice per period, to a
distance of closest approach (perigee) and, twice per period, to a distance of
largest excursion (apogee).

At this point, the reader may rightfully wonder: Where is the analogy with
the motion of a particle subject to the Coriolis force? To show this analogy, let us
now view the particle motion in a rotating frame, but, of course, not any rotating
frame: Let us select the angular rotation rate � equal to the particle’s frequency
of oscillation. This choice is made so that, in the rotating frame of reference,
the outward centrifugal force is everywhere and at all times exactly canceled
by the inward gravitational pull experienced on the parabolic surface. Thus, the
equations of motion expressed in the rotating frame include only the relative
acceleration and the Coriolis force, that is, they are none other than Eqs. (2.11).

Let us now consider the oscillations as seen by an observer in the rotating
frame (Figs. 2.7 and 2.8). When the particle oscillates strictly back and forth,
the rotating observer sees a curved trajectory. Because the particle passes by the
origin twice per oscillation, the orbit seen by the rotating observer also passes by
the origin twice per period. When the particle reaches its extreme displacement
on one side, it reaches an apogee on its orbit as viewed in the rotating frame;
then, by the time it reaches its maximum displacement on the opposite side,
π/� later, the rotating framework has rotated exactly by half a turn, so that
this second apogee of the orbit coincides with the first. Therefore, the reader
can readily be convinced that the orbit in the rotating frame is drawn twice per
period of oscillation. Algebraic or geometric developments reveal that the orbit
in the rotating framework is circular (Fig. 2.8a).

In the other extreme situation, when the particle circles at a constant dis-
tance from the origin, two cases must be distinguished, depending on whether
it circles in the direction of or opposite to the observer’s rotating frame. If
the direction is the same [positive sign in Eq. (2.18)], the observer simply
chases the particle, which then appears stationary, and the orbit reduces to a
single point (Fig. 2.8b). This case corresponds to the state of rest of a particle
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FIGURE 2.7 Oscillation of the paraboloid pendulum viewed in absolute axes. Dots represent the
imprint of the mass on the paraboloid that rotates with the rotation rate �.

in a rotating environment [V=0 in Eq. (2.12) through Eq. (2.13)]. If the sense
of rotation is opposite [minus sign in Eq. (2.18)], the reference frame rotates
at the rate � in one direction, whereas the particle circles at the same rate in
the opposite direction. To the observer, the particle appears to rotate at the rate
2�. The orbit is obviously a circle centered at the origin and of radius equal to
the particle’s radial displacement; it is covered twice per revolution of the rotat-
ing frame (Fig. 2.8c). Finally, for arbitrary oscillations, the orbit in the rotating
frame is a circle of finite radius that is not centered at the origin, does not pass
by the origin, and may or may not include the origin (Fig. 2.8d). The reader
may experiment with Matlab™ code parabolic.m for further explorations
of trajectories.

Looking at the system from an inertial framework, we observe that the oscil-
lation of the particle is due to the restoring force of gravity. In particular, its
projection on the parabolic surface is responsible for the tendency to move
toward the center of the paraboloid. If we look from the rotating framework,
this component of gravity is always cancelled by the centrifugal force associ-
ated with the rotation, and the restoring force responsible for the oscillation is
now the Coriolis force.

2.5 ACCELERATION ON A THREE-DIMENSIONAL
ROTATING PLANET

For all practical purposes, except as outlined earlier when the centrifugal force
was discussed (Section 2.2), the earth can be taken as a perfect sphere. This
sphere rotates about its North Pole–South Pole axis. At any given latitude ϕ,
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FIGURE 2.8 Orbits (full line) in absolute axes with imprint of trajectories (dots) on rotating frame-
work (apparent trajectory). Each row shows the situation for a different initial condition and after
1/8, 1/4, 1/2, and a full period 2π�−1. Orbits differ according to the initial velocity: the first
row (a) shows oscillations obtained without initial velocity, the second row (b) was created with
initial velocity U0=0, V0=X0�, the third row (c) corresponds to the opposite initial velocity
U0=0, V0=−X0�, and the last row (d) corresponds to an arbitrary initial velocity.

the north–south direction departs from the local vertical, and the Coriolis force
assumes a form different from that established in the preceding section.

Figure 2.9 depicts the traditional choice for a local Cartesian framework of
reference: the x-axis is oriented eastward, the y-axis, northward, and the z-axis,
upward. In this framework, the earth’s rotation vector is expressed as

� = �cosϕ j+�sinϕk. (2.19)

The absolute acceleration minus the centrifugal component,

du
dt
+ 2�×u,
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FIGURE 2.9 Definition of a local Cartesian framework of reference on a spherical Earth. The
coordinate x is directed eastward, y northward, and z upward.

has the following three components:

x :
du

dt
+ 2�cosϕ w−2� sinϕ v (2.20a)

y :
dv

dt
+ 2�sinϕ u (2.20b)

z :
dw

dt
− 2�cosϕ u. (2.20c)

With x, y, and z everywhere aligned with the local eastward, northward, and ver-
tical directions, the coordinate system is curvilinear, and additional terms arise
in the components of the relative acceleration. These terms will be dismissed in
Section 3.2 because of their relatively small size in most instances.
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For convenience, we define the quantities

f =2�sinϕ (2.21)

f∗=2�cosϕ. (2.22)

The coefficient f is called the Coriolis parameter, whereas f∗ has no traditional
name and will be called here the reciprocal Coriolis parameter. In the northern
hemisphere, f is positive; it is zero at the equator and negative in the south-
ern hemisphere. In contrast, f∗ is positive in both hemispheres and vanishes
at the poles. An examination of the relative importance of the various terms
(Section 4.3) will reveal that, generally, the f terms are important, whereas the
f∗ terms may be neglected.

Horizontal, unforced motions are described by

du

dt
− f v = 0 (2.23a)

dv

dt
+ fu= 0 (2.23b)

and are still characterized by solution (2.12). The difference resides in the value
of f , now given by Eq. (2.21). Thus, inertial oscillations on Earth have period-
icities equal to 2π/f =π/�sinϕ, ranging from 11 h 58’ at the poles to infinity
along the equator. Pure inertial oscillations are, however, quite rare because of
the usual presence of pressure gradients and other forces. Nonetheless, inertial
oscillations are not uncommonly found to contribute to observations of oceanic
currents. An example of such an occurrence, where the inertial oscillations made
up almost the entire signal, was reported by Gustafson and Kullenberg (1936).
Current measurements in the Baltic Sea showed periodic oscillations about a
mean value. When added to one another to form a so-called progressive vec-
tor diagram (Fig. 2.10), the currents distinctly showed a mean drift, on which
were superimposed quite regular clockwise oscillations. The theory of inertial
oscillation predicts clockwise rotation in the northern hemisphere with period
of 2π/f =π/�sinϕ, or 14 h at the latitude of observations, thus confirming the
interpretation of the observations as inertial oscillations.

2.6 NUMERICAL APPROACH TO OSCILLATORY MOTIONS

The equations of free motion on a rotating plane (2.11) have been considered in
some detail in Section 2.3, and it is now appropriate to consider their discretiza-
tion, as the corresponding terms are part of all numerical models of geophysical
flows. Upon introducing the time increment 1t, an approximation to the com-
ponents of the velocity will be determined at the discrete instants tn=n1t with
n=1,2,3, . . ., which are denoted ũn= ũ(tn) and ṽn= ṽ(tn), with tildes used to
distinguish the discrete solution from the exact one. The so-called Euler method
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FIGURE 2.10 Evidence of inertial oscillations in the Baltic Sea, as reported by Gustafson and
Kullenberg (1936). The plot is a progressive vector diagram constructed by the successive addition
of velocity measurements at a fixed location. For weak or uniform velocities, such a curve approx-
imates the trajectory that a particle starting at the point of observation would have followed during
the period of observation. Numbers indicate days of the month. Note the persistent veering to the
right, at a period of about 14 h, which is the value of 2π/f at that latitude (57.8◦N). (From Gustafson
& Kullenberg, 1936, as adapted by Gill, 1982)

based on first-order forward differencing yields the simplest discretization of
Eqs. (2.11):

du

dt
− f v=0−→ ũn+1− ũn

1t
− f ṽn=0

dv

dt
+ fu=0−→ ṽn+1− ṽn

1t
+ f ũn=0.

The latter pair can be cast into a recursive form as follows:

ũn+1 = ũn+ f1t ṽn (2.24a)

ṽn+1 = ṽn− f1t ũn. (2.24b)
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Thus, given initial values ũ0 and ṽ0 at t0, the solution can be computed easily at
time t1

ũ1 = ũ0+ f1t ṽ0 (2.25)

ṽ1 = ṽ0− f1t ũ0. (2.26)

Then, by means of the same algorithm, the solution can be obtained iteratively
at times t2, t3, and so on (do not confuse the temporal index with an exponent
here and in the following). Clearly, the main advantage of the preceding scheme
is its simplicity, but it is not sufficient to render it acceptable, as we shall soon
learn.

To explore the numerical error generated by the Euler method, we carry out
Taylor expansions of the type

ũn+1= ũn+1t

[
dũ

dt

]
t=tn
+1t2

2

[
d2ũ

dt2

]
t=tn

+O
(
1t3

)
and similarly for ṽ to obtain the following expressions from Eqs. (2.24)[

dũ

dt
− f ṽ

]
t=tn
=−

[
d2ũ

dt2

]
t=tn

1t

2
+O

(
1t2

)
(2.27a)

[
dṽ

dt
+ f ũ

]
t=tn
=−

[
d2ṽ

dt2

]
t=tn

1t

2
+O

(
1t2

)
. (2.27b)

Differentiation of Eq. (2.27a) with respect to time and use of Eq. (2.27b) to
eliminate dṽ/dt allow us to recast Eq. (2.27a) into a simpler form, and similarly
for Eq. (2.27b):

dũn

dt
− f ṽn= f 21t

2
ũn +O

(
1t2

)
(2.28a)

dṽn

dt
+ f ũn= f 21t

2
ṽn +O

(
1t2

)
. (2.28b)

Obviously, the numerical scheme mirrors the original equations, except that an
additional term appears in each right-hand side. This additional term takes the
form of antifriction (friction would have a minus sign instead) and will therefore
increase the discrete velocity over time.

The truncation error of the Euler scheme—the right-hand side of the pre-
ceding expressions—tends to zero as 1t vanishes, which is why the scheme is
said to be consistent. The truncation is on the order of 1t at the first power,
and the scheme is therefore said to be first-order accurate, which is the low-
est possible level of accuracy. Nonetheless, this is not the chief weakness of
the present scheme, since we must expect that the introduction of antifric-
tion will create an unphysical acceleratation. Indeed, elementary manipulations
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of the time-stepping algorithm (2.24) lead to (ũn+1)2+(ṽn+1)2 = (1+
f 21t2)

{
(ũn)2+(ṽn)2

}
so that by recursion

||ũ||2= (ũn)2+(ṽn)2= (1+ f 21t2)n
{
(ũ0)2+(ṽ0)2

}
. (2.29)

Thus, although the kinetic energy (directly proportional to the squared norm
||ũ||2) of the inertial oscillation must remain constant, as was seen in Sec-
tion 2.3, the kinetic energy of the discrete solution increases without bound2

even if the time step 1t is taken much smaller than the characteristic time 1/f .
Algorithm (2.24) is unstable. Because such a behavior is not acceptable, we
need to formulate an alternative type of discretization.

In our first scheme, the time derivative was taken by going forward from
time level tn to tn+1 and the other terms at tn, and the scheme became a recursive
algorithm to calculate the next values from the current values. Such a discretiza-
tion is called an explicit scheme. By contrast, in an implicit scheme, the terms
other than the time derivatives are taken at the new time tn+1 (which is similar
to taking a backward difference for the time derivative):

ũn+1− ũn

1t
− f ṽn+1 = 0 (2.30a)

ṽn+1− ṽn

1t
+ f ũn+1 = 0. (2.30b)

In this case, the norm of the discrete solution decreases monotonically toward
zero, according to

(ũn)2+(ṽn)2= (1+ f 21t2)−n
{
(ũ0)2+(ṽ0)2

}
. (2.31)

This scheme can be regarded as stable, but as the kinetic energy should neither
decrease or increase, it may rather be considered as overly stable.

Of interest is the family of algorithms based on a weighted average between
explicit and implicit schemes:

ũn+1 − ũn

1t
− f

[
(1−α)vn + αṽn+1

]
=0 (2.32a)

ṽn+1− ṽn

1t
+ f

[
(1−α)un + αũn+1

]
=0, (2.32b)

with 0 ≤ α ≤ 1. The numerical scheme is explicit when α=0 and implicit
when α=1. Hence, the coefficient α may be regarded as the degree of implici-
tness in the scheme. It has a crucial impact on the time evolution of the

2From the context, it should be clear that n in (1+ f 21t2)n is an exponent, whereas in ũn, it is the
time index. In the following text, we will not point out this distinction again, leaving it to the reader
to verify the context.
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kinetic energy:

(ũn)2+(ṽn)2=
[

1+(1−α)2f 21t2

1+α2f 21t2

]n{
(ũ0)2+(ṽ0)2

}
. (2.33)

According to whether α is less than, equal to, or greater than 1/2, the kinetic
energy increases, remains constant, or decreases over time. It seems therefore
appropriate to select the scheme with α=1/2, which is usually said to be semi-
implicit.

It is now instructive to compare the semi-implicit approximate solution with
the exact solution (2.12). For this to be relevant, the same initial conditions
are prescribed, that is, ũ0=V sinφ and ṽ0=V cosφ. Then, at any time tn, the
discrete velocity may be shown (see Numerical Exercise 2.9) to be

ũn = V sin( f̃ tn+φ)
ṽn = V cos( f̃ tn+φ),

with the angular frequency f̃ given by

f̃ = 1

1t
arctan

(
f1t

1− f 21t2/4

)
. (2.34)

Although the amplitude of the oscillation (V) is correct, the numerical
angular frequency, f̃ , differs from the true value f . However, the smaller the
dimensionless product f1t, the smaller the error:

f̃→ f

(
1− f 21t2

12

)
as f1t→0.

In other words, selecting a time increment 1t much shorter than 1/f , the time
scale of inertial oscillations, leads to a frequency that is close to the exact one.

2.7 NUMERICAL CONVERGENCE AND STABILITY

A Taylor-series expansion performed on the discrete equations of the inertial
oscillations revealed that the truncation error vanishes as1t tends to zero. How-
ever, we are not so much interested in verifying that the limit of the discretized
equation for increasing resolution returns the exact equation (consistency) as
we are in making sure that the solution of the discretized equation tends to the
solution of the differential equations (i.e., the exact solution). If the difference
between the exact and discrete solutions tends to zero as 1t vanishes, then the
discretization is said to converge.

Unfortunately proving convergence is not a trivial task, especially as we
generally do not know the exact solution, in which case the use of numerical dis-
cretization would be superfluous. Furthermore, the exact solution of the discrete
equation can very rarely be written in a closed form because the discretization
only provides a method, an algorithm, to construct the solution in time.
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Without knowing precisely the solutions of either the continuous prob-
lem or its discrete version, direct proofs of convergence involve mathematics
well beyond the scope of the present book and will be not pursued here. We
will, however, rely on a famous theorem called the Lax–Richtmyer equivalence
theorem (Lax & Richtmyer, 1956), which states that

A consistent finite-difference scheme for a linear partial differential equation for which
the initial value problem is well posed is convergent if and only if it is stable.

So, while proof of convergence is a mathematical exercise for researchers
well versed in functional analysis, we will restrict ourselves here and in every
other instance across the book to verify consistency and stability and will then
invoke the theorem to claim convergence. This is a particularly interesting
approach not only because checking stability and consistency is much easier
than proving convergence but also because stability analysis provides further
insight in propagation properties of the numerical scheme (see Section 5.4).
There remains, however, to define stability and to design efficient methods to
verify the stability of numerical schemes. Our analysis of the explicit Euler
scheme (2.24) for the discretization of inertial oscillations led us to conclude
that it is unstable because the velocity norm, and hence the energy of the system,
gradually increases with every time step.

The adjective unstable seems quite natural in this context but lacks precision,
and an exact definition is yet to be given. Imagine, for example, the use of an
implicit Euler scheme (generally taken as the archetype of a stable scheme) on
a standard linear differential equation:

∂u

∂t
=γ u → ũn+1− ũn

1t
=γ ũn+1. (2.35)

We readily see that for 0<γ1t<1, the norm of ũ increases:

ũn=
(

1

1−γ1t

)n

ũ0. (2.36)

We would however hardly disqualify the scheme as unstable, since the numeri-
cal solution increases its norm simply because the exact solution u=u0eγ t does
so. In the present case, we can even show that the numerical solution actually
converges to the exact solution:

lim
1t→0

ũn= ũ0 lim
1t→0

(
1

1−γ1t

)n

= ũ0 lim
1t→0

(
1

1−γ1t

)t/1t

= ũ0eγ t. (2.37)

with t=n1t.
Stability is thus a concept that should be related not only to the behavior

of the discrete solution but also to the behavior of the exact solution. Loosely
speaking, we will qualify a numerical scheme as unstable if its solution grows
much faster than the exact solution and, likewise, overstable if its solution
decreases much faster than the exact solution.
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2.7.1 Formal Stability Definition

A mathematical definition of stability, one which allows the discrete solution
to grow but only to a certain extent, is as follows. If the discrete state variable
is represented by an array x (collecting into a single vector the values of all
variables at all spatial grid points), which is stepped in time by an algorithm
based on the selected discretization, the corresponding numerical scheme is said
to be stable over a fixed time interval T if there exists a constant C such that

‖xn‖≤C ‖x0‖ (2.38)

for all n1t≤T . A scheme is thus stable if regardless of 1t (≤T), the numerical
solution remains bounded for t≤T .

This definition of stability leaves the numerical solution quite some room
for growth, very often well beyond what a modeler is willing to tolerate. This
definition of stability is, however, the necessary and sufficient stability used in
the Lax–Richtmyer equivalence theorem and is thus the one utilized to ascertain
convergence. If we permit a slower rate of growth in the numerical solution, we
will not destroy convergence. In particular, we could decide to use the so-called
strict stability condition.

2.7.2 Strict Stability

For a system conserving one or several integral norms (such as total energy
or wave action), we may naturally impose that the corresponding norm of the
numerical solution does not grow at all over time:

‖xn‖≤‖x0‖ . (2.39)

Obviously, a scheme that is stable in the sense of Eq. (2.39) is also stable in
the sense of Eq. (2.38), whereas the inverse is not necessarily true. The more
stringent definition (2.39) will be called strict stability condition and refers to
the condition that the norm of the numerical solution is not allowed to increase
at all.

2.7.3 Choice of a Stability Criterion

The choice of stability criterion will depend largely on the mathematical and
physical problem at hand. For a wave propagation problem, for example,
strict stability will be the natural choice (assuming some norm is conserved
in the physical process), whereas for physically unbounded problems, the less
stringent numerical stability definition (2.38) may be used.

We can now examine two previous discretization schemes in the light of
these two stability definitions. For the explicit Euler discretization (2.24) of iner-
tial oscillation, the scheme is unstable in the sense of Eq. (2.39) (and deserves
this label in view of the required energy conservation), although it is technically
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ũ

˜ ˜

ũ
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FIGURE 2.11 Representation (called a hodograph) of the numerical solution (ũ, ṽ) (2.32a)–
(2.32b) of the explicit discretization of the inertial oscillation (α=0), the implicit version (α=1),
and the semi-implicit scheme (α=1/2). The hodograph on the left was obtained with f1t=0.05
and the one on the right panel with f1t=0.005. The inertial oscillation (Fig. 2.4) is clearly visible,
but the explicit scheme induces spiralling out and the implicit scheme spiralling in. When the time
step is reduced (moving from left panel to right panel), the solution approaches the exact solution.
In both cases, 10 inertial periods were simulated.

stable in the sense of Eq. (2.38), as we will proceed to show. Since the norm of
the velocity is, according to Eq. (2.29),

‖ũn‖=
(

1+ f 21t2
)n/2
‖ũ0‖, (2.40)

we simply need to demonstrate3 that the amplification is limited by a constant
independent of n and 1t:(

1+ f 21t2
)n/2
≤
(

1+ f 21t2
)T/(21t)

≤ e
f 21t T

2 ≤ e
f 2T2

2 . (2.42)

The scheme is thus stable in the sense of Eq. (2.38) and even if growth of the
norm can be quite important, according to the Lax–Richtmyer equivalence the-
orem, the solution will converge as the time step is reduced. This is indeed what
is observed (Fig. 2.11) and can be proved explicitly (see Numerical Exercise
2.5). In practice, however, the time step is never allowed to be very small for
obvious computer constraints. Also, the time window T over which simulations
take place can be very large, and any increase of the velocity norm is unaccept-
able even if the solution is guaranteed to converge for smaller time steps. For

3 For the demonstration, we use the inequality

(1+a)b≤ eab for a,b≥0, (2.41)

which can be easily be proved by observing that (1+a)b= eb ln(1+a) and that ln(1+a)≤a when
a≥0.
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this reason, the strict stability condition (2.39) is preferred, and the semi-implicit
Euler discretization is chosen.

In the second example, that of the implicit Euler scheme applied to the
growth equation, the scheme (2.35) is stable in the sense of Eq. (2.38) (since
it converges) but allows growth in the numerical solution in accordance with
the exact solution.

Recapitulating the different concepts encountered in the numerical dis-
cretization, we now have a recipe to construct a convergent method: Design
a discretization for which consistency (an equation-related property) can be
verified by straightforward Taylor-series expansion, then check stability of
the numerical scheme (some practical methods will be provided later), and
finally invoke the Lax–Richtmyer equivalence theorem to prove convergence
(a solution-related property). But, as the equivalence theorem is strictly valid
only for linear equations, surprises may arise in nonlinear systems. We also
have to mention that establishing convergence by this indirect method demands
that initial and boundary conditions, too, converge to those of the continuous
differential system. Finally, convergence is assured only for well-posed initial
value problems. This, however, is not a concern here, since all geophysical fluid
models we consider are physically well posed.

2.8 PREDICTOR-CORRECTOR METHODS

Till now, we have illustrated numerical discretizations on the linear equa-
tions describing inertial oscillations. The methods can be easily generalized
to equations with a nonlinear source term Q in the equation governing the
variable u, as

du

dt
=Q(t,u). (2.43)

For simplicity, we consider here a scalar variable u, but extension to a state
vector x, such as x= (u,v), is straightforward.

The previous methods can be recapitulated as follows:

l The explicit Euler method ( forward scheme):

ũn+1= ũn+1t Qn (2.44)

l The implicit Euler method (backward scheme):

ũn+1= ũn+1t Qn+1 (2.45)

l The semi-implicit Euler scheme (trapezoidal scheme):

ũn+1= ũn+1t

2

(
Qn+Qn+1

)
(2.46)
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l A general two-points scheme (with 0≤α≤1):

ũn+1= ũn+1t
[
(1−α)Qn+αQn+1

]
. (2.47)

Note that these schemes may be interpreted either as finite-difference
approximations of the time derivative or as finite-difference approximations of
the time integration of the source term. Indeed,

u(tn+1)=u(tn)+
tn+1∫
tn

Q dt, (2.48)

and the various schemes can be viewed as different ways of approximating the
integral, as depicted in Fig. 2.12. All discretization schemes based on the exclu-
sive use of Qn and Qn+1 to evaluate the integral between tn and tn+1, which are
called two-point methods, are inevitably first-order methods, except the semi-
implicit (or trapezoidal) scheme, which is of second order. Second order is
thus the highest order achievable with a two-point method. To achieve an order
higher than two, denser sampling of the Q term must be used to approximate the
time integration.

Before considering this, however, a serious handicap should be noted: The
source term Q depends on the unknown variable ũ, and we face the problem

(c) (d)

(a)

tn tn +1
t

Q Q

Q Q

tn tn +1
t

tn tn +1
t

tn tn +1
t

(b)

FIGURE 2.12 Time integration of the source term Q between tn and tn+1: (a) exact integration,
(b) explicit scheme, (c) implicit scheme, and (d) semi-implicit, trapezoidal scheme.
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of not being able to calculate Qn+1 before we know ũn+1, which is to be cal-
culated from the value of Qn+1. There is a vicious circle here! In the original
case of inertial oscillations, the circular dependence was overcome by an alge-
braic manipulation of the equations prior to solution (gathering all n+1 terms
on the left), but when the source term is nonlinear, as is often the case, such
preliminary manipulation is generally not possible, and we need to circumvent
the exact calculation by searching for a good approximation.

Such an approximation may proceed by using a first guess ũ? in the Q term:

Qn+1'Q(tn+1, ũ?), (2.49)

as long as ũ? is a sufficiently good estimate of ũn+1. The closer ũ? is to ũn+1,
the more faithful is the scheme to the ideal implicit value. If this estimate ũ? is
provided by a preliminary explicit (forward) step, according to:

ũ?= ũn+1t Q(tn, ũn) (2.50a)

ũn+1= ũn+1t

2

[
Q(tn, ũn)+Q(tn+1, ũ?)

]
, (2.50b)

we obtain a two-step algorithm, called the Heun method. It can be shown to be
second-order accurate.

This second-order method is actually a particular member of a family of so-
called predictor-corrector methods, in which a first guess ũ? is used as a proxy
for ũn+1 in the computation of complicated terms.

2.9 HIGHER-ORDER SCHEMES

If we want to go beyond second-order methods, we need to take into account a
greater number of values of the Q term than those at tn and tn+1. We have two
basic possibilities: either to include intermediate points between tn and tn+1 or
to use Q values at previous steps n−1,n−2, .... The first approach leads to the
so-called family of Runge–Kutta methods (or multistage methods), whereas the
second generates the so-called multistep methods.

The simplest method, using a single intermediate point, is the so-called
midpoint method. In this case (Fig. 2.13), the integration is achieved by first
calculating the value ũn+1/2 (playing the role of ũ?) at an intermediate stage
tn+1/2 and then integrating for the whole step based on this midpoint estimate:

ũn+1/2= ũn+1t

2
Q
(
tn, ũn) (2.51a)

ũn+1= ũn+1t Q
(

tn+1/2, ũn+1/2
)
. (2.51b)

This method, however, is only second-order accurate and offers no improvement
over the earlier Heun method (2.50).
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(a) (b) (c)

tn tn +1 tn tn +1
t

QQQ

tn tn +1

FIGURE 2.13 Runge–Kutta schemes of increasing complexity: (a) midpoint integration, (b)
integration with parabolic interpolation, and (c) with cubic interpolation.

A popular fourth-order method can be constructed by using a parabolic inter-
polation between the values of Q with two successive estimates at the central
point before proceeding with the full step:

ũn+1/2
a = ũn+1t

2
Q
(
tn, ũn) (2.52a)

ũn+1/2
b = ũn+1t

2
Q
(

tn+1/2, ũn+1/2
a

)
(2.52b)

ũ? = ũn+1t Q
(

tn+1/2, ũn+1/2
b

)
(2.52c)

ũn+1 = ũn+1t

(
1

6
Q
(
tn, ũn)+ 2

6
Q
(

tn+1/2, ũn+1/2
a

)
+ 2

6
Q
(

tn+1/2, ũn+1/2
b

)
+ 1

6
Q
(

tn+1, ũ?
))
. (2.52d)

We can increase the order by using higher polynomial interpolations (Fig. 2.13).
As mentioned earlier, instead of using intermediate points to increase the

order of accuracy, we can exploit already available evaluations of Q from previ-
ous steps (Fig. 2.14). The most popular method in GFD models is the leapfrog
method, which simply reuses the value at time step n−1 to “jump over” the Q
term at tn in a 21t step:

ũn+1= ũn−1+21t Qn. (2.53)

This algorithm offers second-order accuracy while being fully explicit. An
alternative second-order method using the value at n−1 is the so-called
Adams–Bashforth method:

ũn+1= ũn+1t

(
3Qn−Qn−1

)
2

, (2.54)

which can be interpreted in the light of Fig. 2.14.



Chapter | 2 The Coriolis Force 67

(c)

(a)

(b)

Q

Q

Q

tn tn +1tn −1
t

tn tn +1tn −1
t

tn tn +1tn −1
t

FIGURE 2.14 (a) Exact integration from tn−1 or tn toward tn+1, (b) leapfrog integration starts
from tn−1 to reach tn+1, whereas (c) Adams–Bashforth integration starts from tn to reach tn+1,
using previous values to extrapolate Q over the integration interval tn, tn+1.

Higher-order methods can be constructed by recalling more points from the
past (n−2,n−3, ...), but we will not pursue this approach further for the fol-
lowing two reasons. First, using anterior points creates a problem at the start
of the calculation from the initial condition. The first step must be different
in order to avoid using one or several points that do not exist, and an explicit
Euler scheme is usually performed. One such step is sufficient to initiate the
leapfrog and Adams–Bashforth schemes, but methods that use earlier values (at
n−2,n−3, . . .) require more cumbersome care, which can amount to consider-
able effort in a GFD code. Second, the use of several points in the past demands
a proportional increase in computer storage because values cannot be discarded
as quickly before making room for newer values. Again, for a single equation,
this is not much of a trouble, but in actual applications, size matters and only a
few past values can be stored in the central memory of the machine. A similar
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FIGURE 2.15 Schematic representation of discretization properties and mathematical properties
interplay.

problem arises also with multistage methods, although these do not need any
particular starting mechanism.

We can conclude the section by remarking that higher-order methods can
always be designed but at the price of more frequent evaluations of the right-
hand side of the equation (potentially a very complicated term) and/or greater
storage of numerical values at different time steps. Since higher-order methods
create more burden on the computation, we ought to ask whether they at least
provide better numerical solutions than lower-order methods. We have therefore
to address the question of accuracy of these methods, which will be considered
in Section 4.8.

A fundamental difference between analytical solutions and numerical
approximations emerges. For some equations, properties of the solution can be
derived without actually solving the equations. It is easy to prove, for example,
that the velocity magnitude remains constant during an inertial oscillation. The
numerical solution on the other hand is generally not guaranteed to satisfy the
same property as its analytical counterpart (the explicit Euler discretization did
not conserve the velocity norm). Therefore, we cannot be sure that mathemat-
ical properties of the analytical solutions will also be present in the numerical
solution. This might appear as a strong drawback of numerical methods but can
actually be used to assess the quality of numerical schemes. Also, for numerical
schemes with adjustable parameters (as the implicit factor), those parameters
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FIGURE 2.16 Schematic representation of discretization properties and mathematical properties
interplay exemplified in the case of inertial oscillation.

can be chosen so that the numerical solution respects as best as possible the
exact properties.

We can summarize by recognizing the fact that numerical solutions generally
do not inherit the mathematical properties of the exact solution (Fig. 2.15), a
handicap particularly easy to understand in the case of inertial oscillation and its
discretization by an explicit scheme (Fig. 2.16). Later, we will encounter other
properties (energy conservation, potential vorticity conservation, positiveness
of concentrations, etc.) that can be used to guide the choice of parameter values
in numerical schemes.

ANALYTICAL PROBLEMS

2.1. On Jupiter, a day lasts 9.9 Earth hours and the equatorial circumference
is 448,600 km. Knowing that the measured gravitational acceleration at
the equator is 26.4 m/s2, deduce the true gravitational acceleration and the
centrifugal acceleration.

2.2. The Japanese Shinkansen train (bullet train) zips from Tokyo to Ozaka
(both at approximately 35◦N) at a speed of 185 km/h. In the design of
the train and tracks, do you think that engineers had to worry about the
Earth’s rotation? (Hint: The Coriolis effect induces an oblique force, the
lateral component of which could produce a tendency of the train to lean
sideways.)

2.3. Determine the lateral deflection of a cannonball that is shot in London
(51◦31′N) and flies for 25 s at an average horizontal speed of 120 m/s.
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What would be the lateral deflection in Murmansk (68◦52′N) and Nairobi
(1◦18′S)?

2.4. On a perfectly smooth and frictionless hockey field at Dartmouth College
(43◦38′N), how slowly should a puck be driven to perform an inertial circle
of diameter equal to the field width (26 m)?

2.5. A stone is dropped from a 300-m high bridge at 35◦N. In which cardinal
direction is it deflected under the effect of the earth’s rotation? How far
from the vertical does the stone land? (Neglect air drag.)

2.6. At 43◦N, raindrops fall from a cloud 2500 m above ground through a
perfectly still atmosphere (no wind). In falling, each raindrop experiences
gravity, a linear drag force with coefficient C=1.3 s−1 (i.e., the drag force
in the x, y, and z directions is, respectively, −Cu, −Cv, and −Cw per unit
mass) and is also subjected to the three-dimensional Coriolis force. What
is the trajectory of one raindrop? How far eastward and northward has the
Coriolis force deflected the raindrop by the time it hits the ground? (Hint:
It can be shown that the terminal velocity is reached very quickly relatively
to the total falling time.)

2.7. A set of two identical solid particles of mass M attached to each other by a
weightless rigid rod of length L are moving on a horizontal rotating plane in
the absence of external forces (Fig. 2.17). As in geophysical fluid dynam-
ics, ignore the centrifugal force caused by the ambient rotation. Establish
the equations governing the motion of the set of particles, derive the most
general solution, and discuss its physical implications.

2.8. At t=0, two particles of equal mass M but opposite electrical charges q are
released from rest at a distance L from each other on a rotating plane (con-
stant rotation rate �= f /2). Assuming as in GFD that the centrifugal force

i

j

y

x

θ

M

ML

�

FIGURE 2.17 Two linked masses on a rotating plane (Problem 2.7).
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caused by the ambient rotation is externally balanced, write the equations
of motion of the two particles and the accompanying initial conditions.
Then, show that the center of mass (the midpoint between the particles)
is not moving, and write a differential equation governing the evolution
of the distance r(t) between the two particles. Is it possible that, as on a
nonrotating plane, the electrical attraction between the two particles will
make them collide (r=0)?

2.9. Study the trajectory of a free particle of mass M released from a state of rest
on a rotating, sloping, rigid plane (Fig. 2.18). The angular rotation rate is
�, and the angle formed by the plane with the horizontal is α. Friction and
the centrifugal force are negligible. What is the maximum speed acquired
by the particle, and what is its maximum downhill displacement?

2.10. The curve reproduced in Fig. 2.19 is a progressive vector diagram
constructed from current-meter observations at latitude 43◦09′N in the
Mediterranean Sea. Under the assumption of a uniform but time-dependent

�

α

M

x

y

FIGURE 2.18 A free particle on a rotating, frictionless slope (Problem 2.9).
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FIGURE 2.19 Progressive vector diagram constructed from current-meter observation in the
Mediterranean Sea taken in October 1973 (Problem 2.10). (Courtesy of Martin Mork, University
of Bergen, Norway)
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flow field in the vicinity of the mooring, the curve can be interpreted as the
trajectory of a water parcel. Using the marks counting the days along the
curve, show that this set of observations reveals the presence of inertial
oscillations. What is the average orbital velocity in these oscillations?

NUMERICAL EXERCISES

2.1. When using the semi-implicit scheme (2.32a)–(2.32b) with α=1/2, how
many time steps are required per complete cycle (period of 2π/f ) to
guarantee a relative error on f not exceeding 1%?

2.2. Develop an Euler scheme to calculate the position coordinates x and y of
a particle undergoing inertial oscillations from its velocity components u
and v, themselves calculated with an Euler scheme. Graph the trajectory
[x̃n, ỹn] for n=1,2,3, ... of the particle. What do you notice?

2.3. For the semi-implicit discretization of the inertial oscillation, calculate the
number of complete cycles it takes before the exact solution and its numer-
ical approximation are in phase opposition (180◦ phase shift). Express this
number of cycles as a function of the parameter f1t. What can you con-
clude for a scheme for which f1t=0.1 in terms of time windows that can
be analyzed before the solution is out of phase?

2.4. Devise a leapfrog scheme for inertial oscillations and analyze its stability
and angular frequency properties by searching for a numerical solution of
the following form4:

ũn=V%n sin(f̃ n1t+φ), ṽn=V%n cos(f̃ n1t+φ).
2.5. Calculate the discrete solution of the explicit Euler scheme applied to iner-

tial oscillations by searching for a solution of the same form as in Problem
2.4 where % and f̃ are again parameters to be determined. Show that the
discrete solution converges to the exact solution (2.12).

2.6. Prove the assertion that scheme (2.51) is of second order.

2.7. Adapt coriolisdis.m for a discretization of inertial oscillation with a
frictional term

du

dt
= f v−cu (2.55)

dv

dt
=−fu−cv, (2.56)

where c= f k. Run the explicit discretization with increasing values of k
in [0,1]. For which value of k does the explicit Euler discretization give

4For %n, n is an exponent, not an index.
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you a solution with constant norm? Can you interpret this result in view of
Eq. (2.28)?

2.8. Try several time discretization methods on the following set of equations:

du

dt
= f v (2.57)

dv

dt
=−fu+ fk(1−u2)v, (2.58)

with initial condition u=2, v=0 at t=0. Use two values for the parameter
k: first, k=0.1 and then k=1. Finally, try k=5. What do you notice?

2.9. Prove that an inertial oscillation with modified angular frequency (2.34)
is the exact solution of the semi-implicit scheme (2.32). (Hint: Insert the
solution into the finite-difference equations and find a condition on f̃ .)
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Pierre Simon Marquis de Laplace
1749–1827

From humble roots in rural France, Pierre Simon Laplace distinguished himself
early by his abilities and went on to Paris. There, at the Académie des Sciences,
Jean D’Alembert recognized the talents of the young Laplace and secured for
him a position in the military school. Set with this appointment, Laplace began
a study of planetary motions, which led him to make advances in integral cal-
culus and differential equations. Skillful at changing his political views during
the turbulent years of the French Revolution, Laplace managed to survive and
continued his research almost without interruption. In 1799, he published the
first volume of a substantial memoir titled Mécanique Céleste, which later grew
into a five-volume treatise and has since been regarded as a cornerstone of clas-
sical physics. Some have said that this work is Isaac Newton’s Principia (of
1687) translated in the language of differential calculus with the clarification of
many important points that had remained puzzling to Newton. One such aspect
is the theory of ocean tides, which Laplace was the first to establish on firm
mathematical grounds.

The name Laplace is attached today to a differential operator (the sum of
second derivatives), which arises in countless problems of physics, including
geophysical fluid dynamics (see Chapter 16). (Portrait taken from a nineteenth
century colored engraving, The Granger Collection, New York)
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Gaspard Gustave de Coriolis
1792–1843

Born in France and trained as an engineer, Gaspard Gustave de Coriolis began
a career in teaching and research at age 24. Fascinated by problems related to
rotating machinery, he was led to derive the equations of motion in a rotat-
ing framework of reference. The result of these studies was presented to the
Académie des Sciences in the summer of 1831. In 1838, Coriolis stopped teach-
ing to become director of studies at the Ecole Polytechnique, but his health
declined quickly and he died a few short years later.

The world’s largest experimental rotating table, at the Institut de Mécanique
in Grenoble, France, is named after him and has been used in countless simula-
tions of geophysical fluid phenomena. (Photo from the archives of the Académie
des Sciences, Paris)



Chapter 3

Equations of Fluid Motion

ABSTRACT
The objective of this chapter is to establish the equations governing the movement of a
stratified fluid in a rotating environment. These equations are then simplified somewhat
by taking advantage of the so-called Boussinesq approximation. This chapter concludes
by introducing finite-volume discretizations and showing their relation with the budget
calculations used to establish the mathematical equations of motion.

3.1 MASS BUDGET

A necessary statement in fluid mechanics is that mass be conserved. That is, any
imbalance between convergence and divergence in the three spatial directions
must create a local compression or expansion of the fluid. Mathematically, the
statement takes the following form:

∂ρ

∂t
+ ∂

∂x
(ρu)+ ∂

∂y
(ρv)+ ∂

∂z
(ρw)=0, (3.1)

where ρ is the density of the fluid (in kg/m3), and (u, v, w) are the three compo-
nents of velocity (in m/s). All four variables generally vary in the three spatial
directions, x and y in the horizontal, z in the vertical, as well as time t.

This equation, often called the continuity equation, is classical in tradi-
tional fluid mechanics. Sturm (2001, page 4) reports that Leonardo da Vinci
(1452–1519) had derived a simplified form of the statement of mass conser-
vation for a stream with narrowing width. However, the three-dimensional
differential form provided here was most likely written much later and credit
ought probably to go to Leonhard Euler (1707–1783). For a detailed deriva-
tion, the reader is referred to Batchelor (1967), Fox and McDonald (1992), or
Appendix A of the present text.

Note that spherical geometry introduces additional curvature terms, which
we neglect to be consistent with our previous restriction to length scales
substantially shorter than the global scale.
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3.2 MOMENTUM BUDGET

For a fluid, Isaac Newton’s second law “mass times acceleration equals the sum
of forces” is better stated per unit volume with density replacing mass and, in the
absence of rotation (�=0), the resulting equations are called the Navier-Stokes
equations. For geophysical flows, rotation is important, and acceleration terms
must be augmented as done in (2.20):

x : ρ

(
du

dt
+ f∗w− f v

)
=−∂p

∂x
+ ∂τ

xx

∂x
+ ∂τ

xy

∂y
+ ∂τ

xz

∂z
(3.2a)

y : ρ

(
dv

dt
+ fu

)
=−∂p

∂y
+ ∂τ

xy

∂x
+ ∂τ

yy

∂y
+ ∂τ

yz

∂z
(3.2b)

z : ρ

(
dw

dt
− f∗u

)
=−∂p

∂z
−ρg+ ∂τ

xz

∂x
+ ∂τ

yz

∂y
+ ∂τ

zz

∂z
, (3.2c)

where the x-, y-, and z-axes are directed eastward, northward, and upward,
respectively, f =2�sinϕ is the Coriolis parameter, f∗=2�cosϕ is the recip-
rocal Coriolis parameter, ρ is the density, p is the pressure, g is the gravitational
acceleration, and the τ terms represent the normal and shear stresses due to
friction.

That the pressure force is equal and opposite to the pressure gradient, and
that the viscous force involves the derivatives of a stress tensor should be
familiar to the student who has had an introductory course in fluid mechan-
ics. Appendix A retraces the formulation of those terms for the student new to
fluid mechanics.

The effective gravitational force (sum of true gravitational force and the cen-
trifugal force; see Section 2.2) is ρg per unit volume and is directed vertically
downward. So, the corresponding term occurs only in the third equation for the
vertical direction.

Because the acceleration in a fluid is not counted as the rate of change in
velocity at a fixed location but as the change in velocity of a fluid particle as it
moves along with the flow, the time derivatives in the acceleration components,
du/dt, dv/dt and dw/dt, consist of both the local time rate of change and the
so-called advective terms:

d

dt
= ∂

∂t
+u

∂

∂x
+v

∂

∂y
+w

∂

∂z
. (3.3)

This derivative is called the material derivative.
The preceding equations assume a Cartesian system of coordinates and thus

hold only if the dimension of the domain under consideration is much shorter
than the earth’s radius. On Earth, a length scale not exceeding 1000 km is usually
acceptable. The neglect of the curvature terms is in some ways analogous to the
distortion introduced by mapping the curved earth’s surface onto a plane.

Should the dimensions of the domain under consideration be comparable
with the size of the planet, the x-, y-, and z-axes need to be replaced by spherical
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coordinates, and curvature terms enter all equations. See Appendix A for those
equations. For simplicity in the exposition of the basic principles of geophysical
fluid dynamics, we shall neglect throughout this book the extraneous curvature
terms and use Cartesian coordinates exclusively.

Equations (3.2a) through (3.2c) can be viewed as three equations providing
the three velocity components, u, v, and w. They implicate, however, two addi-
tional quantities, namely, the pressure p and the density ρ. An equation for ρ is
provided by the conservation of mass (3.1), and one additional equation is still
required.

3.3 EQUATION OF STATE

The description of the fluid system is not complete until we also provide a rela-
tion between density and pressure. This relation is called the equation of state
and tells us about the nature of the fluid. To go further, we need to distinguish
between air and water.

For an incompressible fluid such as pure water at ordinary pressures and
temperatures, the statement can be as simple as ρ= constant. In this case, the
preceding set of equations is complete. In the ocean, however, water density is a
complicated function of pressure, temperature, and salinity. Details can be found
in Gill (1982, Appendix 3), but for most applications, it can be assumed that
the density of seawater is independent of pressure (incompressibility) and lin-
early dependent upon both temperature (warmer waters are lighter) and salinity
(saltier waters are denser) according to:

ρ=ρ0[1−α(T−T0)+β(S−S0)], (3.4)

where T is the temperature (in degrees Celsius or Kelvin), and S is the salinity
(defined in the past as grams of salt per kilogram of seawater, i.e., in parts per
thousand, denoted by ‰, and more recently by the so-called practical salinity
unit “psu,” derived from measurements of conductivity and having no units).
The constants ρ0, T0, and S0 are reference values of density, temperature, and
salinity, respectively, whereas α is the coefficient of thermal expansion, and β
is called, by analogy, the coefficient of saline contraction1. Typical seawater
values are ρ0=1028 kg/m3, T0 = 10◦C= 283 K, S0 = 35, α = 1.7× 10−4 K−1,
and β=7.6 × 10−4.

For air, which is compressible, the situation is quite different. Dry air in the
atmosphere behaves approximately as an ideal gas, and so we write:

ρ= p

RT
, (3.5)

1The latter expression is a misnomer, since salinity increases density not by contraction of the water
but by the added mass of dissolved salt.
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where R is a constant, equal to 287 m2 s−2 K−1 at ordinary temperatures and
pressures. In the preceding equation, T is the absolute temperature (temperature
in degrees Celsius+273.15).

Air in the atmosphere most often contains water vapor. For moist air, the
preceding equation is generalized by introducing a factor that varies with the
specific humidity q:

ρ= p

RT(1+0.608q)
. (3.6)

The specific humidity q is defined as

q= mass of water vapor

mass of air
= mass of water vapor

mass of dry air + mass of water vapor
. (3.7)

For details, the reader is referred to Curry and Webster (1999).
Unfortunately, our set of governing equations is not yet complete. Although

we have added one equation, by doing so, we have also introduced additional
variables, namely temperature and, depending on the nature of the fluid, either
salinity or specific humidity. Additional equations are clearly necessary.

3.4 ENERGY BUDGET

The equation governing temperature arises from conservation of energy. The
principle of energy conservation, also known as the first law of thermodynamics,
states that the internal energy gained by a parcel of matter is equal to the heat
it receives minus the mechanical work it performs. Per unit mass and unit time,
we have

de

dt
=Q−W, (3.8)

where d/dt is the material derivative introduced in (3.3), e is the internal energy,
Q is the rate of heat gain, and W is the rate of work done by the pressure force
onto the surrounding fluid, all per unit mass. The internal energy, a measure of
the thermal agitation of the molecules inside the fluid parcel, is proportional to
the temperature:

e=CvT

where Cv is the heat capacity at constant volume, and T is the absolute
temperature. For air at sea-level pressure and ambient temperatures, Cv =
718 Jkg−1 K−1, whereas for seawater, Cv=3990 Jkg−1 K−1.

In the ocean, there is no internal heat source2, whereas in the atmo-
sphere release of latent heat by water-vapor condensation or, conversely,

2In most cases, the absorption of solar radiation in the first meters of the upper ocean is treated as a
surface flux, though occasionally it must be taken into account as a radiative absorption.
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uptake of latent heat by evaporation constitute internal sources. Leaving such
complication for more advanced textbooks in dynamical and physical meteo-
rology (Curry & Webster, 1999), the Q term in (3.8) includes only the heat
gained by a parcel through its contact with its neighbors through the process of
diffusion. Using the Fourier law of heat conduction, we write

Q= kT

ρ
∇2T,

where kT is the thermal conductivity of the fluid, and the Laplace operator ∇2

is defined as the sum of double derivatives:

∇2= ∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2
.

The work done by the fluid is the pressure force (=pressure × area) multi-
plied by the displacement in the direction of the force. Counting area times dis-
placement as volume, the work is pressure multiplied by the change in volume
and on a per–mass and per–time basis:

W=p
dv

dt
,

where v is the volume per mass, i.e., v=1/ρ.
With its pieces assembled, Eq. (3.8) becomes

Cv
dT

dt
= kT

ρ
∇2T−p

dv

dt

= kT

ρ
∇2T+ p

ρ2

dρ

dt
. (3.9)

Elimination of dρ/dt with the continuity Eq. (3.1) leads to:

ρCv
dT

dt
+p

(
∂u

∂x
+ ∂v
∂y
+ ∂w

∂z

)
= kT∇2T. (3.10)

This is the energy equation, which governs the evolution of temperature.
For water, which is nearly incompressible, the divergence term (∂u/∂x+

∂v/∂y+∂w/∂z) can be neglected (to be shown later), whereas for air, one may
introduce the potential temperature θ defined as

θ =T

(
ρ0

ρ

)R/Cv

, (3.11)

for which, the physical interpretation will be given later (Section 11.3).
Taking its material derivative and using Eqs. (3.5) and (3.9), lead
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successively to

Cv
dθ

dt
=
(
ρ0

ρ

)R/Cv
(

Cv
dT

dt
− RT

ρ

dρ

dt

)
Cv

dθ

dt
= θ

T

(
Cv

dT

dt
− p

ρ2

dρ

dt

)
ρCv

dθ

dt
= kT

θ

T
∇2T. (3.12)

The net effect of this transformation of variables is the elimination of the
divergence term.

When kT is zero or negligible, the right-hand side of the equation vanishes,
leaving only

dθ

dt
=0. (3.13)

Unlike the actual temperature T , which is subject to the compressibility effect
(through the divergence term), the potential temperature θ of an air parcel is
conserved in the absence of heat diffusion.

3.5 SALT AND MOISTURE BUDGETS

The set of equations is not yet complete because there is a remaining variable
for which a last equation is required: salinity in the ocean and specific humidity
in the atmosphere.

For seawater, density varies with salinity as stated in Eq. (3.4). Its evolution
is governed by the salt budget:

dS

dt
=κS∇2S, (3.14)

which simply states that a seawater parcel conserves its salt content, except for
redistribution by diffusion. The coefficient κS is the coefficient of salt diffusion,
which plays a role analogous to the heat diffusivity kT .

For air, the remaining variable is specific humidity and, because of the pos-
sibility of evaporation and condensation, its budget is complicated. Leaving this
matter for more advanced texts in meteorology, we simply write an equation
similar to that of salinity:

dq

dt
=κq∇2q, (3.15)

which states that specific humidity is redistributed by contact with neighboring
parcels of different moisture contents, and in which the diffusion coefficient κq

is the analog of κT and κS.
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3.6 SUMMARY OF GOVERNING EQUATIONS

Our set of governing equations is now complete. For air (or any ideal gas), there
are seven variables (u, v, w, p, ρ, T, and q), for which we have a continuity
equation (3.1), three momentum equations (3.2a) through (3.2c), an equation of
state (3.5), an energy equation (3.10), and a humidity equation (3.15). Vilhelm
Bjerknes (see biography at the end of this chapter) is credited for having been
the first to recognize that atmospheric physics can, in theory, be fully described
by a set of equations governing the evolution of the seven aforementioned
variables (Bjerknes, 1904; see also Nebeker, 1995, chapter 5).

For seawater, the situation is similar. There are again seven variables (u, v, w,
p, ρ, T, and S), for which we have the same continuity, momentum and energy
equations, the equation of state (3.4), and the salt equation (3.14). No particular
person is credited with this set of equations.

3.7 BOUSSINESQ APPROXIMATION

Although the equations established in the previous sections already contain
numerous simplifying approximations, they are still too complicated for the pur-
pose of geophysical fluid dynamics. Additional simplifications can be obtained
by the so-called Boussinesq approximation without appreciable loss of accuracy.

In most geophysical systems, the fluid density varies, but not greatly,
around a mean value. For example, the average temperature and salinity in the
ocean are T = 4◦C and S = 34.7, respectively, to which corresponds a density
ρ = 1028 kg/m3 at surface pressure. Variations in density within one ocean
basin rarely exceed 3 kg/m3. Even in estuaries where fresh river waters (S= 0)
ultimately turn into salty seawaters (S= 34.7), the relative density difference is
less than 3%.

By contrast, the air of the atmosphere becomes gradually more rarefied with
altitude, and its density varies from a maximum at ground level to nearly zero
at great heights, thus covering a 100% range of variations. Most of the density
changes, however, can be attributed to hydrostatic pressure effects, leaving only
a moderate variability caused by other factors. Furthermore, weather patterns
are confined to the lowest layer, the troposphere (approximately 10 km thick),
within which the density variations responsible for the winds are usually no
more than 5%.

As it appears justifiable in most instances3 to assume that the fluid density,
ρ, does not depart much from a mean reference value, ρ0, we take the liberty to
write the following:

ρ=ρ0+ρ′(x, y, z, t) with |ρ′|�ρ0, (3.16)

3The situation is obviously somewhat uncertain on other planets that are known to possess a fluid
layer (Jupiter and Neptune, for example), and on the sun.
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where the variation ρ′ caused by the existing stratification and/or fluid motions
is small compared with the reference value ρ0. Armed with this assumption, we
proceed to simplify the governing equations.

The continuity equation, (3.1), can be expanded as follows:

ρ0

(
∂u

∂x
+ ∂v
∂y
+ ∂w

∂z

)
+ρ′

(
∂u

∂x
+ ∂v
∂y
+ ∂w

∂z

)
+
(
∂ρ′

∂t
+u

∂ρ′

∂x
+v

∂ρ′

∂y
+w

∂ρ′

∂z

)
=0.

Geophysical flows indicate that relative variations of density in time and space
are not larger than—and usually much less than—the relative variations of the
velocity field. This implies that the terms in the third group are on the same
order as—if not much less than—those in the second. But, terms in this second
group are always much less than those in the first because |ρ′|�ρ0. Therefore,
only that first group of terms needs to be retained, and we write

∂u

∂x
+ ∂v
∂y
+ ∂w

∂z
=0. (3.17)

Physically, this statement means that conservation of mass has become conser-
vation of volume. The reduction is to be expected because volume is a good
proxy for mass when mass per volume (= density) is nearly constant. A hidden
implication of this simplification is the elimination of sound waves, which rely
on compressibility for their propagation.

The x- and y-momentum equations (3.2a) and (3.2b), being similar to each
other, can be treated simultaneously. There, ρ occurs as a factor only in front of
the left-hand side. So, wherever ρ′ occurs, ρ0 is there to dominate. It is thus
safe to neglect ρ′ next to ρ0 in that pair of equations. Further, the assump-
tion of a Newtonian fluid (viscous stresses proportional to velocity gradients),
with the use of the reduced continuity equation, (3.17), permits us to write the
components of the stress tensor as

τ xx=µ
(
∂u

∂x
+ ∂u

∂x

)
, τ xy=µ

(
∂u

∂y
+ ∂v
∂x

)
, τ xz=µ

(
∂u

∂z
+ ∂w

∂x

)
τ yy=µ

(
∂v

∂y
+ ∂v
∂y

)
, τ yz=µ

(
∂v

∂z
+ ∂w

∂y

)
τ zz=µ

(
∂w

∂z
+ ∂w

∂z

)
, (3.18)
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where µ is called the coefficient of dynamic viscosity. A subsequent division by
ρ0 and the introduction of the kinematic viscosity ν=µ/ρ0 yield

du

dt
+ f∗w− f v=− 1

ρ0

∂p

∂x
+ ν∇2u (3.19)

dv

dt
+ fu=− 1

ρ0

∂p

∂y
+ ν∇2v. (3.20)

The next candidate for simplification is the z-momentum equation, (3.2c).
There, ρ appears as a factor not only in front of the left-hand side but also in
a product with g on the right. On the left, it is safe to neglect ρ′ in front of ρ0
for the same reason as previously, but on the right, it is not. Indeed, the term
ρg accounts for the weight of the fluid, which, as we know, causes an increase
of pressure with depth (or, a decrease of pressure with height, depending on
whether we think of the ocean or atmosphere). With the ρ0 part of the density
goes a hydrostatic pressure p0, which is a function of z only:

p=p0(z)+p′(x, y, z, t) with p0(z)=P0−ρ0gz, (3.21)

so that dp0/dz=−ρ0g, and the vertical-momentum equation at this stage
reduces to

dw

dt
− f∗ u=− 1

ρ0

∂p′

∂z
− ρ
′g
ρ0
+ν∇2w, (3.22)

after a division by ρ0 for convenience. No further simplification is possible
because the remaining ρ′ term no longer falls in the shadow of a neighboring
term proportional to ρ0. Actually, as we will see later, the term ρ′g is the
one responsible for the buoyancy forces that are such a crucial ingredient of
geophysical fluid dynamics.

Note that the hydrostatic pressure p0(z) can be subtracted from p in the
reduced momentum equations, (3.19) and (3.20), because it has no derivatives
with respect to x and y, and is dynamically inactive.

For water, the treatment of the energy equation, (3.8), is straightforward.
First, continuity of volume, (3.17), eliminates the middle term, leaving

ρCv
dT

dt
= kT∇2T.

Next, the factor ρ in front of the first term can be replaced once again by ρ0, for
the same reason as it was done in the momentum equations. Defining the heat
kinematic diffusivity κT = kT/ρ0Cv , we then obtain

dT

dt
=κT∇2T, (3.23)

which is isomorphic to the salt equation, (3.14).
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For seawater, the pair of Eqs. (3.14) and (3.23) for salinity and temperature,
respectively, combine to determine the evolution of density. A simplification
results if it may be assumed that the salt and heat diffusivities, κS and κT ,
can be considered equal. If diffusion is primarily governed by molecular pro-
cesses, this assumption is invalid. In fact, a substantial difference between the
rates of salt and heat diffusion is responsible for peculiar small-scale features,
such as salt fingers, which are studied in the discipline called double diffusion
(Turner, 1973, Chapter 8). However, molecular diffusion generally affects only
small-scale processes, up to a meter or so, whereas turbulence regulates dif-
fusion on larger scales. In turbulence, efficient diffusion is accomplished by
eddies, which mix salt and heat at equal rates. The values of diffusivity coeffi-
cients in most geophysical applications may not be taken as those of molecular
diffusion; instead, they should be taken much larger and equal to each other.
The corresponding turbulent diffusion coefficient, also called eddy diffusivity,
is typically expressed as the product of a turbulent eddy velocity with a mixing
length (Pope, 2000; Tennekes & Lumley, 1972) and, although there exists no
single value applicable to all situations, the value κS = κT =10−2 m2/s is fre-
quently adopted. Noting κ=κS=κT and combining Eqs. (3.14) and (3.23) with
the equation of state (3.4), we obtain

dρ′

dt
=κ∇2ρ′, (3.24)

where ρ′=ρ−ρ0 is the density variation. In sum, the energy and salt conser-
vation equations have been merged into a density equation, which is not to be
confused with mass conservation (3.1).

For air, the treatment of the energy equation (3.10) is more subtle, and the
reader interested in a rigorous discussion is referred to the article by Spiegel
and Spiegel and Veronis (1960). Here, for the sake of simplicity, we limit our-
selves to suggestive arguments. First, the change of variable in Eq. (3.11) from
actual temperature to potential temperature eliminates the divergence term in
Eq. (3.10) and takes care of the compressibility effect. Then, for weak departures
from a reference state, the relation between actual and potential temperatures
and the equation of state can both be linearized. Finally, assuming that heat and
moisture are diffused by turbulent motions at the same rate, we can combine
their respective budget into a single equation, (3.24).

In summary, the Boussinesq approximation, rooted in the assumption that
the density does not depart much from a mean value, has allowed the replace-
ment of the actual density ρ by its reference value ρ0 everywhere, except in
front of the gravitational acceleration and in the energy equation, which has
become an equation governing density variations.

At this point, since the original variables ρ and p no longer appear in the
equations, it is customary to drop the primes from ρ′ and p′ without risk of
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ambiguity. So, from here on, the variables ρ and p will be used exclusively
to denote the perturbation density and perturbation pressure, respectively. This
perturbation pressure is sometimes called the dynamic pressure because it is
usually a main contributor to the flow field. The only place where total pressure
comes into play is the equation of state.

3.8 FLUX FORMULATION AND CONSERVATIVE FORM

The preceding equations form a complete set of equations, and there is no need
to invoke further physical laws. Nevertheless, we can manipulate the equations
to write them in another form, which, though mathematically equivalent, has
some practical advantages. Consider, for example, the equation for tempera-
ture (3.23), which was deduced from the energy equation using the Boussinesq
approximation. If we now expand its material derivative using Eq. (3.3)

∂T

∂t
+u

∂T

∂x
+v

∂T

∂y
+w

∂T

∂z
=κT∇2T, (3.25)

and then use volume conservation (3.17), which was obtained under the same
Boussinesq approximation, we obtain

∂T

∂t
+ ∂

∂x
(uT)+ ∂

∂y
(vT)+ ∂

∂z
(wT)

− ∂

∂x

(
κT
∂T

∂x

)
− ∂

∂y

(
κT
∂T

∂y

)
− ∂

∂z

(
κT
∂T

∂z

)
= 0. (3.26)

The latter form is called a conservative formulation, the reason for which will
become clear upon applying the divergence theorem. This theorem, also known
as Gauss’s Theorem, states that for any vector (qx, qy, qz), the volume integral
of its divergence is equal to the integral of the flux over the enclosing surface:∫

V

(
∂qx

∂x
+ ∂qy

∂y
+ ∂qz

∂z

)
dxdydz=

∫
S
(qxnx+qyny+qznz)dS (3.27)

where the vector (nx, ny, nz) is the outward unit vector normal to the surface
S delimiting the volume V (Fig. 3.1). Integrating the conservative form (3.26)
over a fixed volume is then particularly simple and leads to an expression for the
evolution of the heat content in the volume as a function of the fluxes entering
and leaving the volume:

d

dt

∫
V

T dt+
∫
S

q·ndS=0. (3.28)
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n

FIGURE 3.1 The divergence theorem
allows the replacement of the integral
over the volume V of the divergence
∂qx/∂x+∂qy/∂y+∂qz/∂z of a flux vec-
tor q=(qx,qy,qz) by the integral, over the
surface S containing the volume, of the
scalar product of the flux vector and the
normal vector n to this surface.

The flux q of temperature is composed of an advective flux (uT,vT,wT) due
to flow across the surface and a diffusive (conductive) flux−κT(∂T/∂x,∂T/∂y,
∂T/∂z). If the value of each flux is known on a closed surface, the evolution of
the average temperature inside the volume can be calculated without knowing
the detailed distribution of temperature. This property will be used now for the
development of a particular discretization method.

3.9 FINITE-VOLUME DISCRETIZATION

The conservative form (3.26) naturally leads to a numerical method with a clear
physical interpretation, the so-called finite-volume approach. To illustrate the
concept, we consider the equation for temperature in a one-dimensional (1D)
case

∂T

∂t
+ ∂q
∂x
=0, (3.29)

in which the flux q for temperature T=T(x, t) includes both advection uT and
diffusion −κT∂T/∂x:

q=uT−κT
∂T

∂x
. (3.30)

We can integrate (3.29) over a given interval (labeled by index i) with
boundaries noted by indices i−1/2 and i+1/2, so that we integrate over x in
the range xi−1/2< x< xi+1/2. Though the interval of integration is of finite size
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FIGURE 3.2 Replacement of the continuous function T by its cell-averaged discrete values T̄i.
The evolution of the finite-volume averaged temperature is given by the difference of the flux q
between the surrounding interfaces at xi−1/2 and xi+1/2.

1xi= xi+1/2−xi−1/2 (Fig. 3.2), the integration is performed exactly:

d

dt

xi+1/2∫
xi−1/2

Tdx+qi+1/2−qi−1/2=0. (3.31)

By defining the cell-average temperature T̄i for cell i as

T̄i=
1

1xi

xi+1/2∫
xi−1/2

Tdx, (3.32)

we obtain the evolution equation of the discrete field T̄i:

dT̄i

dt
+ qi+1/2−qi−1/2

1xi
=0. (3.33)

Although we seem to have fallen back on a discretization of the spatial
derivative, of q in this instance, the equation we just obtained is exact. This
seems to be paradoxical compared with our previous discussions on inevitable
errors associated with discretization. At first sight, it appears that we found a
discretization method without errors, but we must realize that (3.33) is still
incomplete in the sense that two different variables appear in a single equa-
tion, the discretized average T̄i and the discretized flux, qi−1/2 and qi+1/2. These
two, however, are related to the local value of the continuous temperature field
[the advective flux at xi±1/2 is uT(xi±1/2, t)], whereas the integrated equation is
written for the average value of temperature. The averaging of the equation pre-
vents us from retrieving information at the local level, and only average values
(over the spatial scale 1xi) can be determined. Therefore, we have to find an



90 PART | I Fundamentals

approximate way of assessing the local value of fluxes based solely on average
temperature values. We also observe that with the grid size 1xi we only retain
information at scales longer than 1xi, a property we have already mentioned
in the context of aliasing (Section 1.12). The shorter spatial scales have simply
been eliminated by the spatial averaging (Fig. 3.2).

A further exact time-integration of (3.33) yields

T̄n+1
i − T̄n

i +
∫ tn+1

tn qi+1/2 dt−
∫ tn+1

tn qi−1/2 dt

1xi
=0,

expressing that the difference in average temperature (i.e., heat content) is given
by the net flux entering the finite cell during the given time interval. Again, to
this stage, no approximation is needed, and the equation is exact and can be
formulated in terms of time-averaged fluxes q̂

q̂= 1

1tn

tn+1∫
tn

q dt (3.34)

to yield an equation for discrete averaged quantities:

T̄n+1
i − T̄n

i

1tn
+ q̂i+1/2− q̂i−1/2

1xi
=0. (3.35)

This equation is still exact but to be useful needs to be supplemented with a
scheme to calculate the average fluxes q̂ as functions of average temperatures T̄ .
Only at that point are discretization approximations required, and discretization
errors introduced.

It is noteworthy also to realize how easy the introduction of nonuniform
grid spacing and timestepping has been up to this point. Though we refer the
interfaces by index i±1/2, the position of an interface does not need to lie at
mid-distance between consecutive grid nodes xi. Only their logical, topological
position must be ordered in the sense that grid nodes and interfaces must be
interleaved.

Without further investigation of the way average fluxes can be computed,
we interpret different discretization methods in relation to the mathematical
budget formulation used to establish the governing equations (Fig. 3.3). From
brute-force replacement of differential operators by finite differences to the
establishment of equations for finite volumes and subsequent discretization of
fluxes, all methods aim at replacing the continuous problem by a finite set of
discrete equations.

One of the main advantages of the finite-volume approach presented here
is its conservation property. Consider the set of integrated equations for
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Discrete equations

ρ
dx dy → 0

dx
dy

ρu+
d(ρu)

ρu

dx ∼�x

Finite difference
Divergence theorem

Control volume budget

Flux (ρu·n) approximations

∂(ρu) ∂(ρv)∂ρ

∂t ∂ x ∂y
+ + � 0

1∂ρ

∂ t
+ S ρu·n dS�0V

FIGURE 3.3 Schematic representation of several discretization methods. From the budget cal-
culations (upper-left box), the limit to infinitesimal values of dx, dy leads to the continuous
equations (upper-right box), whereas keeping differentials formally at finite values lead to crude
finite differencing (downward path from upper left to bottom left). If the operators in the continu-
ous equations are discretized using Taylor expansions, higher-quality finite-difference methods are
obtained (diagonal path from upper right to lower left). Finally, by preliminary integration of the
continuous equations over a finite volume and then discretization of fluxes (path from upper right
to lower right and then to lower left), discrete equations satisfying conservation properties can be
designed.

consecutive cells:

1x1T̄n+1
1 =1x1T̄n

1 +1tnq̂1/2−1tnq̂1+1/2

...

1xi−1T̄n+1
i−1 =1xi−1T̄n

i−1+1tnq̂i−1−1/2−1tnq̂i−1/2

1xiT̄
n+1
i =1xiT̄

n
i +1tnq̂i−1/2−1tnq̂i+1/2

1xi+1T̄n+1
i+1 =1xi+1T̄n

i+1+1tnq̂i+1/2−1tnq̂i+1+1/2

...

1xmT̄n+1
m =1xmT̄n

m+1tnq̂m−1/2−1tnq̂m+1/2.

Since every flux appears in two consecutive equations with opposite sign, the
flux leaving a cell enters its neighbor, and there is no loss or gain of the quantity
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1

FIGURE 3.4 Within a domain covered by m finite volumes, fluxes at the interface ensure conser-
vation of the relevant property (heat in the case of temperature) between finite volumes, since the
fluxes are uniquely defined at interfaces. Fluxes therefore redistribute the property from cell to cell
across the domain, without actually changing their total content, except for import and export at the
end points. The finite-volume approach easily ensures both local and global conservation.

being transported across cells (heat in the case of temperature). This is an
expression of local conservation between grid cells (Fig. 3.4).

Furthermore, summation of all equations leads to complete cancellation of
the fluxes except for the very first and last ones. What we obtain is none other
than the exact expression for evolution of the total quantity. In the case of
temperature, this is a global heat budget:

d

dt

xm+1/2∫
x1/2

T dx= q1/2−qm+1/2 (3.36)

which states that the total heat content of the system increases or decreases over
time according to the import or export of heat at the extremities of the domain.
In particular, if the domain is insulated (q=0 at both boundaries), the total heat
content is conserved in the numerical scheme and in the original mathematical
model. Moreover, this holds irrespectively of the way by which the fluxes are
evaluated from the cell-averaged temperatures, provided that they are uniquely
defined at every cell interface xi+1/2. Therefore, the finite-volume approach also
ensures global conservation.

We will show later how advective and diffusive fluxes can be approximated
using the cell-averaged discrete values T̄i, but will have to remember then that
the conservative character of the finite-volume approach is ensured simply by
using a unique flux estimate at each volume interface.

ANALYTICAL PROBLEMS

3.1. Derive the energy equation (3.10) from Eqs. (3.1) and (3.9).
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Ta , Sa

Tm , Sm

Gibraltar sill

7 W/m2 0.9 m/year water loss

FIGURE 3.5 Schematic representation of the Mediterranean basin and its exchanges across the
Strait of Gibraltar in order to perform budget calculations, relating Atlantic Water characteristics
Ta, Sa, and losses over the basin, to Mediterranean outflow characteristics Tm, Sm.

3.2. Derive the continuity equation (3.17) from first principles by invoking con-
servation of volume. (Hint: State that the volume in a cube of dimensions
1x1y1z is unchanged as fluid is imported and exported through all six
sides.)

3.3. A laboratory tank consists of a cylindrical container 30 cm in diameter,
filled while at rest with 20 cm of fresh water and then spun at 30 rpm. After
a state of solid-body rotation is achieved, what is the difference in water
level between the rim and the center? How does this difference compares
with the minimum depth at the center?

3.4. Consider the Mediterranean Sea of surface S= 2.5 × 1012 m2 over which
an average heat loss of 7 W/m2 is observed. Because of an average sur-
face water loss of 0.9 m/year (evaporation being more important than rain
and river runoff combined), salinity would increase, water level would
drop, and temperature would decrease, if it were not for a compensa-
tion by exchange with the Atlantic Ocean through the Strait of Gibraltar.
Assuming that water, salt, and heat contents of the Mediterranean do not
change over time and that exchange across Gibraltar is accomplished by
a two-layer process (Fig. 3.5), establish sea-wide budgets of water, salt,
and heat. Given that the Atlantic inflow is characterized by Ta= 15.5◦C,
Sa =36.2, and a volume flow of 1.4 Sv (1 Sv= 106 m3/s), what are the
outflow characteristics? Is the outflow at the surface or at the bottom?

3.5. Within the Boussinesq approximation and for negligible diffusion in
(3.24), show that for an ocean at rest, density can only be a function of
depth: ρ=ρ(z). (Hint: The situation at rest is characterized by the absence
of movement and temporal variations.)

3.6. Neglecting atmospheric pressure, calculate the pressure p0(z)=−ρ0gz at
500 m depth in the ocean. Compare it with the dynamic pressure of an
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ocean at rest of density ρ=ρ0−ρ′ez/h, where ρ′ =5 kg/m3 and h =30 m.
What do you conclude? Do you think measurements of absolute pressure
could be useful in determining the depth of observation?

3.7. In a dry atmosphere where the potential temperature is constant over
the vertical, the density ρ(z) can be expressed in terms of the actual
temperature T(z) as

ρ(z)=ρ0

(
T(z)

θ

)Cv/R

(3.37)

according to (3.11). This allows the equation of state (3.5) to be expressed
in terms of only pressure p(z) and temperature. By taking the vertical
derivative of this expression and using the hydrostatic balance (dp/dz=
−ρg), show that the vertical temperature gradient dT/dz is constant. Of
what sign is this constant?

NUMERICAL EXERCISES

3.1. Compare values of density obtained with the full equation of state for sea-
water found in Matlab™ file ies80.m with values obtained from the
linearized version (3.4), for various trial values of T and S. Then, compare
density differences between two different water masses, calculated again
with both state equations. Finally, using numerical derivatives of the full
equation of state with the help of Matlab™ file ies80.m, can you pro-
vide a numerical estimate for the expansion coefficients α and β introduced
in (3.4) for a Mediterranean water mass of T0 = 12.8◦C, S0 = 38.4?

3.2. Generalize the finite-volume method to a two-dimensional system. In par-
ticular, what kind of fluxes do you have to define and how do you interpret
them? Is local and global conservation still ensured?

3.3. Derive a conservative form of the momentum equations without fric-
tion in spherical coordinates and outline a finite-volume discretiza-
tion. (Hint: Use volume conservation expressed in spherical coordinates
and volume integrals in spherical coordinates according to

∫
V udV=∫

r

∫
λ

∫
ϕ

ur2 cosϕ dϕ dλdr.)

3.4. Using the finite-volume approach of the one-dimensional temperature evo-
lution assuming that only advection is present, with a flow directed towards
increasing x(u>0), discretize the average fluxes. What kind of hypothesis
do you need to make to obtain an algorithm allowing you to calculate T̄n+1

i
knowing the values of T̄ at the preceding time-step?

3.5. For flux calculations, interpolations at the cell interface are generally used.
Analyze how a linear interpolation using the two neighbor points behaves
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compared with a cubic interpolation using four points. To do so, sample the
function ex at x=−1.5,−0.5,0.5,1.5 and interpolate at x=0. Compare
with the exact value. What happens if you calculated the interpolation not
at the center but at x=3 or x=−3 (extrapolation)? Redo the exercise but
add an alternating error of +0.1 and −0.1 to the four sampled values.
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Joseph Valentin Boussinesq
1842–1929

Perhaps not as well known as he deserves, Joseph Boussinesq was a French
physicist who made significant contributions to the theory of hydrodynamics,
vibration, light, and heat. One possible reason for this relative obscurity is the
ponderous style of his writings. Among his subjects of study was hydraulics,
which led to his research on turbulent flow. In 1896, the work of Osborne
Reynolds (see biography at the end of the following chapter) was barely a year
old when it was picked up by Boussinesq, who applied the partitioning between
average and fluctuating quantities to observations of pipe and river flows. This
led him to identify correctly that the cause of turbulence in those instances is
friction against boundaries. This paved the way for Ludwig Prandtl’s theory of
boundary layers (see biography at end of Chapter 8).

It can almost be claimed that the word turbulence itself is owed in large part
to Boussinesq. Indeed, although Osborne Reynolds spoke of “sinuous motion,”
Boussinesq used the more expressive phrase “écoulement tourbillonnant et
tumultueux,” which was reduced by one of his followers to “régime turbulent,’
hence turbulence. (Photo from Ambassade de France au Canada)
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Vilhelm Frimann Koren Bjerknes
1862–1951

Early in his career, Bjerknes became interested in applying the then-recent work
of Lord Kelvin and Hermann von Helmholtz on energy and vorticity dynamics
to motions in the atmosphere and ocean. He argued that the dynamics of air
and water flows on geophysical scales could be framed as a problem of physics
and that, given a particular state of the atmosphere, one should be able to com-
pute its future states. In other words, weather forecasting is reducible to seek
the solution of a mathematical problem. This statement, self-evident today, was
quite revolutionary at the time (1904).

When in 1917, he was offered a professorship at the University of Bergen in
Norway, Bjerknes founded the Bergen Geophysical Institute and began system-
atic efforts at developing a self-contained mathematical model for the evolution
of weather based on measurable quantities. Faced by the complexity of these
equations, he gradually shifted his efforts toward more qualitative aspects of
weather description, and out of this work came the now familiar concepts of air
masses, cyclones, and fronts.

Throughout his work, Bjerknes projected enthusiasm for his ideas and was
able to attract and stimulate young scientists to follow in his footsteps, including
his son Jacob Bjerknes. (Photo courtesy of the Bergen Geophysical Institute)



Chapter 4

Equations Governing
Geophysical Flows

ABSTRACT
This chapter continues the development of the equations that form the basis of dynamical
meteorology and physical oceanography. Averaging is performed over turbulent fluctu-
ations and further simplifications are justified based on a scale analysis. In the process,
some important dimensionless numbers are introduced. The need for an appropriate set
of initial and boundary conditions is also explored from mathematical, physical, and
numerical points of view.

4.1 REYNOLDS-AVERAGED EQUATIONS

Geophysical flows are typically in a state of turbulence, and most often we
are only interested in the statistically averaged flow, leaving aside all turbulent
fluctuations. To this effect and following Reynolds (1894), we decompose each
variable into a mean, denoted with a set of brackets, and a fluctuation, denoted
by a prime:

u=〈u〉+u′, (4.1)

such that
〈
u′
〉
=0 by definition.

There are several ways to define the averaging process, some more rigorous
than others, but we shall not be concerned here with those issues, preferring
to think of the mean as a temporal average over rapid turbulent fluctuations,
on a time interval long enough to obtain a statistically significant mean, yet
short enough to retain the slower evolution of the flow under consideration. Our
hypothesis is that such an intermediate time interval exists.

Quadratic expressions such as the product uv of two velocity components
have the following property:

〈uv〉=〈〈u〉〈v〉〉+
〈
〈u〉v′

〉
↗=0+

〈
〈v〉u′

〉
↗=0+

〈
u′v′

〉
=〈u〉〈v〉+

〈
u′v′

〉
(4.2)
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and similarly for 〈uu〉, 〈uw〉, 〈uρ〉, etc. We recognize here that the average of
a product is not equal to the product of the averages. This is a double-edged
sword: On one hand, it generates mathematical complications but on the other
hand, it also creates interesting situations.

Our objective is to establish equations governing the mean quantities,
〈u〉, 〈v〉, 〈w〉, 〈p〉, and 〈ρ〉. Starting with the average of the x-momentum
equation (3.19), we have

∂〈u〉
∂t
+ ∂〈uu〉

∂x
+ ∂〈vu〉

∂y
+ ∂〈wu〉

∂z
+ f∗ 〈w〉− f 〈v〉=− 1

ρ0

∂〈p〉
∂x
+ν∇2〈u〉, (4.3)

which becomes

∂〈u〉
∂t
+ ∂(〈u〉〈u〉)

∂x
+ ∂(〈u〉〈v〉)

∂y
+ ∂(〈u〉〈w〉)

∂z
+ f∗〈w〉− f 〈v〉

=− 1

ρ0

∂〈p〉
∂x
+ν ∇2〈u〉− ∂

〈
u′u′

〉
∂x
− ∂

〈
u′v′

〉
∂y
− ∂

〈
u′w′

〉
∂z

. (4.4)

We note that this last equation for the mean velocity looks identical to the orig-
inal equation, except for the presence of three new terms at the end of the
right-hand side. These terms represent the effects of the turbulent fluctuations
on the mean flow. Combining these terms with corresponding frictional terms

∂

∂x

(
ν
∂〈u〉
∂x
−
〈
u′u′

〉)
,
∂

∂y

(
ν
∂〈u〉
∂y
−
〈
u′v′

〉)
,
∂

∂z

(
ν
∂〈u〉
∂z
−
〈
u′w′

〉)

indicates that the averages of velocity fluctuations add to the viscous stresses
(e.g., −

〈
u′w′

〉
adds to ν∂〈u〉/∂z) and can therefore be considered frictional

stresses caused by turbulence. To give credit to Osborne Reynolds who first
decomposed the flow into mean and fluctuating components, the expressions
−
〈
u′u′

〉
, −

〈
u′v′

〉
, and −

〈
u′w′

〉
are called Reynolds stresses. Since they do not

have the same form as the viscous stresses, it can be said that the mean tur-
bulent flow behaves as a fluid governed by a frictional law other than that of
viscosity. In other words, a turbulent flow behaves as a non-Newtonian fluid.

Similar averages of the y- and z-momentum equations (3.20)–(3.22) over the
turbulent fluctuations yield

∂〈v〉
∂t
+ ∂(〈u〉〈v〉)

∂x
+ ∂(〈v〉〈v〉)

∂y
+ ∂(〈v〉〈w〉)

∂z
+ f 〈u〉+ 1

ρ0

∂〈p〉
∂y

= ∂

∂x

(
ν
∂〈v〉
∂x
−
〈
u′v′

〉)
+ ∂

∂y

(
ν
∂〈v〉
∂y
−
〈
v′v′

〉)
+ ∂

∂z

(
ν
∂〈v〉
∂z
−
〈
v′w′

〉)
(4.5)
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∂〈w〉
∂t
+ ∂(〈u〉〈w〉)

∂x
+ ∂(〈v〉〈w〉)

∂y
+ ∂(〈w〉〈w〉)

∂z
− f∗〈u〉+

1

ρ0

∂〈p〉
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(4.6)

4.2 EDDY COEFFICIENTS

Computer models of geophysical fluid systems are limited in their spatial res-
olution. They are therefore incapable of resolving all but the largest turbulent
fluctuations, and all motions of lengths shorter than the mesh size. In one way
or another, we must state something about these unresolved turbulent and sub-
grid scale motions in order to incorporate their aggregate effect on the larger,
resolved flow. This process is called subgrid-scale parameterization. Here, we
present the simplest of all schemes. More sophisticated parameterizations will
follow in later sections of the book, particularly Chapter 14.

The primary effect of fluid turbulence and of motions at subgrid scales (small
eddies and billows) is dissipation. It is therefore tempting to represent both the
Reynolds stress and the effect of unresolved motions as some form of super
viscosity. This is done summarily by replacing the molecular viscosity ν of the
fluid by a much larger eddy viscosity to be defined in terms of turbulence and
grid properties. This rather crude approach was first proposed by Boussinesq.

However, the parameterization recognizes one essential property: the
anisotropy of the flow field and its modeling grid. Horizontal and vertical direc-
tions are treated differently by assigning two distinct eddy viscosities, A in the
horizontal and νE in the vertical. Because turbulent motions and mesh size cover
longer distances in the horizontal than in the vertical, A covers a much larger
span of unresolved motions and needs to be significantly larger than νE. Fur-
thermore, as they ought to depend in some elementary way on flow properties
and grid dimensions, each of which may vary from place to place, eddy vis-
cosities should be expected to exhibit some spatial variations. Returning to the
basic manner by which the momentum budget was established, with stress dif-
ferentials among forces on the right-hand sides, we are led to retain these eddy
coefficients inside the first derivatives as follows:
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)
, (4.7a)
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, (4.7b)
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Since we will work exclusively with averaged equations in the rest of the
book (unless otherwise specified), there is no longer any need to denote aver-
aged quantities with brackets. Consequently, 〈u〉 has been replaced by u and
similarly for all other variables.

In the energy (density) equation, heat and salt molecular diffusion needs like-
wise to be superseded by the dispersing effect of unresolved turbulent motions
and subgrid-scale processes. Using the same horizontal eddy viscosity A for
energy as for momentum is generally adequate, because the larger turbulent
motions and subgrid processes act to disperse heat and salt as effectively as
momentum. However, in the vertical, the practice is usually to distinguish
dispersion of energy from that of momentum by introducing a vertical eddy dif-
fusivity κE that differs from the vertical eddy viscosity νE. This difference stems
from the specific turbulent behavior of each state variable and will be further
discussed in Section 14.3. The energy (density) equation then becomes
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)
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(
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)
+ ∂
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(
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∂ρ
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)
. (4.8)

The linear continuity equation is not subjected to any such adaptation and
remains unchanged:

∂u

∂x
+ ∂v
∂y
+ ∂w

∂z
=0. (4.9)

For more details on eddy viscosity and diffusivity and some schemes to
make those depend on flow properties, the reader is referred to textbooks on tur-
bulence, such as Tennekes and Lumley (1972) or Pope (2000). A widely used
method to incorporate subgrid-scale processes in the horizontal eddy viscosity
is that proposed by Smagorinsky (1963):

A=1x1y

√(
∂u

∂x

)2

+
(
∂v

∂y

)2

+ 1

2

(
∂u

∂y
+ ∂v
∂x

)2

, (4.10)

in which 1x and 1y are the local grid dimensions. Because the horizontal
eddy viscosity is meant to represent physical processes, it ought to obey certain
symmetry properties, notably invariance with respect to rotation of the coordi-
nate system in the horizontal plane. We leave it to the reader to verify that the
preceding formulation for A does indeed meet this requirement.
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4.3 SCALES OF MOTION

Simplifications of the equations established in the preceding section are possible
beyond the Boussinesq approximation and averaging over turbulent fluctua-
tions. However, these require a preliminary discussion of orders of magnitude.
Accordingly, let us introduce a scale for every variable, as we already did in
a limited way in Section 1.10. By scale, we mean a dimensional constant of
dimensions identical to that of the variable and having a numerical value rep-
resentative of the values of that same variable. Table 4.1 provides illustrative
scales for the variables of interest in geophysical fluid flow. Obviously, scale
values do vary with every application, and the values listed in Table 4.1 are only
suggestive. Even so, the conclusions drawn from the use of these particular val-
ues stand in the vast majority of cases. If doubt arises in a specific situation, the
following scale analysis can always be redone.

In the construction of Table 4.1, we were careful to satisfy the criteria of
geophysical fluid dynamics outlined in Sections 1.5 and 1.6,

T &
1

�
, (4.11)

for the time scale and

U

L
.�, (4.12)

for the velocity and length scales. It is generally not required to discriminate
between the two horizontal directions, and we assign the same length scale L
to both coordinates and the same velocity scale U to both velocity components.
However, the same cannot be said of the vertical direction. Geophysical flows
are typically confined to domains that are much wider than they are thick, and
the aspect ratio H/L is small. The atmospheric layer that determines our weather
is only about 10 km thick, yet cyclones and anticyclones spread over thousands
of kilometers. Similarly, ocean currents are generally confined to the upper hun-
dred meters of the water column but extend over tens of kilometers or more, up

�

�

�

�

TABLE 4.1 Typical Scales of Atmospheric and Oceanic Flows

Variable Scale Unit Atmospheric Value Oceanic Value

x, y L m 100 km = 105 m 10 km = 104 m
z H m 1 km = 103 m 100 m = 102 m
t T s ≥ 1

2 day ' 4 × 104 s ≥1 day ' 9 × 104 s
u, v U m/s 10 m/s 0.1 m/s
w W m/s

variablep P kgm−1 s−2

ρ 1ρ kg/m3
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to the width of the ocean basin. It follows that for large-scale motions,

H�L, (4.13)

and we expect W to be vastly different from U.
The continuity equation in its reduced form (4.9) contains three terms of

respective orders of magnitude:

U

L
,

U

L
,

W

H
.

We ought to examine three cases: W/H is much less than, on the order of, or
much greater than U/L. The third case must be ruled out. Indeed, if W/H�
U/L, the equation reduces in first approximation to ∂w/∂z=0, which implies
that w is constant in the vertical; because of a bottom somewhere, that flow must
be supplied by lateral convergence (see later section 4.6.1), and we deduce that
the terms ∂u/∂x and/or ∂v/∂y may not be both neglected at the same time. In
sum, w must be much smaller than initially thought.

In the first case, the leading balance is two dimensional, ∂u/∂x+∂v/∂y=0,
which implies that convergence in one horizontal direction must be compen-
sated by divergence in the other horizontal direction. This is very possible. The
intermediate case, with W/H on the order of U/L, implies a three-way bal-
ance, which is also acceptable. In summary, the vertical-velocity scale must be
constrained by

W .
H

L
U (4.14)

and, by virtue of Eq. (4.13),

W � U. (4.15)

In other words, large-scale geophysical flows are shallow (H�L) and nearly
two-dimensional (W�U).

Let us now consider the x-momentum equation in its Boussinesq and
turbulence-averaged form (4.7a). Its various terms scale sequentially as

U

T
,

U2

L
,

U2

L
,

WU

H
, �W, �U,

P

ρ0L
,

AU

L2
,

AU

L2
,

νEU

H2
.

The previous remark immediately shows that the fifth term (�W) is always
much smaller than the sixth (�U) and can be safely neglected.1

1 Note, however, that near the equator, where f goes to zero while f∗ reaches its maximum, the
simplification may be invalidated. If this is the case, a reexamination of the scales is warranted. The
fifth term is likely to remain much smaller than some other terms, such as the pressure gradient, but
there may be instances when the f∗ term must be retained. Because such a situation is exceptional,
we will dispense with the f∗ term here.
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Because of the fundamental importance of the rotation terms in geophysical
fluid dynamics, we can anticipate that the pressure-gradient term (the driving
force) will scale as the Coriolis terms, that is,

P

ρ0L
= �U → P = ρ0�LU. (4.16)

For typical geophysical flows, this dynamic pressure is much smaller than the
basic hydrostatic pressure due to the weight of the fluid.

Although horizontal and vertical dissipations due to turbulent and subgrid-
scale processes is retained in the equation (its last three terms), it cannot
dominate the Coriolis force in geophysical flows, which ought to remain among
the dominant terms. This implies

AU

L2
and

νEU

H2
. �U. (4.17)

Similar considerations apply to the y-momentum equation (4.7b). But the
vertical momentum equation (4.7c) may be subjected to additional simplifica-
tions. Its various terms scale sequentially as
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L
,
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L
,
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, �U,

P

ρ0H
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ρ0
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L2
,

νEW

H2
.

The first term (W/T) cannot exceed �W, which is itself much less than �U,
by virtue of Eqs. (4.11) and (4.15). The next three terms are also much smaller
than �U; this time because of Eqs. (4.12), (4.14), and (4.15). Thus, the first
four terms may all be neglected compared to the fifth. But this fifth term is itself
quite small. Its ratio to the first term on the right-hand side is

ρ0�HU

P
∼ H

L
,

which according to Eqs. (4.16) and (4.13) is much less than 1.
Finally, the last three terms are small. When W is substituted for U in

Eq. (4.17), we have

AW

L2
and

νEW

H2
. �W� �U. (4.18)

Thus, the last three terms on the right-hand side of the equation are much less
than the fifth term on the left, which was already found to be very small. In
summary, only two terms remain, and the vertical-momentum balance reduces
to the simple hydrostatic balance:

0=− 1

ρ0

∂p

∂z
− gρ

ρ0
. (4.19)

In the absence of stratification (density perturbation ρ nil), the next term
in line that should be considered a possible balance to the pressure gradient



106 PART | I Fundamentals

(1/ρ0)(∂p/∂z) is f∗u. However, under such balance, the vertical variation of
the pressure p would be given by the vertical integration of ρ0 f∗u and its scale
be ρ0�HU. Since this is much less than the already established pressure scale
(4.16), it is negligible, and we conclude that the vertical variation of p is very
weak. In other words, p is nearly z-independent in the absence of stratification:

0=− 1

ρ0

∂p

∂z
. (4.20)

So, the hydrostatic balance (4.19) continues to hold in the limit ρ→0.
Since the pressure p is already a small perturbation to a much larger pressure,

itself in hydrostatic balance, we conclude that geophysical flows tend to be fully
hydrostatic even in the presence of substantial motions.2 Looking back, we note
that the main reason behind this reduction is the strong geometric disparity of
geophysical flows (H�L).

In rare instances when this disparity between horizontal and vertical scales
does not exist, such as in convection plumes and short internal waves, the
hydrostatic approximation ceases to hold and the vertical-momentum balance
includes a three-way balance between vertical acceleration, pressure gradient,
and buoyancy.

4.4 RECAPITULATION OF EQUATIONS GOVERNING
GEOPHYSICAL FLOWS

The Boussinesq approximation performed in the previous chapter and the pre-
ceding developments have greatly simplified the equations. We recapitulate
them here.
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y-momentum:
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(4.21b)

2 According to Nebeker (1995, page 51), the scientist deserving credit for the hydrostatic balance in
geophysical flows is Alexis Clairaut (1713–1765).
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z-momentum: 0=−∂p

∂z
−ρg (4.21c)

continuity:
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=0 (4.21d)

energy:
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where the reference density ρ0 and the gravitational acceleration g are con-
stant coefficients, the Coriolis parameter f =2�sinϕ is dependent on latitude
or taken as a constant, and the eddy viscosity and diffusivity coefficients A, νE,
and κE may be taken as constants or functions of flow variables and grid parame-
ters. These five equations for the five variables u, v, w, p, and ρ form a closed set
of equations, the cornerstone of geophysical fluid dynamics, sometimes called
primitive equations.

Using the continuity equation (4.21d), the horizontal-momentum and density
equations can be written in conservative form:
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These will be found useful in numerical discretization.

4.5 IMPORTANT DIMENSIONLESS NUMBERS

The scaling analysis of Section 4.3 was developed to justify the neglect of some
small terms. But this does not necessarily imply that the remaining terms are
equally large. We now wish to estimate the relative sizes of those terms that
have been retained.
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The terms of the horizontal momentum equations in their last form (4.21a)
and (4.21b) scale sequentially as
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T
,
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L
,
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,
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, �U,
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.

By definition, geophysical fluid dynamics treats those motions in which rotation
is an important factor. Thus, the term �U is central to the preceding sequence.
A division by �U, to measure the importance of all other terms relative to the
Coriolis term, yields the following sequence of dimensionless ratios:
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,
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, 1,
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,
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.

The first ratio,

RoT =
1

�T
, (4.23)

is called the temporal Rossby number. It compares the local time rate of change
of the velocity to the Coriolis force and is on the order of unity or less as has
been repeatedly stated, see Eq. (4.11). The next number,

Ro= U

�L
, (4.24)

which compares advection to Coriolis force, is called the Rossby number3 and
is fundamental in geophysical fluid dynamics. Like its temporal analogue RoT ,
it is at most on the order of unity by virtue of Eq. (4.12). As a general rule, the
characteristics of geophysical flows vary greatly with the values of the Rossby
numbers.

The next number is the product of the Rossby number by WL/UH, which is
on the order of 1 or less by virtue of Eq. (4.14). It will be shown in Section 11.5
that the ratio WL/UH is generally on the order of the Rossby number itself. The
next ratio, P/ρ0�LU, is on the order of unity by virtue of Eq. (4.16).

The last two ratios measure the relative importance of horizontal and vertical
frictions. Of the two, only the latter bears a name:

Ek= νE

�H2
, (4.25)

is called the Ekman number. For geophysical flows, this number is small. For
example, with an eddy viscosity νE as large as 10−2m2/s,�=7.3×10−5 s−1

and H=100 m, Ek=1.4×10−2. The Ekman number is even smaller in lab-
oratory experiments where the viscosity reverts to its molecular value and
the height scale H is much more modest. [Typical experimental values are

3 See biographic note at the end of this chapter.
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�=4 s−1, H=20 cm, and ν(water) = 10−6 m2/s, yielding Ek=6×10−6.]
Although the Ekman number is small, indicating that the dissipative terms in
the momentum equation may be negligible, these need to be retained. The rea-
son will become clear in Chapter 8, when it is shown that vertical friction creates
a very important boundary layer.

In nonrotating fluid dynamics, it is customary to compare inertial and fric-
tional forces by defining the Reynolds number, Re. In the preceding scaling,
inertial and frictional forces were not compared to each other, but each was
instead compared to the Coriolis force, yielding the Rossby and Ekman num-
bers. There exists a simple relationship between the three numbers and the
aspect ratio H/L:

Re = UL

νE
= U
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· �H2
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· L2

H2
= Ro

Ek

(
L

H

)2

. (4.26)

Since the Rossby number is on the order of unity or slightly less, but the
Ekman number and the aspect ratio H/L are both much smaller than unity,
the Reynolds number of geophysical flows is extremely large, even after the
molecular viscosity has been replaced by a much larger eddy viscosity.

With Eq. (4.16), the two terms in the hydrostatic equation (4.21c) scale,
respectively, as

P

H
, g1ρ

and the ratio of the latter over the former is

gH1ρ

P
= gH1ρ
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· gH1ρ

ρ0U2
=Ro · gH1ρ
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.

This leads to the additional dimensionless ratio

Ri = gH1ρ

ρ0U2
, (4.27)

which we already encountered in Section 1.6. It is called the Richardson num-
ber.4 For geophysical flows, this number may be much less than, on the order
of, or much greater than unity, depending on whether stratification effects are
negligible, important, or dominant.

4.6 BOUNDARY CONDITIONS

The equations of Section 4.4 governing geophysical flows form a closed set of
equations, with the number of unknown functions being equal to the number

4 See biography at the end of Chapter 14
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FIGURE 4.1 Schematic representation of possible exchanges between a coastal system under
investigation and the surrounding environment. Boundary conditions must specify the influence
of this outside world on the evolution within the domain. Exchanges may take place at the air–sea
interface, in bottom layers, along coasts, and/or at any other boundary of the domain.

of available independent equations. However, the solution of those equations
is uniquely defined only when additional specifications are provided. Those
auxiliary conditions concern information on the initial state and geographical
boundaries of the system (Fig. 4.1).

Because the governing equations (4.21) contain first-order time derivatives
of u, v, and ρ, initial conditions are required, one for each of these three-
dimensional fields. Because the respective equations, (4.21a), (4.21b), and
(4.21e), provide tendencies for these variables in order to calculate future val-
ues, it is necessary to specify from where to start. The variables for which such
initial conditions are required are called state variables. The remaining variables
w and p, which have no time derivative in the equations, are called diagnostic
variables, that is, they are variables that can be determined at any moment from
the knowledge of the other variables at the same moment. Note that if a nonhy-
drostatic formalism is retained, the time derivative of the vertical velocity arises
[see (4.7c)], and w passes from being a diagnostic variable to a state variable,
and an initial condition becomes necessary for it, too.

The determination of pressure needs special care depending on whether the
hydrostatic approximation is applied and on the manner in which sea surface
height is modeled. Since the pressure gradient is a major force in geophysi-
cal flows, the handling of pressure is a central question in the development of
GFD models. This point deserves a detailed analysis, which we postpone to
Section 7.6.
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The conditions to impose at spatial boundaries of the domain are more dif-
ficult to ascertain than initial conditions. The mathematical theory of partial
differential equations teaches us that the number and type of required boundary
conditions depend on the nature of the partial differential equations. Standard
classification (e.g., Durran, 1999) of second-order partial differential equations
makes the distinction between hyperbolic, parabolic, and elliptic equations.
This classification is based on the concept of characteristics, which are lines
along which information propagates. The geometry of these lines constrains
where information is propagated from the boundary into the domain or from
the domain outward across the boundary and therefore prescribes along which
portion of the domain’s boundary information needs to be specified in order to
define uniquely the solution within the domain.

A major problem with the GFD governing equations is that their clas-
sification cannot be established once and for all. First, the coupled set of
equations (4.21) is more complicated than a single second-order equation for
which standard classification can be performed; second, the equation type can
change with the solution itself. Indeed, propagation of information is mostly
accomplished by a combination of flow advection and wave propagation, and
these may at various times leave and enter through the same boundary seg-
ment. Thus, the number and type of required boundary conditions is susceptible
to change over time with the solution of the problem, which is obviously not
known a priori. It is far from a trivial task to establish the mathematically correct
set of boundary conditions, and the reader is referred to specialized literature for
further information (e.g., Blayo & Debreu, 2005; Durran, 1999). The imposi-
tion of boundary conditions during analytical studies in this book will be guided
by purely physical arguments, and the well-behaved nature of the subsequent
solution will serve as a posteriori verification.

For the many situations when no analytical solution is available, not only is
a posteriori verification out of the question but the problem is further compli-
cated by the fact that numerical discretization solves modified equations with
truncation errors, rather than the original equations. The equations may demand
fewer or more boundary and initial conditions. If the numerical scheme asks for
more conditions than those provided by the original equations, these conditions
must be related to the truncation error in such a way that they disappear when
the grid size (or time step) vanishes: We demand that all boundary and initial
conditions be consistent.

Let us, for example, revisit the initialization problem of the leapfrog scheme
from this point of view. As we have seen (Section 2.9), the leapfrog discretiza-
tion ∂u/∂t=Q→ ũn+1= ũn−1+21tQn needs two values, ũ0 and ũ1, to start the
time stepping. However, the original problem indicates that only one initial con-
dition, ũ0, may be imposed, the value of which is dictated by the physics of the
problem. The second condition, ũ1, must then be such that its influence disap-
pears in the limit 1t→0. This will be the case with the explicit Euler scheme
ũ1= ũ0+1tQ [where Q(t0, ũ0) stands for the other terms in the equation at
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time t0]. Indeed, ũ1 tends to the actual initial value ũ0 and the first leapfrog
step yields ũ2= ũ0+21tQ(t1, ũ0+O(1t)), which is consistent with a finite
difference over a 21t time step.

Leaving for later sections the complexity of the additional conditions that
may be required by virtue of the discretization schemes, the following sections
present the boundary conditions that are most commonly encountered in GFD
problems. They stem from basic physical requirements.

4.6.1 Kinematic Conditions

A most important condition, independent of any physical property or subgrid-
scale parameterization, is that air and water flows do not penetrate land.5 To
translate this impermeability requirement into a mathematical boundary condi-
tion, we simply express that the velocity must be tangent to the land boundary,
that is, the gradient vector of the boundary surface and the velocity vector are
orthogonal to each other.

Consider the solid bottom of the domain. With this boundary defined as
z−b(x,y)=0, the gradient vector is given by [∂(z−b)/∂x, ∂(z−b)/∂y,
∂(z−b)/∂z] = [−∂b/∂x, −∂b/∂y, 1], the boundary condition is

w=u
∂b

∂x
+v

∂b

∂y
at the bottom. (4.28)

We can interpret this condition in terms of a fluid budget at the bottom
(Fig. 4.2) or alternatively as the condition that the bottom is a material surface
of the fluid, not crossed by the flow and immobile. Expressing that the bottom
is a material surface indeed demands

d

dt
(z−b)=0, (4.29)

which is equivalent to Eq. (4.28) since dz/dt=w and ∂b/∂t=0.
At a free surface, the situation is similar to the bottom except for the fact

that the boundary is moving with the fluid. If we exclude overturning waves,
the position of the surface is uniquely defined at every horizontal point by its
vertical position η (Fig. 4.3), and z−η=0 is the equation of the boundary. We
then express that it is a material surface6:

d

dt
(z−η)=0 at the free surface (4.30)

5 There is no appreciable penetration of land by water and air at geophysical scales. For ground
flows, known to have a strong impact on geochemical behaviors of coastal systems, an appropriate
flux can always be imposed if necessary.
6 Exceptions are evaporation and precipitation at the air–sea interface. When important, these may
be accommodated in a straightforward manner.
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z −b � 0

w
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wdx

udb

b b(x)
b(x +dx)

z

Surface Surface

FIGURE 4.2 Notation and two physical interpretations of the bottom boundary condition illus-
trated here in a (x,z) plane for a topography independent of y. The impermeability of the bottom
imposes that the velocity be tangent to the bottom defined by z−b=0. In terms of the fluid budget,
which can be extended to a finite-volume approach, expressing that the horizontal inflow matches
the vertical outflow requires u(b(x+dx)−b(x))=wdx, which for dx→0 leads to Eq. (4.28). Note
that the velocity ratio w/u is equal to the topographic slope db/dx, which scales like the ratio of
vertical to horizontal length scales, i.e., the aspect ratio.

k
Reference surface

geoid

Bottom

h

b

z −η(x, y, t) � 0

η

FIGURE 4.3 Notation for the sur-
face boundary condition. Express-
ing impermeability of the moving
surface z=η results in boundary
condition (4.31). The elevation of
the sea surface height η is exagger-
ated compared to h for the purpose
of illustration.

and obtain the surface boundary condition

w= ∂η
∂t
+u

∂η

∂x
+v

∂η

∂y
at z=η. (4.31)

Particularly simple cases are those of a flat bottom and of a free surface of
which the vertical displacements are neglected (such as small water waves on
the surface of the deep sea)—called the rigid-lid approximation, which will be
scrutinized in Section 7.6. In such cases, the vertical velocity is simply zero at
the corresponding boundary.

A difficulty with the free surface boundary arises because the boundary con-
dition is imposed at z=η, that is, at a location changing over time, depending
on the flow itself. Such a problem is called a moving boundary problem, a topic
which is a discipline unto itself in computational fluid dynamics (CFD) (e.g.,
Crank, 1987).

In oceanic models, lateral walls are introduced in addition to bottom and
top boundaries so that the water depth remains nonzero all the way to the edge
(Fig. 4.4). This is because watering and dewatering of land that would otherwise
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Unresolved outcropping position

Shelf
break

Shelf

Surface

Reduced model domain due to
unresolved shelf processes

Coast

FIGURE 4.4 Vertical section across an oceanic domain reaching the coast. Besides surface and
bottom boundaries, the coast introduces an additional lateral boundary. Introducing an artificial
vertical wall is necessary because a fixed numerical grid cannot describe well the exact position of
the water’s edge. Occasionally, a vertical wall is assumed at the shelf break, removing the entire
shelf area from the domain, because the reduced physics of the model are incapable of representing
some processes on the shelf.

occur at the outcrop of the ocean floor is difficult to model with a fixed grid.
At a vertical wall, impermeability demands that the normal component of the
horizontal velocity be zero.

4.6.2 Dynamic Conditions

The previous impermeability conditions are purely kinematic, involving only
velocity components. Dynamical conditions, implicating forces, are sometimes
also necessary, for example, when requiring continuity of pressure at the air–sea
interface.

Ignoring the effect of surface tension, which is important only for very short
water waves (capillary waves, with wavelengths no longer than a few centi-
meters), the pressure patm exerted by the atmosphere on the sea must equal the
total pressure psea exerted by the ocean onto the atmosphere:

patm = psea at air–sea interface. (4.32)

If the sea surface elevation is η and pressure is hydrostatic below, it follows that
continuity of pressure at the actual surface z=η implies

psea(z=0) = patm at sea level+ρ0gη (4.33)

at the more convenient reference sea level z=0.
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Another dynamical boundary condition depends on whether the fluid is con-
sidered inviscid or viscous. In reality, all fluids are subject to internal friction
so that, in principle, a fluid particle next to fixed boundary must adhere to that
boundary and its velocity be zero. However, the distance over which the veloc-
ity falls to zero near a boundary is usually short because viscosity is weak. This
short distance restricts the influence of friction to a narrow band of fluid along
the boundary, called a boundary layer. If the extent of this boundary layer is
negligible compared to the length scale of interest, and generally it is, it is per-
missible to neglect friction altogether in the momentum equations. In this case,
slip between the fluid and the boundary must be allowed, and the only boundary
condition to be applied is the impermeability condition.

However, if viscosity is taken into account, zero velocity must be imposed
at a fixed boundary, whereas along a moving boundary between two fluids, con-
tinuity of both velocity and tangential stress is required. From the oceanic point
of view, this requires

ρ0νE

(
∂u

∂z

)∣∣∣∣
at surface

= τ x, ρ0νE

(
∂v

∂z

)∣∣∣∣
at surface

= τ y (4.34)

where τ x and τ y are the components of the wind stress exerted by the atmo-
sphere onto the sea. These are usually taken as quadratic functions of the wind
velocity u10 10 meters above the sea and parameterized using a drag coefficient:

τ x=Cd ρair U10u10, τ y=Cd ρair U10v10, (4.35)

where u10 and v10 are the x and y components of the wind vector u10, U10=√
u2

10+v2
10 is the wind speed, and Cd is a drag coefficient with approximate

value of 0.0015 for wind over the sea.
Finally, an edge of the model may be an open boundary, by which we mean

that the model domain is terminated at some location that cuts across a broader
natural domain. Such a situation arises because computer resources or data
availability restrict the attention to a portion of a broader system. Examples are
regional meteorological models and coastal ocean models (Fig. 4.5). Ideally, the
influence of the outside system onto the system of interest should be specified
along the open boundary, but this is most often impossible in practice, for the
obvious reason that the unmodeled part of the system is not known. However,
certain conditions can be applied. For example, waves may be allowed to exit
but not enter through the open boundary, or flow properties may be specified
where the flow enters the domain but not where it leaves the domain. In oceanic
tidal models, the sea surface may be imposed as a periodic function of time.

With increased computer power over the last decade, it has become common
nowadays to nest models into one another, that is, the regionally limited model
of interest is embedded in another model of lower spatial resolution but larger
size, which itself may be embedded in a yet larger model of yet lower resolution,
all the way to a model that has no open boundary (entire ocean basin or globe
for the atmosphere). A good example is regional weather forecasting over a
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Velocity 1ms 1

FIGURE 4.5 Open boundaries are common in regional modeling. Conditions at open boundaries
are generally difficult to impose. In particular, the nature of the condition depends on whether the
flow enters the domain (carrying unknown information from the exterior) or leaves it (export-
ing known information). (Courtesy of the HYCOM Consortium on Data-Assimilative Modeling).
A color version can be found online at http://booksite.academicpress.com/9780120887590/

particular country: A grid covering this country and a few surrounding areas is
nested into a grid that covers the continent, which itself is nested inside a grid
that covers the entire globe.

4.6.3 Heat, Salt, and Tracer Boundary Conditions

For equations similar to those governing the evolution of temperature, salt, or
density, that is, including advection and diffusion terms, we have the choice of
imposing the value of the variable, its gradient, or a mixture of both. Prescrib-
ing the value of the variable (Dirichlet condition) is natural in situations where
it is known from observations (sea surface temperature from satellite data, for
example). Setting the gradient (Neumann condition) is done to impose the dif-
fusive flux of a quantity (e.g., heat flux) and is therefore often associated with
the prescription of turbulent air–sea exchanges. A mixed condition (Cauchy
condition, Robin condition) is typically used to prescribe a total, advective plus
diffusive, flux. For a 1D heat flux, for example, one sets the value of uT−κT∂T/∂x
at the boundary. For an insulating boundary, this flux is simply zero.

To choose the value of the variable or its gradient at the boundary, either
observations are invoked or exchange laws prescribed. The most complex
exchange laws are those for the air–sea interface, which involve calculation of
fluxes depending on the sea surface water temperature Tsea (often called SST),
air temperature Tair, wind speed u10 at 10 m above the sea, cloudiness, moisture,
etc, Formally,

−κT
∂T

∂z

∣∣∣∣
z=η
= F(Tsea,Tair,u10,cloudiness,moisture, ...). (4.36)
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For heat fluxes, imposing the condition at z=0 rather than at the actual position
z=η of the sea surface introduces an error much below the error in the heat flux
estimate itself and is a welcomed simplification.

If the density equation is used as a combination of both salinity and temper-
ature equations by invoking the linearized state equation, ρ=−αT+βS, and
if it can be reasonably assumed that all are dispersed with the same turbulent
diffusivity, the boundary condition on density can be formulated as a weighted
sum of prescribed temperature and salt fluxes:

κE
∂ρ

∂z
=− ακE

∂T

∂z
+βκE

∂S

∂z
. (4.37)

For any tracer (a quantity advected and dispersed by the flow), a condition
similar to those on temperature and salinity can be imposed, and in particular, a
zero total flux is common when there is no tracer input at the boundary.

4.7 NUMERICAL IMPLEMENTATION OF BOUNDARY
CONDITIONS

Once mathematical boundary conditions are specified and values assigned at
the boundaries, we can tackle the task of implementing the boundary condition
numerically. We illustrate the process again with temperature as an example.

In addition to nodes forming the grid covering the domain being mod-
eled, other nodes may be placed exactly at or slightly beyond the boundaries
(Fig. 4.6). These additional nodes are introduced to facilitate the implementa-
tion of the boundary condition. If the condition is to specify the value Tb of the
numerical variable T̃ , it is most natural to place a node at the boundary (Fig. 4.6
right side) so that

T̃m=Tb (4.38)

requires no interpolation and forms an exact implementation.
If the boundary condition is in the form of a flux, it is more practical to have

two grid nodes straddling the boundary, with one slightly outside the domain
and the other slightly inside (Fig. 4.6 left side). In this manner, the derivative of
the variable is more precisely formulated at the location of the boundary. With
the index notation of Fig. 4.6,

T̃2− T̃1

1x
' ∂T

∂x

∣∣∣∣
xb

+ 1x2

24

∂3T

∂x3

∣∣∣∣
xb

(4.39)

yields a second-order approximation, and the flux boundary condition
−κT(∂T/∂x)= qb turns into

T̃1 = T̃2 + 1x
qb

κT
. (4.40)
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Boundary at xb Boundary with grid node

�x

FIGURE 4.6 Grid nodes cover the interior of the domain of interest. Additional nodes may be
placed beyond a boundary as illustrated on the left side or placed on the boundary as illustrated
on the right. The numerical implementation of the boundary condition depends on the arrangement
selected.

However, there are cases when the situation is less ideal. This occurs
when a total, advective plus diffusive, flux boundary condition is specified
(uT−κT(∂T/∂x)= qb). Either the ending node is at the boundary, complicat-
ing the discretization of the derivative, or it is placed beyond the boundary, and
the value of T must be extrapolated. In the latter case, extrapolation is performed
with second-order accuracy,

T̃1+ T̃2

2
' T(xb)+

1x2

8

∂2T

∂x2

∣∣∣∣
xb

, (4.41)

and the total flux condition becomes

ub
T̃1+ T̃2

2
−κT

T̃2− T̃1

1x
= qb (4.42)

yielding the following condition on the end value T̃1:

T̃1 =
2qb1x+(2κT−ub1x)T̃2

2κT+ub1x
. (4.43)

In the former case, when the ending grid node lies exactly at the boundary,
the straightfoward difference

∂T

∂x
' T̃m− T̃m−1

1x
(4.44)

provides only first-order accuracy at point xm, and to recover second-order accu-
racy with this node placement, we need a numerical stencil that extends further
into the domain (see Numerical Exercise 4.8). Therefore, to implement a flux
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condition, the preferred placement of the ending node is half a grid step beyond
the boundary. With this configuration, the accuracy is greater than with the end-
ing point placed at the boundary itself. The same conclusion is reached for the
finite-volume approach, since imposing a flux condition consists of replacing
the flux calculation at the boundary by the imposed value. We immediately real-
ize that in this case, the natural placement of the boundary is at the interface
between grid points because it is the location where fluxes are calculated in the
finite-volume approach.

The question that comes to mind at this point is whether or not the level
of truncation error in the boundary-condition implementation is adequate. To
answer the question, we have to compare this truncation error to other errors,
particularly the truncation error within the domain. Since there is no advantage
in having a more accurate method at the relatively few boundary points than at
the many interior points, the sensible choice is to use the same truncation order
at the boundary as within the domain. The model then possesses a uniform level
of approximation. Sometimes, however, a lower order near the boundary may
be tolerated because there are many fewer boundary points than interior points,
and a locally higher error level should not penalize the overall accuracy of the
solution. In the limit of1x→0, the ratio of boundary points to the total number
of grid points tends to zero, and the effect of less-accurate approximations at the
boundaries disappears.

In Eq. (4.43), we used the boundary condition to calculate a value at a
point outside of the domain so that when applying the numerical scheme at
the first interior point, the boundary condition is automatically satisfied. The
same approach can also be used to implement the artificial boundary conditions
that are sometimes required by the numerical scheme. Consider, for example,
the fourth-order discretization (1.26) now applied to spatial derivatives in the
domain interior coupled with the need to impose a single boundary condition at

Operator at m−2

Operator at m−1

?

m

Dirichlet condition

m−2

m−1

m+1

m−4

FIGURE 4.7 An operator spanning two points on each side of the calculation point can be applied
only up to m−2 if a single Dirichlet condition is prescribed. When applying the same operator at
m−1, we face the problem that the value at m+1 does not exist.
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xm of Dirichlet type. The discrete operator in the interior

∂T

∂x

∣∣∣∣
xi

' 4

3

(
T̃i+1− T̃i−1

21x

)
− 1

3

(
T̃i+2− T̃i−2

41x

)
(4.45)

can be applied up to i=m−2. At i=m−1, the formula can no longer be
applied, unless we provide a value at a virtual point T̃m+1 (Fig. 4.7). This can
be accomplished by requiring that a skewed fourth-order discretization near the
boundary have the same effect as the centered version using the virtual value.

4.8 ACCURACY AND ERRORS

Errors in a numerical model can be of several types. Following Ferziger and
Perić (1999), we classify them according to their origin.

l Modeling errors: This error is caused by the imperfections of the mathe-
matical model in representing the physical system. It is thus the difference
between the evolution of the real system and that of the exact solution of
its mathematical representation. Earlier in this chapter, we introduced sim-
plifications to the equations and added parameterizations of unresolved pro-
cesses, which all introduce errors of representation. Furthermore, even if the
model formulation had been ideal, coefficients remain imperfectly known.
Uncertainties in the accompanying boundary conditions also contribute to
modeling errors.

l Discretization errors: This error is introduced when the original equa-
tions are approximated to transform them into a computer code. It is thus
the difference between the exact solution of the continuous problem and
the exact numerical solution of the discretized equations. Examples are the
replacement of derivatives by finite differences and the use of guesses in
predictor-corrector schemes.

l Iteration errors: This error originates with the use of iterative methods to
perform intermediate steps in the algorithm and is thus measured as the dif-
ference between the exact solution of the discrete equations and the numerical
solution actually obtained. An example is the use of the so-called Jacobi
method to invert a matrix at some stage of the calculations: for the sake of
time, the iterative process is interrupted before full convergence is reached.

l Rounding errors: These errors are due to the fact that only a finite number of
digits are used in the computer to represent real numbers.

A well constructed model should ensure that

rounding errors� iteration errors� discretization errors� modeling errors.

The order of these inequalities is easily understood: If the discretization error
were larger than the modeling error, there would be no way to tell whether the
mathematical model is an adequate approximation of the physical system we are
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trying to describe. If the iteration error were larger than the discretization error,
the claim could not be made that the algorithm generates a numerical solution
that satisfies the discretized equations, etc.

In the following, we will deal neither with rounding errors (generally
controlled by appropriate compiler options, loop arrangements, and double-
precision instructions), nor with iteration errors (generally controlled by sen-
sitivity analysis or a priori knowledge of acceptable error levels for the
convergence of the iterations). Modeling errors are discussed when perform-
ing scale analysis and additional modeling hypotheses or simplifications (see,
e.g., the Boussinesq and hydrostatic approximations) so that we may restrict
our attention here to the discretization error associated with the transformation
of a continuous mathematical model into a discrete numerical scheme.

The concepts of consistency, convergence, and stability mentioned in
Chapter 1 only provide information on the discretization error behavior when
1t tends to zero. In practice, however, time steps (and spatial steps as well) are
never tending toward zero but are kept at fixed values, and the question arises
about how accurate is the numerical solution compared to the exact solution.
In that case, convergence is only marginally interesting, and even inconsistent
schemes, if clever, may be able to provide results that cause lower actual errors
than consistent and convergent methods.

By definition, the discretization error εu on a variable u is the difference
between the exact numerical solution ũ of the discretized equation and the
mathematical solution u of the continuous equation:

εu= ũ−u. (4.46)

4.8.1 Discretization Error Estimates

In the case of explicit discretization (2.24) of inertial oscillations, we can obtain
differential equations for the errors by subtracting the modified equations (2.28)
from the exact continuous equation (2.23), to the leading order:

dεu

dt
− f εv= f 21t

2
ũ +O(1t2)

dεv
dt
+ f εu= f 21t

2
ṽ +O(1t2).

Obviously, we are not going to solve these equations to calculate the error
because it would be tantamount to solving the exact problem directly. However,
what we notice is that the error equations have source terms on the order of 1t
(which vanish as 1t→0 because the scheme is consistent) and we anticipate
that these will give rise to a proportional solution for εu and εv . The truncation
error of the solution should therefore be of first order:

εu=O(1t)∼ f1t

2
‖ũ‖ . (4.47)



122 PART | I Fundamentals

101

100

100

10−1

10−2

10−2

10−3

10−4

10−4 10−6

10−5 10−8

10−10

10−12

10−6

10−7

10−8

f�t
10010−110−210−310−410−5

f�t
10010−110−210−310−410−5

εε

FIGURE 4.8 Relative discretization error ε= εu/‖ũ‖ as a function of the dimensionless variable
f1t in the case of inertial oscillations. The log–log graphs show the real errors (dots) and estimated
values of the error (circles) for an explicit scheme (left panel) and semiexplicit scheme (right panel).
The slope of the theoretical convergence rates (m=1 on the left panel and m=2 on the right panel)
are shown, as well as the next order m+1. Actual errors after a Richardson extrapolation (crosses)
prove that the order is increased by 1 after extrapolation.

We can verify that the actual error is indeed divided by a factor 2 when the time
step is halved (Fig. 4.8).

This is to be expected, since the equivalence theorem also states that for a
linear problem, the numerical solution and its truncation error share the same
order, say m. The difficulty with this approach is that for nonlinear problems,
no guarantee can be made that this property continues to hold or that the actual
error can be estimated by inspection of the modified equation.

To quantify the discretization error in nonlinear systems, we can resort to a
sensitivity analysis. Suppose the leading error of the solution is

εu= ũ−u=a1tm, (4.48)

where the coefficient a is unknown and the order m may or may not be known.
If m is known, the parameter a can be determined by comparing the solution
ũ21t obtained with a double step 21t with the solution ũ1t obtained with the
original time step 1t:

ũ21t−u=a2m1tm, ũ1t−u=a1tm (4.49)

from which7 falls the value of a:

a= ũ21t− ũ1t

(2m−1)1tm
. (4.50)

7 Notice that the difference must be done at the same moment t, not at the same time step n.
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The error estimate associated with the higher resolution solution ũ1t is

εu= ũ1t−u=a1tm= ũ21t− ũ1t

(2m−1)
, (4.51)

with which we can improve our solution by using Eq. (4.48)

ũ= ũ1t−
ũ21t− ũ1t

(2m−1)
. (4.52)

This suggests that the two-time-step approach may yield the exact answer
because it determines the error. Unfortunately, this cannot be the case because
we are working with a discrete representation of a continuous function. The
paradox is resolved by realizing that, by using Eq. (4.50), we discarded higher-
order terms and therefore did not calculate the exact value of a but only an
estimate of it. What our manipulation accomplished was the elimination of the
leading error term. This procedure is called a Richardson extrapolation:

u= ũ1t−
ũ21t− ũ1t

(2m−1)
+O

(
1tm+1

)
. (4.53)

Numerical calculations of the real error and error estimates according to
Eq. (4.51) show good performance of the estimators in the context of inertial
oscillations (Fig. 4.8). Also, the Richardson extrapolation increases the order
by 1, except for the semi-implicit scheme at high resolution, when no gain is
achieved because saturation occurs (Fig. 4.8, right panel). This asymptote cor-
responds to the inevitable rounding errors, and we can claim to have solved the
discrete equations “exactly.”

When considering the error estimate (4.51), we observe that the error esti-
mate of a first-order scheme (m=1) is simply the difference between two
solutions obtained with different time steps. This is the basic justification for
performing resolution sensitivity analysis on more complicated models: Differ-
ences in model results due to a variation in resolution may be taken as estimates
of the discretization error. By extension, performing multiple simulations with
different model parameter values leads to differences that are indicators of
modeling errors.

When the truncation order m is not known, a third evaluation of the numeri-
cal solution, with a quadruple time step 41t, yields an estimate of both the order
m and the coefficient a of the discretization error:

m= 1

log2
log

(
ũ41t− ũ21t

ũ21t− ũ1t

)
(4.54)

a=− ũ21t− ũ1t

(2m−1)1tm
.
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As we can see in practice (Fig. 4.9), this estimate provides a good estimate of
m when resolution is sufficiently fine. This method can thus be used to deter-
mine the truncation order of discretizations numerically, which can be useful
to assess convergence rates of nonlinear discretized systems or to verify the
proper numerical implementation of a discretization (for which the value of m
is known). In the latter case, if a method should be of second order but the
numerical estimate of m according to Eq. (4.54) reveals only first-order con-
vergence on well behaved problems, a programming or implementation error is
very likely to blame.

Having access now to an error estimate, we can think of choosing the time
step so as to keep discretization errors below a prescribed level. If the time step
is prescribed a priori, the error estimate allows us to verify that the solution
remains within error bounds. The use of a fixed time step is common but might
not be the most appropriate choice when the process exhibits a mix of slower
and faster processes (Fig. 4.10). Then, it may be preferable that the time step be

1
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m

f�t
10−5 10−4 10−3 10−2 10−1 10−0

FIGURE 4.9 Estimator of m for
explicit (+, tending to 1 for small time
steps) and semi-implicit discretization
(o, tending to 2) as function of f1t.

t

ũ

Long time scale
Short time scale

�t�t

FIGURE 4.10 Use of different time steps1t in function of the local error and time scales. The time
step is decreased until the local error estimate is smaller than a prescribed value. When estimated
errors are much smaller than allowed, the time step is increased.
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adjusted over time so as to follow the time scale of the system. In this case, we
speak about adaptive time stepping.

Adaptive time stepping can be implemented by decreasing the time step
whenever the error estimate begins to be excessive. Vice versa, when the error
estimate indicates an unnecessarily short time step, it should be allowed to
increase again. Adaptive time stepping seems appealing, but the additional work
required to track the error estimate (doubling/halving the time step and recom-
puting the solution) can exceed the gain obtained by maintaining a fixed time
step, which is occasionally too short. Also, multistep methods are not easily
generalized to adaptive time steps.

ANALYTICAL PROBLEMS

4.1. From the weather chart in today’s edition of your newspaper, identify the
horizontal extent of a major atmospheric feature and find the forecast
wind speed. From these numbers, estimate the Rossby number of the
weather pattern. What do you conclude about the importance of the Cori-
olis force? (Hint: When converting latitudinal and longitudinal differences
in kilometers, use the Earth’s mean radius, 6371 km.)

4.2. Using the scale given in Eq. (4.16), compare the dynamic pressure induced
by the Gulf Stream (speed = 1 m/s, width = 40 km, and depth = 500 m)
to the main hydrostatic pressure due to the weight of the same water
depth. Also, convert the dynamic pressure scale in equivalent height of
hydrostatic pressure (head). What can you infer about the possibility of
measuring oceanic dynamic pressures by a pressure gauge?

4.3. Consider a two-dimensional periodic fluctuation of the type (u′=
U sin(φ+αu), v′=V sin(φ+αv), w′=0) with φ(x,y, t)= kxx+kyy−ωt
and all other quantities constant. Calculate the Reynolds stresses, such as
−
〈
u′v′

〉
, by taking the average over a 2π-period of the phase φ. Show that

these stresses are not zero in general (proving that traveling waves may
exert a finite stress and therefore accelerate or slow down a background
flow on which they are superimposed). Under which relation between αu

and αv does the shear stress −
〈
u′v′

〉
vanish?

4.4. Show that the horizontal eddy viscosity defined in Eq. (4.10) vanishes for
a vortex flow with velocity components (u=−�y, v=+�x) with� being
a constant. Is this a desirable property?

4.5. Why do we need to know the surface pressure distribution when using the
hydrostatic approximation?

4.6. Theory tells us that in a pure advection problem for temperature T , a single
boundary condition should be imposed at the inflow and none at the out-
flow, but when diffusion is present, a boundary condition must be imposed
at both ends. What do you expect to happen at the outflow boundary
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when diffusion is very small? How would you measure the “smallness”
of diffusion?

4.7. In forming energy budgets, the momentum equations are multiplied by
their respective velocity components (i.e., the ∂u/∂t equation is multiplied
by u and so forth), and the results are added. Show that in this manipula-
tion, the Coriolis terms in f and f∗ cancel one another out. What would be
your reaction if someone presented you with a model in which the f∗w term
were dropped from Eq. (4.7a) because w is small compared to u and the
term f∗u were retained in Eq. (4.7c) for the same reason?

NUMERICAL EXERCISES

4.1. When air and sea surface temperatures, Tair and Tsea, are close to each
other, it is acceptable to use a linearized form to express the heat flux across
the air–sea heat interface, such as

−κT
∂Tsea

∂z
= h

ρ0Cv
(Tsea−Tair), (4.55)

where h is an exchange coefficient in (Wm−2 K−1). The coefficient multi-
plying the temperature difference Tsea−Tair has the units of a velocity and,
for this reason, is sometimes called piston velocity in the context of gas
exchange between air and water. Implement this boundary condition for
a finite-volume ocean model. How would you calculate Tsea involved in
the flux in order to maintain second-order accuracy of the standard second
derivative within the ocean domain?

4.2. In some cases, particularly analytical and theoretical studies, the unknown
field can be assumed to be periodic in space. How can periodic bound-
ary conditions be implemented in a numerical one-dimensional model,
for which the discretization scheme uses one point on each side of every
calculation point? How would you adapt the scheme if the interior dis-
cretization needs two points on each side instead? Can you imagine what
the expression halo used in this context refers to?

4.3. How do you generalize periodic boundary conditions (see preceding prob-
lem) to two dimensions? Is there an efficient algorithmic scheme that
ensures periodicity without particular treatment of corner points? (Hint:
Think about a method/order of copying rows/columns that ensure proper
values in corners.)

4.4. Assume you implemented a Dirichlet condition for temperature along a
boundary on which a grid node exists but would like to diagnose the heat



Chapter | 4 Equations Governing Geophysical Flows 127

flux across the boundary. How would you determine the turbulent flux at
that point with third-order accuracy?

4.5. Models can be used on parallel machines by distributing work among
different processors. One of the possibilities is the so-called domain
decomposition in which each processor is dedicated to a portion of the
total domain. The model of each subdomain can be interpreted as an
open-boundary model. Assuming that the numerical scheme for a single
variable uses q points on each side of the local node, how would you subdi-
vide a one-dimensional domain into subdomains and design data exchange
between these subdomains to avoid the introduction of new errors? Can
you imagine the problems you are likely to encounter in two dimensions?
(Hint: Think how periodic boundary conditions were handled in the halo
approach of the preceding two problems.)

4.6. Develop a Matlab™ program to automatically calculate finite-difference
weighting coefficients ai for an arbitrary derivative of order p using l points
to the left and m points to the right of the point of interest:

dpũ

dtp

∣∣∣∣
tn

'a−lũ
n−l+·· ·+a−1ũn−1+a0ũn+a1ũn+1+·· ·+amũn+m.

(4.56)

The step is taken constant. Test your program on the fourth-order approx-
imation of the first derivative. (Hint: Construct the linear system to be
solved by observing that 1t should cancel out in all terms except for the
relevant derivative so that 1tpai can be chosen as the unknowns.)

4.7. Imagine that you perform a series of simulations of the same model
with time steps of 81t, 41t, 21t, and 1t. The numerical discretization
scheme is of order m. Which combination of the different solutions would
best approximate the exact solution, and what truncation order would the
combined solution have?

4.8. For a grid node placed on the boundary, show that using the value

T̃m=
2

3

(
−1x

qb

κT
− 1

2
T̃m−2+2T̃m−1

)
(4.57)

allows us to impose a flux condition at node m with second-order accuracy.
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Osborne Reynolds
1842–1912

Osborne Reynolds was taught mathematics and mechanics by his father. While
a teenager, he worked as an apprentice in the workshop of a mechanical engi-
neer and inventor, where he realized that mathematics was essential for the
explanation of certain mechanical phenomena. This motivated him to study
mathematics at Cambridge, where he brilliantly graduated in 1867. Later,
as a professor of engineering at the University of Manchester, his teaching
philosophy was to subject engineering to mathematical description while also
stressing the contribution of engineering to human welfare. His best known
work is that on fluid turbulence, famous for the idea of separating flow fluctua-
tions from the mean velocity and for his study of the transition from laminar to
turbulent flow, leading to the dimensionless ratio that now bears his name. He
made other significant contributions to lubrication, friction, heat transfer, and
hydraulic modeling. Books on fluid mechanics are peppered with the expres-
sions Reynolds number, Reynolds equations, Reynolds stress, and Reynolds
analogy. (Photo courtesy of Manchester School of Engineering)
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Carl-Gustaf Arvid Rossby
1898–1957

A Swedish meteorologist, Carl-Gustav Rossby is credited with most of the fun-
damental principles on which geophysical fluid dynamics rests. Among other
contributions, he left us the concepts of radius of deformation (Section 9.2),
planetary waves (Section 9.4), and geostrophic adjustment (Section 15.2). How-
ever, the dimensionless number that bears his name was first introduced by the
Soviet scientist I. A. Kibel’ in 1940.

Inspiring to young scientists, whose company he constantly sought, Rossby
viewed scientific research as an adventure and a challenge. His accomplish-
ments are marked by a broad scope and what he liked to call the heuristic
approach, that is, the search for a useful answer without unnecessary compli-
cations. During a number of years spent in the United States, he established
the meteorology departments at MIT and the University of Chicago. He later
returned to his native Sweden to become the director of the Institute of
Meteorology in Stockholm. (Photo courtesy of Harriet Woodcock)



Chapter 5

Diffusive Processes

ABSTRACT
All geophysical motions are diffusive because of turbulence. Here, we consider a
relatively crude way of representing turbulent diffusion, by means of an eddy diffusivity.
Although the theory is straightforward, numerical handling of diffusion terms requires
care, and the main objective of this chapter is to treat the related numerical issues, leading
to the fundamental concept of numerical stability.

5.1 ISOTROPIC, HOMOGENEOUS TURBULENCE

It was mentioned in Sections 3.4 and 3.5 that fluid properties such as heat, salt,
and humidity diffuse, that is, they are exchanged between neighboring particles.
In laminar flow, this is accomplished by random (so-called Brownian) motion
of the colliding molecules, but in large-scale geophysical systems, turbulent
eddies accomplish a similar effect far more efficiently. The situation is anal-
ogous to mixing milk in coffee or tea: Left alone, the milk diffuses very slowly
through the beverage, but the action of a stirrer generates turbulent eddies that
mix the two liquids far more effectively and create a homogeneous mixture in
a short time. The difference is that eddying in geophysical fluids is generally
not induced by a stirring mechanism but is self-generated by hydrodynamic
instabilities.

In Section 4.1, we introduced turbulent fluctuations without saying any-
thing specific about them; we now begin to elucidate some of their properties.
At a very basic level, turbulent motion can be interpreted as a population of
many eddies (vortices), of different sizes and strengths, embedded within one
another and forever changing, giving a random appearance to the flow (Fig. 5.1).
Two variables then play a fundamental role: d, the characteristic diameter of
the eddies and ů, their characteristic orbital velocity. Since the turbulent flow
consists of many eddies, of varying sizes and speeds, ů and d do not each
assume a single value but vary within a certain range. In stationary, homoge-
neous, and isotropic turbulence, that is, a turbulent flow that statistically appears
unchanging in time, uniform in space, and without preferential direction, all
eddies of a given size (same d) behave more or less in the same way and can be
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FIGURE 5.1 Drawing of a turbu-
lent flow by Leonardo da Vinci circa
1507–1509, who recognized that tur-
bulence involves a multitude of eddies
at various scales.
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ůmax
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FIGURE 5.2 Eddy orbital velocity versus eddy length scale in homogeneous and isotropic
turbulence. The largest eddies have the largest orbital velocity.

assumed to share the same characteristic velocity ů. In other words, we make
the assumption that ů is a function of d (Fig. 5.2).

5.1.1 Length and Velocity Scales

In the view of Kolmogorov (1941), turbulent motions span a wide range of
scales, from a macroscale at which the energy is supplied to a microscale at
which energy is dissipated by viscosity. The interaction among the eddies of
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FIGURE 5.3 The turbulent energy cascade. According to this theory, the energy fed by external
forces excites the largest possible eddies and is gradually passed to over smaller eddies, all the way
to a minimum scale where this energy is ultimately dissipated by viscosity.

various scales passes energy gradually from the larger eddies to the smaller
ones. This process is known as the turbulent energy cascade (Fig. 5.3).

If the state of turbulence is statistically steady (statistically unchanging tur-
bulence intensity), then the rate of energy transfer from one scale to the next
must be the same for all scales, so that no group of eddies sharing the same
scale sees its total energy level increase or decrease over time. It follows that
the rate at which energy is supplied at the largest possible scale (dmax) is equal to
that dissipated at the shortest scale (dmin). Let us denote by ε this rate of energy
supply/dissipation, per unit mass of fluid:

ε= energy supplied to fluid per unit mass and time

= energy cascading from scale to scale, per unit mass and time

= energy dissipated by viscosity, per unit mass and time.

The dimensions of ε are

[ε]= ML2T−2

MT
=L2T−3. (5.1)

With Kolmogorov, we further assume that the characteristics of the turbulent
eddies of scale d depend solely on d and on the energy cascade rate ε. This is
to say that the eddies know how large they are, at what rate energy is supplied
to them, and at what rate they must supply it to the next smaller eddies in the
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cascade. Mathematically, ů depends only on d and ε. Since [ů]=LT−1, [d]=L,
and [ε]=L2T−3, the only dimensionally acceptable possibility is

ů(d)=A(εd)1/3, (5.2)

in which A is a dimensionless constant.
Thus, the larger ε, the larger ů. This makes sense for a greater energy supply

to the system that generates stronger eddies. Equation (5.2) further tells us that
the smaller d, the weaker ů, and the implication is that the smallest eddies have
the lowest speeds, whereas the largest eddies have the highest speeds and thus
contribute most of the kinetic energy.

Typically, the largest possible eddies in the turbulent flow are those that
extend across the entire system, from boundary to opposite boundary, and
therefore

dmax=L, (5.3)

where L is the geometrical dimension of the system (such as the width of
the domain or the cubic root of its volume). In geophysical flows, there is a
noticeable scale disparity between the short vertical extent (depth, height) and
the long horizontal extent (distance, length) of the system. We must therefore
clearly distinguish eddies that rotate in the vertical plane (about a horizontal
axis) from those that rotate horizontally (about a vertical axis). The nearly two-
dimensional character of the latter gives rise to a special form of turbulence,
called geostrophic turbulence, which will be discussed in Section 18.3. In this
chapter, we restrict our attention to three-dimensional isotropic turbulence.

The shortest eddy scale is set by viscosity and can be defined as the length
scale at which molecular viscosity becomes dominant. Molecular viscosity,
denoted by ν, has dimensions1:

[ν] = L2T−1.

If we assume that dmin depends only on ε, the rate at which energy is supplied
to that scale, and on ν because these eddies feel viscosity, then the only
dimensionally acceptable relation is

dmin∼ν3/4ε−1/4. (5.4)

The quantity ν3/4ε−1/4, called the Kolmogorov scale, is typically on the order
of a few millimeters or shorter. We leave it to the reader to verify that at this
length scale, the corresponding Reynolds number is on the order of unity.

1Values for ambient air and water are νair=1.51×10−5 m2/s and νwater=1.01×10−6 m2/s.
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The span of length scales in a turbulent flow is related to its Reynolds num-
ber. Indeed, in terms of the largest velocity scale, which is the orbital velocity of
the largest eddies, U= ů(dmax)=A(εL)1/3, the energy supply/dissipation rate is

ε = U3

A3L
∼ U3

L
, (5.5)

and the length scale ratio can be expressed as

L

dmin
∼ L

ν3/4ε−1/4

∼ LU3/4

ν3/4L1/4

∼ Re3/4, (5.6)

where Re=UL/ν is the Reynolds number of the flow. As we could have
expected, a flow with a higher Reynolds number contains a broader range of
eddies.

5.1.2 Energy Spectrum

In turbulence theory, it is customary to consider the so-called power spectrum,
which is the distribution of kinetic energy per mass across the various length
scales. For this, we need to define a wavenumber. Because velocity reverses
across the diameter of an eddy, the eddy diameter should properly be considered
as half of the wavelength:

k = 2π

wavelength
= π

d
. (5.7)

The lowest and highest wavenumber values are kmin=π/L and kmax∼
ε1/4ν−3/4.

The kinetic energy E per mass of fluid has dimensions ML2T−2/M=L2T−2.
The portion dE contained in the eddies with wavenumbers ranging from k to
k+dk is defined as

dE=Ek(k)dk.

It follows that the dimension of Ek is L3T−2, and dimensional analysis
prescribes

Ek(k)=B ε2/3 k−5/3, (5.8)

where B is a second dimensionless constant. It can be related to A of Eq. (5.2)
because the integration of Ek(k) from kmin=π/L to kmax∼∞ is the total energy
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FIGURE 5.4 Longitudinal power
spectrum of turbulence calculated
from numerous observations taken
outdoors and in the laboratory.
(From Saddoughi and Veeravalli,
1994).

per mass in the system, which in good approximation is that contained in the
largest eddies, namely U2/2. Thus,

∞∫
kmin

Ek(k)dk= U2

2
, (5.9)

from which follows

3

2π2/3
B= 1

2
A2. (5.10)

The value of B has been determined experimentally and found to be about 1.5
(Pope, 2000, page 231). From this, we estimate A to be 1.45.

The −5/3 power law of the energy spectrum has been observed to hold
well in the inertial range, that is, for those intermediate eddy diameters that are
remote from both largest and shortest scales. Figure 5.4 shows the superposition
of a large number of longitudinal power spectra.2 The straight line where most
data overlap in the range 10−4< kν3/4/ε1/4<10−1 corresponds to the −5/3

2The longitudinal power spectrum is the spectrum of the kinetic energy associated with the velocity
component in the direction of the wavenumber.
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decay law predicted by the Kolmogorov turbulent cascade theory. The higher
the Reynolds number of the flow, the broader the span of wavenumbers over
which the −5/3 law holds. Several crosses visible at the top of the plot, which
extend from a set of crosses buried in the accumulation of data below, corre-
spond to data in a tidal channel (Grant, Stewart & Moilliet, 1962) for which the
Reynolds number was the highest.

There is, however, some controversy over the−5/3 power law for Ek. Some
investigators (Long, 1997, 2003; Saffman, 1968) have proposed alternative
theories that predict a −2 power law.

5.2 TURBULENT DIFFUSION

Our concern here is not to pursue the study of turbulence but to arrive at a
heuristic way to represent the dispersive effect of turbulence on those scales too
short to be resolved in a numerical model.

Turbulent diffusion or dispersion is the process by which a substance is
moved from one place to another under the action of random turbulent fluctua-
tions in the flow. Given the complex nature of these fluctuations, it is impossible
to describe the dispersion process in an exact manner but some general remarks
can be made that lead to a useful parameterization.

Consider the two adjacent cells of Fig. 5.5 exchanging fluid between each
other. The fluid in the left cell contains a concentration (mass per volume) c1
of some substance, whereas the fluid in the right cell contains a different con-
centration c2. Think of c1 being less than c2, although this does not necessarily
have to be the case. Further assume, in order to focus exclusively on diffusion,
that there is no net flow from one cell to the other but that the only exchange
velocity is due to a single eddy moving fluid at velocity ů on one flank and at
velocity −ů on its opposite flank. The amount of substance carried per unit area
perpendicular to the x-axis and per time, called the flux, is equal to the product
of the concentration and the velocity, c1ů from left to right and c2ů in the oppo-
site direction. The net flux q in the x-direction is the flux from 1 to 2 minus the
flux from 2 to 1:

q = c1 ů − c2 ů

=−ů 1c,

Cell 1 Cell 2

ů

ů

x

c2c1

�x

FIGURE 5.5 Exchange between two adjacent
cells illustrating turbulent diffusion. Because
of the difference between concentrations, the
exchange between cells is uneven. The cell with
the least concentration loses less than it receives.
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where1c= c2−c1 is the concentration difference. Multiplying and dividing by
the distance 1x between cell centers, we may write:

q=−(ů1x)
1c

1x
.

When considering the variation of c over larger scales, those for which the eddy-
size 1x appears to be small, we may approximate the previous equation to

q=−D
dc

dx
, (5.11)

where D is equal to the product ů1x and is called the turbulent diffusion
coefficient or diffusivity. Its dimension is [D]=L2T−1.

The diffusive flux is proportional to the gradient of the concentration of
the substance. In retrospect, this makes sense; if there were no difference
in concentrations between cells, the flux from one into the other would be
exactly compensated by the flux in the opposite direction. It is the concentration
difference (the gradient) that matters.

Diffusion is “down-gradient,” that is, the transport is from high to low con-
centrations, just as heat conduction moves heat from the warmer side to the
colder side. (In the preceding example with c1< c2, q is negative, and the net
flux is from cell 2 to cell 1.) This implies that the concentration increases on
the low side and decreases on the high side, and the two concentrations grad-
ually become closer to each other. Once they are equal (dc/dx=0), diffusion
stops, although turbulent fluctuations never do. Diffusion acts to homogenize
the substance across the system.

The pace at which diffusion proceeds depends critically on the value of
the diffusion coefficient D. This coefficient is inherently the product of two
quantities, a velocity (ů) and a length scale (1x), representing respectively the
magnitude of fluctuating motions and their range. Since the numerical model
resolves scales down to the grid scale 1x, the turbulent diffusion that remains
to represent is that due to the all shorter scales, starting with d=1x. As seen in
the previous section, for shorter scales, d correspond to slower eddy velocities ů
and thus lower diffusivities. It follows that diffusion is chiefly accomplished by
eddies at the largest unresolved scale, 1x, because these generate the greatest
value of ů1x:

D= ů(1x)1x

= A ε1/31x4/3. (5.12)

The manner by which the dissipation rate ε is related to local flow characteri-
stics, such as a velocity gradient, opens the way to a multitude of possible
parameterizations.
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FIGURE 5.6 An infinitesimal piece of
fluid for the local budget of a substance
of concentration c in the fluid.

The preceding considerations in one dimension were generic in the sense
that the direction x could stand for any of the three directions of space, x, y,
or z. Because of the typical disparity in mesh size between the horizontal and
vertical directions in GFD models (1x≈1y�1z), care must be taken to use
two distinct diffusivities, which we denote A for the horizontal directions and
κ for the vertical direction.3 While κ must be constructed from the length scale
1z, A must be formed from a length scale that is hybrid between 1x and 1y.
The Smagorinsky formulation presented in (4.10) is a good example.

The components of the three-dimensional flux vector are

qx =−A
∂c

∂x
(5.13a)

qy =−A
∂c

∂y
(5.13b)

qz =−κ
∂c

∂z
. (5.13c)

And, we are in a position to write a budget for the concentration c(x,y,z, t) of
the substance in the flow, by taking an elementary volume of fluid of size dx,
dy, and dz, as illustrated in Fig. 5.6. The net import in the x-direction is the
difference in x-fluxes times the area dy dz they cross, that is, [qx(x,y,z)−qx(x+
dx,y,z)] dy dz, and similarly in the y-and z-directions. The net import from all
directions is then

Net import in dx dy dz= [qx(x,y,z)−qx(x+dx,y,z)] dy dz

+ [qy(x,y,z)−qy(x,y+dy,z)] dx dz

+ [qz(x,y,z)−qz(x,y,z+dz)] dx dy,

3GFD models generally use the same horizontal diffusivity for all variables, including momentum
and density—see (4.21)—but distinguish between various diffusivities in the vertical.
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on a per-time basis. This net import contributes to increasing the amount
c dx dy dz inside the volume:

d

dt
(c dx dy dz) = Net import.

In the limit of an infinitesimal volume (vanishing dx, dy and dz), we have

∂c

∂t
=−∂qx

∂x
− ∂qy

∂y
− ∂qz

∂z
, (5.14)

and, after replacement of the flux components by their expressions (5.13),

∂c

∂t
= ∂

∂x

(
A
∂c

∂x

)
+ ∂

∂y

(
A
∂c

∂y

)
+ ∂

∂z

(
κ
∂c

∂z

)
, (5.15)

where A and κ are, respectively, the horizontal and vertical eddy diffusivities.
Note the similarity with the dissipation terms in the momentum and energy
equations (4.21) of the previous chapter.

For a comprehensive exposition of diffusion and some of its applications,
the reader is referred to Ito (1992) and Okubo and Levin (2002).

5.3 ONE-DIMENSIONAL NUMERICAL SCHEME

We now illustrate discretization methods for the diffusion equation and begin
with a protypical one-dimensional system, representing a horizontally homoge-
neous piece of ocean or atmosphere, containing a certain substance, such as a
pollutant or tracer, which is not exchanged across either bottom or top bound-
aries. To simplify the analysis further, we begin by taking the vertical diffusivity
κ as constant until further notice. We then have to solve the following equation:

∂c

∂t
=κ ∂

2c

∂z2
, (5.16)

with no-flux boundary conditions at both bottom and top:

qz=−κ
∂c

∂z
=0 at z=0 and z=h, (5.17)

where h is the thickness of the domain.
To complete the problem, we also prescribe an initial condition. Suppose

for now that this initial condition is a constant C0 plus a cosine function of
amplitude C1 (C1≤C0):

c(z, t=0)=C0+C1 cos
(

jπ
z

h

)
, (5.18)
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with j being an integer. Then, it is easily verified that

c=C0+C1 cos
(

jπ
z

h

)
exp

(
−j2π2 κt

h2

)
(5.19)

satisfies the partial differential equation (5.16), both boundary conditions (5.17),
and initial condition (5.18). It is thus the exact solution of the problem. As we
can expect from the dissipative nature of diffusion, this solution represents a
temporal attenuation of the nonuniform portion of c, which is more rapid under
stronger diffusion (greater κ) and shorter scales (higher j).

Let us now design a numerical method to solve the problem and check its
solution against the preceding, exact solution. First, we discretize the spatial
derivative by applying a standard finite-difference technique. With a Neumann
boundary condition applied at each end, we locate the end grid points not at,
but surrounding the boundaries (see Section 4.7) and place the grid nodes at the
following locations:

zk=
(
k− 3

2

)
1z for k=1, 2, . . . , m, (5.20)

with1z=h/(m−2) so that we use m grid points, among which the first and last
are ghost points lying a distance 1z/2 beyond the boundaries (Fig. 5.7).

k � m

k � 3

k � 2

k � 1

k � m − 1

h

k

�z

cm−1˜

c3˜

c2˜

c

FIGURE 5.7 Gridding of a vertical domain with m nodes, of which the first and last lie beyond
the bottom and top boundaries, respectively. Such points are called ghost points. With m nodes
and m−1 intervals between nodes among which two are only half long, it follows that (m−2)
segments cover the domain, and the grid spacing is thus1z=h/(m−2). Neumann conditions (zero
derivatives) at both boundaries are implemented by assigning the values c̃1= c̃2 and c̃m= c̃m−1
to the end points, which implies zero derivatives in the middle of the first and last intervals. The
calculations using the discretized form of the equation then proceed from k=2 to k=m−1.
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Discretizing the second spatial derivative with a three-point centered scheme
and before performing time discretization, we have

dc̃k

dt
= κ

1z2 (c̃k+1−2c̃k+ c̃k−1) for k=2, . . . , m−1. (5.21)

We thus have m−2 ordinary, coupled, differential equations for the m−2
unknown time dependent functions c̃k. We can determine the numerical error
introduced in this semidiscrete set of equations by trying a solution similar to
the exact solution:

c̃k=C0+C1 cos
(

jπ
zk

h

)
a(t). (5.22)

Trigonometric formulas provide the following equation for the temporal evolu-
tion of the amplitude a(t):

da

dt
=−4a

κ

1z2
sin2φ with φ= jπ

1z

2h
, (5.23)

of which the solution is

a(t)= exp

(
−4sin2φ

κt

1z2

)
. (5.24)

With this spatial discretization, we thus obtain an exponential decrease of
amplitude a, like in the exact equation (5.19) but with a different damping rate.
The ratio τ of the numerical damping rate 4κ sin2φ/1z2 to the true damping rate
j2π2κ/h2 is τ =φ−2 sin2φ. For small 1z compared with the length scale h/j of
the c distribution, φ is small, and the correct damping is nearly obtained with the
semidiscrete numerical scheme. Nothing anomalous is therefore expected from
the approach thus far as long as the discretization of the domain is sufficiently
dense to capture adequately the spatial variations in c. Also, the boundary condi-
tions cause no problem because the mathematical requirement of one boundary
condition on each side of the domain matches exactly what we need to cal-
culate the discrete values c̃k for k=2, . . . ,m−1. An initial condition is also
needed at each node to start the time integration. This is all consistent with the
mathematical problem.

We now proceed with the time discretization. First, let us try the simplest of
all methods, the explicit Euler scheme:

c̃n+1
k − c̃n

k

1t
= κ

1z2

(
c̃n

k+1−2c̃n
k+ c̃n

k−1

)
for k=2, . . . ,m−1 (5.25)

in which n≥1 stands for the time level. For convenience, we define a dimen-
sionless number that will play a central role in the discretization and solution:

D= κ1t

1z2
. (5.26)
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FIGURE 5.8 Initialized for each grid point, algorithm (5.27) advances the value at node k to the
next time step (from n to n+1) using the previous values on stencil spanning points k−1, k, and
k+1. A boundary condition is thus needed on each side of the domain, as the original mathematical
problem requires. The calculations for the discretized governing equations proceed from k=2 to
k=m−1.

This definition allows us to write the discretized equation more conveniently as

c̃n+1
k = c̃n

k+D
(
c̃n

k+1−2c̃n
k+ c̃n

k−1

)
for k=2, . . . ,m−1. (5.27)

The scheme updates the discrete c̃k values from their initial values and with
the aforementioned boundary conditions (Fig. 5.8). Obviously, the algorithm is
easily programmed (e.g., firstdiffusion.m) and can be tested rapidly.

For simplicity, we start with a gentle profile ( j=1, half a wavelength across
the domain) and, equipped with our insight in scale analysis, we use a suffi-
ciently small grid spacing 1z�h to resolve the cosine function well. To be
sure, we take 20 grid points. For the time scale T of the physical process, we
use the scale provided by the original equation:

∂c

∂t
=κ ∂

2c

∂z2

1c

T
κ
1c

h2

to find T=h2/κ . Dividing this time scale in 20 steps, we take 1t=T/20=
h2/(20κ) and begin to march algorithm (5.27) forward.

Surprisingly, it is not working. After only 20 time steps, the c̃k values do
not show attenuation but have instead increased by a factor 1020! Furthermore,
increasing the spatial resolution to 100 points and reducing the time step propor-
tionally does not help but worsens the situation (Fig. 5.9). Yet, there has been
no programming error in firstdiffusion.m. The problem is more serious:
We have stumbled on a crucial aspect of numerical integration, by falling prey
to numerical instability. The symptoms of numerical instability are explosive
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FIGURE 5.9 Profile of c̃ after 20 time steps of the Euler scheme (5.27). Left panel: 20 grid points
and 1t=T/20. Right panel: 100 grid points and 1t=T/100. Note the vast difference in values
between the two solutions (1021 and 1036, respectively), the second solution being much more
explosive than the first. Conclusion: Increasing resolution worsens the problem.

behavior and worsening of the problem with increased spatial resolution. At
best, the scheme is used outside of a certain domain of validity or, at worst, it is
hopeless and in need of replacement by a better, stable scheme. What makes
a scheme stable and another unstable is the objective of numerical stability
analysis.

5.4 NUMERICAL STABILITY ANALYSIS

The most widely used method to investigate the stability of a given numeri-
cal scheme is due to John von Neumann.4 The basic idea of the method is
to consider the temporal evolution of simple numerical solutions. As contin-
uous signals and distributions can be expressed as Fourier series of sines and
cosines, discrete functions can, too, be decomposed in elementary functions. If
one or several of these elementary functions increase without bound over time
(“explode”), the reconstructed solution, too, will increase without bound, and
the scheme is unstable. Put the other way: A scheme is stable if none among all
elementary functions grows without bound over time.

As for Fourier series and simple wave propagation, the elementary functions
are periodic. In analogy with the continuous function

c(z, t)=Aei(kzz−ωt), (5.28)

we use the discrete function c̃n
k formed by replacing z by k1z and t by n1t:

c̃n
k=Aei(kz k1z−ω n1t), (5.29)

4See biography at the end of this chapter.
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where kz is a vertical wavenumber and ω a frequency. To consider periodic
behavior in space and possibly explosive behavior in time, kz is restricted to
be real positive, whereas ω=ωr+ iωi may be complex. Growth without bound
occurs if ωi>0. (If ωi<0, the function decreases exponentially and raises no
concern). The origins of z and t do not matter, for they can be adjusted by
changing the complex amplitude A.

The range of kz values is restricted. The lowest value is kz=0, correspond-
ing to the constant component in Eq. (5.22). At the other extreme, the shortest
wave is the “21x mode” or “saw-tooth” (+1,−1,+1,−1, etc.) with kz=π/1z.
It is most often with this last value that trouble occurs, as seen in the rapidly
oscillating values generated by the ill-fated Euler scheme (Fig. 5.9) and, earlier,
aliasing (Section 1.12).

The elementary function, or trial solution, can be recast in the following
form to distinguish the temporal growth (or decay) from the propagating part:

c̃n
k=Ae+ωi1t nei(kz1zk−ωr1t n). (5.30)

An alternative way of expressing the elementary function is by introducing a
complex number % called the amplification factor such that

c̃n
k=A%n ei(kz1z)k (5.31a)

%=|%|ei arg(%) (5.31b)

ωi=
1

1t
ln |%|, ωr=−

1

1t
arg(%). (5.31c)

The choice of expression among Eqs. (5.29), (5.30), and (5.31a) is a matter of
ease and convencience.

Stability requires a nongrowing numerical solution, with ωi≤0 or equiva-
lently |%|≤1. Allowing for physical exponential growth—such as the growth
of a physically unstable wave—we should entertain the possibility that c(t)may
grow as exp(ωit), in which case c(t+1t)= c(t)exp(ωi1t)= c(t)[1+O(1t)]
and %=1+O(1t). In other words, instead of |%|≤1, we should adopt the
slightly less demanding criterion

|%|≤1+O(1t). (5.32)

Since there is no exponential growth associated with diffusion, the criterion
|%|≤1 applies here.

We can now try Eq. (5.31a) as a solution of the discretized diffusion equa-
tion (5.27). After division by the factor A%n exp[i(kz1z)k] common to all terms,
the discretized equation reduces to

%=1+D
[
e+ikz1z−2+e−ikz1z

]
, (5.33)
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which is satisfied when the amplification factor equals

%=1−2D[1−cos(kz1z)]

=1−4Dsin2
(

kz1z

2

)
. (5.34)

Since in this case % happens to be real, the stability criterion stipulates−1≤
%≤1, that is, 4Dsin2(kz1z/2)≤2, for all possible kz values. The most danger-
ous value of kz is the one that makes sin2(kz1z/2)=1, which is kz=π/1z, the
wavenumber of the saw-tooth mode. For this mode, % violates −1≤% unless

D = κ1t

1z2
≤ 1

2
. (5.35)

In other words, the Euler scheme is stable only if the time step is shorter than
1z2/(2κ). We are in the presence of conditional stability, and Eq. (5.35) is
called the stability condition of the scheme.

Generally, criterion (5.35) or a similar one in another case is neither nec-
essary nor sufficient since it neglects any effect due to boundary conditions,
which can either stabilize an unstable mode or destabilize a stable one. In most
situations, however, the criterion obtained by this method turns out to be a nec-
essary condition since it is unlikely that in the middle of the domain, boundaries
could stabilize an unstable solution, especially the shorter waves that are most
prone to instability. On the other hand, boundaries can occasionally destabilize
a stable mode in their vicinity. For the preceding scheme applied to the diffu-
sion equation, this is not the case, and criterion (5.35) is both necessary and
sufficient.

In addition to stability information, the amplification-factor method also
enables a comparison between a numerical property and its physical counter-
part. In the case of the diffusion equation, it is the damping rate, but, should the
initial equation have described wave propagation, it would have been the dis-
persion relation. The general solution (5.19) of the exact equation (5.16) leads
to the relation

ωi=−κ k2
z , (5.36)

which we can compare with the numerical damping rate

ω̃i=
1

1t
ln |%|

= 1

1t
ln

∣∣∣∣1−4Dsin2
(

kz1z

2

)∣∣∣∣ . (5.37)
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The ratio τ of the numerical damping to the actual damping rate is then given by

τ = ω̃i

ωi
=− ln |1−4Dsin2(kz1z/2)|

Dk2
z1z2

, (5.38)

which for small kz1z, that is, numerically well-resolved modes, behaves as

τ =1+
(

2D− 1

3

)(
kz1z

2

)2

+O
(

k4
z1z4

)
. (5.39)

For D<1/6, the numerical scheme dampens less fast than the physical pro-
cess (τ <1), whereas for larger values 1/6<D<1/2 (i.e., relatively large but
still stable time steps), overdamping occurs (τ >1). In practice, when D>1/4
(leading to %<0 for the higher kz values), this overdamping can be unrealisti-
cally large and unphysical. The shortest wave resolved by the spatial grid with
kz1z=π exhibits not only a saw-tooth pattern in space (as it should) but also
a flip-flop behavior in time. This is because, for real negative %, the sequence
%1, %2, %3, . . . alternates in sign. For −1<%<0, the solution vanishes not by
monotonically decreasing toward zero but instead by oscillating around zero.
Though the scheme is stable, the numerical solution behaves unlike the exact
solution, and this should be avoided. It is therefore prudent to keep D≤1/4 to
guarantee a realistic solution.

Let us now give a physical interpretation of the stability condition 21t≤
1z2/κ . First, we observe that the instability appears most strongly for the com-
ponent with the largest wavenumber according to Eq. (5.34). Since the length
scale of this signal is 1z, the associated diffusion time scale is 1z2/κ , and the
stability criterion expresses the requirement that 1t be set shorter than a frac-
tion of this time scale. It is equivalent to ensuring that the time step provides an
adequate representation of the shortest component resolved by the spatial grid.
Even when this shortest component is absent from the mathematical solution
(in our initial problem only a single length scale, h, was present), it does occur
in the numerical solution because of computer round-off errors, and stability is
thus conditioned by the possible presence of the shortest resolved component.
The stability condition ensures that all possible solution components are treated
with an adequate time step.

As the preceding simple example shows, the amplification-factor method
is easily applied and provides a stability condition, as well as other properties
of the numerical solution. In practice, however, nonconstant coefficients (such
as a spatially variable diffusivity κ) or nonuniform spacing of grid points may
render its application difficult. Since nonuniform grids may be interpreted as a
coordinate transformation, stretching and compressing grid node positions (see
also Section 20.6.1), a nonuniform grid is equivalent to introducing nonconstant
coefficients into the equation. The procedure is to “freeze” the coefficients at
some value before applying the amplification-factor method and then repeat



148 PART | I Fundamentals

the analysis with different frozen values within the allotted ranges. Generally,
this provides quite accurate estimates of permissible time steps. For nonlinear
problems, the approach is to perform a preliminary linearization of the equation,
but the quality of the stability condition is not always reliable. Finally, it is
important to remember that the amplification-factor method does not deal with
boundary conditions. To treat accurately cases with variable coefficients and
nonuniform grids and to take boundary conditions into account, the so-called
matrix method is available (e.g., Kreiss, 1962; Richtmyer & Morton, 1967).

We now have some tools to guarantee stability. Since our diffusion scheme
is also consistent, we anticipate convergence by virtue of the Lax–Richtmyer
Theorem (see Section 2.7). Let us then verify numerically whether the scheme
leads to a linear decrease of the error with decreasing time step. Leaning on the
exact solution (5.19) for comparison, we observe (Fig. 5.10) that the numerical
solution does indeed exhibit a decrease of the error with decreasing time step,
but only up to a point (for D decreasing from the stability limit of 0.5 to 1/6).
The error increases again for smaller 1t. What happens?

The fact is that two sources of errors (space and time discretization) are
simultaneously present and what we are measuring is the sum of these errors,
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FIGURE 5.10 Root mean square of error c− c̃ scaled by the initial variation 1c at time T=h2/κ

for a fixed space grid (m=50) and decreasing time step (going from right to left). Above D=1/2,
the scheme is unstable and the error is extremely large (not plotted). For shorter time steps, the
scheme is stable and the error first decreases linearly with D. Below D=1/6=0.167, the error
increases again.
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FIGURE 5.11 Different paths to convergence in the (1z2, 1t) plane for the explicit scheme. For
excessive values of 1t, D≥1/2, the scheme is unstable. Convergence can only be obtained by
remaining within the stability region. When 1t alone is reduced (progressing vertically downward
in the graph), the error decreases and then increases again. If 1z alone is decreased (progressing
horizontally to the left in the graph), the error similarly decreases first and then increases, until the
scheme becomes unstable. Reducing both 1t and 1z simultaneously at fixed D within the stability
sector leads to monotonic convergence. The convergence rate is highest along the line D=1/6
because the scheme then happens to be fourth-order accurate.

not the temporal error in isolation. This can be shown by looking at the modified
equation obtained by using a Taylor-series expansion of discrete values c̃n

k+1 etc.
around c̃n

k in the difference equation (5.21). Some algebra leads to

∂ c̃

∂t
=κ ∂

2c̃

∂z2
+ κ1z2 (1−6D)

12

∂4c̃

∂z4
+O

(
1t2,1z4,1t1z2

)
, (5.40)

which shows that the scheme is of first order in time (through D) and second
order in space. The rebounding error exhibited in Fig. 5.10 when1t is gradually
reduced (changing D alone) is readily explained in view of Eq. (5.40).

To check on convergence, we should consider the case when both parame-
ters 1t and 1z are reduced simultaneously (Fig. 5.11). This is most naturally
performed by keeping fixed the stability parameter D, which is a combination
of both according to Eq. (5.26). The leading error (second term on the right)
decreases as 1z2, except when D=1/6 in which case the scheme is then of
fourth order. It can be shown5 that in that case the error is on the order of 1z4.

5To show this, consider that for D=1/6, 1t=1z2/6κ and all contributions to the error term
become proportional to 1z4.
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This is consistent with Eq. (5.39), where the least error on the damping rate is
obtained with 2D=1/3, that is, D=1/6, and with Fig. 5.10, where the error for
fixed 1z is smallest when the time step corresponds to D=1/6.

5.5 OTHER ONE-DIMENSIONAL SCHEMES

A disadvantage of the simple scheme (5.25) is its fast increase in cost when a
higher spatial resolution is sought. For stability reasons 1t decreases as 1z2,
forcing us to calculate values at not only more grid points but also more fre-
quently. For integration over a fixed length of time, the number of calculations
grows as m3. In other words, 1000 times more calculations must be performed
if the grid size is divided by 10. Because this penalizing increase is rooted in
the stability condition, it is imperative to explore other schemes that may have
more attractive stability conditions. One such avenue is to consider implicit
schemes. With a fully implicit scheme, the new values are used in the discretized
derivative, and the algorithm is

c̃n+1
k = c̃n

k+D
(

c̃n+1
k+1−2c̃n+1

k + c̃n+1
k−1

)
k=2, . . . ,m−1. (5.41)

The application of the stability analysis provides an amplification factor % given
implicitly by

%=1−%2D [1−cos(kz1z)] ,

of which the solution is

%= 1

1+4Dsin2(kz1z/2)
≤1. (5.42)

Because this amplification factor is always real and less than unity, there
is no stability condition to be met, and the scheme is stable for any time step.
This is called unconditional stability. The implicit scheme therefore allows us
in principle to use a time step as large as we wish. We immediately sense, of
course, that a large time step cannot be acceptable. Should the time step be
too large, the calculated values would not “explode” but would provide a very
inaccurate approximation to the true solution. This is confirmed by comparing
the damping of the numerical scheme against its true value:

τ = ω̃i

ωi
= ln |1+4D sin2(kz1z/2)|

4D(kz1z/2)2
. (5.43)

For small D, the scheme behaves reasonably well, but for larger D, even for
scales ten times larger than the grid spacing, the error on the damping rate is
similar to the damping rate itself (Fig. 5.12).

Setting aside the accuracy restriction, we still have another obstacle to over-
come. To calculate the left-hand side of Eq. (5.41) at grid node k, we have to
know the values of the still unknown c̃n+1

k+1 and c̃n+1
k−1 , which in turn depend on the
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FIGURE 5.12 Ratio τ = ω̃i/ωi of the numerical damping rate of the implicit scheme to the
exact value, as function of kz1z/2 for different values of D. For increasing time steps (increasing
value of D), the numerical damping deteriorates rapidly even for relatively well-resolved solution
components, and it is prudent to use a short time step, if not for stability, at least for accuracy.

unknown values at their adjacent nodes. This creates a circular dependency. It
is, however, a linear dependency, and all we need to do is to formulate the prob-
lem as a set of simultaneous linear equations, that is, to frame the problem as a
matrix to be inverted, once at each time step. Standard numerical techniques
are available for such problem, most of them based on the so-called Gaus-
sian elimination or lower-upper decomposition (e.g., Riley, Hobson & Bence,
1977). These methods are the most efficient ones for inverting arbitrary matrices
of dimension N, and their computational cost increases as N3. For the one-
dimensional case with N∼m, the matrix inversion requires m3 operations to
be performed.6 Even if we executed only a single time step, the cost would be
the same as for the execution of the explicit scheme during the full simulation.
We may wonder: Is there some law of conservation of difficulty? Apparently
there is, but we can exploit the particular form of the system to reduce the cost.

6If we anticipate generalization to three dimensions with N∼106−107 unknowns, a matrix inver-
sion would demand a number of operations proportional to N3 (at each time step!) and cannot be
seriously considered as a viable approach.
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Since the unknown value at one node depends on only the unknown values
at the adjacent nodes and not those further away, the matrix of the system is not
full but contains many zeros. All elements are zero except those on the diagonal
and those immediately above (corresponding to one neighbor) and immedi-
ately below (corresponding to the neighbor on the other side). Such tridiagonal
matrix, or banded matrix, is quite common, and techniques have been devel-
oped for their efficient inversion. The cost of inversion can be reduced to only
5m operations.7 This is comparable to the number of operations for one step of
the explicit scheme. And, since the implicit scheme can be run with a longer
time step, it can be more efficient than the explicit scheme. A trade-off exists,
however, between efficiency and accuracy.

An alternative time stepping is the leapfrog method, which “leaps” over the
intermediate values, that is, the solution is marched from step n−1 to step n+1
by using the values at intermediate step n for the terms on the right-hand side of
the equation. Applied to the diffusion equation, the leapfrog scheme generates
the following algorithm:

c̃n+1
k = c̃n−1

k +2D
(
c̃n

k+1−2c̃n
k+ c̃n

k−1

)
. (5.44)

where D=κ1t/1z2 once again.
Because by the time values at time level n+1 are sought all values up to

time level n are already known, this algorithm is explicit and does not require
any matrix inversion. We can analyze its stability by considering, as before, a
single Fourier mode of the type (5.29). The usual substitution into the discrete
equation, this time (5.44), application of trigonometric formulas, and division by
the Fourier mode itself then lead to the following equation for the amplification
factor % of the leapfrog scheme:

%= 1

%
−8Dsin2

(
kz1z

2

)
. (5.45)

This equation is quadratic and has therefore two solutions for %, corresponding
to two temporal modes. Only a single mode was expected because the original
equation had only a first-order time derivative in time, but obviously, the scheme
has introduced a second, spurious mode. With b=4Dsin2(kz1z/2), the two
solutions are

%=−b±
√

b2+1. (5.46)

The physical mode is %=−b+
√

b2+1 because for well- resolved components
(kz1z�1 and thus b�1) it is approximately %'1−b'1−Dk2

z1z2, as it
should be [see Eq. (5.34)]. Its value is always less than one, and the physical

7See Appendix C for the formulation of the algorithm.
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mode is numerically stable. The other solution, %=−b−
√

b2+1, corresponds
to the spurious mode and, unfortunately, has a magnitude always larger than one,
jeopardizing the overall stability of the scheme. This is an example of uncon-
ditional instability. Note, however, that although unstable in the diffusion case,
the leapfrog scheme will be found to be stable when applied to other equations.

The spurious mode causes numerical instability and must therefore be sup-
pressed. One basic method is filtering (see Section 10.6) Because numerical
instability is manifested by flip-flop in time (due to the negative % value), aver-
aging over two consecutive time steps or taking some kind of running average,
called filtering, eliminates the flip-flop mode. Filtering, unfortunately, also alters
the physical mode, and, as a rule, it is always prudent not to have a large flip-flop
mode in the first place. Its elimination should be done a priori, not a posteriori.
In the case of models using leapfrog for the sake of other terms in the equation,
such as advection terms which it handles in a stable manner, the diffusion term
is generally discretized at time level n−1 rather than n, rendering the scheme
as far as the diffusion part is concerned equivalent to the explicit Euler scheme
with time step of 21t.

Finally, we can illustrate the finite-volume technique in the more general case
of nonuniform diffusion and variable grid spacing. In analogy with Eq. (3.35),
we integrate the diffusion equation over an interval between two consecu-
tive cell boundaries and over one time step to obtain the grid-cell averages c̄
(Fig. 5.13)

c̄n+1
k − c̄n

k

1tn
+ q̂k+1/2− q̂k−1/2

1zk
=0, (5.47)

assuming that the time-averaged flux at the interface between cells

q̂= 1

1tn

tn+1∫
tn

−κ ∂c

∂z
dt (5.48)

is somehow known. Up to this point, the equations are exact. The variable c
appearing in the expression of the flux is the actual function, including all its
subgrid-scale variations, whereas Eq. (5.47) deals only with space-time aver-
ages. Discretization enters the formulation as we relate the time-averaged flux

ck−1˜

zk−1
zk−1/2

k−1/2

zk+1/2

k+1/2

zk+1zk
z

ck+1˜ck˜

�zk
FIGURE 5.13 Arrangement of cells
and interfaces for the finite-volume
technique. Concentration values are
defined at cell centers, whereas flux
values are defined between cells. Cell
lengths do not have to be uniform.
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to the space-averaged function c̄ to close the problem. We can, for example,
estimate the flux using a factor α of implicitness and a gradient approximation:

q̂k−1/2 ' −(1−α) κk−1/2

c̃n
k− c̃n

k−1

zk−zk−1
−α κk−1/2

c̃n+1
k − c̃n+1

k−1

zk−zk−1
, (5.49)

where c̃ is now interpreted as the numerical estimate of the spatial averages. The
numerical scheme reads

c̃n+1
k = c̃n

k + (1−α)
κk+1/21tn
1zk

c̃n
k+1− c̃n

k

zk+1−zk
−(1−α)κk−1/21tn

1zk

c̃n
k− c̃n

k−1

zk−zk−1

+ α κk+1/21tn
1zk

c̃n+1
k+1− c̃n+1

k

zk+1−zk
−α κk−1/21tn

1zk

c̃n+1
k − c̃n+1

k−1

zk−zk−1
. (5.50)

With uniform grid spacing, κ constant, and α=0, we recover Eq. (5.25).
Since the present finite-volume scheme is by construction conservative (see
Section 3.9), we have incidentally proven that (5.25) is conservative in the
case of a uniform grid and constant diffusivity, a property that can be verified
numerically with firstdiffusion.m even in the unstable case.

In practice, it is expedient to program the calculations with the flux values
defined and stored alongside the concentration values. The computations then
entail two stages in every step: first the computation of the flux values from the
concentration values at the same time level and then the updation of the concen-
tration values from these most recent flux values. In this manner, it is clear how
to take into account variable parameters such as the local value of the diffusiv-
ity κ (at cell edges rather than at cell centers), local cell length, and momentary
time step. The approach is also naturally suited for the implementation of flux
boundary conditions.

5.6 MULTI-DIMENSIONAL NUMERICAL SCHEMES

Explicit schemes are readily generalized to two and three dimensions8 with
indices i, j, and k being grid positions in the respective directions x, y, and z:

c̃n+1= c̃n + A1t

1x2

(
c̃n

i+1−2c̃n+ c̃n
i−1

)
+ A1t

1y2

(
c̃n

j+1−2c̃n+ c̃n
j−1

)
+ κ1t

1z2

(
c̃n

k+1−2c̃n+ c̃n
k−1

)
. (5.51)

8In order not to overload the notation, indices are written here only if they differ from the local grid
point index. Therefore, c̃(tn,xi,yj,zk) is written c̃n, whereas c̃n

j+1 stands for c̃(tn,xi,yj+1,zk).
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The stability condition is readily obtained by using the amplification-factor
analysis. Substituting the Fourier mode

c̃n=A%nei(i kx1x)ei( j ky1y)ei(k kz1z) (5.52)

in the discrete equation, we obtain the following generalization of Eq. (5.35):

A1t

1x2
+A1t

1y2
+ κ1t

1z2
≤ 1

2
. (5.53)

The implicit formulation of the scheme is not much more complicated and
is, again, unconditionally stable. The associated matrix, however, is no longer
tridiagonal but has a slightly more complicated structure (Fig. 5.14). Unfortu-
nately, there exists no direct solver for which the cost remains proportional to
the size of the problem. Several strategies can be developed to keep the method
“implicit” with affordable costs.

In any case, a direct solver is in some way an overkill. It inverts the matrix
exactly up to rounding errors, and such precision is not necessary in view of
the much larger errors associated with the discretization (see Section 4.8). We
can therefore afford to invert the matrix only approximately, and this can be
accomplished by the use of iterative methods, which deliver solutions to any
degree of approximation depending on the number of iterations performed. A
small number of iterations usually yields an acceptable solution because the
starting guess values may be taken as the values computed at the preceding
time step. Two popular iterative solvers of linear systems are the Gauss–Seidel
method and the Jacobi method, but there exist many other iterative solvers, more
or less optimized for different kinds of problems and computers (e.g., Dongarra,
Duffy, Sorensen & van der Vorst, 1998). In general, most software libraries offer

0
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m m
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FIGURE 5.14 If the numerical state vector is constructed row by row in two dimensions, c̃i,j is
the element ( j−1)m+ i of x. Since the diffusion operator at point i, j involves c̃i,j, c̃i+1,j, c̃i−1,j,
c̃i,j−1, and c̃i,j+1, the matrix to be inverted has zero elements everywhere, except on the diagonal
(the point itself), the superdiagonal (point i+1, j), the subdiagonal (point i−1, j), and two lines
situated ±m away from the diagonal (point i, j±1).
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a vast catalogue of methods, and we will only mention a few general approaches,
giving more detail on specific methods later when we need to solve a Poisson
equation for a pressure or streamfunction (Section 7.6).

Any linear system of simultaneous equations can be cast as

Ax=b (5.54)

where the matrix A gathers all the coefficients, the vector x all the unknowns,
and the vector b the boundary values and external forcing terms, if any. The
objective of an iterative method is to solve this system by generating a sequence
x(p) that starts from a guess vector x0 and gradually converges toward the
solution. The algorithm is a repeated application of

Bx(p+1)=Cx(p)+b (5.55)

where B must be easy to invert, otherwise there is no gain, and is typically
a diagonal or triangular matrix (nonzero elements only on the diagonal or on
the diagonal and one side of it). At convergence, x(p+1)=x(p) and we must
therefore have B−C=A to have solved Eq. (5.54). The closer B is to A, the
faster the convergence since at the limit of B=A, a single iteration would yield
the exact answer. Using C=B−A, we can rewrite the iterative step as

x(p+1)=x(p)+B−1
(
b−Ax(p)

)
(5.56)

which is reminiscent of a time stepping method. Here, B−1 denotes the inverse
of B. The Jacobi method uses a diagonal matrix B, whereas the Gauss–Seidel
method uses a triangular matrix B. More advanced methods exist that converge
faster than either of these. Those will be outlined in Section 7.6.

In GFD applications, diffusion is rarely dominant (except for vertical dif-
fusion in strongly turbulent regime), and stability restrictions associated with
diffusion are rarely penalizing. Therefore, it is advantageous to make the scheme
implicit only in the direction of the strongest diffusion (or largest variabil-
ity of diffusion), usually the vertical, and to treat the horizontal components
explicitly:

c̃n+1= c̃n + A1t

1x2

(
c̃n

i+1−2c̃n+ c̃n
i−1

)
+ A1t

1y2

(
c̃n

j+1−2c̃n+ c̃n
j−1

)
+ κ1t

1z2

(
c̃n+1

k+1−2c̃n+1+ c̃n+1
k−1

)
. (5.57)

Then, instead of inverting a matrix with multiple bands of nonzero elements,
we only need to invert a tridiagonal matrix at each point of the horizontal
grid. Alternating direction implicit (ADI) methods use the same approach but
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change the direction of the implicit sweep through the matrix at every time
step. This helps when stability of the horizontal diffusion discretization is a
concern.

The biggest challenge associated with diffusion in GFD models is, however,
not their numerical stability but rather their physical basis because diffusion
is often introduced as a parameterization of unresolved processes. Occasion-
ally, the unphysical behavior of the discretization may create a problem (e.g.,
Beckers, Burchard, Deleersnijder & Mathieu, 2000).

ANALYTICAL PROBLEMS

5.1. What would the energy spectrum Ek(k) be in a turbulent flow where all
length scales were contributing equally to dissipation? Is this spectrum
realistic?

5.2. Knowing that the average atmospheric pressure on Earth’s surface is
1.013 × 105 N/m2 and that Earth’s average radius is 6371 km, deduce the
mass of the atmosphere. Then, using this and the fact that the earth receives
1.75 × 1017 W from the sun globally, and assuming that half of the energy
received from the sun is being dissipated in the atmosphere, estimate the
rate of dissipation ε in the atmosphere. Assuming finally that turbulence in
the atmosphere obeys the Kolmogorov theory, estimate the smallest eddy
scale in the air, its ratio to the largest scale (the earth’s radius), and the
large-scale wind velocity. Is this velocity scale realistic?

5.3. In a 15-m coastal zone, the water density is 1032 kg/m3 and the horizontal
velocity scale is 0.80 m/s. What are the Reynolds number and the diameter
of the shortest eddies? Approximately how many watts are dissipated per
square meter of the ocean?

5.4. If you have to simulate the coastal ocean of the previous problem with a
numerical model that includes 20 grid points over the vertical, what would
be a reasonable value for the vertical eddy diffusivity?

5.5. Estimate the time it takes to reduce by a factor 2 a salinity variation in an
ocean of depth H=1000 m in the presence of salt diffusion, with a diffusion
coefficient κ. Compare two solutions, one using the molecular diffusion
(κ=10−9 m2/s) and the other a turbulent diffusion typical of the deep ocean
(κ=10−4 m2/s).

5.6. A deposition at the sea surface of a tracer (normalized and without units)
can be modeled by a constant flux q=−10−4 m/s. At depth z=−99 m, a
strong current is present and flushes the vertically diffused tracer so that
c=0 is maintained at that level. Assuming the diffusion coefficient has the
profile of Fig. 5.15, calculate the steady solution for the tracer distribution.
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FIGURE 5.15 Values of a nonuniform eddy diffusion for Analytical Problem 5.6. A flux condition
is imposed at the surface while c=0 at the base of the domain.
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FIGURE 5.16 With a time step
such that D=0.1, the initial condi-
tion (single line) of the 1D diffusion
problem has been damped after 500
time steps and the numerical solution
of the explicit scheme (open circles)
is almost indistinguishable from the
exact solution (shown as a line cross-
ing the circles), even with only 30
grid points across the domain.

5.7. Verify the assertion made below Eq. (5.4) that the Reynolds number
corresponding to the Kolmogorov scale is on the order of unity.

NUMERICAL EXERCISES

5.1. Cure the unstable version firstdiffusion.m by adapting the time step
and verify that below the limit (5.35) the scheme is indeed stable and
provides accurate solutions (Fig. 5.16).

5.2. For a 1D Euler scheme with implicit factor α, constant grid size and con-
stant diffusion coefficient, prove that the stability condition is (1−2α)D≤
1/2.
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5.3. Implement periodic boundary conditions in the 1D diffusion problem (i.e.,
c top= cbottom and qtop= qbottom). Then, search the internet for a tridiagonal
matrix inversion algorithm adapted to periodic boundary conditions and
implement it.

5.4. Implement the 1D finite-volume method with an implicit factor α and vari-
able diffusion coefficient. Set the problem with the same initial and boundary
conditions as in the beginning of Section 5.3. Verify your solution against
the exact solution (5.19).

5.5. Apply the code developed in Section 5.6 to the Analytical Problem 5.6.
Start with an arbitrary initial condition and march in time until the solu-
tion becomes stationary. Estimate a priori the permitted time step and
the minimum total number of time steps, depending on the implicit fac-
tor. Take 1z=2, track convergence during the calculations and compare
your final solution with the exact solution. Also try to implement the naive
discretization

∂

∂z

(
κ
∂c

∂z

)∣∣∣∣
zk

= κ ∂
2c

∂z2

∣∣∣∣
zk

+ ∂κ
∂z

∣∣∣∣
zk

∂c

∂z

∣∣∣∣
zk

∼ κk (c̃k+1−2c̃k+ c̃k−1)

1z2

+ (κk+1−κk−1)

21z

(c̃k+1− c̃k−1)

21z
. (5.58)

5.6. The Dufort–Frankel scheme approximates the diffusion equation by

c̃n+1
k = c̃n−1

k +2D
[
c̃n

k+1−
(

c̃n+1
k + c̃n−1

k

)
+ c̃n

k−1

]
. (5.59)

Verify the consistency of this scheme. What relation must be imposed
between 1t and 1z when each approaches zero to ensure consistency?
Then, analyze numerical stability using the amplification-factor method.
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Andrey Nikolaevich Kolmogorov
1903–1987

Andrey Kolmogorov was attracted to mathematics from an early age and, at
the time of his studies at Moscow State University, sought the company of
the most outstanding mathematicians. While still an undergraduate student, he
began research and published several papers of international importance, chiefly
on set theory. He had already 18 publications by the time he completed his doc-
torate in 1929. Kolmogororov’s contributions to mathematics spanned a variety
of topics, and he is perhaps best known for his work on probability theory and
stochastic processes.

Research in stochastic processes led to a study of turbulent flow from a jet
engine and, from there, to two famous papers on isotropic turbulence in 1941.
It has been remarked that these two papers rank among the most important ones
since Osborne Reynolds in the long and unfinished history of turbulence theory.

Kolmogorov found much inspiration for his work during nature walks in
the outskirts of Moscow accompanied by colleagues and students. The brain-
storming that had occurred during the walk often concluded in serious work
around the dinner table upon return home. (Photo from American Mathematical
Society)
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John Louis von Neumann
1903–1957

John von Neumann was a child prodigy. At age six, he could mentally divide
eight-digit numbers and memorize the entire page of a telephone book in a mat-
ter of minutes, to the amazement of his parents’ guests at home. Shortly after
obtaining his doctorate in 1928, he left his native Hungary to take an appoint-
ment at Princeton University (USA). When the Institute for Advanced Studies
was founded there in 1933, he was named one of the original Professors of
Mathematics.

Besides seminal contributions to ergodic theory, group theory, and quantum
mechanics, his work included the application of electronic computers to applied
mathematics. Together with Jule Charney (see biography at end of Chapter 16)
in the 1940s, he selected weather forecasting as the first challenge for the emerg-
ing electronic computers, which he helped assemble. Unlike Lewis Richardson
before them, von Neumann and Charney started with a single equation, the
barotropic vorticity equation. The results exceeded expectations, and scientific
computing was launched.

A famous quote attributed to von Neumann is: “If people do not believe that
mathematics is simple, it is only because they do not realize how complicated
life is.” (Photo from Virginia Polytechnic Institute and State University)



Chapter 6

Transport and Fate

ABSTRACT
In this Chapter, we augment the diffusion equation of the preceding chapter to include
the effects of advection (transport by the moving fluid) and fate (diffusion, plus possi-
ble source, and decay along the way). The numerical section begins with the design of
schemes for advection in a fixed (Eulerian) framework and then extends those to include
the discretization of diffusion and source/decay terms. Most of the developments are
presented in one dimension before generalization to multiple dimensions.

6.1 COMBINATION OF ADVECTION AND DIFFUSION

When considering the heat (3.23), salt (3.14), humidity (3.15), or density (4.8)
equations of Geophysical Fluid Dynamics, we note that they each include three
types of terms. The first, a time derivative, tells how the variable is changing
over time. The second is a group of three terms with velocity components and
spatial derivatives, sometimes hidden in the material derivative d/dt. They rep-
resent the transport of the substance with the flow and are collectively called
advection. Finally, the last group of terms, on the right-hand side, includes an
assortment of diffusivities and second-order spatial derivatives. In the light of
Chapter 5, we identify these with diffusion. They represent the spreading of
the substance along and across the flow. Using a generic formulation, we are
brought to study an equation of the type

∂c
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∂x
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∂c
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)
+ ∂
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(
A
∂c
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+ ∂

∂z

(
κ
∂c

∂z

)
, (6.1)

where the variable c may stand for any of the aforementioned variables or rep-
resent a substance imbedded in the fluid, such as a pollutant in the atmosphere
or in the sea. Note the anisotropy between the horizontal and vertical directions
(A generally�κ).

The examples in the following figures illustrate the combined effects of
advection and diffusion. Figure 6.1 shows the fate of the Rhône River waters as
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FIGURE 6.1 Rhône River plume discharging in the Gulf of Lions (circa 43◦N) and carrying sed-
iments into the Mediterranean Sea. This satellite picture was taken on 26 February 1999. (Satellite
image provided by the SeaWiFS Project, NASA/Goddard Space Flight Center). A color version can
be found online at http://booksite.academicpress.com/9780120887590/

they enter the Mediterranean Sea. Advection pulls the plume offshore, whereas
diffusion dilutes it. Figure 6.2 is a remarkable satellite picture, showing wind
advection of sand from the Sahara Desert westward from Africa to Cape Verde
(white band across the lower part of the picture) at the same time as, and
independently from, marine transport of suspended matter southwestward from
the Cape Verde islands (von Kármán vortices in left of middle of the pic-
ture). Although sand is being blown quickly and without much diffusion in
the air, the sediments follow convoluted paths in the water, pointing to a dis-
parity between the relative effects of advection and diffusion in the atmosphere
and ocean.

Often, the substance being carried by the fluid is not simply moved and
diffused by the flow. It may also be created or lost along the way. Such is the
case of particle matter, which tends to settle at the bottom. Chemical species can
be produced by reaction between parent chemicals and be lost by participating in
other reactions. An example of this is sulfuric acid (H2SO4) in the atmosphere:
It is produced by reaction of sulfur dioxide (SO2) from combustion and lost
by precipitation (acid rain or snow). Tritium, a naturally radioactive form of
hydrogen enters the ocean by contact with air at the surface and disintegrates
along its oceanic journey to become Helium. Dissolved oxygen in the sea is
consumed by biological activity and is replenished by contact with air at the
surface.
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FIGURE 6.2 Sahara dust blown by the wind from the African continent over the ocean toward
Cape Verde islands (15–17◦N), while suspended matter in the water is being transported southwest-
ward by a series of von Kármán vortices in the wake of the islands. Note in passing how these
vortices in the water relate to the overlying cloud patterns. (Jacques Descloitres, MODIS Land
Science Team)

To incorporate these processes, we augment the advection–diffusion equa-
tion (6.1) by adding source and sink terms in the right-hand side:
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where the term S stands for the source, the formulation of which depends on the
particular process of formation of the substance, and K is a coefficient of decay,
which affects how quickly (large K) or slowly (small K) the substance is being
lost.

At one dimension, say in the x-direction, and with constant diffusivity A,
the equation reduces to:

∂c

∂t
+u

∂c

∂x
=A∂

2c

∂x2
+S−Kc. (6.3)

Several properties of the advection–diffusion equation are worth noting
because they bear on the numerical procedures that follow: In the absence of
source and sink, the total amount of the substance is conserved, and, in the fur-
ther absence of diffusion, the variance of the concentration distribution, too, is
conserved over time.

When we integrate Eq. (6.2) over the domain volume V , we can readily inte-
grate the diffusion terms and, if the flux is zero at all boundaries, these vanish,
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and we obtain the following:
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After an integration by parts, the first set of terms on the right can be rewritten
as
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as long as there is no flux or no advection at all boundaries. Invoking the conti-
nuity equation (4.21d) reduces the first term on the right to zero, and we obtain
simply:

d

dt

∫
V

cdV=
∫
V

SdV−
∫
V

KcdV. (6.4)

Since the concentration c represents the amount of the substance per volume,
its integral over the volume is its total amount. Equation (6.4) simply states that
this amount remains constant over time when there is no source (S=0) or sink
(K=0). Put another way, the substance is moved around but conserved.

Now, if we multiply Eq. (6.2) by c and then integrate over the domain, we
can integrate the diffusion terms by parts and, if the flux is again zero at all
boundaries, we have the following:
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With no diffusion, source, or sink, the right-hand side is zero, and variance
is conserved in time. Diffusion and decay tend to reduce variance, whereas a
(positive) source tends to increase it.

This conservation property can be extended, still in the absence of diffusion,
source, and sink, to any power cp of c, by multiplying the equation by cp−1

before integration. The conservation property even holds for any function F(c).
It goes without saying that numerical methods cannot conserve all these quan-
tities, but it is highly desirable that they conserve at least the first two (total
amount and variance).

There is one more property worth mentioning, which we will state without
demonstration but justify in a few words. Because diffusion acts to smooth the
distribution of c, it removes the substance from the areas of higher concentra-
tion and brings it into regions of lower concentration. Hence, due to diffusion
alone, the maximum of c can only diminish and its minimum can only increase.
Advection, by contrast, redistributes existing values, thus not changing either
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minimum and maximum. In the absence of source and sink, therefore, no future
value of c can fall outside the initial range of values. This is called the max-min
property. Exceptions are the presence of a source or sink, and the import through
one of the boundaries of a concentration outside the initial range.

We call a numerical scheme that maintains the max-min property a mono-
tonic scheme or monotonicity preserving scheme1. Alternatively, the property of
boundedness is often used to describe a physical solution that does not generate
new extrema. If c is initially positive everywhere, as it should be, the absence
of new extrema keeps the variable positive at all future times, another property
called positiveness. A monotonic scheme is thus positive but the reverse is not
necessarily true.

6.2 RELATIVE IMPORTANCE OF ADVECTION: THE PECLET
NUMBER

Since the preceding equations combine the effects of both advection and diffu-
sion, it is important to compare the relative importance of one with the other.
In a specific situation, could it be that one dominates over the other or that both
impact concentration values to the same extent? To answer this question, we
turn once again to scales. Introducing a length scale L, velocity scale U, diffu-
sivity scale D, and a scale1c to measure concentration differences, we note that
advection scales like U1c/L and diffusion like D1c/L2. We can then compare
the two processes by forming the ratio of their scales:

advection

diffusion
= U1c/L

D1c/L2
= UL

D
.

This ratio is by construction dimensionless. It bears the name of Peclet number2

and is denoted by Pe:

Pe= UL

D
, (6.6)

where the scales U, L, and D may stand for the scales of either horizontal (u, v,
x, y, andA) or vertical (w, z, and κ) variables but not a mix of them. The Peclet
number leads to an immediate criterion, as follows.

If Pe�1 (in practice, if Pe<0.1), the advection term is significantly smaller
than the diffusion term. Physically, diffusion dominates, and advection is neg-
ligible. Diffusive spreading occurs almost symmetrically despite the directional
bias of the weak flow. If we wish to simplify the problem, we may drop the

1 Some computational fluid dynamicists do make a difference between these two labels, but this
minor point lies beyond our present text.
2 In honor of Jean Claude Eugène Péclet (1793–1857), French physicist who wrote a treatise on heat
transfer.
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advection term [u∂c/∂x in (6.3)], as if u were zero. The relative error commit-
ted in the solution is expected to be on the order of the Peclet number, and
the smaller Pe, the smaller the error. The methods developed in the preceding
chapter were based on such simplification and thus apply whenever Pe�1.

If Pe�1 (in practice, if Pe >10), it is the reverse: the advection term is now
significantly larger than the diffusion term. Physically, advection dominates, and
diffusion is negligible. Spreading is weak, and the patch of substance is mostly
moved along, and possibly distorted by, the flow. If we wish to simplify the
problem, we may drop the diffusion term [A∂2c/∂x2 in (6.3)], as if A were
zero. The relative error committed in the solution by doing so is expected to be
on the order of the inverse of the Peclet number (1/Pe), and the larger Pe, the
smaller the error.

6.3 HIGHLY ADVECTIVE SITUATIONS

When a system is highly advective in one direction (high Pe number based on
scales U, L, and D corresponding to that direction), diffusion is negligible in
that same direction. This is not to say that it is also negligible in the other direc-
tions. For example, high advection in the horizontal does not preclude vertical
diffusion, as this is often the case in the lower atmosphere. In such a case, the
governing equation is
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)
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Because the diffusion terms are of higher-order (second derivatives) than
those of advection (first derivatives), the neglect of a diffusion term reduces
the order of the equation and, therefore, also reduces the need of boundary
conditions by one in the respective direction. The boundary condition at the
downstream end of the domain must be dropped: The concentration and flux
there are whatever the flow brings to that point. A problem occurs when the
situation is highly advective, but the small diffusion term is not dropped. In that
case, because the order of the equation is not reduced, a boundary condition is
enforced at the downstream end, and a locally high gradient of concentration
may occur.

To see this, consider the one-dimensional, steady situation with no
source and sink, with constant velocity and diffusivity in the x-direction. The
equation is

u
dc

dx
=Ad2c

dx2
, (6.8)

and its most general solution is

c(x)=C0+C1eux/A. (6.9)
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For u>0, the downstream end is to the right of the domain, and the solution
increases exponentially towards the right boundary. Rather, it could be said
that the solution decays away from this boundary as x decreases away from
it. In other words, a boundary layer exists at the downstream end. The e-folding
length of this boundary layer is A/u, and it can be very short in a highly advec-
tive situation (large u and small A). Put another way, the Peclet number is the
ratio of the domain length to this boundary-layer thickness, and the larger the
Peclet number, the smaller the fraction of the domain occupied by the boundary
layer. Why do we need to worry about this? Because in a numerical model it may
happen that the boundary-layer thickness falls below the grid size. It is therefore
important to check the Peclet number in relation to the spatial resolution. Should
the ratio of the grid size to the length scale of the system be comparable with, or
larger than, the inverse of the Peclet number, diffusion must be neglected in that
direction, or, if it must be retained for some reason, special care must be taken
at the downstream boundary.

6.4 CENTERED AND UPWIND ADVECTION SCHEMES

In GFD, advection is generally dominant compared with diffusion, and we
therefore begin with the case of pure advection of a tracer concentration c(x, t)
along the x-direction. The aim is to solve numerically the following equation:

∂c

∂t
+u

∂c

∂x
=0. (6.10)

For simplicity, we further take the velocity u as constant and positive so that
advection carries c in the positive x−direction. The exact solution of this
equation is

c(x, t)= c0(x−ut), (6.11)

where c0(x) is the initial concentration distribution (at t=0).
A spatial integration from xi−1/2 to xi+1/2 across a grid cell (Fig. 6.3) leads to

the following budget

dc̄i

dt
+ qi+1/2−qi−1/2

1x
=0, qi−1/2= uc|i−1/2 , (6.12)

which is the basis for the finite-volume technique, as in (3.33). To close the
system, we need to relate the local fluxes q to the cell-average concentrations c̄.
To do so, we must introduce an approximation, because we do not know the
actual value of c at the interfaces between cells, but only the average value in
the cell on each side of it. It appears reasonable to use the following, consistent,
numerical interpolation for the flux:

q̃i−1/2=u

(
c̄i+ c̄i−1

2

)
, (6.13)
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FIGURE 6.3 One-dimensional
finite-volume approach with fluxes
at the interfaces between grid
cells for a straightforward budget
calculation.

which is tantamount to assume that the local tracer concentration at the inter-
face is equal to the mean of the surrounding cell averages. Before proceeding
with time discretization, we can show that this centered approximation con-
serves not only the total amount of substance but also its variance,

∑
i c̄i

and
∑

i(c̄i)
2. Substitution of the flux approximation into (6.12) leads to the

following semidiscrete equation for cell-averaged concentrations:

dc̄i

dt
=−u

c̄i+1− c̄i−1

21x
. (6.14)

Sum over index i leads to cancellation of terms by pairs on the right, leaving
only the first and last c̄ values. Then, multiplication of the same equation by ci

followed by the sum over the domain provides the time-evolution equation of
the discretized variance:

d

dt

(∑
i

(c̄i)
2

)
=− u

1x

∑
i

c̄ic̄i+1+
u

1x

∑
i

c̄ic̄i−1,

where the sum covers all grid cells. By shifting the index of the last term from i
to i+1, we note again cancellation of terms by pairs, leaving only contributions
from the first and last grid points. Thus, except for possible contributions from
the boundaries, the numerical scheme conserves both total amount and variance
as the original equation does.

However, the conservation of global variance only holds for the semi-
discrete equations. When time discretization is introduced as it must eventually
be, conservation properties are often lost. In the literature, it is not always clearly
stated whether conservation properties hold for the semidiscrete or fully dis-
cretized equations. The distinction, however, is important: The centered-space
differencing conserves the variance of the semidiscrete solution, but a simple
explicit time discretization renders the scheme unconditionally unstable and cer-
tainly does not conserve the variance. On the contrary, the latter quantity rapidly
increases. Only a scheme that is both stable and consistent leads in the limit of
vanishing time step to a solution that satisfies (6.12) and ensures conservation
of the variance.

We might wonder why place emphasis on such conservation properties
of semidiscrete equations, since by the time the algorithm is keyed into the
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computer it will always rely on fully discretized numerical approximations in
both space and time. A reason to look at semidiscrete conservation properties
is that some special time discretizations maintain the property in the fully dis-
cretized case. We now show that the trapezoidal time discretization conserves
variance.

Consider the more general linear equation

dc̃i

dt
+L(c̃i)=0, (6.15)

where L stands for a linear discretization operator applied to the discrete field
c̃i. For our centered advection, the operator is L(c̃i)=u(c̃i+1− c̃i−1)/(21x).
Suppose that the operator is designed to satisfy conservation of variance, which
demands that at any moment t and for any discrete field c̃i the following relation
holds ∑

i

c̃iL(c̃i)=0, (6.16)

because only then does
∑

i c̃i dc̃i/dt vanish according to (6.15) and (6.16). The
trapezoidal time discretization applied to (6.15) is

c̃n+1
i − c̃n

i

1t
=−

L
(

c̃n+1
i

)
+L(c̃n

i

)
2

=−1

2
L
(

c̃n+1
i + c̃n

i

)
, (6.17)

where the last equality follows from the linearity of operator L. Multiplying
this equation by

(
c̃n+1

i + c̃n
i

)
and summing over the domain then yields

∑
i

(
c̃n+1

i

)2
−
(
c̃n

i

)2
1t

=−1

2

∑
i

(
c̃n+1

i + c̃n
i

)
L
(

c̃n+1
i + c̃n

i

)
. (6.18)

The term on the right is zero by virtue of (6.16). Therefore, any spatial dis-
cretization scheme that conserves variance continues to conserve variance if the
trapezoidal scheme is used for the time discretization. As an additional benefit,
the resulting scheme is also unconditionally stable. This does not mean, how-
ever, that the scheme is satisfactory, as Numerical Exercise 6.9 shows for the
advection of the top-hat signal. Furthermore, there is a price to pay for stability
because a system of simultaneous linear equations needs to be solved at each
time step if the operator L uses several neighbors of the local grid point i.

To avoid solving simultaneous equations, alternative methods must be
sought for time differencing. Let us explore the leapfrog scheme on the
finite-volume approach. Time integration of (6.12) from tn−1 to tn+1 yields

c̄n+1
i = c̄n−1

i −2
1t

1x

(
q̂i+1/2− q̂i−1/2

)
, (6.19)
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where q̂i−1/2 is the time-average advective flux uc across the cell interfaces
between cells i−1 and i during the time interval from tn−1 to tn+1. Using
centered operators, this flux can be estimated as

q̂i−1/2=
1

21t

tn+1∫
tn−1

uc|i−1/2 dt → q̃i−1/2=u

(
c̃n

i + c̃n
i−1

2

)
, (6.20)

so that the ultimate scheme is as follows:

c̃n+1
i = c̃n−1

i −C
(
c̃n

i+1− c̃n
i−1

)
, (6.21)

where the coefficient C is defined as

C= u1t

1x
. (6.22)

The same discretization could have been obtained by straightforward finite
differencing of (6.10).

The parameter C is a dimensionless ratio central to the numerical dis-
cretization of advective problems called the Courant number or CFL parameter
(Courant, Friedrichs & Lewy, 1928). It compares the displacement u1t made by
the fluid during one time step to the grid size 1x. More generally, the Courant
number for a process involving a propagation speed (such as a wave speed) is
defined as the ratio of the distance of propagation during one time step to the
grid spacing.

To use (6.21), two initial conditions are needed, one of which is physical and
the other artificial. The latter must be consistent with the former. As usual, an
explicit Euler step may be used to start from the single initial condition c̃0

i :

c̃1
i = c̃0

i −
C
2

(
c̃0

i+1− c̃0
i−1

)
. (6.23)

In considering boundary conditions, we first observe that the exact solution
of (6.10) obeys the simple law

c(x−ut)= constant. (6.24)

By virtue of this property, a specified value of c somewhere along the line
x−ut=a, called a characteristic, determines the value of c everywhere along
that line. It is then easily seen (Fig. 6.4) that, in order to obtain a uniquely
defined solution within the domain, a boundary condition must be provided at
the upstream boundary, but no boundary condition is required at the outflow
boundary. The centered space differencing, however, needs a value of c̃ given
at each boundary. When discussing artificial boundary conditions (Section 4.7),
we argued that these are acceptable as long as they are consistent with the math-
ematically correct boundary condition. But then, what requirement should the
artificial boundary condition at the outflow obey with, since there is no physical
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FIGURE 6.4 The characteristic line x−ut=a propagates information from the initial condition
or boundary condition into the domain. If the boundary is located at x=0, and the initial condition
given at t=0, the line x=ut divides the space-time frame into two distinct regions: For x≤ut the
boundary condition defines the solution, whereas for x≥ut the initial condition defines the solution.

boundary condition for it to be consistent with? In practice, a one-sided space
differencing is used at the outflow for the last calculation point i=m, so that its
value is consistent with the local evolution equation:

c̃n+1
m = c̃n

m−C
(
c̃n

m− c̃n
m−1

)
. (6.25)

This provides the necessary value at the last grid cell.
For the inflow condition, the physical boundary condition is imposed, and

algorithm (6.21) can be used starting from n=1 and marching in time over
all points i=2, ...,m−1. Numerically, we thus have sufficient information to
calculate a solution that will be second-order accurate in both space and time,
except near the initial condition and at the outflow boundary. In order to avoid
any bad surprise when implementing the method, a stability analysis is advised.

For convenience, we use the von Neumann method written in Fourier-mode
formalism (5.31)

c̃n
i =Aei(kxi1x−ω̃n1t), (6.26)

where the frequency ω̃ may be complex. Substitution in the difference equa-
tion (6.21) provides the numerical dispersion relation

sin(ω̃1t)=C sin(kx1x). (6.27)
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If |C| > 1, this equation admits complex solutions ω̃= ω̃r+ i ω̃i for the 41x
wave with ω̃r1t=π/2 and ω̃i such that

sin(ω̃r1t+ i ω̃i1t)= cosh(ω̃i1t)=C, (6.28)

which admits two real solutions ω̃i of opposite signs. One of the two solutions,
therefore, corresponds to a growing amplitude, and the scheme is unstable.

For |C|≤1, dispersion relation (6.27) has two real solutions ω̃, and the
scheme is stable. Therefore, numerical stability requires the condition |C|≤1.

In the stable case, the numerical frequency ω̃ may be compared with the
exact value written in terms of discrete parameters

ω=ukx → ω1t=Ckx1x. (6.29)

Obviously, for kx1x→0 and 1t→0, the numerical relation (6.27) coincides
with the exact relation (6.29). However, when ω̃ is solution of (6.27) so is
also π/1t− ω̃. The numerical solution thus consists of the superposition of
the physical mode exp[i(kx i1x− ω̃ n1t)], and a numerical mode that can be
expressed as

c̃n
i =Aei(kxi1x+ω̃n1t)einπ (6.30)

which, by virtue of einπ = (−1)n, flip-flops in time, irrespectively of how small
the time step is or how well the spatial scale is resolved. This second compo-
nent of the numerical solution, called spurious mode or computational mode, is
traveling upstream, as indicated by the change of sign in front of the frequency.
For the linear case discussed here, this spurious mode can be controlled by care-
ful initialization (see Numerical Exercise 6.2), but for nonlinear equations, the
mode may still be generated despite careful initialization and boundary condi-
tions. In this case, it might be necessary to use time-filtering (see Section 10.6)
to eliminate unwanted signals even if the spurious mode is stable for |C|≤1.

The leapfrog scheme is thus conditionally stable. The stability condition
|C|≤1 was given a clear physical interpretation by Courant, Friedrichs and
Lewy in their seminal 1928 paper. It is based on the fact that algorithm (6.21)
defines a domain of dependence: Calculation of the value at point i and moment
n (at the top of the gray pyramid in Fig. 6.5) implicates neighbor points i±1
at time n−1 and the cell value i at time n−2. Those values in turn depend on
their two neighboring and past values so that a network of points can be con-
structed that affect the value at grid point i and moment n. This network is the
domain of numerical dependence. Physically, however, the solution at point i
and time n depends only on the value along the characteristic x−ut= xi−utn

according to (6.24). It is clear that, if this line does not fall inside the domain of
dependence, there is trouble, for an attempt is made to determine a value from
an irrelevant set of other values. Numerical instability is the symptom of this
unsound approach. It is therefore necessary that the characteristic line passing
through (i,n) be included in the domain of numerical dependence.
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FIGURE 6.5 Domain of numerical dependence of the leapfrog scheme (in gray) covered by the
points (circled dots) that influence the calculation at point i,n. This network of points is constructed
recursively by identifying the grid points involved in prior calculations. The physical solution
depends only on values along the characteristic. If the characteristic lies within the domain of numer-
ical dependence (one of the solid lines, for example), this value can be captured by the calculations.
On the contrary, when the physical characteristic lies outside the domain of numerical dependence
(dashed line, for example), the numerical scheme relies on information that is physically unrelated
to the advection process, and this flaw is manifested by numerical instability. Note also that the
leapfrog scheme divides the grid points in two sets according to a checkerboard pattern (circled
and noncircled dots). Unless some smoothing is performed, this risks to generate two numerically
independent sets of values.

Except for the undesirable spurious mode, the leapfrog scheme has desirable
features, because it is stable for |C|≤1, conserves variance for sufficiently small
time steps, and leads to the correct dispersion relation for well-resolved spatial
scales. But, is it sufficient to ensure a well-behaved solution? A standard test for
advection schemes is the translation of a “top-hat” signal. In this case, the use of
Eq. (6.21) leads to the result shown in Fig. 6.6, which is somewhat disappoint-
ing. The odd behavior can be explained: In terms of Fourier modes, the solution
consists of a series of sine/cosine signals of different wavelengths, each of which
by virtue of the numerical dispersion relation (6.27) travels at its own speed, thus
unraveling the signal overtime. This also explains the unphysical appearance of
both negative values and values in excess of the initial maximum. The scheme
does not possess the monotonicity property but creates new extrema.

The cause of the poor performance of the leapfrog scheme is evident: The
actual integration should be performed using upstream information exclusively,
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FIGURE 6.6 Leapfrog scheme applied to the advection of a “top-hat” signal with C=0.5 for 100
times steps. The exact solution is a mere translation from the initial position (dashed curve on the
left) by 50 grid points downstream (dash-dotted curve on the right). The numerical method generates
a solution that is roughly similar to the exact solution, with the solution varying around the correct
value.

whereas the scheme uses a central average that disregards the origin of the
information. In other words, it ignores the physical bias of advection.

To remedy the situation, we now try to take into account the directional infor-
mation of advection and introduce the so-called upwind or donor cell scheme.
A simple Euler scheme over a single time step 1t is chosen, and fluxes are
integrated over this time interval. The essence of this scheme is to calculate the
inflow based solely on the average value across the grid cell from where the
flow arrives (the donor cell). For positive velocity and a time integration from
tn to tn+1, we obtain

c̄n+1
i = c̄n

i −
1t

1x

(
q̂i+1/2− q̂i−1/2

)
(6.31)

with

q̂i−1/2=
1

1t

tn+1∫
tn

qi−1/2dt ' uc̃n
i−1, (6.32)

so that the scheme is

c̃n+1
i = c̃n

i −C
(
c̃n

i − c̃n
i−1

)
. (6.33)
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FIGURE 6.7 Domain of dependence of the upwind scheme. If the characteristic lies outside
the numerical domain of dependence (dashed lines), unphysical behavior will be manifested as
numerical instability. The necessary CFL stability condition therefore requires 0≤C≤1 so that the
characteristic lies within the numerical domain of dependence (solid lines). One initial condition
and one upstream boundary condition are sufficient to determine the numerical solution.

Interestingly enough, the scheme can be used without need of artificial
boundary conditions or special initialization, as we can see from algorithm
(6.33) or the domain of numerical dependence (Fig. 6.7). The CFL condition
0≤C≤1 provides the necessary condition for stability.

The stability of the scheme could be analyzed with the von Neumann
method, but the simplicity of the scheme permits another approach, the so-called
energy method. The energy method considers the sum of squares of c̃ and deter-
mines whether it remains bounded over time, providing a sufficient condition
for stability. We start with (6.33), square it, and sum over the domain:

∑
i

(
c̃n+1

i

)2
=
∑

i

(1−C)2
(
c̃n

i

)2+∑
i

2C(1−C)c̃n
i c̃n

i−1+
∑

i

C2 (c̃n
i−1

)2
.

(6.34)
The first and last terms on the right can be grouped by shifting the index i in the
last sum and invoking cyclic boundary conditions so that

∑
i

(
c̃n+1

i

)2
=
∑

i

[(1−C)2+C2]
(
c̃n

i

)2+∑
i

2C(1−C)c̃n
i c̃n

i−1. (6.35)

We can find an upper bound for the last term by using the following inequality:

0≤
∑

i

(
c̃n

i − c̃n
i−1

)2=2
∑

i

(
c̃n

i

)2−2
∑

i

c̃n
i c̃n

i−1, (6.36)
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which can be proved by using again the cyclic condition. If C(1−C)>0, the
last term in (6.35) may be replaced by the upper bound of (6.36) so that∑

i

(
c̃n+1

i

)2
≤
∑

i

(
c̃n

i

)2
, (6.37)

and the scheme is stable because the norm of the solution does not increase in
time. Although it is not related to a physical energy, the method derives its name
from its reliance on a quadratic form that bears resemblance with kinetic energy.
Methods which prove that a quadratic form is conserved or bounded over time
are similar to energy-budget methods used to prove that the energy of a physical
system is conserved.

The energy method provides only a sufficient stability condition because the
upper bounds used in the demonstration do not need to be reached. But, since
in the present case the sufficient stability condition was found to be identical
to the necessary CFL condition, the condition 0≤C≤1 is both necessary and
sufficient to guarantee the stability of the upwind scheme.

Testing the upwind scheme on the “top-hat” problem (Fig. 6.8), we observe
that, unlike leapfrog, the scheme does not create new minima or maxima, but
somehow diffuses the distribution by reducing its gradients. The fact that the
scheme is monotonic is readily understood by examining (6.33): The new value
at point i is a linear interpolation of previous values found at i and i−1 so that
no new value can ever fall outside the range of these previous values as long as
the condition 0≤C≤1 is satisfied.

0 10 20 30 40 50 60 70 80 90
0.4

0.2

0

0.2

0.4

0.6

0.8

1

1.2

c

i

FIGURE 6.8 Upwind scheme with C=0.5 applied to the advection of a “top-hat” signal after 100
times steps. Ideally the signal should be translated without change in shape by 50 grid points, but
the solution is characterized by a certain diffusion and a reduction in gradient.



Chapter | 6 Transport and Fate 179

The diffusive behavior can be explained by analyzing the modified equation
associated with (6.33). A Taylor expansion of the discrete solution around point
(i,n) in (6.33) provides the equation that the numerical scheme actually solves
the following:

∂ c̃

∂t
+1t

2

∂2c̃

∂t2
+O

(
1t2

)
+u

(
∂ c̃

∂x
−1x

2

∂2c̃

∂x2
+O

(
1x2

))
=0. (6.38)

The scheme is only of first order as can be expected from the use of a one-
sided finite difference. To give a physical interpretation to the equation, the
second time derivative should be replaced by a spatial derivative. Taking the
derivative of the modified equation with respect to t provides an equation for
the second time derivative, which we would like to eliminate, but it involves
a cross derivative3. This cross derivative can be obtained by differentiating the
modified equation with respect to x. Some algebra ultimately provides

∂2c̃

∂t2
=u2 ∂

2c̃

∂x2
+O

(
1t,1x2

)
,

which can finally be introduced into (6.38) to yield the following equation

∂ c̃

∂t
+u

∂ c̃

∂x
= u1x

2
(1−C)

∂2c̃

∂x2
+O

(
1t2,1x2

)
. (6.39)

This is the equation that the upwind scheme actually solves.
Up to O

(
1t2,1x2

)
, therefore, the numerical scheme solves an advection–

diffusion equation instead of the pure advection equation, with diffusivity equal
to (1−C)u1x/2. For obvious reasons, this is called an artificial diffusion or
numerical diffusion. The effect is readily seen in Fig. 6.8. To decide whether this
level of artificial diffusion is acceptable or not, we must compare its size with
that of physical diffusion. For a diffusivity coefficient A, the ratio of numerical
to physical diffusion is (1−C)u1x/(2A). Since it would be an aberration to
have numerical diffusion equal or exceed physical diffusion (recall the error
analysis of Section 4.8: Discretization errors should not be larger than modeling
errors), the grid Peclet number U1x/A may not exceed a value of O(1) for the
upwind scheme to be valid.

When no physical diffusion is present, we must require that the numerical
diffusion term be small compared with the physical advection term, a condition

3 Note that using the original equations, the physical solution satisfies ∂2c/∂t2=u2∂2c/∂x2, which
is sometimes used as a shortcut to eliminate the second time derivative from the modified equation.
This is, however, incorrect because c̃ does not solve the original equation. In practice, this kind of
shortcuts can lead to correct leading truncation errors, but without being sure that no essential term
is overlooked.
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that can be associated with another grid Peclet number:

P̃e= UL

U1x (1−C)/2
∼ L

1x
�1, (6.40)

where L stands for the length scale of any solution component worth resolving.
Even for well-resolved signals in GFD flows, this Peclet number associated with
numerical diffusion is often insufficiently large, and numerical diffusion is a
problem that plagues the upwind scheme.

The observation that the scheme introduces artificial diffusion is interest-
ing and annoying, and the question now is to identify its origin in order to
reduce it. Compared with the centered scheme, which is symmetric and of sec-
ond order, the upwind scheme uses exclusive information from the upstream
side, the donor cell, and is only of first order. Numerical diffusion must, there-
fore, be associated with the asymmetry in the flux calculation, and to reduce
numerical diffusion, we must somehow take into account values of c̃ on both
sides of the interface to calculate the flux and thereby seek a scheme that is
second-order accurate.

This can be accomplished with the Lax-Wendroff scheme, which estimates
the flux at the cell interface by assuming that the function is not constant within
the cell but varies linearly across it:

q̃i−1/2=u

[
c̃n

i + c̃n
i−1

2
− C

2

(
c̃n

i − c̃n
i−1

)]
=uc̃n

i−1 + (1−C)
u1x

2

c̃n
i − c̃n

i−1

1x︸ ︷︷ ︸
'(1−C) u1x

2
∂ c̃
∂x

.
(6.41)

The last term, in addition to the upwind flux uc̃n
i−1, is designed to oppose numer-

ical diffusion. Substitution of this flux into the finite-volume scheme leads to the
following scheme:

c̃n+1
i = c̃n

i −C
(
c̃n

i − c̃n
i−1

)
− 1t

1x2
(1−C)

u1x

2

(
c̃n

i+1−2c̃n
i + c̃n

i−1

)
(6.42)

which, compared with the upwind scheme, includes an additional antidiffusion
term with coefficient constructed to negate the numerical diffusion of the
upwind scheme. The effect of this higher-order approach on the solution of our
test case is a reduced overall error but the appearance of dispersion (Fig. 6.9).
This is due to the fact that we eliminated the truncation error proportional to the
second spatial derivative (an even derivative associated with dissipation) and
now have a truncation error proportional to the third spatial derivative (an odd
derivative associated with dispersion).

The same dispersive behavior is observed with the Beam-Warming scheme,
in which the antidiffusion term is shifted upstream so as to anticipate the
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FIGURE 6.9 Second-order Lax-Wendroff scheme applied to the advection of a “top-hat” signal
with C=0.5 after 100 times steps. Dispersion and nonmonotonic behavior are noted.

gradient that will arrive later at the interface:

q̃i−1/2=u c̃n
i−1+(1−C)

u

2

(
c̃n

i−1− c̃n
i−2

)
. (6.43)

This scheme is still of second order, since the correction term is only shifted
upstream by 1x. The effect of anticipating the incoming gradients enhances
stability but does not reduce dispersion (see Numerical Exercise 6.8).

Other methods spanning more grid points can be constructed to obtain
higher-order integration of fluxes, implicit methods to increase stability,
predictor-corrector methods, or combinations of all these schemes. Here, we
only outline some of the approaches and refer the reader to more specialized
literature for details (e.g., Chung, 2002; Durran, 1999).

A popular predictor-corrector method is the second-order MacCormack
scheme: The predictor uses a forward spatial difference (antidiffusion),

c̃?i = c̃n
i −C

(
c̃n

i+1− c̃n
i

)
(6.44)

and the corrector a backward spatial difference on the predicted field (diffusion):

c̃n+1
i = c̃n+1/2

i − C
2

(
c̃?i − c̃?i−1

)
with c̃n+1/2

i = c̃?i + c̃n
i

2
. (6.45)

The elimination of the intermediate value c̃n+1/2
i from which starts the corrector

step provides the expanded corrector step:

c̃n+1
i = 1

2

[
c̃n

i + c̃?i −C
(
c̃?i − c̃?i−1

)]
, (6.46)
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assuming u>0 as usual. Substitution of the predictor step into the corrector step
shows that the MacCormack scheme is identical to the Lax-Wendroff scheme in
the linear case, but differences may arise in nonlinear problems.

An implicit scheme can handle centered space differencing and approximates
the flux as

q̃i−1/2=αu
c̃n+1

i + c̃n+1
i−1

2
+(1−α)u

c̃n
i + c̃n

i−1

2
. (6.47)

For α=1, the scheme is fully implicit, whereas for α=1/2 it becomes a
semi-implicit or trapezoidal scheme (also called Crank-Nicholson scheme). The
latter has already been shown to be unconditionaly stable [see variance con-
servation and the trapezoidal scheme (6.17)]. The price to pay for this stability
is the need to solve a linear algebraic system at every step. As for the diffu-
sion problem, the system is tridiagonal in the 1D case and more complicated in
higher dimensions. The advantage of the implicit approach is a robust scheme
when C occasionally happens to exceed unity in a known dimension4. It should
be noted, however, that for too large a Courant number accuracy degrades.

All of the previous schemes can be mixed in a linear combination, as long
as the sum of the weights attributed to each scheme is unity for the sake of
consistency. An example of combining two schemes consists in averaging the
flux calculated with a lower-order scheme q̃L

i−1/2 with that of a higher-order
scheme q̃H

i−1/2:

q̃i−1/2= (1−8) q̃L
i−1/2+8 q̃H

i−1/2,

in which the weight 8 (0≤8≤1) acts as a trade-off between the undesirable
numerical diffusion of the lower-order scheme and numerical dispersion and
loss of monotonicity of the higher-order scheme.

All these methods lead to sufficiently accurate solutions, but none except the
upwind scheme ensures monotonic behavior. The reason for this disappointing
fact can be found in the frustrating theorem by Godunov (1959) regarding the
discretized advection equation:

A consistent linear numerical scheme that is monotonic can at most be first-order
accurate.

Therefore, the upwind scheme is the inevitable choice if no overshoot or
undershoot is permitted. To circumvent the Godunov theorem, state-of-the-art
advection schemes relax the linear nature of the discretization and adjust the
parameter 8 locally, depending on the behavior of the solution. The function

4 Typically the vertical Courant number may be so variable that it becomes difficult to ensure that
the local vertical C value remains below one. In particular, it is prudent to use an implicit scheme
in the vertical when the model has nonuniform grid spacing, and when the vertical velocity is weak
except on rare occasions.
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that defines the way 8 is adapted locally is called a limiter. Such an approach
is able to capture large gradients (fronts). Because of its advanced nature, we
delay its presentation until Section 15.7. An example of a nonlinear scheme
called TVD, however, is already included in the computer codes provided for
the analysis of advection schemes in several dimensions.

6.5 ADVECTION–DIFFUSION WITH SOURCES AND SINKS

Having considered separately advection schemes (this chapter), diffusion
schemes (Chapter 5) and time discretizations with arbitrary forcing terms
(Chapter 2), we can now combine them to tackle the general advection–
diffusion equation with sources and sinks. For a linear sink, the 1D equation
to be discretized is

∂c

∂t
+u

∂c

∂x
=−K c+ ∂

∂x

(
A
∂c

∂x

)
. (6.48)

Since we already have a series of discretization possibilities for each indi-
vidual process, the combination of these provides an even greater number of
possible schemes which we cannot describe exhaustively here. We simply show
one example to illustrate two important facts that should not be forgotten when
combining schemes: The properties of the combined scheme are neither simply
the sum of the properties of the individual schemes, nor is its stability condition
the most stringent condition of the separate schemes.

To prove the first statement, we consider (6.48) without diffusion (A=0)
and solve by applying the second-order Lax-Wendroff advection scheme with
the second-order trapezoidal scheme applied to the decay term. The discretiza-
tion, after some rearrangement of terms, is as follows:

c̃n+1
i = c̃n

i −
B
2

(
c̃n

i + c̃n+1
i

)
− C

2

(
c̃n

i+1− c̃n
i−1

)
+ C2

2

(
c̃n

i+1−2c̃n
i + c̃n

i−1

)
,

(6.49)
where B=K1t and C = u1t/1x. This scheme actually solves the following
modified equation:

∂ c̃

∂t
+u

∂ c̃

∂x
+K c̃=−1t

2

∂2c̃

∂t2
−K

1t

2

∂ c̃

∂t
+ u21t

2

∂2c̃

∂x2
+O(1t2,1x2)

=−uK1t

2

∂ c̃

∂x
+O(1t2,1x2) (6.50)

where the last equality was obtained by a similar procedure as the one used
to find the modified equation (6.39). It is not possible to cancel the leading
term on the right unless K=0 or u=0, in which case we recover the second-
order Lax-Wendroff or the second-order trapezoidal scheme. Thus, in the com-
bined advection-decay case, what was expected to be a second-order scheme
degenerates into a first-order scheme.
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For the purpose of illustrating the second statement on stability, we combine
the second-order Lax-Wendroff advection scheme (stability condition |C|≤1)
with the explicit Euler diffusion scheme (stability condition 0≤D≤1/2) and
an explicit scheme for the sink term with rate K (stability condition B≤2). The
discretization, after some rearrangement of the terms, is as follows:

c̃n+1
i = c̃n

i −B c̃n
i −

C
2

(
c̃n

i+1− c̃n
i−1

)
+
(

D+ C2

2

)(
c̃n

i+1−2c̃n
i + c̃n

i−1

)
, (6.51)

where D=A1t/1x2. Application of the von Neumann stability analysis yields
the following amplification factor

%=1−B−4

(
D+ C2

2

)
sin2 θ− i 2Csinθ cosθ, (6.52)

where θ = kx1x/2, so that

|%|2=
[

1−B−4

(
D+ C2

2

)
ξ

]2

+4C2ξ(1−ξ), (6.53)

where 0≤ ξ = sin2 θ ≤1. For ξ '0 (long waves), we obtain the necessary sta-
bility condition B≤2, corresponding to the stability condition of the sink term
alone. For ξ '1 (short waves), we find the more demanding necessary stability
condition

B+2C2+4D ≤ 2. (6.54)

We can show that the latter condition is also sufficient (Numerical Exercise
6.13), which proves that the stability condition of the combined schemes is more
stringent than each stability condition taken individually. Only when two pro-
cesses are negligible does the stability condition revert to the stability condition
of the single remaining process. This seems evident but is not always the case. In
some situations, adding even an infinitesimally-small stable process can require
a discontinuous reduction in time step (e.g., Beckers & Deleersnijder, 1993).

In other situations, adding a process can stabilize an otherwise uncondition-
ally unstable scheme (Numerical Exercise 6.14). Therefore, in theory, it is not
enough to consider the stability of each piece of the scheme separately, but the
stability of the full scheme must be investigated. In practice, however, if a com-
plete scheme is too difficult to analyze, subschemes (i.e., including only a few
processes) are isolated with the hope that the full scheme does not demand a
drastically shorter time step than the one required by the most stringent stability
condition of each elementary scheme taken separately.

Stability is an important property of any scheme as is, at least for tracers,
monotonic behavior. If we assume the scheme to be explicit, linear and cover-
ing a stencil spanning p grid points upstream and q downstream (for a total of
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p+q+1 points), it can be written in the general form:

c̃n+1
i =a−pc̃n

i−p+·· ·+a−1c̃n
i−1+a0c̃n

i +a1c̃n
i+1+·· ·+aqc̃n

i+q. (6.55)

To be consistent with (6.48), we need at least to ensure a−p+·· ·+a−1+a0+
a1+·· ·+aq=1−B, otherwise, not even a spatially uniform field would be
represented correctly.

If there is a negative coefficient ak, the scheme will not be monotonic, for
indeed, if the function is positive at point i+k but zero everywhere else, it
will take on a negative value c̃n+1

i . However, if all coefficients are positive,
the sum of the total weights is obviously positive but less than one because it
is equal to (1−B). The scheme thus interpolates while damping, in agreement
with physical decay. And, since damping does not create new extrema, we con-
clude that positive coefficients ensure a monotonic behavior in all situations.
For our example (6.51), this demands B+C2+2D≤1 and C≤C2+2D. The
former condition is a slightly more constraining version of the stability condi-
tion (6.54), whereas the latter condition imposes a constraint on the grid Peclet
number:

Pe1x=
u1x

A
= C

D
≤ u21t

A
+2. (6.56)
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FIGURE 6.10 Simulation using (6.51) with B=0.05, C=0.5, and D=0.25, after convergence to
a stationary solution (solid line). With decreasing diffusion, the scheme eventually fails to resolve
adequately the outflow boundary layer, and undershoot appears (D=0.05, dot-dash line). This
corresponds to a situation in which one of the coefficients in the numerical scheme has become
negative. The program advdiffsource.m can be used to test other combinations of the parameter
values.
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For short time steps, this imposes a maximum value of 2 on the grid Peclet
number. It is not a stability condition but a necessary condition for monotonic
behavior.

The scheme is now tested on a physical problem. Because of the second
derivative, we impose boundary conditions at both upstream and downstream
and for simplicity hold c̃=1 steady at these locations. We then iterate from a
zero initial condition until the scheme converges to a stationary solution. This
solution (Fig. 6.10) exhibits a boundary layer at the downstream end because
of weak diffusion, in agreement with the remark made in Section 6.3. For weak
diffusion, the grid Peclet number Pe1x is too large and violates (6.56). Under-
shooting appears, although the solution remains stable. In conclusion, besides
the parameters B, C, and D that control stability, the grid Peclet number C/D
appears as a parameter controlling monotonic behavior.

6.6 MULTIDIMENSIONAL APPROACH

In addition to the various combinations already encountered in the 1D case,
generalization to more dimensions allows further choices and different methods.
Here, we concentrate on the 2D advection case because generalizations to 3D
do not generally cause more fundamental complications.

The finite-volume approach can be easily extended to a 2D grid cell with the
fluxes perpendicular to the interfaces (Fig. 6.11):

c̃n+1
i,j − c̃n

i,j

1t
+ q̃x,i+1/2,j− q̃x,i−1/2,j

1x
+ q̃y,i,j+1/2− q̃y,i,j−1/2

1y
= 0, (6.57)

where q̃x,i±1/2,j and q̃y,i,j±1/2 are approximations of the actual fluxes uc and vc,
respectively.

For any flux calculation, the least we require is that it be able to represent
correctly a uniform tracer field C. All of our 1D flux calculations do so and
should do so. When (6.57) is applied to the case of a uniform concentration

�x

�y

˜y, i, j −1/2

˜x, i− 1/2, j
ci, j˜

FIGURE 6.11 Finite volume in 2D with
fluxes at the interfaces. The budget involves
the total balance of inflowing and outflowing
fluxes during one time step.
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distribution c̃=C, we obtain

c̃n+1
i,j −C
1t

+ ũi+1/2,j− ũi−1/2,j

1x
C + ṽi,j+1/2− ṽi,j−1/2

1y
C = 0.

This can only lead to c̃n+1=C at the next time step if the discrete velocity field
satisfies the condition

ũi+1/2,j− ũi−1/2,j

1x
+ ṽi,j+1/2− ṽi,j−1/2

1y
= 0. (6.58)

Since this requirement is an obvious discretization of ∂u/∂x+∂v/∂y=0,
the 2D form of the continuity equation (4.21d), it follows that a prerequi-
site to solve the concentration equation by the finite-volume approach is a
nondivergent flow field in its discretized form. Ensuring that (6.58) holds is the
role of the discretization of the dynamical equations, those governing velocity
and pressure.

Here, in order to test numerical advection schemes, we take the flow field
as known and obeying (6.58). We can easily generate such a discrete velocity
distribution by invoking a discretized streamfunction ψ :

ũi−1/2,j=−
ψi−1/2,j+1/2−ψi−1/2,j−1/2

1y
(6.59)

ṽi,j−1/2=
ψi+1/2,j−1/2−ψi−1/2,j−1/2

1x
. (6.60)

It is straighforward to show that these ũ and ṽ values satisfy (6.58) for any set
of streamfunction values.

Note that if we had discretized directly the continuous equation

∂c

∂t
+u

∂c

∂x
+v

∂c

∂y
=0, (6.61)

we would have obtained

∂ c̃i,j

∂t
+ui,j

∂ c̃

∂x

∣∣∣∣
i,j
+vi,j

∂ c̃

∂y

∣∣∣∣
i,j
=0,

which guarantees that an initially uniform tracer distribution remains uniform
at all later times regardless of the structure of the discretized velocity distribu-
tion as long as the discretized form of the spatial derivatives return zeros for a
uniform distribution (a mere requirement of consistency). Such a scheme could
appear to offer a distinct advantage, but it is easy to show that it has a major
drawback. It looses important conservation properties, including conservation
of the quantity of tracer (heat for temperature, salt for salinity, etc.).
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Assuming the discrete velocity field to be divergence-free in the sense of
(6.58), the first method that comes to mind is to calculate the flux components
using the discretizations developed in 1D along each coordinate line separately
(Fig. 6.12). The upwind scheme is then easily generalized as follows:

q̃x,i−1/2,j= ũi−1/2,j c̃n
i−1,j if ũi−1/2,j>0, ũi−1/2,j c̃n

i,j otherwise (6.62a)

q̃y,i,j−1/2= ṽi,j−1/2 c̃n
i,j−1 if ṽi,j−1/2>0, ṽi,j−1/2 c̃n

i,j otherwise. (6.62b)

The other 1D schemes can be generalized similarly. Applying such schemes
to the advection of an initially cone-shaped distribution (single peak with same
linear drop in all radial directions) embedded in a uniform flow field crossing the
domain at 45◦, we observe that the upwing scheme is plagued by a very strong
numerical diffusion (left panel of Fig. 6.13). Using the TVD scheme keeps the
signal to a higher amplitude but strongly distorts the distribution (right panel of
Fig. 6.13).

This distortion is readily understood in terms of the advection process: The
information should be carried by the oblique flow, but the flux calculation relies
on information strictly along the x or y axes. In the case of a flow oriented at
45◦ from the x−axis, this ignores that grid point (i, j) is primarily influenced
by point (i−1, j−1) whereas points (i−1, j) and (i, j−1) are used in the flux
calculations. In conclusion, the double 1D approach is unsatisfactory and rarely
used.

The Corner Transport Upstream (CTU) scheme (e.g., Colella, 1990) takes
into account the different contributions of the four grid cells involved in the
displacement (Fig. 6.14). Assuming uniform positive velocities to illustrate the
approach, the following discretization ensures that a diagonal flow brings to

Flow

1D advection along x

1D advection along y

FIGURE 6.12 Naive 2D generalization using 1D methods along each coordinate line to approxi-
mate the advection operator as the sum of ∂(uc)/∂x and ∂(vc)/∂y.
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FIGURE 6.13 Oblique advection of a cone-shaped distribution using the upwind scheme gener-
alized to 2D (left panel) and a TVD scheme (right panel) with Cx=Cy=0.12. The upwind scheme
severely dampens the signal, to less then 20% of its initial amplitude, whereas the TVD scheme
used as a double 1D problem greatly distorts the solution.

FIGURE 6.14 2D generalization designed to advect the field obliquely along streamlines. The
associated numerical diffusion can then be interpreted as the necessary grid averaging (i.e., mixing)
used in the finite-volume technique after displacement of the donor cells. The flux calculations
(thick arrows) need to integrate the inflow of c along the flow instead of along the grid lines.

the interface a correct mixing of two donor cells:

q̃x,i−1/2,j=
(

1− Cy

2

)
ũ c̃n

i−1,j+
Cy

2
ũ c̃n

i−1,j−1 (6.63a)

q̃y,i,j−1/2=
(

1− Cx

2

)
ṽ c̃n

i,j−1+
Cx

2
ṽ c̃n

i−1,j−1, (6.63b)

leading to the expanded scheme

c̃n+1
i,j = c̃n

i,j−Cx

(
c̃n

i,j− c̃n
i−1,j

)
−Cy

(
c̃n

i,j− c̃n
i,j−1

)
+ CxCy

(
c̃n

i,j− c̃n
i−1,j− c̃n

i,j−1+ c̃n
i−1,j−1

)
,

(6.64)
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where the last term is an additional term compared with the double 1D approach.
Two distinct Courant numbers arise, one for each direction:

Cx=
u1t

1x
, Cy=

v1t

1y
. (6.65)

For Cx=Cy=1, the scheme provides c̃n+1
i,j = c̃n

i−1,j−1, with obvious physical
interpretation. The scheme may also be written as

c̃n+1
i, j = (1−Cx)(1−Cy) c̃n

i, j

+(1−Cy)Cx c̃n
i−1, j+(1−Cx)Cy c̃n

i, j−1+CxCy c̃n
i−1, j−1

(6.66)

highlighting the relative weights attached to the four grid points involved in
the calculation (Fig. 6.14). This expression proves that the method is mono-
tonic for Courant numbers smaller than one (ensuring that all coefficients on the
right-hand side are positive). The method is only of first order according to the
Godunov theorem, but it causes less distortion of the solution (Fig. 6.15) than
the previous approach. It still dampens excessively, however.

Other generalizations of the various 1D schemes to integrate along the cur-
rent directions are possible but become rapidly complicated. We will therefore
introduce a method that is almost as simple as solving a 1D problem but yet
takes into account the multidimensional essence of the problem.

The method shown here is a special case of so-called operator splitting
methods or fractional steps. To show the approach, we start from the semidis-
crete equation

dc̃i

dt
+L1(c̃i)+L2(c̃i)=0, (6.67)
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FIGURE 6.15 2D oblique advection
using the CTU scheme (6.66). The solu-
tion’s asymmetric deformation is reduced,
but numerical diffusion still reduces the
amplitude significantly.
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where L1 and L2 are two discrete operators, which in the present case are
advection operators along x and y. Temporal discretization by time splitting
executes the following:

c̃?i − c̃n
i

1t
+ L1(c̃

n
i )=0 (6.68a)

c̃n+1
i − c̃?i
1t

+ L2(c̃
?
i )=0, (6.68b)

where the second operator is marched forward with a value already updated by
the first operator.

In this manner, we solve two sequential one-dimensional problems, which is
not more complicated than what we just did and is a major improvement com-
pared with the naive double 1D approach used in (6.62): The initial (predictor)
step creates a field that is already advected in the direction of the L1 operator,
and the second (corrector) step advects in the remaining direction the partially
displaced field. In this way, point (i, j) is influenced by the upstream value, point
(i−1, j−1) in the case of positive velocities (Fig. 6.16).

To verify this, we can see how the splitting works with the 1D upwind
scheme for positive and uniform velocities:

c̃?i,j= c̃n
i,j−Cx

(
c̃n

i,j− c̃n
i−1,j

)
(6.69a)

c̃n+1
i,j = c̃?i,j−Cy

(
c̃?i,j− c̃?i,j−1

)
. (6.69b)

Substitution of the intermediate values c̃?i,j into the final step then proves that
the scheme is identical to the CTU scheme (6.64) for uniform velocities. Such
elimination, however, is not done in practice, and the sequence (6.69) is used.
This is particularly convenient because, in the computer program, c̃? may be
stored during the first step in the future place of c̃n+1 and then moved to the
place of c̃n for the second step; c̃n+1 can then be calculated and stored without
need of additional storage.

Using always the same operator with current values and the other with “pre-
dicted” values is unsatisfactory because it breaks the symmetry between the two
spatial dimensions. Hence, it is recommended to alternate the order in which
operators are applied, depending on whether the time step is even or odd.
Following a time step using (6.68) we then switch the order of operators by
performing

c̃?i − c̃n+1
i

1t
+L2(c̃

n+1
i )=0 (6.70a)

c̃n+2
i − c̃?i
1t

+ L1(c̃
?
i ) =0. (6.70b)
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FIGURE 6.16 The splitting method uses two sequential 1D advection schemes. First, the sig-
nal is transported along the x-direction, and then the intermediate solution is advected along the
y-direction. In this way, the information at upstream point (i−1, j−1) is involved in the evolution
of the value at (i, j) (case of positive velocity components).

This approach, alternating the order of the directional splitting, is a special case
of the more general Strang splitting method designed to maintain second-order
time accuracy when using time splitting (Strang, 1968).

The splitting approach thus seems attractive. It is not more complicated
than applying two successive one-dimensional schemes. In the general case,
however, attention must be given to the direction of the local flow so that
“upwinding” consistently draws the information from upstream, whatever that
direction may be. There is no other complication, and we now proceed with a
test of the method with the TVD scheme. As Fig. 6.17 reveals, the result is a
significant improvement with no increase of computational burden.

A more complicated case of advection can now be tried. For this, we choose
an initially square distribution of tracer and place it in a narrow sheared flow
(Fig. 6.18). We expect that the distribution will be distorted by the shear flow. To
assess the quality of the advection scheme, we could try to obtain an analytical
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FIGURE 6.17 Advection at 45◦ of an initially conical distribution using the splitting method and
the TVD scheme.

solution by calculating trajectories from the known velocity field, but a much
simpler approach is to flip the sign of the velocity field after some time and con-
tinue the integration for an equal amount time. If the scheme were perfect, the
patch would return to its original position and shape (without diffusion, the sys-
tem is reversible and trajectories integrated forward and then backward should
bring all particles back to their original position), but this won’t be the case, and
the difference between initial and final states is a measure of the error. Because
some of the error generated during the flow in one direction may be negated dur-
ing the return flow, we also need to consider the result at the moment of current
reversal, i.e., the moment of farthest displacement.

For the method developed up to now, some degradation occurs, and bizarre
results happen, even in regions of almost uniform flow (see Numerical Exercise
6.15). To discern the cause of this degradation, we first have to realize that the
oblique advection test case is special in the sense that during a 1D step, the
corresponding velocity is uniform. In the present case, the velocity during a
substep is no longer uniform, and application of the first substep on a uniform
field c̃=C yields

c̃?i,j−C
1t
+ ũi+1/2,j− ũi−1/2,j

1x
C=0,
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FIGURE 6.18 Advection of a square signal along a sheared boundary-layer current. Left panel:
Initial distribution and streamlines. Right panel: After some advection. The distortion of the distri-
bution is mostly due to the sheared current, which causes cross-stream squeezing and downstream
stretching as the tracer enters the boundary layer.

which provides a value of c̃?i,j different from the constant C. The next step is
unable to correct this by returning the distribution back to a constant. The prob-
lem arises because the substep is not characterized by zero divergence of the
1D velocity field, and conservation of the tracer is not met. Conservation in
the presence of a converging/diverging velocity in 1D is, however, encoun-
tered in another, physical problem: compressible flow. Mimicking this problem,
we introduce a pseudo-compressible approach, which introduces a density-like
variable ρ, to calculate the pseudo-mass conservation written as

∂

∂t
(ρ)+ ∂

∂x
(ρu)+ ∂

∂y
(ρv)=0 (6.71)

and the tracer budget as

∂

∂t
(ρc)+ ∂

∂x
(ρuc)+ ∂

∂y
(ρvc)=0. (6.72)

The splitting method starts with a constant ρ during the first substep and yields

ρ?−ρ
1t
+ ũi+1/2,j− ũi−1/2,j

1x
ρ=0

for the pseudo-mass equation and

ρ?c̃?i −ρc̃n
i

1t
+ρL1(c̃

n
i )=0. (6.73)

for the tracer concentration. In each calculation, the constant ρ is a multiplica-
tive constant, which can be taken out of the advection operator L1. The second
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FIGURE 6.19 Advection with TVD scheme, Strang splitting, and pseudo-compressibility. The
initial condition is as shown in the left panel of Fig. 6.18. Left panel: The patch of tracer at its
furthest distance from the point of release, at the time of flow reversal. Its deformation is mostly
physical and should ideally be undone during the return travel. Right panel: End state after return
travel. The patch has nearly returned to its original location and shape, indicative of the scheme’s
good level of performance.
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FIGURE 6.20 Same as Fig. 6.19 but with advection by the upwind scheme, using Strang splitting
and including pseudo-compressibility. The situation at time of flow reversal (left panel) and after
return (right panel) shows that numerical diffusion is clearly stronger than with the TVD scheme.
The final distribution is hardly identifiable with the initial condition. The contour values are the
same as in Fig. 6.19.

substep similarly follows with

ρn+1−ρ?
1t

+ ṽi, j+1/2− ṽi, j−1/2

1y
ρ=0,

ρn+1c̃n+1
i −ρ?c̃?i
1t

+ρL2(c̃
?
i )=0, (6.74)
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FIGURE 6.21 Same as Fig. 6.19 but with advection by the Lax-Wendroff scheme, using Strang
splitting and including pseudo-compressibility. The situation at flow reversal (left panel) shows
much dispersion, which is partly undone during the return travel (right panel). At the end, the dis-
tribution has been fairly well reconstructed but there is some undershooting around the edges and
overshooting in the center. Dashed lines indicate values outside the initial range.

with the same constant ρ used again in the spatial operator. Setting the pseudo-
density ρn+1 equal to its previous value ρ, so that it disappears from the
equations after a full time step, leads to the constraint that velocity is divergence-
free in the sense of (6.58). If this is the case, when c̃n=C, it also guarantees
c̃n+1=C.

Other splitting techniques have been devised (e.g., Pietrzak, 1998), but the
approach remains essentially the same: pseudo-compression in one direction
during the first substep, followed by a compensating amount of decompression
during the second substep in the other direction.

With pseudo-compressibility, the sheared flow advection simulated with a
flux limiter indicates that the scheme is quite accurate (Fig. 6.19), being both
less diffusive than the upwind scheme (Fig. 6.20) and less dispersive than the
Lax-Wendroff method (Fig. 6.21). The Matlab code tvdadv2D.m allows the
reader to experiment with various strategies, by turning pseudo-compressibility
on or off, enabling and disabling time splitting, and using different limiters in
sheared and unsheared flow fields (Numerical Exercise 6.15).

ANALYTICAL PROBLEMS

6.1. Show that

c(x,y, t) = M

4πAt
e−[(x−ut)2+(y−vt)2]/(4At) (6.75)

is the solution of the two-dimensional advection-diffusion equation with
uniform velocity components u and v. Plot the solution for decreasing
values of t and infer the type of physical problem the initial condition
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is supposed to represent. Provide an interpretation of M. (Hint: Integrate
over the infinite domain.)

6.2. Extend solution (6.75) to a radioactive tracer with decay constant K.
(Hint: Look for a solution of similar structure but with one more
exponential factor.)

6.3. Assuming a highly advective situation (high Peclet number), construct
the 2D solution corresponding to the continuous release of a substance
(S, in mass per time) from a punctual source (located at x= y=0) in the
presence of velocity u in the x-direction and diffusionA in the y-direction.

6.4. An unreported ship accident results in an instantaneous release of a
conservative pollutant. This substance floats along the sea surface and
disperses for some time until it is eventually detected and measured. The
maximum concentration, then equal to c=0.1 µg/m2, is found just West
of the Azores at 38◦30′N 30◦00′W. A month later, the maximum concen-
tration has decreased to 0.05 µg/m2 and is located 200 km further South.
Assuming a fixed diffusivityA=1000 m2/s and uniform steady flow, can
you infer the amount of substance that was released from the ship, and
the time and location of the accident? Finally, how long will it be before
the concentration no longer exceeds 0.01 µg/m2 anywhere?

6.5. Study the dispersion relation of the equation

∂c

∂t
=κ ∂

pc

∂xp
(6.76)

where p is a positive integer. Distinguish between even and odd values
of p. What should be the sign of the coefficient κ for the solution to be
well behaved? Then, compare the cases p=2 (standard diffusion) and
p=4 (biharmonic diffusion). Show that the latter generates a more scale-
selective damping behavior than the former.

6.6. Explain the behavior found in Fig. 6.10 by finding the analytical solution
of the corresponding physical problem (6.48).

6.7. In the interior of the Pacific Ocean, a slow upwelling compensating the
deep convection of the high latitudes creates an average upward motion
of about 5 m/year between depths of 4 km to 1 km. The average back-
ground turbulent diffusion in this region is estimated to be on the order
of 10−4 m2/s. From the deep region, Radium 226Ra found in the sed-
iments, is brought up, while Tritium 3H of atmospheric origin diffuses
downward from the surface. Radium has a half-life (time for 50% decay)
of 1620 years, and Tritium has a half-life of 12.43 years. Determine the
steady-state solution using a one-dimensional vertical advection-diffusion
model, assuming fixed and unit value of Tritium at the surface and zero
at 4 km depth. For Radium, assume a unit value at depth of 4 km and
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zero value at the surface. Compare solutions with and without advec-
tion. Which tracer is most influenced by advection? Analyze the relative
importance of advective and diffusive fluxes for each tracer at 4 km depth
and 1 km depth.

6.8. If you intend to use a numerical scheme with an upwind advection to
solve the preceding problem for Carbon-14 14C (half-life of 5730 years),
what vertical resolution would be needed so that the numerical calculation
does not introduce an excessively large numerical diffusion?

NUMERICAL EXERCISES

6.1. Prove the assertion that a forward-in-time, central-in-space approxima-
tion to the advection equation is unconditionaly unstable.

6.2. Use advleap.m with different initialization techniques for the first time
step of the leapfrog scheme. What happens if an inconsistent approach
is used (e.g., zero values)? Can you eliminate the spurious mode totally
by a clever initialization of the auxiliary initial condition c1 when a pure
sinusoidal signal is being advected?

6.3. Use the stability analysis under the form (5.31) using an amplification
factor. Verify that the stability condition is |C|≤1.

6.4. Verify numerically that the leapfrog scheme conserves variance of the
concentration distribution when1t→0. Compare with the Lax-Wendroff
scheme behavior for the same time steps.

6.5. Analyze the numerical phase speed of the upwind scheme. What happens
for C=1/2? Which particular behavior is observed when C=1?

6.6. Design a fourth-order spatial difference and explicit time stepping for the
1D advection problem. What is the CFL condition of this scheme? Com-
pare with the von Neumann stability condition. Simulate the standard
advection test case.

6.7. Design a higher-order finite-volume approach by using higher-order poly-
nomials to calculate the flux integrals. Instead of a linear interpolation as
in the Lax-Wendroff scheme, use a parabolic interpolation.

6.8. Show that the von Neumann stability condition of the Beam-Warming
scheme is 0≤C≤2.

6.9. Implement the trapezoidal scheme with centered space difference using
the tridiagonal algorithm thomas.m. Apply it to the standard problem of
the top-hat signal advection and verify that you find the result shown in
Fig. 6.22. Provide an interpretation of the result in terms of the numerical
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FIGURE 6.22 Standard test case with the trapezoidal scheme and centered spatial derivatives.

dispersion relation. Verify numerically that the variance is conserved
exactly.

6.10. Show that the higher-order method for flux calculation at an interface
using a linear interpolation on a nonuniform grid with spacing 1xi

between interfaces of cell i leads to the following flux, irrespective of
the sign of the velocity

q̃i−1/2 = u
(1xi−1−u1t)c̃n

i + (1xi+u1t)c̃n
i−1

1xi+1xi−1
. (6.77)

6.11. Use a leapfrog centered scheme for advection with diffusion. Apply it to
the standard top-hat for different values of the diffusion parameter and
interpret your results.

6.12. Find an explanation for why the 21x mode is stationary in all discretiza-
tions of advection. (Hint: Use a sinusoidal signal of wavelength 21x and
zero phase, then sample it. Change the phase (corresponding to a dis-
placement) by different values less than π and resample. What do you
observe?)

6.13. Prove that (6.54) is the sufficient stability condition of scheme (6.51).
(Hint: Rewrite |%|2 as (φ−2C2ξ)2+4C2ξ(1−ξ) and observe that as a
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function of φ the amplification factor reaches its maxima at the locations
of the extrema of φ, itself constrained by (6.54).)

6.14. Consider the one-dimensional advection-diffusion equation with Euler
time discretization. For advection, use a centered difference with implicit
factor α, and for diffusion the standard second-order difference with
implicit factor β. Show that numerical stability requires (1−2α)C2≤2D
and (1−2β)D≤1/2. Verify that, without diffusion, the explicit centered
advection scheme is unstable.

6.15. Use tvdadv2D.m with different parameters (splitting or not, pseudo-
mass conservation or not) under different conditions (sheared velocity
field or solid rotation) and initial conditions (smooth field or strong gra-
dients) with different flux limiters (upwind, Lax-Wendroff, TVD, etc.) to
get a feeling of the range of different numerical solutions an advection
scheme can provide compared with the analytical solution.
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Richard Courant
1888–1972

Born in Upper Silesia, now in Poland but then part of Germany, Richard Courant
was a precocious child and, because of economic difficulties at home, started to
support himself by tutoring at an early age. His talents in mathematics led him to
study in Göttingen, a magnet of mathematicians at the time, and Courant stud-
ied under David Hilbert with whom he eventually published in 1924 a famous
treatise on methods of mathematical physics. In the foreword, Courant insists on
the need for mathematics to be related to physical problems and warns against
the trend of that time to loosen that link.

In 1928, well before the invention of computers, Richard Courant published
with Kurt Friedrichs and Hans Lewy a most famous paper on the solution of
partial difference equations, in which the now-called CFL stability condition
was derived for the first time.

Courant left Germany for the United States, where he was offered a posi-
tion at New York University. The Courant Institute of Mathematical Sciences
at that institution is named after him. (Photo from the MacTutor History of
Mathematics archive at the University of St. Andrews)
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Peter David Lax
1926–

Born in Budapest (Hungary), Peter Lax quickly attracted attention for his math-
ematical prowess. His parents and he had barely moved to the United States, in
December 1941 with the last ship from Lisbon during the war, and Peter was
still in high school when he was visited in his home by John von Neumann (see
biography at end of Chapter 5), who had heard about this outstanding Hungarian
mathematician. After working on the top-secret Manhattan atomic bomb project
in 1945–1946, he completed his first university degree in 1947 and obtained
his doctorate in 1949, both at New York University (NYU). In his own words,
“these were years of explosive growth in computing.” Lax quickly gained a
reputation for his work in numerical analysis.

Lax served as director of Courant Institute at NYU from 1972–1980 and
was instrumental in getting the US Government to provide supercomputers for
scientific research. (Photo from the MacTutor History of Mathematics archive
at the University of St. Andrews)



Chapter 7

Geostrophic Flows and Vorticity
Dynamics

ABSTRACT
This chapter treats homogeneous flows with small Rossby and Ekman numbers. It is
shown that such flows have a tendency to display vertical rigidity. The concept of poten-
tial vorticity is then introduced. The solution of vertically homogeneous flows often
involves a Poisson equation for the pressure distribution, and numerical techniques are
presented for this purpose.

7.1 HOMOGENEOUS GEOSTROPHIC FLOWS

Let us consider rapidly rotating fluids by restricting our attention to situations
where the Coriolis acceleration strongly dominates the various acceleration
terms. Let us further consider homogeneous fluids and ignore frictional effects,
by assuming

RoT�1, Ro�1, Ek�1, (7.1)

together with ρ=0 (no density variation). The lowest-order equations govern-
ing such homogeneous, frictionless, rapidly rotating fluids are the following
simplified forms of equations of motion, Eq. (4.21):

− f v = − 1

ρ0

∂p

∂x
(7.2a)

+ f u = − 1

ρ0

∂p

∂y
(7.2b)

0 = − 1

ρ0

∂p

∂z
(7.2c)

∂u

∂x
+ ∂v
∂y
+ ∂w

∂z
= 0, (7.2d)

where f is the Coriolis parameter.
This reduced set of equations has a number of surprising properties. First,

if we take the vertical derivative of the first equation, (7.2a), we obtain,
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successively,

−f
∂v

∂z
=− 1

ρ0

∂

∂z

(
∂p

∂x

)
=− 1

ρ0

∂

∂x

(
∂p

∂z

)
=0,

where the right-hand side vanishes because of Eq. (7.2c). The other horizontal
momentum equation, (7.2b), succumbs to the same fate, bringing us to conclude
that the vertical derivative of the horizontal velocity must be identically zero:

∂u

∂z
= ∂v
∂z
=0. (7.3)

This result is known as the Taylor–Proudman theorem (Proudman, 1953; Taylor,
1923). Physically, it means that the horizontal velocity field has no vertical shear
and that all particles on the same vertical move in concert. Such vertical rigidity
is a fundamental property of rotating homogeneous fluids.

Next, let us solve the momentum equations in terms of the velocity
components, a trivial task:

u= −1

ρ0 f

∂p

∂y
, v= +1

ρ0 f

∂p

∂x
, (7.4)

with the corollary that the vector velocity (u, v) is perpendicular to the vector
(∂p/∂x, ∂p/∂y). Since the latter vector is none other than the pressure gradient,
we conclude that the flow is not down-gradient but rather across-gradient. The
fluid particles are not cascading from high to low pressures, as they would in
a nonrotating viscous flow but, instead, are navigating along lines of constant
pressure, called isobars (Fig. 7.1). The flow is said to be isobaric, and isobars
are streamlines. It also implies that no pressure work is performed either on
the fluid or by the fluid. Hence, once initiated, the flow can persist without a
continuous source of energy.

High

Low

Low

p � p1

u
p�

p � p2>p1

f
2

FIGURE 7.1 Example of geostrophic flow. The velocity vector is everywhere parallel to the lines
of equal pressure. Thus, pressure contours act as streamlines. In the northern hemisphere (as pictured
here), the fluid circulates with the high pressure on its right. The opposite holds for the southern
hemisphere.
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Such a flow field, where a balance is struck between the Coriolis and pres-
sure forces, is called geostrophic (from the Greek, γ η = Earth and στρoϕη =
turning). The property is called geostrophy. Hence, by definition, all geostrophic
flows are isobaric.

A remaining question concerns the direction of flow along pressure lines.
A quick examination of the signs in expressions (7.4) reveals that where f
is positive (northern hemisphere, counterclockwise ambient rotation), the cur-
rents/winds flow with the high pressures on their right. Where f is negative
(southern hemisphere, clockwise ambient rotation), they flow with the high
pressures on their left. Physically, the pressure force is directed from the high
pressure toward the low pressure initiating a flow in that direction, but on the
rotating planet, this flow is deflected to the right (left) in the northern (southern)
hemisphere. Figure 7.2 provides a meteorological example from the northern
hemisphere.

FIGURE 7.2 A meteorological example showing the high degree of parallelism between wind
velocities and pressure contours (isobars), indicative of geostrophic balance. The solid lines are
actually height contours of a given pressure (500 mb in this case) and not pressure at a given height.
However, because atmospheric pressure variations are large in the vertical and weak in the horizon-
tal, the two sets of contours are nearly identical by virtue of the hydrostatic balance. According to
meteorological convention, wind vectors are depicted by arrows with flags and barbs: on each tail,
a flag indicates a speed of 50 knots, a barb 10 knots, and a half-barb 5 knots (1 knot = 1 nautical
mile per hour = 0.5144 m/s). The wind is directed toward the bare end of the arrow because mete-
orologists emphasize where the wind comes from, not where it is blowing. The dashed lines are
isotherms. (Chart by the National Weather Service, Department of Commerce, Washington, D.C.)
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If the flow field extends over a meridional span that is not too wide, the
variation of the Coriolis parameter with latitude is negligible, and f can be taken
as a constant. The frame of reference is then called the f-plane. In this case, the
horizontal divergence of the geostrophic flow vanishes:

∂u

∂x
+ ∂v
∂y
=− ∂

∂x

(
1

ρ0 f

∂p

∂y

)
+ ∂

∂y

(
1

ρ0 f

∂p

∂x

)
=0. (7.5)

Hence, geostrophic flows are naturally nondivergent on the f-plane. This leaves
no room for vertical convergence or divergence, as the continuity equation
(7.2d) implies:

∂w

∂z
=0. (7.6)

A corollary is that the vertical velocity, too, is independent of height. If the
fluid is limited in the vertical by a flat bottom (horizontal ground or sea for the
atmosphere) or by a flat lid (sea surface for the ocean), this vertical velocity
must simply vanish, and the flow is strictly two-dimensional.

7.2 HOMOGENEOUS GEOSTROPHIC FLOWS OVER AN
IRREGULAR BOTTOM

Let us still consider a rapidly rotating fluid so that the flow is geostrophic, but
now over an irregular bottom. We neglect the possible surface displacements,
assuming that they remain modest in comparison with the bottom irregulari-
ties (Fig. 7.3). An example would be the flow in a shallow sea (homogeneous
waters) with depth ranging from 20 to 50 m and under surface waves a few
centimeters high.

As shown in the development of kinematic boundary conditions (4.28), if the
flow were to climb up or down the bottom, it would undergo a vertical velocity
proportional to the slope:

w=u
∂b

∂x
+v

∂b

∂y
, (7.7)

where b is the bottom elevation above the reference level. The analysis of the
previous section implies that the vertical velocity is constant across the entire

Bottom

u
k

b

w FIGURE 7.3 Schematic view of a flow over a slop-
ing bottom. A vertical velocity must accompany flow
across isobaths.
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depth of the fluid. Since it must be zero at the top, it must be so at the bottom as
well; that is,

u
∂b

∂x
+v

∂b

∂y
=0, (7.8)

and the flow is prevented from climbing up or down the bottom slope. This
property has profound implications. In particular, if the topography consists of
an isolated bump (or dip) in an otherwise flat bottom, the fluid on the flat bottom
cannot rise onto the bump, even partially, but must instead go around it. Because
of the vertical rigidity of the flow, the fluid parcels at all levels—including levels
above the bump elevation—must likewise go around. Similarly, the fluid over
the bump cannot leave the bump but must remain there. Such permanent tubes
of fluids trapped above bumps or cavities are called Taylor columns (Taylor,
1923).

In flat-bottomed regions, a geostrophic flow can assume arbitrary patterns,
and the actual pattern reflects the initial conditions. But over a bottom where
the slope is nonzero almost everywhere (Fig. 7.4), the geostrophic flow has
no choice but to follow the depth contours (called isobaths). Pressure contours
are then aligned with topographic contours, and isobars coincide with isobaths.
These lines are sometimes also called geostrophic contours. Note that a relation
between pressure and fluid thickness exists but cannot be determined without
additional information on the flow.

Open isobaths that start and end on a side boundary cannot support any flow,
otherwise fluid would be required to enter or leave through lateral boundaries.
The flow is simply blocked along the entire length of these lines. In other words,
geostrophic flow can occur only along closed isobaths.

The preceding conclusions hold true as long as the upper boundary is hor-
izontal. If this is not the case, it can then be shown that geostrophic flows are

No flow
Wall

f
2

FIGURE 7.4 Geostrophic flow in a closed domain
and over irregular topography. Solid lines are iso-
baths (contours of equal depth). Flow is permitted
only along closed isobaths.
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constrained to be directed along lines of constant fluid depth. (See Analytical
Problem 7.3.) Thus, the fluid is allowed to move up and down, but only as long
as it is not being vertically squeezed or stretched. This property is a direct con-
sequence of the inability of geostrophic flows to undergo any two-dimensional
divergence.

7.3 GENERALIZATION TO NONGEOSTROPHIC FLOWS

Let us now suppose that the fluid is not rotating as rapidly so that the Coriolis
acceleration no longer dwarfs other acceleration terms. We still continue to sup-
pose that the fluid is homogeneous and frictionless. The momentum equations
are now augmented to include the relative acceleration terms:

∂u

∂t
+u

∂u

∂x
+v

∂u

∂y
+w

∂u

∂z
− f v=− 1

ρ0

∂p

∂x
(7.9a)

∂v

∂t
+u

∂v

∂x
+v

∂v

∂y
+w

∂v

∂z
+ f u=− 1

ρ0

∂p

∂y
. (7.9b)

Pressure still obeys (7.2c), and continuity equation (7.2d) has not changed.
If the horizontal flow field is initially independent of depth, it will remain

so at all future times. Indeed, the nonlinear advection terms and the Coriolis
terms are initially z-independent, and the pressure terms are, too, z-independent
by virtue of Eq. (7.2c). Thus, ∂u/∂t and ∂v/∂t must be z-independent, which
implies that u and v tend not to become depth varying and thus remain
z-independent at all subsequent times. Let us restrict our attention to such
flows, which in the jargon of geophysical fluid dynamics are called barotropic.
Equations (7.9) then reduce to

∂u

∂t
+u

∂u

∂x
+v

∂u

∂y
− f v=− 1

ρ0

∂p

∂x
(7.10a)

∂v

∂t
+u

∂v

∂x
+v

∂v

∂y
+ f u=− 1

ρ0

∂p

∂y
. (7.10b)

Although the flow has no vertical structure, the similarity to geostrophic flow
ends here. In particular, the flow is not required to be aligned with the isobars
or it is devoid of vertical velocity. To determine the vertical velocity, we turn to
continuity equation (7.2d),

∂u

∂x
+ ∂v
∂y
+ ∂w

∂z
=0,

in which we note that the first two terms are independent of z but do not neces-
sarily add up to zero. A vertical velocity varying linearly with depth can exist,
enabling the flow to support two-dimensional divergence and thus allowing a
flow across isobaths.
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An integration of the preceding equation over the entire fluid depth yields

(
∂u

∂x
+ ∂v
∂y

) b+h∫
b

dz+ [w]b+h
b = 0, (7.11)

where b is the bottom elevation above a reference level, and h is the local
and instantaneous fluid layer thickness (Fig. 7.5). Because fluid particles on
the surface cannot leave the surface and particles on the bottom cannot pen-
etrate through the bottom, the vertical velocities at these levels are given by
Eqs. (4.28) and (4.31)

w(z=b+h) = ∂

∂t
(b+h)+u

∂

∂x
(b+h)+v

∂

∂y
(b+h) (7.12)

= ∂η
∂t
+u

∂η

∂x
+v

∂η

∂y

w(z=b) = u
∂b

∂x
+v

∂b

∂y
. (7.13)

Equation (7.11) then becomes, using the surface elevation η=b+h−H:

∂η

∂t
+ ∂

∂x
(hu)+ ∂

∂y
(hv)=0, (7.14)

which supersedes Eq. (7.2d) and eliminates the vertical velocity from the
formalism.

Finally, since the fluid is homogeneous, the dynamic pressure, p, is indepen-
dent of depth. In the absence of a pressure variation above the fluid surface (e.g.,
uniform atmospheric pressure over the ocean), this dynamic pressure is

p=ρ0gη, (7.15)

where g is the gravitational acceleration according to (4.33). With p replaced
by the preceding expression, Eqs. (7.10) and (7.14) form a 3-by-3 system for
the variables u, v, and η. The vertical variable no longer appears, and the

Reference surface

H
u

η

k

z = 0

h(x, y, t)

b(x, y)

FIGURE 7.5 Schematic diagram of
unsteady flow of a homogeneous fluid
over an irregular bottom and the
attending notation.
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independent variables are x, y, and t. This system is

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
− f v=−g

∂η

∂x
(7.16a)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ f u=−g

∂η

∂y
(7.16b)

∂η

∂t
+ ∂

∂x
(hu)+ ∂

∂y
(hv)=0. (7.16c)

Although this system of equations is applied as frequently to the atmosphere as
to the ocean, it bears the name shallow-water model.1 If the bottom is flat, the
equations become

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
− f v=−g

∂h

∂x
(7.17a)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ f u=−g

∂h

∂y
(7.17b)

∂h

∂t
+ ∂

∂x
(hu)+ ∂

∂y
(hv)=0. (7.17c)

This is a formulation that we will encounter in layered models (Chapter 12).

7.4 VORTICITY DYNAMICS

In the study of geostrophic flows (Section 7.1), it was noted that the pressure
terms cancel in the expression of the two-dimensional divergence. Let us now
repeat this operation while keeping the added acceleration terms by subtracting
the y-derivative of Eq. (7.10a) from the x-derivative of Eq. (7.10b). After some
manipulations, the result can be cast as follows:

d

dt

(
f + ∂v

∂x
− ∂u

∂y

)
+
(
∂u

∂x
+ ∂v
∂y

)(
f + ∂v

∂x
− ∂u

∂y

)
=0, (7.18)

where the material time derivative is defined as

d

dt
= ∂

∂t
+u

∂

∂x
+v

∂

∂y
.

1In the absence of rotation, these equations also bear the name of Saint-Venant equations, in honor
of Jean Claude Barré de Saint-Venant (1797–1886) who first derived them in the context of river
hydraulics.
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In the derivation, care was taken to allow for the possibility of a variable Coriolis
parameter (which on a sphere varies with latitude and thus with position). The
grouping

f + ∂v
∂x
− ∂u

∂y
= f +ζ (7.19)

is interpreted as the sum of the ambient vorticity ( f ) with the relative vorticity
(ζ = ∂v/∂x−∂u/∂y). To be precise, the vorticity is a vector, but since the hor-
izontal flow field has no depth dependence, there is no vertical shear and no
eddies with horizontal axes. The vorticity vector is strictly vertical, and the
preceding expression merely shows that vertical component.

Similarly, terms in the continuity equation, (7.14), can be regrouped as

d

dt
h+

(
∂u

∂x
+ ∂v
∂y

)
h = 0. (7.20)

If we now consider a narrow fluid column of horizontal cross-section ds, its
volume is hds, and by virtue of conservation of volume in an incompressible
fluid, the following equation holds:

d

dt
(hds)=0. (7.21)

This implies, as intuition suggests, that if the parcel is squeezed vertically
(decreasing h), it stretches horizontally (increasing ds), and vice versa (Fig. 7.6).
Combining Eq. (7.20) for h with Eq. (7.21) for hds yields an equation for ds:

d

dt
ds=

(
∂u

∂x
+ ∂v
∂y

)
ds, (7.22)

which simply says that horizontal divergence (∂u/∂x+∂v/∂y>0) causes
widening of the cross-sectional area ds, and convergence (∂u/∂x+∂v/∂y<0) a

Horizontal convergence

Horizontal divergence

f + ζ

2 f + ζ

2
ds

ds

h
h

FIGURE 7.6 Conservation of volume and circulation of a fluid parcel undergoing vertical squeez-
ing or stretching. The products hds and ( f +ζ )ds are conserved during the transformation. As a
corollary, the ratio ( f +ζ )/h, called the potential vorticity, is also conserved.
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narrowing of the cross-section. It could have been derived from first principles
(see Analytical Problem 7.4).

Now, combining Eqs. (7.18) and (7.22) yields

d

dt
[(f +ζ )ds]=0 (7.23)

and implies that the product ( f +ζ )ds is conserved by the fluid parcel. This
product can be interpreted as the vorticity flux (vorticity integrated over the
cross section) and is therefore the circulation of the parcel. Equation (7.23) is the
particular expression for rotating, two-dimensional flows of Kelvin’s theorem,
which guarantees conservation of circulation in inviscid fluids (Kundu, 1990,
pages 124–128).

This conservation principle is akin to that of angular momentum for an iso-
lated system. The best example is that of a ballerina spinning on her toes; with
her arms stretched out, she spins slowly, but with her arms brought against
her body, she spins more rapidly. Likewise in homogeneous geophysical flows,
when a parcel of fluid is squeezed laterally (ds decreasing), its vorticity must
increase ( f +ζ increasing) to conserve circulation.

Now, if both circulation and volume are conserved, so is their ratio. This
ratio is particularly helpful, for it eliminates the parcel’s cross section and thus
depends only on local variables of the flow field:

d

dt

(
f +ζ

h

)
=0, (7.24)

where

q= f +ζ
h
= f +∂v/∂x−∂u/∂y

h
(7.25)

is called the potential vorticity. The preceding analysis interprets potential vor-
ticity as circulation per volume. This quantity, as will be shown on numerous
occasions in this book, plays a fundamental role in geophysical flows. Note that
equation (7.24) could have been derived directly from Eqs. (7.18) and (7.20)
without recourse to the introduction of the variable ds.

Let us now go full circle and return to rapidly rotating flows, those in which
the Coriolis force dominates. In this case, the Rossby number is much less than
unity (Ro=U/�L�1), which implies that the relative vorticity (ζ = ∂v/∂x−
∂u/∂y, scaling as U/L) is negligible in front of the ambient vorticity ( f , scaling
as �). The potential vorticity reduces to

q= f

h
, (7.26)

which, if f is constant—such as in a rotating laboratory tank or for geophysical
patterns of modest meridional extent—implies that each fluid column must
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conserve its height h. In particular, if the upper boundary is horizontal, fluid
parcels must follow isobaths, consistent with the existence of Taylor columns
(Section 7.2). If f is variable (see also Section 9.4) and topography flat, the same
constraint (7.26) tells us that the flow cannot cross latitudinal circles, while in
the general case, the flow must follow lines of constant f /h.

Before closing this section, let us derive a germane result, which will be
useful later. Consider the dimensionless expression

σ = z−b

h
, (7.27)

which is the fraction of the local height above the bottom to the full depth of
the fluid, or, in short, the relative height above bottom (0≤σ ≤1). This expres-
sion will later be defined as the so-called σ -coordinate (see Section 20.6.1). Its
material time derivative is

dσ

dt
= 1

h

d

dt
(z−b)− z−b

h2

dh

dt
. (7.28)

Since dz/dt=w by definition of the vertical velocity and because w varies lin-
early from db/dt at the bottom (z=b) to d(b+h)/dt at the top (z=b+h), we
have

dz

dt
=w= db

dt
+ z−b

h

dh

dt
. (7.29)

Use of this last expression to eliminate dz/dt from Eq. (7.28) cancels all terms
on the right, leaving only

dσ

dt
=0. (7.30)

Thus, a fluid parcel retains its relative position within the fluid column. Even if
there is a vertical velocity, the structure of the velocity field is such that layers
of fluid remain invariably stacked on each other. Hence, there is no internal
overturning, and layers are simply squeezed or stretched.

7.5 RIGID-LID APPROXIMATION

Except in the case when fast surface waves are of interest (Section 9.1), we can
exploit the fact that large-scale motions in the ocean are relatively slow and
introduce the so-called rigid-lid approximation. Large-scale movements with
small Rossby numbers are close to geostrophic equilibrium, and their dynamic
pressure thus scales as p∼ρ0�UL (see (4.16)), and since p=ρ0gη in a homo-
geneous fluid, the scale 1H of surface-height displacements is 1H∼�UL/g.
Using the latter in the vertically integrated volume-conservation equation, we
can then compare the sizes of the different terms. Assuming that the timescale
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is not shorter than the inertial timescale 1/�, we have

∂η

∂t
+ ∂

∂x
(hu)+ ∂

∂y
(hv)=0

�1H
HU

L

HU

L
,

in which�1H∼�2UL/g, and the scale ratio of the first term to the other terms
is �2L2/gH. In many situations, this ratio is very small,

�2L2

gH
�1, (7.31)

and the time derivative in the volume-conservation equation may be neglected:

∂

∂x
(hu)+ ∂

∂y
(hv)=0. (7.32)

This is called the rigid-lid approximation (Fig. 7.7).
However, this approximation has a major implication when we solve the

equations numerically because now, instead of using the time derivative of the
continuity equation to march η forward in time and determine the hydrostatic
pressure p from it, we somehow need to find a pressure field that ensures that at
any moment the transport field (U,V)= (hu,hv) is nondivergent.

The momentum equations of the shallow-water model can be recast in
transport form:

∂

∂t
(hu)=− h

ρ0

∂p

∂x
+Fx (7.33a)

with Fx=−
∂

∂x
(huu)− ∂

∂y
(hvu)+ f hv

∂

∂t
(hv)=− h

ρ0

∂p

∂y
+Fy (7.33b)

with Fy=−
∂

∂x
(huv)− ∂

∂y
(hvv)− f hu.

bb

k
Rigid lid

k
Free surface

FIGURE 7.7 A free-surface formulation (left panel) allows the surface to move with the flow,
whereas a rigid-lid formulation assumes a fixed surface, under which pressure is not uniform
because the “lid” resists any local upward or downward force.
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Since we have neglected the variation η in surface elevation, we can take in the
preceding equations h=H−b, a known function of the coordinates x and y. The
task ahead of us is to find a way to calculate from the preceding two equations
(7.33a) and (7.33b), a pressure field p that leads to satisfaction of constraint
(7.32). To do so, we have two approaches at our disposal. The first one is based
on a diagnostic equation for pressure (Section 7.6), and the second one on a
streamfunction formulation (Section 7.7).

7.6 NUMERICAL SOLUTION OF THE RIGID-LID PRESSURE
EQUATION

The pressure method uses Eqs. (7.33a) and (7.33b) to construct an equation for
pressure while enforcing the no-divergence constraint. This is accomplished by
adding the x-derivative of Eq. (7.33a) to the y-derivative of Eq. (7.33b) and
exploiting Eq. (7.32) to eliminate the time derivatives. Placing the pressure
terms on the left then yields

∂

∂x

(
h

ρ0

∂p

∂x

)
+ ∂

∂y

(
h

ρ0

∂p

∂y

)
= ∂Fx

∂x
+ ∂Fy

∂y (7.34)

=Q.

This equation for pressure is the archetype of a so-called elliptic equation.
To complement it, appropriate boundary conditions must be provided. These

pressure conditions are deduced from the impermeability of solid lateral bound-
aries or from the inflow/outflow conditions at open boundaries (see Section 4.6).
For example, if the boundary is parallel to the y-axis (say x= x0) and is imper-
meable, we need to impose hu=0 (no normal transport), and the x-momentum
equation in transport form reduces there to

h

ρ0

∂p

∂x
= Fx, (7.35)

while along an impermeable boundary parallel to the x-axis (say y= y0), we
need to impose hv=0 and obtain from the y-momentum equation

h

ρ0

∂p

∂y
=Fy. (7.36)

In other words, the normal pressure gradient is given along impermeable bound-
aries. At inflow/ouflow boundaries, the expression is more complicated but it is
still the normal pressure gradient that is imposed. An elliptic equation with the
normal derivative prescribed all along the perimeter of the domain is called a
Neumann problem.2

2If the pressure itself had been imposed all along the perimeter of the domain, the problem would
have been called a Dirichlet problem.
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One and only one condition at every point along all boundaries of the
domain is necessary and sufficient to determine the solution of the elliptic equa-
tion (7.34). Since the pressure appears only through its derivatives in both the
elliptic equation (7.34) and the boundary condition (7.35) and (7.36), the solu-
tion is only defined within an additional arbitrary constant, the value of which
may be chosen freely without affecting the resulting velocity field. However,
there is a natural choice, which is to select the constant so that the pressure
has a zero average over the domain. By virtue of p=ρ0gη, this corresponds to
stating that η has a zero average over the domain.

Numerically, the solution can be sought by discretizing the elliptic equation
for pressure across a rectangular box:

1

1x

(
hi+1/2

p̃i+1,j− p̃i,j

1x
−hi−1/2

p̃i,j− p̃i−1,j

1x

)
+ 1

1y

(
hj+1/2

p̃i,j+1− p̃i,j

1y
−hj−1/2

p̃i,j− p̃i,j−1

1y

)
=ρ0Qij.

(7.37)

This forms a set of linear equations for the p̃i,j values across the grid, connecting
five unknowns at each grid point (Fig. 7.8), a situation already encountered in

x

y

FIGURE 7.8 Discretization of the two-dimensional elliptic equation. The stencil is a five-point
array consisting of the point where the calculation is performed and its four neighbors. These neigh-
boring points are in turn dependent on their respective neighbors, and so on until boundary points
are reached. In other words, the value at every point inside the domain is influenced by all other inte-
rior and boundary values. Simple accounting indicates that one and only one boundary condition is
needed at all boundary points.
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the treatment of two-dimensional implicit diffusion (Section 5.6). But there is
another circular dependence: The right-hand side ρ0Qij is not known until the
velocity components are determined and the determination of these requires
the knowledge of the pressure gradient. Because the momentum equations are
nonlinear, this is a nonlinear dependence, and the method for constructing and
solving a linear system cannot be applied.

The natural way to proceed is to progress incrementally. If we assume that
at time level n, we have a divergent-free velocity field (ũn, ṽn), we can use
Eq. (7.37) to calculate the pressure at the same time level n and use its gradient
in the momentum equations to update the velocity components for time level
n+1. But this offers no guarantee that the updated velocity components will be
divergence free, despite the fact that the pressure distribution corresponds to a
divergent-free flow field at the previous time level.

Once again, we face a situation in which discretized equations do not
inherit certain mathematical properties of the continuous equations. In this case,
we used properties of divergence and gradient operators to build a diagnos-
tic pressure equation from the original equations, but these properties are not
transferable to the numerical space unless special care is taken.

However, the design of adequate discrete equations can be inspired by the
mathematical operations used to reach the pressure equation (7.34): We started
with the velocity equation and applied the divergence operator to make appear
the divergence of the transport that we then set to zero, and we should perform
the same operations in the discrete domain to ensure that at any moment the
discrete transport field is nondivergent in a finite volume. This is expressed by
discrete volume conservation as

hi+1/2ũi+1/2−hi−1/2ũi−1/2

1x
+ hj+1/2ṽj+1/2−hj−1/2ṽj−1/2

1y
=0. (7.38)

Anticipating a staggered grid configuration (Fig. 7.9), we realize that it
would be natural to calculate for each cell the velocity ũ at the middle of the
left and right interfaces (i±1/2, j) and the other velocity component ṽ at the
middle of the top and bottom interfaces (i, j±1/2) so that the divergence may
be calculated most naturally in Eq. (7.38). In contrast, p̃ values are calculated
at cell centers. Leapfrog time discretization applied to (7.33a) and (7.33b) then

ũi −1/2
ũi + 1/2

p̃i + 1p̃

ṽj −1/2

FIGURE 7.9 Arrangement of numerical
unknowns for easy enforcement of numerical
volume conservation and pressure-gradient
calculations.
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provides

hi+1/2ũ
n+1
i+1/2 = hi+1/2ũ

n−1
i+1/2 + 21tFxi+1/2 − 21t hi+1/2

p̃i+1 − p̃

ρ01x
(7.39a)

hj+1/2ṽ
n+1
j+1/2 = hj+1/2ṽ

n−1
j+1/2 + 21tFyj+1/2

− 21t hj+1/2

p̃j+1− p̃

ρ01y
, (7.39b)

in which we omitted for clarity the obvious indices i, j, and n.
Requesting now that the discretized version (7.38) of the nondivergence con-

straint hold at time level n+1, we can eliminate the velocity values at that time
level by combining the equations of (7.39) so that these terms cancel out. The
result is the sought-after discretized equation for pressure:

1

1x

(
hi+1/2

p̃i+1− p̃

1x
−hi−1/2

p̃− p̃i−1

1x

)
+ 1

1y

(
hj+1/2

p̃j+1− p̃

1y
−hj−1/2

p̃− p̃j−1

1y

)
=ρ0

(
Fxi+1/2−Fxi−1/2

1x
+

Fyj+1/2
−Fyj−1/2

1y

)
+ ρ0

21t

(
hi+1/2ũ

n−1
i+1/2−hi−1/2ũ

n−1
i−1/2

1x
+

hj+1/2ṽ
n−1
j+1/2−hj−1/2ũ

n−1
j−1/2

1y

)
,

(7.40)

where once again the obvious indices have been omitted.
It is clear that, up to the last term, this equation is a discrete version of

Eq. (7.34) and resembles Eq. (7.37). The difference lies in the last term, which
would vanish if the transport field were divergence free at time level n−1. We
kept that term should the numerical solution of the discrete equation not be
exact. Keeping the nonzero discrete divergence at n−1 in the equation is a way
of applying an automatic correction to the discrete equation in order to insure
the nondivergence of the transport at the new time level n+1. Neglecting this
correction term would result in a gradual accumulation of errors and thus an
eventually divergent transport field.

To summarize, the algorithm works as follows: Knowing velocity values
at time levels n and n−1, we solve Eq. (7.40) iteratively for pressure, which
is then used to advance velocity in time using Eqs. (7.39a) and (7.39b). For
quickly converging iterations, the pressure calculations can be initialized with
the values from the previous time step. This iterative procedure is one of the
sources of numerical errors against which the last term of Eq. (7.40) is kept as a
precaution.

The discretization shown here is relatively simple, but in the more general
case of higher-order methods or other grid configurations, the same approach
can be used. We must ensure that the divergence operator applied to the transport
field is discretized in the same way as the divergence operator is applied to the
pressure gradient. Furthermore, the pressure gradient needs to be discretized in
the same way in both the velocity equation and the elliptic pressure equation.
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In summary, the derivatives similarly labeled in the equations below must be
discretized in identical ways to generate a mathematically coherent scheme:

∂

∂x︸︷︷︸
(1)

(
h

ρ0

∂p

∂x︸︷︷︸
(3)

)
+ ∂

∂y︸︷︷︸
(2)

(
h

ρ0

∂p

∂y︸︷︷︸
(4)

)
= ∂

∂x︸︷︷︸
(1)

Fx+
∂

∂y︸︷︷︸
(2)

Fy

∂

∂t
(hu) = − h

ρ0

∂p

∂x︸︷︷︸
(3)

+Fx

∂

∂t
(hv) = − h

ρ0

∂p

∂y︸︷︷︸
(4)

+Fy

∂

∂x︸︷︷︸
(1)

(hu) + ∂

∂y︸︷︷︸
(2)

(hv)=0.

It also means one can generally not resort to a “black box” elliptic-equation
solver to obtain a pressure field that is used in “hand-made” discrete velocity
equations.

7.7 NUMERICAL SOLUTION OF THE STREAMFUNCTION
EQUATION

Instead of calculating pressure, a second method in use with the rigid-lid
approximation is a generalization of the velocity streamfunction ψ to the
volume-transport streamfunction 9:

hu=−∂(hψ)
∂y
=−∂9

∂y
(7.42a)

hv=+∂(hψ)
∂x
=+∂9

∂x
. (7.42b)

The difference between two isolines of 9 can be interpreted as the volume
transport between those lines, directed with the higher 9 values to its right.

When transport components are calculated according to Eq. (7.42), volume
conservation (7.32) is automatically satisfied, and as shown in Section 6.6, the
numerical counterpart can also be divergence free. We may therefore discretize
the equation governing 9 without hesitation, sure that its discrete solution will
lead to a well-bahaved discrete velocity field.

To obtain a mathematical equation for the streamfunction, all we have to do
is to eliminate the pressure from the momentum equations. This is accomplished
by dividing Eqs. (7.33a) and (7.33b) by h, differentiating the former by y and
the latter by x, and finally subtracting one from the other. Replacement of the
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transport components hu and hv in terms of the streamfunction then yields

∂

∂t

[
∂

∂x

(
1

h

∂9

∂x

)
+ ∂

∂y

(
1

h

∂9

∂y

)]
= ∂

∂x

(
Fy

h

)
− ∂

∂y

(
Fx

h

)
=Q.

(7.43)

The right-hand side could be further expanded in terms of the streamfunction,
but for the sake of the following discussion it is sufficient to lump all its terms
into a single “forcing” term Q.

We now consider a leapfrog time discretization or any other time discretiza-
tion that allows us to write ∂

∂x

(
1

h

∂9̃

∂x

)n+1

+ ∂

∂y

(
1

h

∂9̃

∂y

)n+1
=F(9̃n, 9̃n−1, . . .). (7.44)

In the case of a leapfrog discretization, the right-hand side is

F(9̃n, 9̃n−1, . . .)=

 ∂

∂x

(
1

h

∂9̃

∂x

)n−1

+ ∂

∂y

(
1

h

∂9̃

∂y

)n−1


+21t Qn,

(7.45)

which can be evaluated numerically knowing 9̃n and 9̃n−1. The problem then
amounts to solving Eq. (7.44) for 9̃n+1. Again, an elliptic equation must be
solved, as for the pressure equation in the previous section, and the same method
can be applied.

Differences, other than the terms in the right-hand side, are noteworthy. First,
instead of h appearing inside the derivatives, 1/h is involved, which increases
the role played by the streamfunction derivatives in shallow regions (h→0, usu-
ally near boundaries), possibly amplifying errors on boundary conditions. This
is in contrast to the pressure formulation, in which the influence of the vertically
integrated pressure gradient decreases in shallow regions. Applications indeed
reveal that the solution of the Poisson equation (7.40) is better conditioned and
converges better than Eq. (7.44).

A second difference is related to the formulation of boundary conditions.
While in the pressure approach imposing zero normal velocity leads to a condi-
tion on the normal derivative of pressure, the streamfunction formulation has the
apparent advantage of only demanding that the streamfunction be constant along
a solid boundary, a Dirichlet condition. A problem arises for ocean models when
islands are present within the domain (Fig. 7.10). Knowing that the streamfunc-
tion is constant on an impermeable boundary does not tell us what the value
of the constant ought to be. This is no small matter because the difference
of streamfunction values across a channel defines the volume transport in that
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Ψ1

Ψ2

Ψ3

Boundary Γ1

FIGURE 7.10 Boundary conditions
on the streamfunction in an ocean
model with islands. The streamfunction
value must be prescribed constant
along impermeable boundaries. Setting
Ψ1 and Ψ2 for the outer boundaries is
reasonable and amounts to imposing
the total flow across the domain, but
setting a priori the value of Ψ3 along
the perimeter of an island is in principle
not permitted because the flow around
the island should depend on the interior
solution and its temporal evolution.
Clearly, a prognostic equation for the
streamfunction value on islands is
needed.

channel. Such volume transport should be determined by the dynamics of the
flow and not by the modeler’s choice.

The streamfunction equation being linear with known right-hand side allows
superposition of solutions, and we take one island at a time:

∂

∂x

(
1

h

∂ψk

∂x

)
+ ∂

∂y

(
1

h

∂ψk

∂y

)
=0 (7.46)

with ψk set to zero on all boundaries except ψk=1 on the boundary for the kth
island. Each island thus engenders a dimensionless streamfunction ψk(x,y) that
can be used to construct the overall solution

9(x,y, t)=Ψf (x,y, t)+
∑

k

Ψk(t)ψk(x,y), (7.47)

where Ψf is the particular solution of Eq. (7.44) with streamfunction set to zero
along all island boundaries and prescribed values along the outer boundaries and
wherever the volume flow is known (e.g., at the inflow boundary as depicted in
Fig. 7.10). The Ψk(t) coefficients are the time-dependent factors by which the
island contributions must be multiplied to construct the full solution. What
should these factors be is the question.

One possibility is to project the momentum equations onto the direction
locally tangent to the island boundary, similarly to what was done to determine
the boundary conditions in the pressure formulation. Invoking Stokes theorem
on the closed contour formed by the perimeter of the kth island then provides
an equation including the time derivative dΨk/dt. Repeating the procedure for
each island leads to a linear set of N equations, where N is the number of islands.
These equations can then be integrated in time (e.g., Bryan & Cox, 1972). This
approach has become less popular over the years for several reasons, among
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which is the nonlocal nature of the equations. Indeed, each island equation
involves both area and contour integrals all over the domain, causing serious
difficulties when the domain is fragmented for calculation on separate com-
puters working in parallel. Synchronization of the information exchange of
different integral pieces across computers can be very challenging. Neverthe-
less, the streamfunction formulation is still available in most large-scale ocean
models.

7.8 LAPLACIAN INVERSION

Because the inversion of a Poisson-type equation is a recurrent task in numerical
models, we now outline some of the methods designed to invert the discrete
Poisson equation

ψ̃i+1,j−2ψ̃i,j+ ψ̃i−1,j

1x2
+ ψ̃i,j+1−2ψ̃i,j+ ψ̃i,j−1

1y2
= q̃i,j, (7.48)

where the right-hand side is given and ψ̃ is the unknown field.3 Iterative meth-
ods outlined in Section 5.6 using pseudo-time iterations were the first methods
used to solve a linear system for ψ̃i,j. The Jacobi method with over-relaxation
reads

ψ̃
(k+1)
i,j = ψ̃ (k)i,j +ωε

(k)
i,j(

2

1x2
+ 2

1y2

)
ε
(k)
i,j =

ψ̃
(k)
i+1,j−2ψ̃ (k)i,j + ψ̃

(k)
i−1,j

1x2
+
ψ̃
(k)
i,j+1−2ψ̃ (k)i,j + ψ̃

(k)
i,j−1

1y2
− q̃i,j, (7.49)

in which the residual ε is used to correct the previous estimate at iteration (k).
Taking the relaxation parameter ω>1 (i.e., performing over-relaxation) accel-
erates convergence toward the solution, at the risk of instability. By considering
iterations as evolution in pseudo-time, we can assimilate the parameter ω to a
pseudo-time step and perform a numerical stability analysis. The outcome is
that iterations are stable (i.e., they converge) provided 0≤ω<2. In terms of
the general iterative solvers of Section 5.6, matrix B in (5.56) is diagonal. The
algorithm requires at least as many iterations to propagate the information once
through the domain as they are grid points across the domain. If M is the total
number of grid points in the 2D model, then

√
M is an estimate of the “width”

of the grid, and it takes
√

M iterations to propagate information once from side

3Generalization to equations with variable coefficients such as h or 1/h, as encountered in the pre-
ceding two sections for example, is relatively straightforward, and we keep the notation simple here
by assuming constant coefficients.
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to side. Usually, M iterations are needed for convergence, and the cost rapidly
becomes prohibitive with increased resolution.

The finite speed at which information is propagated during numerical itera-
tions does not reflect the actual nature of elliptic equation, the interconnectness
of which theoretically implies instantaneous adjustment to any change any-
where, and we sense that we should be able to do better. Because in practice
the iterations are only necessary to arrive at the converged solution, we do not
need to mimic the process of a time-dependent equation and can tamper with
the pseudo-time.

The Gauss-Seidel method with over-relaxation calculates the residual
instead as (

2

1x2
+ 2

1y2

)
ε
(k)
i,j

=
ψ̃
(k)
i+1,j−2ψ̃ (k)i,j + ψ̃

(k+1)
i−1,j

1x2
+
ψ̃
(k)
i,j+1−2ψ̃ (k)i,j + ψ̃

(k+1)
i,j−1

1y2
− q̃i,j (7.50)

in which the updated values at the previous neighbors (i−1, j) and (i, j−1)
are immediately used (assuming that we loop across the domain with increas-
ing i and j). In other words, the algorithm (7.50) does not delay using the
most updated values. With this time saving also comes a saving of storage
as old values can be replaced by new values as soon as these are calculated.
Matrix B of equation (5.56) is triangular, and the Gauss–Seidel loop (7.50) is
the matrix inversion performed by backward substitution. The method is called
SOR, successive over-relaxation.

The use of the most recent ψ̃ values during the iterations accelerates conver-
gence but not in a drastic way. Only when the relaxation parameter ω is set at a
very particular value can the number of iterations be reduced significantly, from
O(M) down to O(

√
M) (see Numerical Exercise 7.6). Unfortunately, the opti-

mal value of ω depends on the geometry and type of boundary conditions, and
a small departure from the optimal value quickly deteriorates the convergence
rate. As a guideline, the optimal value behaves as

ω∼2−α 2π

m
(7.51)

for a square and isotropic grid with m grid points in each direction, and with
parameter α=O(1) depending on the nature of the boundary conditions.

Because of its easy implementation, the SOR method was very popular in
the early days of numerical modeling, but when vector and, later, parallel com-
puters appeared, some adaptation was required. The recurrence relationships
that appear in the loops do not allow to calculate ψ̃ (k+1)

i,j before the calculations

of ψ̃ (k+1)
i−1,j and ψ̃ (k+1)

i,j−1 are finished, and this prevents independent calculations
on parallel processors or vector machines. In response, the so-called red-black
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i

j

FIGURE 7.11 To avoid recurrence relationships, the discrete domain is swept by two loops, work-
ing on white and gray dots separately. During the loop updating white nodes, only values of the gray
nodes are used so that all white nodes can be updated independently and immediately. The reverse
holds for the gray nodes in the second loop, and all calculations may be performed in parallel.
Because the original algorithm is directly related to the so-called red-black partitioning of trees
(e.g., Hageman & Young, 2004), the nodes can be colored accordingly, and “red-black” is the name
given to the two-stage sweep mechanism.

methods were developed. These perform two Jacobi iterations on two interlaced
grids, nicknamed “red” and “black” (Fig. 7.11).

If we want to reduce further the computational burden associated with the
inversion of the Poisson equation, we must exploit the very special nature of
(7.48) and the resulting linear system to be solved. For the discrete version
(7.48) of the Poisson equation, the matrix A relating the unknowns, now stored
in an array x, is symmetric and positive definite (Numerical Exercise 7.10). In
this case, the solution of Ax=b is equivalent to solving the minimization of

J= 1

2
xTAx−xTb (7.52)

∇xJ=Ax−b (7.53)

with respect to x. We then have to search for minima rather than to solve a
linear equation and, though apparently more complicated, the task can also be
tackled by iterative methods. The minimum of J is reached when the gradient
with respect to x is zero: ∇xJ=0. This is the case when the residual r=Ax−b
is zero, that is, when the linear problem is solved.

The use of a minimization approach (e.g., Golub & Van Loan, 1990) instead
of a linear-system solver relies on the possibility of using efficient minimiza-
tion methods. The gradient of J, the residual, is easily calculated and only takes
4M operations for the matrix A arising from the discrete Poisson equation. The
value of J, if desired, is also readily obtained by calculating two scalar prod-
ucts involving the already available gradient. A standard minimization method
used in optimization problems is to minimize the residual J by following its
gradient. In this method, called the steepest descent method, a better estimate
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of x is sought in the direction in which J decreases fastest. Starting from x0 and
associated residual r=Ax0−b, a better estimate of x is sought as

x=x0−αr, (7.54)

which is reminiscent of a relaxation method. The parameter α is then chosen to
minimize J. Because the form is quadratic in α, this can be achieved easily (see
Numerical Exercise 7.7) by taking

α= rTr
rT Ar

(7.55)

which, because A is positive definite, can always be calculated as long as the
residual is nonzero. If the residual vanishes, iterations can be stopped because
the solution has been found. Otherwise, from the new estimate x, a new residual
and gradient are computed, and iterations proceed:

Initialize by first guess x(0)= x0

Loop on increasing k until the residual r is small enough

r=Ax(k)−b

α= rTr
rTAr

x(k+1)=x(k)−αr

End of loop on k.

where residual and optimal descent parameter α change at each iteration. It is
interesting to note that the residuals of two successive iterations are orthogonal
to each other (Numerical Exercise 7.7).

Although very natural, the approach does not converge rapidly, and con-
jugate gradient methods have been developed to provide better convergence
rates. In these methods, the direction of progress is no longer the direction of
the steepest descent but is prescribed from among a set, noted ei. We then look
for the minimum along these possible directions:

x=x0−α1e1−α2e2−α3e3−·· ·−αMeM. (7.56)

If there are M vectors ei, chosen to be linearly independent, minimization with
respect to the M parameters αi will yield the exact minimum of J. So, instead of
searching for the M components of x, we search for the M parameters αi leading
to the optimal state x. This solves the linear system exactly. A simplification in
the calculations arises if we choose

eT
i Aej=0 when i 6= j (7.57)
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because in this case the quadratic form J takes the form

J = 1

2
xT

0Ax0−xT
0b

+α
2
1

2
eT

1Ae1−α1eT
1

(
Ax0−b

)
+α

2
2

2
eT

2Ae2−α2eT
2

(
Ax0−b

)
+·· ·

+α
2
M

2
eT

MAeM−αMeT
M

(
Ax0−b

)
. (7.58)

This expression is readily minimized with respect to each parameter αk and
yields, with r0=Ax0−b,

αk=
eT

k r0

eT
k Aek

, k=1, . . . ,M (7.59)

In other words, to reach the global minimum and thus the solution of the
linear system, we simply have to minimize each term individually. However,
the difficulty is that the construction of the set of directions ek is compli-
cated. Hence, the idea is to proceed step by step and construct the directions
as we iterate, with the plan of stopping iterations when residuals have become
small enough. We can start with a first arbitrary direction, typically the steep-
est descent e1=Ax0−b. Then, once we have a set of k directions that satisfy
Eq. (7.57), we only minimize along direction ek by Eq. (7.59):

x(k)=x(k−1)−αkek. (7.60)

This leads to a new residual rk=Ax(k)−b

rk= rk−1−αkAek

= r0−α1Ae1−α2Ae2−·· ·−αkAek. (7.61)

This shows that, instead of calculating αk according to Eq. (7.59), we can
use

αk=
eT

k rk−1

eT
k Aek

(7.62)

because of property (7.57). We can interpret this result together with (7.61) by
showing that the successive residuals are orthogonal to all previous search direc-
tions ei so that no new search in those directions is needed. Expression (7.62)
is also more practical because it requires the storage of only the residual calcu-
lated at the previous iteration. The construction of the next direction ek+1 is then
performed by a variation of the Gram–Schmidt orthogonalization process of a
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series of linearly independent vectors. The conjugate gradient method chooses
for this set of vectors the residuals already calculated, which can be shown to be
orthogonal to one another and hence linearly independent. When applying the
Gram–Schmidt orthogonalization in the sense of Eq. (7.57), it turns out that the
new direction ek+1 is surprisingly easy to calculate in terms of the last residuals
and search direction (e.g., Golub & Van Loan, 1990):

ek+1= rk+
‖rk‖2
‖rk−1‖2

ek (7.63)

from which we can proceed to the next step. The algorithm is therefore only
slightly more complicated than the steepest-descent method, and we note that
we no longer need to store all residuals or search directions, not even interme-
diate values of x. Only the most recent one needs to be stored at any moment
for the following algorithm:

Initialize by first guess

x(0)=x0, r0=Ax0−b, e1= r0, s0=‖r0‖2
Loop on increasing k until the residual r is small enough

αk=
eT

k rk−1

eT
k Aek

x(k)=x(k−1)−αkek

rk= rk−1−αkAek

sk=‖rk‖2

ek+1= rk+
sk

sk−1
ek

End of loop on k.

Because we minimize independent terms, we are sure to reach the minimum
of J in M steps, within rounding errors. For the conjugate-gradient method, the
exact solution is therefore obtained within M iterations, and the overall cost of
our special sparse matrix inversion arising from the two-dimensional discrete
Poisson equation behaves as M2. However, there is no need to find the exact
minimum, and in practice, only a certain number of successive minimizations
are necessary, and convergence is generally obtained within M3/2 operations.
This does not seem an improvement over the optimal over-relaxation, but the
conjugate-gradient method is generally robust and has no need of an over-
relaxation parameter. If in addition a proper preconditioning is applied, it can
lead to spectacular convergence rates.

Preconditioning needs to preserve the symmetry of the problem and is per-
formed by introducing a sparse triangular matrix L and writing the original
problem as

L−1AL−TLTx=L−1b, (7.64)
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so that we now work with the new unknown LTx and modified matrix L−1AL−T.
This matrix is symmetric, and, if L is chosen correctly, also positive definite if
A is. The resulting algorithm, involving the modified matrix and unknown, is
very close to the original conjugate-gradient algorithm after clever rearrange-
ment of the matrix-vector products. The only difference is the appearance of
M−1r, where M−1=L−TLT. Because u=M−1r is the solution of Mu= r, the
sparseness and triangular nature of L allows us to perform this operation quite
efficiently. If L=C is obtained from a Cholesky decomposition of the symmet-
ric positive-definite matrix A=CCT, where C is a triangular matrix, a single
step of the conjugate-gradient method would suffice because the inversion of
A would be directly available. For this reason, L is often constructed by the
Cholesky decomposition but with incomplete and cost-effective calculations,
imposing on L a given sparse pattern. This leads to the incomplete Cholesky
preconditioning4 and reduces the cost of the decomposition but increases the
number of iterations needed compared to a situation in which the full Cholesky
decomposition is available. On the other hand, it generally reduces the number
of iterations compared to the version without preconditioning. An optimum is
therefore to be found in the amount of preconditioning, and the particular choice
of preconditioning is problem dependent. Stability of the iterations might be an
occasional problem.

Most linear-algebra packages contain conjugate-gradient methods including
generalizations to solve nonsymmetric problems. In this case, we can consider
the augmented (double) problem(

0 A
AT 0

)(
y
x

)
=
(

b
c

)
(7.65)

which is symmetric and possesses the same solution x.
More efficient solution methods for special linear systems, such as our Pois-

son equation, exist and exhibit a close relationship with Fast Fourier Transforms
(FFT, see Appendix C). The cyclic block reduction methods (e.g., Ferziger &
Perić, 1999), for example, can be applied when the discretization constants are
uniform and boundary conditions simple. But in such a case, we could also use
a spectral method coupled with FFT for immediate inversion of the Laplacian
operator (see Section 18.4). In these methods, costs can be reduced down to
M logM.

Finally, the most efficient methods for very large problems are multigrid
methods. These start from the observation that the pseudo-evolution approach
mimics diffusion, which generally acts more efficiently at smaller scales [see
damping rates of discrete diffusion operators (5.34)], leaving larger scales
to converge more slowly. But these larger scales can be made to appear as

4More generally, an incomplete LU decomposition approximates any matrix A by the product of
lower and upper sparse triangular matrices.
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relatively shorter scales on a grid with wider grid spacing so that their conver-
gence can be accelerated (using, incidentally, a larger pseudo-time step). Thus,
introducing a hierarchy of grids, as a multigrid method does, accelerates con-
vergence by iterating on different grids for different length scales. Typically,
the method begins with a very coarse grid, on which a few iterations lead to
a good estimate of the broad shape of the solution. This solution is then inter-
polated onto a finer grid on which several more iterations are performed, and
so on down to the ultimate resolution of interest. The iterations may also be
redone on the coarser grids after some averaging to estimate the broad solution
from the finer grid. Multigrid methods, therefore, cycle through different grids
(e.g., Hackbusch, 1985), and the art is to perform the right number of iterations
on each grid and to choose wisely the next grid on which to iterate (finer or
coarser). For well-chosen strategies, the number of operations required for con-
vergence behaves asymptotically as M, and multigrid methods are therefore the
most effective ones for very large problems. Iterations on each of the grids may
be of red-black type with over-relaxation or any other method with appropriate
convergence properties.

We only scratched here the surface of the problem of solving large and
sparse linear algebraic systems to give a flavor of the possible approaches, and
the reader should be aware that there is a large number of numerical solvers
available for specific problems. Since these are optimized for specific computer
hardware, the practical and operational task of large-system inversion of the dis-
crete Poisson equation should be left to libraries provided with the computing
system available. Only the choice of when to stop the iterations and the proper
preconditioning strategy should be left to the modeler.

ANALYTICAL PROBLEMS

7.1. A laboratory experiment is conducted in a cylindrical tank 20 cm in
diameter, filled with homogeneous water (15 cm deep at the center) and
rotating at 30 rpm. A steady flow field with maximum velocity of 1 cm/s
is generated by a source-sink device. The water viscosity is 10−6 m2/s.
Verify that this flow field meets the conditions of geostrophy.

7.2. (Generalization of the Taylor–Proudman theorem) By reinstating the
f∗–terms of equations (3.19) and (3.22) into (7.2a) and (7.2c) show that
motions in fluids rotating rapidly around an axis not parallel to gravity
exhibit columnar behavior in the direction of the axis of rotation.

7.3. Demonstrate the assertion made at the end of Section 7.2, namely,
that geostrophic flows between irregular bottom and top boundaries are
constrained to be directed along lines of constant fluid depth.

7.4. Establish Eq. (7.22) for the evolution of a parcel’s horizontal cross section
from first principles.
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FIGURE 7.12 Schematic view of a
hypothetical system as described in
Analytical Problem 7.5.

7.5. In a fluid of depth H rapidly rotating at the rate f /2 (Fig. 7.12), there
exists a uniform flow U. Along the bottom (fixed), there is an obstacle
of height H′ (<H/2), around which the flow is locally deflected, leaving
a quiescent Taylor column. A rigid lid, translating in the direction of the
flow at speed 2U, has a protrusion identical to the bottom obstacle, also
locally deflecting the otherwise uniform flow and entraining another qui-
escent Taylor column. The two obstacles are aligned with the direction of
motion so that there will be a time when both are superimposed. Assum-
ing that the fluid is homogeneous and frictionless, what do you think will
happen to the Taylor columns?

7.6. As depicted in Fig. 7.13, a vertically uniform but laterally sheared coastal
current must climb a bottom escarpment. Assuming that the jet veloc-
ity still vanishes offshore, determine the velocity profile and the width
of the jet downstream of the escarpment using H1=200 m, H2=160 m,
U1=0.5 m/s, L1=10 km, and f =10−4 s−1. What would happen if the
downstream depth were only 100 m?

7.7. What are the differences in dynamic pressure across the coastal jet of
Problem 7.6 upstream and downstream of the escarpment? Take H2=
160 m and ρ0=1022 kg/m3.

7.8. In Utopia, a narrow 200-m-deep channel empties in a broad bay of vary-
ing bottom topography (Fig. 7.14). Trace the path to the sea and the
velocity profile of the channel outflow. Take f =10−4 s−1. Solve only for
straight stretches of the flow and ignore corners.

7.9. A steady ocean current of uniform potential vorticity q=5×
10−7 m−1s−1 and volume flux Q=4×105 m3/s flows along isobaths of
a uniformly sloping bottom (with bottom slope S=1 m/km). Show that
the velocity profile across the current is parabolic. What are the width
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FIGURE 7.13 A sheared coastal jet negotiating a bottom escarpment (Problem 7.6).
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FIGURE 7.14 Geometry of the idealized bay and channel mentioned in Analytical Problem 7.8.

of the current and the depth of the location of maximum velocity? Take
f =7×10−5 s−1.

7.10. Show that the rigid-lid approximation can also be obtained by assum-
ing that the vertical velocity at top is much smaller than at the bottom.
Establish the necessary scaling conditions that support your assumptions.

NUMERICAL EXERCISES

7.1. An atmospheric pressure field p over a flat bottom is given on a rectangular
grid according to

pi,j=PH exp(−r2/L2)+pε ξi,j r2= (xi−xc)
2+(yj−yc)

2 (7.66)
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where ξ is a normal (Gaussian) random variable of zero mean and unit
standard deviation. The high pressure anomaly is of PH=40 hPa and its
radius L= 1000 km. For the noise level, take pε=5 hPa. Use a rectangular
grid centered around xc, yc with a uniform grid spacing1x=1y=50 km.
Calculate and plot the associated geostrophic currents for f = 10−4 s−1.
To which extent is volume conservation satisfied in your finite-difference
scheme? What happens if pε=10 hPa or 1x=1y= 25 km? Can you
interpret your finding?

7.2. Open file madt oer merged h 18861.nc and use the sea surface height
reconstructed from satellite data to calculate geostrophic ocean cur-
rents around the Gulf Stream. Data can be read with topexcircula-
tion.m. For conversion from latitude and longitude to local Cartesian
coordinates, 1◦ latitude = 111 km and 1◦ longitude = 111km×cos
(latitude). (Altimeter data are products of the CLS Space Oceanography
Division; see also Ducet, Le Traon & Reverdin, 2000).

7.3. Use the meteorological pressure field at sea level to calculate geostrophic
winds over Europe. First use the December 2000 monthly average sea-
level pressure, then look at daily variations. Era40.m will help you read
the data. Take care of using the local Coriolis parameter value. Geo-
graphical distances can be calculated from the conversion factors given
in Numerical Exercise 7.2.

What happens if you redo your calculations in order to plan your sail-
ing trip in the northern part of Lake Victoria? (ECMWF ERA-40 data were
obtained from the ECMWF data server)

7.4. Use the red-black approach to calculate the numerical solution of
Eq. (7.48) inside the basin depicted in Fig. 7.15, with q̃i,j=−1 on the
right-hand side of the equation and ψ̃i,j=0 along all boundaries. Imple-
ment a stopping criterion based on a relative measure of the residual
compared to b.

7.5. Use the conjugate-gradient implementation called in testpcg.m to solve
the problem of Numerical Exercise 7.4 with improved convergence.

7.6. Redo Numerical Exercise 7.4 with the Gauss–Seidel approach using over-
relaxation and several values of ω between 0.7 and 1.999. For each value
of ω, start from zero and converge until reaching a preset threshold for
the residual. Plot the required number of iterations until convergence as
a function of ω. Design a numerical tool to find the optimal value of ω
numerically. Then repeat the problem by varying the spatial resolution,
taking successively 20, 40, 60, 80, and 100 grid points in each direction.
Look at the number of iterations and the optimal value of ω as functions
of resolution.
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FIGURE 7.15 Geometry of
the idealized basin mentioned in
Numerical Exercise 7.4.

7.7. Prove that the parameter α given by Eq. (7.55) leads to a minimum of J
defined in Eq. (7.52), for a given starting point and fixed gradient r. Also
prove that at the next iteration of the steepest-descent method, the new
residual is orthogonal to the previous residual. Implement the steepest-
descent algorithm to find the minimum of Eq. (7.52) with

A=
(

3 1
1 1

)
, b=

(
6
2

)
(7.67)

starting at the origin of the axes. Observe the successive approximations
obtained by the method. (Hint: In the plane defined by the two unknowns,
plot isolines of J and plot the line connecting the successive approximations
to the solution. Make several zooms near the solution point.)

7.8. Write a general solver for the Poisson equation as a MatlabTM function. Pro-
vide for masked grids and a variable rectangular grid such that1x depends
on i and1y on j. Also permit variable coefficients in the Laplacian operator,
as found in Eq. (7.44) and apply to the following situation.

In shallow, wind-driven basins, such as small lakes and lagoons, the
flow often strikes a balance between the forces of surface wind, pres-
sure gradient, and bottom friction. On defining a streamfunction ψ and
eliminating the pressure gradient, one obtains for steady flow (Mathieu,
Deleersnijder, Cushman-Roisin, Beckers & Bolding, 2002):

∂

∂x

(
2νE

h3

∂ψ

∂x

)
+ ∂

∂y

(
2νE

h3

∂ψ

∂y

)
= ∂

∂y

(
τ x

ρ0h

)
− ∂

∂x

(
τ y

ρ0h

)
, (7.68)

where νE is the vertical eddy viscosity, h(x,y) is the local bottom depth,
and (τ x, τ y) the components of the surface wind stress. In the application,
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FIGURE 7.16 Model of the Bering Sea for Numerical Exercise 7.9. For the calculation of the
streamfunction, assume that West of −169◦ longitude all land points have a prescribed streamfunc-
tion91=0 and those to the East92= 0.8 Sv (1 Sv= 106 m3/s). For convenience, you may consider
closing the western and eastern boundary completely and imposing a zero normal derivative of 9
along the open boundaries.

take νE=10−2 m2/s, ρ0=1000 kg/m3, h(x,y)=50−(x2+4y2/10) (in m,
with x and y in km), τ x=0.1 N/m2, and τ y=0 within the elliptical domain
x2+4y2≤400 km2.

7.9. Use the tool developed in Numerical Exercise 7.8 to simulate the station-
ary flow across the Bering Sea, assuming the right-hand side of Eq. (7.68)
is zero. Use beringtopo.m to read the topography of Fig. 7.16. To pass
from latitude and longitude to Cartesian coordinates, use the conversion
factors given in Numerical Exercise 7.2 but with cos(latitude) taken as
cos(66.5◦N) to obtain a rectangular grid. Compare your solution to the
case of uniform average depth in place of the real topography, maintaining
the same land mask.

7.10. Prove that matrix A arising from the discretization of Eq. (7.48) is sym-
metric and positive definite if we change the sign of each side. Show also
that the latter property ensures zTAz>0 for any z 6=0.

7.11. Calculate the amplification factor of Gauss–Seidel iterations including
over-relaxation. Can you infer the optimal over-relaxation coefficient for
Dirichlet conditions? (Hint: The optimal parameter will ensure that the
slowest damping is accomplished as fast as possible.)



Chapter | 7 Geostrophic Flows and Vorticity Dynamics 237

Geoffrey Ingram Taylor
1886–1975

Considered one of the great physicists of the twentieth century, Sir Geoffrey
Taylor contributed enormously to our understanding of fluid dynamics.
Although he did not envision the birth and development of geophysical fluid
dynamics, his research on rotating fluids laid the foundation for the discipline.
His numerous contributions to science also include seminal work on turbu-
lence, aeronautics, and solid mechanics. With a staff consisting of a single
assistant engineer, he maintained a very modest laboratory, constantly prefer-
ring to undertake entirely new problems and to work alone. (Photo courtesy of
Cambridge University Press)
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James Cyrus McWilliams
1946–

A student of George Carrier at Harvard University, James McWilliams is a pio-
neer in the synthesis of mathematical theory and computational simulation in
geophysical fluid dynamics. A central theme of his research is how advection
produces the peculiar combinations of global order and local chaos—and vice
versa—evident in oceanic currents, as well as analogous phenomena in atmo-
spheric and astrophysical flows. His contributions span a formidable variety of
topics across the disciplines of rotating and stratified flows, waves, turbulence,
boundary layers, oceanic general circulation, and computational methods.

McWilliams’ scientific style is the pursuit of phenomenological discovery
in the virtual reality of simulations, leading, “on good days,” to dynamical
understanding and explanation and to confirmation in nature. (Photo credit:
J. C. McWilliams)



Chapter 8

The Ekman Layer

ABSTRACT
Frictional forces, neglected in the previous chapter, are now investigated. Their main
effect is to create horizontal boundary layers that support a flow transverse to the main
flow of the fluid. The numerical treatment of the velocity profiles dominated by friction
is illustrated with a spectral approach.

8.1 SHEAR TURBULENCE

Because most geophysical fluid systems are much shallower than they are wide,
their vertical confinement forces the flow to be primarily horizontal. Unavoid-
able in such a situation is friction between the main horizontal motion and
the bottom boundary. Friction acts to reduce the velocity in the vicinity of the
bottom, thus creating a vertical shear. Mathematically, if u is the velocity com-
ponent in one of the horizontal directions and z the elevation above the bottom,
then u is a function of z, at least for small z values. The function u(z) is called
the velocity profile and its derivative du/dz, the velocity shear.

Geophysical flows are invariably turbulent (high Reynolds number), and this
greatly complicates the search for the velocity profile. As a consequence, much
of what we know is derived from observations of actual flows, either in the
laboratory or in the nature.

The turbulent nature of the shear flow along a flat or rough surface includes
variability at short time and length scales, and the best observational techniques
for the detailed measurements of these have been developed for the laboratory
rather than outdoor situations. Laboratory measurements of nonrotating turbu-
lent flows along smooth straight surfaces have led to the conclusion that the
velocity varies solely with the stress τb exerted against the bottom, the fluid
molecular viscosity ν, the fluid density ρ and, of course, the distance z above
the bottom. Thus,

u(z)=F(τb,ν,ρ,z).
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Dimensional analysis permits the elimination of the mass dimension shared by
τb and ρ but not present in u, ν, and z, and we may write more simply:

u(z)=F

(
τb

ρ
,ν,z

)
.

The ratio τb/ρ has the same dimension as the square of a velocity, and for
this reason, it is customary to define

u∗=
√
τb

ρ
, (8.1)

which is called the friction velocity or turbulent velocity. Physically, its value is
related to the orbital velocity of the vortices that create the cross-flow exchange
of particles and the momentum transfer.

The velocity structure thus obeys a relation of the form u(z)=F(u∗,ν,z),
and further use of dimensional analysis reduces it to a function of a single
variable:

u(z)

u∗
=F

(u∗z
ν

)
. (8.2)

In the presence of rotation, the Coriolis parameter enters the formalism, and the
preceding function depends on two variables:

u(z)

u∗
=F

(
u∗z
ν
,

fz

u∗

)
. (8.3)

8.1.1 Logarithmic Profile

The observational determination of the function F in the absence of rotation
has been repeated countless times, yielding the same results every time, and it
suffices here to provide a single report (Fig. 8.1). When the velocity ratio u/u∗
is plotted versus the logarithm of the dimensionless distance u∗z/ν, not only do
all the points coalesce onto a single curve, confirming that there is indeed no
other variable to be invoked, but the curve also behaves as a straight line over a
range of two orders of magnitude (from u∗z/ν between 101 and 103).

If the velocity is linearly dependent on the logarithm of the distance, then
we can write for this portion of the velocity profile:

u(z)

u∗
=A ln

u∗z
ν
+B.

Numerous experimental determinations of the constants A and B provide
A=2.44 and B=5.2 within a 5% error (Pope, 2000). Tradition has it to write
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FIGURE 8.1 Mean velocity profiles in fully developed turbulent channel flow measured by Wei
and Willmarth (1989) at various Reynolds numbers: circles Re=2970, squares Re=14914, upright
triangles Re = 22776, and downright triangles Re=39582. The straight line on this log-linear plot
corresponds to the logarithmic profile of Eq. (8.2). (From Pope, 2000)

the function as:

u(z)= u∗
K

ln
u∗z
ν
+5.2u∗, (8.4)

where K=1/A=0.41 is called the von Kármán constant1

The portion of the curve closer to the wall, where the logarithmic law fails,
may be approximated by the laminar solution. Constant laminar stress νdu/dz=
τb/ρ=u2

∗ implies u(z)=u2
∗z/ν there. Ignoring the region of transition in which

the velocity profile gradually changes from one solution to the other, we can
attempt to connect the two. Doing so yields u∗z/ν=11. This sets the thickness
of the laminar boundary layer δ as the value of z for which u∗z/ν=11, that is,

δ=11
ν

u∗
. (8.5)

Most textbooks (e.g., Kundu, 1990) give δ=5ν/u∗, for the region in which
the velocity profile is strictly laminar, and label the region between 5ν/u∗

1 In honor of Theodore von Kármán (1881–1963), Hungarian-born physicist and engineer who made
significant contributions to fluid mechanics while working in Germany and who first introduced this
notation.
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z � 0

u(z)
z

z � z0

FIGURE 8.2 Velocity profile in the vicinity of a rough wall. The roughness height z0 is smaller
than the averaged height of the surface asperities. So, the velocity u falls to zero somewhere within
the asperities, where local flow degenerates into small vortices between the peaks, and the negative
values predicted by the logarithmic profile are not physically realized.

and 30ν/u∗ as the buffer layer, the transition zone between laminar and fully
turbulent flow.

For water in ambient conditions, the molecular viscosity ν is equal to
1.0×10−6 m2/s, whereas the friction velocity in the ocean rarely falls below
1 mm/s. This implies that δ hardly exceeds a centimeter in the ocean and is almost
always smaller than the height of the cobbles, ripples, and other asperities that
typically line the bottom of the ocean basin. Similarly for the atmosphere, the
air viscosity at ambient temperature and pressure is about 1.5×10−5 m2/s, and
u∗ rarely falls below 1 cm/s, giving δ<5 cm, smaller than most irregularities on
land and wave heights at sea.

When this is the case, the velocity profile above the bottom asperities no
longer depends on the molecular viscosity of the fluid but on the so-called
roughness height z0, such that

u(z)= u∗
K

ln
z

z0
, (8.6)

as depicted in Fig. 8.2. It is important to note that the roughness height is not
the average height of bumps on the surface but is a small fraction of it, about
one tenth (Garratt, 1992, page 87).

8.1.2 Eddy Viscosity

We have already mentioned in Section 5.2 what an eddy diffusivity or viscosity
is and how it can be formulated in the case of a homogeneous turbulence field,
that is, away from boundaries. Near a boundary, the turbulence ceases to be
isotropic and an alternate formulation needs to be developed.

In analogy with Newton’s law for viscous fluids, which has the tangen-
tial stress τ proportional to the velocity shear du/dz with the coefficient of
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proportionality being the molecular viscosity ν, we write for turbulent flow:

τ =ρ0νE
du

dz
, (8.7)

where the turbulent viscosity νE supersedes the molecular viscosity ν. For the
logarithmic profile (8.6) of a flow along a rough surface, the velocity shear is
du/dz=u∗/Kz and the stress τ is uniform across the flow (at least in the vicinity
of the boundary for lack of other significant forces): τ = τb=ρu2

∗, giving

ρ0u2
∗=ρ0νE

u∗
Kz

and thus

νE=Kzu∗. (8.8)

Note that unlike the molecular viscosity, the turbulent viscosity is not constant
in space, for it is not a property of the fluid but of the flow, including its struc-
ture. From its dimension (L2T−1), we verify that Eq. (8.8) is dimensionally
correct and note that it can be expressed as the product of a length by the friction
velocity:

νE= lmu∗, (8.9)

with the mixing length lm defined as

lm=Kz. (8.10)

This parameterization is occasionally used for cases other than boundary layers
(see Chapter 14).

The preceding considerations ignored the effect of rotation. When rotation
is present, the character of the boundary layer changes dramatically.

8.2 FRICTION AND ROTATION

After the development of the equations governing geophysical motions
(Sections 4.1 to 4.4), a scale analysis was performed to evaluate the relative
importance of the various terms (Section 4.5). In the horizontal momentum
equations [(4.21a) and (4.21b)], each term was compared with the Coriolis term,
and a corresponding dimensionless ratio was defined. For vertical friction, the
dimensionless ratio was the Ekman number:

Ek= νE

�H2
, (8.11)

where νE is the eddy viscosity, � the ambient rotation rate, and H the height
(depth) scale of the motion (the total thickness if the fluid is homogeneous).
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Typical geophysical flows, as well as laboratory experiments, are characte-
rized by very small Ekman numbers. For example, in the ocean at midlatitudes
(�'10−4 s−1), motions modeled with an eddy-intensified viscosity νE=
10−2 m2/s (much larger than the molecular viscosity of water, equal to 1.0×
10−6 m2/s) and extending over a depth of about 1000 m have an Ekman number
of about 10−4.

The smallness of the Ekman number indicates that vertical friction plays a
very minor role in the balance of forces and may, consequently, be omitted from
the equations. This is usually done and with great success. However, something
is then lost. The frictional terms happen to be those with the highest order of
derivatives among all terms of the momentum equations. Thus, when friction is
neglected, the order of the set of differential equations is reduced, and not all
boundary conditions can be applied simultaneously. Usually, slipping along the
bottom must be accepted.

Since Ludwig Prandtl2 and his general theory of boundary layers, we know
that in such a circumstance, the fluid system exhibits two distinct behaviors:
At some distance from the boundaries, in what is called the interior, friction is
usually negligible, whereas, near a boundary (wall) and across a short distance,
called the boundary layer, friction acts to bring the finite interior velocity to
zero at the wall.

The thickness, d, of this thin layer is such that the Ekman number is on the
order of one at that scale, allowing friction to be a dominant force:

νE

�d2
∼1,

which leads to

d∼
√
νE

�
. (8.12)

Obviously, d is much less than H, and the boundary layer occupies a very small
portion of the flow domain. For the oceanic values cited above (νE=10−2 m2/s
and �=10−4 s−1), d is about 10 m.

Because of the Coriolis effect, the frictional boundary layer of geophysi-
cal flows, called the Ekman layer, differs greatly from the boundary layer in
nonrotating fluids. Although, the traditional boundary layer has no particular
thickness and grows either downstream or with time, the existence of the depth
scale d in rotating fluids suggests that the Ekman layer can be characterized by a
fixed thickness. (Note that as the rotational effects disappear (�→0), d tends to
infinity, exemplifying this essential difference between rotating and nonrotating
fluids.) Rotation not only imparts a fixed length scale to the boundary layer, but
we will now show that it also changes the direction of the velocity vector when
approaching the boundary, leading to transverse currents.

2 See biography at the end of this chapter.
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8.3 THE BOTTOM EKMAN LAYER

Let us consider a uniform, geostrophic flow in a homogeneous fluid over a flat
bottom (Fig. 8.3). This bottom exerts a frictional stress against the flow, bringing
the velocity gradually to zero within a thin layer above the bottom. We now
solve for the structure of this layer.

In the absence of horizontal gradients (the interior flow is said to be uniform)
and of temporal variations, continuity equation (4.21d) yields ∂w/∂z=0 and
thus w=0 in the thin layer near the bottom. The remaining equations are the
following reduced forms of Eq. (4.21a) through Eq. (4.21c):

− f v=− 1

ρ0

∂p

∂x
+νE

∂2u

∂z2
(8.13a)

+ fu=− 1

ρ0

∂p

∂y
+νE

∂2v

∂z2
(8.13b)

0=− 1

ρ0

∂p

∂z
, (8.13c)

where f is the Coriolis parameter (taken as a constant here), ρ0 is the fluid
density, and νE is the eddy viscosity (taken as a constant for simplicity). The
horizontal gradient of the pressure p is retained because a uniform flow requires
a uniformly varying pressure (Section 7.1). For convenience, we align the
x-axis with the direction of the interior flow, which is of velocity ū. The
boundary conditions are then

Bottom (z=0) : u=0, v=0, (8.14a)

Toward the interior (z�d) : u= ū, v=0, p= p̄(x,y). (8.14b)

By virtue of Eq. (8.13c), the dynamic pressure p is the same at all depths;
thus, p= p̄(x,y) in the interior flow as well as throughout the boundary layer.

u � 0

z

z � 0

Ekman
layer

Interior

du(z)

u � ū

FIGURE 8.3 Frictional influence of a flat bottom on a uniform flow in a rotating framework.
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In the interior flow (z�d, mathematically equivalent to z→∞), Eqs. (8.13a)
and (8.13b) relate the velocity to the pressure gradient:

0=− 1

ρ0

∂ p̄

∂x
,

f ū=− 1

ρ0

∂ p̄

∂y
= independent of z.

Substitution of these derivatives in the same equations, which are now taken at
any depth, yields

−f v=νE
d2u

dz2
(8.15a)

f (u− ū)=νE
d2v

dz2
. (8.15b)

Seeking a solution of the type u= ū+Aexp(λz) and v=Bexp(λz), we find that
λ obeys ν2λ4+ f 2=0; that is,

λ=±(1± i)
1

d

where the distance d is defined by

d=
√

2νE

f
. (8.16)

Here, we have restricted ourselves to cases with positive f (northern hemi-
sphere). Note the similarity to Eq. (8.12). Boundary conditions (8.14b) rule out
the exponentially growing solutions, leaving

u= ū+e−z/d
(

Acos
z

d
+Bsin

z

d

)
(8.17a)

v= e−z/d
(

Bcos
z

d
−Asin

z

d

)
, (8.17b)

and the application of the remaining boundary conditions (8.14a) yields A=−ū,
B=0, or

u= ū
(

1−e−z/d cos
z

d

)
(8.18a)

v= ūe−z/d sin
z

d
. (8.18b)

This solution has a number of important properties. First and foremost, we
notice that the distance over which it approaches the interior solution is on the
order of d. Thus, expression (8.16) gives the thickness of the boundary layer. For
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FIGURE 8.4 The velocity spiral in the bottom Ekman layer. The figure is drawn for the northern
hemisphere ( f >0), and the deflection is to the left of the current above the layer. The reverse holds
for the southern hemisphere.

this reason, d is called the Ekman depth. A comparison with Eq. (8.12) confirms
the earlier argument that the boundary-layer thickness is the one corresponding
to a local Ekman number near unity.

The preceding solution also tells us that there is, in the boundary layer, a
flow transverse to the interior flow (v 6=0). Very near the bottom (z→0), this
component is equal to the downstream velocity (u∼v∼ ūz/d), thus implying
that the near-bottom velocity is at 45 degrees to the left of the interior velocity
(Fig. 8.4). (The boundary flow is to the right of the interior flow for f <0.)
Further up, where u reaches a first maximum (z=3πd/4), the velocity in the
direction of the flow is greater than in the interior (u=1.07ū). (Viscosity can
occasionally fool us!)

It is instructive to calculate the net transport of fluid transverse to the main
flow:

V=
∞∫

0

v dz= ūd

2
, (8.19)

which is proportional to the interior velocity and the Ekman depth.

8.4 GENERALIZATION TO NONUNIFORM CURRENTS

Let us now consider a more complex interior flow, namely, a spatially nonuni-
form flow that is varying on a scale sufficiently large to be in geostrophic
equilibrium (low Rossby number, as in Section 7.1). Thus,

−f v̄=− 1

ρ0

∂ p̄

∂x
, f ū=− 1

ρ0

∂ p̄

∂y
,
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where the pressure p̄(x,y, t) is arbitrary. For a constant Coriolis parameter, this
flow is nondivergent (∂ ū/∂x+∂ v̄/∂y=0). The boundary-layer equations are
now

−f (v− v̄)=νE
∂2u

∂z2
(8.20a)

f (u− ū)=νE
∂2v

∂z2
, (8.20b)

and the solution that satisfies the boundary conditions aloft (u→ ū and v→ v̄
for z→∞) is

u= ū+e−z/d
(

Acos
z

d
+Bsin

z

d

)
(8.21)

v= v̄+e−z/d
(

Bcos
z

d
−Asin

z

d

)
. (8.22)

Here, the “constants” of integration A and B are independent of z but will be
dependent on x and y through ū and v̄. Imposing u=v=0 along the bottom
(z=0) sets their values, and the solution is

u= ū
(

1−e−z/d cos
z

d

)
− v̄e−z/d sin

z

d
(8.23a)

v= ūe−z/d sin
z

d
+ v̄

(
1−e−z/d cos

z

d

)
. (8.23b)

The transport attributed to the boundary-layer flow has components given by

U=
∞∫

0

(u− ū)dz=−d

2
(ū+ v̄) (8.24a)

V=
∞∫

0

(v− v̄)dz= d

2
(ū− v̄) . (8.24b)

Since this transport is not necessarily parallel to the interior flow, it is likely to
have a nonzero divergence. Indeed,

∂U

∂x
+ ∂V

∂y
=
∞∫

0

(
∂u

∂x
+ ∂v
∂y

)
dz=−d

2

(
∂ v̄

∂x
− ∂ ū

∂y

)

=− d

2ρ0 f
∇2p̄. (8.25)

The flow in the boundary layer converges or diverges if the interior flow
has a relative vorticity. The situation is depicted in Fig. 8.5. The question is:
From where does the fluid come, or where does it go, to meet this convergence
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FIGURE 8.5 Divergence in the bottom Ekman layer and compensating downwelling in the inte-
rior. Such a situation arises in the presence of an anticyclonic gyre in the interior, as depicted by the
large horizontal arrows. Similarly, interior cyclonic motion causes convergence in the Ekman layer
and upwelling in the interior.

or divergence? Because of the presence of a solid bottom, the only possibility
is that it be supplied from the interior by means of a vertical velocity. But,
remember (Section 7.1) that geostrophic flows must be characterized by

∂w̄

∂z
=0, (8.26)

that is, the vertical velocity must occur throughout the depth of the fluid. Of
course, since the divergence of the flow in the Ekman layer is proportional to
the Ekman depth, d, which is very small, this vertical velocity is weak.

The vertical velocity in the interior, called Ekman pumping, can be evaluated
by a vertical integration of the continuity equation (4.21d), using w(z=0)=0
and w(z→∞)= w̄:

w̄=−
∞∫

0

(
∂u

∂x
+ ∂v
∂y

)
dz= d

2

(
∂ v̄

∂x
− ∂ ū

∂y

)

= d

2ρ0 f
∇2p̄= 1

ρ0

√
νE

2f 3
∇2p̄. (8.27)

So, the greater the vorticity of the mean flow, the greater the upwelling or
downwelling. Also, the effect increases toward the equator (decreasing f =
2�sinϕ and increasing d). The direction of the vertical velocity is upward in
a cyclonic flow (counterclockwise in the northern hemisphere) and downward
in an anticyclonic flow (clockwise in the northern hemisphere).

In the southern hemisphere, where f <0, the Ekman layer thickness d must
be redefined with the absolute value of f : d=√2νE/| f |, but the previous rule
remains: the vertical velocity is upward in a cyclonic flow and downward in
an anticyclonic flow. The difference is that cyclonic flow is clockwise and
anticyclonic flow is counterclockwise.
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8.5 THE EKMAN LAYER OVER UNEVEN TERRAIN

It is noteworthy to explore how an irregular topography may affect the struc-
ture of the Ekman layer and, in particular, the magnitude of the vertical velocity
in the interior. For this, consider a horizontal geostrophic interior flow (ū, v̄),
not necessarily spatially uniform, over an uneven terrain of elevation z=b(x,y)
above a horizontal reference level. To be faithful to our restriction (Section 4.3)
to geophysical flows much wider than they are thick, we shall assume that
the bottom slope (∂b/∂x, ∂b/∂y) is everywhere small (�1). This is hardly a
restriction in most atmospheric and oceanic situations.

Our governing equations are again (8.20), coupled to the continuity equation
(4.21d), but the boundary conditions are now

Bottom (z=b) : u=0, v=0, w=0, (8.28)

Toward the interior (z�b+d) : u= ū, v= v̄. (8.29)

The solution is the previous solution (8.23) with z replaced by z−b:

u= ū−e(b−z)/d
(

ūcos
z−b

d
+ v̄ sin

z−b

d

)
(8.30a)

v= v̄+e(b−z)/d
(

ūsin
z−b

d
− v̄ cos

z−b

d

)
. (8.30b)

We note that the vertical thickness of the boundary layer is still measured by
d=√2νE/f . However, the boundary layer is now oblique, and its true thickness,
measured perpendicularly to the bottom, is slightly reduced by the cosine of the
small bottom slope.

The vertical velocity is then determined from the continuity equation:

∂w

∂z
=−∂u

∂x
− ∂v
∂y

= e(b−z)/d
{(

∂ v̄

∂x
− ∂ ū

∂y

)
sin

z−b

d

+ 1

d

∂b

∂x

[
(ū− v̄)cos

z−b

d
+(ū+ v̄)sin

z−b

d

]
+ 1

d

∂b

∂y

[
(ū+ v̄)cos

z−b

d
−(ū− v̄)sin

z−b

d

]}
,

where use has been made of the fact that the interior geostrophic flow has no
divergence [∂ ū/∂x+∂ v̄/∂y=0 – See (7.5)]. A vertical integration from the bot-
tom (z=b), where the vertical velocity vanishes (w=0 because u and v are also
zero there) into the interior (z→+∞) where the vertical velocity assumes a
vertically uniform value (w= w̄), yields

w̄=
(

ū
∂b

∂x
+ v̄

∂b

∂y

)
+ d

2

(
∂ v̄

∂x
− ∂ ū

∂y

)
. (8.31)
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The interior vertical velocity thus consists of two parts: a component that
ensures no normal flow to the bottom [see (7.7)] and an Ekman-pumping
contribution, as if the bottom were horizontally flat [see (8.27)].

The vanishing of the flow component perpendicular to the bottom must be
met by the inviscid dynamics of the interior, giving rise to the first contribution
to w̄. The role of the boundary layer is to bring the tangential velocity to zero
at the bottom. This explains the second contribution to w̄. Note that the Ekman
pumping is not affected by the bottom slope.

The preceding solution can also be applied to the lower portion of the atmo-
spheric boundary layer. This was first done by Akerblom (1908), and matching
between the logarithmic layer close to the ground (Section 8.1.1) and the Ekman
layer further aloft was performed by Van Dyke (1975). Oftentimes, however, the
lower atmosphere is in a stable (stratified) or unstable (convecting) state, and the
neutral state during which Ekman dynamics prevail is more the exception than
the rule.

8.6 THE SURFACE EKMAN LAYER

An Ekman layer occurs not only along bottom surfaces, but wherever there is a
horizontal frictional stress. This is the case, for example, along the ocean surface,
where waters are subject to a wind stress. In fact, this is precisely the situation
first examined by Vagn Walfrid Ekman.3 Fridtjof Nansen4 had noticed during his
cruises to northern latitudes that icebergs drift not downwind but systematically
at some angle to the right of the wind. Ekman, his student at the time, reasoned
that the cause of this bias was the earth’s rotation and subsequently developed
the mathematical representation that now bears his name. The solution was
originally published in his 1902 doctoral thesis and again, in a more complete
article, three years later (Ekman, 1905). In a subsequent article (Ekman, 1906),
he mentioned the relevance of his theory to the lower atmosphere, where the
wind approaches a geostrophic value with increasing height.

Let us consider the situation depicted in Fig. 8.6, where an ocean region with
interior flow field (ū, v̄) is subjected to a wind stress (τ x, τ y) along its surface.
Again, assuming steady conditions, a homogeneous fluid, and a geostrophic
interior, we obtain the following equations and boundary conditions for the flow
field (u, v) in the surface Ekman layer:

−f (v− v̄)=νE
∂2u

∂z2
(8.32a)

+f (u− ū)=νE
∂2v

∂z2
(8.32b)

3 See biography at the end of this chapter.
4 Fridtjof Nansen (1861–1930), Norwegian oceanographer famous for his Arctic expeditions and
Nobel Peace Prize laureate (1922).
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FIGURE 8.6 The surface Ekman layer generated by a wind stress on the ocean.

Surface (z=0) : ρ0νE
∂u

∂z
= τ x, ρ0νE

∂v

∂z
= τ y (8.32c)

Toward interior (z→−∞) : u= ū, v= v̄. (8.32d)

The solution to this problem is

u = ū+
√

2

ρ0 fd
ez/d

[
τ x cos

( z

d
− π

4

)
−τ y sin

( z

d
− π

4

)]
(8.33a)

v = v̄ +
√

2

ρ0 fd
ez/d

[
τ x sin

( z

d
− π

4

)
+τ y cos

( z

d
− π

4

)]
, (8.33b)

in which we note that the departure from the interior flow (ū, v̄) is exclusively
due to the wind stress. In other words, it does not depend on the interior flow.
Moreover, this wind-driven flow component is inversely proportional to the
Ekman-layer depth, d, and may be very large. Physically, if the fluid is almost
inviscid (small νE, hence short d), a moderate surface stress can generate large
drift velocities.

The wind-driven horizontal transport in the surface Ekman layer has com-
ponents given by

U=
0∫

−∞
(u− ū)dz= 1

ρ0 f
τ y (8.34a)
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FIGURE 8.7 Structure of the surface Ekman layer. The figure is drawn for the northern hemisphere
(f >0), and the deflection is to the right of the surface stress. The reverse holds for the southern
hemisphere.

V=
0∫

−∞
(v− v̄)dz= −1

ρ0 f
τ x. (8.34b)

Surprisingly, it is oriented perpendicular to the wind stress (Fig. 8.7), to the right
in the northern hemisphere and to the left in the southern hemisphere. This fact
explains why icebergs, which float mostly underwater, systematically drift to
the right of the wind in the North Atlantic, as observed by Fridtjof Nansen.

As for the bottom Ekman layer, let us determine the divergence of the flow,
integrated over the boundary layer:

0∫
−∞

(
∂u

∂x
+ ∂v
∂y

)
dz= 1

ρ0

[
∂

∂x

(
τ y

f

)
− ∂

∂y

(
τ x

f

)]
. (8.35)

At constant f , the contribution is entirely due to the wind stress since the interior
geostrophic flow is nondivergent. It is proportional to the wind-stress curl and,
most importantly, it is independent of the value of the viscosity. It can be shown
furthermore that this property continues to hold even when the turbulent eddy
viscosity varies spatially (see Analytical Problem 8.7).

If the wind stress has a nonzero curl, the divergence of the Ekman transport
must be provided by a vertical velocity throughout the interior. A vertical inte-
gration of the continuity equation, (4.21d), across the Ekman layer with w(z=0)
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(a) (b)
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FIGURE 8.8 Ekman pumping in an ocean subject to sheared winds (case of northern hemisphere).

and w(z→−∞)= w̄ yields

w̄=+
0∫

−∞

(
∂u

∂x
+ ∂v
∂y

)
dz

= 1

ρ0

[
∂

∂x

(
τ y

f

)
− ∂

∂y

(
τ x

f

)]
=wEk.

(8.36)

This vertical velocity is called Ekman pumping. In the northern hemisphere
(f >0), a clockwise wind pattern (negative curl) generates a downwelling
(Fig. 8.8a), whereas a counterclockwise wind pattern causes upwelling
(Fig. 8.8b). The directions are opposite in the southern hemisphere. Ekman
pumping is a very effective mechanism by which winds drive subsurface ocean
currents (Pedlosky, 1996; see also Chapter 20).

8.7 THE EKMAN LAYER IN REAL GEOPHYSICAL FLOWS

The preceding models of bottom and surface Ekman layers are highly ideal-
ized, and we do not expect their solutions to match actual atmospheric and
oceanic observations closely (except in some cases; see Fig. 8.9). Three factors,
among others, account for substantial differences: turbulence, stratification, and
horizontal gradients.

It was noted at the end of Chapter 4 that geophysical flows have large
Reynolds numbers and are therefore in a state of turbulence. Replacing the
molecular viscosity of the fluid by a much greater eddy viscosity, as performed
in Section 4.2, is a first attempt to recognize the enhanced transfer of momen-
tum in a turbulent flow. However, in a shear flow such as in an Ekman layer,
the turbulence is not homogeneous, being more vigorous where the shear is
greater and also partially suppressed in the proximity of the boundary where
the size of turbulent eddies is restricted. In the absence of an exact theory of
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FIGURE 8.9 Comparison between observed currents below a drifting ice floe at 84.3◦N and the-
oretical predictions based on an eddy viscosity νE=2.4×10−3 m2/s. (Reprinted from Deep-Sea
Research, 13, Kenneth Hunkins, Ekman drift currents in the Arctic Ocean, p. 614, ©1966, with kind
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turbulence, several schemes have been proposed. For the bottom layer, the eddy
viscosity has been made to vary in the vertical (Madsen, 1977) and to depend
on the bottom stress (Cushman-Roisin & Malačič, 1997). Other schemes have
been formulated (see Section 4.2), with varying degrees of success. Despite
numerous disagreements among models and with field observations, two results
nonetheless stand out as quite general. The first is that the angle between the
near-boundary velocity and that in the interior or that of the surface stress
(depending on the type of Ekman layer) is always substantially less than the
theoretical value of 45◦ and is found to range between 5◦ and 20◦ (Fig. 8.10).
See also Stacey, Pond and LeBlond (1986).

The second result is a formula for the vertical scale of the Ekman-layer
thickness:

d'0.4
u∗
f
, (8.37)

where u∗ is the turbulent friction velocity defined in Eq. (8.1). The numerical
factor is derived from observations (Garratt, 1992, Appendix 3). Although 0.4 is
the most commonly accepted value, there is evidence that certain oceanic condi-
tions call for a somewhat smaller value (Mofjeld & Lavelle, 1984; Stigebrandt,
1985).
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Taking u∗ as the turbulent velocity and the (unknown) Ekman-layer depth
scale, d, as the size of the largest turbulent eddies, we write

νE∼u∗d. (8.38)

Then, using rule (8.12) to determine the boundary-layer thickness, we obtain

1∼ νE

fd2
∼ u∗

fd
,

which immediately leads to Eq. (8.37).
The other major element missing from the Ekman-layer formulations of the

previous sections is the presence of vertical density stratification. Although the
effects of stratification are not discussed in detail until Chapter 11, it can be
anticipated here that the gradual change of density with height (lighter fluid
above heavier fluid) hinders vertical movements, thereby reducing vertical mix-
ing of momentum by turbulence; it also allows the motions at separate levels to
act less coherently and to generate internal gravity waves. As a consequence,
stratification reduces the thickness of the Ekman layer and increases the veering
of the velocity vector with height (Garratt, 1992, Section 6.2). For a study of the
oceanic wind-driven Ekman layer in the presence of density stratification, the
reader is referred to Price and Sundermeyer (1999).

The surface atmospheric layer during daytime over land and above warm
currents at sea is frequently in a state of convection because of heating from
below. In such situations, the Ekman dynamics give way to convective motions,
and a controlling factor, besides the geostrophic wind aloft, is the intensity of
the surface heat flux. An elementary model is presented later (Section 14.7).
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Because Ekman dynamics then play a secondary role, the layer is simply called
the atmospheric boundary layer. The interested reader is referred to books on the
subject by Stull (1988), Sorbjan (1989), Zilitinkevich (1991), or Garratt (1992).

8.8 NUMERICAL SIMULATION OF SHALLOW FLOWS

The theory presented till now largely relies on the assumption of a constant
turbulent viscosity. For real flows, however, turbulence is rarely uniform, and
eddy diffusion profiles must be considered. Such complexity renders the ana-
lytical treatment tedious or even impossible, and numerical methods need to be
employed.

To illustrate the approach, we reinstate nonstationary terms and assume a
vertically varying eddy viscosity (Fig. 8.11) but retain the hydrostatic approx-
imation (8.13c) and continue to consider a fluid of homogeneous density. The
governing equations for u and v are

∂u

∂t
− f v=− 1

ρ0

∂p

∂x
+ ∂

∂z

(
νE(z)

∂u

∂z

)
(8.39a)

∂v

∂t
+ fu=− 1

ρ0

∂p

∂y
+ ∂

∂z

(
νE(z)

∂v

∂z

)
(8.39b)

0=− 1

ρ0

∂p

∂z
. (8.39c)

From the last equation, it is clear that the horizontal pressure gradient is
independent of z.

A standard finite-volume approach could be applied to the equations, but
since we already used the approach several times, its implementation is left
here as an exercise (see Numerical Problem 8.5). Instead, we introduce another

k

h
u

τ

f
2

νE (z)

FIGURE 8.11 A vertically confined fluid flow, with bottom and top Ekman layers bracketing a
nonuniform velocity profile. The vertical structure can be calculated by a one-dimensional model
spanning the entire fluid column eventhough the turbulent viscosity νE(z) may vary in the vertical.
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numerical method, which consists in expanding the solution in terms of pres-
elected functions φj, called basis functions. A finite set of N basis functions is
used to construct a trial solution:

ũ(z, t)=a1(t)φ1(z)+a2(t)φ2(z)+·· ·+aN(t)φN(z)

=
N∑

j=1

aj(t)φj(z) (8.40a)

ṽ(z, t)=b1(t)φ1(z)+b2(t)φ2(z)+·· ·+bN(t)φN(z)

=
N∑

j=1

bj(t)φj(z). (8.40b)

The problem then reduces to finding a way to calculate the unknown coefficients
aj(t) and bj(t) for j=1 to N such that the trial solution is as close as possible to
the exact solution. In other words, we demand that the residual ru obtained by
substituting the trial solution ũ into the differential x-momentum equation,

∂ ũ

∂t
− f ṽ+ 1

ρ0

∂p

∂x
− ∂

∂z

(
νE
∂ ũ

∂z

)
= ru, (8.41)

be as small as possible, and similarly with the residual rv of the y-momentum
equation. The residuals ru and rv quantify the truncation error of the trial
solution, and the objective is to minimize them.

Collocation methods require that the residuals be zero at a finite number
of locations zk across the domain. If each of the two series contains N terms,
then taking also N points where the two residuals ru and rv are forced to vanish
provides 2N constraints for the 2N unknowns aj and bj. With a little chance,
these constraints will be necessary and sufficient to determine the time evolution
of the coefficients aj(t) and bj(t). In the present case, the situation is almost
certain because the equations are linear, and the temporal derivatives daj(t)/dt
and dbj(t)/dt appear in linear differential equations, a relatively straightforward
problem to be solved numerically, though the matrices involved may have few
zeros. In some cases, however, the equations may be ill-conditioned because of
inadequate choices of the collocation points zk (e.g., Gottlieb & Orszag, 1977).

An alternative to requiring zero residuals at selected points is to minimize a
global measure of the error. For example, we can multiply the equations by
N different weighting functions wi(z) and integrate over the domain before
requiring that the weighted-average error vanish:

h∫
0

wiru dz=0, (8.42)
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and similarly for the companion equation. Note that we require Eq. (8.42) to
hold only for a finite set of functions wi, i=1, . . . ,N. Had we asked instead
that the integral be zero for any function w, the trial solution would be the exact
solution of the equation since ru and rv would then be zero everywhere, but this
not possible because we have only 2N and not an infinity of degrees of freedom
at our disposal. The weighted residuals (8.42) must satisfy

h∫
0

wi

[
∂ ũ

∂t
− f ṽ+ 1

ρ0

∂p

∂x
− ∂

∂z

(
νE
∂ ũ

∂z

)]
dz=0, (8.43)

for every value of the index i, which leads to

N∑
j=1

h∫
0

(
wiφj dz

) daj

dt
− f

N∑
j=1

h∫
0

(
wiφj dz

)
bj+

1

ρ0

∂p

∂x

h∫
0

(wi dz)

−wi(h)νE
∂u

∂z

∣∣∣∣
h
+wi(0) νE

∂u

∂z

∣∣∣∣
0
+

N∑
j=1

h∫
0

(
νE

dwi

dz

dφj

dz
dz

)
aj=0, (8.44)

and similarly for the y-momentum equation, with the as replaced by bs, bs by
−as, x by y, and u by v. Note that use was made of the fact that the pressure
gradient is independent of z. The top and bottom stresses (first and second terms
of the last line) can be replaced by their value, if known (such as a wind stress
on the sea surface).

As already mentioned, if Eq. (8.44) holds for any weighting function, an
exact solution is obtained, but if it only holds for a finite series of weight-
ing functions, an approximate solution is found for which the residual is not
zero everywhere but is orthogonal to every weighting function.5 If N differ-
ent weights are used and the weighted residuals of each of the 2 equations are
required to be zero, we obtain 2N ordinary differential equations for the 2N
unknowns aj and bj. To write the sets of equations in compact form, we define
square matrices M and K and column vector s by

Mij=
h∫

0

wiφj dz, Kij=
h∫

0

νE
dwi

dz

dφj

dz
dz, si=

h∫
0

wi dz. (8.45)

We then group the coefficients aj and bj into column vectors a and b and the
functions wi(z) into a column vector w(z). The weighted-residual equations can

5 Orthogonality of two functions is understood here as the property that the product of the two
functions integrated over the domain is zero. In the present case, the residual is orthogonal to all
weighting functions.
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then be written in matrix notation as

M
da
dt
=+f Mb−Ka− 1

ρ0

∂p

∂x
s+ τ

x

ρ0
w(h)− τ

x
b

ρ0
w(0) (8.46a)

M
db
dt
=−f Ma−Kb− 1

ρ0

∂p

∂y
s+ τ

y

ρ0
w(h)− τ

y
b

ρ0
w(0). (8.46b)

This set of ordinary differential equations can be solved by any of the time-
integration methods of Chapter 2 as long as the temporal evolution of the surface
stress, bottom stress, and pressure gradient is known.

There remains to provide an initial condition on the coefficients aj and bj,
which must be deduced from the initial flow condition (see Numerical Exercise
8.1). After solving Eq. (8.46), the known values of the coefficients aj(t) and
bj(t) permit the reconstruction of the solution by means of expansion (8.40).
This method is called the weighted-residual method.

A word of caution is necessary with respect to boundary conditions. Top and
bottom conditions on the shear stress are automatically taken into account, since
the stress appears explicitly in the discrete formulation. A Neumann boundary
condition, called a natural condition, is thus easily applied. No special demand
is placed on the basis functions, and weights are simply required to be different
from zero at boundaries where a stress condition is applied. There are situations,
however, when the stress on the boundary is not known. This is generally the
case at a solid boundary along which a no-slip boundary condition u=v=0 is
enforced. The integration method does not make the boundary values of u and v
appear, and the basis functions must be chosen carefully to be compatible with
the boundary condition. In the case of a no-slip condition, it is required that
φj=0 at the concerned boundary, so that the velocity is made to vanish there.
This is called an essential boundary condition.

Till now, both basis functions φj and weights wi were arbitrary, except for
the aforementioned boundary-related constraints, and smart choices can lead
to effective methods. The Galerkin method makes the rather natural choice of
taking weights equal to the basis functions used in the expansion. The error is
then orthogonal to the basis functions. With a well-chosen set of functions φj,
an increasing number of functions can be made to lead ultimately to the exact
solution. With the Galerkin method, the matrices M and K are symmetric, with
components6:

Mij=
h∫

0

φiφj dz, Kij=
h∫

0

νE
dφi

dz

dφj

dz
dz, si=

h∫
0

φi dz. (8.47)

The basis functions φj do not need to span the entire domain but may be
chosen to be zero everywhere, except in finite subdomains. The solution can

6 In finite-element jargon, M and K are called, respectively, the mass matrix and stiffness matrix.
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then be interpreted as the superposition of elementary local solutions. For this,
the numerical domain is divided into subdomains called finite elements, which
are linear segments in 1D, triangles in 2D, and on each of which only a few
basis functions differ from zero. This greatly reduces the calculations of the
matrices M and K. The finite-element method is one of the most advanced
and flexible methods available for the solution of partial differential equations
but is also one of the most difficult to implement correctly (see, e.g., Hanert,
Legat & Deleernsijder, 2003 for the implementation of a 2D ocean model).
The interested reader is referred to the specialized literature: Buchanan (1995)
and Zienkiewicz and Taylor (2000) for an introduction to general finite-element
methods, and Zienkiewicz, Taylor and Nithiarasu (2005) for the application of
finite elements to fluid dynamics.

For the bottom boundary condition u=v=0, one takes wj(0)=φj(0)=0,
and Eq. (8.46) are unchanged, except for the fact that the term including the
bottom stress disappears. The method involves matrices coupling all unknowns
aj and bj, demanding a preliminary matrix inversion (N3 operations) and then
matrix-vector multiplications (N2 operations) at every time step.

For the 1D Ekman layer, the problem can be further simplified (e.g., Davies,
1987; Heaps, 1987) by choosing special basis functions that are designed to
obey

∂

∂z

(
νE(z)

∂φj

∂z

)
=−%jφj(z) (8.48a)

φi(0)=0,
∂φj

∂z

∣∣∣∣
z=h
=0. (8.48b)

In other words, φj are chosen as the eigenfunctions of the diffusion operator
(8.48a), with %j as the eigenvalues. Multiplication of Eq. (8.48a) by φi and
subsequent integration by parts in the left-hand side and use of the boundary
conditions (8.48b) yield

h∫
0

νE
dφi

dz

dφj

dz
dz=%j

h∫
0

φiφj dz. (8.49)

Note that for i= j, this relationship proves the eigenvalues to be positive for
positive diffusion coefficients, since all other terms involved are quadratic and
thus positive. Switching the indices i and j, we also have

h∫
0

νE
dφj

dz

dφi

dz
dz=%i

h∫
0

φjφi dz, (8.50)
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and subtracting this equation from the preceding one, we obtain

(%i−%j)

h∫
0

φiφj dz=0, (8.51)

showing that for nonequal eigenvalues, the basis functions φi and φj are
orthogonal in the sense that

h∫
0

φi(z)φj(z)dz=0 if i 6= j. (8.52)

Finally, since the basis functions are defined within an arbitrary multiplicative
factor, we may normalize them such that

h∫
0

φi(z)φj(z)dz= δij=
{

0 if i 6= j

1 if i= j
(8.53)

When eigenfunctions are used as basis functions in the Galerkin method, a
so-called spectral method is obtained. It is a very elegant method because the
equations for the coefficients are greatly reduced. The orthonormality (8.53) of
the eigenfunctions yields M= I, the identity matrix, and Eq. (8.49) in matrix
form reduces to K=%M=%, where % is a diagonal matrix formed with the
eigenvalues %j. Finally, the equations for components j of a and b become

daj

dt
=+f bj−%j aj−

1

ρ0

∂p

∂x
sj+

τ x

ρ0
φj(h), (8.54a)

dbj

dt
=−f aj−%j bj−

1

ρ0

∂p

∂y
sj+

τ y

ρ0
φj(h). (8.54b)

Note that, since the eigenvalues are positive, the second term on the right cor-
responds to a damping of the amplitudes aj and bj, consistent with physical
damping by diffusion.

Because of the decoupling7 achieved by a set of orthogonal basis functions,
we no longer solve a system of 2N equations but N systems of 2 equations. This
leads to a significant reduction in the number of operations to be performed: The
standard Galerkin method requires, at every time step, one inversion of a matrix
of size 2N×2N and a matrix multiplication of cost 4N2, whereas the spectral
method demands solving N times a 2×2 system, with cost proportional to N.
For a large number of time steps, the computational burden is roughly reduced
by a factor N. With typically 102−103 basis functions retained, the savings are

7 Only when equations are linear.
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very significant, and the use of a spectral method generates important gains in
computing time. It is well worth the preliminary search of eigenfunctions.

In principle, for well-behaved νE(z), there exist an infinite but countable
number of eigenvalues %j, and the full set of eigenfunctions φj allows the decom-
position of any function. An approximate solution can thus be obtained by
retaining only a finite number of eigenfunctions, and the questions that natu-
rally come to mind are how many functions should be retained and which ones.
To know which to retain, we can assume a constant viscosity νE, in which case
the solution to the eigenproblem is (for j=1,2, . . .)

φj=
√

2

h
sin
[
(2j−1)

π

2

z

h

]
%j= (2j−1)2

π2νE

4h2

sj=
2
√

2h

π(2j−1)

φj(h)= (−1)(j+1)

√
2

h

in which the scaling factor
√

2/h was introduced to satisfy the normalization
requirement (8.53). The name spectral method is now readily understood in
view of the type of eigenfunctions used in the expansion. The sine functions
are indeed nothing else than those used in Fourier series to decompose peri-
odic functions into different wavelengths. The coefficients aj and bj are directly
interpretable in terms of modal amplitudes or, in other words, the energy asso-
ciated with the corresponding Fourier modes. The sets of aj and bj then provide
an insight into the spectrum of the solution.

We further observe that, the larger the eigenvalue %j, the more rapidly the
function oscillates in space, allowing the capture of finer structures. Thus, a
higher resolution is achieved by retaining more eigenfunctions in the expan-
sion, just as adding grid points in finite differencing is done to obtain higher
resolution. The number N of functions being retained is a matter of scales
to be resolved. For a finite-difference representation with N degrees of free-
dom, the domain is covered with a uniform grid with spacing 1z=h/N, and
the shortest scale that can be resolved has wavenumber kz=π/1z (see Sec-
tion 1.12). In the spectral method, the highest mode retained corresponds to
wavenumber kz=Nπ/h, which is identical to the one resolved in the finite-
difference approach. Both methods are thus able to represent the same spectrum
of wavenumbers with an identical number of unknowns. Also, the cost of both
methods is directly proportional to the number of unknowns. So, where is the
advantage of using a spectral method?

Except for the straightforward interpretation of the coefficients aj and bj

in terms of Fourier components, the essential advantage of spectral methods
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resides in their rapid convergence as the number N of basis functions is
increased, for sufficiently gentle solutions and boundary conditions (e.g.,
Canuto, Hussaini, Quarteroni & Zang, 1988). To illustrate this claim, we cal-
culate the stationary solution of a geostrophic current without surface stress
by dropping daj/dt and dbj/dt from the matrix equations and solve for a and
b before recombining the solution. Even with only five basis functions (i.e.,
equivalent to using five grid points), the behavior of the solution is well cap-
tured (Fig. 8.12). Furthermore, since the equations for different aj coefficients
are decoupled, increasing the value of N does not modify the values of the pre-
viously calculated coefficients but simply adds more terms, each one bringing
additional resolution. The amplitude of the new terms is directly proportional to
the value of the coefficients aj and bj, and their rapid decrease as a function of
index j (Fig. 8.13—note the logarithmic scales) explains why fast convergence
can be expected.

In order not to miss the most important parts of the solution, it is imper-
ative to use eigenfunctions in their order, that is, without skipping any in the
series, up to the preselected number N. In the limit of large N, it can be shown
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FIGURE 8.12 Velocity profile forced by a pressure gradient directed along the y-axis above a
no-slip bottom and below a stress-free surface. The geostrophic flow aloft has components u=0.1
and v=0. Solid lines represent the exact solution, whereas dash-dotted lines depict the numerical
solution obtained by the spectral method with only the first five modes. Note the excellent agree-
ment. Oscillations appearing in the numerical solution give a hint of the sine functions used in
expanding the solution.
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FIGURE 8.13 Sequential values of the coefficients aj (scaled by an arbitrary coefficient) obtained
with the spectral method applied to the problem of Fig. 8.12. Scales are logarithmic, showing the
rapid decrease of amplitudes with increasing number of modes in the expansion. Convergence
toward the exact solution is fast.

that convergence for a relatively smooth solution is faster than with any finite-
difference method of any order (e.g., Gottlieb & Orszag, 1977). This is the
distinct advantage of the spectral method, which explains why it is often used
in cases when nearly exact numerical solutions are sought.

An alternative to the Galerkin spectral approach is to force the error to van-
ish at particular grid points, leading to so-called pseudospectral methods (e.g.,
Fornberg, 1988). As for all collocation methods, these do not require evaluation
of integrals over the domain.

In concluding the presentation of the function-expansion approach, we insist
on the fundamental aspect that the numerical approximation is very different
from the point-value sampling used in finite-difference methods. In space, the
basis functions φj are continuous and can therefore be differentiated or manip-
ulated mathematically without approximation. The numerical error arises only
due to the fact that a finite number of basis functions is used to represent the
solution.

ANALYTICAL PROBLEMS

8.1. It is observed that fragments of tea leaves at the bottom of a stirred
tea cup conglomerate toward the center. Explain this phenomenon with
Ekman-layer dynamics. Also explain why the tea leaves go to the center
irrespectively of the direction of stirring (clockwise or counterclockwise).
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8.2. Assume that the atmospheric Ekman layer over the Earth’s surface at lat-
itude 45◦N can be modeled with an eddy viscosity νE=10 m2/s. If the
geostrophic velocity above the layer is 10 m/s and uniform, what is the
vertically integrated flow across the isobars (pressure contours)? Is there
any vertical velocity?

8.3. Meteorological observations above New York (41◦N) reveal a neutral
atmospheric boundary layer (no convection and no stratification) and a
westerly geostrophic wind of 12 m/s at 1000 m above street level. Under
neutral conditions, Ekman dynamics apply. Using an eddy viscosity of
10 m2/s, determine the wind speed and direction atop the Empire State
Building, which stands 381 m tall.

8.4. A southerly wind blows at 9 m/s over Taipei (25◦N). Assuming neutral
atmospheric conditions so that Ekman dynamics apply and taking the
eddy viscosity equal to 10 m2/s, determine the velocity profile from street
level to the top of the 509 m tall Taipei Financial Center skyscraper. The
wind force per unit height and in the direction of the wind can be taken
as F=0.93ρLV2, where ρ = 1.20 kg/m3 is the standard air density, L =
25 m is the building width, and V(z)= (u2+v2)1/2 is the wind speed at
the height considered. With this, determine the total wind force on the
southern facade of the Taipei Financial Center.

8.5. Show that although w̄ may not be zero in the presence of horizontal gradi-
ents, the vertical advection terms w∂u/∂z and w∂v/∂z of the momentum
equations are still negligible, even if the short distance d is taken as the
vertical length scale.

8.6. You are working for a company that plans to deposit high-level radioac-
tive wastes on the bottom of the ocean, at a depth of 3000 m. This site
(latitude: 33◦N) is known to be at the center of a permanent counterclock-
wise vortex. Locally, the vortex flow can be assimilated to a solid-body
rotation with angular speed equal to 10−5 s−1. Assuming a homogeneous
ocean and a steady, geostrophic flow, estimate the upwelling rate at the
vortex center. How many years will it take for the radioactive wastes to
arrive at the surface? Take f =8×10−5 s−1 and νE=10−2 m2/s.

8.7. Derive Eq. (8.36) more simply not by starting from solution (8.33) as done
in the text but by vertical integration of the momentum equations (8.32).
Consider also the case of nonuniform eddy viscosity, in which case νE
must be kept inside the vertical derivative on the right-hand side of the
equations, as in the original governing equations (4.21a) and (4.21b).

8.8. Between 15◦N and 45◦N, the winds over the North Pacific Ocean con-
sist mostly of the easterly trades (15◦N to 30◦N) and the midlatitude
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westerlies (30◦N to 45◦N). An adequate representation is

τ x= τ0 sin
(πy

2L

)
, τ y=0 for −L≤ y≤L,

with τ0=0.15 N/m2 (maximum wind stress) and L=1670 km. Taking
ρ0=1028 kg/m3 and the value of the Coriolis parameter correspond-
ing to 30◦N, calculate the Ekman pumping. Which way is it directed?
Calculate the vertical volume flux over the entire 15◦–45◦N strip of the
North Pacific (width = 8700 km). Express your answer in sverdrup units
(1 sverdrup = 1 Sv = 106 m3/s).

8.9. The variation of the Coriolis parameter with latitude can be approximated
as f = f0+β0y, where y is the northward coordinate (beta-plane approxi-
mation, see Section 9.4). Using this, show that the vertical velocity below
the surface Ekman layer of the ocean is given by

w̄(z)= 1

ρ0

[
∂

∂x

(
τ y

f

)
− ∂

∂y

(
τ x

f

)]
− β0

f

0∫
z

v̄ dz, (8.55)

where τ x and τ y are the zonal and meridional wind-stress components,
respectively, and v̄ is the meridional velocity in the geostrophic interior
below the Ekman layer.

8.10. Determine the vertical distribution of horizontal velocity in a 4-m deep
lagoon subject to a northerly wind stress of 0.2 N/m2. The density of
the brackish water in the lagoon is 1020 kg/m3. Take f =10−4 s−1 and
νE=10−2 m2/s. In which direction is the net transport in this brackish
layer?

8.11. Redo Problem 8.10 with f =0 and compare the two solutions. What can
you conclude about the role of the Coriolis force in this case?

8.12. Find the stationary solution of (8.13a)–(8.13c) for constant viscosity, a
uniform pressure gradient in the y-direction in a domain of finite depth
h with no stress at the top and no slip at the bottom. Study the behavior
of the solution as h/d varies and compare with the solution in the infinite
domain. Then, derive the stationary solution without pressure gradient but
with a top stress in the y-direction.

NUMERICAL EXERCISES

8.1. How can we obtain initial conditions for aj and bj in the expansions (8.40)
from initial conditions on the physical variables u=u0(z) and v=v0(z)?
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(Hint: Investigate a least-square approach and an approach in which the
initial error is forced to vanish in the sense of Eq. (8.42). When do the two
approaches lead to the same result?)

8.2. Use spectralekman.m to calculate numerically the stationary solutions
of Analytical Problem 8.12. Compare the exact and numerical solutions
for h/d=4 and assess the convergence rate as a function of 1/N, where
N is the number of eigenfunctions retained in the trial solution. Compare
the convergence rate of both cases (with and without stress at the top) and
comment.

8.3. Use spectralekman.m to explore how the solution changes as a function
of the ratio h/d and how the number N of modes affects your resolution of
the boundary layers.

8.4. Modify spectralekman.m to allow for time evolution, but maintaining
constant wind stress and pressure gradient. Use a trapezoidal method for
time integration. Start from rest and observe the temporal evolution. What
do you observe?

8.5. Use a finite-volume approach with time splitting for the Coriolis terms
and an explicit Euler method to discretize diffusion in Eqs. (8.39a) and
(8.39b). Verify your program in the case of uniform eddy viscosity by
comparing with the steady analytical solution. Then, use the viscosity pro-
file νE(z)=Kz(1−z/h)u∗. In this case, can you find the eigenfunctions of
the diffusion operator and outline the Galerkin method? (Hint: Look for
Legendre polynomials and their properties.)

8.6. Assume that your vertical grid spacing in a finite-difference scheme is large
compared with the roughness length z0 and that your first point for veloc-
ity calculation is found at the distance 1z/2 above the bottom. Use the
logarithmic profile to deduce the bottom stress as a function of the com-
puted velocity at level1z/2. Then, use this expression in the finite-volume
approach of Numerical Exercise 8.5 to replace the no-slip condition by a
stress condition at the lowest level of the grid.
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Vagn Walfrid Ekman
1874–1954

Born in Sweden, Ekman spent his formative years under the tutelage of Vilhelm
Bjerknes and Fridtjof Nansen in Norway. One day, Nansen asked Bjerknes to
let one of his students make a theoretical study of the influence of the earth’s
rotation on wind-driven currents, on the basis of Nansen’s observations during
his polar expedition that ice drifts with ocean currents to the right of the wind.
Ekman was chosen and later presented a solution in his doctoral thesis of 1902.

As professor of mechanics and mathematical physics at the University of
Lund in Sweden, Ekman became the most famous oceanographer of his genera-
tion. The distinguished theoretician also proved to be a skilled experimentalist.
He designed a current meter, which bears his name and which has been used
extensively. Ekman was also the one who explained the phenomenon of dead
water by a celebrated laboratory experiment (see Fig. 1.4). (Photo courtesy of
Pierre Welander)
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Ludwig Prandtl
1875–1953

A German engineer, Ludwig Prandtl was attracted by fluid phenomena and their
mathematical representation. He became professor of mechanics at the Univer-
sity of Hannover in 1901, where he established a world renowned institute for
aerodynamics and hydrodynamics. It was while working on wing theory in 1904
and studying friction drag in particular that he developed the concept of bound-
ary layers and the attending mathematical technique. His central idea was to
recognize that frictional effects are confined to a thin layer in the vicinity of the
boundary, allowing the modeler to treat rest of the flow as inviscid.

Prandtl also made noteworthy advances in the study of elasticity, supersonic
flows, and turbulence, particularly shear turbulence in the vicinity of a boundary.
A mixing length and a dimensionless ratio are named after him.

It has been remarked that Prandtl’s keen perception of physical phenom-
ena was balanced by a limited mathematical ability and that this shortcoming
prompted him to seek ways of reducing the mathematical description of his
objects of study. Thus perhaps, the boundary-layer technique was an inven-
tion born out of necessity. (Photo courtesy of the Emilio Segrè Visual Archives,
American Institute of Physics)



Chapter 9

Barotropic Waves

ABSTRACT
The aim of this chapter is to describe an assortment of waves that can be supported by an
inviscid, homogeneous fluid in rotation and to analyze numerical grid arrangements that
facilitate the simulation of wave propagation, in particular for the prediction of tides and
storm surges.

9.1 LINEAR WAVE DYNAMICS

Chiefly because linear equations are most amenable to methods of solution, it
is wise to gain insight into geophysical fluid dynamics by elucidating the pos-
sible linear processes and investigating their properties before exploring more
intricate, nonlinear dynamics. The governing equations of the previous section
are essentially nonlinear; consequently, their linearization can proceed only by
imposing restrictions on the flows under consideration.

The Coriolis acceleration terms present in the momentum equations [(4.21a)
and (4.21b)] are, by nature, linear and need not be subjected to any approxima-
tion. This situation is extremely fortunate because these are the central terms
of geophysical fluid dynamics. In contrast, the so-called advective terms (or
convective terms) are quadratic and undesirable at this moment. Hence, our
considerations will be restricted to low-Rossby-number situations:

Ro= U

�L
�1. (9.1)

This is usually accomplished by restricting the attention to relatively weak flows
(small U), large scales (large L), or, in the laboratory, fast rotation (large�). The
terms expressing the local time rate of change of the velocity (∂u/∂t and ∂v/∂t)
are linear and are retained here in order to permit the investigation of unsteady
flows. Thus, the temporal Rossby number is assumed to be on the order of unity:

RoT =
1

�T
∼1. (9.2)

Contrasting conditions (9.1) and (9.2), we conclude that we are about to consider
slow flow fields that evolve relatively fast. Aren’t we asking for the impossi-
ble? Not at all, for rapidly moving disturbances do not necessarily require large

271
Introduction to Geophysical Fluid Dynamics, Volume 101, ISSN 0074-6142, DOI: 10.1016/B978-0-12-088759-0.00009-2
Copyright © 2011, Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/B978-0-12-088759-0.00009-2


272 PART | II Rotation Effects

velocities. In other words, information may travel faster than material particles,
and when this is the case, the flow takes the aspect of a wave field. A typical
example is the spreading of concentric ripples on the surface of a pond after
throwing a stone; energy radiates but there is no appreciable water movement
across the pond. In keeping with the foregoing quantities, a scale C for the wave
speed (or celerity) can be defined as the velocity of a signal covering the distance
L of the flow during the nominal evolution time T , and, by virtue of restrictions
(9.1) and (9.2), it can be compared with the flow velocity:

C= L

T
∼�L�U. (9.3)

Thus, our present objective is to consider wave phenomena.
To shed the best possible light on the mechanisms of the basic wave

processes typical in geophysical flows, we further restrict our attention to homo-
geneous and inviscid flows, for which the shallow-water model (Section 7.3)
is adequate. With all the preceding restrictions, the horizontal momentum
equations (7.9a) and (7.9b) reduce to

∂u

∂t
− f v=− g

∂η

∂x
(9.4a)

∂v

∂t
+ fu=− g

∂η

∂y
, (9.4b)

where f is the Coriolis parameter, g is the gravitational acceleration, u and v
are the velocity components in the x- and y-directions, respectively, and η is
the surface displacement (equal to η=h−H, the total fluid depth h minus the
mean fluid thickness H). The independent variables are x, y, and t; the vertical
coordinate is absent, for the flow is vertically homogeneous (Section 7.3).

In terms of surface height, η, the continuity equation (7.14) can be expanded
in several groups of terms:

∂η

∂t
+
(

u
∂η

∂x
+ v

∂η

∂y

)
+ H

(
∂u

∂x
+ ∂v
∂y

)
+ η

(
∂u

∂x
+ ∂v
∂y

)
= 0

if the mean depth H is constant (flat bottom). Introducing the scale 1H for the
vertical displacement η of the surface, we note that the four groups of terms in
the preceding equation are, sequentially, on the order of

1H

T
, U

1H

L
, H

U

L
, 1H

U

L
.

According to Eq. (9.3) L/T is much larger than U, and the second and fourth
groups of terms may be neglected compared with the first term, leaving us with
the linearized equation

∂η

∂t
+H

(
∂u

∂x
+ ∂v
∂y

)
=0, (9.5)
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the balance of which requires 1H/T to be on the order of UH/L or, again by
virtue of (9.3),

1H�H. (9.6)

We are thus restricted to waves of small amplitudes.
The system of Eqs. (9.4a) through (9.5) governs the linear wave dynamics

of inviscid, homogeneous fluids under rotation. For the sake of simple nota-
tion, we will perform the mathematical derivations only for positive values of
the Coriolis parameter f and then state the conclusions for both positive and
negative values of f . The derivations with negative values of f are left as exer-
cises. Before proceeding with the separate studies of geophysical fluid waves,
the reader not familiar with the concepts of phase speed, wavenumber vector,
dispersion relation, and group velocity is directed to Appendix B. A compre-
hensive account of geophysical waves can be found in the book by LeBlond
and Mysak (1978), with additional considerations on nonlinearities in Pedlosky
(2003).

9.2 THE KELVIN WAVE

The Kelvin wave is a traveling disturbance that requires the support of a lat-
eral boundary. Therefore, it most often occurs in the ocean where it can travel
along coastlines. For convenience, we use oceanic terminology such as coast
and offshore.

As a simple model, consider a layer of fluid bounded below by a horizontal
bottom, above by a free surface, and on one side (say, the y-axis) by a ver-
tical wall (Fig. 9.1). Along this wall (x=0, the coast), the normal velocity
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FIGURE 9.1 Upwelling and downwelling Kelvin waves. In the northern hemisphere, both waves
travel with the coast on their right, but the accompanying currents differ. Geostrophic equilibrium
in the x−momentum equation leads to a velocity v that is maximum at the bulge and directed as the
geostrophic equilibrium requires. Because of the different geostrophic velocities at the bulge and
further away, convergence and divergence patterns create a lifting or lowering of the surface. The
lifting and lowering are such that the wave propagates toward negative y in either case (positive or
negative bulge).
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must vanish (u=0), but the absence of viscosity allows a nonzero tangential
velocity.

As he recounted in his presentation to the Royal Society of Edinburgh in
1879, Sir William Thomson (later to become Lord Kelvin) thought that the van-
ishing of the velocity component normal to the wall suggested the possibility
that it be zero everywhere. So, let us state, in anticipation,

u=0 (9.7)

throughout the domain and investigate the consequences. Although Eq. (9.4a)
contains a remaining derivative with respect to x, Eqs. (9.4b) and (9.5) contain
only derivatives with respect to y and time. Elimination of the surface elevation
leads to a single equation for the alongshore velocity:

∂2v

∂t2
= c2 ∂

2v

∂y2
, (9.8)

where

c=
√

gH (9.9)

is identified as the speed of surface gravity waves in nonrotating shallow waters.
The preceding equation governs the propagation of one-dimensional nondis-

persive waves and possesses the general solution

v=V1(x, y+ct)+V2(x, y−ct), (9.10)

which consists of two waves, one traveling toward decreasing y and the other in
the opposite direction. Returning to either Eq. (9.4b) or (9.5) where u is set to
zero, we easily determine the surface displacement:

η=−
√

H

g
V1(x, y+ct)+

√
H

g
V2(x, y−ct). (9.11)

(Any additive constant can be eliminated by a proper redefinition of the mean
depth H.) The structure of the functions V1 and V2 is then determined by the use
of the remaining equation, i.e., (9.4a):

∂V1

∂x
=− f√

gH
V1,

∂V2

∂x
=+ f√

gH
V2

or

V1=V10(y+ct) e−x/R, V2=V20(y−ct) e+x/R,

where the length R, defined as

R=
√

gH

f
= c

f
, (9.12)
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combines all three constants of the problem. Within a numerical factor, it is the
distance covered by a wave, such as the present one, traveling at the speed c
during one inertial period (2π/f ). For reasons that will become apparent later,
this quantity is called the Rossby radius of deformation or, more simply, the
radius of deformation.

Of the two independent solutions, the second increases exponentially with
distance from shore and is physically unfit. This leaves the other as the most
general solution:

u=0 (9.13a)

v=
√

gHF (y+c t) e−x/R (9.13b)

η=− HF (y+c t) e−x/R, (9.13c)

where F is an arbitrary function of its variable.
Because of the exponential decay away from the boundary, the Kelvin wave

is said to be trapped. Without the boundary, it is unbounded at large distances
and thus cannot exist; the length R is a measure of the trapping distance. In the
longshore direction, the wave travels without distortion at the speed of surface
gravity waves. In the northern hemisphere (f >0, as in the preceding analysis),
the wave travels with the coast on its right; in the southern hemisphere, the wave
travels with the coast on its left. Note that, although the direction of wave prop-
agation is unique, the sign of the longshore velocity is arbitrary: An upwelling
wave (i.e., a surface bulge with η>0) has a current flowing in the direction
of the wave, whereas a downwelling wave (i.e., a surface trough with η<0) is
accompanied by a current flowing in the direction opposite to that of the wave
(Fig. 9.1).

In the limit of no rotation ( f→0), the trapping distance increases without
bound, and the wave reduces to a simple gravity wave with crests and troughs
oriented perpendicularly to the coast.

Surface Kelvin waves (as described previously, and to be distinguished from
internal Kelvin waves, which require a stratification, see the end of Chapter 13)
are generated by the ocean tides and by local wind effects in coastal areas. For
example, a storm off the northeast coast of Great Britain can send a Kelvin
wave that follows the shores of the North Sea in a counterclockwise direction
and eventually reaches the west coast of Norway. Traveling in approximately
40 m of water and over a distance of 2200 km, it accomplishes its journey in
about 31 h.

The decay of the Kelvin wave amplitude away from the coast is clearly man-
ifested in the English Channel. The North Atlantic tide enters the Channel from
the west and travels eastward toward the North Sea (Fig. 9.2). Being essen-
tially a surface wave in a rotating fluid bounded by a coast, the tide assumes
the character of a Kelvin wave and propagates while leaning against a coast on
its right, namely, France. This partly explains why tides are noticeably higher
along the French coast than along the British coast a few tens of kilometers
across (Fig. 9.2).
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FIGURE 9.2 Cotidal lines (dashed) with time in lunar hours for the M2 tide in the English Channel
showing the eastward progression of the tide from the North Atlantic Ocean. Lines of equal tidal
range (solid, with value in meters) reveal larger amplitudes along the French coast, namely to the
right of the wave progression in accordance with Kelvin waves. (From Proudman, 1953, as adapted
by Gill, 1982)

9.3 INERTIA-GRAVITY WAVES (POINCARÉ WAVES)

Let us now do away with the lateral boundary and relax the stipulation u=0.
The system of Eqs. (9.4a) through (9.5) is kept in its entirety. With f constant
and in the presence of a flat bottom, all coefficients are constant, and a Fourier-
mode solution can be sought. With u, v, and η taken as constant factors times a
periodic function ηu

v

=<
A

U
V

ei(kxx+kyy−ωt) (9.14)

where the symbol < indicates the real part of what follows, kx and ky are the
wavenumbers in the x-and y-directions, respectively, and ω is a frequency, the
system of equations becomes algebraic:

−iωU − f V=−igkxA (9.15a)

−iωV + f U=−igkyA (9.15b)

−iωA+H(ikxU+ ikyV)=0. (9.15c)

This system admits the trivial solution U=V=A=0 unless its determinant
vanishes. Thus, waves occur only when the following condition is met:

ω[ω2− f 2−gH (k2
x+k2

y)]=0. (9.16)

This condition, called the dispersion relation, provides the wave frequency
in terms of the wavenumber magnitude k= (k2

x+k2
y)

1/2 and the constants of
the problem. The first root, ω=0, corresponds to a steady geostrophic state.
Returning to Eqs. (9.4a) through (9.5) with the time derivatives set to zero, we
recognize the equations governing the geostrophic flow described in Section 7.1.
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In other words, geostrophic flows can be interpreted as arrested waves of any
wavelength. If the bottom were not flat, these “waves” would cease to exist and
be replaced by Taylor columns.

The remaining two roots,

ω=
√

f 2+gH k2 (9.17)

and its opposite, correspond to bona fide traveling waves, called Poincaré
waves, whose frequency is always superinertial. In the limit of no rotation
( f =0), the frequency is ω= k

√
gH, and the phase speed is c=ω/k=√gH.

The waves become classical shallow-water gravity waves. The same limit also
occurs at large wavenumbers [k2� f 2/gH, i.e., wavelengths much shorter than
the deformation radius defined in Eq. (9.12)]. This is not too surprising, since
such waves are too short and too fast to feel the rotation of the earth.

At the opposite extreme of low wavenumbers (k2� f 2/gH, i.e., wave-
lengths much longer than the deformation radius), the rotation effect dominates,
yielding ω ' f . At this limit, the flow pattern is virtually laterally uniform, and
all fluid particles move in unison, each describing a circular inertial oscilla-
tion, as described in Section 2.3. For intermediate wavenumbers, the frequency
(Fig. 9.3) is always greater than f , and the waves are said to be superiner-
tial. Since Poincaré waves exhibit a mixed behavior between gravity waves and
inertial oscillations, they are often called inertia-gravity waves.

Because the phase speed c=ω/k depends on the wavenumber, wave compo-
nents of different wavelengths travel at different speeds, and the wave is said to
be dispersive. This is in contrast with the nondispersive Kelvin wave, the signal
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FIGURE 9.3 Recapitulation of the dispersion relation of Kelvin and Poincaré waves on the f -plane
and on a flat bottom. Although Poincaré waves (gray shades) can travel in all directions and occupy
therefore a continuous spectrum in terms of ky, the Kelvin wave (diagonal line) propagates only
along a boundary.
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of which travels without distortion, irrespective of its profile. See Appendix B
for additional information on these notions.

Seiches, tides, and tsunamis are examples of barotropic gravity waves.
A seiche is a standing wave, formed by the superposition of two waves of
equal wavelength and propagating in opposite directions due to reflection on
lateral boundaries. Seiches occur in confined water bodies, such as lakes, gulfs,
and semi-enclosed seas. In the Adriatic Sea, the untimely superposition of a
wind-generated seiche with high tide can cause flooding in Venice (Robinson,
Tomasin & Artegiani, 1973).

A tsunami is a wave triggered by an underwater earthquake. With wave-
lengths ranging from tens to hundreds of kilometers, tsunamis are barotropic
waves, but their relatively high frequency (period of a few minutes) makes them
only slightly affected by the Coriolis force. What makes tsunamis disastrous is
the gradual amplification of their amplitude as they enter shallower waters, so
that what may begin as an innocuous 1m wave in the middle of the ocean, which
a ship hardly notices, can turn into a catastrophic multimeter surge on the beach.
Disastrous tsunamis occurred in the Pacific Ocean on 22 May 1960, in the Indian
Ocean on 26 December 2004, and in the Pacific Ocean off Japan on 11 March
2011. Tsunami propagation is relatively easy to forecast with computer models.
The key to an effective warning system is the early detection of the originating
earthquake to track the rapid propagation (at speed

√
gH) of the tsunami from

point of origin to the coastline on time to issue a warning before the high wave
strikes.

Before concluding this section, a note is in order to warn about the pos-
sibility of violating the hydrostatic assumption. Indeed, at short wavelengths
(on the order of the fluid depth or shorter), the frequency is high (period much
shorter than 2π/f ), and the vertical acceleration (equal to ∂2η/∂t2 at the sur-
face) becomes comparable with the gravitational acceleration g. When this is
the case, the hydrostatic approximation breaks down, the assumption of vertical
rigidity may no longer be invoked, and the problem becomes three dimensional.
For a study of nonhydrostatic gravity waves, the reader is referred to Section 10
of LeBlond and Mysak (1978) and Lecture 3 of Pedlosky (2003).

9.4 PLANETARY WAVES (ROSSBY WAVES)

Kelvin and Poincaré waves are relatively fast waves, and we may wonder
whether rotating, homogeneous fluids could not support another breed of slower
waves. Could it be, for example, that the steady geostrophic flows, those cor-
responding to the zero frequency solution found in the preceding section, may
develop a slow evolution (frequency slightly above zero) when the system is
modified somewhat? The answer is yes, and one such class consists of plane-
tary waves, in which the time evolution originates in the weak but important
planetary effect.

As we may recall from Section 2.5, on a spherical earth (or planet or star, in
general), the Coriolis parameter, f , is proportional to the rotation rate, �, times
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the sine of the latitude, ϕ:

f =2�sinϕ.

Large wave formations such as alternating cyclones and anticyclones contribute
to our daily weather and, to a lesser extent, Gulf Stream meanders span several
degrees of latitude; for them, it is necessary to consider the meridional change in
the Coriolis parameter. If the coordinate y is directed northward and is measured
from a reference latitude ϕ0 (say, a latitude somewhere in the middle of the wave
under consideration), then ϕ=ϕ0+y/a, where a is the earth’s radius (6371 km).
Considering y/a as a small perturbation, the Coriolis parameter can be expanded
in a Taylor series:

f =2�sinϕ0+2�
y

a
cosϕ0+·· · (9.18)

Retaining only the first two terms, we write

f = f0+β0y, (9.19)

where f0=2�sinϕ0 is the reference Coriolis parameter, and β0=2(�/a)cosϕ0
is the so-called beta parameter. Typical midlatitude values on earth are f0=
8×10−5 s−1 and β0=2×10−11 m−1s−1. The Cartesian framework where the
beta term is not retained is called the f -plane, and that where it is retained is
called the beta plane. The next step in order of accuracy is to retain the full
spherical geometry (which we avoid throughout this book). Rigorous justifica-
tions of the beta-plane approximation can be found in Veronis (1963, 1981),
Pedlosky (1987), and Verkley (1990).

Note that the beta-plane representation is validated at midlatitudes only if
the β0y term is small compared with the leading f0 term. For the motion’s
meridional length scale L, this implies

β= β0L

f0
�1, (9.20)

where the dimensionless ratio β can be called the planetary number.
The governing equations, having become

∂u

∂t
−( f0+β0y)v=− g

∂η

∂x
(9.21a)

∂v

∂t
+(f0+β0y)u=− g

∂η

∂y
(9.21b)

∂η

∂t
+H

(
∂u

∂x
+ ∂v
∂y

)
=0, (9.21c)

are now mixtures of small and large terms. The larger ones ( f0, g, and H terms)
comprise the otherwise steady, f -plane geostrophic dynamics; the smaller ones
(time derivatives and β0 terms) come as perturbations, which, although small,
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will govern the wave evolution. In first approximation, the large terms dom-
inate, and thus u'−(g/f0)∂η/∂y and v'+(g/f0)∂η/∂x. Use of this first
approximation in the small terms of Eqs. (9.21a) and (9.21b) yields

− g

f0

∂2η

∂y∂t
− f0v−

β0g

f0
y
∂η

∂x
=−g

∂η

∂x
(9.22)

+ g

f0

∂2η

∂x∂t
+ f0u− β0g

f0
y
∂η

∂y
=−g

∂η

∂y
. (9.23)

These equations are trivial to solve with respect to u and v:

u=− g

f0

∂η

∂y
− g

f 2
0

∂2η

∂x∂t
+ β0g

f 2
0

y
∂η

∂y
(9.24)

v=+ g

f0

∂η

∂x
− g

f 2
0

∂2η

∂y∂t
− β0g

f 2
0

y
∂η

∂x
. (9.25)

These last expressions can be interpreted as consisting of the leading and first-
correction terms in a regular perturbation series of the velocity field. We identify
the first term of each expansion as the geostrophic velocity. By contrast, the next
and smaller terms are called ageostrophic.

Substitution in continuity equation (9.21c) leads to a single equation for the
surface displacement:

∂η

∂t
−R2 ∂

∂t
∇2η−β0R2 ∂η

∂x
=0, (9.26)

where ∇2 is the two-dimensional Laplace operator, and R=√gH/f0 is the
deformation radius, defined in Eq. (9.12) but now suitably amended to be
a constant. Unlike the original set of equations, this last equation has con-
stant coefficients and a solution of the Fourier type, cos(kxx+kyy−ωt), can
be sought. The dispersion relation follows:

ω=− β0R2 kx

1+R2 (k2
x+k2

y)
, (9.27)

providing the frequency ω as a function of the wavenumber components kx

and ky. The waves are called planetary waves or Rossby waves, in honor of
Carl-Gustaf Rossby, who first proposed this wave theory to explain the system-
atic movement of midlatitude weather patterns. We note immediately that if the
beta corrections had not been retained (β0=0), the frequency would have been
nil. This is the ω=0 solution of Section 9.3, which corresponds to a steady
geostrophic flow on the f -plane. The absence of the other two roots is explained
by our approximation. Indeed, treating the time derivatives as small terms (i.e.,
having in effect assumed a very small temporal Rossby number, RoT�1), we
have retained only the low frequency, the one much less than f0. In the parlance
of wave dynamics, this is called filtering.
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That the frequency given by Eq. (9.27) is indeed small can be verified easily.
With L (∼1/kx∼1/ky) as a measure of the wavelength, two cases can arise
either L <

∼ R or L >
∼ R; the frequency scale is then given by

Shorter waves : L.R, ω∼β0L (9.28)

Longer waves : L&R, ω∼ β0R2

L
.β0L. (9.29)

In either case, our premise (9.20) that β0L is much less than f0 implies that ω is
much smaller than f0 (subinertial wave), as we anticipated.

Let us now explore other properties of planetary waves. First and foremost,
the zonal phase speed

cx=
ω

kx
= −β0R2

1+R2 (k2
x+k2

y)
(9.30)

is always negative, implying a phase propagation to the west (Fig. 9.4). The sign
of the meridional phase speed cy=ω/ky is undetermined, since the wavenumber
ky may have either sign. Thus, planetary waves can propagate only northwest-
ward, westward, or southwestward. Second, very long waves (1/kx and 1/ky

both much larger than R) propagate always westward and at the speed

c=−β0R2, (9.31)

which is the largest wave speed allowed.

kx

ω

Eastward

βR
2

1

1+R2k2
y

R

Westward Eastward

1+R2k2
y

FIGURE 9.4 Dispersion relation of planetary (Rossby) waves. The frequency ω is plotted against
the zonal wavenumber kx at constant meridional wavenumber ky. As the slope of the curve reverses,
so does the direction of zonal propagation of energy.
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Lines of constant frequency ω in the (kx, ky) wavenumber space are circles
defined by (

kx+
β0

2ω

)2

+ k2
y =

(
β2

0

4ω2
− 1

R2

)
, (9.32)

and are illustrated in Fig. 9.5. Such circles exist only if their radius is a real
number, that is, if β2

0 >4ω2/R2. This implies the existence of a maximum
frequency

|ω|max=
β0R

2
, (9.33)

beyond which planetary waves do not exist.
The group velocity, at which the energy of a wave packet propagates, defined

as the vector (∂ω/∂kx, ∂ω/∂ky), is the gradient of the function ω in the (kx, ky)
wavenumber plane (see Appendix B). It is thus perpendicular to the circles of
constant ω. A little algebra reveals that the group-velocity vector is directed
inward, toward the center of the circle. Therefore, long waves (small kx and ky,
points near the origin in Fig. 9.5) have westward group velocities, whereas
energy is carried eastward by the shorter waves (larger kx and ky, points on the

kyR

kxR

−1

ω= 0

ω3

ω2

ω1

Direction of
propagation

0 ≤ω1≤ω2≤ω3≤β0 R/2

Group
velocity

FIGURE 9.5 Geometric representation of the planetary-wave dispersion relation. Each circle cor-
responds to a fixed frequency, with frequency increasing with decreasing radius. The group velocity
of the (kx, ky) wave is a vector perpendicular to the circle at point (kx, ky) and directed toward its
center.
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opposite side of the circle). This dichotomy is also apparent in Fig. 9.4, which
exhibits reversals in slope (∂ω/∂kx changing sign).

9.5 TOPOGRAPHIC WAVES

Just as small variations in the Coriolis parameter can turn a steady geostrophic
flow into slowly moving planetary waves, so can a weak bottom irregularity.
Admittedly, topographic variations can come in a great variety of sizes and
shapes, but for the sake of illustrating the wave process in its simplest form,
we limit ourselves here to the case of a weak and uniform bottom slope. We
also return to the use of a constant Coriolis parameter. This latter choice allows
us to choose convenient directions for the reference axes, and, in anticipation of
an analogy with planetary waves, we align the y-axis with the direction of the
topographic gradient. We thus express the depth of the fluid at rest as:

H=H0+α0y, (9.34)

where H0 is a mean reference depth, and α0 is the bottom slope, which is
required to be gentle so that

α= α0L

H0
� 1, (9.35)

where L is the horizontal length scale of the motion. The topographic parameter
α plays a role similar to the planetary number, defined in Eq. (9.20).

The bottom slope gives rise to new terms in the continuity equation. Start-
ing with the continuity equation (7.14) for shallow water and expressing the
instantaneous fluid layer depth as (Fig. 9.6)

h(x, y, t)=H0+α0y+η(x, y, t), (9.36)

we obtain

∂η

∂t
+
(

u
∂η

∂x
+v

∂η

∂y

)
+(H0+α0y)

(
∂u

∂x
+ ∂v
∂y

)
+ η

(
∂u

∂x
+ ∂v
∂y

)
+ α0v=0.

Once again, we strike out the nonlinear terms by invoking a very small Rossby
number (much smaller than the temporal Rossby number) for the sake of linear
dynamics. The term α0y can also be dropped next to H0 by virtue of Eq. (9.35).
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FIGURE 9.6 A layer of homogeneous fluid over a sloping bottom and the attending notation.

With the momentum equations (9.4a) and (9.4b), our present set of equations is

∂u

∂t
− f v=−g

∂η

∂x
(9.37a)

∂v

∂t
+ fu=−g

∂η

∂y
(9.37b)

∂η

∂t
+H0

(
∂u

∂x
+ ∂v
∂y

)
+α0v=0. (9.37c)

In analogy with the system of equations governing planetary waves, the
preceding set contains both small and large terms. The large ones (terms includ-
ing f , g, and H0) comprise the otherwise steady geostrophic dynamics, which
correspond to a zero frequency. But, in the presence of the small α0 term in the
last equation, the geostrophic flow cannot remain steady, and the time-derivative
terms come into play. We naturally expect them to be small and, compared with
the large terms, on the order of α. In other words, the temporal Rossby number,
RoT =1/�T , is expected to be comparable with α, leading to wave frequencies

ω ∼ 1

T
∼ α� ∼ αf � f

that are very subinertial, just as in the case of planetary waves, for which
ω∼βf0.

Capitalizing on the smallness of the time-derivative terms, we take in first
approximation the large geostrophic terms: u'−(g/f )∂η/∂y, v'+(g/f )∂η/∂x.
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Substitution of these expressions in the small time derivatives yields to the next
degree of approximation:

u=−g

f

∂η

∂y
− g

f 2

∂2η

∂x∂t
(9.38a)

v=+g

f

∂η

∂x
− g

f 2

∂2η

∂y∂t
. (9.38b)

The relative error is only on the order of α2. Replacement of the velocity com-
ponents, u and v, by their last expressions (9.38a) and (9.38b) in the continuity
equation (9.37c) provides a single equation for the surface displacement η,
which to the leading order is

∂η

∂t
−R2 ∂

∂t
∇2η+ α0g

f

∂η

∂x
=0. (9.39)

(The ageostrophic component of v is dropped from the α0v term for being on
the order of α2, whereas all other terms are on the order of α.) Note the analogy
with Eq. (9.26) that governs the planetary waves: It is identical, except for the
substitution of α0g/f for −β0R2. Here, the deformation radius is defined as

R=
√

gH0

f
, (9.40)

that is, the closest constant to the original definition (9.12). A wave solution of
the type cos(kxx+kyy−ωt) immediately provides the dispersion relation:

ω= α0g

f

kx

1+R2(k2
x+k2

y)
, (9.41)

the topographic analog of Eq. (9.27). Again, we note that if the additional ingre-
dient, here the bottom slope α0, had not been present, the frequency would have
been nil, and the flow would have been steady and geostrophic. Because they
owe their existence to the bottom slope, these waves are called topographic
waves.

The discussion of their direction of propagation, phase speed, and maxi-
mum possible frequency follows that of planetary waves. The phase speed in the
x-direction—that is, along the isobaths—is given by

cx=
ω

kx
= α0g

f

1

1+R2 (k2
x+k2

y)
(9.42)

and has the sign of α0f . Thus, topographic waves propagate in the northern
hemisphere with the shallower side on their right. Because planetary waves
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propagate westward, i.e., with the north to their right, the analogy between
the two kinds of waves is “shallow–north” and “deep–south”. (In the southern
hemisphere, topographic waves propagate with the shallower side on their left,
and the analogy is “shallow–south,” “deep–north.”)

The phase speed of topographic waves varies with the wavenumber; they
are thus dispersive. The maximum possible wave speed along the isobaths is

c= α0g

f
, (9.43)

which is the speed of the very long waves
(

k2
x+k2

y→0
)

. With (9.41) cast in

the form (
kx−

α0g

2fωR2

)2

+ k2
y =

(
α2

0g2

4f 2R4ω2
− 1

R2

)
, (9.44)

we note that there exists a maximum frequency:

|ω|max=
|α0|g
2|f |R . (9.45)

The implication is that a forcing at a frequency higher than the preceding
threshold cannot generate topographic waves. The forcing then generates either
a disturbance that is unable to propagate or higher frequency waves, such as
inertia-gravity waves. However, such a situation is rare because, unless the bot-
tom slope is very weak, the maximum frequency given by (9.45) approaches
or exceeds the inertial frequency f , and the theory fails before (9.45) can be
applied.

As an example, let us take the West Florida Shelf, which is in the eastern
Gulf of Mexico. There the ocean depth increases gradually offshore to 200 m
over 200 km (α0=10−3) and the latitude (27◦N) yields f =6.6×10−5 s−1.
Using an average depth H0=100 m, we obtain R=475 km and ωmax=1.6×
10−4 s−1. This maximum frequency, corresponding to a minimum period of
11 min, is larger than f , violates the condition of subinertial motions and is thus
meaningless. The wave theory, however, applies to waves whose frequencies are
much less than the maximum value. For example, a wavelength of 150 km along
the isobaths (kx=4.2×10−5 m−1, ky = 0) yields ω=1.6×10−5 s−1 (period of
4.6 days) and a wave speed of cx = 0.38 m/s.

Where the topographic slope is confined between a coastal wall and a flat-
bottom abyss, such as for a continental shelf, topographic waves can be trapped,
not unlike the Kelvin wave. Mathematically, the solution is not periodic in the
offshore, cross-isobath direction but assumes one of several possible profiles
(eigenmodes). Each mode has a corresponding frequency (eigenvalue). Such
waves are called continental shelf waves. The interested reader can find an
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exposition of these waves in LeBlond and Mysak (1978) and Gill (1982, pages
408–415).

9.6 ANALOGY BETWEEN PLANETARY AND
TOPOGRAPHIC WAVES

We have already discussed some of the mathematical similarities between the
two kinds of low-frequency waves. The objective of this section is to go to the
root of the analogy and to compare the physical processes at work in both kinds
of waves.

Let us turn to the quantity called potential vorticity and defined in Eq. (7.25).
On the beta plane and over a sloping bottom (oriented meridionally for
convenience), the expression of the potential vorticity becomes

q= f0+β0y+∂v/∂x−∂u/∂y

H0+α0y+η . (9.46)

Our assumptions of a small beta effect and a small Rossby number imply that the
numerator is dominated by f0, all other terms being comparatively very small.
Likewise, H0 is the leading term in the denominator because both bottom slope
and surface displacements are weak. A Taylor expansion of the fraction yields

q= 1

H0

(
f0+β0y− α0f0

H0
y+ ∂v

∂x
− ∂u

∂y
− f0

H0
η

)
. (9.47)

In this form, it is immediately apparent that the planetary and topographic terms
(β0 and α0 terms, respectively) play identical roles. The analogy between the
coefficients β0 and −α0f0/H0 is identical to the one noted earlier between
−β0R2 of Eq. (9.20) and α0g/f of Eq. (9.35), since now R= (gH0)

1/2/f0. The
physical significance is the following: Just as the planetary effect imposes a
potential-vorticity gradient, with higher values toward the north, so the topo-
graphic effect, too, imposes a potential-vorticity gradient, with higher values
toward the shallower side.

The presence of an ambient gradient of potential vorticity is what provides
the bouncing effect necessary to the existence of the waves. Indeed, consider
Fig. 9.7, where the first panel represents a north-hemispheric fluid (seen from
the top) at rest in a potential-vorticity gradient and think of the fluid as consisting
of bands tagged by various potential-vorticity values. The next two panels show
the same fluid bands after a wavy disturbance has been applied in the presence
of either the planetary or the topographic effect.

Under the planetary effect (middle panel), fluid parcels caught in crests
have been displaced northward and have seen their ambient vorticity, f0+β0y,
increase. To compensate and conserve their initial potential vorticity, they must
develop some negative relative vorticity, that is, a clockwise spin. This is
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FIGURE 9.7 Comparison of the physical mechanisms that propel planetary and topographic
waves. Displaced fluid parcels react to their new location by developing either clockwise or coun-
terclockwise vorticity. Intermediate parcels are entrained by neighboring vortices, and the wave
progresses forward.

indicated by curved arrows. Similarly, fluid parcels in troughs have been dis-
placed southward, and the decrease of their ambient vorticity is met with an
increase of relative vorticity, that is, a counterclockwise spin. Focus now on
those intermediate parcels that have not been displaced so far. They are sand-
wiched between two counterrotating vortex patches, and, like an unfortunate
finger caught between two gears or the newspaper zipping through the rolling
press, they are entrained by the swirling motions and begin to move in the
meridional direction. From left to right on the figure, the displacements are
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southward from crest to trough and northward from trough to crest. Southward
displacements set up new troughs, whereas northward displacements generate
new crests. The net effect is a westward drift of the pattern. This explains why
planetary waves propagate westward.

In the third panel of Fig. 9.7, the preceding exercise is repeated in the case
of an ambient potential-vorticity gradient due to a topographic slope. In a crest,
a fluid parcel is moved into a shallower environment. The vertical squeezing
causes a widening of the parcel’s horizontal cross-section (see Section 7.4),
which in turn is accompanied by a decrease in relative vorticity. Similarly,
parcels in troughs undergo vertical stretching, a lateral narrowing, and an
increase in relative vorticity. From there on, the story is identical to that of plan-
etary waves. The net effect is a propagation of the trough-crest pattern with the
shallow side on the right.

The analogy between the planetary and topographic effects has been found
to be extremely useful in the design of laboratory experiments. A sloping bot-
tom in rotating tanks can substitute for the beta effect, which would otherwise
be impossible to model experimentally. Caution must be exercised, however,
for the substitution is acceptable so long as the analogy holds. The following
three conditions must be met: absence of stratification, gentle slope, and slow
motion. If stratification is present, the sloping bottom affects preferentially the
fluid motions near the bottom, whereas the true beta effect operates evenly at all
levels. And, if the slope is not gentle, and the motions are not weak, the expres-
sion of potential vorticity cannot be linearized as in Eq. (9.47), and the analogy
is invalidated.

9.7 ARAKAWA’S GRIDS

The preceding developments had for aim to explain the basic physical mecha-
nisms responsible for shallow-water wave propagation, by simplifying the gov-
erning equations down to their simplest, yet meaningful ingredients. Numerical
models help us do better in cases where such simplifications are questionable, or
when it is necessary to calculate wave motions in more realistic geometries. For
the sake of clarity, broadly applicable numerical techniques will be illustrated
on simplified cases. The simplest situation arises with inertia-gravity waves,
for which the core mechanisms are rotation and gravity (see Section 9.3). In
a one-dimensional domain of uniform fluid depth H, the linearized governing
equations are

∂η

∂t
+H

∂u

∂x
=0 (9.48a)

∂u

∂t
− f v=−g

∂η

∂x
(9.48b)

∂v

∂t
+ fu=0. (9.48c)
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A straightforward second-order central finite differencing in space yields the
following:

dη̃i

dt
+H

ũi+1− ũi−1

21x
=0 (9.49a)

dũi

dt
− f ṽi=−g

η̃i+1− η̃i−1

21x
(9.49b)

dṽi

dt
+ f ũi=0. (9.49c)

When analyzing this second-order method (upper part of Fig. 9.8), we observe
that the effective grid size is 21x in the sense that all derivatives are taken over
this distance. This is somehow unsatisfactory because the real grid size, i.e.,
the distance between adjacent grid nodes is only 1x. To improve the situation,
we notice that the spatial derivatives of u are needed to calculate η, while the
calculation of u requires the gradients of η. The most natural place to calculate
a derivative of η is then at a point midway between two grid points of η, since
the gradient approximation there is of second order while using a step of only
1x, and the most natural position to calculate the velocity u is therefore at mid-
distance between η-grid nodes. Likewise, the most natural place to calculate the
time evolution of η is at mid-distance between u nodes. It appears therefore that
locating grid nodes for η and u in an interlaced fashion allows a second-order
space differencing of both fields over a distance 1x (lower part of Fig. 9.8).
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FIGURE 9.8 For variables η̃ and ũ defined at the same grid points (upper panel), the discretization
of inertia-gravity waves demands that approximations of spatial derivatives be made over distances
21x, even if the underlying grid has a resolution of 1x. However, if variables η̃ and ũ are defined
on two different grids (lower panel), shifted one with respect to the other by 1x/2, the spatial
derivatives can conveniently be discretized over the grid spacing 1x. The origin of each arrow
indicates which variable influences the time evolution of the node where the arrow ends.
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Formally, the discretization on such a staggered grid takes the form1:

dη̃i

dt
+H

ũi+1/2− ũi−1/2

1x
=0 (9.50a)

dũi+1/2

dt
− f ṽi+1/2=−g

η̃i+1− η̃i

1x
(9.50b)

dṽi+1/2

dt
+ f ũi+1/2=0. (9.50c)

Thus, spatial differencing can be performed over a distance 1x instead
of 21x. Since the scheme is centered in space, it is of second order, and its
discretization error is reduced by a factor 4 without any additional calculation.2

This advantage of a staggered grid over the elementary collocated grid is a prime
example of optimization of numerical methods at fixed cost.

But, as we will now show, the performance gain is not the sole advantage of
the staggered-grid approach. In the case of a negligible Coriolis force (f→0),
elimination of velocity from Eq. (9.48) leads to a single wave equation for η:

∂2η

∂t2
= c2 ∂

2η

∂x2
, (9.51)

where c2=gH. This equation is the archetype of a hyperbolic equation, which
possesses a general solution of the form

η=E1(x+ct)+E2(x−ct), (9.52)

where the functions E1 and E2 are set by initial and boundary conditions. The
general solution is therefore the combination of two signals, travelling in oppo-
site directions at speeds ±c (Fig. 9.9). The lines of constant x+ct and x−ct
define the characteristics along which the solution is propagated. For t=0, it
is then readily seen that two initial conditions are needed, one for η and the
other on its time derivative, i.e., the velocity field, before one can determine
the two functions E1 and E2 at the conclusion of the first step. Later on, when
characteristics no longer originate from the initial conditions but have their root
in the boundaries, the solution becomes influenced first by the most proximate
boundary condition and ultimately by both. If the boundary is impermeable, the
condition is u=0, which can be translated into a zero-gradient condition on η.
For discretization (9.50), the necessary numerical boundary conditions are con-
sistent with the analytical conditions, whereas the nonstaggered version (9.53)
needs additional conditions to reach the near boundary points. We have already
learned (Section 4.7) how to deal with artificial conditions.

1We arbitrarily choose to place η̃ at integer grid indices and ũ at half indices. We could have chosen
the reverse.
2Both approaches use the same number of grid points to cover a given domain, and both schemes
demand the same number of operations.
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FIGURE 9.9 Characteristics x+ct and x−ct of wave equation (9.51). Information propagates
along these lines from two initial conditions and one boundary condition on each side to set in a
unique way the value of the solution at any point (x, t) of the domain.

We now turn our attention to the remaining problem of the nonstaggered
grid, which is the appearance of spurious, stationary, and decoupled modes
within the domain. To illustrate the issue, we use a standard leapfrog time
discretization with zero Coriolis force so that the nonstaggered discretization
becomes

η̃n+1
i − η̃n−1

i

21t
=−H

ũn
i+1− ũn

i−1

21x
(9.53a)

ũn+1
i − ũn−1

i

21t
=−g

η̃n
i+1− η̃n

i−1

21x
. (9.53b)

For the grid-staggered version, we can also introduce a form of time staggering
by using a forward-backward approach in time:

η̃n+1
i − η̃n

i

1t
=−H

ũn
i+1/2− ũn

i−1/2

1x
(9.54a)

ũn+1
i+1/2− ũn

i+1/2

1t
=−g

η̃n+1
i+1 − η̃n+1

i

1x
. (9.54b)

Although it may first appear that we are dealing with an implicit scheme because
of the presence of η̃n+1 on the right of the second equation, it is noted that this
quantity has just been calculated when marching the preceding equation one
step forward in time. The scheme is thus explicit in the sense that we solve the
first equation to get η̃n+1 everywhere in the domain, and then use it immediately
in the second equation to calculate ũn+1 without having to invert any matrix.
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As for all forms of leapfrogging and staggering, we should be concerned by
spurious modes. These can be sought here rather simply by eliminating the dis-
crete field ũ from each set of equations. This elimination can be performed by
taking a finite time difference of the first equation and a finite space difference
of the second equation.3 This is the direct analog of the mathematical differ-
entiation used in eliminating the velocity between the two governing equations
(9.48) to obtain (9.51). For the nonstaggered and staggered grids, we obtain

η̃n+2
i −2η̃n

i + η̃n−2
i = c21t2

1x2

(
η̃n

i+2−2η̃n
i + η̃n

i−2

)
(9.55)

η̃n+1
i −2η̃n

i + η̃n−1
i = c21t2

1x2

(
η̃n

i+1−2η̃n
i + η̃n

i−1

)
. (9.56)

These equations are straightforward second-order discretizations of the wave
equation (9.51), the first one with spatial and temporal steps twice as large as
for the second one. The CFL criterion is |c|1t/1x≤1 in each case, since the
propagation speeds of the hyperbolic equation are ±c, and the corresponding
characteristics must lie in the numerical domain of dependence.

The discretization (9.55) shows that the nonstaggered grid is prone to decou-
pled modes. Indeed, for even values of n and i, all grid indexes involved are
even, and the evolution is completely independent of that on points with odd
values of n or i, which are nonetheless proximate in both time and space. In
fact, there are four different solutions evolving independently, with their only
link being through the initial and boundary conditions (left panel of Fig. 9.10).
Although theoretically acceptable, such decoupled modes typically increase
their “distance” from one another in the course of the simulation and induce

n

i

T
im

e

Space

FIGURE 9.10 Four different solutions, each identified by a different symbol, evolve indepen-
dently on the nonstaggered grid. The numerical domain of dependence is shown as the shaded
region (left panel). A spurious stationary mode alternating between two constants (right panel) is
incompatible with the original governing equations.

3For the nonstaggered version, we make the following formal elimination: 1x [(9.53a)n+1 -
(9.53a)n−1] - 1tH[(9.53b)i+1 - (9.53b)i−1]
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undesirable space-time oscillations in the solution. Occasionally, this can lead
to stationary solutions that are simply unphysical (Fig. 9.10), such as a solution
with zero velocity and η̃ alternating in space between two different constants.
Solutions of this type are clearly spurious. In contrast, the only stationary solu-
tion produced by the staggered equation (9.56) is the physical one. This is a
desirable property.

More generally, the spurious stationary solutions of a space discretization
can be analyzed in terms of the state variable vector x, space discretization
operator D, and the semi-discrete equation

dx
dt
+Dx=0 (9.57)

so that spurious stationary modes can be found among the nonzero solutions of

Dx=0. (9.58)

In the jargon of matrix calculation (linear algebra), spurious modes lie within the
null-space of matrix D. In the case of the wave equation, the solution depicted
in the right panel of Fig. 9.10 is certainly not a physically valid solution but
satisfies Eq. (9.58).

All nonzero stationary solutions (members of the null-space), however, do
not need to be spurious, and a physically admissible nonzero stationary solution
is possible in the presence of the Coriolis terms, namely the geostrophic equi-
librium. In that case, the discretized geostrophic equilibrium solution is also
part of the null-space (9.58). It is therefore worthwhile sometimes to analyze
the null-space of discretization operators for which the corresponding physical
stationary solutions are known.

Having found that staggering has advantages in one dimension, we can now
explore the situation in two dimensions but immediately realize that there is no
single way to generalize the approach. Indeed, we have three state variables,
u, v, and η, which can each be calculated on a different grid. The collocated
version, the so-called A-grid model, is readily defined, and discretization4 of
Eqs. (9.4a) through (9.5) with uniform fluid thickness leads to:

dη̃

dt
=− H

ũi+1− ũi−1

21x
−H

ṽj+1− ṽj−1

21y
(9.59a)

dũ

dt
=+ f ṽ−g

η̃i+1− η̃i−1

21x
(9.59b)

dṽ

dt
=− f ũ−g

η̃j+1− η̃j−1

21y
. (9.59c)

4As before, we only write indices that differ from i and j.
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j
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FIGURE 9.11 A spurious stationary
η̃ mode alternating between two con-
stants (depicted by two different gray
levels) on the A-grid. This mode is
called for obvious reasons the checker-
board mode.

Clearly, a spurious stationary solution exists, again with zero velocity (ũ =
ṽ = 0) and η̃ alternating between two constants on the spatial grid (Fig. 9.11).

Starting from the collocated grid, we can distribute the variables with respect
to one another in different ways and create various staggered grids. These
are named Arakawa’s grids in honor of Akio Arakawa5 and bear the letters
A, B, C, D, and E depending on where the state variables are located across the
mesh (Fig. 9.12; Arakawa & Lamb, 1977). For the linear system of equations
considered here, it can be shown (e.g., Mesinger & Arakawa, 1976) that the
E-Grid is a rotated B-grid so that we do not need to analyze it further.

A two-dimensional staggered grid we already encountered is the so-called
C-grid (bottom left of Fig. 9.12). For advection [recall Eq. (6.58)] and the
rigid-lid pressure formulation [recall Eq. (7.38)], we tacitly assumed that the
velocity u was being calculated halfway between pressure nodes (i+1, j) and
(i, j) and v halfway between nodes (i, j) and (i, j+1). In the present wave prob-
lem, this approach yields a straightforward second-order discretization of both
divergence and pressure gradient terms(

∂u

∂x
+ ∂v
∂y

)
i,j
' ũi+1/2− ũi−1/2

1x
+ ṽj+1/2− ṽj−1/2

1y
+O(1x2,1y2) (9.60)

∂η̃

∂x

∣∣∣∣
i+1/2,j

' η̃i+1− η̃
1x

+O(1x2) (9.61a)

∂η̃

∂y

∣∣∣∣
i,j+1/2

' η̃j+1− η̃
1y

+O(1y2) (9.61b)

exactly as in the advection and surface pressure problems (Fig. 9.13). But if we
proceed with the discretization of the Coriolis term, a problem arises for the
C-grid because the velocity components are not defined at the same points. The

5See biography at the end of this Chapter.
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FIGURE 9.12 The five Arakawa grids. On the A-grid, the variables η̃, ũ, and ṽ are collocated,
and staggered on other grids, called B-, C-, D-and E-grids. Note that the E-grid (center) has a higher
grid-point density than the other grids for the same distance between adjacent nodes.

integration of the du/dt equation at the u grid node (i+1/2, j) requires knowl-
edge of the velocity v, which is only available at node (i, j±1/2). Therefore, an
interpolation is necessary. The simplest scheme takes an average of surrounding
values:

v|i+1/2,j'
ṽj+1/2+ ṽi+1,j+1/2+ ṽj−1/2+ ṽi+1,j−1/2

4
, (9.62)

where the right-hand side can now be calculated from the available values
of ṽ. Similar averaging to estimate variables at locations where they are not
defined can be used to discretize the equations on the other staggered grids.
For example, the B-grid is a grid where η is defined on integer grid indices
whereas velocity components are defined at corner points (i±1/2, j±1/2). For
this grid, the Coriolis term does not require any averaging, since both veloc-
ity components are collocated, but the grid arrangement requires the derivative
of η in the x-direction at location (i+1/2, j+1/2). We approximate such a
term by the appropriate average

∂η

∂x

∣∣∣∣
i+1/2,j+1/2

'
η̃i+1,j+1+η̃i+1

2 − η̃j+1+η̃
2

1x
, (9.63)
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ṽj −1/2

ũi+1/2ũi −1/2

η̃j+1

η̃i+1

FIGURE 9.13 Discretization on
the C-grid. The divergence oper-
ator is discretized most naturally
by (9.60) while pressure gradients
are calculated with (9.61).

and similarly for ∂u/∂x, which is needed at (i, j). The full spatial discretization
on each grid can be achieved in similar manner, and the derivation is left as an
exercise (Numerical Exercise 9.2).

We can investigate the wave propagation properties on the various grids by
a Fourier analysis, for which we takeη̃ũ

ṽ

=<
A

U
V

ei(ikx1x+jky1y−ω̃t). (9.64)

Insertion of this type of solution in the various finite-difference schemes and
division by the common exponential factor provide the following equations

− i ω̃U− fαV=− igαxkxA (9.65a)

− i ω̃V+ fαU=− igαykyA (9.65b)

− i ω̃A+H (iαxkxU+ iαykyV)=0, (9.65c)

where the coefficients α, αx, and αy vary with the type of grid and are given in
Table 9.1.

As for the physical solution, a nonzero solution is only possible when the
determinant of the system vanishes, and this provides the dispersion relation of
the discretized wave physics:

ω̃ [ω̃2−α2f 2−gH (α2
x k2

x+α2
y k2

y)]=0, (9.66)

which is the discrete analog of (9.16).
For small wavenumber values (kx1x�1 and ky1y�1), i.e., long, well-

resolved waves, we recover the physical dispersion relation because α, αx, and
αy all tend towards unity. For shorter waves, the numerical dispersion relation
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TABLE 9.1 Definition of the Parameters Involved in the Discrete
Dispersion Relation for A-, B-, C-and D-grids with 2θx= kx1x and
2θy= ky1y.

Grid α αxkx1x αyky1y

A 1 sin2θx sin2θy

B 1 2sinθx cosθy 2sinθy cosθx

C cosθx cosθy 2sinθx 2sinθy

D cosθx cosθy 2cosθx cosθy sinθx 2cosθx cosθy sinθy

can be analyzed in detail through the error estimate

ω2− ω̃2

ω2
=
(1−α2)+R2

[
(1−α2

x )k
2
x+(1−α2

y )k
2
y

]
1+R2

(
k2

x+k2
y

) ≥ 0. (9.67)

Except for the simple statement ω̃2≤ω2, the analysis of the error is rather com-
plex because it involves five length scales6: R, 1/kx, 1/ky, 1x, and 1y. For
simplicity, we take 1x∼1y and kx∼ ky to reduce the problem. We then define
the length scale L∼1/kx∼1/ky of the wave under consideration. In this case
αx∼αy, and we can distinguish two situations:

Shorter waves : L . R, ω2 ∼ gH

L2
(9.68)

Longer waves : L & R, ω2 ∼ f 2. (9.69)

The shorter waves are dominated by gravity, and the relative error on ω2

behaves as

ω2− ω̃2

gH/L2
∼ (1−α2

x ). (9.70)

If the wave is well resolved (1x�L), the error tends toward zero for all four
grids because αx→1. For the barely resolved waves (1x∼L), the errors are
largest for the discretizations in which αx and αy depart most from unity. In
this sense, the A-, B-, and D-grids have larger errors than the C-grid (see
Table 9.1).

6Note how the discretization has added two length scales, 1x and 1y, to the discussion.
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The longer waves are dominated by rotation, and the relative error on ω2

behaves as

ω2− ω̃2

f 2
∼ (1−α2). (9.71)

Again, α should remain close to unity for all wavenumbers so that the B-grid
outperforms both the C- and D-grids. For details on the errors, an exploration
with abcdgrid.m in parameter space provides relative error fields as those
depicted in Fig. 9.14 for various resolution levels R/1x, etc. Errors can be fur-
ther investigated through the analysis of the group-velocity behavior (Numerical
Exercise 9.5) and in the context of generalized dynamics, including planetary
waves, with a clear distinction between zonal and meridional wave behaviors
(Dukowicz, 1995; Haidvogel & Beckmann, 1999).

Because the A-grid suffers from spurious modes, and the D-grid is always
penalized in terms of accuracy, the B-and C-grids are the most interesting ones
among the four types. Since wavelengths up to 1x∼L are to be resolved in a
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FIGURE 9.14 For medium resolution compared with the deformation radius (R/1x=R/1y=2),
the frequency error (9.67) is depicted as a function of kx1x and ky1y. Waves with wavenumber
higher than kx1x=π/2 are not shown, and the x- and y-axes are labeled in percents of π/2. The
D-grid clearly exhibits the worst behavior. The B-grid keeps the error low for well-resolved waves,
whereas the C-grid creates lower errors for shorter waves. A color version can be found online at
http://booksite.academicpress.com/9780120887590/



300 PART | II Rotation Effects

significant way, the C-grid is the better choice as long as 1x�R, whereas for
R�1x the B-grid should be preferred on the ground that the error in Eqs. (9.70)
and (9.71) is less. This confirms more detailed error analyses of the semidiscrete
equations on staggered grids (e.g., Haidvogel & Beckman, 1999; Mesinger &
Arakawa, 1976), although additional time discretization or boundary condition
implementation can introduce stability problems (e.g., Beckers, 1999; Beckers
& Deleersnijder, 1993). Also, time discretization further complicates the error
analysis and may sometimes inverse the error behavior (Beckers, 2002). Never-
theless, the choice of the B-grid for larger grid spacing and the C-grid for finer
grid spacing is justified by the fact that for large grid spacing we only capture
large-scale movements, which are nearly geostrophic. Since the Coriolis force
is dominant in this case, its discretization is crucial. Because the B-grid does
not require a spatial average of the velocity components, contrary to the C-grid,
its use should be advantageous. The pressure gradient, which is the other dom-
inant force, could arguably be better represented on the C-grid. If the grid is
very fine, averaging the large-scale geostrophic equilibrium over four closely
spaced nodes does not deteriorate the geostrophic solution, whereas smaller-
scale processes such as gravity waves and advection are better captured by the
C-grid.

From the preceding interpretation, we can establish some general rules for
staggering the variables. Starting with the goal of placing variables on the grid
so that dominant processes are discretized in the best possible way, we can
then afford to represent secondary processes by less accurate discrete opera-
tors without affecting overall model accuracy. In practice, however, dominant
processes may change in time and space so that no single approach can be guar-
anteed to work uniformly, but it should at least be tried. For example, if tracer
advection is of primary interest, the C-grid can be generalized to three dimen-
sions with vertical velocities defined at the bottom and top of each grid cell.
In that case, advection fluxes are readily calculated using one of the advection
schemes presented in Section 6.6 without need for velocity interpolations. Sim-
ilarly, if diffusion in a heterogeneous turbulent environment is the main process
at play, the definition of diffusion coefficients between tracer nodes would allow
the direct discretization of turbulent fluxes without the need of averaging the
diffusion coefficients.

9.8 NUMERICAL SIMULATION OF TIDES AND
STORM SURGES

The two-dimensional equations (7.16) describing shallow-water dynamics are
the basic equations from which storm-surge models of vertically mixed coastal
seas have been developed. The prediction of rising sea level (surge) along a
coast depends on remotely generated waves that propagate from the stormy area
toward the shore. Because shallow-water equations describe well the propaga-
tion of such waves, their prediction is indeed feasible, although a few additional
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processes must be taken into account. Among these other processes are the
surface wind stress, through which waves are generated, and bottom friction,
which causes attenuation during travel. To include these last two stresses, we
can start from the observation that the shallow-water equations assume that the
flow is independent of the vertical coordinate. If this is not the case, we can at
least try to predict the evolution of the depth-averaged velocity,

ū= 1

h

b+h∫
b

u dz v̄= 1

h

b+h∫
b

v dz (9.72)

where z=b is the bottom level and h the water depth. We can derive a gov-
erning equation for ū by integrating vertically the three-dimensional governing
equations including the x-momentum equation:

∂u

∂t
= ∂

∂z

(
νE
∂u

∂z

)
+F(u), (9.73)

where the term F(u) gathers all terms other than the time derivative and vertical
diffusion. We can then integrate vertically to obtain

1

h

b+h∫
b

∂u

∂t
dz= τ x

ρ0h
− τ x

b

ρ0h
+F(u), (9.74)

where boundary conditions similar to (4.34) have been used for the surface wind
stress τ and bottom stress τb, respectively. Physically, these stresses appear here
as body forces applied to the layer h of fluid moving as a slab with the depth-
averaged velocity (Fig. 9.15).

Two difficulties arise, however, during the integration. The first is that the
elevation of the surface is time dependent and does not allow a simple permu-

h

S
τ

τb

ū

FIGURE 9.15 For a fluid column of volume hS and
moving with the average velocity ū, Newton’s second law
in the absence of lateral friction and pressure force impli-
cates the forces associated with the surface stress τ and
bottom friction: ρ0hS dū/dt= (τ−τb)S.
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tation of the integration with the time derivative in the left-hand side of (9.74).7

The second and more fundamental difficulty is due to the nonlinearities of the
equations, which prevent us from equating the average of F(u) with F(ū), i.e.,

F(u) 6=F(ū) (9.75)

so that we cannot express the right-hand side of (9.74) as a function of only the
average velocity. The integrated equation then requires some form of parame-
terization. Hence, shallow-water models include additional parameterization of
the horizontal diffusion type.

For simplicity, the governing equations are written as if depth averaging
had not taken place, and the overbar ( ¯ ) operator is ignored. The outcome is
that it is sufficient to add the τ/(ρ0h) and −τb/(ρ0h) terms to the right-hand
side of the two-dimensional momentum equations (7.9a) and (7.9b), and then to
include a parameterization of the nonlinear effects. The wind stress τ appears as
an externally imposed source term in the equations, whereas the bottom stress is
depending on the flow itself, i.e., τb= τb(u,v). A difficulty arises here because
the bottom stress depends on the velocity profile near the bottom, whereas the
governing equations provide only the vertical average of the velocity. A param-
eterization is needed here, too. The simplest version is linear bottom friction, in
which the frictional term is made linear in, and opposite to, velocity:

τ x
b =−rρ0u, τ

y
b =−rρ0v, (9.76)

where r is a coefficient with dimensions of velocity (LT−1). The linear formula-
tion is particularly advantageous in analytical studies or with spectral methods.
They fail, however, to take into account the turbulent nature of the bottom
boundary layer, with stress better expressed as a quadratic function of velocity
(see Chapter 14):

τ x
b =−ρ0Cd

√
u2+v2 u, τ

y
b =−ρ0Cd

√
u2+v2 v, (9.77)

with a dimensionless drag coefficient Cd either constant or depending on the
flow itself.

Finally, the direct driving force associated with a moving disturbance of the
atmospheric pressure patm(x,y, t) can be easily taken into account by including
it in the pressure boundary condition at the surface (4.32), p=ρ0gη+patm.

We can now estimate the wind-induced surge in a shallow sea by consider-
ing how the storm piles up water near the coast (Fig. 9.16). This accumulation
of water creates a surface elevation (surge) and, consequently, an adverse pres-
sure gradient. Eventually, this adverse pressure gradient can grow strong enough
to cancel the wind stress. When this balance is reached, the sea surface slope

7This problem can be overcome by using Leibniz rule as done in Section 15.6.
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FIGURE 9.16 The piling up of water
by a storm near a coast an adverse
pressure-gradient force, and an equilib-
rium can exist if it cancels the wind-
stress force.

caused by the wind stress is governed by

∂η

∂x
' τ

ρ0gh
. (9.78)

This relation provides an estimate of the storm-surge amplitude A as a function
of the distance L over which the wind blows

A ' Lτ

ρ0gh
. (9.79)

Note that the shallower the water, the stronger the effect. In other words, storm
surges intensify near the coast where the water is shallower.

Storm surges can become dramatic when superimposed to the tide, and it
is therefore important to know how to calculate tidal elevations, too. Tides are
forced gravity waves caused by the gravitational attraction of the moon and sun.
The following development is also valid for the atmosphere, but the velocities
associated with atmospheric tides are much smaller than the wind speed due
to atmospheric disturbances. Tides, therefore, are generally negligible in the
atmosphere, whereas tidal currents in the ocean can be an order of magnitude
larger than other currents.

To quantify the net effect of the gravitational acceleration of the moon and
sun, we have to realize that the whole system is moving. Therefore, Newton’s
law cannot simply be written with respect to axes fixed at the earth center as we
did in Chapter 2. Instead, using Newton’s law in absolute axes I, J, and K of
the solar system, we can calculate the absolute acceleration A of the fluid parcel
and of the earth Ae under the moon’s attraction8:

ρA=ργ +ρf (9.80)

MeAe=Meγ e. (9.81)

8The sun’s influence can be studied in an analogous way.
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FIGURE 9.17 The moon acts simultaneously on a fluid parcel lying on the earth’s surface as well
as on the entire earth. The tidal force results from the mutual attraction between earth and moon and
from the local gravitational attraction on earth.

We regrouped under the force ρf all forces acting on the fluid parcel other than
the moon’s attraction. The gravitational forces9 ργ and Meγ e involve the grav-
itational constant G=6.67 × 10−11 Nm2/kg2, the earth’s mass Me=5.9736 ×
1024 kg, the moon’s mass Mm=7.349× 1022 kg, the distance Dm∼ 385000 km
between earth and moon, and the actual distance dm of the point under consid-
eration to the moon (Fig. 9.17). The two gravitational accelerations are directed
towards the center of the moon and of magnitude

γ = GMm

d2
m
, γe=

GMm

D2
m
. (9.82)

We are not so much interested in the movement of the earth per se, but we
need its acceleration to subtract it from the fluid parcel’s absolute acceleration,
which is A=Ae+d2r/dt2. The fluid’s parcel’s relative acceleration with respect
to the earth is thus

d2r
dt2
= f+(γ −γe). (9.83)

Without the astronomical force, the equation would have been d2r/dt2= f, and
so we note that its effect is the addition of a so-called tidal force (per unit
volume):

ρft=ρ(γ −γe). (9.84)

9It should be clear that for a fluid parcel, forces are per unit volume, whereas for the earth, we speak
about full forces.
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We notice that this force is the difference between two almost identical
forces. Its locally vertical component is as follows:

f↑=γ cos(θ+ε)−γe cosθ. (9.85)

The expression can be simplified because the angle ε is extremely small
(Fig. 9.17, diagram in lower right). By expanding cos(θ+ε) and using

cosε'1, Dm sinε' r sinθ, (9.86)

we obtain

f↑=
GMm

D2
m

[(
D2

m

d2
m
−1

)
cosθ− D2

m

d2
m

r sinθ

Dm
sinθ

]
. (9.87)

The use of dm in the formulation of the tidal forcing is not very practical.
(Can you tell at any moment the precise distance of your position with respect
to the moon?) So, we use the identity r cosθ+dm cosε=Dm and the smallness
of ε to obtain

dm ' Dm

(
1− r

Dm
cosθ

)
. (9.88)

For the same reason that ε is small, the ratio r/Dm is also considered small,10

and we drop higher-order terms in r/Dm:

D2
m

d2
m
' 1+2

r

Dm
cosθ, (9.89)

so that the vertical component of the tidal force can be reduced to

f↑ '
GMm

D3
m

r (3cos2 θ−1). (9.90)

To compare its magnitude to g=GMe/r2=9.81 m/s2, the gravitational
acceleration of the earth on its surface, we form the ratio δ= f↑/g and find it
to be on the order of

δ ∼ r3Mm

D3
mMe

∼ O(10−7). (9.91)

It appears therefore that the tidal force associated with the moon is completely
negligible, not only compared with gravity g but also to any of the typical
forces acting along the vertical direction. So does it mean tidal forces are not
responsible for the observed tides? Of course they are, but not through the local

10In the case of the earth–moon system, its value is about 6400/385000 ∼ 0.017.
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f←

FIGURE 9.18 The movement of earth and moon around their common center of mass creates a
centrifugal force that is weaker than the moon’s gravitational attraction for earth points facing the
moon. The resulting horizontal tidal force f← has a tendency to create a bulge toward the moon.
On the earth’s face opposite to the moon, the centrifugal force is larger than the moon’s gravi-
tational attraction, and the horizontal force creates a second bulge facing away from the moon.
Since the earth rotates around its own South–North axis, the two bulges move with respect to the
continents.

vertical attraction as sometimes erroneously thought, but through the horizontal
component, which we now proceed to calculate.

The component of the tidal force along the local northward axis (j in Fig. 2.9)
is, after several simplifications similar to those made above,

f← ' −
GMm

D3
m

3r cosθ sinθ. (9.92)

The order of magnitude of this force component is the same as that of the ver-
tical one, but since all horizontal forces are much smaller than gravity, the
horizontal tidal force is not negligible and acts to make the fluid converge or
diverge. The spatial distribution of this force along the earth’s surface is such
that it tends to create a bulge in the region of the earth facing the moon and
a second bulge at the diametrically opposite place. The explanation is that,
for a point closer to the moon than Dm, the gravitational pull of the moon
exceeds the centrifugal force associated with the earth–moon corotation, while
on the opposite side of the earth the inverse is true; the centrifugal force of
the earth–moon corotation exceeds the gravitational pull of the moon. This
is the essential mechanism of lunar tides (Fig. 9.18). Solar tides are similar,
with the sun taking the place of the moon but being much larger and much
further away.

The angle θ involved in our formula is constantly changing in time because
of the terrestrial rotation and lunar motion, and it must be determined through
astronomical calculations (e.g., Doodson, 1921). These calculations also take
into account variations in the earth–moon distance Dm, which induce slow mod-
ulations of the tidal force. Trigonometric calculations reveal different periods of
motion, the most noticeable one being due to the corotation of the earth and
moon, giving rise to an apparent rotation of the moon over a given point on the
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earth every 24 h and 50 min (24 h of terrestrial rotation and a delay caused by
the moon rotating around the sun in the same direction). But, because there are
two bulges half an earth’s circumference apart from each other [mathematically
because of the product cosθ sinθ in Eq. (9.92)], the period of the main lunar tide
is only half of that, i.e., 12 h 25 min.

For practical purposes, it is worth noting that the tidal force can be derived
from the so-called tidal potential (see Analytical Problem 9.8). In the local
Cartesian coordinate system, the tidal force can be expressed as

ft=−
(
∂V

∂x
,
∂V

∂y
,
∂V

∂z

)
with V=−GMm

D3
m

r2

2
(3cos2 θ−1). (9.93)

All we have to do then is to calculate the local tidal potential, take its local
derivatives, and introduce these as tidal forces in the shallow-water equations.

The tidal potential can also be used to estimate tidal amplitudes. Since
the tidal force, i.e., the gradient of the potential, has a form similar to the
pressure-gradient force associated with the sea surface height, we can ask which
distribution of η, denoted ηe, would cancel the tidal force so that no motion
would result. Obviously, this is the case when

ηe=−
V

g
= GMm

D3
m

r2

2g
(3cos2 θ−1)

=O
(

GMm

D3
m

r2

g

)
∼ 0.36 m. (9.94)

This defines the so-called equilibrium tide, first derived by Isaac Newton. It
would be the tidal elevation if the fluid could follow the tidal force in order
to remain in equilibrium with the pressure gradient generated by the bulges.
In reality, however, continents and topographic features in the ocean do not
allow sea water to stay at the equilibrium. Not only is the equilibrium tide never
reached, but the tidal potential is also in need of further adaptation to take into
account the solid earth deformation due to tides and the self-attraction of tides
(e.g., Hendershott, 1972).

In the same way as we defined the equilibrium tide, we can determine the sea
surface height that would exactly cancel the effect of an atmospheric pressure
disturbance patm:

η=−patm

ρ0g
, (9.95)

which can be used as a first approximation to estimate the effect of atmospheric
pressure on measurements of η and is called the inverse barometric response.

For actual tidal predictions, we resort to numerical methods. For this, we
gather all terms previously mentioned in this chapter and add the components
of the tidal force. The governing equations used in a shallow-water model to
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predict both tides and storm surges are

∂u

∂t
+u

∂u

∂x
+v

∂u

∂y
− f v = − 1

ρ0

∂p

∂x
+ τ x

ρ0h
− τ x

b

ρ0h
− ∂V

∂x

+ 1

h

∂

∂x

(
A
∂hu

∂x

)
+ 1

h

∂

∂y

(
A
∂hu

∂y

)
(9.96a)

∂v

∂t
+u

∂v

∂x
+v

∂v

∂y
+ fu = − 1

ρ0

∂p

∂y
+ τ y

ρ0h
− τ

y
b

ρ0h
− ∂V

∂y

+ 1

h

∂

∂x

(
A
∂hv

∂x

)
+ 1

h

∂

∂y

(
A
∂hv

∂y

)
(9.96b)

p=ρ0gη+patm (9.96c)

together with Eqs. (7.14) and (9.93). Note that the driving forces of wind and
tide act very differently. While the wind stress acts as a surface force and there-
fore appears with a factor 1/h, the tidal force is a body force acting over the
whole water column. Consequently, the tidal force is more important in the
deeper parts of the ocean. This might surprise us since we are used to observe
the highest tides near the coasts, where h is small! In most cases, tides are gen-
erated in the deeper parts of the oceans, where the tidal force acts on a thick
layer of water, creates a pattern of convergence/divergence and locally modifies
the sea surface height. The sea surface elevation is then propagated as a set of
Kelvin and inertia-gravity waves into shelf seas and coastal regions, where the
reduced depth increases their amplitudes (Fig. 9.2).

Some shelf models can provide tidal predictions by imposing tidal elevations
at distant open boundaries and propagating the waves into the domain while dis-
carding the local tidal force. This is consistent with the idea that, in shallow seas,
the wind stress is the dominant local forcing. Indeed, in a 10,000-m-deep basin,
the tidal force is equivalent to the surface friction of a 75 m/s wind, whereas in
a shallow sea of 100 m, a wind of 7.5 m/s already matches the local tidal force.
An example of a tidal calculation in which the tides are imposed along an open
boundary is given in Fig. 9.19. In this figure, we note in passing the presence of
nodes where the tidal amplitude is nil and the phase undefined. Each such node,
called an amphidromic point, is a place where the various wave components
cancel each other (destructive interference).

The numerical implementation of the model we have just developed is read-
ily feasible since we have already encountered all its ingredients: time stepping,
advection, Coriolis term, pressure gradient, diffusion, which were all treated in
detail in previous sections. The only remaining term is that including the bottom
stress, and for it we suggest to discretize it with the Patankar technique (to be
discussed in Section 14.6) if the quadratic relationship is selected:

τ x
b = −ρ0Cd

√
(un)2+(vn)2 un+1, τ

y
b = −ρ0Cd

√
(un)2+(vn)2 vn+1.

(9.97)
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FIGURE 9.19 Tidal amplitudes (full lines) and phases (dotted lines) over the Northwestern
European continental shelf, generated by the moon. (Eric Delhez)

Since several methods are available for each process, the combination
of the various processes leads to a very wide array of possible numerical
implementations, all at relatively low cost with two spatial dimensions. This
explains the large number of two-dimensional numerical models that were
developed relatively early in geophysical fluid modeling (e.g., Backhaus, 1983;
Heaps, 1987; Nihoul, 1975).

ANALYTICAL PROBLEMS

9.1. Prove that Kelvin waves propagate with the coast on their left in the
southern hemisphere.

9.2. The Yellow Sea between China and Korea (mean latitude: 37◦N) has an
average depth of 50 m and a coastal perimeter of 2600 km. How long does
it take for a Kelvin wave to go around the shores of the Yellow Sea?

9.3. Prove that at extremely large wavelengths, inertia-gravity waves degener-
ate into a flow field where particles describe circular inertial oscillations.

9.4. An oceanic channel is modeled by a flat-bottom strip of ocean between
two vertical walls. Assume that the fluid is homogeneous and inviscid,
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and that the Coriolis parameter is constant. Describe all waves that can
propagate along such a channel.

9.5. Consider planetary waves forced by the seasonal variations of the annual
cycle. For f0 = 8×10−5 s−1, β0 = 2×10−11 m−1s−1, R=1000 km, what
is the range of admissible zonal wavelengths?

9.6. Because the Coriolis parameter vanishes along the equator, it is usual in
the study of tropical processes to write

f =β0y,

where y is the distance measured from the equator (positive northward).
The linear wave equations then take the form

∂u

∂t
−β0yv =−g

∂η

∂x
(9.98)

∂v

∂t
+β0yu =−g

∂η

∂y
(9.99)

∂η

∂t
+H

(
∂u

∂x
+ ∂v
∂y

)
=0, (9.100)

where u and v are the zonal and meridional velocity components, η is
the surface displacement, g is gravity, and H is the ocean depth at rest.
Explore the possibility of a wave traveling zonally with no meridional
velocity. At which speed does this wave travel and in which direction? Is
it trapped along the equator? If so, what is the trapping distance? Does
this wave bear any resemblance to a midlatitude wave (f0 not zero)?

9.7. Seek wave solutions to the nonhydrostatic system of equations with
nonstrictly vertical rotation vector:

∂u

∂t
− f v+ f∗w =−

1

ρ0

∂p

∂x
(9.101a)

∂v

∂t
+ f u =− 1

ρ0

∂p

∂y
(9.101b)

∂w

∂t
− f∗u =−

1

ρ0

∂p

∂z
(9.101c)

∂u

∂x
+ ∂v
∂y
+ ∂w

∂z
=0. (9.101d)

The fluid is homogeneous (ρ=0), inviscid (ν=0) and infinitely deep.
Consider in particular the equivalent of the Kelvin wave (u=0 at x=0)
and Poincaré waves.

9.8. Prove by using a local polar coordinate system that tidal forces derive
from the tidal potential (9.93).
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9.9. Estimate the average travel time for a gravity wave to circle the earth
along the equator, assuming that there are no continents, and that the
average depth of the ocean is 3800 m. Compare with the tidal period.

9.10. Based on the mass of the sun and its distance to the earth, how intense do
you expect solar tides to be compared with lunar tides? At what period do
the combined forces give rise to the strongest tides?

9.11. Knowing that a hurricane approaching Florida has a diameter of 100 km
and wind-speeds U of 150 km/h, which storm surge height do you expect
in a 10-m-deep coastal sea? Use the following wind-stress formula:
τ =10−6ρ0U2.

9.12. Assuming the earthquake near Indonesia’s Sumatra Island on 26
December 2004 generated a surface wave (tsunami) by an upward motion
of the sea floor during 10 min, estimate the wavelength of the wave.
For simplicity, assume a uniform depth h=4 km. Estimate also the time
available between the detection of the earthquake and the moment the
tsunami reaches a coastline 4000 km away. If instead of a uniform depth,
you use the depth profile h(x) provided in sumatra.m, how would you
estimate the travel time? Investigate under which conditions you can
use the local wave speed of gravity waves over uneven topography.
(Hint: Compare the wavelength with the length scale of topographic
variations.)

9.13. In order to avoid the problem in Section 9.5 of an infinitely deep layer
at large distances, assume now that the flow takes place in a channel of
width L. How are the topographic waves modified by the presence of the
lateral boundaries?

9.14. Consider an inertia-gravity wave of wavelength λ=2π/k on the f -plane
and align the x-axis with the direction of propagation (i.e., kx= k and
ky=0). Write the partial differential equations and solve them for u and η
proportional to cos(kx−ωt) and v proportional to sin(kx−ωt). Then,
calculate the kinetic and potential energies per unit horizontal area,
defined as

KE= 1

λ

λ∫
0

1

2
ρ0(u

2+v2)H dx (9.102a)

PE= 1

λ

λ∫
0

1

2
ρ0gη2 dx, (9.102b)

each in terms of the amplitude of η and show that the kinetic energy is
always greater than the potential energy, except in the case f =0 (pure
gravity waves), in which case there is equipartition of energy.
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9.15. Take a hurricane or typhoon from last summer season and note the pres-
sure anomaly in its eye as it approached the coast. Determine the inverse
barometric response at that time.

NUMERICAL EXERCISES

9.1. Establish the numerical stability condition of schemes (9.53) and (9.54).
Can you provide an interpretation for the parameter c1t/1x? Compare
with the CFL criterion.

9.2. Spell out the spatial discretization on the B-, C-, and D-grids of Eqs. (9.4a)
through (9.5).

9.3. Implement the C-grid in Matlab for Eqs. (9.4a) through (9.5) with a vari-
able fluid thickness given on a grid at the same location as η. Use a
time discretization as in Eq. (9.54) and a fractional-step approach for the
Coriolis term. Then, use your code to simulate a pure Kelvin wave for
different values of 1x/R and k2

xR2 by initializing with the exact solution.
(Hint: Use a periodic domain in the x-direction and a second imperme-
able boundary in the y-direction, to be justified, at y=10R. Start from
shallow.m.)

9.4. Analyze the way geostrophic equilibrium is represented in discrete
Fourier modes on the B- and C-grids.

9.5. Investigate group-velocity errors for the different Arakawa grids using the
numerical dispersion relation given in Eq. (9.66). Use 1x=1y and dis-
tinguish two types of waves: kx 6=0, ky=0 and kx= ky. Vary the resolution
by taking R/1x=0.2,1,5, where R is the deformation radius.

9.6. Design the ideal staggering strategy for a model in which the eddy
viscosity νE is chosen proportional to |∂u/∂z|l2m, where lm is a specified
mixing length and velocity u is determined numerically from a governing
equation that includes vertical turbulent diffusion.

9.7. Assume you need to calculate the vertical component of relative vorticity
from a discrete velocity field provided on the two-dimensional C-grid.
Where is the most natural node to calculate the relative vorticity? Can
you see an advantage to using a D-grid here?

9.8. Can you think of possibilities to include bottom topographic variations as
those inducing tsunamis in shallow-water equations?

9.9. Take the variable depth implementation of Numerical Exercise 9.3 and
apply it to the following topography

h=H0+1H

[
1+ tanh

(
x− L

2

D

)]
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with H0 = 50 m, D = L/8, and 1H = 5H0. Use a solid wall at x = 0
and x = L= 100 km and periodic boundary conditions in the y-direction
across a domain of length 5L. Start with zero velocities and a Gaussian
sea surface elevation of width L/4 and height of 1 m in the center of the
basin. Use linear bottom friction with friction coefficient r = 10−4 m/s.
Trace the evolution of the sea surface elevation for f = 10−4 s−1.

9.10. Perform a storm-surge simulation with the implementation of Numerical
Exercise 9.3 by using a uniform wind stress over a square basin with a
uniform topography and then with the topography given in Numerical
Exercise 9.9. Use the quadratic law (9.77) for bottom friction.
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William Thomson, Lord Kelvin
1824–1907

(Standing at right, in laboratory of Lord Rayleigh, left)

Named professor of natural philosophy at the University of Glasgow, Scotland,
at age 22, William Thomson became quickly regarded as the leading inven-
tor and scientist of his time. In 1892, he was named Baron Kelvin of Largs
for his technological and theoretical contributions leading to the successful
laying of a transatlantic cable. A friend of James P. Joule, he helped estab-
lish a firm theory of thermodynamics and first defined the absolute scale of
temperature. He also made major contributions to the study of heat engines.
With Hermann von Helmholtz, he estimated the ages of the earth and sun and
ventured into fluid mechanics. His theory of the so-called Kelvin wave was pub-
lished in 1879 (under the name William Thomson). His more than 300 original
papers left hardly any aspect of science untouched. He is quoted as saying that
he could understand nothing of which he could not make a model. (Photo by
A.G. Webster)
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Akio Arakawa
1927–2010

Akio Arakawa entered the Japanese Meteorological Agency in 1950 and
received his doctorate at the University of Tokyo in 1961. He then went to the
University of California in Los Angeles (UCLA) to pursue research, at a time
when the atmospheric circulation computer models could reproduce weather-
like motion but not for long. Beyond a two-week simulation, the computed
patterns no longer looked like weather, and Arakawa’s work demonstrated that
the problem lied in the artificial generation of energy by inadequate numeri-
cal procedures. He also found the remedy. This remedy consisted of enforcing
conservation of energy and of enstrophy (the square of vorticity) at the grid
level.

The grids, which he proposed and later came to bear his name, were devel-
oped in the context of a study (Arakawa & Lamb, 1977) on the effects of grid
topology on the dispersion of inertia-gravity waves. Arakawa’s legacy to the sci-
ence of weather prediction by computer modeling is significant and enduring.
(Photo credit: Akio Arakawa)



Chapter 10

Barotropic Instability

ABSTRACT
The waves explored in the previous chapter evolve in a fluid otherwise at rest, propa-
gating without either growth or decay. Here, we investigate waves riding on an existing
current and find that, under certain conditions, they may grow at the expense of the
energy contained in the mean current while respecting conservation of vorticity. The
numerical section exposes the method of contour dynamics, designed specifically for
applications in which conservation of vorticity is important.

10.1 WHAT MAKES A WAVE GROW UNSTABLE?

The planetary and topographic waves described in the previous chapter
(Sections 9.4 through 9.5) owe their existence to the presence of an ambient
potential-vorticity gradient. In the case of planetary waves, the cause is the
sphericity of the planet, whereas for topographic waves the gradient results
from the bottom slope. We may naturally wonder whether a sheared current that
possesses a gradient of relative vorticity, would, too, be able to sustain similar
low-frequency waves.

However, the situation is quite different for several reasons. First, the cur-
rent would not only create the required ambient potential-vorticity gradient but
would also transport the wave pattern; because of the current shear, this trans-
lation would be differential, and the wave pattern would be rapidly distorted.
Moreover, there is likely to be a place within the current where the speed of
the wave matches the velocity of the current; such a location, termed a criti-
cal level, typically permits a vigorous transfer of energy between the current
and the wave. As a consequence, the wave may draw energy from the current
and grow in time. If this happens, insignificant little wiggles may turn into very
large perturbations, and the initial flow can become highly contorted, to the
point of becoming unrecognizable. The flow is said to be unstable. To distin-
guish this situation from other instabilities occurring in baroclinic fluids (i.e.,
those possessing a stratification; see Chapters 14 and 17), the preceding process
is generally known as barotropic instability.

The stability theory of homogeneous shear flows is a well-developed chapter
in fluid mechanics (see, e.g., Kundu, 1990, Section 11.9; Lindzen, 1988). Here,
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we address the problem with the inclusion of the Coriolis force but limit our
investigation to establishing general properties and solving one particular case.

10.2 WAVES ON A SHEAR FLOW

To investigate the behavior of waves on an existing current in a relatively clear
and tractable formalism, it is customary to make the following assumptions: The
fluid is homogeneous and inviscid, and the bottom and the surface are flat and
horizontal. However, the Coriolis parameter is allowed to vary (i.e., the beta
effect is retained). The governing equations are (Section 4.4)

∂u

∂t
+u

∂u

∂x
+v

∂u

∂y
+w

∂u

∂z
− f v=− 1

ρ0

∂p

∂x
(10.1a)

∂v

∂t
+u

∂v

∂x
+v

∂v

∂y
+w

∂v

∂z
+ fu=− 1

ρ0

∂p

∂y
(10.1b)

0=− ∂p

∂z
(10.1c)

∂u

∂x
+ ∂v
∂y
+ ∂w

∂z
=0, (10.1d)

where the Coriolis parameter f = f0+β0y varies with the northward coordinate y
(Section 9.4). As demonstrated in Section 7.3, a horizontal flow that is initially
uniform in the vertical will, in the absence of vertical friction, remain so at
all times. In GFD parlance, this is what is called a barotropic flow, and we
consider such a case. Consequently, we drop the terms w∂u/∂z and w∂v/∂z in
Eqs. (10.1a) and (10.1b), respectively. According to (10.1d), ∂w/∂z must be
z-independent, too, which implies that w is linear in z. But because the vertical
velocity vanishes at both top and bottom, it must be zero everywhere (w=0).
The continuity equation reduces to

∂u

∂x
+ ∂v
∂y
=0. (10.2)

For the basic state, we choose a zonal current with arbitrary meridional
profile: u= ū(y), v=0. This is an exact solution to the nonlinear equations as
long as the pressure distribution, p= p̄(y), satisfies the geostrophic balance

(f0+β0y) ū(y)=− 1

ρ0

dp̄

dy
. (10.3)

Next, we add a small perturbation, meant to represent an arbitrary wave of
weak amplitude. We write

u= ū(y)+u′(x,y, t) (10.4a)

v=v′(x,y, t) (10.4b)

p= p̄(y)+p′(x,y, t), (10.4c)
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where the perturbations u′, v′, and p′ are taken to be much smaller that the
corresponding variables of the basic flow (i.e., u′ and v′ much less than ū, and
p′ much less than p̄). Substitution in Eqs. (10.1a), (10.1b), and (10.2) and subse-
quent linearization to take advantage of the smallness of the perturbation yield:

∂u′

∂t
+ ū

∂u′

∂x
+v′

dū

dy
−(f0+β0y)v′=− 1

ρ0

∂p′

∂x
(10.5a)

∂v′

∂t
+ ū

∂v′

∂x
+(f0+β0y)u′=− 1

ρ0

∂p′

∂y
(10.5b)

∂u′

∂x
+ ∂v

′

∂y
=0. (10.5c)

The last equation admits the streamfunction ψ , defined as

u′=− ∂ψ
∂y
, v′=+ ∂ψ

∂x
. (10.6)

The choice of signs corresponds to a flow along streamlines with the higher
streamfunction values on the right.

A cross-differentiation of the momentum equations (10.5a) and (10.5b) and
the elimination of the velocity components leads to a single equation for the
streamfunction: (

∂

∂t
+ ū

∂

∂x

)
∇2ψ +

(
β0−

d2ū

dy2

)
∂ψ

∂x
= 0. (10.7)

This equation has coefficients that depend on ū and, therefore, on the meridional
coordinate y only. A sinusoidal wave in the zonal direction is then a solution:

ψ(x, y, t)=φ(y)ei(kx−ωt). (10.8)

Substitution provides the following second-order ordinary differential equation
for the amplitude φ(y):

d2φ

dy2
−k2φ + β0−d2ū/dy2

ū(y)−c
φ = 0, (10.9)

where c=ω/k is the zonal speed of propagation. An equation of this type is
called a Rayleigh equation (Rayleigh, 1880). Its key features are the noncon-
stant coefficient in the third term and the fact that its denominator may be zero,
creating a singularity.

For boundary conditions, let us assume for simplicity that the fluid is con-
tained between two walls, at y=0 and L. We are thus considering waves on
a zonal flow in a zonal channel. Obviously, there is no such zonal channel in
either the atmosphere or ocean, but wavy zonal flows of limited meridional
extent abound. The atmospheric jet stream in the upper troposphere, the Gulf
Stream after its seaward turn off Cape Hatteras (36◦N), and the Antarctic Cir-
cumpolar Current are all good examples. Also, the atmosphere on Jupiter, with
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the exception of the Great Red Spot and other vortices, consists almost entirely
of zonal bands of alternating winds, called belts or stripes (see Fig. 1.5).

If the boundaries prevent fluid from entering and leaving the channel, v′ is
zero there, and Eq. (10.6) implies that the streamfunction must be a constant
along each wall. In other words, walls are streamlines. This is possible only if
the wave amplitude obeys

φ(y=0)=φ(y=L)=0. (10.10)

The second-order, homogeneous problem of Eqs. (10.9) and (10.10) can be
viewed as an eigenvalue problem: The solution is trivial (φ=0), unless the
phase velocity assumes a specific value (eigenvalue), in which case a nonzero
function φ (eigenfunction) can be determined within an arbitrary multiplicative
constant.

In general, the eigenvalues c may be complex. If c admits the function φ,
then the complex conjugate c∗ admits the complex conjugate function φ∗ and
is thus another eigenvalue. This can be readily verified by taking the complex
conjugate of Eq. (10.9). Hence, complex eigenvalues come in pairs.

Decomposing the eigenvalue into its real and imaginary components,

c= cr+ ici, (10.11)

we note that the streamfunction ψ has an exponential factor of the form
exp(kcit), which grows or decays according to the sign of ci. Because the eigen-
values come in pairs to any decaying mode will correspond a growing mode.
Therefore, the presence of a nonzero imaginary part in the phase velocity c
automatically guarantees the existence of a growing disturbance and thus the
instability of the basic flow. The product kci is then called the growth rate. Con-
versely, for the basic flow to be stable, it is necessary that the phase speed c be
purely real.

Because mathematical difficulties prevent a general determination of the c
values for an arbitrary velocity profile ū(y) (the analysis is difficult even for
idealized but nontrivial profiles), we shall not attempt to solve the problems
(10.9)–(10.10) exactly but will instead establish some of its integral properties
and, in so doing, reach weaker stability criteria.

When we multiply Eq. (10.9) by φ∗ and then integrate across the domain,
we obtain

−
L∫

0

(∣∣∣∣dφdy

∣∣∣∣2+k2|φ|2
)

dy+
L∫

0

β0−d2ū/dy2

ū−c
|φ|2 dy=0, (10.12)

after an integration by parts. The imaginary part of this expression is

ci

L∫
0

(
β0−

d2ū

dy2

)
|φ|2
|ū−c|2 dy=0. (10.13)
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Two cases are possible: Either ci vanishes or the integral does. If ci is zero, the
basic flow admits no growing disturbance and is stable. But, if ci is not zero,
then the integral must vanish, which requires that the quantity

β0−
d2ū

dy2
= d

dy

(
f0+β0y− dū

dy

)
(10.14)

must change sign at least once within the confines of the domain. Summing up,
we conclude that a necessary condition for instability is that expression (10.14)
vanish somewhere inside the domain. Conversely, a sufficient condition for sta-
bility is that expression (10.14) not vanish anywhere within the domain (on the
boundaries maybe, but not inside the domain). Physically, the total vorticity of
the basic flow, f0+β0y−dū/dy, must reach an extremum within the domain to
cause instabilities. This result was first derived by Kuo (1949).

This first criterion can be strengthened by considering next the real part of
Eq. (10.12), which takes the form

L∫
0

(ū−cr)

(
β0−

d2ū

dy2

)
|φ|2
|ū−c|2 dy =

L∫
0

(∣∣∣∣dφdy

∣∣∣∣2+k2|φ|2
)

dy. (10.15)

In the event of instability, the integral in Eq. (10.13) vanishes. Multiplying it
by (cr− ū0), where ū0 is any real constant, adding the result to Eq. (10.15), and
noting that the right-hand side of Eq. (10.15) is always positive for nonzero
perturbations, we obtain

L∫
0

(ū− ū0)

(
β0−

d2ū

dy2

)
|φ|2
|ū−c|2 dy > 0. (10.16)

This inequality demands that the expression

(ū− ū0)

(
β0−

d2ū

dy2

)
(10.17)

be positive in at least some finite portion of the domain. Because this must
hold true for any constant ū0, it must be true in particular if ū0 is the value
of ū(y) where β0−d2ū/dy2 vanishes. Hence, a stronger criterion is: Necessary
conditions for instability are that β0−d2ū/dy2 vanish at least once within the
domain and that (ū− ū0)(β0−d2ū/dy2), where ū0 is the value of ū(y) at which
the first expression vanishes, be positive in at least some finite portion of the
domain. Although this stronger criterion still offers no sufficient condition for
instability, it is generally quite useful.



322 PART | II Rotation Effects

10.3 BOUNDS ON WAVE SPEEDS AND GROWTH RATES

The preceding analysis taught us that instabilities may occur when certain con-
ditions are met. A question then naturally arises: If the flow is unstable, how
fast will perturbations grow? In the general case of an arbitrary shear flow ū(y),
a precise determination of the growth rate of unstable perturbations is not pos-
sible. However, an upper bound can be derived relatively easily, and in the
process, we can also determine lower and upper bounds on the phase speed
of the perturbations. For simplicity, we will restrict our attention to the f -plane
(β0=0), in which case the derivation is due to Howard (1961). Afterwards, we
will cite, without demonstration, the result for the beta plane.

The analysis begins by a change of variable1:

φ= (ū−c) a, (10.18)

which transforms Eq. (10.9) into

d

dy

[
(ū−c)2

da

dy

]
−k2 (ū−c)2 a=0, (10.19)

with β0 set to zero. Because of Eq. (10.18), the boundary conditions on a are
identical to those on φ, namely, a(0)=a(L)=0.

We consider the case of an unstable wave. In this case, c has a nonzero imag-
inary part, and a is nonzero and complex. Multiplying by the complex conjugate
a∗ and integrating across the domain, we obtain an expression whose real and
imaginary parts are

Real part:

L∫
0

[(ū−cr)
2−c2

i ]P dy=0 (10.20)

Imaginary part:

L∫
0

(ū−cr)P dy=0, (10.21)

where P=|da/dy|2+k2|a|2 is a nonzero positive quantity. With Eq. (10.21),
Eq. (10.20) can also be recast as

L∫
0

[ū2 −(c2
r +c2

i )]P dy=0. (10.22)

1It can be shown that the new variable a is the meridional displacement, the material time derivative
of which is the v component of velocity.
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It immediately follows from Eq. (10.21) that (ū−cr) must vanish somewhere
in the domain, implying that the phase speed cr lies between the minimum and
maximum values of ū(y):

Umin < cr < Umax. (10.23)

Physically, the wavy perturbation, if unstable, must travel with a speed that
matches that of the entraining flow, in at least one location. In other words,
there will always be a place in the domain where the wave does not drift with
respect to the ambient flow and grows in place. It is precisely this local coupling
between wave and flow that allows the wave to extract energy from the flow and
to grow at its expense. The location where the phase speed is equal to the flow
velocity is called a critical level.

Armed with bounds for the real part of c, we now seek bounds on its
imaginary part. To do so, we introduce the obvious inequality

L∫
0

(ū−Umin) (Umax− ū)P dy ≥ 0 (10.24)

and then expand the expression, replace all linear terms in ū using Eq. (10.21),
and replace the quadratic term using Eq. (10.22) to arrive at[(

cr−
Umin+Umax

2

)2

+c2
i −

(
Umax−Umin

2

)2
] L∫

0

P dy ≤ 0. (10.25)

Because the integral of P can only be positive, the preceding bracketed quantity
must be negative:(

cr−
Umin+Umax

2

)2

+c2
i ≤

(
Umax−Umin

2

)2

. (10.26)

This inequality implies that, in the complex plane, the number cr+ ici must
lie within the circle centered at [(Umin+Umax)/2,0] and of radius (Umax−
Umin)/2. Since we are interested in modes that grow in time, ci is positive,
and only the upper half of that circle is relevant (Fig. 10.1). This result is called
Howard’s semicircle theorem.

It is readily evident from inequality (10.26) or Fig. 10.1 that ci is bounded
above by

ci ≤
Umax−Umin

2
. (10.27)

The perturbation’s growth rate kci is thus likewise bounded above.
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ci

crUmaxUmin

0

(cr, ci)

Umin+ Umax

2

Umax− Umin

2

FIGURE 10.1 The semicircle theorem. Growing perturbations of wavenumber k must have phase
speeds cr and growth rates kci such that the tip of the vector (cr,ci) falls within the half-circle
constructed from the minimum and maximum velocities of the ambient shear flow ū(y), as depicted
in the figure. When the beta effect is taken into account, the tip of the vector must lie in the slightly
enlarged domain that includes the semicircle and the light gray area.

On the beta plane, the treatment of integrals and inequalities is somewhat
more elaborate but still feasible. Pedlosky (1987, Section 7.5) showed that the
preceding inequalities on cr and ci must be modified to

Umin−
β0L2

2(π2+k2L2)
< cr < Umax (10.28)(

cr−
Umin+Umax

2

)2

+c2
i ≤

(
Umax−Umin

2

)2

+ β0L2(Umax−Umin)

2(π2+k2L2)
,

(10.29)

where L is the domain’s meridional width and k the zonal wavenumber
(Fig. 10.1). The westward velocity shift on the left side of Eq. (10.28) is related
to the existence of planetary waves [see the zonal phase speed, (9.30)]. The last
inequality readily leads to an upper bound for the growth rate kci. Knowing
bounds for the phase speed cr and growth rate kci is useful in the numerical
search of stability threshold in specific applications (Proehl, 1996).

10.4 A SIMPLE EXAMPLE

The preceding considerations on the existence of instabilities and their proper-
ties are rather abstract. So, let us work out an example to illustrate the concepts.
For simplicity, we restrict ourselves to the f -plane (β0=0) and take a shear flow
that is piecewise linear (Fig. 10.2):

y < −L : ū=−U,
dū

dy
=0,

d2ū

dy2
=0 (10.30)
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y

ū(y)

U

− U

L

− L
FIGURE 10.2 An idealized shear-flow
profile that lends itself to analytic treat-
ment. This profile meets both necessary
conditions for instability and is found to
be unstable to long waves.

−L < y < +L : ū= U

L
y,

dū

dy
= U

L
,

d2ū

dy2
=0 (10.31)

+L < y : ū=+U,
dū

dy
=0,

d2ū

dy2
=0, (10.32)

where U is a positive constant, and the domain width is now infinity. Although
the second derivative vanishes within each of the three segments of the domain,
it is nonzero at their junctions. As y increases, the first derivative dū/dy changes
from zero to a positive value and back to zero, so it can be said that the second
derivative is positive at the first junction (y=−L) and negative at the second
(y=+L). Thus, d2ū/dy2 changes sign in the domain, and this satisfies the first
condition for the existence of instabilities. The second condition, that expression
(10.17), now reduced to

−ū
d2ū

dy2
,

be positive in some portion of the domain, is also satisfied because d2ū/dy2

has the sign opposite to ū at each junction of the profile. Thus, the necessary
conditions for instability are met, and although instabilities are not guaranteed
to exist, we ought to expect them.

We now proceed with the solution. In each of the three domain segments,
governing Eq. (10.9) reduces to

d2φ

dy2
−k2 φ=0, (10.33)

and admits solutions of the type exp(+ky) and exp(−ky). This introduces two
constants of integration per domain segment, for a total of six. Six conditions
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are then applied. First, φ is required to vanish at large distances:

φ(−∞)=φ(+∞)=0.

Next, continuity of the meridional displacements at y=±L requires, by virtue
of Eq. (10.19) and by virtue of the continuity of the ū(y) profile, that φ, too, be
continuous there:

φ(−L−ε)=φ(−L+ε) and φ(+L−ε)=φ(+L+ε),

for arbitrarily small values of ε. Finally, the integration of governing equation
(10.9) across the lines joining the domain segments

±L+ε∫
±L−ε

[
(ū−c)

d2φ

dy2
−k2 (ū−c) φ− d2ū

dy2
φ

]
dy=0,

followed by an integration by parts, implies that

(ū−c)
dφ

dy
− dū

dy
φ

must be continuous at both y=−L and y=+L. An alternative way of obtaining
this result is to integrate Eq. (10.19), which is in conservative form, across a
discontinuity.

Applying these six conditions leads to a homogeneous system of equations
for the six constants of integration. Nonzero perturbations exist when this sys-
tem admits a nontrivial solution—that is, when its determinant vanishes. Some
tedious algebra yields

c2

U2
= (1−2kL)2−e−4kL

(2kL)2
. (10.34)

Equation (10.34) is the dispersion relation, providing the wave velocity c in
terms of the wavenumber k and the flow parameters L and U. It yields a unique
and real c2, either positive or negative. If it is positive, c is real and the pertur-
bation behaves as a non-amplifying wave. But, if c2 is negative, c is imaginary
and one of the two solutions yields an exponentially growing mode [a pro-
portional to exp(kcit)]. Obviously, the instability threshold is c2=0, in which
case the dispersion relation (10.34) yields kL=0.639. There thus exists a crit-
ical wavenumber k=0.639/L or critical wavelength 2π/k=9.829L separating
stable from unstable waves (Fig. 10.3). It can be shown by inspection of the
same dispersion relation that shorter waves (kL>0.639) travel without growth
(because ci=0), whereas longer waves (kL<0.639) grow exponentially with-
out propagation (because cr=0). In sum, the basic shear flow is unstable to
long-wave disturbances.
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FIGURE 10.3 Plot of the
dispersion relation (10.34) for
waves riding on the shear flow
depicted in Fig. 10.2. The lower
wavenumbers k for which ci is
nonzero correspond to growing
waves.

An interesting quest is the search for the fastest growing wave because this
is the dominant wave, at least until finite-amplitude effects become important
and the preceding theory loses its validity. For this, we look for the value of kL
that maximizes kci, where ci is the positive imaginary root of Eq. (10.34). The
answer is kL=0.398, from which follows the wavelength of the fastest growing
mode:

λfastest growth=
2π

k
=15.77 L=7.89 (2L). (10.35)

This means that the wavelength of the perturbation that dominates the early
stage of instability is about eight times the width of the shear zone. Its growth
rate is

(kci)max=0.201
U

L
, (10.36)

corresponding to ci=0.505U. It is left to the reader as an exercise to verify the
preceding numerical values.

At this point, it is instructive to unravel the physical mechanism responsible
for the growth of long-wave disturbances. Figure 10.4 displays the basic flow
field, on which is superimposed a wavy disturbance. The phase shift between the
two lines of discontinuity is that propitious to wave amplification. As the mid-
dle fluid, endowed with clockwise vorticity, intrudes in either neighboring strip
where the vorticity is nonexistent, it produces local vorticity anomalies, which
can be viewed as vortices. These vortices generate clockwise rotating flows in
their vicinity, and if the wavelength is sufficiently long, the interval between the
two lines of discontinuity appears relatively short and the vortices from each
side interact with those on the other side. Under a proper phase difference, such
as the one depicted in Fig. 10.4, the vortices entrain one another further into
the regions of no vorticity, thereby amplifying the crests and troughs of the
wave. The wave amplifies, and the basic shear flow cannot persist. As the wave
grows, nonlinear terms are no longer negligible, and some level of saturation is



328 PART | II Rotation Effects

FIGURE 10.4 Finite-amplitude development of the instability of the shear flow depicted in
Fig. 10.2. The troughs and crests of the wave induce a vortex field, which, in turn, amplifies those
troughs and crests. The wave does not travel but amplifies with time. (The sequence of figures
shown here were generated with shearedflow.m developed in Chapter 16.)

reached. The ultimate state (Fig. 10.4) is that of a series of clockwise vortices
embedded in a weakened ambient shear flow (Dritschel, 1989; Zabusky, Hughes
& Roberts, 1979).

Lindzen (1988) offers an alternative mechanism for the instability based on
the fact that there are two special locations across the system. The first is the
critical level yc, where the wave speed matches the velocity of the basic flow
[cr= ū(yc)] and the other is y0, where the vorticity of the basic flow reaches
an extremum [where expression (10.14) changes sign]. A wave traveling in the
direction of y0 to yc undergoes overreflection, that is, on entering the [y0,yc]
interval, it is being reflected toward its region of origin with a greater amplitude
than on arrival. If there is a boundary or other place where the wave can be
(simply) reflected, then it returns toward the region of overreflection, and on it
goes. The successive overreflections of the echoing wave lead to exponential
growth.

10.5 NONLINEARITIES

From Section 10.2, we note that the nonlinear advection term is responsible for
the instability of the basic flow ū(y). We analyzed the stability by linearizing the
equations around the steady-state solution and replaced terms such as u∂u/∂x
by ū∂u′/∂x and this led to linear equations and wave-like solutions, yet retain-
ing the advection by the basic current ū. When instability occurs, the velocity
perturbations grow in time, and after an initial phase during which lineariza-
tion holds, they eventually reach such an intensity that u′∂u′/∂x may no longer
be neglected. We enter a nonlinear regime requiring numerical simulation. In
an inviscid problem such as the present one, we then face a serious problem,
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already mentioned in the Introduction, namely the aliasing of short waves into
longer waves.

As shown in Section 1.12 for time series, sampling (read: discretization) sets
some limits on the frequencies that can be resolved. In space instead of time, the
same analysis applies, and waves of wavenumbers kx and kx+2π/1x cannot
be distinguished from each other in a discretization with space interval 1x. If
a wavenumber kx larger than π/1x exists, it is mistaken by the discretization
as being of smaller wavenumber kx−2π/1x or 2π/1x−kx. This misinterpre-
tation of too rapidly varying waves can be depicted (Fig. 10.5) as a reflection
of the wavenumber about the cutoff value π/1x. Any wave can be decom-
posed in its spectral components, and let us suppose that the spectrum of a set
waves (wave packet) takes the form shown in Fig. 10.6. Since waves of higher
wavenumbers are reflected around the cutoff wavenumber into the resolved
range, the associated spectral energy will also be transferred from the shorter
unresolved waves to the longer resolved waves. If the energy level decreases
with decreasing wavenumber, the spectrum alteration will be strongest near the
cutoff value. In other words, the energy content of marginally resolved waves
is the one most influenced by aliasing, and the manifestation is an unwanted
excess of energy among barely resolved waves. This is one reason why model
results ought generally to viewed as suspect at scales comparable to the grid
spacing. But there is more to the problem.

The aliasing problem is particularly irksome when nonlinear advection
comes into play because the quadratic term in the equation creates wave har-
monics: If the velocity field is resulting from the superposition of two waves,
one of wavenumber k1 and another of wavenumber k2 of equal amplitude and
phase,

u=u1+u2 with u1=Aeik1x and u2=Aeik2x, (10.37)

then the advection term u∂u/∂x generates a contribution of the form

A2i(k1+k2)e
i(k1+k2)x (10.38)

0

kx  →  kx  − 2π
�x

kx

−kx  →  kx

π
�x

− π
�x

FIGURE 10.5 Transformation of a unresolved short wave of wavenumber kx>π/1x into a
resolved wavenumber |kx−2π/1x|, corresponding to a reflection of wavenumber about the cutoff
value π/1x as indicated for three particular values of the wavenumber identified by an open cir-
cle, a cross, and a gray dot to the right of π/1x and the wavenumbers into which they are aliased
(all to the left of π/1x).
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FIGURE 10.6 Spectrum alteration by aliasing, which effectively folds the numerically unresolved
part of the spectrum (kx≥π/1x) into resolved scales. The steeper the energy spectrum decrease
around the cutoff wavenumber, the less aliasing is a problem. The spectrum alteration is then limited
to the vicinity of the shortest resolved waves.

which introduces a new spectral component of higher wavenumber k1+k2.
Even if the two original waves are resolved by the grid, the newly created and
shorter wave may be aliased and mistaken for a longer wave. This happens
when k1+k2>π/1x. The nonlinear advection thus creates an aliasing prob-
lem, which can seriously handicap calculations, especially if the aliasing is such
that the newly created waves have a wavenumber identical to one of the original
waves, k1 for example. In this case, we have a feedback loop in which compo-
nent u1 interacts with another one and, instead of generating a shorter wave as
it ought, increases its own amplitude. The process is self-repeating, and before
long, the amplitude of the self-amplifying wave will reach an untolerable level.
This is known as nonlinear numerical instability, which was first identified by
Phillips (1956).

Such a self-amplification occurs when the interaction of k1 and k2 satisfies
the aliasing condition and the new wave is aliased back into one of the original
wavenumbers (here k1):

(k1+k2)≥
π

1x
and

2π

1x
−(k1+k2)= k1. (10.39)

To avoid such a situation for any wavenumber resolved by the grid (i.e., for all
admissible values for k2 varying between 0 and π/1x), k1 should not be allowed
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to take values in the interval π/(21x) to π/1x. This requirement is a little bit
too strong since if k1 is not allowed to exceed π/(21x), k2, too, should not be
allowed to do so. The highest permitted value for either k1 or k2 is then found
by letting k1= k2 in (10.39), and this yields kmax=2π/(31x). In other words,
if we are able to avoid all waves of wavelength shorter than 2π/kmax=31x,
nonlinear instability by aliasing can be prevented. However, disallowing these
waves from the initial condition is not enough because sooner or later, they will
be generated by nonlinear interaction among the longer waves. The remedy is to
eliminate the shorter waves as they are being generated, and this is accomplished
by filtering.

Filtering is a form of dissipation that mimics physical dissipation but is
designed to remove preferentially the undesirable waves, that is, only those on
the shortest scales resolved by the numerical grid. This can be accomplished by
the filters discussed in the following section. Other methods to address aliasing
and nonlinear numerical instability related to the advection term will be encoun-
tered later in Section 16.7. Before concluding this chapter, we will also describe
an entirely different approach, which avoids aliasing altogether by not using
a grid at all. This method, known as contour dynamics, follows fluid parcels
along their path of motion, thus absorbing the advection terms in the material
time derivative.

10.6 FILTERING

We saw earlier that the leapfrog method generates spurious modes (flip-flop in
time), and we just realized that spatial modes near the 21x cutoff (“saw-tooth”
structure in space) are poorly reproduced and prone to aliasing. We further
showed how nonlinearities can create aliasing problems around the 21x mode.
Naturally, we would now like to remove these unwanted oscillations from the
numerical solution. For the spatial saw-tooth structure, we already have at our
disposal a method for eliminating shorter waves: physical diffusion. However,
physical diffusion in the model may not always be sufficient to suppress or
even control the 21x mode, and additional dissipation, of a numerical nature,
becomes necessary. This is called filtering.

In this section, we concentrate on explicit filtering, designed to damp short
waves. Let us start with a discrete filter inspired by the physical diffusion
operator:

ĉ n
i = c̃n

i +κ
(
c̃n

i+1−2c̃n
i + c̃n

i−1

)
,︸ ︷︷ ︸

'1x2 ∂2c
∂x2

(10.40)

in which the new (filtered) value ĉ n
i is henceforth replacing the original (unfil-

tered) value c̃n
i . The preceding formulation is equivalent to introducing a

diffusion term with diffusivity κ1x2/1t, which enhances physical diffusion,
if any.
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The behavior of this filter can be analyzed with the aid of Fourier modes
[exp(ikxi1x)], thus providing the “amplification” factor, which in this case is
actually a damping factor:

%=1−4κ sin2
(

kx1x

2

)
. (10.41)

For well-resolved waves, the amplification factor is close to unity (no change of
amplitude), whereas for the 21x wave (kx=2π/21x), its value is 1−4κ. The
value κ=1/4 therefore eliminates the shortest wave in a single pass of the filter,
but intermediate wavelengths are partially reduced, too, and a smaller value
of κ is generally used in order not to dampen unnecessarily the intermediate
scales of the solution. Therefore, a compromise needs to be reached between
our desire to eliminate the 21x component while least affecting the rest of the
solution.

To alleviate such compromise, more selective filters can be implemented.
These are of the biharmonic type and require a wider stencil (more grid points).
For example,

ĉ n
i = c̃n

i +
κ
4

(
−c̃n

i+2+4c̃n
i−1−6c̃n

i +4c̃n
i+1− c̃n

i+2

)︸ ︷︷ ︸
'−1x4 ∂4 c̃

∂x4

(10.42)

leads to the more scale-selective damping factor

%=1−κ
[

4sin2
(

kx1x

2

)
−sin2

(
2kx1x

2

)]
. (10.43)

The difference in the case κ=1/4 is illustrated in Fig. 10.7. Both diffusion-like
and biharmonic filters [Eqs. (10.40) and (10.42), respectively] eliminate the 21x
mode with the same value of κ. Figure 10.7 also shows that components of inter-
mediate scales are less affected by the biharmonic filter than by the diffusion-
like filter. However, the biharmonic filter may introduce nonmonotonic behavior
because there are negative coefficients in its stencil (10.42).

As for the diffusion-like filter, the biharmonic filter is sometimes made
explicit in the undiscretized model equations by an additional term of the form
−B∂4c̃/∂x4, with B=κ1x4/(41t). The approach can, of course, be extended
to ever larger stencils with increased scale selectivity but at the cost of additional
computations.

It should be noted that the coefficients used in the filters are depending
on the grid spacing and time step, whereas physical parameters do not, unless
they parameterize subgrid-scale effects. In the latter case, the grid size can be
involved in the parameterization, as seen in Section 4.2. However, we should not
confuse the different concepts: The physical molecular diffusion, the standard
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FIGURE 10.7 Damping factor
as a function of wavelength for
two different filters: regular diffu-
sion [Eq. (10.40), dashed-dotted
line] and biharmonic operator
[Eq. (10.42), solid line], each for
κ=1/4. Both filters eliminate the
21x mode completely (%=0),
but the biharmonic filter is more
scale selective in the sense that it
damps less the intermediate-scale
components (% closer to unity for
these).

microturbulent (eddy) diffusion, subgrid-scale diffusion introduced to parame-
terize mixing at scales longer than turbulent motions yet shorter than the grid
spacing, diffusion associated with explicit filtering (the subject of the present
section), and finally, numerical diffusion caused by the numerical scheme
(totally uncoded). It is unfortunately not always clearly stated in model appli-
cations which type of diffusion is being meant when the authors mention their
model’s diffusion parameters.

For filtering in time, we can adopt the same filtering technique. Because
the spatial filter replaces the model values by a filtered version obtained via
Eq. (10.40), one way of eliminating the flip-flop mode is

ĉ n= c̃n+κ
(

c̃n+1−2c̃n+ c̃n−1
)
. (10.44)

However, this is not very practical since it requires that past values of c̃ be
stored for later filtering. Note also how filtering at time level n must wait until
values have been computed at time level n+1. This does not avoid the nonlinear
interactions of the spurious mode with the physical modes. It is better, therefore,
to blend the filtering with time stepping and replace the unfiltered solution by
the filtered one as soon as it becomes available. Suppose for example that we
have a new value of c̃n+1 obtained with the leapfrog scheme,

c̃n+1= ĉ n−1+21t Q
(
t, c̃n) , (10.45)

with the usual source term Q regrouping all spatial operators. We can then filter
c̃n with

ĉ n= c̃n+κ
(

c̃n+1−2c̃n+ ĉ n−1
)
, (10.46)
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and immediately store it in the array holding c̃n. Note how ĉ n−1 appears in the
filtering and leapfrog step instead of c̃n−1 because the filtered value has already
superseded the original one. This filter, known as the Asselin filter (Asselin,
1972), is commonly used in models with leapfrog time discretization. In order
not to filter excessively, small values of κ can be used. Alternatively, the filter
can be applied only intermittently or with varying intensity κ.

More selective filters in time can be inspired by the spatial filter (10.42), but
these would require the storage of additional intermediate values of the state
vector because the filter involves more time levels (five in the biharmonic case),
while the leapfrog scheme requires that only three levels be stored.

Other filters exist, some of them based on intermittent re-initialization of
the leapfrog time integration by simple Euler steps, but all of them should be
applied with caution because they always filter part of the physical solution or
alter the truncation error.

10.7 CONTOUR DYNAMICS

The preceding stability analysis and aliasing problem gives us a nice opportunity
to introduce yet another numerical method, the family of so-called boundary
element methods. This method was first applied to vortex calculations by Nor-
man Zabusky2 (Zabusky et al., 1979). To illustrate the approach, we start from
the simple task of retrieving the velocity field from a known vorticity distribu-
tion in two dimensions. The vorticity ω is related to the velocity components u
and v by

∂v

∂x
− ∂u

∂y
=ω, (10.47)

and it follows by inversion of this definition that the velocity accompanying
a localized vortex patch of area ds and uniform vorticity ω in the absence of
boundary conditions (i.e., for an infinite domain) is given by

2πr dvθ =ω ds, (10.48)

where r=
√
(x−x′)2+(y−y′)2, and vθ is the velocity component perpendicular

to the line joining the vortex patch to the point under consideration (left side
of Fig. 10.8). The result follows from a straightforward application of Stokes
theorem, which states that the circulation of the velocity along a contour (here
circle of radius r), that is 2πr dvθ , is equal to the integration of the vorticity
within that contour (here ωds).

2See his biography at the end of this chapter.
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In vectorial notation, the infinitesimal velocity associated with a differential
patch ds of vorticity ω is

du= ω

2πr

k×(x−x′)
r

ds, (10.49)

which can be integrated over space for a nonuniform distribution ω(x,y) over a
finite area (right side of Fig. 10.8). We obtain

u(x,y)= 1

2π

∫ ∫
ω(x′,y′)

k×(x−x′)
r2

dx′ dy′. (10.50)

This provides the velocity field as a function of the vorticity distribution,
up to an irrotational velocity field. In an infinite domain (i.e., with no boundary
conditions), the latter is zero. Suppose for now that we have a single patch of
constant vorticity so that

u(x,y)= ω

2π

∫ ∫ −(y−y′)
(x−x′)2+(y−y′)2

dx′ dy′ (10.51a)

v(x,y)= ω

2π

∫ ∫
(x−x′)

(x−x′)2+(y−y′)2
dx′ dy′, (10.51b)

where the integral is performed over the vorticity patch delimited by its
contour C (Fig. 10.8). Noting that integrands are derivatives of the function

φ= ln

[
(x−x′)2+(y−y′)2

L2

]
, (10.52)

x′
x

ds

dvθ

i

j

r

x′

C

ω

ω

x

FIGURE 10.8 Element dvθ of velocity associated with an infinitesimal vortex patch of area ds and
vorticity ω (left panel). Integration over a finite patch of nonzero vorticity within contour C gives
the associate velocity field (right panel). Note that the domain is infinitely wide outside the vortex
patch.
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we can rewrite the velocity components as

u(x,y)= ω

4π

∫ ∫
∂φ

∂y′
dx′ dy′=− ω

4π

∮
C
φ dx′ (10.53a)

v(x,y)= ω

4π

∫ ∫
− ∂φ
∂x′

dx′ dy′=− ω

4π

∮
C
φ dy′, (10.53b)

for which we performed integration by parts to reduce the integral over the area
of nonzero vorticity to a line integral along its perimeter. The symbol

∮
means

that the integral is taken as x′ and y′ vary along the closed perimeter C with the
patch on the left. Thus, we can express the velocity vector u at any point due to
a patch of uniform vorticity ω as

u(x,y)=− ω

4π

∮
C

ln

[
(x−x′)2+(y−y′)2

L2

]
dx′. (10.54)

When several vorticity patches are present, all we have to do is to add the
contributions of the different patches. However, there is a slight difficulty when
a patch is contained within another one. For example, in Fig. 10.9, the ω3 vor-
ticity lies entirely within the ω2 vorticity patch. For the ω2 patch, the contour
integration breaks into two parts, one for the outer contour C2 traveled counter-
clockwise (with vorticity ω2 to its left) and the other for the inner contour C3
traveled clockwise (again with vorticity ω2 to its left). The latter contour inte-
gral needs to be repeated for the ω3 patch, this time traveled counterclockwise
and with ω3 in its integrand. The addition of the last two integrals leads to a
single integration along C3 performed counterclockwise with the vorticity jump
δω3=ω3−ω2 in its integrand. For any number of contours, we have

u(x,y)=− 1

4π

∑
m

δωm

∮
Cm

ln

[
(x−x′)2+(y−y′)2

L2

]
dx′, (10.55)

where the sum is performed over all existing contours, and where δωm is the
vorticity jump across contour Cm (inside value minus outside value).

Up to here we only established a diagnostic tool to retrieve the velocity
field from a given distribution of vorticity patches. To predict the evolution of
these patches, we now have to solve the governing equation for vorticity. In the
absence of friction or any other vorticity-altering process, vorticity is conserved
and simply advected by the flow. Thus, points within a given vortex patch will
retain their vorticity and remain within their original patch. All we have to do
is to predict the evolution of the boundary of each patch, that is, the contours,
hence the name contour dynamics given to the method.

Points along the contours are physical fluid points and therefore move with
the local flow velocity, that is, the velocity field of Eq. (10.55) taken at contour
points. In practice, such integration can rarely be performed analytically, and
numerical methods must be devised. The most natural discretization consists of
dividing all contours into segments (Fig. 10.10), and the contour integrals then
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ω1 FIGURE 10.9 When several contours are
involved in the velocity determination, contour
integrals must be added to one another, and the
relevant quantity along a contour is the vorticity
jump across it. For the case depicted here, it is
ω3−ω2 for contour C3.
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FIGURE 10.10 Discretization of
contour integrals achieved by using a
mid-point evaluation of the integrand
along the mth contour at location
((xm

j +xm
j+1)/2, (y

m
j +ym

j+1)/2). In this
way, the singularity of the logarithm
is avoided when the point (xk

i ,y
k
i ) for

which the integral is evaluated lies
on the same contour along which the
integral is performed.

reduce to sums of discrete contributions. The integral discretization has to deal
with a singularity when the point (x,y) for which the velocity is computed lies
on the same contour as where integration takes place and eventually coincides
with point (x′,y′). A simple way to avoid the problem is to use a staggered
approach for the integration, that is, to evaluate the integrand at mid-distance
between nodes j and j+1 (Fig. 10.10): For point (xk

i ,y
k
i ) on contour k (with k

possibly equal to m) where the velocity is being calculated, the pieces of the
integral on contour Cm are approximated as

Im(x
k
i ,y

k
i )=

N∑
j=1

ln

[
(xk

i − x̄m
j )

2+(yk
i − ȳm

j )
2

L2

] (
xm

j+1−xm
j

)
(10.56a)
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Jm(x
k
i ,y

k
i )=

N∑
j=1

ln

[
(xk

i − x̄m
j )

2+(yk
i − ȳm

j )
2

L2

] (
ym

j+1−ym
j

)
(10.56b)

with x̄m
j =

xm
j+1+xm

j

2
, ȳm

j =
ym

j+1+ym
j

2
, (10.57)

where the sum covers the N segments3 of the mth contour. To close the con-
tour, we define for convenience xm

N+1= x1 and ym
N+1= y1. Note that there is no

singularity because when m takes its turn to equal k and j takes its turn to equal
i, the expression inside the logarithm remains nonzero. Finally, once individual
integrals are calculated, the velocity components can be obtained by summing
over all contour integrals:

u(xk
i ,y

k
i )=−

1

4π

∑
m

δωm Im

(
xk

i ,y
k
i

)
v(xk

i ,y
k
i )=−

1

4π

∑
m

δωm Jm

(
xk

i ,y
k
i

)
,

and every node i on every contour k can be moved in time with the velocity:

dxk
i

dt
=u

(
xk

i ,y
k
i

)
(10.58a)

dyk
i

dt
=v

(
xk

i ,y
k
i

)
. (10.58b)

The time integration can be performed by any method presented in Chapter 2.
The Lagrangian (i.e., fluid following) displacements lead to deformation of the
contours (see also Lagrangian approach of Section 12.8).

The simple numerical integration method outlined here is easily imple-
mented (see, e.g., contourdyn.m). To try the method, we simulate the evolu-
tion of a narrow band of uniform vorticity (Fig. 10.11). Except for the curvature,
this case is that of the shear layer instability seen in Section 10.4. Note the
growing instabilities of the shear layer manifested as rolling waves.

FIGURE 10.11 Evolution of a narrow band of uniform vorticity simulated with contour dynamics.

3The number of segments per contour can, of course, be different for each contour, in which case
N=Nm.
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FIGURE 10.12 Two positive vorticity patches flanking a middle vortex of opposite vorticity and
twice the area (left panel). Depending on the distances between the initial vortices, several outcomes
are possible. One of them is vortex breakup and creation of vortex pairs (right panel).

The method can also be used to study the evolution and interaction of invis-
cid vortex patches in an infinite domain (Fig. 10.12), with the distinct advantage
that no aliasing is present and that, in principle, no numerical dissipation needs
to be added to stabilize the nonlinear advection. In reality, some dissipation is
necessary because tearing and shearing of the eddies can generate filaments that
become ever thinner, yet never disappear when there is no viscosity. Because
the integration along one side of a thin filament almost nearly cancels that along
the other side, the model makes unnecessary calculations, and it would be best
if filaments could be severed.

Because the discretization uses only a finite number of fluid parcels on
each contour, the contours cannot be tracked down to their shortest scales, and
some special treatment becomes necessary when adjacent points are getting too
close in some places and too distant in other places. Removing crowded points
and inserting new ones in sparse areas is required. Procedures dealing with
these problems are properly called contour surgery and have been optimized by
Dritschel (1988). This eliminates some of the smallest structures and amounts
to numerical dissipation.

To conclude the section, we observe that the method of contour dynamics
cleverly replaces a two-dimensional problem of Eulerian vorticity evolution
(i.e., on a 2D fixed array of points) with the problem of moving one-dimensional
contours in a Lagrangian way (i.e., with points following the fluid). This reduces
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the complexity of the problem, but we must realize that the numerical cost of the
methods is still proportional to M2N2 for M contours of N segments, since for
each of the MN discrete points, a sum over all other points must be performed.
However, because of the one-dimensional distribution of the unknowns, reso-
lution is increased compared to an Eulerian model in which a Poisson equation
must be solved in two dimensions (see Section 16.7). The reduction of com-
plexity is possible only because we exploited the fact that there are no boundary
conditions and that vorticity remains constant between contours. To decrease
further the number of computations, it can be noticed that the integrals are
dominated by the contributions near the singularities. Hence, the contributions
of points far away from singularities can be treated in a less precise manner
without penalizing the overall accuracy. One way to do so is to group them. Such
simplifications can bring the computational cost down to MN log(MN) opera-
tions (e.g., Vosbeek, Clercx & Mattheij, 2000). The accuracy of the numerical
integration can also be enhanced by fitting a high-order analytical function to
the contour points near singularities and then integrating the resulting integrand
exactly.

For a continuous vorticity distribution without boundaries, we can still apply
the approach by breaking the continuous vorticity into discrete vorticity lev-
els (see Numerical Exercise 10.5). Generalization to stratified systems and
more complicated governing equations is also possible (e.g., Mohebalhojeh &
Dritschel, 2004).

ANALYTICAL PROBLEMS

10.1. Show that the variable a introduced in Eq. (10.18) is the amplitude of the
meridional displacement, as claimed in the footnote.

10.2. What can you say of the stability properties of the following flow fields
on the f -plane?

ū(y)=U

(
1− y2

L2

)
(−L≤ y≤+L) (10.59)

ū(y)=U sin
πy

L
(0≤ y≤L) (10.60)

ū(y)=U cos
πy

L
(0≤ y≤L) (10.61)

ū(y)=U tanh
( y

L

)
(−∞< y<+∞). (10.62)

10.3. A zonal shear flow with velocity profile

ū(y)=U

(
y

L
−3

y3

L3

)
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FIGURE 10.13 A jet-like profile (for Ana-
lytical Problem 10.6).

occupies the channel −L≤ y≤+L on the beta plane. Show that if |U| is
less than β0L2/12, this flow is stable.

10.4. The atmospheric jet stream is a wandering zonal flow of the upper tropo-
sphere, which plays a central role in midlatitude weather. If we ignore the
variations in air density, we can model the average jet stream as a purely
zonal flow, independent of height and varying meridionally according to

ū(y)=U exp

(
− y2

2L2

)
,

in which the constants U and L, characteristics of the speed and width,
are taken as 40 m/s and 570 km, respectively. The jet center (y=0) is
at 45◦N where β0=1.61×10−11 m−1s−1. Is the jet stream unstable to
zonally propagating waves?

10.5. Verify the semicircle theorem for the particular shear flow studied in
Section 10.4. In other words, prove that |cr|<U for stable waves and
ci<U for unstable waves. Also, prove that the wavelength leading to the
highest growth rate, kci, is 15.77L, as stated in the text.

10.6. Derive the dispersion relation and establish a stability threshold for the
jet-like profile of Fig. 10.13.

10.7. Redo Analytical Problem 10.6 in a channel between y=−a and y=a.

NUMERICAL EXERCISES

10.1. Redo the analysis of nonlinear aliasing for a cubic term like du/dt=−u3

in the governing equation for u. Why do you think aliasing is less of a
concern in this particular case?
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10.2. An elliptic vortex patch with uniform vorticity inside and zero vorticity
outside is called a Kirchhoff vortex. Use contourdyn.m with itest=1
to study the evolution of Kirchhoff vortices of aspect ratios 2:1 and
4:1. What do you observe? Implement another time-integration scheme
(among which the explicit Euler scheme) and analyze how it behaves
with a circular eddy. (Hint: Love (1983) provides a stability analysis of
the Kirchhoff vortex.)

10.3. Experiment with contourdyn.m using itest=4 in which two identical
eddies are placed at various distances. Start with dist=1.4 and then try
the value 1.1. What happens? Which numerical parameters would you
adapt to improve the numerical simulation?

10.4. Simulate the eddy separation shown in Fig. 10.12 using contourdyn.m.

10.5. Discretize a circular eddy with vorticity varying linearly from zero at the
rim to a maximum at the center by using M different vorticity values in
concentric annuli. Then simulate its evolution with M=3.

10.6. Verify your findings of Analytical Problem 10.6 by adapting sheared-
flow.m to simulate the evolution of the most unstable periodic perturba-
tion (for details on the numerical aspects, see Section 16.7).

10.7. Adapt shearedflow.m to investigate the so-called Bickley jet with
profile given by

ū(y)=U sech2
( y

L

)
(−∞< y<+∞). (10.63)
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Louis Norberg Howard
1929–

Applied mathematician and fluid dynamicist, Louis Norberg Howard has made
numerous contributions to hydrodynamic stability and rotating flow. His famous
semicircle theorem was published in 1961 as a short note extending some
contemporary work by John Miles. Howard is also well known for his theo-
retical and experimental studies of natural convection. With Willem Malkus,
he devised a simple waterwheel model of convection that, like real convec-
tion, can exhibit resting, steady, and periodic and chaotic behaviors. Howard
has been a regular lecturer at the annual Geophysical Fluid Dynamics Sum-
mer Institute at the Woods Hole Oceanographic Institution, where his audiences
have been much impressed by the breadth of his knowledge and the clarity of
his explanations. (Photo credit: L. N. Howard)



344 PART | II Rotation Effects

Norman Julius Zabusky
1929–

Educated as an electrical engineer, Norman Zabusky spent the early part of his
career working on plasma physics, and this led him to a lifetime pursuit of fluid
turbulence by computational simulation. Vorticity dynamics lie at the center of
his investigations. In the mid-1980s, he invented the method of contour dynam-
ics (presented in this chapter) to investigate with greater precision the behavior
of vorticity in two-dimensional flows in the absence of viscosity. Equipped
with low-dissipation three-dimensional models of turbulent flows of his own
design, Zabusky has been able to document in details the complicated processes
of vortex tube deformation and reconnection. He firmly believes that progress
in fluid turbulence demands a mathematical understanding of nonlinear coher-
ent structures in weakly dissipative systems. In addition, Professor Zabusky has
been fascinated by artistic renditions of waves and vortices in air and water,
across ages and cultures. He wrote a book titled From Art to Modern Science:
Understanding Waves and Turbulence. (Photo credit: Rutgers University)



Chapter 11

Stratification

ABSTRACT
After having studied the effects of rotation in homogeneous fluids, we now turn our
attention toward the other distinctive feature of geophysical fluid dynamics, namely,
stratification. A basic measure of stratification, the Brunt–Väisälä frequency, is intro-
duced, and the accompanying dimensionless ratio, the Froude number, is defined and
given a physical interpretation. The numerical part deals with the handling of unstable
stratification in model simulations

11.1 INTRODUCTION

As Chapter 1 stated, problems in geophysical fluid dynamics concern fluid
motions with one or both of two attributes, namely, ambient rotation and strat-
ification. In the preceding chapters, attention was devoted exclusively to the
effects of rotation, and stratification was avoided by the systematic assumption
of a homogeneous fluid. We noted that rotation imparts to the fluid a strong
tendency to behave in a columnar fashion—to be vertically rigid.

By contrast, a stratified fluid, consisting of fluid parcels of various densities,
will tend under gravity to arrange itself so that the higher densities are found
below lower densities. This vertical layering introduces an obvious gradient
of properties in the vertical direction, which affects—among other things—the
velocity field. Hence, the vertical rigidity induced by the effects of rotation will
be attenuated by the presence of stratification. In return, the tendency of denser
fluid to lie below lighter fluid imparts a horizontal rigidity to the system.

Because stratification induces a certain degree of decoupling between the
various fluid masses (those of different densities), stratified systems typically
contain more degrees of freedom than homogeneous systems, and we antici-
pate that the presence of stratification permits the existence of additional types
of motions. When the stratification is mostly vertical (e.g., layers of various
densities stacked on top of one another), gravity waves can be sustained inter-
nally (Chapter 13). When the stratification also has a horizontal component,
additional waves can be permitted. These may lead to motion in equilibrium
(Chapter 15), or, if they grow at the expense of the basic potential energy
available in the system, may cause instabilities (Chapter 17).
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11.2 STATIC STABILITY

Let us first consider a fluid in static equilibrium. Lack of motion can occur
only in the absence of horizontal forces and thus in the presence of horizontal
homogeneity. Stratification is then purely vertical (Fig. 11.1).

It is intuitively obvious that if the heavier fluid parcels are found below
the lighter fluid parcels, the fluid is stable, whereas if heavier parcels lie above
lighter ones, the system is apt to overturn, and the fluid is unstable. Let us now
verify this intuition. Take a fluid parcel at a height z above a certain reference
level, where the density is ρ(z), and displace it vertically to the higher level
z+h, where the ambient density is ρ(z+h) (Fig. 11.1). If the fluid is incom-
pressible, our displaced parcel retains its former density despite a slight pressure
change, and that new level is subject to a net downward force equal to its own
weight minus, by Archimedes’ buoyancy principle, the weight of the displaced
fluid, thus

g[ρ(z)−ρ(z+h)]V,

where V is the volume of the parcel. As it is written, this force is positive if
it is directed downward. Newton’s law (mass times acceleration equals upward
force) yields

ρ(z) V
d2h

dt2
= g [ρ(z+h)− ρ(z)]V. (11.1)

Now, geophysical fluids are generally only weakly stratified; the density
variations, although sufficient to drive or affect motions, are nonetheless rel-
atively small compared with the average or reference density of the fluid. This
remark was the essence of the Boussinesq approximation (Section 3.7). In the
present case, this fact allows us to replace ρ(z) on the left-hand side of Eq. (11.1)
by the reference density ρ0 and to use a Taylor expansion to approximate the
density difference on the right by

ρ(z+h)−ρ(z)' dρ

dz
h.

h

ρ (z + h)

z ρ (z) FIGURE 11.1 When an incompressible fluid parcel of den-
sity ρ(z) is vertically displaced from level z to level z+h in
a stratified environment, a buoyancy force appears because of
the density difference ρ(z)−ρ(z+h) between the particle and
the ambient fluid.
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After a division by V , Eq. (11.1) reduces to

d2h

dt2
− g

ρ0

dρ

dz
h = 0, (11.2)

which shows that two cases can arise. The coefficient −(g/ρ0)dρ/dz is either
positive or negative. If it is positive (dρ/dz<0, corresponding to a fluid with
the greater densities below the lesser densities), we can define the quantity N2 as

N2=− g

ρ0

dρ

dz
, (11.3)

and the solution to the equation has an oscillatory character, with frequency N.
Physically, this means that when displaced upward, the parcel is heavier than
its surroundings, experiences a downward recalling force, falls down, and, in
the process, acquires a vertical velocity; upon reaching its original level, the
particle’s inertia causes it to go further downward and to become surrounded
by heavier fluid. The parcel, now buoyant, is recalled upward, and oscillations
persist about the equilibrium level. The quantity N, defined by the square root
of Eq. (11.3), provides the frequency of the oscillation and can thus be called
the stratification frequency. It goes more commonly, however, by the name
of Brunt–Väisälä frequency, in recognition of the two scientists who were the
first to highlight the importance of this frequency in stratified fluids. (See their
biographies at the end of this chapter.)

If the coefficient in Eq. (11.1) is negative (i.e., dρ/dz>0, corresponding
to a top-heavy fluid configuration), the solution exhibits exponential growth, a
sure sign of instability. The parcel displaced upward is surrounded by heavier
fluid, finds itself buoyant, and moves farther and farther away from its initial
position. Obviously, small perturbations will ensure not only that the single dis-
placed parcel will depart from its initial position, but that all other fluid parcels
will likewise participate in a general overturning of the fluid until it is finally
stabilized, with the lighter fluid lying above the heavier fluid. If, however, a per-
manent destabilization is forced onto the fluid, such as by heating from below or
cooling from above, the fluid will remain in constant agitation, a process called
convection.

11.3 A NOTE ON ATMOSPHERIC STRATIFICATION

In a compressible fluid, such as the air of our planetary atmosphere, density
can change in one of two ways: by pressure changes or by internal energy
changes. In the first case, a pressure variation resulting in no heat exchange
(i.e., an adiabatic compression or expansion) is accompanied by both density
and temperature variations: All three quantities increase (or decrease) simulta-
neously, though not in equal proportions. If the fluid is made of fluid parcels
all having the same heat content, the lower parcels, experiencing the weight
of those above them, will be more compressed than those in the upper lev-
els, and the system will appear stratified, with the denser and warmer fluid
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underlying the lighter and colder fluid. But such stratification cannot be dynam-
ically relevant, for if parcels are interchanged adiabatically, they adjust their
density and temperature according to the local pressure, and the system is left
unchanged.

In contrast, internal energy changes are dynamically important. In the atmo-
sphere, such variations occur because of a heat flux (such as heating in the
tropics and cooling at high latitudes, or according to the diurnal cycle) or
because of variations in air composition (such as water vapor). Such variations
among fluid parcels do remain despite adiabatic compression or expansion and
cause density differences that drive motions. It is thus imperative to distinguish,
in a compressible fluid, the density variations that are dynamically relevant from
those that are not. Such separation of density variations leads to the concept of
potential density.

First, we consider a neutral (adiabatic) atmosphere—that is, one consisting of
all air parcels having the same internal energy. Further, let us assume that the air, a
mixture of various gases, behaves as a single ideal gas. Under these assumptions,
we can write the equation of state and the adiabatic conservation law:

p=RρT, (11.4)

p

p0
=

(
ρ

ρ0

)γ
, (11.5)

where p, ρ, and T are, respectively, the pressure, density,1 and absolute temper-
ature; R=Cp−Cv and γ =Cp/Cv are the constants of an ideal gas.2 Finally,
p0 and ρ0 are reference pressure and density characterizing the level of internal
energy of the fluid; the corresponding reference temperature T0 is obtained from
Eq. (11.4)—that is, T0=p0/Rρ0. Expressing both pressure and density in terms
of the temperature, we obtain

p

p0
=

(
T

T0

)γ /(γ−1)

(11.6a)

ρ

ρ0
=

(
T

T0

)1/(γ−1)

. (11.6b)

Without motion, the atmosphere is in static equilibrium, which requires
hydrostatic balance:

dp

dz
=−ρg. (11.7)

1In contrast with preceding chapters, the variables p and ρ denote here the full pressure and
density.
2For air, values are Cp=1005 Jkg−1 K−1, Cv=718 Jkg−1 K−1, R=287 Jkg−1 K−1, and γ =1.40.
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Elimination of p and ρ by the use of Eqs. (11.6a) and (11.6b) yields a single
equation for the temperature:

dT

dz
=−γ −1

γ

g

R

=− g

Cp
. (11.8)

In the derivation, it was assumed that p0, ρ0, and thus T0 are not dependent on z,
in agreement with our premise that the atmosphere is composed of parcels with
identical internal energy contents. Equation (11.8) states that the temperature in
such an atmosphere must decrease with increasing height at the uniform rate
g/Cp'10 K/km. This gradient is called the adiabatic lapse rate. Physically,
lower parcels are under greater pressure than higher parcels and thus have higher
densities and temperatures. This explains why the air temperature is lower on
mountain tops than in the valleys below.

It almost goes without saying that the departures from this adiabatic lapse
rate—and not the actual temperature gradients—are to be considered in the
study of atmospheric motions. We can demonstrate this clearly by redoing here,
with a compressible fluid, the analysis of a vertical displacement performed in
the previous section with an incompressible fluid. Consider a vertically stratified
gas with pressure, density, and temperature, p, ρ, and T , varying with height z
but not necessarily according to Eq. (11.8); that is, the heat content in the fluid is
not uniform. The fluid is in static equilibrium so that Eq. (11.7) is satisfied. Con-
sider now a parcel at height z; its properties are p(z), ρ(z), and T(z). Imagine
then that this fluid parcel is displaced adiabatically upward over a small distance
h. According to the hydrostatic equation, this results in a pressure change δp=
−ρgh, which causes density and temperature changes given by the adiabatic
constraints Eqs. (11.5) and (11.6a): δρ=−ρgh/γRT and δT=−(γ −1)gh/γR.
Thus, the new density is ρ′=ρ+δρ=ρ−ρgh/γRT . But, at that new level, the
ambient density is given by the stratification: ρ(z+h)'ρ(z)+(dρ/dz)h. The
net force exerted on the parcel is the difference between its own weight and the
weight of the displaced fluid at the new location (the buoyancy force), which
per volume is

F=g [ρambient−ρparcel]

=g [ρ(z+h)−ρ′]

'g

(
dρ

dz
+ ρg

γRT

)
h.

As the ideal gas law (p=RρT) holds everywhere, the vertical gradients of
pressure, density, and temperature are related by

dp

dz
=RT

dρ

dz
+Rρ

dT

dz
.



352 PART | III Stratification Effects

With the pressure gradient given by the hydrostatic balance (11.7), it follows
that the density and temperature gradients are related by

1

ρ

dρ

dz
+ 1

T

dT

dz
+ g

RT
=0,

and the force on the fluid parcel can be expressed in terms of the temperature
gradient

F'− ρg

T

(
dT

dz
+ g

Cp

)
h.

If

N2=− g

ρ

(
dρ

dz
+ ρg

γRT

)
(11.9a)

=+ g

T

(
dT

dz
+ g

Cp

)
(11.9b)

is a positive quantity, the force recalls the particle toward its initial level, and
the stratification is stable. As we can clearly see, the relevant quantity is not
the actual temperature gradient but its departure from the adiabatic gradient
−g/Cp. As in the previous case of a stably stratified incompressible fluid, the
quantity N is the frequency of vertical oscillations. It is called the stratification,
or Brunt–Väisälä, frequency.

In order to avoid the systematic subtraction of the adiabatic gradient from
the temperature gradient, the concept of potential temperature is introduced.
The potential temperature, denoted by θ , is defined as the temperature that the
parcel would have if it were brought adiabatically to a given reference pressure.3

From Eq. (11.6a), we have

p

p0
=

(
T

θ

)γ /(γ−1)

and hence

θ =T

(
p

p0

)−(γ−1)/γ

. (11.10)

The corresponding density is called the potential density, denoted by σ :

σ =ρ
(

p

p0

)−1/γ

= p0/R θ. (11.11)

3In the atmosphere, this reference pressure is usually taken as the standard sea level pressure of
1013.25 millibars=1.01325× 105 N/m2.
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The definition of the stratification frequency (11.9b) takes the more compact
form:

N2=− g

σ

dσ

dz
=+g

θ

dθ

dz
. (11.12)

Comparison with the earlier definition, (11.3), immediately shows that the sub-
stitution of potential density for density allows us to treat compressible fluids as
incompressible.

During daytime and above land, the lower atmosphere is typically heated
from below by the warmer ground and is in a state of turbulent convection. The
convective layer not only covers the region where the time-averaged gradient of
potential temperature is negative but also penetrates into the region above where
it is positive (Fig. 11.2). Consequently, the sign of N2 at a particular level is not
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FIGURE 11.2 Typical profile of potential temperature in the lower atmosphere above warm
ground. Heating from below destabilizes the air, generating convection and turbulence. Note how
the convective layer extends not only over the region of negative N2 but also slightly beyond, where
N2 is positive. Such a situation shows that a positive value of N2 may not always be indicative of
local stability. Global stability refers then to regions where even a finite amplitude displacement
cannot destabilize the fluid parcel. (From Stull, 1991)
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Air temperature

k

FIGURE 11.3 Fluid parcels located around level z amidst a temperature gradient (curved solid
line) locally exceeding the adiabatic lapse rate (dashed line) are in an unstable situation. They move
upward and eventually reach their saturation level, condensation takes place, and the lapse rate is
decreased. If an inversion is present at higher levels, cloud extension is vertically limited.

unequivocally indicative of stability at that level. For this reason, Stull (1991)
advocates the use of a nonlocal criterion to determine static stability. Those
considerations apply equally well to the upper ocean under surface cooling.

When the air is moist, the thermodynamics of water vapor affect the situa-
tion, and, because the value of Cp for water vapor is higher than that for dry air,
the adiabatic lapse rate is reduced. As the temperature of ascending air drops,
the relative humidity may reach 100%, in which case condensation occurs and
water droplets form a cloud. Condensation liberates latent heat, which reduces
the temperature drop if parcels continue to ascend. The lapse is then further
reduced to a saturated adiabatic lapse rate, as depicted in Fig. 11.3.

11.4 CONVECTIVE ADJUSTMENT

When gravitational instability is present in the ocean or atmosphere, nonhydros-
tatic movements tend to restore stability through narrow columns of convec-
tion, rising plumes and thermals in the atmosphere, and so-called convective
chimneys in the ocean (e.g., Marshall & Schott, 1999). These vigorous verti-
cal motions are not resolved by most computer models, and parameterizations
called convection schemes are introduced to remove the instability and model
the mixing associated with convection. Such parameterization can be achieved
by additional terms in the governing equations, typically through a much
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increased eddy viscosity and diffusivity whenever N2≤0 (e.g., Cox, 1984;
Marotzke, 1991). Other parameterizations are pieces of computer code of the
type (see Fig. 11.4):

while there is any denser fluid being on top of lighter fluid
loop over all layers

if density of layer above > density of layer below
mix properties of both layers, with a volume-weighted

average
end if

end loop over all layers
end while

Oceanic circulation models (e.g., Bryan, 1969; Cox, 1984) were the first to use
this type of parameterization.

The mixing accomplished by such scheme, however, is too strong in prac-
tice, because the model mixes fluid properties instantaneously over an entire
horizontal grid cell of size 1x1y, whereas physical convection operates at
shorter scales and only partially mixes the physical properties at the spot. There-
fore, numerical mixing should preferably be replaced by a mere swapping of
fluid masses, under the assumption that convection carries part of the properties
without alteration to their new level of equilibrium (e.g., Roussenov, Williams &
Roether, 2001). It is clear that some arbitrariness remains and that every appli-
cation demands its own calibration. Among other things, changing the time step
clearly modifies the speed at which mixing takes place.

In atmospheric applications, the situation is more complicated as it may
involve condensation, latent heat release, and precipitation during convective
movement. Atmospheric convection parameterizations involve delicate adjust-
ments of both temperature and moisture in the vertical (e.g., Betts, 1986; Kuo,
1974).

FIGURE 11.4 Illustration of convective adjustment within a fluid heated from below. Grid boxes
below heavier neighbors are systematically mixed in pairs until the whole fluid column is rendered
stable.
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11.5 THE IMPORTANCE OF STRATIFICATION: THE
FROUDE NUMBER

It was established in Section 1.5 that rotational effects are dynamically impor-
tant when the Rossby number is on the order of unity or less. This number com-
pares the distance traveled horizontally by a fluid parcel during one revolution
(∼U/�) with the length scale over which the motions take place (L). Rotational
effects are important when the former is less than the latter. By analogy, we may
ask whether there exists a similar number measuring the importance of stratifi-
cation. From the remarks in the preceding sections, we can anticipate that the
stratification frequency, N, and the height scale, H, of a stratified fluid will play
roles similar to those of � and L in rotating fluids.

To illustrate how such a dimensionless number can be derived, let us con-
sider a stratified fluid of thickness H and stratification frequency N flowing
horizontally at a speed U over an obstacle of length L and height1z (Fig. 11.5).
We can think of a wind in the lower atmosphere blowing over a mountain range.
The presence of the obstacle forces some of the fluid to be displaced vertically
and, hence, requires some supply of gravitational energy. Stratification will act
to restrict or minimize such vertical displacements in some way, forcing the
flow to pass around rather than over the obstacle. The greater the restriction, the
greater the importance of stratification.

The time passed in the vicinity of the obstacle is approximately the time
spent by a fluid parcel to cover the horizontal distance L at the speed U, that is,
T=L/U. To climb a height of 1z, the fluid needs to acquire a vertical velocity
on the order of

W= 1z

T
= U1z

L
. (11.13)

H

N2

U

L

�z

FIGURE 11.5 Situation in which a stratified flow encounters an obstacle, forcing some fluid
parcels to move vertically against a buoyancy force.
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The vertical displacement is on the order of the height of the obstacle and, in
the presence of stratification ρ(z), causes a density perturbation on the order of

1ρ=
∣∣∣∣dρ̄

dz

∣∣∣∣ 1z

= ρ0N2

g
1z, (11.14)

where ρ̄(z) is the fluid’s vertical density profile upstream. In turn, this density
variation gives rise to a pressure disturbance that scales, via the hydrostatic
balance, as

1P=gH1ρ

=ρ0N2H1z. (11.15)

By virtue of the balance of forces in the horizontal, the pressure-gradient
force must be accompanied by a change in fluid velocity [u∂u/∂x+v∂u/∂y∼
(1/ρ0)∂p/∂x]:

U2

L
= 1P

ρ0L
=⇒ U2=N2H1z. (11.16)

From this last expression, the ratio of vertical convergence, W/H, to horizontal
divergence, U/L, is found to be

W/H

U/L
= 1z

H
= U2

N2H2
. (11.17)

We immediately note that if U is less than the product NH, W/H must be less
than U/L, implying that convergence in the vertical cannot fully meet horizontal
divergence. Consequently, the fluid is forced to be partially deflected horizon-
tally so that the term ∂u/∂x can be met by −∂v/∂y better than by −∂w/∂z. The
stronger the stratification, the smaller is U compared with NH and, thus, W/H
compared with U/L.

From this argument, we conclude that the ratio

Fr= U

NH
, (11.18)

called the Froude number, is a measure of the importance of stratification. The
rule is as follows: If Fr . 1, stratification effects are important; the smaller Fr,
the more important these effects are.

The analogy with the Rossby number of rotating fluids,

Ro= U

�L
, (11.19)
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where � is the angular rotation rate and L the horizontal scale, is immediate.
Both Froude and Rossby numbers are ratios of the horizontal velocity scale
by a product of frequency and length scale; for stratified fluids, the relevant
frequency and length are naturally the stratification frequency and the height
scale, whereas in rotating fluids they are, respectively, the rotation rate and the
horizontal length scale.

The analogy can be pursued a little further. Just as the Froude number is a
measure of the vertical velocity in a stratified fluid [via Eq. (11.17)], the Rossby
number can be shown to be a measure of the vertical velocity in a rotating fluid.
We saw (Section 7.2) that strongly rotating fluids (Ro nominally zero) allow
no convergence of vertical velocity, even in the presence of topography. This
results from the absence4 of horizontal divergence in geostrophic flows. In real-
ity, the Rossby number cannot be nil, and the flow cannot be purely geostrophic.
The nonlinear terms, of relative importance measured by Ro, yield corrective
terms to the geostrophic velocities of the same relative importance. Thus, the
horizontal divergence, ∂u/∂x+∂v/∂y, is not zero but is on the order of RoU/L.
Since the divergence is matched by the vertical divergence, −∂w/∂z, on the
order of W/H, we conclude that

W/H

U/L
=Ro, (11.20)

in rotating fluids. Contrasting Eqs. (11.17)–(11.20), we note that, with regard
to vertical velocities, the square of the Froude number is the analogue of the
Rossby number.

In continuation of the analogy, it is tempting to seek the stratified analogue
of the Taylor column in rotating fluids. Recall that Taylor columns occur in
rapidly rotating fluids (Ro=U/�L�1). Let us then ask what happens when
a fluid is very stratified (Fr=U/NH�1). By virtue of Eq. (11.17), the verti-
cal displacements are severely restricted (1z�H), implying that an obstacle
causes the fluid at that level to be deflected almost purely horizontally. (In the
absence of rotation, there is no tendency toward vertical rigidity, and parcels at
levels above the obstacle can flow straight ahead without much disruption.) If
the obstacle occupies the entire width of the domain, such a horizontal detour
is not allowed, and the fluid at the level of the obstacle is blocked on both
upstream and downstream sides. This horizontal blocking in stratified fluids is
the analogue of the vertical Taylor columns in rotating fluids. Further analogies
between homogeneous rotating fluids and stratified nonrotating fluids have been
described by Veronis (1967).

11.6 COMBINATION OF ROTATION AND STRATIFICATION

In the light of the previous remarks, we are now in position to ask what happens
when, as in actual geophysical fluids, the effects of rotation and stratification

4For the sake of the analogy, we rule out here an possible beta effect.
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are simultaneously present. The preceding analysis remains unchanged, except
that we now invoke the geostrophic balance [see Eq. (7.4)] in the horizontal
momentum equation to obtain the horizontal velocity scale:

�U= 1P

ρ0L
=⇒ U= N2H1z

�L
. (11.21)

The ratio of the vertical to horizontal convergence then becomes

W/H

U/L
= 1z

H
= �LU

N2H2

= Fr2

Ro
. (11.22)

This is a particular case of great importance. According to our foregoing
scaling analysis, the ratio of vertical convergence to horizontal divergence,
(W/H)/(U/L), is given by Fr2, Fr2/Ro, or Ro, depending on whether verti-
cal motions are controlled by stratification, rotation, or both (Fig. 11.6). Thus, if
Fr2/Ro is less than Ro, stratification restricts vertical motions more than rotation
and is the dominant process. The converse is true if Fr2/Ro is greater than Ro.

Note that Ro is in the denominator of Eq. (11.22), which implies that the
influence of rotation is to increase the scale for the vertical velocity when strat-
ification is present. However, since vertical divergence cannot exist without
horizontal convergence (W/H . U/L), the following inequality must hold:

Fr2 .Ro, (11.23)
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FIGURE 11.6 Recapitulation of the var-
ious scalings of the ratio of vertical con-
vergence (divergence), W/H, to horizontal
divergence (convergence), U/L, as a func-
tion of the Rossby number, Ro=U/(�L),
and Froude number, Fr=U/(NH).
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that is,

U

NH
.

NH

�L
. (11.24)

This sets an upper bound for the magnitude of the flow field in a fluid
under given rotation (�) and of given stratification (N) in a domain of given
dimensions (L, H). If the velocity is imposed externally (e.g., by an upstream
condition), the inequality specifies either the horizontal or the vertical length
scales of the possible disturbances. Finally, if the system is such that all quanti-
ties are externally imposed and that they do not meet Eq. (11.24), then special
effects such as Taylor columns or blocking must occur.

Inequality Eq. (11.24) brings a new dimensionless number NH/�L, namely,
the ratio of the Rossby and Froude numbers. For historical reasons and also
because it is more convenient in some dimensional analyses, the square of this
quantity is usually defined:

Bu=
(

NH

�L

)2

=
(

Ro

Fr

)2

. (11.25)

It bears the name of Burger number, in honor of Alewyn P. Burger (1927–2003),
who contributed to our understanding of geostrophic scales of motions (Burger,
1958). In practice, the Burger number is a useful measure of stratification in the
presence of rotation.

In typical geophysical fluids, the height scale is much less than the horizontal
length scale (H�L), but there is also a disparity between the two frequencies
� and N. Although the rotation rate of the earth corresponds to a period of
24 h, the stratification frequency generally corresponds to much shorter periods,
on the order of few to tens of minutes in both the ocean and atmosphere. This
implies that generally ��N and opens the possibility of a Burger number on
the order of unity.

Stratification and rotation influence the flow field to similar degrees if
Fr2/Ro and Ro are on the same order. Such is the case when the Froude number
equals the Rossby number and, consequently, the Burger number is unity. The
horizontal length scale then assumes a special value:

L= NH

�
. (11.26)

For the values of � and N just cited and a height scale H of 100 m in the
ocean and 1 km in the atmosphere, this horizontal length scale is on the order
of 50 km and 500 km in the ocean and atmosphere, respectively. At this length
scale, stratification and rotation go hand in hand. Later on (Chapter 15), it will
be shown that the scale defined above is none other than the so-called internal
radius of deformation.
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ANALYTICAL PROBLEMS

11.1. Gulf Stream waters are characterized by surface temperatures around
22◦C. At a depth of 800 m below the Gulf Stream, temperature is only
10◦C. Using the value 2.1×10−4 K−1 for the coefficient of thermal
expansion, calculate the stratification frequency. What is the horizontal
length at which both rotation and stratification play comparable roles?
Compare this length scale to the width of the Gulf Stream.

11.2. An atmospheric inversion occurs when the temperature increases with
altitude, in contrast to the normal situation when the temperature decays
with height. This corresponds to a very stable stratification and, hence,
to a lack of ventilation (smog, etc.). What is the stratification frequency
when the inversion sets in (dT/dz=0)? Take T=290 K and Cp =
1005 m2 s−2 K−1).

11.3. A meteorological balloon rises through the lower atmosphere, simultane-
ously measuring temperature and pressure. The reading, transmitted to the
ground station where the temperature and pressure are, respectively, 17◦C
and 1028 millibars, reveals a gradient 1T/1p of 6◦C per 100 millibars.
Estimate the stratification frequency. If the atmosphere were neutral, what
would the reading be?

11.4. Wind blowing from the sea at a speed of 10 m/s encounters Diamond
Head, an extinct volcano on the southeastern coast of O’ahu Island in
Hawai’i. This volcano is 232 m tall and 20 km wide. Stable air possesses
a stratification frequency on the order of 0.02 s−1. How do vertical dis-
placements compare to the height of the volcano? What does this imply
about the importance of the stratification? Is the Coriolis force important
in this case?

11.5. Redo Problem 11.4 with the same wind speed and stratification but with
a mountain range 1000 m high and 500 km wide.

11.6. Vertical soundings of the atmosphere provided the temperature profiles
displayed in Fig. 11.7. Analyze the stability of each profile.

NUMERICAL EXERCISES

11.1. Use medprof.m to read average Mediterranean temperature and salin-
ity vertical profiles and calculate N2 for various levels of vertical
resolution (averaging data within cells). What do you conclude? (Hint:
Use ies80.m for the state equation.)

11.2. Use the diffusion equation solver of Numerical Exercise 5.4 with a turbu-
lent diffusion coefficient that changes from 10−4 to 10−2 m2/s whenever
N2 is negative. Simulate the evolution of a 50-m high water column with
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FIGURE 11.7 Various vertical pro-
files of temperature (solid lines) with
the lapse rate (dashed line) corre-
sponding to a particular fluid parcel
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an initially stable vertical temperature gradient of 0.3◦C/m subsequently
cooled at the surface by a heat loss of 100 W/m2. Salinity is unchanged.
Study the effect of changes in 1z and 1t.

11.3. Implement the algorithm outlined in Section 11.4, to remove any grav-
itational instability instantaneously. Keep the turbulent diffusivity con-
stant at 10−4 m2/s and simulate the same problem as in Numerical
Exercise 11.2.
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David Brunt
1886–1965

As a bright young British mathematician, David Brunt began a career in astron-
omy, analyzing the statistics of celestial variables. Then, turning to meteorology
during World War I, he became fascinated with weather forecasting and started
to apply his statistical methods to atmospheric observations in the search for
primary periodicities. By 1925, he had concluded that weather forecasting by
extrapolation of cyclical behavior was not possible and turned his attention to
the dynamic approach, which had been initiated in the late nineteenth century
by William Ferrel and given new impetus by Vilhelm Bjerknes in recent years.

In 1926, he delivered a lecture at the Royal Meteorological Society on the
vertical oscillations of particles in a stratified atmosphere. Lewis F. Richardson
then led him to a paper published the preceding year by Finnish scientist Vilho
Väisälä, in which the same oscillatory frequency was derived. This quantity is
now jointly known as the Brunt–Väisälä frequency.

Continuing his efforts to explain observed phenomena by physical pro-
cesses, Brunt contributed significantly to the theories of cyclones and anti-
cyclones and of heat transfer in the atmosphere. His studies culminated in a
textbook titled Physical and Dynamical Meteorology (1934) and confirmed him
as a founder of modern meteorology. (Photo credit: LaFayette, London)
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Vilho Väisälä
1889–1969

Altough he obtained his doctorate in mathematics (at the University of Helsinki,
Finland), Vilho Väisälä found the subject rather uninspiring and became inter-
ested in meteorology. His positions at various Finnish institutes, including the
Ilmala Meteorological Observation Station, required of him to develop instru-
ments for atmospheric observations, which he did with much ingenuity. This
eventually led him to establish in 1936 a commercial company for the manufac-
ture of meteorological instrumentation, the Vaisala Company, a company now
with branches on five continents and sales across the globe. In addition to his
inventions and commercial activities, Väisälä retained an interest in the physics
of the atmosphere, publishing over one hundred scientific papers, and mastered
nine foreign languages. (Photo credit: Vaisala Archives, Helsinki)



Chapter 12

Layered Models

ABSTRACT
The assumption of density conservation by fluid parcels is advantageously used to change
the vertical coordinate from depth to density. The new equations offer a clear discus-
sion of potential-vorticity dynamics and lend themselves to discretization in the vertical.
The result is a layered model. Splitting stratification in a series of layers may be inter-
preted as a vertical discretization in which the vertical grid is a material surface of
the flow. This naturally leads to the presentation of Lagrangian approaches. Note: To
avoid problems of terminology, we restrict ourselves here to the ocean. The case of the
atmosphere follows with the replacement of depth by height and density by potential
density.

12.1 FROM DEPTH TO DENSITY

Since a stable stratification requires a monotonic increase of density downward,
density can be taken as a surrogate for depth and used as the vertical coordinate.
If density is conserved by individual fluid parcels, as it is approximately the case
for most geophysical flows, considerable mathematical simplification follows,
and the new equations present a definite advantage in a number of situations. It
is thus worth expounding on this change of variables at some length.

In the original Cartesian system of coordinates, z is an independent vari-
able, and density ρ(x,y,z, t) is a dependent variable, giving the water density
at location (x,y), time t, and depth z. In the transformed coordinate sys-
tem (x,y,ρ, t), density becomes an independent variable, and z(x,y,ρ, t) has
become the dependent variable giving the depth at which density ρ is found at
location (x,y) and at time t. A surface along which density is constant is called
an isopycnal surface or isopycnic for short.
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From a differentiation of the expression a=a(x,y,ρ(x,y,z, t), t), where a is
any function, the rules for the change of are as follows:

∂

∂x
−→ ∂a

∂x

∣∣∣
z
= ∂a

∂x

∣∣∣
ρ
+ ∂a

∂ρ

∂ρ

∂x

∣∣∣
z

∂

∂y
−→ ∂a

∂y

∣∣∣
z
= ∂a

∂y

∣∣∣
ρ
+ ∂a

∂ρ

∂ρ

∂y

∣∣∣
z

∂

∂z
−→ ∂a

∂z
= ∂a

∂ρ

∂ρ

∂z
∂

∂t
−→ ∂a

∂t

∣∣∣
z
= ∂a

∂t

∣∣∣
ρ
+ ∂a

∂ρ

∂ρ

∂t

∣∣∣
z
.

Then, application to a= z gives 0= zx+zρρx, 1= zρρz, etc. (where a subscript
indicates a derivative). This provides the rule to change the derivative of ρ at z
constant to that of z at ρ constant. For a other than z, we can write

∂a

∂x

∣∣∣
z
= ∂a

∂x

∣∣∣
ρ
− zx

zρ

∂a

∂ρ
, (12.1)

with similar expressions where x is replaced by y or t, and

∂a

∂z
= 1

zρ

∂a

∂ρ
. (12.2)

Here, subscripts denote derivatives. Fig. 12.1 depicts a geometrical interpreta-
tion of rule (12.1).

The hydrostatic Eq. (4.19) readily becomes

∂p

∂ρ
=−ρg

∂z

∂ρ
(12.3)
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FIGURE 12.1 Geometrical interpretation
of Eq. (12.1). The x-derivatives of any
function a at constant depth z and at con-
stant density ρ are [a(B)−a(A)]/1x and
[a(C)−a(A)]/1x, respectively. The differ-
ence between the two, [a(C)−a(B)]/1x,
represents the vertical derivative of a,
[a(C)−a(B)]/1z, times the slope of the
density surface, 1z/1x. Finally, the verti-
cal derivative can be split as the ratio of
the ρ-derivative of a, [a(C)−a(B)]/1ρ, by
1z/1ρ.
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and leads to the following horizontal pressure gradient:

∂p

∂x

∣∣∣
z
= ∂p

∂x

∣∣∣
ρ
− zx

zρ

∂p

∂ρ
= ∂p

∂x

∣∣∣
ρ
+ρg

∂z

∂x
= ∂P

∂x

∣∣∣
ρ
.

Similarly, ∂p/∂y at constant z becomes ∂P/∂y at constant ρ. The new func-
tion P, which plays the role of pressure in the density-coordinate system, is
defined as

P=p+ρgz (12.4)

and is called the Montgomery potential.1 Later on, when there is no ambiguity,
this potential may loosely be called pressure. With P replacing pressure, the
hydrostatic balance, (12.3), now takes a more compact form:

∂P

∂ρ
=gz, (12.5)

further indicating that P is the natural substitute for pressure when density is the
vertical coordinate.

Beyond this point, all derivatives with respect to x, y, and time are meant to
be taken at constant density, and the subscript ρ is no longer necessary.

With the use of Eqs. (12.1)–(12.3) and the obvious relation ∂ρ/∂x|ρ =0, the
density-conservation equation, (4.21e) in the absence of diffusion, can be solved
for the vertical velocity

w= ∂z

∂t
+u

∂z

∂x
+v

∂z

∂y
. (12.6)

This last equation simply tells that the vertical velocity is that necessary for
the particle to remain at all times on the same density surface in analogy with
surface fluid particles having to remain on the surface [see Eq. (7.12)]. Armed
with expression (12.6), we can now eliminate the vertical velocity throughout
the set of governing equations. First, the material derivative (3.3) assumes a
simplified, two-dimensional-like form

d

dt
= ∂

∂t
+u

∂

∂x
+v

∂

∂y
, (12.7)

where the derivatives are now taken at constant ρ. The absence of an advective
term in the third spatial direction results from the absence of motion across
density surfaces.

1 In honor of Raymond B. Montgomery who first introduced it in 1937. See his biography at the end
of this chapter.
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In the absence of friction and in the presence of rotation, the horizontal-
momentum equations (4.21a) and (4.21b) become

du

dt
− f v=− 1

ρ0

∂P

∂x
(12.8a)

dv

dt
+ fu=− 1

ρ0

∂P

∂y
. (12.8b)

We note that they are almost identical to their original versions. The differ-
ences are nonetheless important: The material derivative is now along density
surfaces and expressed by Eq. (12.7), the pressure p has been replaced by the
Montgomery potential P defined in Eq. (12.4), and all temporal and horizontal
derivatives are taken at constant density. Note, however, that the components
u and v are still the true horizontal velocity components and are not mea-
sured along sloping density surfaces. This property is important for the proper
application of lateral boundary conditions.

To complete the set of equations, it remains to transform the continuity equa-
tion (4.21d) according to rules (12.1) and (12.2). Further elimination of the
vertical velocity by using Eq. (12.6) leads to

∂h

∂t
+ ∂

∂x
(hu)+ ∂

∂y
(hv)=0, (12.9)

where the quantity h introduced for convenience is proportional to ∂z/∂ρ, the
derivative of depth with respect to density. For practicality, we want h to have
the dimension of height, and so we introduce an arbitrary but constant density
difference, 1ρ, and define

h=−1ρ ∂z

∂ρ
. (12.10)

In this manner, h can be interpreted as the thickness of a fluid layer between
the density ρ and ρ+1ρ. At this point, the value of 1ρ is arbitrary, but later,
in the development of layered models, it will naturally be chosen as the density
difference between adjacent layers.

The transformation of coordinates is now complete. The new set of govern-
ing equations consists of the two horizontal-momentum equations (12.8a) and
(12.8b), the hydrostatic balance (12.5), the continuity equation (12.9), and the
relation (12.10). It thus forms a closed 5-by-5 system for the dependent vari-
ables, u, v, P, z, and h. Once the solution is known, the pressure p and the
vertical velocity w can be recovered from Eqs. (12.4) and (12.6).

The governing equations are accompanied by the relevant boundary and ini-
tial conditions of Section 4.6. We only have to evaluate the derivatives of the
Cartesian coordinates according to Eqs. (12.1) and (12.2) in order to impose
the auxiliary conditions in the new coordinate system. The fluxes of heat and
mass, leading to buoyancy changes, are not easily incorporated because of the
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interplay with density, the new coordinate. Since processes that do not conserve
density are neglected in most applications of isopycnal models, we will not
investigate this point here but refer to Dewar (2001) for further details on the
representation of mixed-layer dynamics in isopycnal models.

Since the aforementioned work of Montgomery (1937), the substitution of
density as the vertical variable has been implemented in a number of applica-
tions, especially by Robinson (1965) in a study of inertial currents, by Hodnett
(1978) and Huang (1989) in studies of the permanent oceanic thermocline, and
by Sutyrin (1989) in a study of isolated eddies. A review in the meteorological
context is provided by Hoskins, McIntyre and Robertson (1985).

12.2 LAYERED MODELS

A layered model is an idealization by which a stratified fluid flow is represented
as a finite number of moving layers, stacked one upon another and each having a
uniform density. Its evolution is governed by a discretized version of the system
of equations in which density, taken as the vertical variable, is not varied con-
tinuously but in steps: density is restricted to assume a finite number of values.
A layered model is the density analog of a level model, which is obtained after
discretization of the vertical variable z.

Each layer (k=1 to m, where m is the number of layers) is characterized
by its density ρk (unchanging), thickness hk, Montgomery potential Pk, and
horizontal velocity components uk and vk. The surface marking the boundary
between two adjacent layers is called an interface and is described by its ele-
vation zk, measured (negatively downward) from the mean surface level. The
displaced surface level is denoted z0 (Fig. 12.2a). The interfacial heights can be
obtained recursively from the bottom2

zm=b, (12.11)

upward:

zk−1= zk+hk, k=m to 1. (12.12)

This geometrical relation can be regarded as the discretized version of
Eq. (12.10) used to define h.

In a similar manner, the discretization of hydrostatic relation (12.5) pro-
vides another recursive relation, which can be used to evaluate the Montgomery
potential P from the top,

P1=patm+ρ0gz0, (12.13)

2 Note that contrary to our general approach of using indexes which increase with the Cartesian
coordinate directions, we choose to increase the index k downward, in agreement with the traditional
notation for isopycnal models and with the fact that our new vertical coordinate ρ is increasing
downward, too.
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FIGURE 12.2 A layered model with m active layers: (a) with free surface, (b) with rigid lid.

downward:

Pk+1=Pk+1ρgzk, k=1 to m−1. (12.14)

In writing (12.13), we have selected the uppermost density ρ1 as the reference
density ρ0. Gradients of the atmospheric pressure patm rarely play a significant
role, and the contribution of patm to P1 is usually omitted. If the layered model is
for the lower atmosphere, patm represents a pressure distribution aloft and may,
too, be taken as an inactive constant.

When the reduced gravity,

g′= 1ρ
ρ0

g, (12.15)

is introduced for convenience, the recursive relations (12.12) and (12.14) lead to
simple expressions for the interfacial heights and Montgomery potentials. For
up to three layers, these equations are summarized in Table 12.1.

In certain applications, it is helpful to discard surface gravity waves because
they travel much faster than internal waves and near-geostrophic disturbances.
To do so, we eliminate the flexibility of the surface by imagining that the system
is covered by a rigid lid (Fig. 12.2b). This is called the rigid-lid approxima-
tion, which has already been introduced in the study of barotropic motions in
Section 7.5. In such a case, z0 is set to zero, and there are only (m−1) indepen-
dent layer thicknesses. In return, one of the Montgomery potentials cannot be
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�
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�

�

TABLE 12.1 Layered Models

One Layer:
z0=h1+b P1=ρ0g(h1+b)
z1=b

Two Layers:
z0=h1+h2+b P1=ρ0g(h1+h2+b)
z1=h2+b P2=ρ0gh1+ρ0(g+g′)(h2+b)
z2=b

Three Layers:
z0=h1+h2+h3+b P1=ρ0g(h1+h2+h3+b)
z1=h2+h3+b P2=ρ0gh1+ρ0(g+g′)(h2+h3+b)
z2=h3+b P3=ρ0gh1+ρ0(g+g′)h2
z3=b +ρ0(g+2g′)(h3+b)

�

�

�

�

TABLE 12.2 Rigid-Lid Models

One Layer:
z1=−h1 P1 variable
h1=h, fixed

Two Layers:
z1=−h1 P1=P2+ρ0g′h1
z2=−h1−h2 P2 variable
h1+h2=h, fixed

Three Layers:
z1=−h1 P1=P3+ρ0g′(2h1+h2)

z2=−h1−h2 P2=P3+ρ0g′(h1+h2)

z3=−h1−h2−h3 P3 variable
h1+h2+h3=h, fixed

derived from the hydrostatic relation. If this potential is chosen as the one in the
lowest layer, the recursive relations yield the equations of Table 12.2.

In some other instances, mainly in the investigation of upper-ocean pro-
cesses, the lowest layer may be imagined to be infinitely deep and at rest
(Fig. 12.3). Keeping m as the number of moving layers, we assign to this lowest
(abyssal) layer the index (m+1). The absence of motion there implies a uni-
form Montgomery potential, the value of which may be set to zero without loss
of generality: Pm+1=0. For up to three active layers, the recursive relations
provide equations of Table 12.3. Because these expressions do not involve the
full gravity g but only its reduced value g′, this type of model is known as a
reduced-gravity model.
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TABLE 12.3 Reduced Gravity Models

One Layer:
z1=−h1 P1 = ρ0g′h1

Two Layers:
z1=−h1 P1=ρ0g′(2h1+h2)

z2=−h1−h2 P2=ρ0g′(h1+h2)

Three Layers:
z1=−h1 P1=ρ0g′(3h1+2h2+h3)

z2=−h1−h2 P2=ρ0g′(2h1+2h2+h3)

z3=−h1−h2−h3 P3=ρ0g′(h1+h2+h3)

No motion
zm
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ρ2=ρ0+�ρ
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h1

P2

P1

Pm
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ρm +1=ρ0+ m�ρ

∞

FIGURE 12.3 A reduced-gravity layered model. The
assumption of a very deep ocean at rest can be justified
by the need to keep the transport hum+1 and kinetic energy
hu2

m+1 bounded so that velocities must vanish as the depth
of the last layer increases to infinity. In this case, the pres-
sure in the deeper layer tends towards a constant, which we
may take as zero.

In this table, z1=−h1 is an approximation that begs for an explanation. The
free surface is not at z= z0=0 but given by Eq. (12.13) when we arrive at
the surface integrating upward. For a single layer this yields, in the absence
of atmospheric pressure variation,

P2=0→ P1=−1ρgz1=ρ0gz0. (12.16)

Hence, gz0=−g′z1. Since h1= z0−z1, we get z0=−(g′/g)z1 and h1=−(1+
g′/g)z1'−z1 since g′�g. This implies a surface lifting over light-water lenses.
Indeed, in order to preserve a uniform pressure in the lowest layer, a thickening
of the light-water layer must be compensated by an addition of water above
mean sea level.
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Generalization to more than three moving layers is straightforward. When a
configuration with few but physically relevant layers is desired, the preceding
derivations may be extended to nonuniform density differences from layer to
layer. Mathematically, this would correspond to a discretization of the vertical
density coordinate in unevenly spaced gridpoints.

Once the layer thicknesses, interface depths, and layer pressures (more
precisely, the Montgomery potentials) are all related, the system of govern-
ing equations is completed by gathering the horizontal-momentum equations
(12.8a) and (12.8b) and the continuity equation (12.9), each written for every
layer.

In Section 11.6, the length L=NH/� was derived as the horizontal scale at
which rotation and stratification play equally important roles. It is noteworthy at
this point to formulate the analog for a layered system. Introducing H as a typi-
cal layer thickness in the system (such as the maximum depth of the uppermost
layer at some initial time) and 1ρ as a density difference between two adja-
cent layers (such as the top two), an approximate expression of the stratification
frequency squared is

N2=− g

ρ0

dρ

dz
' g

ρ0

1ρ

H
= g′

H
, (12.17)

where g′=g 1ρ/ρ0 is the reduced gravity defined earlier. Substitution of
Eq. (12.17) in the definition of L yields L' (g′H)1/2/�. Finally, because the
ambient rotation rate� enters the dynamics only through the Coriolis parameter
f , it is more convenient to introduce the length scale

R=
√

g′H
f

, (12.18)

called the radius of deformation. To distinguish this last scale from its cousin
(9.12) derived for free-surface homogeneous rotating fluids (where the full grav-
itational acceleration g appears), it is customary in situations where ambiguity
could arise to use the expressions internal radius of deformation and external
radius of deformation for Eqs. (12.18) and (9.12), respectively. Because den-
sity differences within geophysical fluids are typically a percent or less of the
average density, the internal radius is most often less than one-tenth the external
radius.

When the model consists of a single moving layer above a motionless abyss,
the governing equations reduce to

∂u

∂t
+u

∂u

∂x
+v

∂u

∂y
− f v=−g′

∂h

∂x
(12.19a)

∂v

∂t
+u

∂v

∂x
+v

∂v

∂y
+ fu=−g′

∂h

∂y
(12.19b)

∂h

∂t
+ ∂

∂x
(hu)+ ∂

∂y
(hv)=0. (12.19c)
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The subscripts indicating the layer have become superfluous and have been
omitted. The coefficient g′=g(ρ2−ρ1)/ρ0 is called the reduced gravity. Except
for the replacement of the full gravitational acceleration, g, by its reduced
fraction, g′, this system of equations is identical to that of the shallow-water
model over a flat bottom [Eq. (7.17)] and is thus called the shallow-water
reduced-gravity model. Because the vertical simplicity of this model permits
the investigation of a number of horizontal processes with a minimum of math-
ematical complication, it will be used in some of the following chapters. Finally,
recall that the Coriolis parameter, f , may be taken as either a constant (f -plane)
or as a function of latitude (f = f0+β0y, beta plane).

12.3 POTENTIAL VORTICITY

For layered models, we can reproduce the vorticity analysis that we performed
on the shallow-water model (Section 7.4). First, the relative vorticity ζ of the
flow at any level is defined as

ζ = ∂v
∂x
− ∂u

∂y
, (12.20)

and the expression for potential vorticity is defined in analogy with (7.25):

q= f +ζ
h

= f +∂v/∂x−∂u/∂y

h
, (12.21)

which is identical to the expression for a barotropic fluid, except that the denom-
inator is now a differential thickness given by Eq. (12.10) rather than the
full thickness of the system. It can be shown that in the absence of friction,
expression (12.21) is conserved by the flow (its material derivative is zero).

The interpretation of this conservation property follows that for a barotropic
fluid: When the fluid layer between two consecutive density surface is squeezed
(from left to right in Fig. 12.4), conservation of volume demands that it widens,
and conservation of circulation in turn requires that it spins less fast; the net
effect is that the vorticity f +ζ decreases in proportion to the thickness h of the
fluid layer.

12.4 TWO-LAYER MODELS

For the representation of stratified systems with the simplest possible formal-
ism, the two-layer model is often the tool of choice for it retains the effect of
stratification in some basic way through the reduced gravity g′ while keeping
the number of equations and variables to a minimum. According to Table 12.1,
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FIGURE 12.4 Conservation of volume and circulation in a fluid undergoing divergence (squeez-
ing) or convergence (stretching). The products of hds and (f +ζ )ds are conserved during the
transformation, implying conservation of (f +ζ )/h, too.

the inviscid governing equations of the two-layer model are

∂u1

∂t
+u1

∂u1

∂x
+v1

∂u1

∂y
− f v1=−g

∂(h1+h2+b)

∂x
(12.22a)

∂v1

∂t
+u1

∂v1

∂x
+v1

∂v1

∂y
+ fu1=−g

∂(h1+h2+b)

∂y
(12.22b)

∂u2

∂t
+u2

∂u2

∂x
+v2

∂u2

∂y
− f v2=−g

∂h1

∂x
−(g+g′)

∂(h2+b)

∂x
(12.22c)

∂v2

∂t
+u2

∂v2

∂x
+v2

∂v2

∂y
+ fu2=−g

∂h1

∂y
−(g+g′)

∂(h2+b)

∂y
(12.22d)

∂h1

∂t
+ ∂(h1u1)

∂x
+ ∂(h1v1)

∂y
=0 (12.22e)

∂h2

∂t
+ ∂(h2u2)

∂x
+ ∂(h2v2)

∂y
=0 (12.22f)

for the six unknowns h1, u1, v1, h2, u2, and v2.
If we introduce the surface elevation η and the vertical displacement a of

the interface between the two layers through h1+h2+b=H+η and h2+b=
H2+a, where H and H2 are two constants representing, respectively, the mean
surface level and the mean interface level, each measured from the reference
datum from which the bottom elevation b, too, is measured (Fig. 12.5), the
pressure terms in the x-direction can be rewritten as

−g
∂(h1+h2+b)

∂x
=−g

∂η

∂x
(12.23a)

−g′
∂(h2+b)

∂x
=−g′

∂a

∂x
(12.23b)

and similarly for the pressure terms in the y-direction.
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FIGURE 12.5 Notation for the
two-layer model with the vertical
displacement a of the interface, the
sea surface elevation η, and the
reference heights H1 and H2.

Oftentimes, the two-layer model is used in analytical studies in which case
it is also linearized for added simplicity. The equations are then

∂u1

∂t
− f v1=−g

∂η

∂x
(12.24a)

∂v1

∂t
+ fu1=−g

∂η

∂y
(12.24b)

∂u2

∂t
− f v2=−g

∂η

∂x
−g′

∂a

∂x
(12.24c)

∂v2

∂t
+ fu2=−g

∂η

∂y
−g′

∂a

∂y
(12.24d)

∂(η−a)

∂t
+ ∂(H1u1)

∂x
+ ∂(H1v1)

∂y
=0 (12.24e)

∂a

∂t
+ ∂[(H2−b)u2]

∂x
+ ∂[(H2−b)v2]

∂y
=0, (12.24f)

where H1=H−H2 is the mean thickness of the top layer.
In the case of flat bottom (b=0), it is interesting to decompose this set

of six coupled equations in two sets of three in order to facilitate the solu-
tion and clarify the dynamics. For this, we seek proportionality of the type
u2=λu1, v2=λv1 and η=µa between variables of one layer with those of
the other layer. Momentum equations (12.24c)–(12.24d) become identical to
(12.24a)–(12.24b) if

λ

1
= gµ+g′

gµ
, (12.25)

while continuity equation (12.24f) replicates (12.24e) if

1

µ−1
= H2λ

H1
. (12.26)
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Elimination of µ between the preceding two equations yields an equation for
the proportionality coefficient λ:

H2λ
2+

(
H1−H2−

g′

g
H2

)
λ−H1=0. (12.27)

Neglecting the small ratio g′/g=1ρ/ρ0�1, the pair of solutions is

λ= (H2−H1)±(H2+H1)

2H2
. (12.28)

Selection of the + sign gives λ=1, implying a vertically uniform flow
(u1=u2 and v1=v2). This is called the barotropic mode. The interfacial dis-
placement a is related to the surface elevation η by a=η/µ=H2η/H and is
thus a vertically prorated fraction of the latter. This mode behaves as if the
density difference were absent.

Selection of the − sign in Eq. (12.28) provides the other mode, with λ=
−H1/H2, H2u2=−H1u1, and H2v2=−H1v1. The vertically integrated trans-
port is nil for this mode. Equation (12.25) then provides the ratio between
vertical elevations, µ=−g′H2/gH, which is small because it is on the order
of the relative density difference 1ρ/ρ0. This means that the surface elevation
η is weak compared with the interfacial displacement a. For this mode, there-
fore, the flow is vertically compensated, and its surface is nearly rigid. In other
words, it is an internal mode called the baroclinic mode.

The equations governing each mode separately can be obtained as fol-
lows. For the barotropic mode, we define uT =u1=u2, vT =v1=v2, and put
a=H2η/H. Within an error on the order of 1ρ/ρ0, the momentum equations
reduce to a single pair,

∂uT

∂t
− f vT =−g

∂η

∂x
(12.29a)

∂vT

∂t
+ fuT =−g

∂η

∂y
(12.29b)

while each continuity equation reduces to

∂η

∂t
+H

∂uT

∂x
+H

∂vT

∂y
=0. (12.29c)

If we scale time by 1/f , distances by L and the velocity components by U,
the momentum equations tell us that the surface elevation is on the order of
fLU/g. Substitution of these scales in the continuity equation then requires that
f (fLU/g)∼HU/L, which sets the square of the length scale to L2∼gH/f 2. This
leads us to define the barotropic (or external) radius of deformation:

Rexternal=
√

gH

f
. (12.30)
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Similarly, the equations governing the baroclinic mode are obtained by
defining uB=u1−u2 and vB=v1−v2, and setting η=−(g′H2/gH)a. Subtrac-
tion of the momentum equations exploiting H1u1=−H2u2 for the baroclinic
mode yields

∂uB

∂t
− f vB=+g′

∂a

∂x
(12.31a)

∂vB

∂t
+ fuB=+g′

∂a

∂y
(12.31b)

while subtraction of the continuity equations gives

−∂a

∂t
+ H1H2

H

∂uB

∂x
+ H1H2

H

∂vB

∂y
=0. (12.31c)

To determine the corresponding radius of deformation, we scale time by 1/f ,
distances by L′ and the velocity components by U′. According to the momen-
tum equations, the interfacial displacement scales like fL′U′/g′. Substitution
of these scales in the continuity equation requires f (fL′U′/g′)∼H1H2U′/HL′,
which sets the square of the length scale to L′2∼g′H1H2/f 2H. This in turn leads
us to define the baroclinic (or internal) radius of deformation:

Rinternal=
1

f

√
g′H1H2

H1+H2
. (12.32)

Note that Rinternal is significantly shorter than Rexternal because the reduced grav-
ity g′ is much smaller than the full gravity g. Another interpretation of the
internal radius of deformation is obtained by observing that (12.29) has the same
form as (12.31) if η is replaced by −a, barotropic velocities by their baroclinic
counterpart, g by g′, and H by h̄=H1H2/(H1+H2). Hence, the role played
by the deformation radius in the barotropic mode is now played by the inter-
nal radius for the internal mode. Also, the gravity-wave propagation speed is
replaced by the propagation speed of internal gravity waves

c=
√

g′H1H2

H1+H2
=
√

g′h̄, (12.33)

which is much lower than the external gravity-wave speed. Because equations
(12.31) are structurally identical to (12.29), the solutions will also be, and all
wave solutions of the shallow-water equations of Chapter 9 can be applied to
the internal mode with the appropriate definitions of gravity and depth. When
interpreting the solution we simply have to keep in mind the difference in verti-
cal structure. While the barotropic mode is uniform in the vertical (left panel of
Fig. 12.6), the baroclinic mode has zero transport and hence opposite velocities
in each layer (right panel of Fig. 12.6).
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FIGURE 12.6 Barotropic mode (a) and baroclinic mode (b). For the barotropic mode, the interface
moves in phase with the sea surface, and velocity is uniform over both layers. In the baroclinic mode,
the surface displacement is very weak compared with the interfacial displacement and opposite to
it. Velocities in the baroclinic mode are opposite to each other and create no net transport.

When more than two layers are present, the number of modes increases
accordingly. For three layers, there will be three modes and so on. In the limit of
an infinite number of levels representing continuous stratification, we therefore
expect an infinite number of vertical modes, a situation we will encounter again
in Section 13.4.

12.5 WIND-INDUCED SEICHES IN LAKES

An interesting application of the two-layer model is to the seiching of thermally
stratified lakes. Most lakes of temperate latitudes undergo thermal stratification
in summer, and by late summer when surface cooling begins, the water column
is often divided into a relatively well mixed and warmer surface layer (called
epilimnion) and a colder bottom layer (called hypolimnion), separated by a thin
layer of rapid temperature variation (the thermocline). Waves can propagate
along both surface and thermocline, and reflection of these waves at the lake’s
ends can create standing waves called seiches. A seiche is usually the response
to a wind event: the wind blows for some time, dragging upper-layer water to the
downwind side, thereby raising the water level and depressing the thermocline
at the downwind end. When the wind relaxes, the situation is out-of-equilibrium,
and the warm water begins to slush back and forth across the lake, creating the
seiche.

The simplest seiche model assumes no rotational effect (because lakes are
typically much smaller than the ocean), a flat bottom and the absence of friction
(to simplify the analysis). To illustrate such a seiche model, we take the two-
layer model without rotation (f =0) for a domain confined between a flat bottom
and two lateral boundaries.

First we concentrate on the barotropic mode with the system of Eqs. (12.29).
If we differentiate (12.29a) with respect to x, (12.29b) with respect to y, and
(12.29c) with respect to t, and then subtract the first two from the last one,
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we obtain

∂2η

∂t2
=gH

(
∂2η

∂x2
+ ∂

2η

∂y2

)
, (12.34)

We recognize the generic two-dimensional wave equation. Impermeability of
lateral boundaries translates into zero normal derivative of η, as seen for
example in Eq. (12.29a) when we set f =0 and impose u=0. Thus,

∂η

∂x
=0 at x=0,L (12.35)

for a basin of length L in the x-direction. Similarly in the y-direction,

∂η

∂y
=0 at y=0,W (12.36)

if the width is W.
For such a rectangular domain, it is easily verified that

η=Acos(ωt)cos
(mπx

L

)
cos

(nπy

W

)
(12.37)

is the solution of Eq. (12.34) satisfing all four boundary conditions as long as m
and n are integers and provided that

ω2=gH

(
m2π2

L2
+ n2π2

W2

)
(12.38)

The solution m=n=0 corresponds to a situation of rest, and, for an elon-
gated basin with L≥W, the gravest mode is obtained for m=1, n=0. In this
case, the seiche is a standing wave of frequency

ω=π
√

gH

L
. (12.39)

The gravest mode is of special importance because it is the one with the
smoothest structure and thus the one that is dissipated at the slowest rate. Also,
wind forcing is more likely to generate the gravest mode because atmospheric
forcing generally varies weakly over the length of a lake and can, at a first
approximation, be considered uniform.

We can immediately extend the previous result to the baroclinic mode by
replacing gH by g′H1H2/(H1+H2) and interpret the velocity oscillations in the
light of the baroclinic mode of Fig. 12.6. The lowest-mode frequency becomes

ω= π
L

√
g′

H1H2

H1+H2
(12.40)

and corresponds to a much longer period of oscillation. Sloshing of the den-
sity interface is similar to an oscillation of the surface. In an internal seiche,
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however, the upper-layer velocity is opposite to that in the lower layer, so that
water going to one side of the lake near the surface is compensated by flow near
the bottom to the other side of the lake, with no appreciable change in surface
elevation.

When rotation comes into play ( f no longer zero), the standing wave pat-
tern is no longer formed by the superposition of pure gravity waves but by the
superposition of inertial-gravity waves, and the mathematical solution is more
complicated. In particular, so-called amphidromic points, at which the ampli-
tude is nil, can arise (see Section 9.8). The interested reader is referred to Taylor
(1921).

Seiches occur not only in lakes but also in the coastal ocean. In the Adriatic
Sea, a longitudinal seiche following an episode of sirocco wind can com-
bine with a tidal elevation to create flooding in Venice (Cushman-Roisin,
Gačić, Poulain & Artegiani, 2001). Internal seiches have also been observed
in Scandinavian fjords (e.g., Arneborg & Liljebladh, 2001).

12.6 ENERGY CONSERVATION

Inspection of energetics in a layered model is insightful because it provides the
formulation of the quantities that serve as kinetic and potential energies. To
do this, we reinstate the nonlinear terms, the Coriolis acceleration and uneven
bottom topography but restrict our attention to the two-layer system described
by Eq. (12.22) with the pressure gradients given by Eq. (12.23).

In the absence of friction, no dissipation is present, and we expect conser-
vation of total energy, sum of kinetic energy (KE), and potential energy (PE).
These are defined respectively as:

KE= ρ0

2

∫∫∫ (
u2+v2

)
dzdydx

= ρ0

2

∫∫ [∫ H2+a

b

(
u2

2+v2
2

)
dz+

∫ H1+H2+η

H2+a

(
u2

1+v2
1

)
dz

]
dydx

= ρ0

2

∫∫ [
h2

(
u2

2+v2
2

)
+h1

(
u2

1+v2
1

)]
dydx. (12.41)

PE=
∫∫∫

ρgzdzdydx

=
∫∫ ∫ H2+a

b
ρ2gzdzdydx+

∫∫ ∫ H1+H2+η

H2+a
ρ1gzdzdydx (12.42)

Note how we used the Boussinesq approximation: The actual density (ρ1 or ρ2)
is used next to g in the potential energy but is replaced by the reference density
(ρ0) in the kinetic energy.
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Mass conservation in a closed basin leads obviously to∫∫
ηdydx=0

∫∫
adydx=0 (12.43)

so that, up to an additive constant, potential energy can be expressed as

PE= ρ0

2

∫∫ (
gη2+g′a2

)
dydx, (12.44)

which shows that vertical displacements a of the interface need to be much
larger than surface elevations η to contribute equally to potential energy. With
the previous definition, the reference state η=0 and a=0 has zero potential
energy. Any departure from this situation leads to a positive amount of poten-
tial energy. This amount is thus called available potential energy (see also
Section 16.4).

To construct the energy budget, we multiply (12.22a) by h1u1 and exploit
(12.22e) to obtain first:

∂

∂t

(
h1u2

1

2

)
+ ∂

∂x

(
u1

h1u2
1

2

)
+ ∂

∂y

(
v1

h1u2
1

2

)

−fh1u1v1h1=−
∂(gh1u1η)

∂x
+gη

∂(h1u1)

∂x
. (12.45)

We then multiply (12.22b) by h1v1, exploit (12.22e), add the result to
Eq. (12.45), and integrate over a closed or periodic domain to obtain

d

dt

∫∫ (
h1

u2
1+v2

1

2

)
dydx=

∫∫
gη

[
∂(h1u1)

∂x
+ ∂(h1v1)

∂y

]
dydx, (12.46)

which shows that the amount of upper-layer kinetic energy can be altered by the
divergence of the transport.

Similarly, we can obtain the equation governing the evolution of kinetic
energy in the second layer:

d

dt

∫∫ (
h2

u2
2+v2

2

2

)
dydx=

∫∫ (
gη+g′a

)[∂(h2u2)

∂x
+ ∂(h2v2)

∂y

]
dydx.

(12.47)

For the potential-energy budget, we multiply (12.22e) by gη and integrate
over the domain:

d

dt

∫∫
g
η2

2
dydx=

∫∫ {
gη
∂a

∂t
−gη

[
∂(h1u1)

∂x
+ ∂(h1v1)

∂y

]}
dydx. (12.48)
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We then multiply (12.22f) by g′a, exploit the relation ∂h2/∂t= ∂a/∂t, and
integrate over the domain yields, to obtain

d

dt

∫∫
g′

a2

2
dydx=

∫∫
−g′a

[
∂(h2u2)

∂x
+ ∂(h2v2)

∂y

]
dydx. (12.49)

Using Eq. (12.22f) to replace ∂a/∂t in the right-hand side of Eq. (12.48),
we can identify similar terms on the right-hand side of Eqs. (12.46)–(12.49)
but with opposite signs. These terms represent energy exchange between the
different forms of potential and kinetic energy. Hence, by adding the four equa-
tions, these terms cancel one another out. After multiplying by ρ0, we ultimately
obtain the statement of energy conservation:

d

dt
(PE+KE )=0. (12.50)

Besides certifying the expressions for kinetic and potential energy, this
analysis has also identified for us the expressions for the exchange terms
between the different forms of energy. The underlying mechanism is conver-
gence/divergence of the horizontal flow (affecting kinetic energy) accompanied
by piling/dropping of water (affecting potential energy in a compensating way).

12.7 NUMERICAL LAYERED MODELS

The development of numerical models based on the governing equations written
in isopycnal coordinates is simplified by the fact that a discretization of the verti-
cal coordinate is already performed through the layering (Section 12.2). Indeed,
we arrived at governing equations for a set of m layers, in which the vertical
coordinate no longer appears. In other words, we replaced a three-dimensional
problem by m coupled two-dimensional problems.

Since it is straightforward to generalize the layering approach and use dif-
ferent values of 1ρ across layers, we can easily define layers so as to follow
physically meaningful water masses. Once the1ρ values are assigned to define
the layers, the only discretization that remains to be done is the one related to
the two-dimensional “horizontal” structure, a task we already performed in the
context of the shallow-water equations (Section 9.7 and 9.8). Since the govern-
ing equations of each isopycnal layer are very similar to those of the inviscid
shallow-water equations, all we have to do is to “repeat” the implementation of
the shallow-water equations for each layer and adapt the pressure force. Here,
we can notice how easily pressure can be calculated in the layered system once
the layer thicknesses are known by simply integrating (12.14), or its straightfor-
ward generalization when density differences vary between layers. To calculate
layer thicknesses, the volume-conservation equations are at our disposal and are
also similar to those of the shallow-water system. Finally, as for shallow-water
equations, additional processes neglected up to now can be reinstated. Bottom
and top stresses can be taken into account at the lowest and uppermost layers
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by adding a frictional term as we did for the shallow-water equations. Also fric-
tion between layers can be accommodated by introducing terms that depend on
the velocity difference across each interface. These internal friction terms must
appear with opposite signs in the equations for the two layers scrubbing against
each other, so that the momentum lost by one is gained by the other.

Finally, unresolved horizontal subgrid scale processes can be parameterized,
for example using a lateral eddy viscosity (i.e., adding a Laplacian term). It
is noteworthy to point out here that lateral diffusion formulated in the new
coordinate system (with ∂/∂x derivatives taken at constant ρ) corresponds to
mixing along isopycnals rather than in the horizontal plane (constant z) (see
Section 20.6.2). This is generally considered advantageous if we consider that
shorter-scale movements are more easily generated along a density surface
because they do not implicate any buoyancy force. The parameterization of
subgrid scale processes as diffusion along isopycnal surfaces is called isopycnal
diffusion and is naturally included in the governing equations of layered mod-
els. In other words, no diapycnal (i.e., across-density) diffusion and erosion of
stratification will take place, and water masses are conserved.

This is at the same time a major strength and weakness of the layer for-
mulation. It is an advantage if the physical system prevents mixing, and the
model simulates motions and oscillations without any numerical destruction of
the density stratification, otherwise a common issue affecting three-dimensional
models. However, if vertical mixing or vertical convection is significant in
the physical system, the layered model requires an additional term to repre-
sent transfer (entrainment) of fluid from one layer into another. The danger
is then that a layer may lose so much of its fluid and become so thin that
is becomes dynamically irrelevant and should be removed, at least in some
region of the domain. In addition, layer interfaces can intersect the bottom or top
(Fig. 12.7). In other words, the region where each layer exists may not be the
entire domain and may furthermore change over time. Tracking the edges of the
layers is a problem that is far from trivial.

The problem is even worse when gravitational instabilities are present
because the coordinate transformation then loses its validity. Problems asso-
ciated with strong vertical mixing and gravitational instabilities explain why
isopycnal models are rarely used for atmospheric simulations, where convec-
tion and associated gravitational instabilities are much more frequent than in
the ocean.

Another difficulty with oceanic layered models is the fact that by construc-
tion, density is constant within each layer so that temperature and salinity cannot
vary independently. Yet, physical boundary conditions are independent for tem-
perature (heat flux) and salinity (evaporation, precipitation). Finally, isopycnal
models are not easily applied when the same domain includes both the deep
ocean and coastal areas because the variety of density structure does not lend
itself to be represented with a single set of density layers.
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FIGURE 12.7 The application of a layered model
needs some special care when isopycnals intersect the
surface (outcropping), the bottom, or one another. Sur-
face outcropping typically arises in the vicinity of
fronts or following strong mixing events, while bot-
tom intersection is likely to occur in regions of steep
topography.

Numerical layered models offer a choice between the original model, the
rigid-lid approximation, and the reduced-gravity version. This choice affects
the numerical properties. For example, the reduced-gravity model has gravity g
replaced by g′ in all its equations, and as a result no longer allows propagation
of surface gravity waves. This can be desirable from a numerical perspective.
Indeed, numerical stability requirements of shallow-water models are typically
of the type

√
gh1t

1x
≤O(1), (12.51)

(see Section 9.7). With gravity replaced by reduced gravity, the numerical
stability constraint becomes √

g′h1t

1x
≤O(1), (12.52)

which is much less stringent than (12.51) because g′�g. The full gravity g also
disappears from the models using the rigid-lid approximation, and no stability
condition of the type (12.51) applies. Longer time steps may be used in either
case.

For the original version of the layered model, using neither rigid-lid approx-
imation nor the reduced-gravity approach, surface gravity waves are possible,
and stability condition (12.51) can be very constraining compared with other
numerical stability conditions. Some optimization becomes necessary. A brute
force approach would be implicit treatment of the terms responsible for the sta-
bility constraint. The velocity field in the equation governing layer thickness
should then be treated implicitly together with the surface height term in the
momentum equations. The latter appears in all momentum equations because
the surface pressure is P1=patm+ρ0gη according to Eq. (12.13), and the sum
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(12.14) means that η becomes part of the pressure terms in all other layers. With
an implicit scheme, this means that all equations must be solved simultaneously,
forming a rather large, though sparse, linear system to be inverted at every time
step. Using a long time step for the propagation of the fast waves also degrades
the propagation properties of these waves.

A better approach is to recall that surface gravity waves are generated by
surface displacements accompanied by divergence–convergence of the verti-
cally integrated flow and to treat the corresponding subset of the dynamics with
a shorter time step than the rest. This can be accomplished by averaging over the
vertical in order to construct an equation governing the barotropic component of
the flow. The nonlinear terms, however, cause a difficulty because the average
of products is not equal to the product of the averages. The result is an equation
governing the barotropic mode that contains some baroclinic terms. Fortunately,
since those vary slowly whereas the barotropic mode evolves rapidly, they may
be held frozen while marching the rest of the equation forward. This is called
mode splitting (Fig. 12.8).

In such scheme, the surface elevation η is marched N times, whereas the rest
of the dynamics is marched forward only once. In view of the typical values
of g and g′, the longer time step is typically an order of magnitude larger than
the short time step required for surface waves, and since the solution of the
shallow-water equations with the short time step involves only three instead of
3m equations, an order of magnitude can be gained in computational cost by the
mode-splitting technique.

At the end of the N barotropic steps and the subsequent single baroclinic
step, a problem may occur. The momentum equations of each layer calcu-
lated with the new elevation ηn+1 from the barotropic equation will lead to

Barotropic shallow-water equations

m-layer or level equations

�t

N steps

�t /N

Surface elevation

t

t

Vertically integrated terms

FIGURE 12.8 At a given time step, information from all layer thicknesses permit the calculation
of the slow baroclinic terms, which can be held temporarily frozen. The barotropic component of
the flow (shallow-water type equation) can then be marched forward in time over several short time
steps, until the overall, longer time step 1t is covered. Then, the surface height η at the new time
level can be used in all layers to forward in time the internal structure of the flow.
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velocities at the new time level un+1
k , vn+1

k . The transport obtained by sum-
ming up these velocities weighted by the corresponding layer thicknesses will,
however, be different from the transport that would have been obtained after N
substeps because of nonlinearities in the equations. If nothing is done to cor-
rect this mismatch, instabilities can occur (e.g., Killworth, Stainforth, Webb &
Paterson, 1991). The problem can be avoided by correcting the velocity fields
obtained after solving the individual layer equations so as to make sure that
their weighted sum equals the predicted transport from the shallow-water equa-
tions. This approach can also be applied to level models or any 3D model with
a free surface. The general idea remains the preliminary vertical integration of
the governing equations in order to make the barotropic component explicit and
to march forward in time the latter with a shorter time step than the rest of the
equations.

Aside from the aforementioned difficulties, we can retain the distinct advan-
tage of aligning coordinate lines (and hence numerical grids) with dynamically
significant features. This explains the success of numerical layer models, and
several widely used numerical isopycnal models are based on the successive
developments of Hurlburt and Thompson (1980), Bleck, Rooth, Hu and Smith
(1992), and Hallberg (1995). The modern tendency, however, is to go beyond
pure layer models in favor of more general vertical-coordinate models, which
we will encounter in Section 20.6.1.

12.8 LAGRANGIAN APPROACH

In a layered model, the conservation equation for ρ is vastly simplified because
coordinate surfaces coincide with material surfaces of the flow. This is the
hallmark of a Lagrangian approach. As opposed to a Eulerian representation
of the flow, in which flow characteristics are assigned to fixed points, in a
Lagrangian approach, characteristics of the flow are tracked following fluid
parcels. A layered model, however, does this only in the vertical direction, not
in all three directions of space. This motivates us nonetheless to explore here
what fully Lagrangian models can offer.

A fully Lagrangian model tracks not merely material surfaces but individual
fluid parcels, and just as the choice of density as the vertical coordinate in a lay-
ered model eliminates the vertical velocity from advection, a fully Lagrangian
approach eliminates all advection terms and is therefore most interesting in
problems associated with the discretization of advection terms. In Section 6.4,
the astute reader may have already wondered why we went through all these
complicated Eulerian schemes to find the solution to a pure-advection problem,
which is stated so simply in terms of the material derivative

dc

dt
=0 (12.53)

and has such a disarming solution c= c0 for a parcel with initial value c0. A sin-
gle fluid parcel, however, does not provide the concentration everywhere across
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the domain but only at its particular location. To determine the concentration
distribution, we first need to calculate the trajectories of an ensemble of parcels
launched at different locations. For this, we need to return to the basic definition
of velocity:

dx

dt
=u[x(t),y(t),z(t), t] (12.54a)

dy

dt
=v[x(t),y(t),z(t), t] (12.54b)

dz

dt
=w[x(t),y(t),z(t), t], (12.54c)

and integrate over time for each of, say, N fluid parcels. If the starting locations
are (x0

p ,y0
p, z0

p) for p=1 to N, integration of the previous equations provides the
positions [xp(t), yp(t), zp(t)] of the same N parcels at time t. This is the core of
a Lagrangian approach, and it obviously requires the knowledge of the velocity
field at all times.

The value of c at any point in the domain can then be obtained by inter-
polation from the closest parcels or by averaging within grid cells (binning),
depending on the number of parcels in the region. In either approach, for the
method to work, the domain must at any moment be as uniformly covered as
possible by a sufficiently dense number of parcels. If there are regions nearly
void of parcels, concentrations cannot be inferred there, and this is the first
problem with the Lagrangian approach: For an initially relatively uniform dis-
tribution of parcels, convergence and divergence of the flow can sooner or later
concentrate parcels in some regions and depopulate other parts of the domain
(Fig. 12.9). Algorithms must be designed to eliminate parcels in regions where
they are redundant and to add new parcels in empty regions. Roughly, if L and
H are, respectively, the horizontal and vertical length scales of the 3D flow with
surface S and depth D, we need at least DS/(L2H) parcels, which is about
the required number of grid boxes, (1.17), needed in an Eulerian model of the
same flow. However, because the Lagrangian parcels have a tendency to cluster
and leave regions with lower coverage, 10–100 times more parcels are typically
needed to resolve the same flow.

The time integration itself also imposes some constraints on the method: For
accurate time integration of Eq. (12.54), we must be able to respect the spatial
variations of the velocity field during a time step, and this requires

U1t≤L, (12.55)

or the trajectory calculation will be inaccurate. For the same reason, we must
also respect the time variations of the flow, 1t�T if the flow varies with time
scale T .

Another important aspect is related to the integration of the trajectories. In
addition to the aforementioned accuracy requirement, two sources of errors
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FIGURE 12.9 Calculation of particle displacement in a flow field with multiple circulation cells.
Fluid parcels follow the stationary streamfunction (solid line) and deplete some regions. Use
traj2D.m to view an animated version.

are encountered. First, the time discretization itself does not generally ensure
a reversible calculation. If time or velocities are reversed, the numerical inte-
gration does not return parcels to their initial positions (see Numerical Exercise
12.5). Therefore, the time integration produces some dispersion. The second
source of error is related to the knowledge of the velocity field itself calculated
by a model and thus available only at discrete locations. For a velocity field
given on a rectangular grid, calculations of a trajectory passing through the arbi-
trary location [x(t), y(t), z(t)] require interpolation among adjacent grid points.
The resulting interpolation error will then affect the subsequent calculation of
the trajectory and induce some additional dispersion among parcels.

Except for those restrictions, the Lagrangian approach is easily imple-
mented. Diffusion can be taken into account by simulating mixing through
random displacement of particles, also called random walk, according to

xn+1= xn+
tn+1∫
tn

[
u(x(t),y(t),z(t), t)+ ∂A

∂x

]
dt+
√

21tA ξ (12.56)

where A is the desired diffusivity, and ξ is a random variable of Gaussian3

distribution with zero mean and unit standard deviation (e.g., Gardiner, 1997).
It can be shown (e.g., Gardiner, 1997; Spagnol et al., 2002; Spivakovskaya,

Heemink & Deleersnijder, 2007) that the previous stochastic equation leads to

3 It should be noted that in most models the random variable does not obey a Gaussian but a uniform
distribution. This is acceptable as long as time steps are short so that performing a succession of
many time steps amounts to adding up a large number of random steps, and, by virtue of the central
limit theorem (e.g., Riley, Hobson & Bence, 1977), the many-step process follows the Gaussian
distribution.
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particle distributions consistent with

∂c

∂t
+u

∂c

∂x
= ∂

∂x

(
A
∂c

∂x

)
. (12.57)

A large number of fluid parcels moved according to Eq. (12.56) then mimic the
concentration evolution of Eq. (12.57). The role of the term ∂A/∂x in the time
integral can be easily understood and illustrated in a situation of a local mini-
mum of A within the domain of interest, such as near a pycnocline (Numerical
Exercise 12.8).

If momentum equations, too, are solved by a Lagrangian approach, the
momentum of a particle is changed along its trajectory, mostly by the pressure-
gradient force. An elegant method among others to obtain the pressure
distribution corresponding to a given set of mass-endowed particles is the
particle-in-cell method (Cushman-Roisin, Esenkov & Mathias, 2000; Esenkov
& Cushman-Roisin, 1999; Pavia & Cushman-Roisin, 1988).

ANALYTICAL PROBLEMS

12.1. Generalize the theory of the coastal Kelvin wave (Section 9.2) to the two-
layer system over a flat bottom and under a rigid lid. In particular, what
are the wave speed and trapping scale?

12.2. In the case of the shallow-water reduced-gravity model, derive an energy-
conservation principle. Then, separate the kinetic and potential energy
contributions.

12.3. Show that a steady flow of the shallow-water reduced-gravity system
conserves the Bernoulli function B=g′h+(u2+v2)/2.

12.4. Establish the equations governing motions in a one-layer model above
an uneven bottom and below a thick, motionless layer of slightly lesser
density.

12.5. Seek a solution to the shallow-water reduced-gravity model of the type

h(x, t)= x2A(t)+2xB(t)+C(t) (12.58a)

u(x, t)= xU1(t)+U0(t) (12.58b)

v(x, t)= xV1(t)+V0(t). (12.58c)

To what type of motion does this solution correspond? What can you say
of its temporal variability? (Take f = constant.)

12.6. Using the rigid-lid approximation in the shallow-water equations (i.e., a
single density layer), analyze the dispersion relation of waves on the beta
plane. Show that there are no gravity waves and that the only dispersion
relation that remains corresponds to planetary waves (9.27). How can the
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difference in dispersion relation be interpreted in terms of the hypotheses
used in the rigid-lid approximation? (Hint: Look again at Section 7.5.)

12.7. In the western Mediterranean Sea, Atlantic waters flow along theAlgerian
coast and are slightly lighter than the Mediterranean water. If the den-
sity difference is 1.0 kg/m3, and the thickness of the Atlantic water layer
is 150 m, how large is the sea surface displacement associated with the
intrusion of the lighter water? (Hint: Assume the lower layer to be at rest.)

12.8. Prove the assertion made below Eq. (12.21) that the potential vorticity
so defined is indeed conserved along the flow in the absence of friction.
Specifically, show that its material derivative, using Eq. (12.7), vanishes.

NUMERICAL EXERCISES

12.1. Adapt the shallow-water equation model developed in Numerical Exer-
cise 9.3 to simulate seiches in a lake with a reduced-gravity model.

12.2. Discretize the linearized two-layer model in time and with a horizontal
Arakawa grid of your choice. Use a discretization that does not require
the solution of a linear system. Provide a stability analysis neglecting the
Coriolis force.

12.3. Implement the discretization of Numerical Exercise 12.2 and reproduce
numerically the solution of Section 12.5.

12.4. Explore the implicit treatment of surface elevation in the barotropic
component of the layer equations. Use an Arakawa C-grid and implicit
treatment of both the divergence term in volume conservation and pres-
sure gradient in the momentum equations. Neglect the Coriolis force.
Eliminate the yet unknown velocity components from the equations to
arrive at an equation for ηn+1. Compare the approach with the pres-
sure calculation used in conjunction with the rigid-lid approximation of
Section 7.6 and interpret what happens when you take very long time
steps.

12.5. Use different time-integration techniques to calculate trajectories associ-
ated with the following 2D current field:

u=−cos(π t) y, v=+cos(π t) x (12.59)

from t=0 to t=1 and interpret the results. Prove that the trapezoidal
scheme is reversible in time.

12.6. Implement a random walk into the calculation of the trajectories of
Numerical Exercise 12.5 and verify the dispersive nature of the random
walk. (Hint: Start with a dense cloud of particles in the middle of the
domain.)
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12.7. Use a large number of particles to advect the tracer field of Fig. 6.18 by
distributing them initially on a regular grid. Look at tvdadv2D.m to see
how the velocity field and initial concentration distribution are defined.
Which problem do you face when you need to calculate the concentration
at an arbitrary position at a later moment?

12.8. Implement Eq. (12.56) without advection in a periodic domain between
x=−10L and x=10L and with diffusion given by

A=A0 tanh2
( x

L

)
. (12.60)

Start with a uniform distribution of particles in the left half of the domain
(x<0) and no particles in the other half (x>0). Simulate the evolution
with and without the term ∂A/∂x and discuss your findings. Take L=
1000 km and A0=1000m2/s. (Hint: Periodicity of the domain can be
ensured by proper repositioning of particles when they cross a boundary.
Modulo is an interesting and useful function here.)
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Raymond Braislin Montgomery
1910–1988

A student of Carl-Gustav Rossby, Raymond Braislin Montgomery earned a
reputation as a brilliant descriptive physical oceanographer. Applying dynamic
results derived by his mentor and other contemporary theoreticians to observa-
tions, he developed precise means of characterizing water masses and currents.
By his choice of analyzing observations along density surfaces rather than along
level surfaces, an approach that led him to formulate the potential now bear-
ing his name, Montgomery was able to trace the flow of water masses across
ocean basins and to arrive at a lucid picture of the general oceanic circulation.
Montgomery’s lectures and published works, marked by an unusual attention to
clarity and accuracy, earned him great respect as a critic and reviewer. (Photo
by Hideo Akamatsu — courtesy of Mrs. R. B. Montgomery)
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James Joseph O’Brien
1935–

After a professional start as a chemist, Jim O’Brien decided to change career and
turned to oceanography, a discipline in which he found greater intellectual chal-
lenges. This was around 1970, when computers were beginning to reveal their
power for solving complicated dynamical systems, such as the ocean circula-
tion. O’Brien quickly rose to become a leader in numerical modeling of physical
oceanography and air–sea interactions. His early models of coastal upwelling
taught us much about this important oceanic process. He was the first to show
by numerical simulation that knowledge of wind over the tropical Pacific Ocean
is essential to represent El Niño events. In the course of his numerical appli-
cations (many of them using layered models), he also discovered that the error
made on the group velocity in a computer model is often more troublesome than
the error made on the phase propagation speed.

Professor O’Brien has communicated his boundless enthusiasm for numer-
ical modeling, oceanography, and air-sea interactions to a large number of
graduate students and young researchers, who went on to occupy prominent
positions across the United States and the world. (Photo credit: Florida State
University)



Chapter 13

Internal Waves

ABSTRACT
This chapter presents internal gravity waves, which exist in the presence of vertical
stratification. After the derivation of the dispersion relation and examination of wave
properties, the chapter briefly considers mountain waves and nonlinear effects. Vertical-
mode decomposition is introduced and treated numerically as an eigenvalue problem.

13.1 FROM SURFACE TO INTERNAL WAVES

Starting at an early age, everyone has seen, experienced, and wondered about
surface waves. Sloshing of water in bathtubs and kitchen sinks, ripples on a
pond, surf at the beach, and swell further offshore are all manifestations of sur-
face water waves. Sometimes we look at them with disinterest, and sometimes
they fascinate us. But whatever our reaction or interest, their mechanism relies
on a simple balance between gravity and inertia. When the surface of the water
is displaced upward, gravity pulls it back downward, the fluid develops a verti-
cal velocity (potential energy turns into kinetic energy), and because of inertia,
the surface penetrates below its level of equilibrium. An oscillation results.
A change in the phase of the oscillations from place to place causes the wave
to travel. Because surface waves carry energy and no volume, they naturally
occur wherever there is agitation that causes no overall water displacements,
such as the shaking of a half-full bottle, the throwing of a stone in a pond, or a
storm at sea.

The gravitational force continuously strives to restore the water surface to
a horizontal level because water density is greater than that of the air above. It
goes almost without saying that the same mechanism is at work whenever two
fluid densities differ. This frequently occurs in the atmosphere when warm air
overlies cold air; waves may then be manifested by cloud undulations, which
may at times be remarkably periodic (Fig. 13.1). An oceanic example, known
as the phenomenon of dead water (Fig. 1.4), is the occurrence of waves at the
interface between an upper layer of relatively light water and a denser lower
layer. Those waves, although unseen from the surface, can cause a sizable drag
on a sailing vessel (Section 1.3).
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FIGURE 13.1 Evidence of internal waves in the atmosphere. The presence of moisture causes
condensation in the rising air (wave crests), thus revealing the internal wave as a periodic succession
of cloud bands. (Photo by one of the authors, February 2005, Tassili N’Ajjer, Algeria)

FIGURE 13.2 Surface manifestation of oceanic internal waves. The upward energy propagation
of internal waves modifies the properties of surface waves rendering them visible from space. In
this sunglint photograph taken from the space shuttle Atlantis on 19 November 1990 over Sibutu
Passage in the Philippines (5◦N, 119.5◦E), a large group of tidally generated internal waves is seen
to propagate northward into the Sulu Sea. (NASA Photo STS-38-084-060)
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But the existence of such interfacial waves is not restricted to fluids with two
distinct densities and a single interface. With three densities and two interfaces,
two internal wave modes are possible; if the middle layer is relatively thin, the
vertical excursions of the interfaces interact, letting energy pass from one level
to the other. At the limit of a continuously stratified fluid, an infinite number
of modes is possible, and wave propagation has both horizontal and vertical
components (Fig. 13.2). Regardless of the level of apparent complexity in the
wave pattern, the mechanism remains the same: There is a continuous interplay
between gravity and inertia and a continuous exchange between potential and
kinetic energies.

13.2 INTERNAL-WAVE THEORY

To study internal waves in their purest form, a few assumptions are necessary:
There is no ambient rotation, the domain is infinite in all directions, there is
no dissipative mechanism of any kind, and finally, the fluid motions and wave
amplitudes are small. This last assumption is made to permit the linearization
of the governing equations. However, we reinstate a term previously neglected,
namely, the vertical acceleration term ∂w/∂t in the vertical momentum equation.
We do so anticipating that vertical accelerations may play an important role in
gravity waves. (Recall the discussion in Section 11.2 on the vertical oscillations
of fluid parcels in a stratified fluid, which included the vertical acceleration).
The inclusion of this term breaks the hydrostatic balance, but so be it! Finally,
we decompose the fluid density as follows:

Actual fluid density=ρ0+ ρ̄(z)+ρ′(x,y,z, t), (13.1)

where ρ0 is the reference density (a pure constant), ρ̄(z) is the ambient equi-
librium stratification, and ρ′(x,y,z, t) is the density fluctuation induced by
the wave (lifting and lowering of the ambient stratification). The inequality
| ρ̄ |�ρ0 is enforced to justify the Boussinesq approximation (Section 3.7),
whereas the further inequality |ρ′ |�| ρ̄ | is required to linearize the wave
problem. The total pressure field is decomposed in a similar manner. With the
preceding assumptions, the governing equations become (Section 4.4)

∂u

∂t
=− 1

ρ0

∂p′

∂x
(13.2a)

∂v

∂t
=− 1

ρ0

∂p′

∂y
(13.2b)

∂w

∂t
=− 1

ρ0

∂p′

∂z
− 1

ρ0
gρ′ (13.2c)

∂u

∂x
+ ∂v
∂y
+ ∂w

∂z
=0 (13.2d)

∂ρ′

∂t
+w

dρ̄

dz
=0. (13.2e)
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The factor dρ̄/dz in the last term can be transformed by introducing the
stratification frequency (Brunt–Väisälä frequency) defined earlier in Eq. (11.3):

N2=− g

ρ0

dρ̄

dz
. (13.3)

For simplicity, we will assume it to be uniform over the extent of the fluid. This
corresponds to a linear density variation in the vertical. Because all coefficients
in the preceding linear equations are constant, a wave solution of the form

ei(kxx+kyy+kzz−ωt)

is sought. Transformation of the derivatives into products (e.g., ∂/∂x becomes
ikx) leads to a 5-by-5 homogeneous algebraic problem. The solution is nonzero
if the determinant vanishes, and this requires that the wave frequency ω be
given by

ω2=N2
k2

x+k2
y

k2
x+k2

y+k2
z

(13.4)

in terms of the wavenumbers, kx, ky, and kz, and the stratification frequency, N.
This is the dispersion relation of internal gravity waves.

A number of wave properties can be stated by examination of this relation.
First and foremost, it is obvious that the numerator is always smaller than the
denominator, meaning the wave frequency will never exceed the stratification
frequency; that is,

ω≤N (13.5)

for positive frequencies. The reason for this upper bound can be traced back
to the presence of the vertical acceleration term in Eq. (13.2c). Indeed, without
that term the denominator in Eq. (13.4) reduces from k2

x+k2
y+k2

z to only k2
z ,

implying that the nonhydrostatic term may be neglected as long as k2
z +k2

y� k2
z .

This occurs for waves with horizontal wavelengths much longer than their
vertical wavelengths; the frequency of those waves is much less than N. For
progressively shorter waves, the correction becomes increasingly important,
the frequency rises but saturates at the value N. We may then ask what would
happen if we agitate a stratified fluid at a frequency greater than its own strat-
ification frequency. The answer is that with such short periods, fluid particles
do not have the time to oscillate at their natural frequency and instead follow
whatever displacements are forced on them; the disturbance turns into a local
patch of turbulence, and no energy is carried away by waves. Using a neutrally
buoyant float in the ocean, D’Asaro and Lien (2000) have shown that in strat-
ified waters values of ω/N in the range 0.2–1 generally correspond to internal
waves, whereas, at the same places, values above 1 (1<ω/N<50) correspond
to turbulent fluctuations.
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Another important property derived from the dispersion relation (13.4)
is that the frequency does not depend on the wavenumber magnitude (and
thus on the wavelength) but only on its angle with respect to the horizontal
plane. Indeed, with kx= k cosθ cosφ, ky= k cosθ sinφ, and kz= k sinθ , where

k=
(

k2
x+k2

y+k2
z

)1/2
is the wavenumber magnitude, θ is its angle from the hor-

izontal (positive or negative), and φ is the angle of its horizontal projection with
the x–axis, we obtain

ω=± N cosθ, (13.6)

proving that the frequency depends only on the pitch of the wavenumber and, of
course, the stratification frequency. The fact that two signs are allowed indicates
that the wave can travel in one of two directions, upward or downward along
the wavenumber direction. On the other hand, if the frequency is imposed (e.g.,
by tidal forcing), all waves regardless of wavelength propagate at fixed angles
from the horizontal. The lower the frequency, the steeper the direction. At the
limit of very low frequencies, the phase propagation is purely vertical (θ =90◦).

13.3 STRUCTURE OF AN INTERNAL WAVE

Let us rotate the x and y axes so that the wavenumber vector is contained in
the (x, z) vertical plane (i.e., ky = 0, and there is no variation in the y-direction
and no v velocity component). The expressions for the remaining two velocity
components and the density fluctuation are

u=−A
gωkz

N2kx
sin(kxx+kzz−ωt) (13.7a)

w=+A
gω

N2
sin(kxx+kzz−ωt) (13.7b)

p′=−A
ρ0gkz

k2
x+k2

z
sin(kxx+kzz−ωt) (13.7c)

ρ′=+Aρ0 cos(kxx+kzz−ωt). (13.7d)

For kx, kz, and ω all positive, the structure of the wave is depicted on Fig. 13.3.
The areas of upwelling (crests) and downwelling (troughs) alternate both hori-
zontally and vertically, and lines of constant phase (e.g., following crests) tilt
perpendicularly to the wavenumber vector. The trigonometric functions in solu-
tion (13.7) tell us that the phase kxx+kzz−ωt remains constant with time if
one translates in the direction (kx,kz) of the wavenumber at the speed (see
Appendix B):

c= ω√
k2

x+k2
z

. (13.8)
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FIGURE 13.3 Vertical structure of an internal wave.

This is the phase speed, at which lines of crests and troughs translate. Because
the velocity components, u and w, are in quadrature with the density fluctua-
tions, the velocity is nil at the crests and troughs but is maximum a quarter of
a wavelength away. The signs indicate that when one component is positive,
the other is negative, implying downwelling to the right and upwelling to the
left as indicated in Fig. 13.3. The ratio of velocities (−kx/kz) further indicates
that the flow is everywhere perpendicular to the wavenumber vector and thus
parallel to the lines connecting crests and troughs. Internal waves are trans-
verse waves. A comparison of the signs in the expressions of w and ρ′ reveals
that rising motions occur ahead of crests and sinking motions occur ahead of
troughs, eventually forming the next crests and troughs, respectively. Thus, the
wave moves forward and, because of the inclination of its wavenumber, also
upward.

The propagation of the energy is given by the group velocity, which is the
gradient of the frequency with respect to the wavenumber (Appendix B):

cgx=
∂ω

∂kx
=+ ωk2

z

kx
(
k2

x+k2
z

) (13.9)

cgz=
∂ω

∂kz
=− ωkz(

k2
x+k2

z

) . (13.10)
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The direction is perpendicular to the wavenumber (kx, kz) and is downward.
Thus, although crests and troughs appear to move upward, the energy actu-
ally sinks. The reader can verify that irrespective of the signs of the frequency
and wavenumber components, the phase and energy always propagate in the
same horizontal direction (though not at the same rates) and in opposite vertical
directions.

Let us now turn our attention to the extreme cases. The first one is that of a
purely horizontal wavenumber (kz=0, θ =0). The frequency is then N, and the
phase speed is N/kx. The absence of wave-like behavior in the vertical direc-
tion implies that all crests and troughs are vertically aligned. The motion is
strictly vertical, and the group velocity vanishes, implying that the energy does
not travel. The opposite extreme is that of a purely vertical wavenumber (kx=0,
θ =90◦). The frequency vanishes, implying a steady state. There is then no wave
propagation. The velocity is purely horizontal and, of course, laterally uniform.
The picture is that of a stack of horizontal sheets each moving, without distor-
tion, with its own speed and in its own direction. If a boundary obstructs the flow
at some depth, none of the fluid at that depth, however remote from the obsta-
cle, is allowed to move. This phenomenon, occurring at very low frequencies in
highly stratified fluids, is none other than the blocking phenomenon discussed
at the end of Section 11.5 and presented as the stratified analogue of the Taylor
column in rotating fluids.

In stratified and rotating fluids, the lowest possible internal-wave frequency
is not zero but the inertial frequency f (see Analytical Problem 13.3). At
that limit, the wave motion assumes the form of inertial oscillations, wherein
fluid parcels execute horizontal circular trajectories (Section 2.3). Such limit-
ing behavior is an attribute of inertia-gravity waves in homogeneous rotating
fluids (Section 9.3) and is not surprising, since internal waves in stratified rotat-
ing fluids are the three-dimensional extensions of the inertia-gravity waves of
homogeneous rotating fluids.

13.4 VERTICAL MODES AND EIGENVALUE PROBLEMS

Up to now, we considered internal waves in the rather schematic situation of an
unbounded, nonrotating domain of uniform stratification. This is tantamount to
considering only waves of wavelength much shorter than both the domain size
and the length over which N2 varies, and of frequency sufficiently high not to
be influenced by the earth’s rotation.

If we look at actual vertical profiles of density and their associated stratifica-
tion frequencies (Fig. 13.4, for example), it is clear that stratification is far from
uniform in the vertical, and we should question the validity of the preceding
theory, except for very short vertical wavelengths. What happens then to inter-
nal waves with wavelengths comparable to the scale over which stratification
changes?
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To answer this question with a relatively simple analysis, we assume con-
stant depth and eliminate surface waves by imposing a rigid lid (Sections 7.5
and 12.2). In return, we reinstate rotation by invoking the f -plane approxima-
tion. Because it is typically the case in nature, we assume that f 2<N2(z) holds
everywhere across the fluid column, that is,

N2(z)=− g

ρ0

dρ̄

dz
> f 2>0. (13.11)

Within this framework, the equations governing small perturbations are now

∂u

∂t
− f v=− 1

ρ0

∂p′

∂x
(13.12a)

∂v

∂t
+ fu=− 1

ρ0

∂p′

∂y
(13.12b)

∂w

∂t
=− 1

ρ0

∂p′

∂z
− g

ρ0
ρ′ (13.12c)

∂u

∂x
+ ∂v
∂y
+ ∂w

∂z
=0 (13.12d)

∂ρ′

∂t
+w

dρ̄

dz
=0. (13.12e)

As for pure internal waves, we do not make use of the hydrostatic approxima-
tion. For a uniform topography, we can apply the technique of separation of
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variables and search for solutions of the type:

u = F(z)U(x,y) e−iωt (13.13a)

v = F(z)V(x,y) e−iωt (13.13b)

p′ = ρ0F(z)P(x,y) e−iωt (13.13c)

w = iωW(z)P(x,y) e−iωt (13.13d)

ρ′ = −N2 ρ0

g
W(z)P(x,y) e−iωt. (13.13e)

Using these expressions in the governing equations (13.12), we realize that
Eq. (13.12e) is already satisfied and that the four remaining equations reduce to

−iω U = fV− ∂P
∂x

(13.14a)

−iω V=−fU− ∂P
∂y

(13.14b)(
ω2−N2

)
W=−dF

dz
(13.14c)

1

P

(
∂U
∂x
+ ∂V
∂y

)
=−i

ω

F
dW
dz
. (13.14d)

The first two equations do not depend on z, the third one depends on neither
x or y, while the last equation has a left-hand side that does not depend on z and
a right-hand side that does not depend on x and y. This last equation can only
be met if both terms are constant. For dimensional reasons, we call this constant
iω/gh( j), where h( j) has the dimension of a depth and is commonly called the
equivalent depth. The reason for this label will become clear shortly.

Substitution of the right-hand side of Eq. (13.14d),

−i
1

F
dW
dz
= i

gh( j)
,

into the z-dependent equation (13.14c) leads to an equation governing the
vertical mode W(z):

d2W
dz2
+
(
N2−ω2

)
gh( j)

W=0, (13.15)

while the horizontal structure U , V , P is solution of Eqs. (13.14a) and (13.14b)
completed with the result of Eq. (13.14d):

∂U
∂x
+ ∂V
∂y
= iω

gh( j)
P. (13.16)
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These three equations possess the same structure as the shallow-water wave
equations with constant depth (Section 9.1). We observe that the surface eleva-
tion η is replaced byP/g and the depth h by h( j). Therefore, we can immediately
recover the wave solutions of the shallow-water theory and verify that for a
horizontal periodic solution of the type (U ,V,P)= (U,V,P)ei(kxx+kyy) with
constant coefficients U, V and P, these waves obey the dispersion relation of
inertial (Poincaré) waves:

ω2= f 2+gh( j)
(

k2
x+k2

y

)
. (13.17)

For horizontally finite domains, only discrete values of (kx, ky) pairs are allowed,
but we will not explore this possibility here, preferring to consider the pair (kx,
ky) as given.

13.4.1 Vertical Eigenvalue Problem

Now that we know the horizontal structure of the wave, we have to find its
associated vertical structure. This can be done by substituting the horizontal
dispersion relation (13.17) in the vertical-mode equation (13.15), which leads
to the following problem:

d2W
dz2
+
(

k2
x+k2

y

) N2(z)−ω2

ω2− f 2
W=0, (13.18)

with boundary conditions

W=0 at z=0 and z=H (13.19)

corresponding to rigid lid on top and flat bottom below.
We are in the presence of a homogeneous differential equation with homo-

geneous boundary conditions, that is, the solution is trivially W=0 unless ω
assumes a special value. As it turns out, there exists a whole series of special
ω values for which W may be nonzero. These are called eigenvalues, and the
correspondingW(z) solutions are called eigenfunctions or, more specifically in
our case, vertical modes.

13.4.2 Bounds on Frequency

We anticipate that there should be some bounds on the wave frequencies as we
are already aware of ω2<N2 from Section 13.2. In order to find these bounds,
we apply an integral technique similar to that used to analyze stability of shear
flows (Section 10.2).

When we multiply Eq. (13.18) by the complex conjugate W∗, integrate
vertically across the domain, perform an integration by part on the first term,
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and use boundary conditions (13.19), we obtain

H∫
0

∣∣∣∣dWdz

∣∣∣∣2 dz=
(

k2
x+k2

y

) H∫
0

N2−ω2

ω2− f 2
|W|2 dz. (13.20)

For f 2<N2, the common situation, and as long as ω is real, it is clear that only
values within the range

f 2≤ω2≤N2
max (13.21)

are permitted, since outside this range the right-hand side of Eq. (13.20) would
be negative and unable to match the positive left-hand side.

However, we can ask whether there could be complex values of ω. First, a
purely imaginary solution is not possible since ω= iωi would make the right-
hand side of Eq. (13.20) always negative.1 In the general case ω=ωr+ iωi, it
is sufficient to consider the imaginary part of the fraction in Eq. (13.20):

=
(

N2−ω2

ω2− f 2

)
=−2ωrωi

N2− f 2

(ω2
r −ω2

i − f 2)2+4ω2
rω

2
i

(13.22)

and to realize that any ωi 6=0 prevents Eq. (13.20) from being met because its
real left-hand side cannot match its nonreal right-hand side. Therefore, it is true
that Eq. (13.20) allows only real ω.

In conclusion, for f 2<N2, we find pure wave motions with frequencies in
the range (13.21). Compared to Eq. (13.5), we see that one effect of rotation is
to eliminate the lower frequencies. We also note that, as many times before, if
a wave of frequency ω exists, so does one of frequency −ω, corresponding to
propagation in the opposite direction.

13.4.3 Simple Example of Constant N2

We can solve analytically the case of uniform stratification in a rotating bounded
domain. The eigenvalue problem has the following immediate solution

W(z)= sinkzz, kz= j
π

H
, j=1,2,3, . . . (13.23)

with the accompanying dispersion relation

ω2=

(
k2

x+k2
y

)
N2+k2

z f 2

k2
x+k2

y+k2
z

. (13.24)

1We assumed from the beginning 0≤ f 2≤N2, but the interested reader could analyze the case
N2<0, corresponding to gravitational instability. In this case, complex ω values are possible as we
can expect on physical ground.
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Due to the finiteness of the vertical domain size, the vertical wavenumber
kz now takes discrete values, and the corresponding functions W(z) form a dis-
crete set of eigenfunctions. Yet, we have an infinite number of them as predicted
in Section 12.4. We can verify that all frequencies fall in the range (13.21) and
recognize that the spatial structures are the same as in the unbounded domain,
except that only those wavelengths are permitted that satisfy the boundary
conditions.

Likewise, the constant gh( j), which had been free sofar, may only take one
among a discrete set of values:

gh( j)= ω
2− f 2

k2
x+k2

y
= N2− f 2

k2
x+k2

y+
(
j πH
)2 . (13.25)

Since gh( j) plays here the same role in the horizontal structure of each mode
as gH did in a shallow-water system, we can form an analogous radius of
deformation.

Rj=
√

gh( j)

f
. (13.26)

This internal radius of deformation plays the same role as the external radius
of deformation did in the shallow water system. Among other properties, it char-
acterizes the horizontal scale at which both rotation and gravity, here through
stratification, come into play, and, for example, the lateral trapping scale of an
internal coastal Kelvin wave is the internal deformation radius (see Analytical
Problem 13.9).

By virtue of ω2/f 2=1+(k2
x+k2

y) R2
j , waves with a shorter wavelength than

the deformation radius are influenced primarily by stratification, while those
with longer scales are dominated by rotation. The radius of deformation is
thus the scale at which rotation and stratification play equally significant roles.
Note that it varies from mode to mode, with higher modes having shorter radii.
Waves that vary rapidly in the vertical (j�1) have a shorter radius of defor-
mation, subjecting them to stronger rotational effects than waves with smoother
vertical variation.

For small aspect ratios k2
x+k2

y� k2
z with strong stratification f 2�N2, the

expression of the deformation radius reduces to

Rj'
NH

jπ f
, j=1,2,3, . . . (13.27)

The uniform-stratification application has the advantage of showing how
rotation and finite domain influence the wave dispersion relation compared to
Eq. (13.4), but it is inadequate to determine the eigenfrequencies of a system
with highly nonuniform stratification, such as one with a localized pycnocline.
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FIGURE 13.5 Notation for the discretization in search of vertical modes.

Although analytical asymptotic methods2 exist to tackle such an eigenvalue
problem, it is generally easier and more accurate to resort to numerical methods.
This is even more true if the system to be analyzed is a concrete one, where the
density profile was measured or obtained from climatological databases with
data at discrete vertical levels.

13.4.4 Numerical Decomposition into Vertical Modes

The discretization chosen here is a straightforward finite-difference technique.
For the sake of simplicity, uniform grid spacing 1z is assumed. The first and
last grid points are chosen, respectively, on the flat bottom and at the rigid lid
(Fig. 13.5), since boundary conditions on the unknown itself are imposed there.
The discretized field w of the exact solutionW at location zk is noted wk so that
the discretization reads

wk+1+wk−1−2wk+1z2
(

k2
x+k2

y

) N2(zk)−ω2

ω2− f 2
wk=0, k=2,3, . . . ,m−1

(13.28)

with w1=0, wm=0. (13.29)

This problem can be recast in matrix form by collecting all wk into an
array w:

A(ω2)w = 0, (13.30)

2See WKB methods in Bender and Orszag (1978).
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where the matrix A is tridiagonal (as it was for the diffusion problem, see
Section 5.5) and depends on ω2. The possible ω frequencies are then those that
allow a nonzero w, and this can only occur if the system is singular, that is,

det(A)=0. (13.31)

The problem then reduces to finding the zeros of the determinant of A. For
each value of ω2 for which the determinant vanishes, the corresponding dis-
cretized spatial eigenmode w is the solution of Eq. (13.30). In linear algebra,
finding this vector for a given singular matrix is a standard problem and amounts
to finding the null-space of matrix A. The solution of our problem can therefore
be obtained by searching those values of ω2 for which the determinant of A is
zero and then using a linear algebra package to determine the null-space asso-
ciated with the now singular matrix to retrieve the discretized vertical structure
of the internal wave.

However, finding the zeros of a complicated function is not a trivial task, and
we risk to miss some zeros, even if the theoretical bounds Eq. (13.21) for ω2

can guide the search algorithm. We can neither be sure that numerical solutions
of Eq. (13.31) fall into the same range, although those falling clearly outside
should certainly qualify as nonphysical.

To isolate the variable ω2, we reformulate the problem (13.30) by restating
it as

−ω
2

f 2
[−wk+1−wk−1+(2+ε)wk]+

[
−wk+1−wk−1+

(
2+εN2

k f−2
)

wk

]
=0

(13.32)

with ε=1z2
(

k2
x+k2

y

)
>0. Values of k are limited to 2≤ k≤m−1 since the

boundary conditions are readily implemented. Equation (13.32) can be written
as a linear problem:

Bw=λCw, λ= ω
2

f 2
(13.33)

where matrices B and C are tridiagonal and, most importantly, independent of
ω2. Both matrices also have −1 on their subdiagonal and superdiagonal lines,
whereas the diagonal of C repeats 2+ε and that of B, 2+εN2

k /f
2. Further, B

and C are symmetric positive definite since they are diagonally dominant.
Equation (13.33) is stated as a standard linear algebra problem (called gen-

eralized eigenvalue problem) for which solvers and theorems exist (e.g., the
Rayleigh–Ritz inequalities that are the subject of Numerical Exercise 13-2).

We can recast the problem in an even more familiar form by noting that
for any positive definite matrix, its inverse exists, and therefore, by defining
w̃=Cw, we recover a standard eigenvalue problem

Aw̃=λw̃ with A=BC−1. (13.34)
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Once the eigenvalues λ and eigenvectors w̃ are found, the discretized physical
mode w can be reconstructed by means of w=C−1w̃.

We can be assured that the problem has only real solutions. Since both B and
C are symmetric positive definite, multiplying Eq. (13.33) for a given eigen-
value λj and eigenvector w j by the transposed complex conjugate w j∗ reveals3

that λj must be real for any j.
We note that, contrary to the analytical solution for which an infinite number

of modes exist, only a finite number (m−2) of eigenvalues and modes can be
calculated in the discretized version.

To verify the numerical method outlined above, we calculate the numerical
solution for the case of uniform N2 and compare it with the known analyti-
cal solution Eq. (13.23)–(13.24). As expected, the largest eigenvalues, those
corresponding the longest vertical wavelengths, are well represented, even for
a moderate number of grid points (Fig. 13.6). However, the frequencies closer
to f require finer resolution because of their shorter wavelengths. To represent
mode j accurately, we indeed need a spacing j1z�H.

3We use the fact that both w j∗Bw j and w j∗Cw j are real because of the positive definite nature of
B and C.
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FIGURE 13.7 First three modes (left panel) of a nonuniform stratification with N2 peak. The
corresponding values of ω2 are set against the N2 profile in the right panel. Note that the ω2 values
lie between the extrema of N2.

13.4.5 Waves Concentration at a Pycnocline

The numerical method shown above is now being used to analyze a situation
in which the N2 profile exhibits a maximum, which corresponds to a region of
greater density variation, that is, a pycnocline. To do so, we take a schematic
density profile (Figure 13.7), with a stratification frequency varying between N0
and N1 such that f 2<N2

0 <N2(z)<N2
1 .

The first three modes (Fig. 13.7), correspond to the highest frequencies, and
their vertical profiles (left panels) indicate a concentration of amplitude and
highest gradients in the vicinity of the peak of N2(z), the pycnocline. This can
be understood in the light of the sign of (N2−ω2)/( f 2−ω2) that appears in
Eq. (13.18). Where this factor is positive, the eigenfunctions are oscillatory
in nature and where it is negative, they exhibit exponential decay. Since the
term changes sign within the domain because N2

0 <ω
2<N2

1 (see right panels
of Fig. 13.7), the solution switches from oscillations in regions of ω2≤N2 to
exponential behavior elsewhere, decreasing toward zero at the boundaries of
the domain. A point where ω2=N2 is called a turning point. With ω2 cutting
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FIGURE 13.8 Modes 10–12 for the same nonuniform stratification as in the previous figure.
Again, the left panel shows the vertical structure of the modes, whereas the right panel compares
their ω2 values to the N2 values. Note the fine structure in the vicinity of the pycnocline and that
the values of ω2 fall below the minimum N2 value.

twice across a peak in N2, a pycnocline is accompanied by two turning points,
one below and one above.

For higher modes (Fig. 13.8), ω2 decreases and approaches the minimum
of N2. The turning points move away from the pycnocline until they disap-
pear when, for high enough mode numbers, the corresponding ω2 values fall
below the N2 minimum. Those higher modes have a structure that is oscillatory
everywhere (Fig. 13.8). Surprisingly, amplitudes are now lowest near the pycno-
cline. This is due to the fact that the frequency difference is maximum (ω2−N2

largest) near the pycnocline, and resonant behavior is thus stronger away from
the pycnocline, where the amplitude is consequently higher.

For even higher modes, the modal frequency ω approaches the inertial fre-
quency f , and a new behavior emerges (Fig. 13.9). The regions above and below
the pycnocline start to be decoupled, with one mode being almost entirely
confined to one side of the pycnocline, the next mode to the other side, and
so alternatively with mode number. The pycnocline appears to act as a bar-
rier. In the limit of an extremely sharp pycnocline (very high N2 peak), the
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FIGURE 13.9 Modes 26–28 for the same nonuniform stratification as in the previous two figures.
Again, the left panel shows the vertical structure of the modes, whereas the right panel compares
their ω2 values to the N2 values. These modes, for which the frequencies approach the inertial
frequency f , are almost entirely confined on one side or the other of the pycnocline. In other words,
a pycnocline acts as a vertical barrier to near-inertial waves.

stratification effectively becomes a two-layer system, for which waves near the
inertial frequency can exist in each layer independently of the other.

13.5 LEE WAVES

Internal waves in the atmosphere and ocean can be generated by a myriad of
processes, almost wherever a source of energy has some temporal or spatial
variability. Oceanic examples include the ocean tide over a sloping bottom, mix-
ing processes in the upper ocean (especially during a hurricane), instabilities of
shear flows, and the passage of a submarine. In the atmosphere, one particularly
effective mechanism is the generation of internal waves by a wind blowing over
an irregular terrain such as a mountain range or hilly countryside. We select
the latter example to serve as an illustration of internal-wave theory because it
has some meteorological importance and lends itself to a simple mathematical
treatment.

To apply the previous linear-wave theory, we naturally restrict our attention
to small-amplitude waves and, consequently, to small topographic irregularities.
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FIGURE 13.10 Stratified
flow over a wavy terrain.
The difference in elevation
between crests and troughs
is assumed small to justify
a linear analysis. Then,
the flow over any terrain
configuration can be ob-
tained from the superimpo-
sition of elementary wave
solutions.

This restriction also permits us to study a single topographic wavelength, from
which the principle of linear superposition should allow us to construct more
general solutions. The model (Fig. 13.10) consists of a stratified air mass of
uniform stratification frequency N flowing at speed U over a slightly wavy ter-
rain. The ground elevation is taken as a sinusoidal function b=H coskxx of
amplitude H (the trough-to-crest height difference is then 2H) and wavenumber
kx (the wavelength is then 2π/kx). The wind direction (along the x-axis of the
model) is chosen to be normal to the troughs and crests so that the problem is
two-dimensional.

Because our theory has been developed for waves in the absence of a main
flow, we translate the x-axis with the wind speed. The topography then appears
to move at speed U in the negative x-direction:

z=b(x+Ut)=H cos[kx(x+Ut)]

=H cos(kxx−ωt), (13.35)

where the frequency is defined as

ω=−kxU (13.36)

and is a negative quantity. Because a particle initially on the bottom must remain
there at all times (no airflow through the ground), a boundary condition is

w= ∂b

∂t
+u

∂b

∂x
at z=b, (13.37)

which can be immediately linearized to become

w= ∂b

∂t
=Hω sin(kxx−ωt) at z=0, (13.38)

by virtue of our small-amplitude assumption.
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The solution to the problem, which must simultaneously be of type (13.7)
and meet condition (13.38), can be stated immediately:

u= kzUH sin(kxx+kzz−ωt) (13.39a)

w=−kxUH sin(kxx+kzz−ωt) (13.39b)

p′=−ρ0kzU
2H sin(kxx+kzz−ωt) (13.39c)

ρ′= ρ0N2H

g
cos(kxx+kzz−ωt), (13.39d)

where the vertical wavenumber kz is required to meet the dispersion rela-
tion (13.4):

k2
z =

N2

U2
−k2

x . (13.40)

The mathematical structure of this last expression shows that two cases must
be distinguished: Either N/U> kx and kz is real, or N/U< kx and kz is imagi-
nary. Note that solution (13.39) is formulated in the moving reference frame. To
obtain the stationary solution in the fixed frame of the topography, one needs to
add advection by the wind.

13.5.1 Radiating Waves

Let us first explore the former situation, which arises when the stratification is
sufficiently strong (N> kxU) or when the topographic wavelength is sufficiently
long (kx<N/U). Physically, the time 2π/kxU taken by a particle traveling at the
mean wind speed U to go from a trough to the next trough (i.e., up and down
once) is longer than the natural oscillatory period 2π/N, and internal waves can
be excited. Solving Eq. (13.40) for kz, we have two solutions at our disposal,

kz=±
√

N2

U2
−k2

x , (13.41)

but because the source of wave energy is at the bottom of the domain, only
the wave with upward group velocity is physically relevant. According to
Eqs. (13.10) and (13.36), we select the positive root.

The wave structure in the framework fixed with the topography (Fig. 13.11)
is steady and such that all density surfaces undulate like the terrain, with no ver-
tical attenuation but with an upwind phase tilt with height. The angle θ between
the wave fronts (lines joining crests) and the vertical, which is also the angle
between the wavenumber vector and the horizontal, is given by

cosθ = kxU

N
, (13.42)
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FIGURE 13.11 Structure of a mountain wave in the case of strong stratification or long wave-
length (kxU<N). Note the absence of vertical attenuation and the presence of a phase shift with
height. The group velocity with respect to the ground is oriented upward and downwind. The pres-
sure distribution, with highs on wind-facing slopes and lows on flanks in the wind’s shadow, exerts
a drag on the moving air mass.

so that kx= k cosθ , kz= k sinθ , with k=
(
k2

x+k2
z

)1/2
. The group velocity in the

fixed frame is equal to the group velocity relative to the moving wind, given by
Eq. (13.10) with ω=−kxU, plus the velocity U in the x-direction:

cgx=−U
k2

z

k2
+U=U cos2 θ (13.43)

cgz=U
kxkz

k2
=U sinθ cosθ. (13.44)

It tilts upward as required, and its direction coincides with that of the wavenum-
ber (Fig. 13.11). Energy is thus radiated upward and downwind. We shall not
calculate the energy flux and will only show that the terrain exerts a drag force
on the flowing air mass. The drag force, which is minus the Reynolds stress, is

Drag force=+ρ0 uw |z=0=−
1

2
ρ0kxkzU

2H2,

where the overbar indicates an average over one wavelength. The minus sign
indicates a retarding force. The existence of this force is also related to the fact
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that the high pressures are situated on the hill flanks facing the wind, and the
lows are in the wind’s shadow. Clearly, the wind faces a braking force.

13.5.2 Trapped Waves

The second case, leading to an imaginary value for kz, occurs for weak stratifi-
cations (N< kxU) or short waves (kx>N/U). To avoid dealing with imaginary
numbers, we define the quantity a as the positive imaginary part of kz, that is,
kz=±ia with

a=
√

k2
x−

N2

U2
. (13.45)

The solution now contains exponential functions in z, and the physical nature
of the problem dictates that we retain only the function that decays away from
the ground. In the reference framework translating with the wind speed U, the
solution is

u=aUHe−az cos(kxx−ωt) (13.46)

w=−kxUHe−az sin(kxx−ωt) (13.47)

p′=−ρ0aU2He−az cos(kxx−ωt) (13.48)

ρ′= ρ0N2H

g
e−az cos(kxx−ωt). (13.49)

The wave structure is depicted in Fig. 13.12. Density surfaces undulate at
the same wavelength as the terrain, but the amplitude decays with height. There
is no vertical phase shift. Because the waves are contained near the ground, in
a boundary layer of thickness on the order of 1/a, there is no upward energy
radiation. The absence of such energy loss is corroborated by the absence of a
drag force:

Drag force=+ρ0uw |z=0=0.

The Reynolds stress vanishes because u and w are now in quadrature. Physically,
the high pressures are in the valleys, the lows on the hilltops, and the pressure
distribution causes no work against the wind.

13.6 NONLINEAR EFFECTS

All we have said thus far on internal waves is strictly applicable only if their
amplitude is small, but internal-wave amplitudes can be quite large. For exam-
ple, Liu et al. (2006) have observed internal waves in Luzon Strait (South China
Sea) with amplitudes as high as 140 m.
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FIGURE 13.12 Structure of a mountain wave in the case of weak stratification or short wavelength
(N< kxU). Note the attenuation with height and the absence of vertical phase shift. The pressure
distribution, with highs in valleys and lows on hill tops, causes no drag on the moving air mass.

The obvious question is: When do internal-wave dynamics become nonlin-
ear? The answer lies in comparing the displacements of the particles caused by
the wave to the wavelength: If those displacements are much shorter than the
wavelength, then advective processes are unimportant, and the linear analysis
is justified. The maximum horizontal displacement of fluid particles subject to
an oscillatory horizontal velocity of the type u=U sin(kxx+kzz−ωt) is U/ω,
whereas the horizontal wavelength is 2π/kx. We thus require U/ω�2π/kx, or
because of Eq. (13.4),

U� 2πN√
k2

x+k2
z

≤ 2πN

kz
.

Since 2π/kz is the vertical wavelength, which we can take as the depth scale of
the motion and denote by H, the criterion becomes

Fr= U

NH
�1. (13.50)

Thus, the preceding description of internal waves is applicable only to situa-
tions where the Froude number (based on the wave-induced velocities and the
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vertical wavelength) is much less than unity. Note that NH is approximately
the horizontal phase speed of the wave, and the criterion can be interpreted as
a restriction to fluid velocities much smaller than the wave speed. When the
preceding condition is not met, nonlinear effects cannot be neglected, and the
spectral analysis fails.

A first possible effect is wave breaking. The crest (or trough) overtakes the
rest of the wave, and the wave rolls over not unlike the surf on the sea surface on
approaching a beach. This type of instability, due to the wave motion itself, is
termed advective instability. At lower energy levels, waves do not overturn but
may nonetheless be sufficiently strong not to conform to the linear theory. Wave
interactions create harmonics, and energy spreads over a continuous spectrum,
usually spanning several decades in frequencies and wavenumbers.

Observed spectra in the deep ocean (i.e., in areas remote from important
topographic influences) all show a striking resemblance (Munk, 1981), suggest-
ing the existence of a universal spectrum. This observation led Christopher J.
R. Garrett and Walter H. Munk to formulate in 1972 a prototypical spectrum
for internal-wave energy. This model spectrum was subsequently modified and
refined (Garrett & Munk, 1979; Munk, 1981) and has become known as the
Garrett–Munk spectrum. The expression for the spectral energy density is

E(k,m)= 3fNE m m3/2
∗

π(m+m∗)5/2 (N2k2+ f 2m2)
, (13.51)

where k=
√

k2
x+k2

y is the horizontal wavenumber, m= kz the vertical wavenum-

ber, m∗ a reference wavenumber to be determined from observations, and E a
dimensionless constant setting the overall energy level (see Fig. 13.13).

The Garrett–Munk spectrum is largely empirical in the sense that its for-
mulation is based on observations, simple dimensional considerations, and
elementary physics. Yet, it has been shown to conform to a large number of
observations, prompting the conjecture (Munk, 1981) that the internal-wave cli-
mate in the deep ocean is somehow regulated by a saturation process rather
than by external generation processes. Lvov and Tabak (2001) have advanced a
theory that closely but not exactly reproduces the Garrett–Munk spectrum.

In coastal areas, where topographic irregularities play a dominant role in
generating internal waves, it is not unusual to find coherent wave groups at a sin-
gle (tidal) frequency. Under certain conditions, the dispersion effect (different
wave speeds for different wavenumbers) can annihilate the nonlinear steepening
effect (crests or troughs overtaking the rest of the wave), yielding a robust wave
called internal solitary wave (Turner, 1973, Chapter 3). Figure 13.2 displays the
surface signature of a train of internal solitary waves.

Theory, field observations, and laboratory simulations indicate that internal-
wave characteristics are substantially altered in the presence of shear flows.
Although a general theory is beyond our present scope, it is worth noting that,
like waves in a laterally sheared flow of a homogeneous fluid, internal waves can
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FIGURE 13.13 Universal spectrum of internal waves in the ocean, according to Garrett and Munk
(1979). The spectral energy density E is plotted as a function of k and m, the horizontal and vertical
wavenumbers, respectively. The two-dimensional spectrum can be integrated over one or the other
of its variables to obtain the “towed spectrum” (TS) or the “dropped spectrum” (DS).

also encounter critical levels in a vertically sheared flow (wave speed equal to
local flow velocity).

For weak-to-moderate shear flows (du/dz<2N) in nonrotating (Booker &
Bretherton, 1967) and rotating (Jones, 1967) stratified fluids, theoretical con-
siderations show that on approaching a critical level, the internal-wave vertical
wavenumber increases without limit and the group velocity becomes horizon-
tal, thus aligning itself with the flow. The theory also shows that the time taken
for the energy to reach the critical level is infinite, implying that dissipative
effects become important. Physically, the energy is not focussed and amplified
but absorbed and dissipated at the critical level.

In stronger shear flows (du/dz>2N), instabilities develop. This shear insta-
bility, treated in the following chapter, is the vertical analogue of the barotropic
instability in horizontally sheared flows (Chapter 10).

ANALYTICAL PROBLEMS

13.1. In a coastal ocean, the water density varies from 1028 kg/m3 at the
surface to 1030 kg/m3 at depth of 100 m. What is the maximum internal-
wave frequency? What is the corresponding period?
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13.2. Internal waves are generated along the coast of Norway by the M2
surface tide (period of 12.42 h). If the stratification frequency N is
2×10−3 s−1, at which possible angles can the energy propagate with
respect to the horizontal? (Hint: Energy propagates in the direction of
the group velocity.)

13.3. Derive the dispersion relation of internal gravity waves in the presence
of rotation, assuming f <N. Show that the frequency of these waves
must always be higher than f but lower than N. Compare vertical phase
speed to vertical group velocity.

13.4. A 10-m/s wind blows over a rugged terrain, and lee waves are generated.
If the stratification frequency is equal to 0.03 s−1 and if the topography is
approximated to a sinusoidal pattern aligned perpendicularly to the wind,
with a 25-km wavelength and a height difference from trough to crest
of 500 m, calculate the vertical wavelength, the angle made by the wave
fronts (surfaces of constant phase) with the horizontal, and the maximum
horizontal velocity at the ground. Also, where is this maximum velocity
observed (at crests, at troughs, or at the points of maximum slope)?

13.5. A 75-km/h gale wind blows over a hilly countryside. If the terrain eleva-
tion is approximated by a sinusoid of wavelength 4 km and amplitude of
40 m and if the stratification frequency of the air mass is 0.025 s−1, what
are the vertical displacements of the air particles at 1000 m and 2000 m
above the mean ground level?

13.6. Determine the kinetic and potential energy densities of a pure internal
wave.

13.7. Demonstrate that a single internal wave satisfying the dispersion relation
is not only solution of the linearized perturbation equations but also of
the fully nonlinear equations. What happens if two waves are present in
the system?

13.8. Study internal waves in a stratified system of stratification frequency
N(z) in a vertically bounded domain using the hydrostatic approximation
in Eq. (13.12). Show that the separation constant now appears as the
eigenvalue to be calculated and that the associated radius of deformation
no longer depends on the horizontal wavenumber squared k2

x+k2
y .

13.9. Search for the existence of an internal Kelvin wave by using the
separation-of-constants approach. Use the long-wave (or hydrostatic)
assumption adapting Eq. (13.12) as necessary. Particularize to the case
of uniform N2.

13.10. Consider Skjomen Fjord near Narvik in northern Norway, with length L
of 25 km, average depth H of about 110 m, and stratification frequency N
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of about 2.0×10−3 s−1. What are the lowest two frequencies of internal
waves with wavelength equal to the fjord’s length?

13.11. Despite the fact that system (13.2) has four time derivatives, we obtained
a dispersion relation that yields only a pair of eigenfrequencies. Can you
resolve the paradox?

NUMERICAL EXERCISES

13.1. Use the dispersion relation of pure internal waves (13.4) to illustrate the
superposition of two waves by an animation in the (x,z) plane of size
Lx, H. Can you see the group velocity when using two waves of equal
amplitude and the two wavenumber vectors (kx=35/Lx,kz=10/H) and
(kx=40/Lx,kz=12/H)?

13.2. For the matrices and eigenvalues of problem (13.33), prove that

λmin≤
xTBx
xTCx

≤λmax. (13.52)

To prove these so-called Rayleigh–Ritz inequalities Eq. (13.52) for
symmetric positive definite matrices B and C,

l assume that all eigenvalues are different,

l demonstrate that
(
wi
)T Bw j= δij and

(
wi
)T Cw j= δij,

l prove that all eigenvectors wi, i=1, . . . . are linearly independent, and
l write any vector x as a weighted sum of those independent vectors,

and use this expression in the Rayleigh–Ritz quotient to prove the
Rayleigh–Ritz inequalities.

Adapt the code iwave.m to provide estimates of the upper and lower
bound using a series of random vectors x to calculate the Rayleigh–Ritz
estimator (xTBx)/(xTCx) and store the minima and maxima of the calcu-
lated quotient. Seek how the bounds become increasingly precise as you
choose additional random vectors.

13.3. By substitution of ω2= (1+ λ̃)f 2 into Eq. (13.32) and redefining B, show
that all eigenvalues ωi satisfy ω2

i ≥ f 2. Incidentally show that you can
recast the problem into a standard eigenvalue problem.
By substitution of ω2= (1− λ̃)N2

max into Eq. (13.32) and redefining B,
show that all eigenvalues ωi satisfy ω2

i ≤N2
max.

13.4. Adapt iwavemed.m to read temperature and salinity profiles from
oceanographic data bases, such as the Levitus climatology,4 and calcu-

4See http://www.cdc.noaa.gov/cdc/data.nodc.woa94.html.

http://www.cdc.noaa.gov/cdc/data.nodc.woa94.html
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late the radius of deformation for the Gulf Stream region. To read a
climatological atlas, you can use levitus.m and select a location.

13.5. Assess numerically the convergence rate for eigenvalues and eigenfunc-
tions in the case of uniform stratification by adapting iwave.m.

13.6. Discretize the eigenvalue problem of the sheared-flow instability (10.9)
using the same techniques as in Section 13.4.4. What can you say about
the positive-definite nature of the matrices involved? Try finding the
numerical eigenvalues and growth rates of profiles you think are probably
unstable in Analytical Problem 10.2.
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Walter Heinrich Munk
1917–

Born in Austria and educated in the United States, Walter Heinrich Munk
became interested in oceanography during a summer project under Harald
Sverdrup at the Scripps Institution of Oceanography and quickly developed
a fascination for ocean waves. This interest in waves arose partly because of
the wartime need to predict sea and swell and also because Munk found wave
research a challenge of intermediate complexity between simple periodic oscil-
lations and hopeless chaos. As years went by, Munk eventually investigated all
wavelengths, from the small capillary waves responsible for sun glitter to the
ocean-wide tides. His studies of internal waves, in collaboration with Christo-
pher Garrett, led him to propose a universal spectrum for the distribution of
internal-wave energy in the deep ocean, now called the Garrett–Munk spectrum.
More recently, pursuing an interest in acoustic waves, Munk initiated ocean
tomography, a method for determining the large-scale temperature structure in
the ocean from the measure of acoustic travel times. (Photo by Jeff Cordia)
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Adrian Edmund Gill
1937–1986

Born in Australia, Adrien Edmund Gill pursued his career in Great Britain.
His publications spanned a wide range of topics, including wind-forced cur-
rents, equatorially trapped ocean waves, tropical atmospheric circulation, and
the El Niño–Southern Oscillation phenomenon, and culminated in his trea-
tise Atmosphere-Ocean Dynamics (Gill, 1982). His greatest contributions relied
on the formulation of simple yet illuminating models of geophysical flows.
It has been said (only half jokingly) that he could reduce all problems to a
simple ordinary differential equation with constant coefficients, with all the
essential physics retained. Although he never held a professorship, Gill super-
vised numerous students at the Universities of Cambridge and Oxford. He is
also remembered for his unassuming style and for the generosity with which
he shared his ideas with students and colleagues. (Photo credit: Gillman &
Soame, Oxford)



Chapter 14

Turbulence in Stratified Fluids

ABSTRACT
The previous chapter treated organized wave flows in stratified fluids, whereas the
attention now turns to more complicated motions, such as vertical mixing, flow insta-
bility, forced turbulence, and convection. Because the study of such phenomena does
not lend itself to analytical solutions, the emphasis is on budgets and scale analysis.
The numerical section presents a few methods by which mixing and turbulence can be
represented in numerical models.

14.1 MIXING OF STRATIFIED FLUIDS

Mixing by turbulence generates vertical motions and overturning. In a homoge-
neous fluid, the required energy is only that necessary to overcome mechanical
friction (see Sections 5.1 and 8.1), but in a stratified fluid, work must also be
performed to raise heavy fluid parcels and lower light parcels. Let us consider,
for example, the system pictured in Fig. 14.1. Initially, it consists of two layers
of equal thicknesses with fluids of different densities and horizontal velocities.
After some time, mixing is assumed to have taken place, and the system consists
of a single layer of average density flowing with the average velocity.1 Because
the heavier fluid (density ρ2) lies initially below the lighter fluid (density ρ1),
the initial center of gravity is below mid-depth level, whereas in the final state,
it is exactly at mid-depth. Thus, the center of gravity has been raised in the mix-
ing process, and potential energy must have been provided to the system. Put
another way, work has been performed against the buoyancy forces. With iden-
tical initial depths H1=H2=H/2, the average density is ρ= (ρ1+ρ2)/2, and
the potential energy gain is

PE gain=
H∫

0

ρfinal gz dz−
H∫

0

ρinitial gz dz

1Credit for this illustrative example goes to Prof. William K. Dewar.
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FIGURE 14.1 Mixing of a two-layer stratified fluid with velocity shear. Rising of dense fluid and
lowering of light fluid both require work against buoyancy forces and thus lead to an increase in
potential energy. Concomitantly, the kinetic energy of the system decreases during mixing. Only
when the kinetic-energy drop exceeds the potential-energy rise can mixing proceed spontaneously.

= 1

2
ρgH2−

[
1

2
ρ2g

H2

4
+ 1

2
ρ1g

3H2

4

]
= 1

8
(ρ2−ρ1)gH2. (14.1)

The question arises as to the source of this energy increase. Because human
intervention is ruled out in geophysical flows, a natural energy supply must
exist or mixing would not take place. In this case, kinetic energy is released in
the mixing process, as long as the initial velocity distribution is nonuniform.
Conservation of momentum in the absence of external forces and in the context
of the Boussinesq approximation (ρ1'ρ2'ρ0) implies that the final, uniform
velocity is the average of the initial velocities: U= (U1+U2)/2. This indeed
leads to a kinetic-energy loss

KE loss=
H∫

0

1

2
ρ0u2

initialdz−
H∫

0

1

2
ρ0u2

finaldz

= 1

2
ρ0U2

2
H

2
+ 1

2
ρ0U2

1
H

2
− 1

2
ρ0U2H

= 1

8
ρ0(U1−U2)

2H. (14.2)

Complete vertical mixing is naturally possible only if the kinetic-energy loss
exceeds the potential-energy gain; that is,

(ρ2−ρ1)gH

ρ0(U1−U2)2
< 1. (14.3)

Physically, the initial density difference should be sufficiently weak in order not
to present an insurmountable gravitational barrier, or alternatively the initial
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velocity shear should be sufficiently large to supply the necessary amount
of energy. When criterion (14.3) is not satisfied, mixing occurs only in the
vicinity of the initial interface and cannot extend over the entire system. The
determination of the characteristics of such localized mixing calls for a more
detailed analysis.

For this purpose, let us now consider a two-fluid system of infinite extent
(Fig. 14.2), with upper and lower densities and velocities denoted, respectively,
by ρ1, ρ2 and U1, U2, and let us explore interfacial waves of infinitesimal

(a)

ρ1 U1

2π/k

ρ2
U2

(b)

T
im

e

FIGURE 14.2 Kelvin–Helmholtz instability: (a) initial perturbation of wavenumber k, (b) tempo-
ral evolution of an unstable perturbation. The system is always unstable to short waves, which
steepen, overturn, and ultimately cause mixing. As waves overturn, their vertical and lateral
dimensions are comparable.
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amplitudes. Mathematical derivations, not reproduced here, show that a sinu-
soidal perturbation of wavenumber k (corresponding to wavelength 2π/k) is
unstable if (Kundu, 1990, Section 11.6)

(ρ2
2−ρ2

1)g<ρ1ρ2k(U1−U2)
2, (14.4)

or for a Boussinesq fluid (ρ1'ρ2'ρ0),

2(ρ2−ρ1)g<ρ0k(U1−U2)
2. (14.5)

In a stability analysis, waves of all wavelengths must be considered, and we
conclude that there will always be sufficiently short waves to cause instabil-
ities. Therefore, a two-layer shear flow is always unstable. This is known as
the Kelvin–Helmholtz instability. Among other instances, this instability plays a
role in the generation of water waves by surface winds.

The details of the analysis leading to Eq. (14.5) reveal that the interfacial
waves induce flow perturbations that extend on both sides of the interface across
a height on the order of their wavelength. Thus, as unstable waves grow, they
form rolls of height comparable to their width (Figs. 14.2, 14.3, and 14.4).

The rolling and breaking of waves induces turbulent mixing, and it is
expected that the vertical extent of the mixing zone, which we denote by 1H,
scales like the wavelength of the longest unstable wave, that for which criterion
(14.5) turns into an equality:

1H∼ 1

kmin
= ρ0(U1−U2)

2

2(ρ2−ρ1)g
. (14.6)

If the fluid system is of finite depth H, the preceding theory is no longer appli-
cable, but we can anticipate, by virtue of dimensional analysis, that the results
still hold, within some numerical factors. For a fluid depth H greater than 1H,
mixing must remain localized to a band of thickness 1H, whereas for a fluid
depth H less than 1H, that is,

H .
ρ0(U1−U2)

2

(ρ2−ρ1)g
, (14.7)

mixing will engulf the entire system. Note the similarity between this last
inequality, derived from a wave theory, and inequality (14.3) obtained from
energy considerations.

Figures 14.5 and 14.6 show atmospheric instances of Kelvin–Helmholtz
instabilities made visible by localized cloud formation. Kelvin–Helmholtz insta-
bilities have also been observed to take place in the ocean (Woods, 1968).
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FIGURE 14.3 Development of a Kelvin–Helmholtz instability in the laboratory. Here, two layers
flowing from left to right join downstream of a thin plate (visible on the left of the top photograph).
The upper and faster moving layer is slightly less dense than the lower layer. Downstream distance
(from left to right on each photograph and from top to bottom panel) plays the role of time. At
first, waves form and overturn in a two-dimensional fashion (in the vertical plane of the photo),
but eventually, three-dimensional motions appear that lead to turbulence and complete the mix-
ing. (Courtesy of Greg A. Lawrence. For more details on the laboratory experiment, see Lawrence,
Browand & Redekopp, 1991)

14.2 INSTABILITY OF A STRATIFIED SHEAR FLOW: THE
RICHARDSON NUMBER

In the preceding section, we restricted our considerations to a discontinuity of
the density and horizontal velocity, only to find that such a discontinuous strat-
ification is always unstable. Instability causes mixing, and mixing will proceed
until the velocity profile has been made stable. The question then is as follows:
For a gradual density stratification, what is the critical velocity shear below
which the system is stable and above which mixing occurs? To answer this
question, we are led to study the stability of a stratified shear flow.

Let us consider a two-dimensional (x,z) inviscid and nondiffusive fluid
with horizontal and vertical velocities (u,w), dynamic pressure p, and density
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FIGURE 14.4 Kelvin–Helmholtz instability generated in a laboratory with fluids of two different
densities and colors. (Adapted from GFD-online, Satoshi Sakai, Isawo Iizawa, Eiji Aramaki)

FIGURE 14.5 Kelvin–Helmholtz instability in the Algerian sky. (Photo by one of the authors).
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FIGURE 14.6 Kelvin–Helmholtz instability over the Sahara desert. (Photo by one of the authors)

anomaly ρ. In anticipation of the important role played by vertical motions, we
reinstate the acceleration term in the vertical momentum equation (Section 4.3)
and write

∂u

∂t
+u

∂u

∂x
+w

∂u

∂z
=− 1

ρ0

∂p

∂x
(14.8a)

∂w

∂t
+u

∂w

∂x
+w

∂w

∂z
=− 1

ρ0

∂p

∂z
− ρg

ρ0
(14.8b)

∂u

∂x
+ ∂w

∂z
=0 (14.8c)

∂ρ

∂t
+u

∂ρ

∂x
+w

∂ρ

∂z
=0. (14.8d)

Our basic state consists of a steady, sheared horizontal flow [u= ū(z), w=0]
in a vertical density stratification [ρ= ρ̄(z)]. The accompanying pressure field
p̄(z) obeys dp̄/dz=−gρ̄(z). The addition of an infinitesimally small perturba-
tion (u= ū+u′, w=w′, p= p̄+p′, ρ= ρ̄+ρ′) and a subsequent linearization of
the equations yield

∂u′

∂t
+ ū

∂u′

∂x
+w′

dū

dz
=− 1

ρ0

∂p′

∂x
(14.9a)

∂w′

∂t
+ ū

∂w′

∂x
=− 1

ρ0

∂p′

∂z
− ρ
′g
ρ0

(14.9b)

∂u′

∂x
+ ∂w′

∂z
=0 (14.9c)

∂ρ′

∂t
+ ū

∂ρ′

∂x
+w′

dρ̄

dz
=0. (14.9d)
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Introducing the perturbation streamfunction ψ via u′=+∂ψ/∂z, w′=−∂ψ/∂x,
the buoyancy frequency N2=−(g/ρ0)(dρ̄/dz), and the Fourier structure exp[ik
(x−ct)] in the horizontal, we can reduce the problem to a single equation for ψ
in terms of the remaining variable z:

(ū−c)

(
d2ψ

dz2
−k2ψ

)
+
(

N2

ū−c
− d2ū

dz2

)
ψ=0. (14.10)

This is called the Taylor–Goldstein equation (Goldstein, 1931; Taylor, 1931). It
governs the vertical structure of a perturbation in a stratified parallel flow. Note
the formal analogy with the Rayleigh equation (10.9) governing the structure of
a perturbation on a horizontally sheared flow in the absence of stratification and
in the presence of rotation. Therefore, the same analysis can be applied.

First, we state the boundary conditions. For a domain bounded vertically by
two horizontal planes, at z=0 and z=H, we impose a zero vertical velocity
there, or, in terms of the streamfunction:

ψ(0)=ψ(H)=0. (14.11)

Then, we recognize that the equation and its accompanying boundary conditions
form an eigenvalue problem: Unless the phase velocity c takes on a particular
value (eigenvalue), the solution is trivial (ψ=0). In general, the eigenvalues
may be complex, but if c admits the function ψ , then its complex conjugate
c∗ admits the function ψ∗ and is thus another eigenvalue. This can be easily
verified by taking the complex conjugates of Eqs. (14.10) and (14.11). Hence,
complex eigenvalues come in pairs. In each pair, one of the two eigenvalues will
have a positive imaginary part and will correspond to an exponentially growing
perturbation. The presence of a nonzero imaginary part to c automatically guar-
antees the existence of at least one unstable mode. Conversely, the basic flow is
stable if and only if all possible phase speeds c are purely real.

Because it is impossible to solve problem (14.10) and (14.11) in the general
case of an arbitrary shear flow ū(z), we will limit ourselves, as in Section 10.2,
to deriving integral constraints. A variety of such constraints can be established,
but the most powerful one is obtained when the function φ, defined by

ψ=
√

ū−c φ, (14.12)

is used to replace ψ . Equation (14.10) and boundary conditions (14.11) become

d

dz

[
(ū−c)

dφ

dz

]
−
[

k2(ū−c)+ 1

2

d2ū

dz2

+ 1

ū−c

(
1

4

(
dū

dz

)2

−N2

)]
φ=0 (14.13)

φ(0)=φ(H)=0. (14.14)
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Multiplying Eq. (14.13) by the complex conjugate φ∗, integrating over the
vertical extent of the domain, and utilizing conditions (14.14), we obtain

H∫
0

[
N2− 1

4

(
dū

dz

)2
]
|φ|2
ū−c

dz

=
H∫

0

(ū−c)

(∣∣∣∣dφdz

∣∣∣∣2+k2|φ|2
)

dz+ 1

2

H∫
0

d2ū

dz2
|φ|2dz, (14.15)

where vertical bars denote the absolute value of complex quantities. The
imaginary part of this expression is

ci

H∫
0

[
N2− 1

4

(
dū

dz

)2
]
|φ|2
|ū−c|2 dz = −ci

H∫
0

(∣∣∣∣dφdz

∣∣∣∣2+k2|φ|2
)

dz, (14.16)

where ci is the imaginary part of c. If the flow is such that N2> 1
4 (dū/dz)2

everywhere, then the preceding equality requires that ci times a positive quantity
equals ci times a negative quantity and, consequently, that ci must be zero. This
leads us to define the Richardson number

Ri = N2

(dū/dz)2
= N2

M2
, (14.17)

with M=|dū/dz| (called the Prandtl frequency), and the criterion is that if the
inequality

Ri >
1

4
(14.18)

holds everywhere in the domain, the stratified shear flow is stable.
Note that the criterion does not imply that ci must be nonzero if the

Richardson number falls below 1/4 somewhere in the domain. Hence, inequal-
ity (14.18) is a sufficient condition for stability, whereas its converse is a
necessary condition for instability. Atmospheric, oceanic, and laboratory data
indicate, however, that the converse of (14.18) is generally a reliable predictor
of instability.

If the shear flow is characterized by linear variations of velocity and density,
with velocities and densities ranging from U1 to U2 and ρ1 to ρ2 (ρ2>ρ1),
respectively, over a depth H, then

M=
∣∣∣∣dū

dz

∣∣∣∣= |U1−U2|
H

, N2=− g

ρ0

dρ

dz
= g

ρ0

ρ2−ρ1

H
,
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and the Richardson criterion stated as the necessary condition for instability
becomes

(ρ2−ρ1)gH

ρ0(U1−U2)2
<

1

4
. (14.19)

The similarity to Eq. (14.3) is not coincidental: Both conditions imply the pos-
sibility of large perturbations that could destroy the stratified shear flow. The
difference in the numerical coefficients on the right-hand sides can be explained
by the difference in the choice of the basic profile [discontinuous for Eq. (14.3),
linear for Eq. (14.19)] and by the fact that the analysis leading to Eq. (14.3) did
not make provision for a consumption of kinetic energy by vertical motions.
The change from 1 in Eq. (14.3) to 1/4 in Eq. (14.19) is also consistent with
the fact that condition (14.3) refers to complete mixing, whereas Eq. (14.19) is
a condition for the onset of the instability.

More importantly, the similarity between Eqs. (14.3) and (14.19) imparts a
physical meaning to the Richardson number: It is essentially a ratio between
potential and kinetic energies, with the numerator being the potential-energy
barrier that mixing must overcome if it is to occur and the denominator being
the kinetic energy that the shear flow can supply when smoothed away. In fact,
it was precisely by developing such energy considerations that British meteo-
rologist Lewis Fry Richardson2 first arrived, in 1920, to the dimensionless ratio
that now rightfully bears his name. A first formal proof of criterion (14.18),
however, did not come until four decades later (Miles, 1961).

In closing this section, it may be worth mentioning that bounds on the real
and imaginary parts of the wave velocity c can be derived by inspection of
certain integrals. This analysis, due to Louis N. Horward,3 has already been
applied to the study of barotropic instability (Section 10.3). Here, we summarize
Howard’s original derivation in the context of stratified shear flow. To begin, we
introduce the vertical displacement a caused by the small wave perturbation,
defined by

∂a

∂t
+ ū

∂a

∂x
=w

or

(ū−c) a=−ψ. (14.20)

We then eliminate ψ from Eqs. (14.10) and (14.11) and obtain an equivalent
problem for the variable a:

d

dz

[
(ū−c)2

da

dz

]
+
[
N2−k2(ū−c)2

]
a=0 (14.21)

2See biography at the end of this chapter.
3See biography at end of Chapter 10.
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a(0)=a(H)=0. (14.22)

A multiplication by the complex conjugate a∗ followed by an integration over
the domain and use of the boundary conditions yields

H∫
0

(ū−c)2P dz =
H∫

0

N2|a|2dz, (14.23)

where P=|da/dz|2+k2|a|2 is a nonzero positive quantity. The imaginary part
of this equation implies that if there is instability (ci 6=0), cr must lie between
the minimum and maximum values of ū, that is,

Umin< cr<Umax. (14.24)

Physically, the growing perturbation travels with the flow at some intermediate
speed, and there exists at least one critical level in the domain where the pertur-
bation is stationary with respect to the local flow. This local coupling between
the wave and the flow is precisely what allows the wave to extract energy from
the flow and to grow at its expense.

Now, the real part of Eq. (14.23),

H∫
0

[
(ū−cr)

2−c2
i

]
Pdz =

H∫
0

N2|a|2dz (14.25)

can be manipulated in a way similar to that used in Section 10.3 to obtain the
following inequality:(

cr−
Umin+Umax

2

)2

+c2
i ≤

(
Umax−Umin

2

)2

. (14.26)

This implies that, in the complex plane, the number c= cr+ ici must lie within
the circle that has the range ū as diameter on the real axis. Because instability
requires a positive imaginary value ci, the interest is restricted to the upper half
of the circle (Fig. 10.1). This result is called the Howard semicircle theorem. In
particular, it implies that ci is bounded by (Umax−Umin)/2, providing a useful
upper bound on the growth rate of unstable perturbations:

kci ≤
k

2
(Umax−Umin). (14.27)

14.3 TURBULENCE CLOSURE: k-MODELS

Reynolds averaging (Section 4.1) showed that small-scale processes, as those
involved during turbulence and mixing, affect the mean flow through the
so-called Reynolds stresses, which stem from the nonlinear advection terms
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in the momentum equations. Till now, Reynolds stresses were represented as
diffusive fluxes and thus modeled with the help of an eddy viscosity. What
value should be assigned to this eddy viscosity was not said. The fact is that
setting a value to this parameter is far from trivial because it does not represent
a unique fluid property, such as molecular viscosity, but rather reflects the level
of turbulence in the particular flow under consideration. The value of the eddy
viscosity should therefore not be expected to be a constant but ought to depend
on characteristics of the flow conditions at the time and place of consideration.
All we can hope for is that the local level of turbulence can be related to flow
properties on the larger, resolved scale. Put another way, the determination of
the eddy viscosity is in fact part of the problem. This forces us to consider how
fluctuations actually behave.

A naive approach consists of calculating fluctuations such as u′ by taking the
original, nonaveraged equation for u and subtracting its Reynolds average (4.4)
in order to obtain an equation for the fluctuation u′, and similarly for the other
variables. In principle, solving these “perturbation equations” should allow us
to determine the fluctuations (such as u′ and w′), from which we can then
form products and obtain the Reynolds averages (such as

〈
u′w′

〉
). This process,

unfortunately, is not working.
To illustrate the nature of the problem, let us simplify the notation by intro-

ducing L, an arbitrary linear operator, and start from a much reduced equation
with quadratic nonlinearity of the type

∂u

∂t
+L(uu)=0. (14.28)

Its Reynolds average (see Section 4.1) is

∂ 〈u〉
∂t
+L(〈u〉 〈u〉)+L( 〈u′u′〉 )=0, (14.29)

from which we can obtain the equation governing the fluctuation u′ by
subtraction:

∂u′

∂t
+2L( 〈u〉u′ )+L(u′u′

)
−L( 〈u′u′〉 )=0. (14.30)

Solving this equation should provide u′ and allow us to calculate the
Reynolds stress

〈
u′u′

〉
, but it is clearly not realistic since we initially set out

to separate the fluctuation so that we would not have to solve for it. What we
want is only the average of a certain product and none of the details. With this in
mind, let us start from the equation for the fluctuation (and not its solution) and
seek an equation governing directly the desired average. To do so, we multiply
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Eq. (14.30) by the fluctuation and then take the average of the product.4 This
yields a predictive equation for the desired quantity

〈
u′u′

〉
:

1

2

∂
〈
u′u′

〉
∂t
+ 2

〈
u′L( 〈u〉u′ )〉+ 〈u′L(u′u′

)〉
= 0, (14.31)

in which we used
〈
u′
〉
=0 because a fluctuation has no average by definition.

From the last term of Eq. (14.31) emerges an annoying triple correlation,
which no equation so far can provide. Should we try to establish a govern-
ing equation for this triplet (or third-order moment) by persevering with the
same approach, it comes as no surprise that a fourth-order term arises, and so
on endlessly. This means that we face a closure problem, and at some level
of the process, we need to parameterize the unknown higher-order products in
terms of those of lower order in a way that remains faithful to the physical
phenomenology of turbulence and keeps modeling errors small.

It is generally accepted, more by intuition than by proof, that the higher
the order at which truncation is performed and parameterization introduced, the
lesser the modeling error. Stopping at second-order correlations is done almost
universally in the context of field data and laboratory experiments (e.g., Gibson
& Launder, 1978; Pope, 2000). The attending models are full second-order clo-
sure or second-moment closure schemes that calculate all Reynolds stresses
involving products of variables by means of evolution equations relying on
closure assumptions at the level of third-order correlations.

Here we restrict our attention to the two simplest versions of second-order
schemes, in which only some of the second moments are determined by their
evolution equations, whereas the others are governed by simpler equations
containing no time derivative (so-called diagnostic equations). Such models
continue to be called second-order closure schemes and are distinguished by
explicitly naming the higher-order moments that are parameterized. An example
is the k model that is presented below.

We begin by identifying key features of turbulence from which we can estab-
lish a practical closure scheme. The most obvious property of a turbulent flow is
its ability to mix the fluid efficiently. This is why we stir our café au lait rather
than wait for molecular diffusion to distribute the milk evenly across the black
coffee. Turbulence-enhanced mixing is the reason why Reynolds stresses are
most often expressed as diffusion terms. Shear in the mean flow generates insta-
bilities, which are manifested by eddies at many scales. The larger eddies reflect
the anisotropy of the mean flow, but rapid fluctuations at the shorter scales

4Here we assume that the averaging operation commutes with time and space derivatives. Also,
the average of an average is the first average. Should our average not be an average over multiple
realizations (so-called ensemble average) but rather an average over time or space, it is necessary
that the temporal or spatial scales of the fluctuation be clearly separated from that of the mean flow
(e.g., Burchard, 2002).
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Extraction from
mean flow

C
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° | l ∼ ε=Cu3
FIGURE 14.7 The oft-quoted lines of
Lewis Fry Richardson “the big whirls have
little whirls that feed on their velocities,
and little whirls have lesser whirls and so
on to viscosity – in the molecular sense”
taken from his 1922 book aptly summa-
rizes the idea used in turbulence model-
ing according to which turbulence effects
a gradual transfer of energy from the
broader and unstable flow to the smallest
eddies that dissipate it.

appear erratic and isotropic. There is, however, no clear distinction between
the two types of fluctuations, only a broad transition called the energy cascade
(Kolmogorov, 1941; Fig. 14.7). For eddies of velocity scale ů and diameter d
within the cascade, the Reynolds number is very large so that their evolution is
fast compared with the decay time due to viscosity. Nonlinear advection is there-
fore dominant, rapidly breaking the eddies down into smaller ones. The energy
continuously extracted from the mean flow by its instabilities is thus transferred
gradually from the larger eddies to the smaller ones without appreciable loss
to viscosity. This energy is eventually dissipated at the shortest scales. Because
of the lack of dissipation through the cascade, the dissipation rate is thus con-
served across the cascade. Since viscosity does not influence the dissipation
rate within the cascade, the only parameters that can be related to the dissipa-
tion rate denoted as ε are the velocity scale ů and length scale d of the eddies,
the time scale being determined by the turnover scale d/ů, hence ε= ε(ů,d).
The dimensionally correct relation is

ε=
(

c0
µ

4

)3/4
ů3

d
, (14.32)

in which we introduced a calibration constant c0
µ∼0.1 in a combination that

will be useful later. We recover the result of Section 5.1. Also the value of ε
is the one that is extracted from the mean flow at velocity scale um and length
scale lm, called macro scales and ε= ε(ů,d)= ε(um, lm).
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Relation (14.32) shows that for a given turbulence cascade, ů∝d1/3, stat-
ing that the smaller eddies contain less kinetic energy than the larger ones,
so that the bulk of kinetic energy is attributable to the largest eddies of size
lm (Fig. 14.7). The kinetic-energy spectrum must therefore be decreasing with
increasing wavenumber according to Eq. (5.8) of Section 5.1. The turbulent cas-
cade may also be interpreted in terms of vorticity. In three dimensions, vortex
tubes are twisted and stretched by other, adjacent or containing vortex tubes (in
a manner similar to the two-dimensional straining encountered in Fig. 10.12),
and because of incompressibility, stretching in one direction is accompanied by
squeezing in another, and conservation of circulation demands an increase in
vorticity. Vorticity, therefore, is increasing with decreasing eddy length scale.

The cascade cannot, of course, continue down to arbitrarily small scales, and
at some small but finite scale, molecular viscosity comes into play. The scale lv
at which this occurs is the one for which viscous friction becomes a dominant
term in the momentum equation, that is, the scale that renders the Reynolds
number, ratio of inertia to friction, of order unity:

u∂u/∂x

ν ∂2u/∂x2
∼ u2

v/lv
νuv/l2v

=O(1). (14.33)

The length and velocity scales, lv and uv, at which this viscous sink occurs are
called micro scales or viscous scales. The preceding equation implies that they
are linked by the following relation:

uvlv
ν
∼1. (14.34)

Since Eq. (14.32) continues to hold down to that scale, we also have

ε∝ u3
v

lv
= u3

m

lm
, (14.35)

and we can determine the range of scales in the eddy cascade by eliminating uv
between Eqs. (14.35) and (14.34) and by expressing um in terms of the Reynolds
number umlm/ν of the macroscale:

lm
lv
∼Re3/4. (14.36)

High Reynolds-number flows, therefore, are characterized by broad eddy cas-
cades.

Alternatively, we can express the scales at which dissipation takes place as
functions of the dissipation rate and molecular viscosity by eliminating uv from
Eqs. (14.32) and (14.34):

lv ∼ ε−1/4ν3/4. (14.37)
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Thus, the more energy is fed into turbulence by the mean flow, the smaller the
ultimate eddies are in order to dissipate that energy. Or, back to a more familiar
situation, the more strongly we stir our coffee, the smaller the eddies, and the
more efficient the mixing. It is worth insisting that it is molecular viscosity
that is ultimately responsible for the diffusion. The turbulent cascade simply
increases the shearing and tearing on fluid parcels, increasing contact between
initially separated fluid parcels and increasing spatial gradients so that molecular
diffusion can act more efficiently (Fig. 14.8).

Integrating the energy spectrum Eq. (5.8) from the longest to the shortest
eddy sizes yields the total kinetic energy of the inertial range:

π/lv∫
π/lm

Ekdk= u2
m

2

(
1− 1√

Re

)
∼ u2

m

2
, (14.38)

and hence the total turbulent kinetic energy in the flow does not differ much
from that of the largest eddies.

Having now some idea on how energy is extracted from the mean flow, we
can return to the challenge of representing the effect of this cascade in a model
via an eddy viscosity. We limit our search to a parameterization in which the
properties of the turbulent cascade are purely local (so-called one-point closure
model) and do not involve remote parameters. For the mean flow, we suppose
that lm is the scale at which turbulence extracts energy, and since we do not
resolve the cascade and its associated velocity fluctuations u′ explicitly, the dis-
sipation introduced by the eddy viscosity must extract the ε energy per time.

FIGURE 14.8 Effect of eddy size on diffusion over time. With time increasing from left to right,
the top row illustrates the progressive action of diffusion on a structure of larger scale, whereas the
bottom row shows that on a structure of shorter size. Note how diffusion acts more effectively at the
shorter scale. For the same molecular diffusivity, mixing occurs more effectively at shorter scales
because regions of different properties are in closer contact. (Figure prepared at the suggestion of
Hans Burchard)
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To accomplish this, the Reynolds number based on the eddy viscosity must be
on the order of unity at the level of lm:

umlm
νE
∼1. (14.39)

The eddy viscosity concept ensures that fluid parcels moving with the eddy
velocity um over the distance lm exchange momentum with other fluids parcels,
as in molecular diffusion where momentum exchange between molecules occurs
over the mean free path. Within this context, it is not surprising that the term
mixing length was coined for lm.

With Eq. (14.39), we ensure that some energy is extracted from the mean
flow using an eddy viscosity approach. That this amount of energy extraction
per unit time be equal to ε is an additional requirement. Assuming we know this
dissipation rate, we require

u3
m

lm
= ε

(c0
µ/4)

3/4
. (14.40)

In summary, the formulation of the eddy viscosity demands that we know
the scales um and lm. If we also know the dissipation rate ε, we can use
Eq. (14.40) to reduce the number of scales to be prescribed. If in addition, we
know the kinetic energy k at the macroscale, this would add another relation
that determines the velocity scale:

k= u2
m

2
. (14.41)

This can also be used to calculate the dissipation rate (14.40) as follows:

ε=
(

c0
µ

)3/4 k3/2

lm
. (14.42)

Knowing k and ε would thus allow the calculation of the eddy viscosity νE
and complete our closure scheme. At this point, the reader might object that
calculating a macroscale length using a microscale dissipation rate sounds con-
tradictory, but the paradox is easily explained by the fact that in the Kolmogorov
theory, the dissipation rate at the microscale is equal to the energy input at the
macroscale, hence the link. This justification and most of the previous reasoning
rely on the idea of a statistical equilibrium state of turbulence in which, at each
moment, energy input in the mean flow matches energy removal at the shortest
scales.

One of the first successful attempts to quantify the eddy viscosity by means
of a velocity and length scale is credited to Ludwig Prandtl5 who considered

5See biography at the end of Chapter 8.
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a vertically sheared horizontal flow 〈u〉(z) and assumed the velocity fluctua-
tions to be statistically random except for a nonzero correlation between the
horizontal and vertical velocity fluctuations, u′ and w′. In such a case,〈

u′w′
〉
= r

√
〈u′2〉

√
〈w′2〉, (14.43)

where r is the correlation coefficient between u′ and w′. Assuming that each
velocity fluctuation is proportional to the velocity scale um of the coherent
structures causing the correlation, we can write〈

u′w′
〉
= c1u2

m (14.44)

with a constant coefficient of proportionality c1. Since the eddy viscosity is
defined from 〈

u′w′
〉
=−νE

∂ 〈u〉
∂z

, νE=umlm, (14.45)

we obtain an expression for the eddy viscosity that depends only on mean flow
quantities, thus yielding a first turbulence-closure model:

um= lm

∣∣∣∣∂ 〈u〉∂z

∣∣∣∣ and νE= l2m

∣∣∣∣∂ 〈u〉∂z

∣∣∣∣ , (14.46)

Here, the absolute value is introduced to ensure a positive value for the eddy
viscosity. We note that this model predicts increasing turbulent diffusion under
increased shear, in accordance with our intuition that shear is destabilizing and
the cause of turbulence.

The only remaining parameter that Prandtl needed to determine was the mix-
ing length, in which all calibration constants come together. The determination
of the mixing length depends on the particular situation, especially its geom-
etry. For example, a flow along a rigid boundary is characterized by an eddy
size increasing with distance from the boundary, and thus a larger lm at a greater
distance from the boundary.

Because
〈
u′w′

〉
must vanish at a rigid boundary, so must the Reynolds stress.

Since it is now expressed as −l2m|∂ 〈u〉/∂z|2 with the present closure scheme,
it is clear that the mixing length, too, must go to zero at the boundary. As a
result, the mixing length in the vicinity of a solid boundary is often expressed as
lm=Kz, in which z is the distance from the boundary and K the so-called von
Kármán constant (e.g., Nezu & Nakagawa, 1993; see also Section 8.1).

The preceding closure scheme relying on the concept of a mixing length
lm may be modified in order to accommodate the stabilizing effect of stratifi-
cation and also generalized to three dimensions. These modifications will be
explored later when we show that the Prandtl model can be seen as a simplifi-
cation of more complex turbulence closure schemes. Despite the advantage of
its algebraic nature, which is easily implemented, Prandtl’s scheme suffers from
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the fact that it assumes a turbulence level determined solely by the instanta-
neous flow. No memory effect is included, and as soon as mixing eradicates the
shear, the eddy viscosity falls to zero, whereas in reality, turbulence never stops
abruptly but undergoes gradual decay. This is one among several problems of a
so-called zero-equation turbulence model. Clearly, more sophisticated schemes
are often necessary.

To develop models with memory effect, we seek governing equations with
time derivatives (prognostic equations as opposed to diagnostic equations) for
some of the second moments. First, we note that the difference between volume
conservation of the total flow, Eq. (3.17), and of the mean flow only, Eq. (4.9),
provides a constraint on the velocity fluctuations:

∂u′

∂x
+ ∂v

′

∂y
+ ∂w′

∂z
=0. (14.47)

We can then use this constraint in our manipulation of the governing equations
for the Reynolds stresses. The two most natural candidates for diagnostic equa-
tions are those for the turbulent kinetic energy k and dissipation rate ε because
they together capture the primary characteristics of the turbulent environment.
Their values also set the scales in formulating the eddy viscosity.

Here, we start by developing the so-called turbulent kinetic energy model in
which k is defined6 as

k= 〈u
′2〉+〈v′2〉+〈w′2〉

2
. (14.48)

In view of Eqs. (14.32) and (14.38), the bulk of the turbulent kinetic energy
is contained in the largest eddies so that we may use the velocity scale of the
largest eddies as

√
2k. We are then in a position of establishing a governing

equation for k by applying a closure approach.
Taking the difference between Eqs. (3.19) and (4.7a), we obtain the evolu-

tion equation for the fluctuation u′, which we then multiply by u′ itself. Doing
the same with the equations for v′ and w′, and adding the three together, we
obtain after some tedious algebra and the use of Eq. (14.47) the following
evolution equation for k:

dk
dt
=Ps+Pb−ε−

(
∂qx

∂x
+ ∂qy

∂y
+ ∂qz

∂z

)
, (14.49)

in which we arranged the various terms for a better understanding of the physics.
First, the time derivative is the material derivative based on the mean flow,

6To be exact, k is the turbulent kinetic energy per unit of mass of fluid. By virtue of the Boussinesq
approximation, however, the ratio between energy and energy per mass is the reference density ρ0,
which is a constant.
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namely,

d

dt
= ∂

∂t
+〈u〉 ∂

∂x
+〈v〉 ∂

∂y
+〈w〉 ∂

∂z
,

and we note that the Coriolis terms have canceled one another out, which is not
too surprising since the Coriolis force does not perform mechanical work and
should therefore not affect a kinetic energy budget.

With no approximation invoked, the other terms7 are

Ps=−
〈
u′u′

〉 ∂ 〈u〉
∂x
−
〈
u′v′

〉 ∂ 〈u〉
∂y
−
〈
u′w′

〉 ∂ 〈u〉
∂z

−
〈
v′u′

〉 ∂ 〈v〉
∂x
−
〈
v′v′

〉 ∂ 〈v〉
∂y
−
〈
v′w′

〉 ∂ 〈v〉
∂z

−
〈
w′u′

〉 ∂ 〈w〉
∂x
−
〈
w′v′

〉 ∂ 〈w〉
∂y
−
〈
w′w′

〉 ∂ 〈w〉
∂z

(14.50)

Pb=−
〈
ρ′w′

〉 g

ρ0
(14.51)

ε

ν
=
〈
∂u′

∂x

∂u′

∂x

〉
+
〈
∂u′

∂y

∂u′

∂y

〉
+
〈
∂u′

∂z

∂u′

∂z

〉
+
〈
∂v′

∂x

∂v′

∂x

〉
+
〈
∂v′

∂y

∂v′

∂y

〉
+
〈
∂v′

∂z

∂v′

∂z

〉
+
〈
∂w′

∂x

∂w′

∂x

〉
+
〈
∂w′

∂y

∂w′

∂y

〉
+
〈
∂w′

∂z

∂w′

∂z

〉
(14.52)

qx=
1

ρ

〈(
p′+ u′2+v′2+w′2

2

)
u′
〉
−ν ∂k

∂x
(14.53)

and similar expressions for qy and qz. All terms involve unknown averages for
which we now need to make closure assumptions.

Because the quantity Ps involves both mean flow and turbulence, it stems
from the interaction between the two. The presence of the shear of the large-
scale flow suggests that we call it shear production. The second term, Pb,
clearly involves the work performed by the turbulent buoyancy forces on the
vertical stratification and is thus related to potential-energy changes. For obvi-
ous reasons we call it buoyancy production. The dissipation rate ε involves, as
expected, the molecular viscous dissipation by turbulent motions. Finally, the
vector (qx, qy, qz) involves only turbulent fluctuations of pressure and velocity,
and its divergence form in the turbulent kinetic energy budget (14.49) indicates

7Strictly speaking, the dissipation term should be ε=2ν‖D‖2 in which the deformation tensor D of
the fluctuations is similar to Eq. (14.54). The definition used here is often called pseudo dissipation.
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that it represents a spatial redistribution of k by turbulence, not contributing to
production or dissipation.

All those terms must now be modeled in terms of the state variables. For
example, the Reynolds stresses appearing in the unknown terms are replaced by
the eddy-viscosity parameterization already shown. By defining the deformation
tensor (or strain-rate tensor)

D= 1

2


2 ∂u
∂x

(
∂u
∂y + ∂v

∂x

) (
∂u
∂z + ∂w

∂x

)
(
∂u
∂y + ∂v

∂x

)
2 ∂v
∂y

(
∂v
∂z + ∂w

∂y

)
(
∂u
∂z + ∂w

∂y

) (
∂v
∂z + ∂w

∂x

)
2 ∂w
∂z

 (14.54)

and the Reynolds stress tensor

τ =


〈
u′u′

〉 〈
u′v′

〉 〈
u′w′

〉〈
u′v′

〉 〈
v′v′

〉 〈
v′w′

〉〈
u′w′

〉 〈
v′w′

〉 〈
w′w′

〉
, (14.55)

the eddy-viscosity model is

τ =−2νED+ 2k
3

I. (14.56)

The first term on the right-hand side is a familiar expression relating the (turbu-
lent) stress to the rate of strain. The appearance of the second term, proportional
to k and involving the identity matrix I, begs for an explanation. Without it the
parameterization is faulty: The trace of the stress tensor on the left-hand side
must be equal to the trace on the right-hand side, and this constraint justifies the
presence of the second term. In practice, this term is not a dominant one, but it
is readily calculated with a k model. Using Eq. (14.56) in Eq. (14.50) expresses
the shear production Ps in terms of the mean-flow characteristics.

For the buoyancy production term, Pb, the velocity-density correlations are
modeled with the help of the eddy-diffusivity approach

〈
ρ′w′

〉
=−κE

∂ 〈ρ〉
∂z
=κE

ρ0

g
N2 (14.57)

in which κE is a turbulent diffusivity that is part of the closure scheme. Aside
from the latter, the term Pb does not require any further treatment.

Since the flux terms qx, qy, and qz appear in divergence form in Eq. (14.49),
they are only responsible for redistributing k in space. This is coupled to the
fact that they involve turbulent quantities, suggesting that we model these terms
as turbulent diffusion of k. In view of the velocity and pressure correlations
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involved,8 the eddy viscosity νE is used for the flux calculation rather than the
eddy diffusivity κE.

In summary, the various terms are parameterized as follows:

Ps=2νE ‖〈D〉‖ (14.58)

Pb=−κEN2 (14.59)

qx=−νE
∂k
∂x

qy=−νE
∂k
∂y

qz=−νE
∂k
∂z
. (14.60)

We notice that the sign of the modeled term Ps is consistent with the idea of tur-
bulence extracting energy from the mean flow and transferring it to turbulence.
Similarly, the sign of Pb indicates that stratification inhibits turbulence because
of the increase of potential energy required by mixing a stably stratified system
(Section 14.2).

With these parameterizations, Eq. (14.49) governing the evolution of turbu-
lent kinetic energy becomes

dk
dt
=Ps+Pb−ε+D(k), (14.61)

D(k)= ∂

∂z

(
νE
∂k
∂z

)
. (14.62)

Note that the turbulent diffusion has been reduced to its the vertical compo-
nent. The horizontal part is awaiting a subsequent parameterization of horizontal
subgrid scales.

With appropriate boundary conditions, we can predict the evolution of k if
we know how to calculate ε, the eddy viscosity νE, and the eddy diffusivity
κE. With ε calculated using Eq. (14.42) and mixing length lm prescribed, the
turbulent closure scheme is called a k-model or one-equation turbulence model.
The energy of the turbulent eddies gives a reliable estimate of their velocity and
hence of the eddy viscosity via

νE=
cµ(

c0
µ

)3/4 √k lm. (14.63)

Note that in this scheme, the mixing length must be prescribed independently.
This is usually done based on geometrical considerations of the flow. The value
of ε is then obtained from Eq. (14.35) for use in Eq. (14.61) to predict k. The
constant c0

µ is the same constant as in Eq. (14.42), whereas cµ is a calibration
parameter.

8In state-of-the art models, the eddy diffusivity for turbulent kinetic energy is the eddy diffusivity
divided by the so-called Schmidt number.
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The eddy diffusivity κE is obtained in a similar way:

κE=
c′µ(

c0
µ

)3/4√k lm, (14.64)

where the calibration constant c′µ differs from cµ. The two parameters will be
defined later as functions of shear and stratification.

For simplicity, we introduced only two different turbulent-diffusion coeffi-
cients, although each state variable could claim its own (e.g., Canuto, Howard,
Cheng & Dubovikov, 2001). We utilize a unique κE for diffusion of all scalar
fields because they are subjected to the same turbulent transport. Hence κE is
used for the diffusion of density, salinity, temperature, moisture, or any other
tracer concentration. In contrast, the eddy viscosity νE is used for the diffusion
of momentum, k and ε, the dynamical variables.

Before exploring more advanced closure schemes, we can verify how the
present model performs in a simple flow situation, such as a vertically sheared
flow of uniform density. We align the x-axis with the mean flow and the z-axis
with the shear. In this way, averaged fields are independent of x and y (Fig. 14.9),
and the velocity field is simply u=〈u〉+u′, w=w′. The mean flow depends only
on z and obeys

∂ 〈u〉
∂t
=− 1

ρ0

∂ 〈p〉
∂x
+ ∂

∂z

(
ν
∂ 〈u〉
∂z
−
〈
u′w′

〉)
. (14.65)

The pressure gradient is uniform, and over a distance L along the x-axis, the
pressure difference is p2−p1. The kinetic energy KE=

〈
(u2+v2+w2)

〉
/2 of

the flow can be split into mean and turbulent contributions:

KE= 〈u〉
2

2
+k. (14.66)

〈u〉

p1 p2

L

H

x
z

FIGURE 14.9 Flow between two horizontal planes forced by an external pressure gradient.
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Multiplying Eq. (14.65) by 〈u〉, we can construct the governing equation
for the kinetic energy of the mean flow. For the turbulent part, we can perform
the same manipulation on the equations governing the fluctuations (not written
down). With the simplifications pertinent to the present flow, the outcome is

∂

∂t

〈u〉2
2
= − 1

ρ0

∂ 〈p〉 〈u〉
∂x

+ ∂

∂z

[
〈u〉
(
ν
∂ 〈u〉
∂z
−
〈
u′w′

〉)]
− ν

(
∂ 〈u〉
∂z

)2

+
〈
u′w′

〉 ∂ 〈u〉
∂z

∂k
∂t
= −

〈
u′w′

〉 ∂ 〈u〉
∂z
− ε + ∂qz

∂z
. (14.67)

The underlined term in the second equation is identified as the shear production
of turbulence, and we note that it also appears in the first equation with opposite
sign. Clearly, the shear production of turbulence is at the expense of mean-flow
energy.

With the eddy-viscosity approach outlined earlier, the shear production term
is expressed as

Ps=−
〈
u′w′

〉 ∂ 〈u〉
∂z
=νE

(
∂ 〈u〉
∂z

)2

. (14.68)

For positive eddy viscosity, energy is extracted from the mean flow and feeds
the turbulence.

If we integrate both energy equations over a distance L and across the
domain height, assume steady state (for averages), exploit the fact that the veloc-
ities (both mean and turbulent) are zero at bottom (z=0) and top (z=H), and
finally use the closure scheme, we obtain

(
p1−p2

ρ0

)
UH

L
=

H∫
0

(νE+ν)
(
∂〈u〉
∂z

)2

dz (14.69)

in which U= (1/H)
∫ H

0 〈u〉dz is the average velocity over the inflow and outflow
sections. For the turbulent kinetic energy, we have a similar budget

H∫
0

ε dz=
H∫

0

νE

(
∂ 〈u〉
∂z

)2

dz. (14.70)

Let us now interpret these budgets. In the absence of turbulence, eddy vis-
cosity is zero, and the energy equation (14.69) for the mean flow then shows
that for an increased energy input by a higher pressure gradient, the flow must
generate increasing shear so that molecular viscosity can dissipate this energy.
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However, when shear increases, the flow is prone to instabilities and eventually
becomes turbulent. We see that energy is now extracted from the mean flow at
much lower values of the shear because of the presence of νE�ν in the right-
hand side. The energy budget (14.70) for the turbulence confirms that the energy
extracted from the mean flow is dissipated in the viscous sink by ε. We verify
that molecular viscosity remains the ultimate sink of energy but at the much
shorter scales of turbulence.

14.4 OTHER CLOSURES: k−ε AND k−klm

To form a closed system of equations, the previous one-equation turbulence
model needed the mixing length to be prescribed a priori. To avoid this, it is
desirable to move from one governing equation (for k) to two governing equa-
tions (for k and lm, or for k and ε). It is therefore no surprise to find a vast
literature proposing governing equations for a combination of k and lm, or equiv-
alently a combination of k and ε. From the two calculated quantities, the third
can always be determined from the algebraic relationship (14.42) and then the
eddy viscosity via Eq. (14.63) or similar expression.

Since dissipation rates can be measured in the ocean by microprofilers (e.g.,
Lueck, Wolk & Yamazaki, 2002; Osborn, 1974), ε is an attractive candidate
for a second equation in turbulence modeling. By manipulating the governing
equations for velocity fluctuations in a similar way as for k, we can formulate a
governing equation for ε of the type

dε

dt
=Q, (14.71)

in which the right-hand side contains a series of complicated expressions
involving higher-order correlations (e.g., Burchard, 2002; Rodi, 1980). Unlike
the k equation, however, these terms cannot be systematically modeled using
the eddy-viscosity approach, and additional hypotheses, not to say educated
guesses, are required. The most common approach is to use from the k equa-
tion the terms related to energy production and use them in linear combinations
to close the energy dissipation source terms. Terms related to spatial redistribu-
tion of energy are, as usual, modeled by a turbulent diffusion. When all is said
and done, the governing equation for ε is expressed as

dε

dt
= ε

k
(c1Ps+c3Pb−c2 ε)+D(ε), (14.72)

where the terms Ps and Pb are the same as in the k equation and the coefficients
c1, c2, and c3 are calibration constants: c1≈1.44, c2≈1.92, −0.6. c3 .0.3.
Because the two turbulent quantities that are calculated in this model are k and
ε, it is useful to express the eddy viscosity as a function of these by eliminating
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the mixing length lm between Eqs. (14.63) and (14.42) to obtain

νE= cµ
k2

ε
. (14.73)

This outlines a particular two-equation turbulence model within an array
of possible other ones. Instead of formulating the governing equation for ε,
an equation for lm or a combination of lm and k can also be established, with
Eq. (14.42) providing a link between the three variables k, ε, and lm.

A very popular scheme in the context of geophysical flows is the so-called
k−klm model of Mellor and Yamada (1982), of which the governing equation
for klm is

dklm
dt
= lm

2

[
E1Ps+E3Pb−

(
1−E2

l2m
l2z

)
ε

]
+D(klm), (14.74)

where E1, E2, and E3 are calibration constants. As for Eq. (14.72), the source
term is a linear combination of Ps, Pb, and ε. In this closure scheme appears a
new length scale lz that needs to be prescribed to force lm to vanish at solid
boundaries. In the k−ε model, this is achieved “automatically” if the cor-
rect boundary conditions are applied (Burchard & Bolding, 2001). Except for
this difference, the two formulations are structurally identical because, in the
absence of spatial variations, Eqs. (14.72) and (14.74) are equivalent by virtue
of Eq. (14.42). The difference lies in the quantity that is transported by the flow:
dissipation in the k−ε model, klm in the Mellor–Yamada model.

In fact, it is possible to establish a generic evolution equation for kaεb with
two parameters a and b (a=0, b=1 to recover the k−ε model and a=5/2,
b=−1 to obtain the k−klm model). Changing the values of a and b changes
the nature of the second quantity that is transported by the flow (Umlauf &
Burchard, 2003). Whatever combination is chosen, all such models fall under
the label of two-equation models and, except for the background mixing length
lz, do not need additional prescribed spatial functions.

Leaving aside more complex closure schemes, we end our description of tur-
bulence modeling with the observation that all closure schemes described here
are based on local properties, that is, not using distant information to param-
eterize Reynolds stresses. These models are called one-point closure schemes.
Schemes that use information from remote locations to infer local turbulence
properties are referred to as two-point closure schemes (e.g., Stull, 1993).

We now return to the notation used in the rest of the book by no longer
making a distinction between average flow properties and turbulent properties,
so that from here on u stands again for the mean velocity.

14.5 MIXED-LAYER MODELING

The turbulence models presented in the previous two sections are applicable to
three-dimensional flows in general. In geophysical fluid dynamics, models can
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be simplified by exploiting the small aspect ratio of the flows under investigation
(e.g., Umlauf & Burchard, 2005). In particular, the strain-rate tensor can be
reduced to

D= 1

2

∼0 ∼0 ∂u
∂z

∼0 ∼0 ∂v
∂z

∂u
∂z

∂v
∂z ∼0

 (14.75)

and the shear production to

Ps=νEM2, M2=
(
∂u

∂z

)2

+
(
∂v

∂z

)2

, (14.76)

in which we took the opportunity to define the Prandtl frequency M. Further-
more, turbulent diffusion is chiefly acting in the vertical direction because of
the shorter distances and larger gradients in that direction. On the other hand,
the study of flows with small aspect ratios inevitably requires that a larger step
size be taken in the horizontal and, consequently, that a series of horizontal sub-
grid scale processes be handled separately. The effects of these are generally
modeled by a horizontal diffusion with diffusion coefficient A:

D()= ∂

∂x

(
A
∂

∂x

)
+ ∂

∂y

(
A
∂

∂y

)
+ ∂

∂z

(
νE
∂

∂z

)
. (14.77)

It should be clear here that νE is intending to model actual turbulence,
whereas A is an attempt to take into account processes unresolved in the hori-
zontal, at scales longer than lm but shorter than the horizontal grid step used in
the model.

Assuming a Kolmogorov-type turbulent energy cascade in the horizontal, a
possible closure is

A∼ (1x)4/3ε1/3
H , (14.78)

directly inspired by νE∼ l4/3m ε1/3 [deduced from Eqs. (14.63) and (14.42)]. For
this estimation of A, εH is the energy dissipation of the horizontally unresolved
processes. According to Okubo (1971), this dissipation rate is relatively similar
from case to case (Fig. 14.10).

Another subgrid scale parameterization of horizontal processes is directly
inspired by the Prandtl model (e.g., Smagorinsky, 1963):

A∼1x1y

[(
∂u

∂x

)2

+
(
∂v

∂y

)2

+ 1

2

(
∂u

∂y
+ ∂v
∂x

)2
]1/2

. (14.79)

In this formulation, the mixing length is replaced by the average grid spacing
to ensure that all scales below the grid size are effectively treated as unresolved
motions. In view of the factors 1x1y appearing in the front of Eq. (14.79)
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FIGURE 14.10 Horizontal eddy diffusivity as function of cutoff scales in typical geophysical
flows (Okubo, 1971).

and the factors 1x2 and 1y2 arising in the denominators after the numerical
discretization of the horizontal second derivative in the diffusion terms, we can
interpret the Smagorinsky formulation as a numerical filter (Section 10.6). This
filter acts at the grid resolution with the intensity of the filter cleverly made to
depend on the local shear of the flow.

We now leave aside subgrid scale parameterizations because they are less
well established than turbulence closure schemes and return to vertical turbu-
lence modeling. In particular, we show that the Prandtl model can be recovered
under the assumption of instantaneous and local equilibrium between shear
production, buoyancy production, and dissipation (as in stationary and homoge-
neous turbulence, for example). In this case, the turbulent kinetic energy budget
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(14.61) reduces to

Ps+Pb= ε. (14.80)

For a vertically sheared flow 〈u〉 in a stratified fluid of stratification frequency N,
the equilibrium between production and dissipation yields, using Eqs. (14.63)
and (14.42) for a given mixing length lm,

k= cµ(
c0
µ

)3/2 l2mM2(1−Rf ), (14.81)

in which the flux Richardson number Rf is defined as

Rf =
−Pb

Ps
=

c′µ
cµ

N2

M2
=

c′µ
cµ

Ri. (14.82)

The eddy viscosity follows:

νE=
(

cµ
c0
µ

)3/2

l2mM
√

1−Rf . (14.83)

We recover the Prandtl closure (14.46) with eddy viscosity now taking into
account the stabilizing effect of the stratification via the flux Richardson num-
ber. The simplest models are obtained as particular cases of the more complex
models.

Further adaptations to mixed-layer flows can be made by introducing so-
called stability functions into the parameterizations. The derivation of such
formulations lies beyond the scope of this chapter, and we only outline here the
general approach. The derivation begins with the governing equations for the
individual components of the Reynolds stress tensor, obtained by multiplying
the governing equations for the velocity fluctuations by other velocity fluctua-
tions and taking their average. Again, higher-order terms demand simplifying
hypotheses. Spatial and temporal variations are either neglected under an equi-
librium hypothesis similar to Eq. (14.80) or rather heuristically described by an
advection-diffusion equation. Depending on the nature of the closure hypothe-
ses made along the way, the end results are so-called algebraic Reynolds-stress
models. In these models, Reynolds stresses are often appearing in nonlinear
algebraic systems that need to be solved to extract the individual stresses. This
can be done with some additional approximations, eventually leading to expres-
sions for the Reynolds stresses as functions of mean-flow characteristics. In all
cases, formulations of the type (14.73) appear, in which the function cµ may be
quite complicated.

In all algebraic second-order turbulent closure schemes, Reynolds stresses
depend on two dimensionless stability parameters:

αN =
k2

ε2
N2, αM=

k2

ε2
M2. (14.84)
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Stability functions widely differ based on the various hypotheses used dur-
ing their derivation (e.g., Canuto et al., 2001; Galperin, Kantha, Mellor &
Rosati, 1989; Kantha & Clayson, 1994; Mellor & Yamada, 1982). If Ps+Pb= ε
is assumed along the way, so-called quasi-equilibrium versions are obtained
(Galperin, Kantha, Hassid & Rosati, 1988). These generally exhibit a more
robust behavior than other formulations (see Deleersnijder, Hanert, Burchard
& Dijkstra, 2008 for a discussion). An example of stability functions are those
of Umlauf and Burchard (2005) depicted in Fig. 14.11 and given by

νE= cµ
k2

ε
(14.85)

κE= c′µ
k2

ε
(14.86)

with the coefficients given by

cµ=
s0+s1αN+s2αM

1+d1αN+d2αM+d3αNαM+d4α
2
N+d5α

2
M

, (14.87)

c′µ=
s4+s5αN+s6αM

1+d1αN+d2αM+d3αNαM+d4α
2
N+d5α

2
M

. (14.88)
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FIGURE 14.11 Stability functions cµ and c′µ of Umlauf and Burchard (2005) plotted as functions
of αN and αM using parameter values given in Table 14.1.�
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TABLE 14.1 Parameters Used in the Closure Scheme of Canuto
et al. (2001)

s0= s1= s2= s4= s5= s6=
0.10666 0.01734 −0.00012 0.11204 0.00451 0.00088

d1= d2= d3= d4= d5= c0
µ=

0.2554 0.02871 0.00522 0.00867 −0.00003 0.0768
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14.6 PATANKAR-TYPE DISCRETIZATIONS

A turbulent closure scheme does not lend itself to analytical solutions, and
numerics are called to the rescue. Before dwelling into numerical discretiza-
tion, however, it is worth insisting that the equations for turbulent variables are
only models obtained after a long series of assumptions. If the derivation is
not done with diligence, inconsistencies can arise. Turbulent kinetic energy, for
example, must never be negative, but, if the flux Richardson number for some
reason begins to exceed one, the equilibrium value of k becomes negative by
virtue of Eq. (14.81) and the eddy viscosity Eq. (14.83) ceases to exist. A first
constraint on any turbulence closure scheme is therefore that their answers make
basic physical sense. For the k model, for example, it should be shown that the
solution of Eq. (14.61) is always positive (see Analytical Problem 14.8).

Assuming that the turbulence closure scheme is respecting all physical and
mathematical requirements, we should further ensure that subsequent numerical
discretization respects these properties (Numerical Exercise 14.2). We may now
appreciate why, during the treatment of advection problems (Section 6.4), much
discussion was devoted to monotonic behavior. Negative values of a variable
that should remain positive can have dramatic effects when nonlinearities are
present. The values of the source terms in the equations governing turbulent
kinetic energy and dissipation can hint at problems. Occasionally, well-defined
mathematical and numerical operations may cause unexpected problems. For
example, a quadratic sink for a tracer c with uniform spatial distribution,

dc

dt
=−µc2 (14.89)

starting from initial condition c0 has for solution

c(t)= c0

1+µt c0
, (14.90)

which is well behaved if c0 is positive but will eventually become unacceptable
if c0 is negative. In the presence of spatial variations, such a problem may be
far more difficult to detect but is just as serious.

An implicit treatment of the nonlinear source or sink term would enhance
numerical stability and therefore reduce over- or undershooting tendencies (e.g.,
avoid unphysical negative values), but the numerical cost is the need to invert
or solve a nonlinear algebraic equation at each time step. This is tantamount to
finding the zeros of a function and can be done with standard iterative methods,
Picard, Regula Falsi, Newton–Raphson methods, for example (see Dahlquist
& Björck, 1974; Stoer & Bulirsh, 2002). But since the procedure needs to be
repeated at each grid point and at each time step, the approach can become quite
burdensome. Also problems of robustness in finding roots are not uncommon in
view of the large number of times the procedure needs to be repeated. There
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is always a risk of no convergence or of convergence toward an unphysical
solution.

Patankar (1980) introduced a method that renders the discretization of a
nonlinear source term somehow implicit without actually needing to solve a
nonlinear algebraic equation. To present his idea, we start from the spatially
discretized version of the governing equation for the vector state x (i.e., the
vector consisting of the variables of the model):

∂x
∂t
=M(x) (14.91)

where the right-hand side gathers all discretized spatial operators. Such a system
can be discretized in time by one of the many methods already presented. The
algorithm to update the numerical state variable x is then of the type

Axn+1=Bxn+ f, (14.92)

where A and B result from the chosen discretization and f may contain forcing
terms, sources, sinks, and boundary conditions. If we now add a decay term to
the governing equation

∂x
∂t
=M(x)−Kx (14.93)

with the matrix K=diag(Ki) being a diagonal matrix with various decay rates
Ki, one for each component of the state vector, an explicit discretization of the
decay term then leads to the modified algorithm

Axn+1= (B−C)xn+ f, (14.94)

in which C=diag(Ki1t) is, too, a diagonal matrix. Alternatively, an implicit
treatment of the decay term would lead to

(A+C)xn+1=Bxn+ f. (14.95)

The only modification in the calculations is to invert A−C instead of A, which
does not add much burden since only the diagonal is changed.

Patankar’s simple yet powerful trick is to take a nonlinear sink written in a
pseudo-linear fashion−K(c) c. As long as K(c) remains bounded (and positive)
for all c, we can always express any sink term in this way simply by defining K
accordingly. The discretization then uses at each grid point

− K(c̃n
i )c̃

n+1
i , (14.96)

which is a consistent discretization. To calculate c̃n+1, all that is required is to
modify the system similarly to Eq. (14.95) by adding a term Ki(c̃n

i )1t on the
diagonal of A.
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The method is simple, but how does this trick help maintain positive val-
ues? The explicit discretization applied to a positive value c̃n does not ensure
positiveness for arbitrary time steps because

c̃n+1= c̃n−K(c̃n)1tc̃n=
[
1−K(c̃n)1t

]
c̃n

is negative whenever K(c̃n)1t>1. In contrast, the Patankar trick replaces the
explicit calculation by

c̃n+1= c̃n

1+K(c̃n)1t
,

which remains positive at all times. The only requirement for the method to
work is that K(c) be bounded for c→0. Otherwise, upon approaching zero,
overflows in the numerical code will occur.

But why not just enforce K(c̃n)1t≤1 by choosing a sufficiently short time
step? In so-called stiff problems, K varies widely, and the time step being con-
strained by the largest value of K may have to be excessively short. Unless
adaptive time-stepping is used to keep the instances of short time steps to a min-
imum, it is almost impossible to ensure a sufficiently small time step that keeps
c̃ positive at all times without using excessively small time steps during most of
the calculations. In coupled nonlinear equations, the stiffness is often difficult
to gage, and ecosystem models among others are prone to nonpositive behavior
whenever an explicit discretization is used. This is very frustrating because such
a problem tends to occur only occasionally. The benefit of the Patankar method
is to avoid the time-step penalty in the presence of quickly damped processes.

We now generalize the Patankar method slightly to take into account that
sinks decrease values but sources increase them. For a single equation with a
source (production term P≥0) and a sink (destruction term −K(c) c≤0) such
that

dc

dt
=P(c)−K(c) c, (14.97)

a discretization à la Patankar would read

c̃n+1= c̃n+1t

{
Pn

c̃n

[
αc̃n+1+(1−α)c̃n

]
−K(c̃n)

[
β c̃n+1+(1−β)c̃n

]}
(14.98)

where α and β are implicitness factors. This equation can directly be solved for
c̃n+1.

In some problems, the solution of Eq. (14.97) tends toward an equilib-
rium solution c∗, such that P(c∗)=K(c∗) c∗, without oscillating around this
equilibrium. It is relatively easy to show that this is the case if

P(c)SK(c)c for cT c∗. (14.99)
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It is then possible to show (Numerical Exercise 14.8) that a numerical
solution that keeps concentration values positive and converges toward the
equilibrium value c∗ without oscillation is guaranteed as long as

1

1t
≥ P−Kc

c∗−c
+ αP−βKc

c
. (14.100)

To obtain the least restrictive time step, the best choice is α=0, β=1. For
example with P= cr and K= cr, the equilibrium is c∗=1 for any value r>0.
If α=0 and β=1, the Patankar scheme yields steady convergence toward this
value for arbitrary large time steps.

The present example is not an academic one because the perceptive reader
may have realized that r=1/2 corresponds to the typical source/sink term in
a turbulence closure scheme with fixed mixing length (Section 14.3). The case
r=1 arises with the logistic equation encountered in the modeling of biological
processes.

The method outlined here has been adapted to a set of coupled equations,
ensuring conservation between components and higher-order convergence than
the Euler scheme shown here (Burchard, Deleersnijder & Meister, 2003, 2005).
Such an approach is of special interest in ecosystem models that include
transport.

14.7 WIND MIXING AND PENETRATIVE CONVECTION

Like mixing, turbulence in stratified fluids requires work against buoyancy
forces, and stratification thus acts as a moderator of turbulence. This situation
can be expressed quantitatively by applying to turbulence some of the con-
cepts derived earlier, particularly the notion of mixing depth, as expressed by
Eq. (14.6),

1H= ρ0(U1−U2)
2

2g(ρ2−ρ1)
. (14.101)

An important measure of turbulence is the friction velocity u∗, a measure of the
turbulent velocity fluctuations.9 Thus, locally horizontal velocities are expected
to differ by values on the order of u∗, and the numerator of Eq. (14.101) could
be replaced by the dimensionally equivalent expression ρ0u2

∗. Likewise, the dif-
ference (ρ2−ρ1) can be interpreted as a local turbulent density fluctuation and
the product u∗(ρ2−ρ1) as a measure of the vertical density flux w′ρ′ (where
primes denote turbulent fluctuation and an overbar indicates some average).
The introduction of those quantities transforms Eq. (14.101) into a turbulent

9The attribute friction reflects the historical heritage of turbulent boundary-layer theory and does
not imply that friction is of great importance here.
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analogue:

L= ρ0u3
∗

Kgw′ρ′
. (14.102)

This length scale represents the depth of fluid to which stratification confines
eddies of strength u∗. It is called the Monin–Obukhov length in honor of the
two Soviet oceanographers who, in 1954, first pointed to the importance of this
scale in the study of stratified turbulence. In the denominator, the factorK is the
von Kármán constant (K=0.41), which is traditionally introduced to facilitate
mathematical development in boundary-layer applications and which was first
encountered in Section 8.1.1.

If density variations are entirely due to temperature stratification, then the
flux w′ρ′ is equal to −αρ0w′T ′, where α is the coefficient of thermal expansion
and T ′ is the temperature fluctuation. Because this is often the case, the Monin–
Obukhov length is customarily defined as

L= u3
∗

−Kαg w′T ′
. (14.103)

14.7.1 Wind Mixing

As an application, consider the development of a turbulent mixed layer in the
upper ocean under the action of a wind stress (Fig. 14.12). Let us assume
that, initially, the ocean stratification is characterized by a uniform stratification
frequency N, so that the density increases linearly with depth according to

ρ=−ρ0N2

g
z, (14.104)

Wind stress: τ �ρ0u∗
2

z � 0
0

ρ1 ρ2

h

ρ � − ρ0N 2

g z

FIGURE 14.12 Development of a mixed layer in the ocean under the action of a wind stress.
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where z is the vertical coordinate measured negatively downward (z=0 is the
surface) and ρ is the density departure from the reference density ρ0, the initial
surface density. After sometime t, this stratification has been partially eroded,
and a mixed layer of depth h has developed (Fig. 14.12). In this layer, the den-
sity has been homogenized and, in the absence of surface heating, evaporation,
and precipitation, has become the average density that initially existed over that
depth:

ρ1=
ρ0N2h

2g
.

Below the mixed layer, density is still unchanged, ρ2=ρ(z=−h)=ρ0N2h/g,
and there exists a density jump

1ρ=ρ2−ρ1=
ρ0N2h

2g
. (14.105)

Mixing has caused upwelling of denser waters and downwelling of lighter
waters, thus raising the level of potential energy. The energy gain by time t is

PE=
0∫
−h

ρ1gz dz−
0∫
−h

ρgzdz

= 1

12
ρ0N2h3. (14.106)

Therefore, potential energy increases at the rate

dPE

dt
= 1

4
ρ0N2h2 dh

dt
. (14.107)

The supply of energy is provided by the surface wind. If the wind stress is τ ,
the turbulent friction velocity u∗ is given by Eq. (8.1) (see also Kundu, 1990,
Section 12.11):

τ =ρ0 u2
∗, (14.108)

and the rate of work performed by τ on fluid particles with typical velocities
u∗ is proportional to τu∗ or ρ0u3

∗. Introducing a coefficient of proportionality
m to account for the exact rate of work minus the portion diverted to kinetic-
energy production (which eventually dissipates), we state: dPE/dt=mρ0u3

∗, or
by virtue of Eq. (14.107),

N2h2 dh

dt
=4mu3

∗. (14.109)
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Observations and laboratory experiments suggest m=1.25. This last equation
can be readily integrated to obtain the instantaneous mixed-layer depth:

h=
(

12mu3
∗

N2
t

)1/3

. (14.110)

Of some interest here is the evaluation of the Monin–Obukhov length. As
the layer erodes the underlying stratification at the rate dh/dt, turbulence must
overcome the density jump 1ρ, causing a density flux at the base of the mixed
layer of magnitude

w′ρ′= dh

dt
1ρ

= 2mρ0u3
∗

gh
, (14.111)

by virtue of Eqs. (14.105) and (14.109). Based on this local flux value, the
Monin–Obukhov length (14.102) is found to be

L= 1

2mK
h. (14.112)

With the numerical values K=0.40 and m=1.25, L is exactly h. The exact
identity between L and h is fortuitous (especially since K is closer to 0.41 than
0.40), but it remains that the depth of the turbulent mixed layer is on the order
of the Monin–Obukhov length, thus imparting a direct physical meaning to the
latter.

The preceding considerations illustrate but one aspect of the development of
a mixed layer in the upper ocean. Much work has been done on this problem,
and the reader desiring additional information is referred to the book edited by
Kraus (1977) for a review and to the article by Pollard, Rhines and Thompson
(1973) for a particularly clear discussion of Coriolis effects and of the relevance
of the Richardson number. See also Section 8.7.

Considerations of mechanically induced mixing in the lower atmosphere
and above the ocean floor can be found, respectively, in Sorbjan (1989, Section
4.4.1) and in Weatherly and Martin (1978). A review of laboratory experiments
and associated theories is provided by Fernando (1991).

14.7.2 Penetrative Convection

Convection is defined as the process by which vertical motions modify the heat
distribution in the system. In the example at the end of the previous subsection,
the stirring of the upper ocean layer is caused by the mechanical action of the
wind stress, and convection is said to be forced. Natural, or free, convection
arises when the only source of energy is of thermal origin, such as an imposed
temperature difference or an imposed heat flux, and the motions associated with
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the convective process derive their energy from the work generated by buoyancy
forces as warm fluid rises and cold fluid sinks.

A common occurrence of natural convection in geophysical fluids is the
development of an unstable atmospheric boundary layer (Sorbjan, 1989). Dur-
ing daytime, the solar radiation traverses the atmosphere and reaches the earth
(ground or sea), where it is absorbed. The earth reemits this radiation in the
infrared range, thus effectively heating the atmosphere from below. As a result,
the lowest level of the atmosphere is usually an unstable, convective region,
called the atmospheric boundary layer. The existence of this layer is very ben-
eficial to humans because of the ventilation it causes. When the atmosphere is
stably stratified down to the ground, a situation called inversion, the air is still
and uncomfortable; moreover, if there is a source of pollution, this pollution
stagnates and can become harmful. Such is the situation in Los Angeles (USA)
when smog occurs (Stern, Boubel, Turner & Fox, 1984).

The intensity of stirring motions in natural convection depends, obviously,
on the strength of the thermal forcing, as well as on the resistance of the fluid
to move (viscosity) and to conduct heat (conductivity). A traditional example
is convection in a fluid layer of height h confined between two horizontal rigid
plates and heated from below. The forcing is the temperature difference 1T
between the two plates, the lower one being the hotter of the two. At low
temperature differences, the viscosity ν and heat diffusivity κT of the fluid
prevent convective motions, the fluid remains at rest, and the heat is carried
solely by molecular diffusion (conduction). As the temperature difference is
increased, everything else remaining is unchanged, the hot fluid at the bottom
will eventually float upward, and the cold fluid will sink from above.

If viscosity is the limiting factor, the amplitude of the convective veloci-
ties, w∗, can be estimated from a balance between the upward buoyancy force
−gρ′/ρ0∼αg1T (where α is the coefficient of thermal expansion) and the
retarding frictional force ν∂2w/∂z2∼νw∗/h2, yielding:

w∗ ∼
αg1T h2

ν
. (14.113)

Comparing the convective heat flux w′T ′∼w∗1T∼αg1T2h2/ν to the conduc-
tive flux κT∂T/∂z∼κT1T/h, we form the ratio

Ra= αg1T2h2/ν

κT1T/h
= αg1Th3

νκT
, (14.114)

which is known as the Rayleigh number, in honor of British scientist Lord
Rayleigh,10 who first studied this problem quantitatively (1916).

10Rayleigh was a contemporary of Kelvin. See the joint photograph at end of Chapter 9.
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Convection occurs, theories show (Chandrasekhar, 1961), when this number
exceeds a critical value, which depends on the nature of the boundary con-
ditions. For a fluid confined between two rigid plates, the critical Rayleigh
number is Ra=1708. At values slightly above the threshold, convection orga-
nizes itself in parallel two-dimensional rolls or in packed hexagonal cells. At
higher values of the Rayleigh number, erratic time-dependent motions develop,
and convection appears much less organized.

Geophysical fluids almost always fall in this last category because of the
large heights involved and the small values of molecular viscosity and conduc-
tivity of air and water. In the atmospheric boundary layer, where the Rayleigh
number typically exceeds 1015, convection is manifested by the intermittent for-
mation near the ground of warm pockets of air, called thermals, which then rise
through the convective layer; the circuit is completed by a weak subsidence of
colder air between the rising thermals. In such a situation, viscosity and heat
diffusivity play secondary roles, and the main characteristics of the flow do not
depend on them.

As an application, consider the development of an atmospheric boundary
layer from an initial, stable stratification under the action of a constant heat flux
supplied by the ground (Fig. 14.13). At time t=0, the air is assumed linearly
stratified with potential-temperature profile given by

T̄(z)=T0+0z, (14.115)

where T0 is the initial potential temperature at the ground and 0 is the verti-
cal potential-temperature gradient, corresponding to a stratification frequency
N=(αg0)1/2. The upward heat flux at the ground, denoted by ρ0CpQ, is
assumed constant. After some time t, convection has eroded the stratification up
to a height h(t). The temperature T(t) in the convective layer varies according

Warm groundT0 T
z � 0

h

Stable
atmosphere T̄�T 0

+�z

Ini
tia

l te
mpe

ra
tur

e

z � h

Q

FIGURE 14.13 An unstable atmospheric boundary layer. The heat supplied at the ground surface
generates convection, which progressively erodes the stratification above.
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to the instantaneous distribution of thermals but, on the average, appears to be
nearly constant with height. The heat budget for the intervening time requires
that the change in heat content of the affected fluid be equal to the accumulated
heat received from the ground,

ρ0Cp

h∫
0

(T− T̄)dz=
t∫

0

ρ0CpQ dt, (14.116)

and provides a first relation between the height of the convective layer and its
temperature:

h(T−T0)−
1

2
0h2 = Q t. (14.117)

Another relation between these two variables arises from the mechanical-
energy budget. Because there is no source of mechanical energy, the sum of the
kinetic and potential energies of the system decays with time under the action of
frictional forces. In first approximation, to be verified a posteriori, the amount
of kinetic energy and energy loss to friction are insignificant contributions com-
pared with the potential-energy changes undergone by the system. So, it suffices
to state in first approximation that potential energy, per unit area, at time t is
equal to that at the initial time:

h(t)∫
0

ρ0αTgz dz=
h(t)∫
0

ρ0αT̄gz dz, (14.118)

which yields

T−T0=
2

3
0h. (14.119)

Physically, this implies that the temperature rise at the ground is two-thirds
of the temperature change over the height h according to the initial temperature
gradient (Fig. 14.13). Oddly enough, the temperature in the upper third of the
convective layer has decreased, whereas the fluid undergoes an overall heating.
This is explained by the upward motion of colder air from below.

Together, Eqs. (14.117) and (14.119) provide the temporal evolution of the
thickness and potential temperature of the atmospheric boundary layer:

h=
√

6Qt

0
(14.120)

T=T0+
√

80Qt

3
. (14.121)
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The atmospheric boundary layer thus grows according to the square root of time.
This progressive erosion of the ambient stratification by convective motions is
termed penetrative convection.

We are now in a position to estimate the contribution of kinetic energy.
Because convection is accomplished by thermals that rise over the entire extent
of the layer, the convective overturns are as deep as the layer itself, and the
Monin–Obukhov length must be comparable to the layer thickness. Equating
these two quantities, we write

w3
∗

KαgQ
=h, (14.122)

where the symbol w∗ replaces u∗ to indicate that the turbulent motions are not
mechanically induced (such as by a shear stress) but are of thermal origin. This
equality yields a measure of the turbulent velocity w∗:

w∗= (KαghQ)1/3, (14.123)

which supersedes Eq. (14.113) when the Rayleigh number is so high that
viscosity is no longer the dominant parameter. The kinetic energy is then
estimated to be ρ0w2

∗h/2, and its ratio to the instantaneous potential energy
ρ0αg(T−T0)h2/2 is

KE

PE
∼ (Nt)−2/3, (14.124)

with the numerical coefficients discarded. In this last expression, N= (αg0)1/2

is the frequency of the undisturbed stratification. Because 1/N is typically on
the order of a few minutes while the atmospheric boundary layer develops over
hours, the product Nt is large, and we can justify the earlier neglect of the
kinetic-energy contribution to the overall energy budget. A fortiori, the decay
rate of kinetic energy by frictional forces is also unimportant in the overall
energy budget. Finally, it is worth noting that if w∗ is the velocity scale of
the rising thermals, the heat flux Q=w′T ′ is carried by those thermals with
their temperature differing from that of the descending fluid approximately by
T∗=Q/w∗.

The preceding application is but a simple example of convection in the atmo-
sphere. Generally, convective motions in the atmospheric boundary layer are
affected by numerous factors, including winds, which they in turn affect. A siz-
able body of knowledge has been accumulated on the physics of the atmospheric
boundary layer, and the interested reader is referred to Sorbjan (1989) or to
Garratt (1992).

In numerical models, convection may or may not be resolved depending on
its length scale compared with the size of the system. When convection occurs
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at scales too small to be resolved, numerical convective adjustment is used (see
Section 11.4).

ANALYTICAL PROBLEMS

14.1. A stratified shear flow consists of two layers of depth H1 and H2 with
respective densities and velocities ρ1, U1 and ρ2, U2 (left panel of
Fig. 14.1). If the lower layer is three times as thick as the upper layer
and the lower layer is stagnant, what is the minimum value of the upper
layer velocity for which there is sufficient available kinetic energy for
complete mixing (right panel of Fig. 14.1)?

14.2. In the ocean, a warm current (T=18◦C) flows with a velocity of 10
cm/s above a stagnant colder layer (T=10◦C). Both layers have iden-
tical salinities, and the thermal-expansion coefficient is taken as 2.54×
10−4 K−1. What is the wavelength of the longest unstable wave?

14.3. Formulate the Richardson number for a stratified shear flow with uniform
stratification frequency N and linear velocity profile, varying from zero at
the bottom to U at a height H. Then, relate the Richardson number to the
Froude number and show that instabilities can occur only if the Froude
number exceeds the value 2.

14.4. In an oceanic region far away from coasts and strong currents, the upper
water column is stably stratified with N=0.015 s−1. A storm passes by
and during 10 hours exerts an average stress of 0.2 N/m2. What is the
depth of the mixed layer by the end of the storm? (For seawater, take
ρ0=1028 kg/m3.)

14.5. An air mass blows over a cold ocean at a speed of 10 m/s and develops a
stable potential-temperature gradient of 8◦C per kilometer in the vertical.
It then encounters a warm continent and is heated from below at the rate
of 200 W/m2. Assuming that the air mass maintains its speed, what is the
height of the convective layer 60 km inshore? What is then a typical ver-
tical velocity of convection? (Take ρ0=1.20 kg/m3, α=3.5× 10−3 K−1,
and Cp=1005 J kg−1 K−1.)

14.6. For the growing atmospheric boundary layer, show that thermals rise
faster than the layer grows (w∗>dh/dt) and that thermals have a tem-
perature contrast less than the temperature jump at the top of the layer
[T∗<(T−T0)/2].

14.7. Why should eddy viscosity be considered positive? What happens to the
energy budget if νE≤0 ?
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14.8. Consider the following governing equation for the turbulent kinetic
energy k:

∂k
∂t
=νEM2−κEN2−ε

with Eqs. (14.63), (14.64), and (14.42) for fixed M2, N2, lm and cµ/c′µ=
0.7. Show that the solution is always nonnegative as long as the initial
value of k is nonnegative.

NUMERICAL EXERCISES

14.1. Assuming the turbulent kinetic energy budget is dominated by local pro-
duction and dissipation, how would you define a staggered grid for a
one-dimensional model of a water column?

14.2. Implement a numerical method that keeps the turbulent kinetic energy k
positive for decaying turbulence in a homogeneous k–ε model.

14.3. Show that for turbulence in statistical equilibrium, stability functions
depend only on the Richardson number.

14.4. Revisit the estimate of the computing power needed to simulate geophysi-
cal fluid dynamics down to the dissipation range, with microscale in mind
and for a typical value of ε=10−3 W/kg.

14.5. What to you think that the requirement should be on the vertical grid
spacing 1z compared with lm?

14.6. Implement a 1D model including a k–ε closure scheme. If help is needed,
look at kepsmodel.m, but do not cheat.

14.7. Use the program developed in Numerical Exercise 14.6 or kepsmodel.m
to simulate the case of wind-induced mixing of Analytical Problem 14.4.
In particular, consider the temporal evolution of the surface velocity in
hodograph form (u,v axes), with or without Coriolis force. Then repeat
the exercise but do not allow the wind to stop. Again, compare the situ-
ations with or without Coriolis force. To do so, trace in both cases, the
mixed-layer depth evolution as shown in Fig. 14.14.

14.8. Prove that Eq. (14.100) is the sufficient condition to ensure that the
numerical solution obtained with Eq. (14.98) converges toward the
equilibrium value c∗, remains positive, and never crosses the value c=c∗.

14.9. Simulate a convection case in the ocean with a uniform initial stratifica-
tion of N=0.015 s−1. Then apply a destabilizing heat loss of 200 W/m2
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FIGURE 14.14 A uniform stratification being erased by a constant surface wind. In the absence
of rotation, the mixed layer deepens (two profiles are shown in dashed lines). With rotation, the
mixed layer stabilizes (two profiles in solid lines), and the pycnocline is sharper. See Numerical
Exercise 14.7.

at the surface. Translate the heat flux into density anomaly flux and use
the 1D model without rotation. Start from rest. Implement a method to
detect the mixed-layer depth and trace its evolution over time. Do the
same for the wind-mixing case of Numerical Exercise 14.7. Compare with
the theoretical results of Section 14.7.
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Lewis Fry Richardson
1881–1953

Unlike many scientists of his generation and the next, Lewis Fry Richardson did
not become interested in meteorology because of a war. On the contrary, he left
his secure appointment at the Meteorological Office in England during World
War I to serve in a French ambulance convoy and tend the wounded. After the
war, he returned to the Meteorological Office (see historical note at the end of
Chapter 1), only to leave it again when it was transferred to the Air Ministry,
deeply convinced that “science ought to be subordinate to morals.”

Richardson’s scientific contributions can be broadly classified in three cat-
egories: finite-difference solutions of differential equations, meteorology, and
mathematical modeling of nations at war and in peace. The marriage of his first
two interests led him to conceive of numerical weather forecasting well before
computers were available for the task (see Section 1.9). His formulation of the
dimensionless ratio that now bears his name is found in a series of landmark
publications during 1919–1920 on atmospheric turbulence and diffusion. His
mathematical theories of war and peace were developed in search of rational
means by which nations could remain in peace.

According to his contemporaries, Richardson was a clear thinker and lec-
turer, with no enthusiasm for administrative work and a preference for solitude.
He confessed to being “a bad listener because I am distracted by thoughts.”
(Photo by Bassano and Vandyk, London)
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George Lincoln Mellor
1929–

George Mellor’s career has been devoted to fluid turbulence in its many forms.
His early interest in aerodynamics of jet engines and turbulent boundary lay-
ers soon yielded to a stronger interest in the turbulence of stratified geophysical
flows. In the mid 1970s, he developed with Tetsuji Yamada a closure scheme
to model turbulence in stratified flows, which is being used worldwide in atmo-
spheric and oceanographic applications. Their joint 1982 publication in Reviews
of Geophysics and Space Physics is one of the most widely cited papers in its
field.

Mellor is also known as the architect of the so-called Princeton Ocean
Model, nicknamed POM, which is used the world over to simulate ocean
dynamics, particularly in coastal regions and wherever turbulent mixing is
significant. He is the author of the textbook “Introduction to Physical Oceanog-
raphy” (American Institute of Physics, 1996). (Photo courtesy of Princeton
University)



Chapter 15

Dynamics of Stratified Rotating
Flows

ABSTRACT
Geostrophic motions can arise during the adjustment to density inhomogeneities and
maintain a stratified fluid away from gravitational equilibrium. The key is a relation-
ship between the horizontal density gradient and the vertical velocity shear, called the
thermal-wind relation. Oceanic coastal upwelling is considered as it is a good exam-
ple of rotating dynamics in a stratified fluid. Because large gradients and discontinuities
(fronts) can form during geostrophic adjustment, the numerical section shows how to
treat large gradients in computer models.

15.1 THERMAL WIND

Consider a situation where a cold air mass is wedged between the ground and
a warm air mass (Fig. 15.1). The stratification has then both vertical and hori-
zontal components. Mathematically, the density is a function of both height z
and distance x (say, from cold to warm). Now, assume that the flow is steady,
geostrophic, and hydrostatic:

−f v=− 1

ρ0

∂p

∂x
(15.1)

∂p

∂z
=−ρg. (15.2)

Here, v is the velocity component in the horizontal direction y, and p is the
pressure field. Taking the z-derivative of Eq. (15.1) and eliminating ∂p/∂z with
Eq. (15.2), we obtain

∂v

∂z
=− g

ρ0 f

∂ρ

∂x
. (15.3)

Therefore, a horizontal density gradient can persist in steady state if it is accom-
panied by a vertical shear of horizontal velocity. Where density varies in both
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FIGURE 15.1 Vertical shear
of a flow in the presence of
a horizontal density gradient.
The change of velocity with
height is called thermal wind.

horizontal directions, the following also holds:

∂u

∂z
=+ g

ρ0 f

∂ρ

∂y
. (15.4)

These innocent-looking relations have profound meaning. They state that
due to the Coriolis force, the system can be maintained in equilibrium, without
tendency toward leveling of the density surfaces. In other words, the rotation of
the earth can keep the system away from its state of rest without any continuous
supply of energy.

Notice that the velocity field (u, v) is not specified, only its vertical shear,
∂u/∂z and ∂v/∂z. This implies that the velocity must change with height. (In
the case of Fig. 15.1, ∂ρ/∂x is negative and ∂v/∂z is positive.) For example, the
wind speed and direction at some height above the ground may be totally differ-
ent from those at ground level. The presence of a vertical gradient of velocity
also implies that the velocity cannot vanish, except perhaps at some discrete
levels. Meteorologists have named such a flow the thermal wind.1

In the case of pronounced density contrasts, such as across cold and warm
fronts, a layered system may be applicable. In this case (Fig. 15.2), the system
can be represented by two densities (ρ1 and ρ2, ρ1<ρ2) and two velocities (v1
and v2). Relation (15.3) can be discretized into

1v

1z
=− g

ρ0 f

1ρ

1x
,

where we take 1v=v1−v2 and 1ρ=ρ2−ρ1 to obtain

v1−v2=−
g

ρ0 f
(ρ2−ρ1)

1z

1x
. (15.5)

The ratio 1z/1x is the slope of the interface. The equation is called the
Margules relation (Margules, 1906), although a more general form of the
relation for zonal flows was obtained earlier by Helmholtz (1888).

1Although thermal wind is a meteorological expression, oceanographers use it, too, to indicate a
sheared current in geostrophic equilibrium with a horizontal density gradient.
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v2 FIGURE 15.2 The layered
version of Fig. 15.1, which
leads to the Margules relation.

The thermal-wind concept has been enormously useful in analyzing both
atmospheric and oceanic data because observations of the temperature and other
variables that influence the density (such as pressure and specific humidity in
the air, or salinity in seawater) are typically much more abundant than velocity
data. For example, knowledge of temperature and moisture distributions with
height and of the surface wind (to start the integration) permits the calculation
of wind speed and direction above ground. In the ocean, especially in studies of
large-scale oceanic circulation, for which sparse current-meter data may not be
representative of the large flow due to local eddy effects, the basinwide distri-
bution may be considered unknown. For this reason, oceanographers typically
assume that the currents vanish at some great depth (e.g., 2000 m) and integrate
the “thermal-wind” relations from there upward to estimate the surface currents.
Although the method is convenient (the equations are linear and do not require
integration in time), we should keep in mind that the thermal-wind relation of
Eqs. (15.3) and (15.4) is rooted in an assumption of strict geostrophic balance.
Obviously, this will not be true everywhere and at all times.

15.2 GEOSTROPHIC ADJUSTMENT

We may now ask how situations like the ones depicted in Fig. 15.1 and 15.2
can arise. In the atmosphere, the temperature gradient from the warm tropics
to the cold polar regions creates a permanent feature of the global atmosphere,
although storms do alter the magnitude of this gradient in time and space. Ocean
currents can bring in near contact water masses of vastly different origins and
thus densities. Finally, coastal processes such as freshwater runoff can create
density differences between saltier waters offshore and fresher waters closer to
shore. Thus, a variety of mechanisms exists by which different fluid masses can
be brought in contact.

Oftentimes, the contact between different fluid masses is recent, and the flow
has not yet had the time to achieve thermal-wind balance. An example is coastal
upwelling: Alongshore winds create in the ocean an offshore Ekman drift, and
the depletion of surface water near the coast brings denser water from below
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FIGURE 15.3 A simple case of geostrophic adjustment.

(see later section in this chapter). Such a situation is initially out of equilibrium
and gradually seeks adjustment.

Let us explore in a very simple way the dynamical adjustment between two
fluid masses recently brought into contact. Let us imagine an infinitely deep
ocean that is suddenly heated over half of its extent (Fig. 15.3a). A warm upper
layer develops on that side, whereas the rest of the ocean, on the other side and
below, remains relatively cold (Fig. 15.3b). (We could also imagine a vertical
gate preventing buoyant water from spilling from one side to the other.) After
the upper layer has been created—or, equivalently, when the gate is removed—
the ocean is not in a state of equilibrium, the lighter surface water spills over
to the cold side, and an adjustment takes place. In the absence of rotation,
spilling proceeds, as we can easily imagine, until the light water has spread
evenly over the entire domain and the system has come to rest. But this sce-
nario, as we are about to note, is not what happens when rotational effects are
important.

Under the influence of the Coriolis force, the forward acceleration induced
by the initial spilling creates a current that veers (to the right in the northern
hemisphere) and can come into geostrophic equilibrium with the pressure dif-
ference associated with the density heterogeneity. The result is a limited spill
accompanied by a lateral flow (Fig. 15.3c).

To model the process mathematically, we use the reduced-gravity model
(12.19) on an f -plane and with reduced-gravity constant g′=g(ρ0−ρ1)/ρ0
according to the notation of Fig. 15.3b. We neglect all variations in the
y-direction, although we allow for a velocity, v, in that direction, and write
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∂u

∂t
+u

∂u

∂x
− f v=−g′

∂h

∂x
(15.6a)

∂v

∂t
+u

∂v

∂x
+ fu=0 (15.6b)

∂h

∂t
+ ∂

∂x
(hu)=0. (15.6c)

The initial conditions (i.e., immediately after the warming event) are u=v=0,
h=H for x<0, and h=0 for x>0. The boundary conditions are u,v→0 and
h→H as x→−∞, whereas the velocity component u at the front is given by
the material derivative u=dx/dt where h=0 at x=d(t), the moving point where
the interface outcrops. This nonlinear problem cannot be solved analytically, but
one property can be stated. Fluid parcels governed by the preceding equations
conserve the following form of the potential vorticity:

q= f +∂v/∂x

h
. (15.7)

Initially, all particles have v=0, h=H and share the same potential vortic-
ity q= f /H. Therefore, throughout the layer of light fluid and at all times, the
potential vorticity keeps the uniform value f /H:

f +∂v/∂x

h
= f

H
. (15.8)

This property, it turns out, allows us to relate the initial state to the final state
without having to solve for the complex, intermediate evolution.

Once the adjustment is completed, time derivatives vanish. Equation (15.6c)
then requires that hu be a constant; since h=0 at one point, this constant must
be zero, implying that u must be zero everywhere. Equation (15.6b) reduces to
zero equals zero and tells nothing. Finally, Eq. (15.6a) implies a geostrophic
balance,

−f v=−g′
dh

dx
, (15.9)

between the velocity and the pressure gradient set by the sloping interface.
Alone, Eq. (15.9) presents one relation between two unknowns, the velocity and
the depth profile. The potential-vorticity conservation principle (15.8), which
still holds at the final state, provides the second equation, thereby conveying the
information about the initial disturbance into the final state.

Despite the nonlinearities of the original governing Eqs. (15.6a)–(15.6c), the
problem at hand, Eqs. (15.8) and (15.9), is perfectly linear, and the solution is
relatively easy to obtain. Elimination of either v(x) or h(x) between the two
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equations yields a second-order differential equation for the remaining variable,
which admits two exponential solutions. Discarding the exponential that grows
for x→−∞ and imposing the boundary condition h=0 at x=d lead to

h=H

[
1−exp

(
x−d

R

)]
(15.10)

v=−
√

g′H exp

(
x−d

R

)
, (15.11)

where R is the deformation radius, defined by

R=
√

g′H
f

, (15.12)

and d is the unknown position of the outcrop (where h vanishes). To determine
this distance, we must again tie the initial and final states, this time by imposing
volume conservation.2 Ruling out a finite displacement at infinity where there
is no activity, we require that the depletion of light water on the left of x=0 be
exactly compensated by the presence of light water on the right, that is,

0∫
−∞

(H−h)dx=
d∫

0

hdx, (15.13)

which yields a transcendental equation for d, the solution of which is surpris-
ingly simple:

d=R=
√

g′H
f

. (15.14)

Thus, the maximum distance over which the light water has spilled in the
adjusted state is none other than the radius of deformation, hence the name of
the latter.

Notice that R has the Coriolis parameter f in its denominator. Therefore,
the spreading distance, R, is less than infinity because f differs from zero. In
other words, the spreading is confined because of the earth’s rotation via the
Coriolis effect. In a nonrotating framework, the spreading would, of course, be
unlimited.

Lateral heterogeneities are constantly imposed onto the atmosphere and
oceans, which then adjust and establish patterns whereby these lateral het-
erogeneities are somewhat distorted but maintained. Such patterns are at or
near geostrophic equilibrium and can thus persist for quite a long time. This
explains why discontinuities such as fronts are common occurrences in both the

2The reason why we use a volume conservation to determine the frontal position but let some energy
be lost from the system, and not the reverse, is rooted in the very different nature of mass and energy
propagation. The latter can be transported far away (to infinity) by waves without net displacement
of fluid, while mass propagation demands advection by the flow.
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atmosphere and the oceans. As the preceding example suggests, fronts and the
accompanying winds or currents take place over distances on the order of the
deformation radius. To qualify the activity observed at that length scale, mete-
orologists refer to the synoptic scale, whereas oceanographers prefer to use the
adjective mesoscale.

We can vary the initial, hypothetical disturbance and generate a variety
of geostrophic fronts, all being steady states. A series of examples, taken
from published studies, is provided in Fig. 15.4. They are, in order, as fol-
lows: surface-to-bottom front on a flat bottom, which can result from sudden
and localized heating (or cooling); surface-to-bottom front at the shelf break
resulting from the existence of distinct shelf and deep water masses; double,
surface-to-surface front; and three-layer front as a result of localized mixing
of an otherwise two-layer stratified fluid. The interested reader is referred to

Denser

Denser
Lighter

Lighter

Denser

Denser

Lighter
Mixed

(a)

(b)

(c)

(d)

Lighter

FIGURE 15.4 Various examples of geostrophic adjustment.
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the original articles by Rossby (1937, 1938), the article by Veronis (1956), the
review by Blumen (1972), and other articles on specific situations by Stommel
and Veronis (1980), Hsueh and Cushman-Roisin (1983), and van Heijst (1985).
Ou (1984) considered the geostrophic adjustment of a continuously stratified
fluid and showed that if the initial condition is sufficiently away from equilib-
rium, density discontinuities can arise during the adjustment process. In other
words, fronts can spontaneously emerge from earlier continuous conditions.

The preceding applications dealt with situations in which there is no varia-
tion in one of the two horizontal directions. The general case (see Hermann,
Rhines & Johnson, 1989) may yield a time-dependent flow that is nearly
geostrophic.

15.3 ENERGETICS OF GEOSTROPHIC ADJUSTMENT

The preceding theory of geostrophic adjustment relied on potential vorticity and
volume conservation principles, but nothing was said of energy, which must also
be conserved in a nondissipative system. All we can do, now that the solution
has been obtained, is to check on the budget, where a surprise is awaiting us!

Initially, the system is at rest, and there is no kinetic energy (KEi=0),
whereas the initial potential energy (per unit length in the transverse
direction) is3

PEi=
1

2
ρ0

0∫
−∞

g′H2 dx. (15.15)

Although this expression is infinite, only the difference with the final potential
energy will interest us. So, there is no problem. At the final state, the velocity u
is zero, leaving the kinetic energy to be

KEf =
1

2
ρ0

d∫
−∞

hv2 dx, (15.16)

and the potential energy is

PEf =
1

2
ρ0

d∫
−∞

g′h2 dx. (15.17)

During the spreading phase, some of the lighter water has been raised and
some heavier water has been lowered to take its place. Hence, the center of

3To verify that Eq. (15.15) is the correct form for the potential energy, solve Analytical Problem 12.2
and use as a template for demonstration the approach used in establishing energy conservation for
the two-layer system in Section 12.6.
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gravity of the system has been lowered, and we expect a drop in potential energy.
Calculations yield

1PE = PEi−PEf =
1

4
ρ0g′H2R. (15.18)

Some kinetic energy has been created by setting a transverse current. The
amount is

1KE=KEf −KEi=
1

12
ρ0 g′H2R. (15.19)

Therefore, as we can see, only one-third of the potential-energy drop has
been consumed by the production of kinetic energy, and we should ask: What
has happened to the other two-thirds of the released potential energy? The
answer lies in the presence of transients, which occur during the adjustment:
some of the time-dependent motions are gravity waves (here, internal waves on
the interface), which travel to infinity, radiating energy away from the region
of adjustment. In reality, such waves dissipate along the way, and there is a
net decrease of energy in the system. The ratio of kinetic-energy production to
potential-energy release varies from case to case (Ou, 1986) but tends to remain
between 1/4 and 1/2.

An interesting property of the geostrophically adjusted state is that it corre-
sponds to the greatest energy loss and thus to a level of minimum energy. Let
us demonstrate this proposition in the particular case at hand. The energy of the
system is at all times

E=PE+KE = ρ0

2

d∫
−∞

[
g′h2+h(u2+v2)

]
dx, (15.20)

and we know that the evolution is constrained by conservation of potential
vorticity:

f + ∂v
∂x
= f

H
h. (15.21)

Let us now search for the state that corresponds to the lowest possible level of
energy, (15.20), under constraint (15.21) by forming the variational principle:

F(h,u,v,λ)= ρ0

2

+∞∫
−∞

[
g′h2+h

(
u2+v2

)
−2λ

(
f + ∂v

∂x
− fh

H

)]
dx (15.22)

δF =0 for any δh,δu,δv and δλ. (15.23)

Because expression (15.20) is positive definite, the extremum will be a mini-
mum. The variations with respect to the three state variables h, u, and v and the
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Lagrange multiplier λ yield, respectively,

δh : g′h+ 1

2

(
u2+v2

)
+ f

H
λ=0 (15.24a)

δu : hu=0 (15.24b)

δv : hv+ ∂λ
∂x
=0 (15.24c)

δλ : f + ∂v
∂x
− f

H
h=0. (15.24d)

Equation (15.24b) provides u=0, whereas the elimination of λ between
Eqs. (15.24a) and (15.24c) leads to

∂

∂x

(
g′h+ 1

2
v2
)
+ f

H
(−hv)=0,

or

g′
∂h

∂x
+v

(
∂v

∂x
− f

H
h

)
=0.

Finally, use of Eq. (15.24d) reduces this last equation to

g′
∂h

∂x
− f v=0.

In conclusion, the state of minimum energy is the state in which u vanishes, and
the cross-isobaric velocity is geostrophic—that is, the steady, geostrophic state.

It can be shown that the preceding conclusion remains valid in the gen-
eral case of arbitrary, multilayer potential-vorticity distributions, as long as the
system is uniform in one horizontal direction. Therefore, it is a general rule
that geostrophically adjusted states correspond to levels of minimum energy.
This may explain why geophysical flows commonly adopt a nearly geostrophic
balance.

15.4 COASTAL UPWELLING

15.4.1 The Upwelling Process

Winds blowing over the ocean generate Ekman layers and currents. The depth-
averaged currents, called the Ekman drift, forms an angle with the wind, which
was found to be 90◦ (to the right in the northern hemisphere) according to a
simple theory (Section 8.6). So, when a wind blows along a coast, it generates
an Ekman drift directed either onshore or offshore, to which the coast stands
as an obstacle. The drift is offshore if the wind blows with the coast on its left
(right) in the northern (southern) hemisphere (Fig. 15.5). If this is the case, water
depletion occurs in the upper layers, and a low pressure sets in, forcing waters
from below to move upward and replenish at least partly the space vacated by
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FIGURE 15.5 Schematic development of coastal upwelling.

the offshore drift. This phenomenon is called coastal upwelling. The upward
movement calls for a replenishment at the lower levels, which is accomplished
by an onshore flow at depth. To recapitulate, a wind blowing along the coast
(with the coast on the left or the right in, respectively, the northern or the south-
ern hemisphere) sets an offshore current in the upper levels, an upwelling at the
coast, and an onshore current at lower levels.

This circulation in the cross-shore vertical plane is not the whole story, how-
ever. The low pressure created along the coast also sustains, via geostrophy, an
alongshore current, while vertical stretching in the lower layer generates relative
vorticity and a shear flow. Or, from a different perspective, the vertical displace-
ment creates lateral density gradients, which in turn call for a thermal wind, the
shear flow. The flow pattern is thus rather complex.

At the root of coastal upwelling is a divergent Ekman drift. And, we can
easily conceive of other causes besides a coastal boundary for such divergence.
Two other upwelling situations are noteworthy: one along the equator and the
other at high latitudes. Along the equator, the trade winds blow quite steadily
from east to west. On the northern side of the equator, the Ekman drift is to
the right, or away from the equator, and on the southern side, it is to the left,
again away from the equator (Fig. 15.6). Consequently, horizontal divergence
occurs along the equator, and mass conservation requires upwelling (Gill, 1982,
Chapter 11; Yoshida, 1959).

At high latitudes, upwelling frequently occurs along the ice edge, in the so-
called marginal ice zone. A uniform wind exerts different stresses on ice and
open water; in its turn, the moving ice exerts a stress on the ocean beneath.
The net effect is a complex distribution of stresses and velocities at various
angles, with the likely result that the ocean currents at the ice edge do not
match (Fig. 15.6). For certain angles between wind and ice edge, these cur-
rents diverge, and upwelling again takes place to compensate for the divergence
of the horizontal flow (Häkkinen, 1990).
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FIGURE 15.6 Other types of upwelling: (a) equatorial upwelling, (b) upwelling along the ice
edge.

The upwelling phenomenon, especially the coastal type, has been the subject
of considerable attention, chiefly because of its relation to biological oceanog-
raphy and, from there, to fisheries. In brief, small organisms in the ocean
(phytoplankton) proliferate when two conditions are met: sunlight and a sup-
ply of nutrients. In general, nutrients lie in the deeper waters, below the reach of
sunlight, and so the waters tend to lack either nutrients or sunlight. The major
exceptions are the upwelling regions, where deep, nutrient-rich waters rise to the
surface, receive sunlight, and stimulate biological activity. Upwelling-favorable
winds most generally occur along the west coasts of continents where the pre-
vailing winds blow toward the equator. For a review of observations and a
discussion of the biological implications of coastal upwelling, the interested
reader is referred to the volume edited by Richards (1981).

15.4.2 A Simple Model of Coastal Upwelling

Consider a reduced-gravity ocean on an f -plane ( f >0), bounded by a vertical
wall and subjected to a surface stress acting with the wall on its left (Fig. 15.5a).
The upper moving layer, defined to include the entire vertical extent of the
Ekman layer, supports an offshore drift current. The lower layer is, by virtue
of the choice of a reduced-gravity model, infinitely deep and motionless. In the
absence of alongshore variations, the equations of motion are

∂u

∂t
+u

∂u

∂x
− f v=−g′

∂h

∂x
(15.25a)

∂v

∂t
+u

∂v

∂x
+ fu= τ

ρ0h
(15.25b)

∂h

∂t
+ ∂

∂x
(hu)=0, (15.25c)
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where x is the offshore coordinate, τ is the alongshore wind stress, and all other
symbols are conventional (Fig. 15.5b).

Despite its apparent simplicity, the preceding set of equations is nonlinear,
and no analytical solution is known. We therefore linearize these equations by
assuming that the wind stress τ and, in turn, the ocean’s reaction are weak.
Noting h=H−a, where H is the depth of the undisturbed upper layer and a the
small upward displacement of the interface, we write

∂u

∂t
− f v=g′

∂a

∂x
(15.26)

∂v

∂t
+ fu= τ

ρ0H
(15.27)

−∂a

∂t
+H

∂u

∂x
=0. (15.28)

This set of equations contains two independent x-derivatives and thus calls
for two boundary conditions. Naturally, u vanishes at the coast (x=0) and a
vanishes far offshore (x→+∞).

The solution to the problem depends on the initial conditions, which may
be taken to correspond to the state of the rest (u=v=a=0). Yoshida (1955)
is credited with the first derivation of the problem’s solution (extended to two
moving layers). However, because of the fluctuating nature of winds, upwelling
is rarely an isolated event in time, and we prefer to investigate the periodic
solutions to the preceding linear set of equations. Taking τ = τ0 sinωt, where τ0
is a constant in both space and time, we note that the solution must be of the type
u=u0(x)sin ωt, v=v0(x)cos ωt and a=a0(x)cos ωt. Substitution and solution
of the remaining ordinary differential equations in x yield

u= f τ0

ρ0H
(

f 2−ω2
) [1−exp

(
− x

Rω

)]
sinωt (15.29a)

v= ωτ0

ρ0H
(

f 2−ω2
) [1− f 2

ω2
exp

(
− x

Rω

)]
cosωt (15.29b)

a= −f Rωτ0

ρ0g′Hω
exp

(
− x

Rω

)
cosωt, (15.29c)

where Rω is a modified deformation radius defined as

Rω=
√

g′H
f 2−ω2

. (15.30)

From the preceding solution, we conclude that the upwelling or downwelling
signal is trapped along the coast within a distance on the order of Rω. Far off-
shore (x→∞), the interfacial displacement vanishes, and the flow field includes
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the Ekman drift

uEk=
τ0

ρ0 fH
sinωt, vEk=0. (15.31)

At long periods such as weeks and months (ω� f ), the distance Rω becomes the
radius of deformation, the vertical interfacial displacements become very large
(indeed, the wind blows more steadily in one direction before it reverses), and
the far-field oscillations become much smaller than the Ekman drift. Obviously,
for very large vertical displacements and low frequency, we must ensure that the
linearization hypothesis remains valid, that is, |a|�H. In terms of the forcing
and with Rω'

√
g′H/f , this condition translates into

τ0

ρ0ωH
�
√

g′H, (15.32)

a condition for which an interpretation will soon be found.
At superinertial frequencies (ω> f ), the quantity Rω becomes imaginary,

indicating that the solution does not decay away from the coast but instead
oscillates. Physically, the ocean’s response is not trapped near the coast and
inertia-gravity waves (Section 9.3) are excited. These radiate outward, filling
the entire basin. Thus, depending on its frequency, the energy imparted by the
wind to the ocean may either remain localized or be radiated away.

15.4.3 Finite-Amplitude Upwelling

If the wind is sufficiently strong or is blowing for a sufficiently long time, the
density interface can rise to the surface, forming a front. Continued wind action
displaces this front offshore and exposes the colder waters to the surface. This
mature state is called full upwelling (Csanady, 1977). Obviously, the previous
linear theory is no longer applicable.

Because of the added complications arising from the nonlinearities, let us
now restrict our investigation to the final state of the ocean after a wind event of
finite duration. Equation (15.25b), expressed as

d

dt
(v+ fx)= τ

ρ0h
, (15.33)

where d/dt= ∂/∂t+u∂/∂x is the time derivative following a fluid particle in the
offshore direction, can be integrated over time to yield:

(v+ fx)at end of event−(v+ fx)initially= I. (15.34)

The wind impulse I is the integration of the wind-stress term,τ/ρ0h, over time
and following a fluid particle. Although the wind impulse received by every
parcel cannot be precisely determined, it can be estimated by assuming that the
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wind event is relatively brief. The time integral can then be approximated by
using the local stress value and replacing h by H:

I' 1

ρ0H

∫
event

τdt. (15.35)

If the initial state is one of rest, relation (15.34) implies that a particle ini-
tially at distance X from the coast is at distance x immediately after the wind
ceases and has an alongshore velocity v such that

v+ fx− f X= I. (15.36)

During the subsequent adjustment and until equilibrium is reached, Eq. (15.33)
(with τ =0) implies that the quantity v+ fx remains unchanged, and relation
(15.36) continues to hold after the wind has ceased.

If a spatially uniform wind blows over an ocean layer of uniform depth,
the drift velocity, too, is uniform, and no vorticity is imparted to fluid parcels.
Hence, potential vorticity is conserved during a uniform wind event over a uni-
form layer (see also Analytical Problem 15.9). After the event, in the absence of
further forcing, potential vorticity remains conserved throughout the adjustment
phase:

1

h

(
f + ∂v

∂x

)
= f

H
. (15.37)

Once a steady state has been achieved, there is no longer any offshore veloc-
ity (u=0), according to Eq. (15.25c). The remaining equation (15.25a), reduces
to a simple geostrophic balance, which together with Eq. (15.37) provides the
solution:

h=H−A exp
(
− x

R

)
(15.38)

v=A

√
g′

H
exp

(
− x

R

)
, (15.39)

where R is now the conventional radius of deformation (
√

g′H/f ). The constant
of integration A represents the amplitude of the upwelled state and is related to
the wind impulse via Eq. (15.36). Two possible outcomes must be investigated:
either the interface has not risen to the surface (Fig. 15.7, case I) or it has out-
cropped, forming a front and leaving cold waters exposed to the surface near
the coast (Fig. 15.7, case II).

In case I, the particle initially against the coast (X=0) is still there (x=0),
and relation (15.36) yields v(x=0)= I. Solution (15.39) meets this condition if
A= I(H/g′)1/2. The depth along the coast, h(x=0)=H−A, must be positive
requiring A≤H; that is, I≤ (g′H)1/2. In other words, the no-front situation or
partial upwelling of case I occurs if the wind is sufficiently weak or sufficiently
brief that its resulting impulse is less than the critical value (g′H)1/2.
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FIGURE 15.7 The two possible outcomes of coastal upwelling following an alongshore wind of
finite duration. After a weak or brief wind (case I), the interface has upwelled but not to the point
of reaching the surface. A strong or prolonged wind event (case II) causes the interface to reach
the surface, where it forms a front; this front is displaced offshore, leaving cold waters from below
exposed to the surface. This latter case corresponds to a mature upwelling that favors biological
activity.

In the more interesting case II, the front has been formed, and the particle
initially against the coast (X=0) is now at some offshore distance (x=d≥0),
marking the position of the front. There the layer depth vanishes, h(x=d)=0,
and solution (15.38) yields A=H exp(d/R). The alongshore velocity at the front
is, according to (15.39), v(x=d)= (g′H)1/2. Finally, relation (15.36) leads to
the determination of the offshore displacement d in terms of the wind impulse:

d= I

f
−R. (15.40)

Since this displacement must be a positive quantity, it is required that I≥
(g′H)1/2. Physically, if the wind is sufficiently strong or sufficiently prolonged,
so that the net impulse is greater than the critical value (g′H)1/2, the density
interface rises to the surface and forms a front that migrates away from shore,
leaving cold waters from below exposed to the surface. Note how the conditions
for the realizations of cases I and II complement each other.
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FIGURE 15.8 Decomposition of the formation of a coastal-upwelling front as a two-stage pro-
cess: first, an offshore Ekman drift in response to the wind, followed by a backward geostrophic
adjustment.

Note in passing how condition (15.32) can now be interpreted. Its left-hand
side is the wind impulse over a time period 1/ω, which must be small compared
to the critical value (g′H)1/2, in order to remain far away from the outcropping
situation, which would invalidate the linearization assumption.

Formula (15.40) has a simple physical interpretation as sketched in Fig. 15.8.
The offshore Ekman velocity uEk is the velocity necessary for the Coriolis force
to balance the alongshore wind stress:

uEk=
τ

ρ0 fh
, (15.41)

according to Eq. (8.34a). Integrated over time, this yields a net offshore
displacement proportional to the wind impulse

xEk=
I

f
. (15.42)

If we were now to assume that the wind is responsible for an offshore shift of this
magnitude, whereas the surface waters are moving as a solid slab, we would get
the intermediate structure of Fig. 15.8. But such a situation cannot persist, and
an adjustment must follow, causing an onshore spread similar to that considered
in Section 15.2—that is, over a distance equal to the deformation radius. Hence,
we have the final structure of Fig. 15.8 and formula (15.40).

15.4.4 Variability of the Upwelling Front

Up to this point, we have considered only processes operating in the offshore
direction or, equivalently, an upwelling that occurs uniformly along a straight
coast. In reality, the wind is often localized, the coastline not straight, and
upwelling not at all uniform. A local upwelling sends a wave signal along the
coast, taking the form of an internal Kelvin wave, which in the northern hemi-
sphere propagates with the coast on its right. This redistribution of information
not only decreases the rate of upwelling in the forced region but also generates
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upwelling in other, unforced areas. As a result, models of upwelling must retain
a sizable portion of the coast and both spatial and temporal variations of the
wind field (Crépon and Richez, 1982; Brink, 1983).

Because the upwelling front is a region of highly sheared currents, it is a
likely region of instabilities. In the two-layer formulation presented in the previ-
ous section, this shear is manifested by a discontinuity of the current at the front.
The warm layer develops anticyclonic vorticity (i.e., counter to the rotation of
the earth) under the influence of vertical squeezing and flows alongshore in the
direction of the wind. On the other side of the front, the exposed lower layer
is vertically stretched, develops cyclonic vorticity (i.e., in the same direction as
the rotation of the earth), and flows upwind. The currents on each side of the
front thus flow in opposite directions, causing a large shear, which, as we have
seen (Chapter 10), is vulnerable to instabilities. In addition to the kinetic-energy
supply in the horizontal shear (barotropic instability), potential energy can also
be released from the stratification by a spreading of the warm layer (baroclinic
instability; see Chapter 17). Offshore jets of cold, upwelled waters have been
observed to form near capes; these jets cut through the front, forge their way
through the warm layer, and eventually split to form pairs of counter-rotating
vortices (Flament, Armi & Washburn, 1985). This explains why mesoscale tur-
bulence is associated with upwelling fronts (see, e.g., Fig. 15.9 and the article
by Strub, Kosro & Huyer, 1991).

The situation is complex and demands careful modeling. Irregularities in the
topography and coastline may play influential roles and require adequate spatial
resolution, whereas accurate simulation of the instabilities is only possible if
numerical dissipation is not excessive in the model.

15.5 ATMOSPHERIC FRONTOGENESIS

Atmospheric fronts are sharp boundaries between cold and warm air masses and
have become familiar features of daily weather forecasts. A cold front, depicted
in weather charts as a line with spikes (Fig. 15.10), occurs when a colder air
mass overtakes a warmer air mass, thus lowering the temperature where it
passes. In contrast, a warm front, depicted in weather charts as a line with semi-
circles, occurs when a warm air mass overtakes a cold air mass, thereby raising
the local temperature. The process by which sharp temperature gradients nat-
urally form in the atmosphere is called frontogenesis and is readily identified
on temperature maps (Fig. 15.11). The word front was first coined by Vilhelm
Bjerknes4 who initiated the study of cyclone and front formation during World
War I and suggested an analogy between the meeting of two atmospheric air
masses and a military line, called a front. The study of frontogenesis has a long
history, and the reader may wish to consult the seminal papers of Sawyer (1956),

4See biography at the end of Chapter 3.
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FIGURE 15.9 SeaWiFS satellite image of the North American Pacific coast showing the occur-
rence of coastal upwelling from Baja California (Mexico) to Vancouver Island (Canada). Shades
indicate the amount of chlorophyll concentration in the water, with high values (lighter shades) in
regions of high biological activity and low values (darker shades) in biologically inactive waters.
Note how instabilities greatly distort the upwelling front. (Composite image provided courtesy of
Dr. Andrew Thomas, School of Marine Sciences, University of Maine, USA).
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FIGURE 15.10 Typical evolution of fronts approaching Belgium (the dark-shaded country).
Warm fronts are identified by semicircles, cold fronts by triangles. The side of the front on which
the symbols are plotted indicates the direction of the frontal movement. For the cold front in the
lower center of the first panel, there is cold air on the western side of the front, which is moving
eastward. Indeed, by the next day (middle panel), the front has passed over Belgium from west to
east. A day later (right panel), this front has disappeared from the map. Meanwhile, a warm front
has appeared from the west followed by a cold front rapidly catching up with it. Once the cold front
has overtaken the warm front, the warm air that was in the wedge between fronts has been lifted up
and is no longer present at the surface. The new front, called an occluded front, has cold air on both
sides. It is depicted by alternating semicircles and triangles (upper-central part of the right panel).
(Royal Meteorological Institute Belgium)
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FIGURE 15.11 Temperature field
corresponding to the middle panel of
Fig. 15.10. Note how the cold front
is chasing the warm air eastward.
Some of the warm air is also lifted
by the advancing cold air, creating
condensation. This explains the rainfall
accompanying cold fronts. (Royal
Meteorological Institute Belgium)

Eliassen (1962), and Hoskins and Bretherton (1972). A more detailed mathe-
matical presentation than the one given here can be found in Pedlosky (1987,
Section 8.4).

The physical processes involved in frontogenesis are complex, and we will
start the analysis with a kinematic study to understand how a given velocity
field can lead to a deformation of a thermal distribution that intensifies temper-
ature gradients. Because observations reveal that the generation of a front is a
relatively fast process, typically taking no more than a day, we may neglect local
heating effects. Also, creating a front by local differential heating would require
heat fluxes that exhibit sharp gradients, an unlikely situation. Hence, we focus
on temperature changes induced by advection only.
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The simplest example (Fig. 15.12) assumes a horizontal velocity field
given by

u=ωx, v=−ωy (15.43)

in which ω is a deformation rate. We note that this velocity fields satisfies
volume conservation

∂u

∂x
+ ∂v
∂y
=0, (15.44)

implying that the vertical velocity is zero over a flat surface, which we assume.
Suppose now that this flow field advects a temperature field with ini-

tial gradient in the y-direction. Neglecting turbulent mixing, compressibility,
and heating, temperature is conserved by individual fluid parcels, and the
temperature field is is governed by the advection equation:

dT

dt
= ∂T

∂t
+u

∂T

∂x
+v

∂T

∂y
=0. (15.45)

A differentiation of this equation with respect to x gives

d

dt

(
∂T

∂x

)
=−ω∂T

∂x
. (15.46)
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FIGURE 15.12 Frontogenesis induced by the flow field u=ωx, v=−ωy. A collection of fluid
parcels forming a rectangle around x=0, y=0.9 stretches in the x-direction as it progresses down-
stream. By the time parcels have reached y=0.2 (lower rectangle in the figure), convergence in the
y-direction has squeezed the fluid parcels, as required by volume conservation to compensate for the
divergence in the x-direction. The rear parcels have partly caught up with the front parcels. With-
out heating or cooling, temperature is conserved by individual fluid parcels, and any pre-existing
temperature gradient in the y-direction is intensified. A front occurs when an infinite temperature
gradient can be formed in a finite time. (Frontogenesis.m may be used to track other groups
of fluid parcels.)
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Since the initial temperature gradient was exclusively in the y-direction, it
follows that ∂T/∂x was initially zero and remains zero at all subsequent times.
Hence, the temperature gradient may change in intensity but not in direction.

More interestingly, differentiation of Eq. (15.45) with respect to y yields

d

dt

(
∂T

∂y

)
=ω∂T

∂y
, (15.47)

which shows that the magnitude of the temperature gradient increases exponen-
tially with time:

∂T

∂y
= ∂T

∂y

∣∣∣∣
t=0

eωt, (15.48)

following a fluid parcel. The evolution of the y position of a given air parcel is
governed by

dy

dt
=v=−ωy ⇒ y= y0e−ωt. (15.49)

Hence, all fluid parcels are converging toward y=0. In other words, two parcels
with identical x coordinates initially separated by a distance δy0 see their dis-
tance shrink over time. Because each conserves its initial temperature, the
temperature gradient increases accordingly.

We now understand how advection can intensify temperature gradients, but
by keeping the flow field unchanged, we omitted to consider the fact that the
increasing thermal gradient can in turn affect the dynamics. Indeed, a stronger
thermal gradient is bound to produce a larger thermal wind, and this is expected
to modify the wind velocity that advects the temperature. In other words, there
is two-way coupling between velocity and temperature fields. This, it turns out,
accelerates the process, and an infinite temperature gradient can be reached in a
finite time.

As dynamics accelerate and shorter length scales arise, geostrophy is in jeop-
ardy, and our model needs to retain the effects of nonlinear acceleration (inertia).
However, frontal regions are characterized by strong spatial anisotropy, with
steep variations across the front and weak variations along the front. Thus, our
model may retain geostrophy in one direction. This leads to a semigeostrophic
approach (Hoskins & Bretherton, 1972).

With the x-axis aligned with the front, the strong gradients are in the y-
direction, and the geostrophic velocity component is u. The weaker v velocity
is the one for which geostrophic breaks down. Density (function of tempera-
ture) is retained as a dynamically important variable, and the semigeostrophic
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equations on the f -plane are

du

dt
− f v = − 1

ρ0

∂p

∂x
(15.50a)

+fu = − 1

ρ0

∂p

∂y
(15.50b)

−αgT = − 1

ρ0

∂p

∂z
(15.50c)

∂u

∂x
+ ∂v
∂y
+ ∂w

∂z
= 0 (15.50d)

dT

dt
= 0, (15.50e)

which forms a set of five equations for five variables, namely the three velocity
components (u, v, w), pressure p and temperature T . Note that the density was
eliminated by using a linear equation of state and that T is measured from the
temperature at which density is ρ0.

The acceleration term du/dt is kept next to the Coriolis term f v in the first
equation because u is large and v small, breaking geostrophic balance in the
x-momentum budget. Note also that the full material derivative is retained in
the first and last equations:

d

dt
= ∂

∂t
+u

∂

∂x
+v

∂

∂y
+w

∂

∂z
. (15.51)

The thermal wind balance is obtained by combining the z-derivative of
Eq. (15.50b) with the y-derivative of (15.50c):

∂u

∂z
=−αg

f

∂T

∂y
. (15.52)

Next, we define the following quantity:

q=
(

f − ∂u

∂y

)
∂T

∂z
+ ∂u

∂z

∂T

∂y
, (15.53)

which is a form of potential vorticity. This q variable is useful because it is
conserved by moving fluid parcels. Indeed, some tedious algebra shows that the
preceding equations yield the simple conservation equation:

dq

dt
=0. (15.54)

To work with a model that is as simple as possible, we restrict our attention
to a flow in which q is initially zero everywhere. With q conserved by fluid
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parcels over time, q remains zero everywhere at all subsequent times:

(
f − ∂u

∂y

)
∂T

∂z
+ ∂u

∂z

∂T

∂y
=0. (15.55)

As we will see shortly, this type of flow has simple attributes that facilitate
mathematical developments, but it is not degenerate.

We now become more specific about the flow field, choosing the deforma-
tion field used earlier in this section with the addition of terms to reflect the fact
that sharpening thermal gradients will affect the thermal wind balance and thus
the flow field itself. We assume a solution of the type

u = +ωx+u′(y,z, t) (15.56a)

v = −ωy+v′(y,z, t) (15.56b)

p = −ρ0 fωxy− 1

2
ρ0ω

2x2+p′(y,z, t) (15.56c)

w = w(y,z, t) (15.56d)

T = T(y,z, t). (15.56e)

In writing these expressions, care was taken to include in the pressure field terms
that are in geostrophic balance with the basic deformation field (ωx, −ωy).
Further, because of the anisotropy of the front, we anticipate that all compo-
nents aside from the basic deformation field are independent of the coordinate x.
Insertion into Eqs. (15.50) yields

du′

dt
+ωu′− f v′ = 0 (15.57a)

fu′ = − 1

ρ0

∂p′

∂y
(15.57b)

αρ0gT = ∂p′

∂z
(15.57c)

∂v′

∂y
+ ∂w

∂z
= 0 (15.57d)

dT

dt
= 0. (15.57e)

No linearization was applied, and the material derivative in Eqs. (15.57a) and
(15.57e) is the original one except for the x-derivative, which is now nil. We
carefully note that the total velocity v appears in this material derivative. The
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thermal-wind relation (15.52) and q=0 equation (15.55) become

∂u′

∂z
=−αg

f

∂T

∂y
(15.58)(

f − ∂u′

∂y

)
∂T

∂z
+ ∂u′

∂z

∂T

∂y
=0. (15.59)

Next, we define the so-called geostrophic coordinate

Y= y− u′

f
, (15.60)

which combines the y coordinate along which gradients occur and the flow in
the transverse direction. This quantity has a simple material derivative:

dY

dt
=−ωY (15.61)

because dy/dt=v. With this new variable substituting for u′, Eq. (15.59)
(expressing q=0) becomes

∂Y

∂y

∂T

∂z
− ∂Y

∂z

∂T

∂y
=0, (15.62)

which can be recast as

−∂Y/∂y

∂Y/∂z
=−∂T/∂y

∂T/∂z
=S. (15.63)

This last equation states that the slope S of the Y lines in the vertical plane (y,
z) is everywhere equal to the slope of the T lines. This means that the lines of
constant Y coincide with the lines of constant T (isotherms), and we can write

Y=Y(T, t), (15.64)

expressing the fact that in the (y, z) plane, the function Y is constant where T is
constant. Here, time t plays the role of a parameter.

Exploiting the thermal-wind relation (15.58), the slope S of isotherms can
be expressed in terms of Y and T as

S=−∂T/∂y

∂T/∂z
=− f 2

αg

∂Y/∂z

∂T/∂z
=− f 2

αg

∂Y

∂T
, (15.65)

which takes advantage of the fact that Y is a function of T . This makes that
S, too, is a function of only temperature T (and, parametrically, time t). Logic
then imposes that if S is unchanging along an isotherm, this isotherm has uni-
form slope and is thus a straight line. It follows that all isotherms are straight
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lines.5 Note that the slope may vary from isotherm to isotherm, with some more
inclined than others, and that the slope of an individual isotherm may change
over time.

Next, we return to Eq. (15.61) governing the temporal evolution of Y . Using
the fact that Y is not a function of x but a function of only T and time, and the
fact that dT/dt=0, we obtain

dY

dt
= ∂Y

∂t

∣∣∣∣
T=const

+ ∂Y

∂T

dT

dt
(15.66)

∂Y

∂t

∣∣∣∣
T=const

=−ωY. (15.67)

Its solution is

Y=Y0(T)e
−ωt, (15.68)

in which Y0 is the initial distribution of Y , a function of T only, which we do not
need to specify.

Passing from Y to S with Eq. (15.65), we have

S=− f 2

αg

dY0

dT
e−ωt. (15.69)

The slope of each isotherm is thus reduced over time6 but more so along certain
isotherms than others. It now remains to determine how different isotherms can
be compared to one another.

To obtain displacements, we first integrate the v velocity component verti-
cally between horizontal and impermeable (w=0) boundaries, for example, a
flat land or sea surface below and the tropopause above (Fig. 15.13) Volume
conservation (15.57d) dictates

∂ v̄

∂y
=−ω (15.70)

where v̄ is the vertical average of the full velocity component v (not just
v′!). Assuming that the v velocity is the deformation field −ωy at large dis-
tances from the region of interest, the frontal region, Eq. (15.70) tells that the
average velocity v̄ is everywhere−ωy. This means that a fluid column, on aver-
age, moves toward y=0 and that the y distance between neighboring columns
decreases exponentially over time.

5That isotherms are straight lines can be traced to the choice q=0.
6This can also be proven by direct manipulation of the governing equations, see Analytical
Problem 15.13.
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FIGURE 15.13 The distance 1 between two isopycnals at mid-height decreases over time as
1=10e−ωt .

Because tilting around z=H/2 does not change the volume between two
isotherms, which are material surfaces since T is a conserved quantity, the dis-
tance 1 between two lines at midlevel z=H/2 must decrease exponentially
according to 1=10e−ωt. This means that the y position of a given isotherm at
midlevel z=H/2 is none other than the geostrophic coordinate Y . Further, by
definition of the slope S, we are entitled to write explicitly

Y= y− z−H/2

S
. (15.71)

While this last equation appears to give Y in terms of y and z, it is best to see it
as giving the (y, z) structure of the isotherms in terms of the variables Y and S,
which depend only on T and time. Since we know how Y and S vary in time, we
can determine the evolution of each isotherm from its initial state.

Given an initial, monotonic temperature distribution at z=H/2, say

T(y,z=H/2, t=0)=F(y), (15.72)

the inverse function G=F−1, which exists because F is monotonic, provides
the initial distribution of the geostrophic coordinate in terms of temperature

Y0=G(T), (15.73)

since Y= y at z=H/2. Note that, like F, the function G is monotonic, too. The
initial slope of an isotherm is known to be

S0(T)=−
f 2

αg

dY0

dT
. (15.74)
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We then proceed with the relations Y=Y0e−ωt and S=S0e−ωt to track indi-
vidual isotherms over time. Figure 15.14 shows a plot made using the code
sgfrontogenesis.m using an initial temperature distribution F with a slightly
enhanced gradient near y=0.

We note that isotherms become gradually less steep, according to
Eq. (15.69). This is a form of gravitational relaxation with the denser fluid
(colder air in the lower left region) intruding under and lifting the lighter fluid
(warmer air in the upper right region). Slacking of isotherms is accentuated in
the center where the initial temperature gradient was slightly larger (smaller
value of |dY0/dT|). Gradually, some isotherms overtake their neighbors and
begin to cross. A pair of discontinuities forms in a finite time. Discontinuities
first appear at the top and bottom boundaries and then propagate inward, toward
midlevel, where they eventually meet. Physically, a temperature discontinuity
is interpreted as a front, a place where temperature varies very rapidly over a
very short distance. Note that on the lower (upper) boundary, the discontinuity
appears for a positive (negative) value of y, which is on the warm (cold) side of
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FIGURE 15.14 Evolution of isotherms in a vertical plane during frontogenesis. Note how
isotherms become gradually less steep in the center. Eventually (last panel), some isotherms over-
take their neighbors and overlap occurs. Physically, a discontinuity, which we call a front, has been
formed in a finite time. Note that discontinuities first appear at the top and bottom boundaries. Later
(not shown), they propagate inward, toward the midlevel.
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the convergence region defined from the basic deformation flow v=−ωy. The
shift is attributed to the v′ component of the flow field.

According to Eq. (15.71), the intersection of an isotherm with the bottom
surface (z=0) occurs at position

yb=Y− H

2S
=Y0e−ωt− H

2S0
e+ωt, (15.75)

or, using Eq. (15.74),

yb=Y0e−ωt+ αgH

2f 2

1

dY0/dT
e+ωt

=Y0e−ωt+ αgH

2f 2

dT

dY0
e+ωt. (15.76)

Two neighboring isotherms begin to intersect when their ground position
coincides, that is, when they share the same ground position yb while retain-
ing their distinct temperatures. Mathematically, this is expressed by a vanishing
variation of yb for a nonzero variation of T , that is

∂yb

∂T
=0. (15.77)

Switching from the variable T to the variable Y0, which is in monotonic relation
with it, (15.73), we may transform the preceding condition into

∂yb

∂Y0
=0, (15.78)

which yields

e−ωt+ αgH

2f 2

d2T

dY2
0

eωt=0. (15.79)

In this last equation, the second derivative d2T/dY2
0 is known from the initial

temperature distribution at midlevel, Eqs. (15.72) and (15.73). Therefore, for
every isotherm for which this second derivative is negative, there exits a finite
time t given by

t= 1

2ω
ln

[
2f 2

αgH(−d2T/dY2
0 )

]
(15.80)

for which condition (15.77) is met. At that time, the isotherm begins to intersect
its neighbor, and a temperature discontinuity appears. A front occurs at time tf
that is the shortest of all possible times t given above:

tf =
1

2ω
ln

[
2f 2

αgH|d2T/dY2
0 |max

]
. (15.81)
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To make this result somewhat more concrete, imagine the coordinate y running
northward and toward colder air (case of Fig. 15.14). In that case, dY0/dT is
negative and so is dT/dY0. Finding the maximum of negative d2T/dY2

0 is then
equivalent to selecting the isotherm marking the place where the initial midlevel
temperature decreases fastest with latitude.

Once isotherms begin to intersect, the temperature field becomes multival-
ued, and the mathematical solution loses physical significance. In reality, dissi-
pative process (dynamic instabilities, friction, and diffusion) become significant,
keeping temperature as a unique function of space and thermal gradients large
but finite.

15.6 NUMERICAL HANDLING OF LARGE GRADIENTS

A common characteristic of the preceding sections is the appearance and motion
of strong gradients, which we call fronts. If we were to apply numerical tech-
niques on a fixed grid to describe such fronts, we would immediately face the
problem of needing very high spatial resolution. Indeed, to represent adequately
a front in the horizontal, we would need to ensure 1x�L, where 1x is the
horizontal grid spacing and L the frontal length scale to be resolved, and this
length scale L can become very small across a front. High resolution span-
ning the model domain is most often very expensive computationally, and it
would be preferable to restrict high resolution to the frontal region. This can
be achieved by nesting approaches, that is, embedding higher resolution mod-
els into coarser resolution models where needed (e.g., Barth, Alvera-Azcárate,
Rixen & Beckers, 2005; Spall & Holland, 1991). In this case, the abrupt change
in grid size at the junction between models may lead to numerical problems and
require particular care (Numerical Exercise 15.9). To improve the method, we
can allow the grid spacing to vary gradually, rather than suddenly, across the
domain.

Such a method based on variable resolution was already suggested when we
discussed time discretization (see Fig. 4.10). At that point, we mentioned the
problem of a sudden reduction in timescale, which we overcame with shorter
time steps during the duration of the event. Our concern now is with space
discretization, and we seek a method that uses nonuniform resolution in some
optimal way.

We first distribute a series of points xi according to a known function, say
f (x), which may or may not be directly related to one of the variables of the
problem, and think that an optimal placement of points is such that, on average,
differences in f are similar between adjacent points. In this way, regions of large
variations of f will be more densely covered than regions of mild variations. To
keep variations constant from point to point, that is

| fi+1− fi|= const, (15.82)
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where fi stands for the known value of f at location xi, we seek a monotonic
coordinate transformation of the type

x= x(ξ, t) (15.83)

with the variable ξ uniformly distributed while x is not. In terms of the new
coordinate ξ , uniform variation in f means∣∣∣∣ ∂f

∂ξ

∣∣∣∣= const, (15.84)

or, after taking the derivative with respect to ξ ,

∂

∂ξ

∣∣∣∣ ∂f

∂ξ

∣∣∣∣=0. (15.85)

If we express the variations of f in terms of its original and physical variable x,
the problem reduces to finding the function x(ξ) that satisfies

∂

∂ξ

(∣∣∣∣∂f

∂x

∣∣∣∣ ∂x

∂ξ

)
=0. (15.86)

Since we are interested in discretized problems, we search for the discrete
positions xi that obey∣∣∣∣∂f

∂x

∣∣∣∣
i+1/2

(xi+1−xi)−
∣∣∣∣∂f

∂x

∣∣∣∣
i−1/2

(xi−xi−1)=0, (15.87)

in which we have taken 1ξ =1 without loss of generality.
This equation is nonlinear because derivatives of f must be calculated at yet

unknown locations. To overcome this quandary, an iterative method is used (see
iterative solvers of Section 5.6):

x(k+1)
i = x(k)i +α1t

[∣∣∣∣∂f

∂x

∣∣∣∣
i+1/2

(
x(k)i+1−x(k)i

)
−
∣∣∣∣∂f

∂x

∣∣∣∣
i−1/2

(
x(k)i −x(k)i−1

)]
,

(15.88)

in which the superscript (k) is merely an index counting the iterations on the
way to the solution, that is, a pseudo-time. If the method converges, x(k+1)

i = x(k)i
eventually, and the vanishing of the bracketed part in Eq. (15.88) tells that the
solution has been found.

The preceding iterative method can be interpreted as the numerical solution
of a pseudo-evolution equation for the grid nodes:

∂x

∂t
=α ∂

∂ξ

(∣∣∣∣∂f

∂x

∣∣∣∣ ∂x

∂ξ

)
, (15.89)
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where the coefficient α is an adjustable numerical parameter that determines
how quickly the solution is obtained. If the numerical calculation of the gra-
dients of f proceeds with straightforward centered differences, then the rule of
iteration (15.88) reduces to

x(k+1)
i = x(k)i +α1t

[∣∣∣ f (k)i+1− f (k)i

∣∣∣− ∣∣∣ f (k)i − f (k)i−1

∣∣∣], (15.90)

in which f (k)i stands for f (x(k)i ). The algorithm is complemented with prescribed
values of x on the known boundary positions.

A problem with this formulation appears when the function f is constant
over large parts of the domain. By construction, such regions will be void of
grid nodes because there are no variations of f there. The remedy is to induce
a tendency toward a uniform point distribution where the gradient of f is weak,
such as with

x(k+1)
i = x(k)i +α1t

[
wi+1/2

(
x(k)i+1−x(k)i

)
−wi−1/2

(
x(k)i −x(k)i−1

)]
=0 (15.91)

with the function w replacing |∂f /∂x| chosen as

w=
∣∣∣∣∂f

∂x

∣∣∣∣+w0. (15.92)

In this approach, the parameter w0 controls the tendency toward a uniform grid
distribution. Ideally, its value should fall somewhere between the low and high
values of the gradient of f . In this way, wherever the gradient of f is weak, w
approaches w0, and the algorithm leads to solving the equation ∂2x/∂ξ2=0,
which yields a uniform grid. On the other hand, in places where the gradient of
f is steep, w0 becomes negligible, and we recover Eq. (15.88) that seeds grid
points in proportion to the gradient of f . An example is shown in (Fig. 15.15).

The grid positions can thus be obtained by repeated application of a
diffusion-type equation (15.91), which is not to be confused with physical
diffusion. Here, only positions of grid nodes are calculated. Later, dynamic

FIGURE 15.15 Grid nodes sampling a strongly varying function, shown by the smooth line. The
left panel illustrates uniform sampling and the right panel an adapted grid with higher resolution in
the steep region. A linear interpolation between nodes is also shown (line segments).
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equations, possibly without any diffusion, may be discretized on this nonuni-
form grid.

With this adapting technique, we can follow strong gradients as long as the
chosen function f effectively mimics the variations that are expected of the
solution. Other techniques to distribute grid points nonuniformly exist (e.g.,
Liseikin, 1999; Thompson, Warsi & Mastin, 1985), always with the objective
of reducing some measure of the discretization error.

Spatially nonuniform grids can be used in a frozen or adaptive way. In
the frozen version, the grid is generated once at the beginning and then kept
unchanged during the remainder of the calculations. This is done when the
positions of steep gradients are known in advance, such as those attached to
topographic features. Alternatively, it allows the modeler to zoom into a par-
ticular region of interest. In the adaptive version, the grid is allowed to move
in time, following to the extent possible the dynamically relevant features (e.g.,
Burchard & Beckers, 2004). The challenge is then to find an effective rule of
adaptation, which needs to be reflected in the discretization operators. The modi-
fication compared to standard methods on a fixed grid can be illustrated with the
one-dimensional tracer equation

∂c

∂t
+ ∂(uc)

∂x
= ∂

∂x

(
A
∂c

∂x

)
. (15.93)

The adaptive grid can be constructed via a coordinate transformation similar to
the density coordinate substituting for depth. For the one-dimensional problem,
we calculate c(ξ(x, t), t) with ξ as the new coordinate. Since our grid generation
provides x(ξ, t), the rules for the transformation follow as in Section 12.1:

∂ξ

∂t
=− ∂x/∂t

∂x/∂ξ
,

∂ξ

∂x
= 1

∂x/∂ξ
. (15.94)

The equation for c in the new coordinate system (ξ , t) is then

∂x

∂ξ

∂c

∂t
− ∂x

∂t

∂c

∂ξ
+ ∂(uc)

∂ξ
= ∂

∂ξ

[
A
(
∂x

∂ξ

)−1
∂c

∂ξ

]
. (15.95)

All spatial derivatives with respect to ξ are performed in the new coordinate
system, which is uniformly gridded, and standard discretization techniques can
be applied. Furthermore, it is advantageous to use a flux form of the equation:

∂

∂t

(
∂x

∂ξ
c

)
+ ∂

∂ξ

[(
u− ∂x

∂t

)
c

]
= ∂

∂ξ

[
A
(
∂x

∂ξ

)−1
∂c

∂ξ

]
. (15.96)

The factor ∂x/∂ξ is readily interpreted as the grid spacing in physical space (1x
under the choice of 1ξ =1), whereas the term ∂x/∂t is the velocity at which
the grid nodes move. (The partial time derivative in the new coordinate system
measures the x displacement per time unit, for fixed ξ .)
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In the numerical space of the ξ grid, the advection term involves the veloc-
ity difference u−∂x/∂t, which is the velocity of the flow relative to the moving
grid. This is indeed the velocity needed to advect the information relative to
the nodes. Should we move the grid with the flow velocity, the relative veloc-
ity would be zero, and we would be using a Lagrangian method. The reader
may have recognized that a particular case of an adaptive grid is the layered
model of Section 12, where the vertical positions of discrete levels are moved
in a Lagrangian fashion to follow density interfaces and the vertical velocity
disappears from the formalism.

With an adaptive grid, however, the movement of the grid does not necessar-
ily correspond to the flow velocity but must be chosen to follow large gradients.
Care must be taken to ensure numerical stability of the scheme because the
Courant number now includes the effective velocity, which differs from the
actual velocity and may be larger if there are places where the drift speed of
the grid is counter to the fluid velocity.

An alternative to performing a change of coordinate is to discretize the
equation on a moving grid by directly applying the space integration in physi-
cal space between moving grid points. On integrating Eq. (15.93) between the
two consecutive moving grid points xi(t) and xi+1(t), in a way similar to the
finite-volume approach (Section 3.9), we can write

xi+1(t)∫
xi(t)

∂c

∂t
dx+qi+1−qi=0, q=uc−A∂c

∂x
. (15.97)

Our goal is to make explicit the unknown, that is, the grid-averaged concentra-
tion, and this requires that we move the time derivative from inside to the outside
of the integral. For this, we must be mindful that the integration boundaries vary
in time and use Leibniz rule:

∂

∂t

xi+1(t)∫
xi(t)

cdx+c(xi, t)
∂xi

∂t
−c(xi+1, t)

∂xi+1

∂t
+qi+1−qi=0. (15.98)

Defining the modified flux

q̂=
(

u− ∂x

∂t

)
c−A∂c

∂x
, (15.99)

the finite-volume equation on the moving grid reads

∂

∂t

xi+1(t)∫
xi(t)

cdx+ q̂i+1− q̂i=0, (15.100)

which is similar to a straightforward finite-volume budget, except for the sub-
traction of the grid drift velocity ∂x/∂t from the flow velocity u. Defining c̃i as
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the cell-averaged concentration and relabeling the grid positions (by using half
indices for clarity), the preceding equation can be recast as

∂

∂t

[
(xi+1/2−xi−1/2)c̃i

]
+ q̂i+1/2− q̂i−1/2=0. (15.101)

In this form, the equation is now discrete in space but still continuous in time.
Generalization to three-dimensions proceeds along similar lines, and the out-

come is again the subtraction in the advection terms of the grid drift speed
from the physical velocity field. Issues in the implementation then concern the
placement of nodes with respect to the grid cells (cell boundaries or interval
centers in 1D, corners or centers of finite volumes in 2D and 3D; see Numerical
Exercises 15.4 and 15.5).

Finally, it is also important to handle correctly the way the changing grid
size is discretized in time. As usual, mathematical properties of the original
budget equations are not necessarily shared by the numerical operators. In par-
ticular, we must ensure that the time discretization of Eq. (15.101) conserves
the “volume” ∂x/∂ξ of the numerical grid in the sense that for a constant c, the
time-discretized equation (15.101) is identically satisfied. If it is not, an artificial
source of c will appear. This is similar to the advection problem in which the
divergence operator of the fluxes has to be consistent with the one used in the
physical volume conservation (Section 6.6).

15.7 NONLINEAR ADVECTION SCHEMES

Rather than chasing steep gradients (fronts) with a moving grid, we can also
try to capture them with a fixed grid at the cost of appropriate numerical dis-
cretization. In this class of methods are the TVD (Total Variation Diminishing)
advection schemes mentioned in Section 6.4. It is clear that advection schemes
play a crucial role in the context of frontal displacements, and it is no surprise
that intense research has been directed toward designing accurate advection
schemes.

As we saw in Section 6.4, the basic upwind scheme is monotonic and
does not create artificial extrema, but it rapidly smears out strong variations.
In contrast, higher-order advection schemes better keep the gradients but at
the cost of wiggles (unphysical extrema) in the numerical solution. Several
attempts at designing schemes that are monotonic and more accurate than
the upwind scheme can be mentioned. Flux-corrected transport (FCT) meth-
ods (Boris & Book, 1973; Zalesak, 1979) make two passes on the numerical
grid, the first one with an upwind scheme and the second one adding as much
anti-diffusion as possible (to restore the steep gradients) without generating wig-
gles. Flux-limiter methods (Hirsch, 1990; Sweby, 1984), presented hereafter in
more detail, degrade the higher-order flux calculations toward upwind fluxes
near problem zones. Finally, essentially nonoscillatory (ENO) methods (Harten,
Engquist, Osher & Chakravarthy, 1987) adapt different interpolation functions
near discontinuities.
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The common characteristic of these methods (e.g., Thuburn, 1996) is that
they allow the scheme to change its operation depending on the local solution
itself. This feedback avoids the annoying consequence of the Godunov theorem
(see Section 6.4), which states that the only linear scheme that is monotonic is
the first-order upwind scheme, by violating its premise of linearity. Thus, we
hope to find a monotonic scheme by introducing some clever nonlinearity in
the formulation, even if the underlying physical problem is linear! The gen-
eral strategy is the following: The nonlinearity is activated whenever over- or
under-shooting is likely to occur, in which case the scheme increases numeri-
cal diffusion. When the solution is smooth, the scheme is allowed to remain of
higher-order to be an improvement over the upwind scheme, of first order.

To design such an adaptive scheme in one dimension, we begin by defining
a measure of the variation of the solution called TV for Total Variation:

TVn=
∑

i

|c̃n
i+1− c̃n

i |, (15.102)

in which the sum is taken over all grid points of interest. A scheme is said TVD
(Total Variation Diminishing) if

TVn+1≤TVn. (15.103)

The TV value is meant to be a quantification of the wiggles that appear, such as
those arising when the leapfrog or Lax–Wendrofff advection schemes are used.

Suppose now that the numerical scheme can be cast into the following form:

c̃n+1
i = c̃n

i −ai−1/2

(
c̃n

i − c̃n
i−1

)
+bi+1/2

(
c̃n

i+1− c̃n
i

)
, (15.104)

where the coefficients a and b may depend on c̃. We now prove that the so-
defined scheme is TVD when

0≤ai+1/2 and 0≤bi+1/2 and ai+1/2+bi+1/2≤1. (15.105)

Note that bi+1/2 appears in combination with ai+1/2 in the TVD condition but
with ai−1/2 in the numerical scheme. Scheme (15.104) can also be written for
point i+1:

c̃n+1
i+1 = c̃n

i+1−ai+1/2

(
c̃n

i+1− c̃n
i

)
+bi+3/2

(
c̃n

i+2− c̃n
i+1

)
,

from which we can subtract Eq. (15.104) to form a marching equation for the
variations

c̃n+1
i+1 − c̃n+1

i =
(
1−ai+1/2−bi+1/2

)(
c̃n

i+1− c̃n
i

)
+bi+3/2

(
c̃n

i+2− c̃n
i+1

)
+ai−1/2

(
c̃n

i − c̃n
i−1

)
.

We then take the absolute value of each side (remembering that the absolute
value of a sum is smaller than the sum of the absolute values of its individ-
ual terms), assume that conditions (15.105) are satisfied, and sum over all grid
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points to obtain∑
i

∣∣∣c̃n+1
i+1 − c̃n+1

i

∣∣∣≤∑
i

(
1−ai+1/2−bi+1/2

) ∣∣c̃n
i+1− c̃n

i

∣∣
+
∑

i

bi+3/2

∣∣c̃n
i+2− c̃n

i+1

∣∣+∑
i

ai−1/2

∣∣c̃n
i − c̃n

i−1

∣∣ .
Ignoring boundary effects or assuming cyclic conditions, we may shift the index
i in the last two sums in order to gather all sums with |c̃n

i+1− c̃n
i |. Then, utilizing

the TVD conditions (15.105), we have∑
i

∣∣∣c̃n+1
i+1 − c̃n+1

i

∣∣∣≤∑
i

(
1−ai+1/2−bi+1/2

) ∣∣c̃n
i+1− c̃n

i

∣∣
+
∑

i

bi+1/2

∣∣c̃n
i+1− c̃n

i

∣∣+∑
i

ai+1/2

∣∣c̃n
i+1− c̃n

i

∣∣
≤
∑

i

∣∣c̃n
i+1− c̃n

i

∣∣.
The last inequality is none other than Eq. (15.103), proving that discretization
(15.104) is TVD if conditions (15.105) are satisfied.

Advection does not increase variance (see Section 6.1), and discretizations
with the TVD property appear interesting in this context. Let us therefore
design nonlinear TVD schemes for the one-dimensional advection problem with
positive velocity u. We combine explicit Euler schemes

c̃n+1
i = c̃n

i −
1t

1x

(
q̃i+1/2− q̃i−1/2

)
, (15.106)

q̃i−1/2= q̃L
i−1/2+8i−1/2

(
q̃H

i−1/2− q̃L
i−1/2

)
, (15.107)

where the lower-order flux

q̃L
i−1/2=uc̃n

i−1

is the upwind flux, which is too diffusive, and the higher-order flux

q̃H
i−1/2=uc̃n

i−1+u
1−C

2

(
c̃n

i − c̃n
i−1

)
leads to a second-order nonmonotonic scheme (Section 6.4). The weighting fac-
tor8 is allowed to vary with the solution by tending toward zero when excessive
variations are present (exploiting the damping properties of the upwind scheme)
but otherwise remaining close to 1 for maintaining accuracy where the solution
is smooth. In other words, 8 controls the amount of antidiffusion applied to the
scheme and bears the name of flux limiter. For the following, we assume that 8
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is positive, and the Courant number C satisfies the CFL condition (C≤1). Then
this scheme with weighted flux can be expanded as

c̃n+1
i = c̃n

i −C
[

c̃n
i +8i+1/2

(1−C)
2

(
c̃n

i+1− c̃n
i

)]
+ C

[
c̃n

i−1+8i−1/2

(1−C)
2

(
c̃n

i − c̃n
i−1

)]
.

(15.108)

It is readily seen that this is not yet a form that ensures TVD because the coef-
ficient bi+1/2 multiplying c̃n

i+1− c̃n
i is always negative. However, we can group

this term with the upwind part as follows:

c̃n+1
i = c̃n

i −C

[
1−8i−1/2

(1−C)
2

+8i+1/2

(1−C)
2

(c̃n
i+1− c̃n

i )(
c̃n

i − c̃n
i−1

)](c̃n
i − c̃n

i−1

)
.

This last form is of the type

c̃n+1
i = c̃n

i −ai−1/2

(
c̃n

i − c̃n
i−1

)
(15.109)

even though the coefficient ai−1/2 depends on the solution. After all, we are
designing a nonlinear method, and this dependence should be no surprise. The
scheme can then be made TVD by imposing conditions (15.105), which reduce
to 0≤ai−1/2≤1, with

ai−1/2=C

[
1−8i−1/2

(1−C)
2
+8i+1/2

(1−C)
2

(
c̃n

i+1− c̃n
i

)(
c̃n

i − c̃n
i−1

)]. (15.110)

We now try to find a simple strategy for specifying 8i−1/2 and 8i+1/2 such that
the scheme remains TVD in all cases.

The function c̃ appears in parameter ai−1/2 in the form of a ratio of
differences:

ri+1/2=
c̃n

i − c̃n
i−1

c̃n
i+1− c̃n

i
, (15.111)

which is a measure of the variability of c̃: for ri+1/2=1, c̃ varies linearly over
the three points involved, whereas for ri+1/2≤0 there is a local extremum.
The parameter ri+1/2 will thus be involved in deciding the value of the local
weighting 8 to be applied. If ri+1/2 is negative (local extremum exists), we
require 8i+1/2=0 because the local variation on the grid scale would create
new extrema if the higher-order scheme were activated.

The TVD condition requires

0≤C+ C(1−C)
2

[
8i+1/2

ri+1/2

−8i−1/2

]
≤1. (15.112)
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Ideally, we would like to choose a value of 8 at i−1/2 independently of its
value at i+1/2, otherwise a simultaneous system of equations would have to be
solved. To do this, we plan for the worst case, which happens when 8i+1/2=0.
We then need to ensure that 8i−1/2 is not too large so that ai−1/2>0, which
implies

8i−1/2≤
2

(1−C)
. (15.113)

Reversing the roles of 8i−1/2 and 8i+1/2, the worst case happens when
8i−1/2=0, demanding that

8i+1/2

ri+1/2

≤ 2

C
(15.114)

to ensure that ai−1/2≤1. Since both conditions must be satisfied for all i values,
the following conditions on 8 are required to make a TVD scheme:

8≤ 2

(1−C)
and

8

r
≤ 2

C
, (15.115)

in which the index has become unimportant. In practice, the parameter C varies
and inequalities become cumbersome. To circumvent this, we resort again to
sufficient conditions built on the worst cases. Since 0≤C≤1, the sufficient
conditions to ensure the TVD property are

8≤2 and
8

r
≤2. (15.116)

Finally, we look for a function 8(r) that meets this pair of conditions, and here
various choices are open to us. We use this freedom at our advantage by trying
to keep the scheme at the highest possible order. If r falls close to 1, the solu-
tion is smooth, behaving nearly as a straight line, and a second-order method
should do well. So, we impose 8(1)=1. Incidentally, this is the case for both
Lax–Wendroff and Beam–Warming schemes, but these schemes otherwise fail
to meet the TVD conditions (Fig. 15.16).

Examples of acceptable limiters are (Fig. 15.16):

l van Leer: 8= r+|r|
1+|r|

l minmod: 8=max(0,min(1,r))
l Superbee: 8=max(0,min(1,2r),min(2,r))
l MC: 8=max(0,min(2r, (1+r)/2,2))

Note that flux-limiter calculations depend on the direction of the flow, and the
ratio r involved in the calculation of 8 must be adapted if the velocity changes
sign (Numerical Exercise 15.8).
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FIGURE 15.16 TVD domain and some standard limiters. The Lax–Wendroff scheme, which cor-
responds to 8=1, has a portion that does not lie within the TVD region (for r<0.5), and likewise
the Beam–Warming scheme, with 8= r, does not lie entirely within the TVD region. The other
limiters (minmod, MC, and Superbee) are TVD schemes.

After this lengthy exposition of the design of a TVD scheme, the attentive
reader may ask what is the relation between this and a monotonic scheme, which
was our original goal. From (15.109), we see that c̃n+1

i is obtained by linear
interpolation of c̃n

i and c̃n
i−1 because 0≤ai−1/2≤1. Therefore, min(c̃n

i , c̃
n
i−1)≤

c̃n+1
i ≤max(c̃n

i , c̃
n
i−1), and no new local extremum can be created (no over- or

under-shooting in the jargon of numerical analysis), and if all values are initially
positive, they are guaranteed to remain positive at all times.

This can be verified on the standard test case with the Superbee limiter
(Fig. 15.17). The scheme, indeed, keeps the solution within the initial bounds,
and results are quite improved compared with previous methods. The method
is particularly well suited to GFD applications with large gradients and strong
fronts. However, the occasional use of the upwind scheme during parts of the
calculations tends to degrade the formal truncation error below second order.
Also, absent large gradients when the solution is smooth, fourth-order methods
generally outperform second-order TVD schemes. For this reason, fourth-order
TVD schemes have been formulated (e.g., Thuburn, 1996). Clearly, the choice
of one scheme over another is a question of modeling priorities (conserva-
tion, monotonicity, accuracy, ease of implementation, robustness, stability) and
expected behavior on the part of the solution (strongly varying, gentle, steady
state, etc.).

ANALYTICAL PROBLEMS

15.1. In a certain region, at a certain time, the atmospheric temperature along
the ground decreases northward at the rate of 1◦C every 35 km, and there
are good reasons to assume that this gradient does not change much with
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FIGURE 15.17 Advection scheme with TVD Superbee limiter applied to the transport of a “hat”
signal with C=0.5 using 100 time steps. Note that no new extremum is created by the numerical
advection and that the diffusion is drastically reduced compared to the upwind scheme.

height. If there is no wind at ground level, what are the wind speed and
direction at an altitude of 2 km? To answer, take latitude =40◦N, mean
temperature =290 K, and uniform pressure on the ground.

15.2. A cruise to the Gulf Stream at 38◦N provided a cross-section of the cur-
rent, which was then approximated to a two-layer model (Fig. 15.18)
with a warm layer of density ρ1= 1025 kg/m3 and depth h(y)=H−
1H tanh(y/L), overlying a colder layer of density ρ2= 1029 kg/m3.
Taking H= 500 m,1H= 300 m, and L= 60 km and assuming that there
is no flow in the lower layer and that the upper layer is in geostrophic
balance, determine the flow pattern at the surface. What is the maximum
velocity of the Gulf Stream? Where does it occur? Also, compare the jet
width (L) to the radius of deformation.

15.3. Derive the discrete Margules relation (15.5) from the governing equa-
tions written in the density-coordinate system (Chapter 12).

15.4. Through the Strait of Gibraltar, connecting the Mediterranean Sea to
the North Atlantic Ocean, there is an inflow of Atlantic waters near the
top and an equal outflow of much more saline Mediterranean waters
below. At its narrowest point (Tarifa Narrows), the strait is 11 km wide
and 650 m deep. The stratification closely resembles a two-layer con-
figuration with a relative density difference of 0.2% and an interface
sloping from 175 m along the Spanish coast (north) to 225 m along the
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FIGURE 15.18 Schematic cross section of the Gulf Stream, represented as a two-layer geostrophic
current (Analytical Problem 15.2).
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FIGURE 15.19 State prior to geostrophic adjustment (Analytical Problem 15.6).

African coast (south). Taking f = 8.5× 10−5 s−1, approximating the
cross section to a rectangle, and assuming that the volumetric transport
in one layer is equal and opposite to that in the other layer, estimate this
volumetric transport.

15.5. Determine the geostrophically adjusted state of a band of warm water as
depicted in Fig. 15.4c. The variables are ρ0= density of water below,
ρ0−1ρ= density of warm water, H= initial depth of warm water,
2a= initial width of warm-water band, and 2b= width of warm-water
band after adjustment. In particular, determine the value b, and inves-
tigate the limits when the initial half-width a is much less and much
greater than the deformation radius R.

15.6. Find the solution for the geostrophically adjusted state of the ini-
tial configuration shown on Fig. 15.19, and calculate the fraction of
potential-energy release that has been converted into kinetic energy of
the final steady state.

15.7. In a valley of the French Alps (' 45◦N), one village (A) is situated on
a flank 500 m above the valley floor and another (B) lies on the opposite
side 200 m above the valley floor (Fig. 15.20). The horizontal distance
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FIGURE 15.20

between the two is 40 km. One day, a shepherd in the upper village, who
is also a fine meteorologist, notes a cold wind with temperature 6◦C.
Upon calling her cousin, a blacksmith in the lower village across the
valley, she learns that he is enjoying a calm afternoon with a comfortable
18◦C! Assuming that the explanation of this perplexing situation resides
in a cold wind blowing along one side of the valley (Fig. 15.20), she is
able to determine a lower bound for its speed. Can you? Also, in which
direction is the wind blowing? (Hint: Do not ignore compressibility of
air.)

15.8. Using the linearized equations for a two-layer ocean (undisturbed depths
H1 and H2) over a flat bottom and subject to a spatially uniform wind
stress directed along the coast,

∂u1

∂t
− f v1=g′

∂a

∂x
− 1

ρ0

∂p2

∂x
,

∂u2

∂t
− f v2=−

1

ρ0

∂p2

∂x
∂v1

∂t
+ fu1=

τ

ρ0H1
,

∂v2

∂t
+ fu2=0

−∂a

∂t
+H1

∂u1

∂x
=0,

∂a

∂t
+H2

∂u2

∂x
=0,

study the upwelling response to a wind stress oscillating in time. The
boundary conditions are no flow at the coast (u1=u2=0 at x=0), and
no vertical displacements at large distances (a→0 as x→+∞). Discuss
how the dynamics of the upper layer are affected by the presence of an
active lower layer and what happens in the lower layer.

15.9. Investigate under which conditions it is valid to make the assertion made
in the text above Eq. (15.37) that the potential vorticity is conserved if
the wind stress is spatially uniform.
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15.10. A coastal ocean at midlatitude ( f =10−4 s−1) has a 50-m-thick warm
layer capping a much deeper cold layer. The relative density difference
between the two layers is 1ρ/ρ0=0.002. A uniform wind exerting a
surface stress of 0.4 N/m2 lasts for 3 days. Show that the resulting
upwelling includes outcropping of the density interface. What is the
offshore distance of the front?

15.11. Generalize to the two-layer ocean, the theory for the steady adjusted
state following a wind event of given impulse. For simplicity, consider
only the case of equal initial layer depths (H1=H2).

15.12. Because of the roughness of the ice, the stress communicated to the
water is substantially larger in the presence of sea ice than in the open
sea. Assuming that the ice drift is at 20◦ to the wind, that the water drift
is at 90◦ to the wind (in the open) and to the ice drift (under ice), and
that the stress on the water surface is twice as large under ice than in the
open sea, determine which wind directions with respect to the ice-edge
orientation are favorable to upwelling.

15.13. Show from (15.67) that during frontogenesis with zero potential vortic-
ity, the isopycnal slope

S=−∂T/∂y

∂T/∂z
=−∂Y/∂y

∂Y/∂z
=− f 2

αg

∂Y/∂y

∂T/∂y
(15.118)

evolves according to

dS

dt
=−ωS. (15.119)

(Hint: Use the fact that q=0.)

NUMERICAL EXERCISES

15.1. By looking into upwelling.m, guess which governing equations are
being discretized. Then use the program to simulate coastal upwelling
and see if the outcropping condition (15.40) is realistic. Examine the algo-
rithm flooddry.m used to deal with the outcropping and explore what
happens when you deactivate it.

15.2. Add a discretization of momentum advection to upwelling.m and redo
Numerical Exercise 15.1. Then diagnose

I' 1

ρ0

∫
event

τ

h
dt (15.120)

during the simulation with upwelling.m and compare to the estimate
(15.35). (Hint: Remember that I is calculated for an individual water
parcel.)
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15.3. Use adaptive.m and see how the linearly interpolated function using
a uniform or adapted grid approximates the original function func-
tiontofollow.m. Quantify the error by sampling the linear interpola-
tions on a very high–resolution grid and calculate the rms error between
this interpolation and the original function. Show how this error behaves
during the grid-adaptation process.

15.4. Analyze file adaptiveupwind.m used to simulate an advection prob-
lem with upwind discretization and optional adaptive grid (Fig. 15.21).
Explain how the grid size changes and how grid velocities must be dis-
cretized in a consistent way. Verify your analysis by using a constant value
for c. Modify the parameters involved in the grid adaptation. Try to imple-
ment a Lagrangian approach by moving the grid nodes with the physical
velocity. What problem appears in a fixed domain?

15.5. Redo Numerical Exercise 15.4 but define and move the grid nodes at the
interface and calculate concentration-point positions at the center.

15.6. Prove that the Beam–Warming scheme of Section 6.4 can be recovered
using a flux-limiter function 8= r. Implement the scheme and apply it
to the standard problem of the top-hat signal advection. How does the
solution compare to the Lax–Wendroff solution of Fig. 6.9?

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

× 104

0.8

1

1.2

1.4

1.6

1.8

2

FIGURE 15.21 Upwind advection of a triangular distribution with fixed grid (most diffusive solu-
tion) and an adaptive grid with or without added Lagrangian-type advection. The best solution is
obtained with the Lagrangian-type advection. See Numerical Exercise 15.4.
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15.7. Apply the Superbee TVD scheme to the advection of the top-hat signal
and then to the advection of a sinusoidal signal. What do you observe?
Can you explain the behavior and verify that your explanation is correct
by choosing another limiter? Experiment with tvdadv1D.m.

15.8. Write out the flux-limiter scheme in the 1D case for u≤0 by exploiting
symmetries of the problem.

15.9. Implement a leapfrog advection scheme on a nonuniform grid with scalar
c defined at the center of the cells of variable width. The domain of
interest spans x=−10L to x=10L. For initialization and downstream
boundaries, use an Euler upwind scheme. Use a spatial grid spacing of
1x for x<0 and r1x for x>0. Use a constant velocity u=1 m/s. Simu-
late a time window of 15L/u and show the solution at every time step. Use
a maximum value of C=0.5. Advect a Gaussian distribution of width L
initially located at x=−5L:

c(x, t=0)= exp
[
−(x+5L)2/L2

]
. (15.121)

Use all combinations of 1x=L/4,L/8,L/16 with r=1,1/2,2,1/10,10.
In particular, observe what happens when the patch crosses x=0.
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George Veronis
1926–

An applied mathematician turned oceanographer, George Veronis has been a
driving force in geophysical fluid dynamics since its early days. With Willem
V. R. Malkus, he cofounded the GFD Summer Program at the Woods Hole
Oceanographic Institution, which continues after more than 50 years to bring
together oceanographers, meteorologists, physicists, and mathematicians to
debate problems related to geophysical flows.

Veronis is best known for his theoretical studies on oceanic circulation,
rotating and stratified fluids, thermal convection with and without rotation, and
double-diffusion processes. His model of the circulation of the world ocean was
an analytical study based on planetary geostrophic dynamics and the nonlinear-
ity of thermal processes, in which he showed how western boundary currents
cross the boundaries of wind gyres and connect all of the world’s oceans into a
single circulating system.

Veronis has earned a reputation as a superb lecturer, who can explain difficult
concepts with amazing ease and clarity. (Photo credit: G. Veronis)
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Kozo Yoshida
1922–1978

In the early years of his professional career, Kozo Yoshida studied long
(tsunami) and short (wind) waves. Later, during a stay at the Scripps Institution
of Oceanography, he turned to the investigation of the upwelling phenomenon,
which was to become his lifelong interest. His formulations of dynamic theories
for both coastal and equatorial upwelling earned him respect and fame. A wind-
driven surface eastward current along the equator is called a Yoshida jet. In his
later years, he also became interested in the Kuroshio, a major ocean current
off the coast of Japan, wrote several books, and promoted oceanography among
young scientists.

Known to be very sincere and logical, Yoshida did not shun administrative
responsibilities and emphasized the importance of international cooperation in
postwar Japan. (Photo courtesy of Toshio Yamagata)



Chapter 16

Quasi-Geostrophic Dynamics

ABSTRACT
At timescales longer than about a day, geophysical flows are ordinarily in a nearly
geostrophic state, and it is advantageous to capitalize on this property to obtain a sim-
plified dynamical formalism. Here, we derive the traditional quasi-geostrophic dynamics
and present some applications in both linear and nonlinear regimes. The central com-
ponent of quasi-geostrophic models, namely advection of vorticity, requires particular
attention in numerical models, for which the Arakawa Jacobian is presented.

16.1 SIMPLIFYING ASSUMPTION

Rotation effects become important when the Rossby number is on the order
of unity or less (Sections 1.5 and 4.5). The smaller is the Rossby number, the
stronger is the rotation effect, and the larger is the Coriolis force compared with
the inertial force. In fact, the majority of atmospheric and oceanic motions are
characterized by Rossby numbers sufficiently below unity (Ro∼0.2 down to
0.01), enabling us to state that, in first approximation, the Coriolis force is
dominant. This leads to geostrophic equilibrium (Section 7.1) with a balance
struck between the Coriolis force and the pressure-gradient force. In Chapter 7,
a theory was developed for perfectly geostrophic flows, whereas in Chapter 9
some near-geostrophic, small-amplitude waves were investigated. In each
case, the analysis was restricted to homogeneous flows. Here, we reconsider
near-geostrophic motions but in the case of continuously stratified fluids and
nonlinear dynamics. Much of the material presented can be traced to the semi-
nal article by Charney1 (1948), which laid the foundation of quasi-geostrophic
dynamics.

Geostrophic balance is a linear and diagnostic relationship; there is no
product of variables and no time derivative. The resulting mathematical advan-
tages explain why near-geostrophic dynamics are used routinely: The under-
lying assumption of near-geostrophy may not always be strictly valid, but the
formalism is much simpler than otherwise.

1 See biographical sketch at the end of the chapter.
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Mathematically, a state of near-geostrophic balance occurs when the terms
representing relative acceleration, nonlinear advection, and friction are all neg-
ligible in the horizontal momentum equations. This requires (Section 4.5) that
the temporal Rossby number,

RoT =
1

�T
, (16.1)

the Rossby number,

Ro= U

�L
, (16.2)

and the Ekman number,

Ek= νE

�H2
, (16.3)

all be small simultaneously. In these expressions, � is the angular rotation rate
of the earth (or planet or star under consideration), T is the timescale of the
motion (i.e., the time span over which the flow field evolves substantially), U is
a typical horizontal velocity in the flow, L is the horizontal length over which
the flow extends or exhibits variations, νE is the eddy vertical viscosity, and H
is the vertical extent of the flow.

The smallness of the Ekman number (Section 4.5) indicates that vertical
friction is negligible, except perhaps in thin layers on the edges of the fluid
domain (Chapter 8). If we exclude small-amplitude waves that can travel much
faster than fluid particles in the flow, the temporal Rossby number (16.1) is not
greater than the Rossby number (16.2). (For a discussion of this argument, the
reader is referred to Section 9.1.) By elimination, it remains to require that the
Rossby number (16.2) be small. This can be justified in one of the two ways:
Either velocities are relatively weak (small U) or the flow pattern is laterally
extensive (large L). The common approach, and the one that leads to the simplest
formulation, is to consider the first possibility; the resulting formalism bears the
name of quasi-geostrophic dynamics. We ought to keep in mind, however, that
some atmospheric and oceanic motions could be nearly geostrophic for the other
reason, that is, large velocities on a large scale (Cushman-Roisin, 1986). Such
motions are called frontal geostrophic and would be improperly represented by
quasi-geostrophic dynamics.

16.2 GOVERNING EQUATION

To set the stage for the development of quasi-geostrophic equations, it is most
convenient to begin with the restriction that vertical displacements of density
surfaces be small (Fig. 16.1). In the (x, y, z) coordinate system, we write

ρ= ρ̄(z)+ρ′(x,y,z, t) with |ρ′| � |ρ̄|. (16.4)
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FIGURE 16.1 A rotating stratified fluid under-
going weak motions, which can be described by
quasi-geostrophic dynamics.

Because the density surfaces are nearly horizontal, there is no real advantage
to be gained by using the density-coordinate system, and we follow the tradition
here by formulating the quasi-geostrophic dynamics in the (x, y, z) Cartesian
coordinate system.

The density profile ρ̄(z), independent of time and horizontally uniform,
forms the basic stratification. Alone, it creates a state of rest in hydrostatic equi-
librium. We shall assume that such stratification has somehow been established,
and that it is maintained in time against the homogenizing action of vertical
diffusion. The quasi-geostrophic formalism does not consider the origin and
maintenance of this stratification but only the behavior of motions that weakly
perturb it.

The following mathematical developments are purposely heuristic, with
emphasis on the exploitation of the main idea rather than on a systematic
approach. The reader interested in a rigorous derivation of quasi-geostrophic
dynamics based on a regular perturbation analysis is referred to Chapter 6 of the
book by Pedlosky (1987).

The governing equations of Section 4.4 with ρ= ρ̄(z)+ρ′(x,y,z, t) and,
similarly, p= p̄(z)+p′(x,y,z, t) are on the beta plane and, for simplicity, in the
absence of friction and diffusion:

du

dt
− f0v−β0yv = − 1

ρ0

∂p′

∂x
(16.5a)

dv

dt
+ f0u+β0yu = − 1

ρ0

∂p′

∂y
(16.5b)

0 = −∂p′

∂z
−ρ′g (16.5c)

∂u

∂x
+ ∂v
∂y
+ ∂w

∂z
= 0 (16.5d)

∂ρ′

∂t
+u

∂ρ′

∂x
+v

∂ρ′

∂y
+w

dρ̄

dz
= 0, (16.5e)
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where the advective operator is

d

dt
= ∂

∂t
+u

∂

∂x
+v

∂

∂y
+w

∂

∂z
. (16.6)

The basic assumption that |ρ′| is much less than |ρ̄| has been implemented in
the density Eq. (16.5e) by dropping the term w∂ρ′/∂z. In writing that equation,
we have also neglected density diffusion (the right-hand side of the equation) in
agreement with our premise that the basic vertical stratification persists. Finally,
because the basic stratification is in hydrostatic equilibrium with the pressure at
rest, the corresponding terms cancel out, and only the perturbed pressure p′, that
due to motion, appears in the equations.

If the density perturbations ρ′ are small, so are the pressure disturbances p′,
and by virtue of the horizontal momentum equations, the horizontal velocities
are weak. While the Coriolis terms are small, the nonlinear advective terms,
which involve products of velocities, are even smaller. For expediency, we shall
use the phrase very small for these and all other terms smaller than the small
terms. Thus, the ratio of advective to Coriolis terms, the Rossby number, is
small. Let us assume now and verify a posteriori that the timescale is long com-
pared with the inertial period (2π/ f0), so the local-acceleration terms are, too,
very small. Finally, to guarantee that the beta-plane approximation holds, we
further require |β0y|� f0. Having made all these assumptions, we take pleasure
in noting that the dominant terms in the momentum equations are, as expected,
those of the geostrophic equilibrium:

− f0v=−
1

ρ0

∂p′

∂x
(16.7a)

+ f0u=− 1

ρ0

∂p′

∂y
. (16.7b)

As noted in Chapter 7, this geostrophic state is singular, for it leads to a zero hor-
izontal divergence (∂u/∂x+∂v/∂y=0), which usually (e.g., over a flat bottom)
implies the absence of any vertical velocity. In the case of a stratified fluid, this
in turn implies no lifting and lowering of density surfaces, and thus no pressure
disturbances and no variations in time.

To explore dynamics beyond such a simple state of affairs, we consider that
the velocity includes a small ageostrophic (not geostrophic) correction and write

u=ug+ua, v=vg+va, (16.8)

in which the first terms represent the geostrophic component, defined as

ug=−
1

f0ρ0

∂p′

∂y
(16.9a)

vg=+
1

f0ρ0

∂p′

∂x
, (16.9b)

and (ua, va) are the ageostrophic corrections.
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In the smaller time-derivatives, advection and beta terms of Eqs. (16.5a)
and (16.5b), we replace the velocity by its geostrophic approximation (16.7),
while we care to retain both geostrophic and ageostrophic components in the
larger Coriolis terms. Because it is small compared with horizontal advection,
itself already a small correction term compared with the Coriolis term, vertical
advection is neglected, and we obtain the following:

− 1

ρ0 f0

∂2p′

∂y∂t
− 1

ρ2
0 f 2

0

J

(
p′,
∂p′

∂y

)
− f0v−

β0

ρ0 f0
y
∂p′

∂x
=− 1

ρ0

∂p′

∂x
(16.10a)

+ 1

ρ0 f0

∂2p′

∂x∂t
+ 1

ρ2
0 f 2

0

J

(
p′,
∂p′

∂x

)
+ f0u− β0

ρ0 f0
y
∂p′

∂y
=− 1

ρ0

∂p′

∂y
(16.10b)

The symbol J(·, ·) stands for the Jacobian operator, defined as J(a,b)=
(∂a/∂x)(∂b/∂y)−(∂a/∂y)(∂b/∂x).

From these equations, more accurate expressions for u and v can be readily
extracted:

u=ug+ua=−
1

ρ0 f0

∂p′

∂y
− 1

ρ0 f 2
0

∂2p′

∂t∂x

− 1

ρ2
0 f 3

0

J

(
p′,
∂p′

∂x

)
+ β0

ρ0 f 2
0

y
∂p′

∂y
(16.11a)

v=vg+va=+
1

ρ0 f0

∂p′

∂x
− 1

ρ0 f 2
0

∂2p′

∂t∂y

− 1

ρ2
0 f 3

0

J

(
p′,
∂p′

∂y

)
− β0

ρ0 f 2
0

y
∂p′

∂x
(16.11b)

which, unlike Eq. (16.7), contain both the geostrophic flow and a first series of
ageostrophic corrections. This improved estimate of the flow field has a nonzero
divergence, which is small because it is caused solely by the weak velocity
departures from the otherwise nondivergent geostrophic flow.

Upon substitution of these expressions in continuity equation (16.5d), we
obtain

∂w

∂z
= 1

ρ0 f 2
0

[
∂

∂t
∇2p′+ 1

ρ0 f0
J(p′,∇2p′)+β0

∂p′

∂x

]
, (16.12)

where ∇2= ∂2/∂x2+∂2/∂y2 is the two-dimensional Laplacian operator. We
note that the right-hand arises only because of ageostrophic components. Thus,
the vertical velocity is on the order of ageostrophic terms, and this justifies a
posteriori our dropping of the w-terms from advection.

We now turn our attention to the density-conservation equation (16.5e). The
first term is very small because ρ′ is small, and the timescale is long. Likewise,
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the last term is very small because, as we concluded before, the vertical velocity
arises from the ageostrophic corrections to the already weak horizontal veloc-
ity. The middle terms involve the density perturbation, which is small, and the
horizontal velocities, which are also small. There is thus no need, in this equa-
tion, for the corrections brought by Eq. (16.11), and the geostrophic expressions
(16.7) suffice, leaving

∂ρ′

∂t
+ 1

ρ0 f0
J(p′,ρ′)− ρ0N2

g
w=0, (16.13)

in which the stratification frequency, N2(z)=−(g/ρ0)dρ̄/dz, has been intro-
duced. Dividing this last equation by N2/g, taking its z-derivative, and using
the hydrostatic balance (16.5c) to eliminate density, we obtain

∂

∂t

[
∂

∂z

(
1

N2

∂p′

∂z

)]
+ 1

ρ0 f0
J

[
p′,

∂

∂z

(
1

N2

∂p′

∂z

)]
+ρ0

∂w

∂z
=0. (16.14)

Equations (16.12) and (16.14) form a two-by-two system for the perturbation
pressure p′ and vertical stretching ∂w/∂z. Elimination of ∂w/∂z between the
two yields a single equation for p′:

∂

∂t

[
∇2p′+ ∂

∂z

(
f 2
0

N2

∂p′

∂z

)]
+ 1

ρ0 f0
J

[
p′,∇2p′+ ∂

∂z

(
f 2
0

N2

∂p′

∂z

)]

+β0
∂p′

∂x
=0. (16.15)

This is the quasi-geostrophic equation for nonlinear motions in a contin-
uously stratified fluid on a beta plane. Usually, this equation is recast as an
equation for the potential vorticity, and the pressure field is transformed into
a streamfunction ψ through p′=ρ0 f0ψ . The result is

∂q

∂t
+J(ψ,q)=0, (16.16)

where q is the potential vorticity:

q=∇2ψ+ ∂

∂z

(
f 2
0

N2

∂ψ

∂z

)
+β0y. (16.17)
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Once the solution is obtained for q andψ , the original variables can be recovered
from Eqs. (16.7a), (16.7b), and (16.13):

ug=−
∂ψ

∂y
(16.18a)

vg=+
∂ψ

∂x
(16.18b)

ua=−
1

f0

∂2ψ

∂t∂x
− 1

f0
J

(
ψ,
∂ψ

∂x

)
+ β0

f0
y
∂ψ

∂y
(16.18c)

va=−
1

f0

∂2ψ

∂t∂y
− 1

f0
J

(
ψ,
∂ψ

∂y

)
− β0

f0
y
∂ψ

∂x
(16.18d)

w=− f0
N2

[
∂2ψ

∂t∂z
+J

(
ψ,
∂ψ

∂z

)]
(16.18e)

p′=ρ0 f0ψ (16.18f)

ρ′=−ρ0 f0
g

∂ψ

∂z
. (16.18g)

If turbulent dissipation is retained in the formalism, the equation governing
the evolution of potential vorticity becomes complicated, but an approximation
suitable for most numerical applications is as follows:

∂q

∂t
+J(ψ,q)= ∂

∂x

(
A
∂q

∂x

)
+ ∂

∂y

(
A
∂q

∂y

)
+ ∂

∂z

(
νE
∂q

∂z

)
, (16.19)

where q remains defined by Eq. (16.17).

16.3 LENGTH AND TIMESCALE

Expression (16.17) indicates that q is a form of potential vorticity. Indeed, the
last term represents the planetary contribution to the vorticity, whereas the first
term, ∇2ψ= ∂v/∂x−∂u/∂y, is the relative vorticity. The middle term can be
traced to the layer-thickness variations in the denominator of the classical defi-
nition of potential vorticity [e.g., Eq. (12.21)]. Indeed, in view of Eq. (16.18g),
this term measures vertical variations of ρ′, directly related to thickness changes
between density surfaces. It is thus a linear version of vertical stretching (see
Analytical Problem 16.7). Although expression (16.17) for q does not have
the same dimension as potential vorticity defined in Eq. (12.21), we shall fol-
low common practice here and not coin another name but call it potential
vorticity.

It is most interesting to compare the first two terms of the potential-vorticity
expression, namely, relative vorticity and vertical stretching. With L and U as
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the horizontal length and velocity scales, respectively, the streamfunction ψ
scales like LU by virtue of Eqs. (16.18a) and (16.18b). If H is the vertical length
scale, not necessarily the fluid depth, the magnitudes of those contributions to
potential vorticity are as follows:

Relative vorticity ∼ U

L
, Vertical stretching ∼ f 2

0 UL

N2H2
. (16.20)

The ratio of the former to the latter is

Relative vorticity

Vertical stretching
∼ N2H2

f 2
0 L2
=Bu, (16.21)

which is the Burger number defined in Section 11.6. For weak stratification
or long length scale (i.e., small Burger number, NH� f0L), vertical stretching
dominates, and the motion is akin to that of homogeneous rotating flows in
nearly geostrophic balance (Chapter 7), where topographic variations are capa-
ble of exerting great influence. For large Burger numbers (NH� f0L), that is,
strong stratification or short length scales, relative vorticity dominates, strati-
fication reduces coupling in the vertical, and every level tends to behave in a
two-dimensional fashion, stirred by its own vorticity pattern, independently of
what occurs above and below.

The richest behavior occurs when the stratification and length scale match
to make the Burger number of order unity, which occurs when

L= NH

f0
. (16.22)

As noted in Section 12.2, this particular length scale is the internal radius
of deformation. To show this, let us introduce a nominal density difference
1ρ, typical of the density vertical variations of the ambient stratification.
Thus, |dρ̄/dz|∼1ρ/H and N2∼g1ρ/ρ0H. Defining a reduced gravity as
g′=g1ρ/ρ0, which is typically much less than the full gravity g, we obtain

N ∼
√

g′

H
. (16.23)

Definition (16.22) yields

L ∼
√

g′H
f0

. (16.24)

Comparing this expression with definition (9.12) for the radius of deformation
in homogeneous rotating fluids, we note the replacement of the full gravitational
acceleration by a much smaller, reduced acceleration and conclude that motions
in stratified fluids tend to take place on shorter scales than dynamically similar
motions in homogeneous fluids.
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Before concluding this section, it is noteworthy to return to the discussion of
the timescale. Very early in the derivation, an assumption was made to restrict
the attention to slowly evolving motions, namely, motions with timescale T
much longer than the inertial timescale 1/f0 (i.e., T��−1). This relegated
the terms ∂u/∂t and ∂v/∂t to the rank of small perturbations to the dominant
geostrophic balance. Now, having completed our analysis, we ought to check
for consistency.

The timescale of quasi-geostrophic motions can be most easily determined
by inspection of the governing equation in its potential-vorticity form. The bal-
ance of Eq. (16.16) requires that the two terms on its left-hand side be of the
same order:

Q

T
∼ UL

L

Q

L
,

where Q is the scale of potential vorticity, regardless of whether it is dominated
by relative vorticity (Q∼U/L) or vertical stretching (Q∼ f 2

0 UL/N2H2), and LU
is the streamfunction scale. The preceding statement yields

T ∼ L

U
, (16.25)

in other words, the timescale is advective. The quasi-geostrophic structure
evolves on a time T comparable to the time taken by a particle to cover the
length scale L at the nominal speed U. For example, a vortex flow (such as
an atmospheric cyclone) evolves significantly while particles complete one
revolution.

Because the quasi-geostrophic formalism is rooted in the smallness of the
Rossby number (Ro = U/�L�1), it follows directly that the timescale must
be long compared with the rotation period:

T � 1

�
, (16.26)

in agreement with our premise. Note, however, that a lack of contradic-
tion is proof only of consistency in the formalism. It implies that slowly
evolving, quasi-geostrophic motions can exist, but the existence of other,
non-quasi-geostrophic motions are certainly not precluded. Among the latter,
we can distinguish nearly geostrophic motions of other types (Cushman-
Roisin, 1986; Cushman-Roisin, Sutyrin & Tang, 1992; Phillips, 1963) and, of
course, completely ageostrophic motions (see examples in Chapters 13 and
15). Whereas ageostrophic flows typically evolve on the inertial timescale
(T∼�−1), geostrophic motions of type other than quasi-geostrophic usually
evolve on much longer timescales (T�L/U��−1).
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16.4 ENERGETICS

Because the quasi-geostrophic formalism is frequently used, it is worth investi-
gating the approximate energy budget that is associated with it. Multiplying the
governing equation (16.16) by the streamfunction ψ and integrating over the
entire three-dimensional domain, we obtain, after several integrations by parts:

d

dt

∫∫∫
1

2
ρ0|∇ψ |2dxdydz

+ d

dt

∫∫∫
1

2
ρ0

f 2
0

N2

(
∂ψ

∂z

)2

dxdydz = 0. (16.27)

The boundary terms have all been set to zero by assuming rigid bottom and top
surfaces, and, in the horizontal, any combination of periodicity, vertical wall, or
decay at large distances.

Equation (16.27) can be interpreted as a mechanical-energy budget: The sum
of kinetic and potential energies is conserved over time. That the first integral
corresponds to kinetic energy is evident once the velocity components have
been expressed in terms of the streamfunction (u2+v2=ψ2

y +ψ2
x =|∇ψ |2). By

default, this leaves the second integral to play the role of potential energy, which
is not as evident. Basic physical principles would indeed suggest the following
definition for potential energy:

PE=
∫∫∫

ρgz dxdydz, (16.28)

which by virtue of Eq. (16.18g) would yield a linear, rather than a quadratic,
expression in ψ .

The discrepancy is resolved by defining the available potential energy, a
concept first advanced by Margules (1903) and developed by Lorenz (1955).
Because the fluid occupies a fixed volume, the rising of fluid in some loca-
tions must be accompanied by a descent of fluid elsewhere; therefore, any
potential-energy gain somewhere is necessarily compensated, at least partially,
by a potential-energy drop elsewhere. What matters then is not the total potential
energy of the fluid but only how much could be converted from the instanta-
neous, perturbed density distribution. We define the available potential energy,
APE, as the difference between the existing potential energy, as just defined,
and the potential energy that the fluid would have if the basic stratification were
unperturbed.

The situation is best illustrated in the case of a two-layer stratification
(Fig. 16.2): A lighter fluid of density ρ1 floats atop of a denser fluid of den-
sity ρ2. In the presence of motion, the interface is at level a above the resting
height H2 of the lower layer. Because of volume conservation, the integral of a
over the horizontal domain vanishes identically. The potential energy associated
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FIGURE 16.2 A two-layer stratification,
for the illustration of the concept of avail-
able potential energy.

with the perturbed state is

PE(a)

=
∫∫  H2+a∫

0

ρ2gzdz+
H∫

H2+a

ρ1gzdz

 dxdy

=
∫∫ [

1

2
ρ1gH2+ 1

2
1ρgH2

2

]
dxdy

+
∫∫

1ρH2adxdy+
∫∫

1

2
1ρga2 dxdy,

where H is the total height, and 1ρ=ρ2−ρ1 is the density difference. The
first term represents the potential energy in the unperturbed state, whereas the
second term vanishes because a has a zero mean. This leaves the third term as
the available potential energy:

APE=PE(a)−PE(a=0)

=
∫∫

1

2
1ρga2 dxdy. (16.29)

Introducing the stratification frequency N2=−(g/ρ0)dρ̄/dz=g1ρ/ρ0H and
generalizing to three dimensions, we obtain

APE=
∫∫∫

1

2
ρ0N2a2dxdydz. (16.30)

In continuous stratification, the vertical displacement a of a fluid parcel is
directly related to the density perturbation because the density anomaly at one
point is created by moving to that point a particle that originates from a different
vertical level:

ρ′(x,y,z, t)= ρ̄[z−a(x,y,z, t)]− ρ̄(z)

'−a
dρ̄

dz
= ρ0N2

g
a. (16.31)
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This Taylor expansion is justified by the underlying assumption of weak vertical
displacements. Combining Eqs. (16.30) and (16.31) and expressing the density
perturbation in terms of the streamfunction by Eq. (16.18g), we obtain

APE=
∫∫∫

1

2
ρ0

f 2
0

N2

(
∂ψ

∂z

)2

dxdydz, (16.32)

which is the integral that arises in the energy budget, (16.27).
The time rate of change of the available potential energy can be expressed as

d

dt
APE=g

∫∫∫
ρ′w dxdydz, (16.33)

as can be verified by substitution of Eqs. (16.18e) and (16.18g) into Eq. (16.33)
and an integration by parts of the Jacobian term. This shows that potential
energy increases when heavy fluid parcels rise (ρ′ and w both positive) and
light parcels sink (ρ′ and w both negative).

As a final note, we observe that a scale analysis provides the ratio of kinetic
energy, KE, to available potential energy APE:

KE

APE
∼ N2H2

L2f 2
∼Bu, (16.34)

which gives another interpretation to the Burger number: It compares kinetic to
potential energy.

16.5 PLANETARY WAVES IN A STRATIFIED FLUID

In Chapter 9, it was noted that inertia-gravity waves are superinertial (ω≥ f )
and that Kelvin waves require a fundamentally ageostrophic balance in one
of the two horizontal directions [see Eq. (9.4b) with u=0]. Therefore, the
quasi-geostrophic formalism cannot describe these two types of waves. It can,
however, describe the slow waves and, in particular, the planetary waves that
exist on the beta plane.

It is instructive to explore the three-dimensional behavior of planetary
(Rossby) waves in a continuously stratified fluid. The theory proceeds from the
linearization of the quasi-geostrophic equation and, for mathematical simplicity
only, the assumptions of a constant stratification frequency and no dissipation.
Equations (16.16) and (16.17) then yield

∂

∂t

(
∇2ψ+ f 2

0

N2

∂2ψ

∂z2

)
+β0

∂ψ

∂x
=0. (16.35)

We seek a wave solution of the form ψ(x,y,z, t)=φ(z)cos(kxx+kyy−ωt),
with horizontal wavenumbers kx and ky, frequency ω, and amplitude φ(z). The
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vertical structure of the amplitude is governed by

d2φ

dz2
− N2

f 2
0

(
k2

x+k2
y+

β0kx

ω

)
φ=0, (16.36)

which results from the substitution of the wave solution into Eq. (16.35). To
solve this equation, boundary conditions are necessary in the vertical. For these,
let us assume that our fluid is bounded below by a horizontal surface and above
by a free surface. In the atmosphere, this situation would correspond to the
troposphere above a flat terrain or sea and below the tropopause.

At the bottom (say, z=0), the vertical velocity vanishes, and the linearized
form of Eq. (16.18e) implies ∂2ψ/∂z∂t=0, or

dφ

dz
=0 at z=0. (16.37)

At the free surface [say, z=h(x,y, t)], the pressure is uniform. Because the
total pressure consists of the hydrostatic pressures due to the reference density
ρ0 (eliminated when the Boussinesq approximation was made; see Section 3.7)
and to the basic stratification ρ̄(z), together with the perturbation pressure
caused by the wave, we write:

P0−ρ0gz+g

h∫
z

ρ̄(z′)dz′+p′(x,y,h, t)= constant, (16.38)

at the free surface z=h. Because particles on the free surface remain on the free
surface at all times (there is no inflow/outflow), we also state

w= ∂h

∂t
+u

∂h

∂x
+v

∂h

∂y
at z=h. (16.39)

The preceding two statements are then linearized. Writing h=H+η, where the
free-surface displacement η(x,y, t) is small to justify linear wave motions, we
expand the variables p′ and w in Taylor fashion from the mean surface level
z=H and systematically drop all terms involving products of variables of the
wave field. The two requirements then reduce to

−ρ0gη+p′=0 and w= ∂η
∂t

at z=H. (16.40)

Elimination of η yields ∂p′/∂t=ρ0gw and, in terms of the streamfunction,

∂

∂t

(
∂ψ

∂z
+ N2

g
ψ

)
=0 at z=H (16.41)
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or, finally, in terms of the wave amplitude,

dφ

dz
+ N2

g
φ=0 at z=H. (16.42)

Together, Eq. (16.36) and its two boundary conditions, Eqs. (16.37) and
(16.42), define an eigenvalue problem, which admits solutions of the form

φ(z)=Acoskzz (16.43)

already satisfying boundary condition (16.37). Substitution of this solution into
Eq. (16.36) yields the dispersion relation linking the wave frequency ω to the
wavenumber components, kx, ky, and kz:

ω=− β0kx

k2
x+k2

y+k2
z f 2

0 /N
2
, (16.44)

whereas substitution into boundary condition (16.42) imposes a condition on
the wavenumber kz:

tankzH=
N2H

g

1

kzH
. (16.45)

As Fig. 16.3 demonstrates graphically, there is an infinite number of discrete
solutions. Because negative values of kz lead to solutions identical to those with
positive kz values [see Eqs. (16.43) and (16.44)], it is necessary to consider only
the latter set of values (kz>0).

A return to the definition N2=−(g/ρ0)dρ̄/dz reveals that the ratio N2H/g,
appearing on the right-hand side of Eq. (16.45), is equal to 1ρ/ρ0, where
1ρ is the density difference between top and bottom of the basic stratifica-
tion ρ̄(z). The factor N2H/g is thus very small, implying that the first solution
of Eq. (16.45) falls very near the origin (Fig. 16.3). There, tankzH can be
approximated to kzH, yielding

kzH =
NH√

gH
. (16.46)

The fraction on the right is the ratio of the internal gravity wave speed to the
surface gravity wave speed, which is small. Note also that this mode disappears
in the limit g→∞, which we would have obtained if we had imposed a rigid
lid at the top of the domain.

Because kzH is small, the corresponding wave is nearly uniform in the verti-
cal. Its dispersion relation, obtained from the substitution of the preceding value
of kz into Eq. (16.44),

ω=− β0kx

k2
x+k2

y+ f 2
0 /gH

, (16.47)
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FIGURE 16.3 Graphical solution of Eq. (16.45). Every crossing of curves yields an acceptable
value for the vertical wavenumber kz. The pair of values nearest to the origin corresponds to a
solution fundamentally different from all others.

is independent of the stratification frequency N and identical to the dispersion
relation obtained for planetary waves in homogeneous fluids [see Eq. (9.27)].
Because it is almost uniform in the vertical, we conclude that this wave is the
barotropic component of the set.

The remaining solutions for kz can also be determined to the same degree of
approximation. Because N2H/g is small, the finite solutions of Eq. (16.45) fall
very near the zeros of tankzH (Fig. 16.3) and are thus given approximately by

kzn=n
π

H
, n=1, 2, 3, . . . (16.48)

Unlike the barotropic wave, the waves with these wavenumbers exhibit
substantial variations in the vertical and can be called baroclinic. Their
dispersion relation,

ωn=−
β0kx

k2
x+k2

y+(nπ f0/NH)2
, (16.49)

is morphologically identical to Eq. (16.47), implying that they, too, are planetary
waves. In summary, the presence of stratification permits the existence of an
infinite, discrete set of planetary waves, one barotropic and all other baroclinic.
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Comparing the dispersion relations Eqs. (16.47) and (16.49) of the
barotropic and baroclinic waves, we note the replacement in the denominator
of the ratio f 2

0 /gH by a multiple of (π f0/NH)2, which is much larger, since—
again—N2H/g is very small. Physically, the barotropic component is influenced
by the large, external radius of deformation

√
gH/f0 [see Eq. (9.12)], whereas

the baroclinic waves feel the much shorter, internal radius of deformation NH/f0
[see Eq. (16.22)].

In the atmosphere, there is not always a great disparity between the two
radii of deformation. Take, for example, a midlatitude region (such as 45◦N,
where f0=1.03×10−4 s−1), a tropospheric height H=10 km, and a stratifi-
cation frequency N=0.01 s−1. This yields

√
gH/f0=3050 km and NH/f0=

972 km. (The ratio N2H/g is then 0.102, which is not very small.) In contrast,
the difference between the two radii of deformation is much more pronounced
in the ocean. Take, for example, H=3 km and N=2×10−3 s−1, which yield√

gH/f0=1670 km and NH/f0=58 km.
In any event, all planetary waves exhibit a zonal phase speed. For the

baroclinic members of the family, it is

cn=
ωn

kx
=− β0

k2
x+k2

y+(nπ f0/NH)2
. (16.50)

Because this quantity is always negative, the direction can only be westward.2

Moreover, the westward speed is confined to the interval

−β0R2
n< cn<0, (16.51)

with the lower bound approached by the longest wave (k2
x+k2

y→∞). The
lengths Rn, defined as

Rn=
1

n

NH

π f0
, n = 1, 2, 3, . . . (16.52)

are identified as internal radii of deformation, one for each baroclinic mode. The
greater the value of n, the greater the value of kzn, the more reversals the wave
exhibits in the vertical, and the more restricted is its zonal propagation. There-
fore, the waves most active in transmitting information and carrying energy
from east to west (or from west to east, if the group velocity is positive) are the
barotropic and the first baroclinic component. Indeed, observations reveal that
these two modes alone carry generally 80–90% of the energy in the ocean.

Let us now turn our attention to the spatial structure of a baroclinic planetary
wave. For simplicity, we take the first mode (n=1), which corresponds to a

2 The meridional phase speed, ωn/ky, may be either positive or negative, depending on the sign
of ky.
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wave with one reversal of the flow in the vertical, and we set ky to zero to
focus on the zonal profile of the wave. The streamfunction, pressure, and density
distributions are as follows:

ψ=Acoskzz cos(kxx−ωt) (16.53a)

p′=ρ0 f0ψ=ρ0 f0 A coskzz cos(kxx−ωt) (16.53b)

ρ′=−ρ0 f0
g

∂ψ

∂z
=+ρ0 f0kz

g
Asinkzz cos(kxx−ωt). (16.53c)

The geostrophic velocity component is

ug=−
∂ψ

∂y
=0 (16.54a)

vg=+
∂ψ

∂x
=−kxAcoskzz sin(kxx−ωt), (16.54b)

and we immediately recognize that it cannot be responsible for the wave
because it has no associated vertical velocity needed to displace density surfaces
and allow energy conversion between kinetic and potential energy. Hence, the
essence of the dynamics resides in the ageostrophic velocity component,

ua=−
1

f0

∂2ψ

∂t∂x

=−kxω

f0
Acoskzz cos(kxx−ωt) (16.55a)

va=−
β0

f0
y
∂ψ

∂x

=+β0kx

f0
yAcoskzz sin(kxx−ωt) (16.55b)

w=− f0
N2

∂2ψ

∂t∂z

=+ f0ωkz

N2
Asinkzz sin(kxx−ωt). (16.55c)

We leave it as an exercise to the reader to verify that the three-dimensional
divergence of the ageostrophic motion is zero as it should. The corresponding
wave structure is displayed in Fig. 16.4 and can be interpreted as follows.

At the bottom, vertical displacements are prohibited, and there is no den-
sity anomaly. At the surface, vertical displacements would only be important if
it were the barotropic (external) mode, but this is a baroclinic (internal) mode,
and vertical displacements are negligible at the top. In the interior, however,
vertical displacements are significant, with one maximum at midlevel for the
lowest baroclinic mode (depicted here). Where the middle density surface rises,
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FIGURE 16.4 Structure of a baroclinic planetary wave. In constructing this diagram, we have
taken f0>0, kx>0, ky=0, and kz=π/H, which yield ω<0 and a wave structure with a single
reversal in the vertical.

heavier (colder) fluid from below is found, forming a cold anomaly. Similarly,
a warm anomaly accompanies a subsidence, half a wavelength away. Because
colder fluid is heavier and warmer fluid is lighter, the bottom pressure is higher
under cold anomalies and lower under warm anomalies. At the lowest order
of approximation, the resulting zonal pressure gradient drives an alternating
geostrophic meridional flow vg given by Eq. (16.54b). In the northern hemi-
sphere (as depicted in Fig. 16.4), the bottom velocity has the higher pressure on
its right and, therefore, assumes a southward direction east of the high pressures
and a northward direction east of the low pressures. Because of the baroclinic
nature of the wave, there is a reversal in the vertical, and the velocities near the
top are counter to those below (Fig. 16.4).

On the beta plane, the variation in the Coriolis parameter causes this
meridional flow to be convergent or divergent. In the northern hemisphere,
the northward increase of f implies, under a uniform pressure gradient, a
decreasing velocity and thus convergence of northward flow and divergence of
southward flow. The resulting convergence–divergence pattern calls for trans-
verse ageostrophic velocities, either zonal or vertical or both. According to
Fig. 16.4, based on Eqs. (16.55c) and (16.55a), both transverse components
come into play, each partially relieving the convergence–divergence of the
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meridional flow. The relative importance of vertical to horizontal convergence is

kzW

kxU
= f 2

0 k2
z

N2k2
x
, (16.56)

and we recover the inverse of the Burger number based on the length scales of
the wave.

The ensuing vertical velocities at midlevel cause subsidence below a con-
vergence and above a divergence, feeding the excess of the upper flow into the
deficit of that underneath, and create uplifting half a wavelength away, where
the situation is vertically reversed. Subsidence generates a warm anomaly, while
uplifting generates a cold anomaly. As we can see in Fig. 16.4, this takes place
a quarter of a wavelength to the west of the existing anomalies, thus induc-
ing a westward shift of the wave pattern overtime. The result is a wave pattern
steadily translating to the west.

16.6 SOME NONLINEAR EFFECTS

In its original form, the quasi-geostrophic equation (16.16) is quadratic in
the streamfunction. An assumption of weak amplitudes was, therefore, neces-
sary to explore the linear wave regime, and it is proper to ask now what role
nonlinearities could play. For evident reasons, no general solution of the nonlin-
ear equation is available. Nonlinearities cause interactions among the existing
waves, generating harmonics and spreading the energy over a wide spectrum of
scales. According to numerical simulations (McWilliams, 1989; Rhines, 1977),
the result is a complicated unsteady state of motion, which has been termed
geostrophic turbulence.

Although this topic will be more fully developed in a later chapter (Sec-
tion 18.3), it is worth mentioning here the natural tendency of geostrophic
turbulence to form coherent structures (McWilliams, 1984, 1989). These take
the form of distinct and robust vortices that can be clearly identified and traced
for periods of time long compared with their turn-around times. Figure 18.17
provides an example. The vortices contain a disproportionate amount of the
energy available, being therefore highly nonlinear and leaving a relatively weak
and linear wavefield in the intermediate space. In other words, a mature state of
geostrophic turbulence displays a dichotomous pattern of nonlinear, localized
vortices and linear, nonlocalized waves.

To explore nonlinear effects, let us seek a localized, vortex-type solution of
finite amplitude. To simplify the analysis, we make the following assumptions of
inviscid fluid and uniform stratification (N= constant). Furthermore, expecting
a possible zonal drift reminiscent of planetary waves, we seek solutions that are
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steadily translating in the x-direction. Thus, we state

∂q

∂t
+ J(ψ,q) = 0 (16.57)

q = ∇2ψ + f 2
0

N2

∂2ψ

∂z2
+ β0y, (16.58)

in which ψ=ψ(x−ct, y, z) is a function vanishing at large distances.
Because the variables x and t occur only in the combination x−ct, the

time derivative can be assimilated to an x-derivative (∂/∂t=−c∂/∂x) and the
equation becomes

J(ψ + cy, q) = 0,

which admits the general solution

q = ∇2ψ + f 2
0

N2

∂2ψ

∂z2
+ β0y = F(ψ+cy). (16.59)

The function F is, at this stage, an arbitrary function of its variable, ψ+cy.
Because the vortex is required to be localized, the streamfunction must vanish at
large distances, including large zonal distances at finite values of the meridional
coordinate y. From Eq. (16.59), this implies

β0y = F(cy),

and the function F is linear: F(α)= (β0/c)α. Naturally, the function F may be
multivalued, taking values along contours of ψ+cy not connected to infinity
(and, therefore, closed onto themselves within the confines of the vortex) that
are different from the values along other, open contours of ψ+cy. In other
words, the same ψ+cy on two different contours could correspond to two
distinct values of F.

Mindful of this possibility but restricting our attention for now to the region
extending to infinity, where F is linear, we have from Eq. (16.59)

∇2ψ+ f 2
0

N2

∂2ψ

∂z2
= β0

c
ψ. (16.60)

Now, assuming the existence of rigid surfaces at the top and bottom, we impose
∂ψ/∂z=0 at z=0 and H, restricting the number of vertical modes. The gravest
baroclinic mode has the structure ψ=a(r,θ)cos(πz/H), where (r, θ ) are the
polar coordinates associated with the Cartesian coordinates (x−ct, y). The hor-
izontal structure of the solution is prescribed by the amplitude a(r,θ), which
must satisfy

∂2a

∂r2
+ 1

r

∂a

∂r
− 1

r2

∂2a

∂θ2
−
(

1

R2
+ β0

c

)
a=0, (16.61)
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by virtue of Eq. (16.60). Here,

R= NH

π f0
, (16.62)

is the internal radius of deformation. (The factor π is introduced here for con-
venience.) Such an equation admits solutions consisting of sinusoidal functions
in the azimuthal direction and Bessel functions in the radial direction.

Because the potential energy is proportional to the integrated square of the
vertical displacements, a localized vortex structure of finite energy requires a
streamfunction field (proportional to a) that decays at large distances faster than
1/r. This requirement excludes the Bessel functions of the first kind, which
decay only as r−1/2 and leaves us with the modified Bessel functions, which
decay exponentially:

a(r,θ)=
∞∑

m=0

(Am cosmθ+Bm sinmθ)Km(kr), (16.63)

where the factor k defined by

k2 = 1

R2
+ β0

c
(16.64)

must be real. The condition that k be real implies, from Eq. (16.64) that the
drift speed c of the vortex must be either less than −β0R2 or greater than zero.
In other words, c must lie outside of the range of linear planetary wave speeds
[see Eq. (16.51)]. Because k enters the solution in multiplication with the radial
distance r, its inverse, 1/k, can be considered as the width of the vortex:

L = 1

k
= R√

1 + β0R2/c
. (16.65)

The faster the propagation (either eastward or westward), the closer L is to the
deformation radius R. Eastward-propagating vortices (c>0) are smaller than R,
whereas westward-propagating ones (c<0) are wider.

The Bessel functions Km are singular at the origin, and solution (16.63) fails
near the vortex center. The situation is remedied by requiring that in the vicinity
of r=0, the function F assumes another form than that used previously, chang-
ing the character of the solution there. Here, we shall not consider this solution,
called the modon, and instead refer the interested reader to Flierl, Larichev,
McWilliams and Reznik (1980).

Let us now consider disturbances on a zonal jet, such as the meanders of
the atmospheric Jet Stream. Waves and finite-amplitude perturbations propagate
zonally at a net speed that is their own drift speed plus the jet average velocity.
They thus move away from their region of origin, such as a mountain range, by
traveling either upstream or downstream, unless their net speed is about zero. In
this last case, when the disturbance’s own speed c is equal and opposite to the
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average jet velocity U, the disturbance is stationary and can persist for a much
longer time. Typically, the zonal jet flows eastward (Jet Stream in the atmo-
sphere, Gulf Stream in the ocean, and prevailing winds on Jupiter at the latitude
of the Great Red Spot), and so we take U positive. The mathematical require-
ment is c=−U (westward), and two cases arise: Either U is smaller than β0R2

or it is not. For U less than β0R2, c falls in the range of planetary waves, and the
disturbance is a train of planetary waves, giving the jet a meandering character.
By virtue of dispersion relation (16.50), applied to the gravest vertical mode
(n=1) and to the zero meridional wavenumber (m=0), the zonal wavelength is

λ = 2π

kx
= 2πR

√
U

β0R2 − U
. (16.66)

If the jet velocity varies downstream, the wavelength adjusts locally, increasing
with U. However, if U exceeds β0R2, finite-amplitude, isolated disturbances are
possible, and the jet may be strongly distorted. The preceding theory suggests
the following length scale

L = 1

k
= R

√
U

U − β0R2
. (16.67)

16.7 QUASI-GEOSTROPHIC OCEAN MODELING

Quasi-geostrophic models were at the core of the first weather-forecast systems
(see biographies at the end of Chapter 5 and of the present chapter), and the
reason for their success was their highly simplified mathematics and numer-
ics while capturing the dynamics essential to weather forecasting. Because of
limited computing power, the first few models were two-dimensional. Here,
we illustrate the core numerical properties of these two-dimensional mod-
els because they are representative of the numerics used in the subsequent
three-dimensional models.

In two dimensions, in the absence of friction and turbulence, the equation
governing quasi-geostrophic dynamics reduces to

∂q

∂t
+ J(ψ,q) = 0 (16.68)

with the potential vorticity q defined as

q = ∇2ψ + β0y. (16.69)

It is clear from Eq. (16.68) that the Jacobian J operator plays a central
role in the mathematics. This Jacobian can be expressed mathematically in
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several different ways:

J(ψ,q)= ∂ψ
∂x

∂q

∂y
− ∂ψ

∂y

∂q

∂x
(16.70a)

= ∂

∂x

(
ψ
∂q

∂y

)
− ∂

∂y

(
ψ
∂q

∂x

)
(16.70b)

= ∂

∂y

(
q
∂ψ

∂x

)
− ∂

∂x

(
q
∂ψ

∂y

)
(16.70c)

so that we can readily write the corresponding finite-difference forms, all of
second order (see Fig. 16.5 for notation):

J++ = (ψ̃4− ψ̃8)(q̃6− q̃2)−(ψ̃6− ψ̃2)(q̃4− q̃8)

41x1y
(16.71a)

J+× =

[
ψ̃4(q̃5− q̃3)− ψ̃8(q̃7− q̃1)

]
−
[
ψ̃6(q̃5− q̃7)− ψ̃2(q̃3− q̃1)

]
41x1y

(16.71b)

J×+ =

[
q̃6(ψ̃5− ψ̃7)− q̃2(ψ̃3− ψ̃1)

]
−
[
q̃4(ψ̃5− ψ̃3)− q̃8(ψ̃7− ψ̃1)

]
41x1y

(16.71c)

With a multiplicity of discretizations at our disposal, we may wonder which
leads to the best model. Because all are second order, we have to invoke other
properties than truncation error to decide on the optimal discretization, such as
conservation laws. We can, for example, identify the following integral con-
straints over a 2D domain of surface S within a close impermeable boundary

0

1

4

567

8

32

FIGURE 16.5 Grid notation for Jacobian J(ψ,q) around the central point labeled 0. The dis-
cretization J++ (16.71a) uses ψ and q at side points 2, 4, 6, and 8, and J+× (16.71b) takes ψ
values at side points 2, 4, 6, 8 and q values at corner points 1, 3, 5, and 7, while J×+ switches the
values of ψ and q.
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(uniform ψ along the boundary) or with periodic boundaries:∫
S

J(ψ,q)dS = 0, (16.72)

∫
S

qJ(ψ,q)dS = 0, (16.73)

∫
S

ψJ(ψ,q)dS = 0. (16.74)

Expression (16.74) can be related to the evolution of kinetic energy. In addition,
we have an antisymmetry property:

J(ψ,q) = −J(q,ψ). (16.75)

Numerical discretization generally does not ensure conservation of the cor-
responding integral properties in the discrete solution. Akio Arakawa (see
biography at the end of Chapter 9) had the brilliant idea of combining differ-
ent versions of the discretized Jacobian in order to preserve those properties in
the discrete formulation. The combination

J = (1−α−β)J++ + αJ+× + βJ×+ (16.76)

for any value of α and β leads to a consistent discretization. We should, there-
fore, try to assign those values of α and β that ensure as many simultaneous
conservation properties as possible.

Integral (16.74) in its discrete form sums up individual terms involving
products ψi,jJi,j or, with the shorter notation of Fig. 16.5, terms such as

1x1yψ0J0. (16.77)

For the Jacobian discretized according to Eq. (16.71a), this involves

41x1y ψ̃0J++0 = ψ̃0ψ̃4(q̃6− q̃2)+·· · (16.78)

The sum (integral) over the domain includes the contribution ψ4J4, in which we
find similar terms with the opposite sign:

41x1y ψ̃4J++4 = − ψ̃0ψ̃4(q̃5− q̃3)+·· · (16.79)

but the terms do not cancel each other because of the differing q values. How-
ever, if we look at the alternative discretization J+×, we do find the terms that
do cause cancellation:

41x1y ψ̃0J+×0 = ψ̃0ψ̃4(q̃5− q̃3)+·· · (16.80)
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and

41x1y ψ̃4J+×4 = − ψ̃4ψ̃0(q̃6− q̃2)+·· · (16.81)

So, if we add (J+++J+×) and then integrate over the domain, the ψJ products
cancel one another out in pairs. The same reasoning applies to other combina-
tions of terms such as those between point 0 and 6. Thus, constraint (16.74) is
respected if (J+++J+×)/2 is used for the discretization of the Jacobian.

There is better. Because ψJ×+ does not contain the terms ψ̃0ψ̃4 and ψ̃0ψ̃6
but contains terms with the product ψ̃0ψ̃5

41x1y ψ̃0J×+0 = ψ̃0ψ̃5(q̃6− q̃4)+·· · (16.82)

41x1y ψ̃5J×+5 = ψ̃0ψ̃5(q̃4− q̃6)+·· · (16.83)

which cancel each other out, it turns out that we can dilute the sum (J+++J+×)
with any amount of J×+ (make 1−α−β equal to α while keeping β arbitrary).

Similarly, if we take the sum (J+++J×+) or J+× or combination, the sum
of qJ over all grid points of the domain vanishes, respecting constraint (16.73).
Thus, Eqs. (16.74) and (16.73) can be simultaneously respected if we take 1−
α−β=α=β, which calls for α=β=1/3.

Let us now check on the antisymmetry condition (16.75). It is satisfied with
J++ and with the sum (J+×+J×+). Thus, we happily note that our combination
(J+++J+×+J×+)/3 already respects it. In conclusion, the values α=β=1/3
are ideal because they carry Eqs. (16.73)–(16.75) from the continuum repre-
sentation over to the discretized formulation. This discretization, which is very
popular, has become known as the Arakawa Jacobian.

The second essential ingredient in the quasi-geostrophic evolution is the
relation between q and ψ . Its core term is

q = ∂2ψ

∂x2
+ ∂

2ψ

∂y2
, (16.84)

which is also the sole remaining term on the f -plane in two-dimensions. Because
Eq. (16.68) provides the equation to advance q in time, Eq. (16.84) can be con-
sidered as the equation to be solved for ψ once an updated value has been
calculated for q. Hence we need to invert a Poisson equation at each time step,
a task already encountered in Section 7.8. In the first quasi-geostrophic models,
inversion was done by successive over-relaxation, occasionally with a red–black
approach on vector computers.
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ANALYTICAL PROBLEMS

16.1. Derive the one-layer quasi-geostrophic equation

∂

∂t

(
∇2ψ − 1

R2
ψ

)
+ J(ψ,∇2ψ) + β0

∂ψ

∂x
= 0, (16.85)

where R= (gH)1/2/f0, from the shallow-water model (7.17) assuming
weak surface displacements. How do the waves permitted by these
dynamics compare with the planetary waves exposed in Section 16.5?

16.2. Demonstrate the assertion made at the end of Section 16.4 that the time
rate of change of available potential energy is proportional to the integral
of the product of density perturbation with vertical velocity.

16.3. Elucidate in a rigorous manner the scaling assumptions justifying simulta-
neously the quasi-geostrophic approximation and the linearization of the
equations for the wave analysis. What is the true restriction on vertical
displacements?

16.4. Show that the assumption of a rigid upper surface (combined to the
assumption of a flat bottom) effectively replaces the external radius of
deformation by infinity. Also show that the approximate solutions for the
vertical wavenumber kz in Section 16.5 then become exact.

16.5. Explore topographic waves using the quasi-geostrophic formalism on an
f -plane (β0=0). Begin by formulating the appropriate bottom-boundary
condition.

16.6. Establish the so-called Omega Equation on the f -plane for a quasi-
geostrophic system without friction and with N2 horizontally uniform.
The Omega Equation provides the vertical velocity in a diagnostic
form (i.e., without need for time integration). The formulation involves
the geostrophic flow (ug, vg) associated with the (observed) density
field:

N2 ∂
2w

∂x2
+N2 ∂

2w

∂y2
+ f 2 ∂

2w

∂z2
= ∂Qx

∂x
+ ∂Qy

∂y
(16.86)

with

Qx=+2f

(
∂ug

∂z

∂vg

∂x
+ ∂vg

∂z

∂vg

∂y

)
Qy=−2f

(
∂ug

∂y

∂vg

∂z
+ ∂ug

∂z

∂ug

∂x

)
.
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16.7. Show that potential vorticity q defined by Eq. (16.17) is a linearization of
potential vorticity q̃ defined in Eq. (12.21) in the sense that for constant N2

q̃ = f0
h0
+ q

h0
, (16.87)

in which h0 is the unperturbed thickness of the layer, and the lin-
earization assumes small vertical displacements and weak horizontal
velocities. (Hint: The unperturbed height is directly related to N2. For
the linearization, express 1/h as a function of vertical density gradients.)

16.8. Take the reduced-gravity version of the quasi-geostrophic equation:

∂q

∂t
= J(ψ,q) with q=∇2ψ− ψ

R2
+β0y (16.88)

and show that the center of mass of a vortex patch propagates westward
at a speed β0R2, where the coordinates of the center of mass (X(t),Y(t))
are defined as

X =
∫∫

xψdxdy∫∫
ψdxdy

, Y =
∫∫

yψdxdy∫∫
ψdxdy

, (16.89)

(Hint: Calculate dX/dt and dY/dt.)

NUMERICAL EXERCISES

16.1. Verify numerical conservation (16.72) by adapting qgmodel.m in a
closed two-dimensional domain of size L. Compare leapfrog and explicit
Euler time discretizations. Initialize with a streamfunction given by

ψ=ω0L2 sin
(πx

L

)
sin
(πy

L

)
. (16.90)

On all four sides, x=0, x=L, y=0, and y=L, the boundaries are imper-
meable, and the streamfunction is kept zero. Use ω0=10−5 s−1 and
L=100 km. For simplicity, also use zero vorticity along the perimeter.

16.2. Start with qgmodelrun.m and generalize the code to allow dynamics
on the two-dimensional beta plane. Also add superviscosity (biharmonic
diffusion) as shown in Section 10.6. Redo the simulation of Numerical
Exercise 16.1 including the beta term. Take β0=2×10−11 m−1 s−1 and
L=3000 km. Observe the evolution of the streamfunction. (Hint: Keep
relative vorticity as the dynamic variable and express the beta effect as a
forcing term in the governing equation for relative vorticity, e.g., within
the Jacobian operator.)
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16.3. Simulate the evolution of an eddy on the f -plane. Begin with an eddy
centered at the origin with its streamfunction given by

ψ=−ω0L2(r+1)e−r, r=
√

x2+y2

L
, (16.91)

with L=100 km and ω0=10−5 s−1, and then perturb it by multiplying
r used in the initial calculation of ψ by 1+ε cos(2θ), where θ is the
azimuthal angle and ε a small parameter, for example, ∼0.03. Perform
the calculations in the square domain [−10L,10L]× [−10L,10L] with
zero values for ψ along the perimeter.

16.4. Redo Numerical Exercise 16.3 with an initial eddy defined by

ω =


−ω0 for 0< r/L<1/

√
2

+ω0 for 1/
√

2≤ r/L<1

0 for 1≤ r/L

(16.92)

and verify that you obtain the evolution shown in Fig. 16.6.

16.5. Adapt qgmodel.m to simulate the instability of the barotropic flow of
Section 10.4 or analyze shearedflow.m. Initialize with the basic flow
perturbed by an unstable wave. Instead of an infinite domain in the
y–direction, prescribe zero values for the streamfunction at y=±10L.
Apply periodic boundary conditions in the x-direction. What bound-
ary conditions do you use for the potential vorticity q? Which problem
related to boundary conditions do you encounter if you want to use bihar-
monic diffusion (Section 10.6)? In any case, take a weak diffusion for

FIGURE 16.6 Evolution of a perturbed vorticity patch within a quasi-geostrophic framework.
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the simulations. (Hint: Expect to have time for a cup of coffee during the
simulation.)

16.6. Implement a more efficient Poisson-equation solver using a conjugate-
gradient approach (see Section 7.8) by using Matlab™ routine pcg, and
redo Numerical Exercise 16.5. Search the World Wide Web for a multi-
grid version of the Poisson equation solver to further reduce calculation
times if necessary.

16.7. Adapt the over-relaxation parameter to decrease the computation time of
simulations in Numerical Exercise 16.5. Then simulate the schematized
atmospheric jet stream of Analytical Problem 10.4, with a long wave-like
perturbation. In a second experiment, reduce the intensity of the jet stream
by a factor 4. In a third experiment, keep the lower velocity but disable the
beta term. Discuss the stability in the context of the solution to Analytical
Problem 10.4.

16.8. Simulate the evolution of the triangular jet of Analytical Problem 10.5,
with L=50 km and U=1 m/s. (Hint: Perturb the zonal flow by a rather
long wave in a sufficiently long domain.)
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Jule Gregory Charney
1917–1981

A strong proponent of the idea that intelligent simplifications of a problem are
not only necessary to obtain answers but also essential to understand the under-
lying physics, Jule Charney was a major contributor to dynamic meteorology.
As a student, he studied the instabilities of large-scale atmospheric flows and
elucidated the mechanism that is now called baroclinic instability (Chapter 17).
His thesis appeared in 1947, and the following year, he published an article
outlining quasi-geostrophic dynamics (the material of this chapter). He then
turned his attention to numerical weather prediction, an activity envisioned
by L. F. Richardson some 30 years earlier. The success of the initial weather
simulations in the early 1950s is to be credited not only to J. von Neumann’s
first electronic computer, but also to Charney’s judicious choice of simplified
dynamics, the quasi-geostrophic equation. Later on, Charney was instrumen-
tal in convincing officials worldwide of the significance of numerical weather
predictions, while he also gained much deserved recognition for his work on
tropical meteorology, topographic instability, geostrophic turbulence, and the
Gulf Stream. Charney applied his powerful intuition to systematic scale anal-
ysis. Scaling arguments are now a mainstay in geophysical fluid dynamics.
(Photo from archives of the Massachusetts Institute of Technology)
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Allan Richard Robinson
1932–2009

An avowed “phenomenologist,” Allan Robinson is counted among the founding
fathers of geophysical fluid dynamics because of his seminal contributions on
the dynamics of rotating and stratified fluids, boundary-layer flows, continental
shelf waves, and the maintenance of the oceanic thermocline. Underlying his
accomplishments is the firm belief that “curiosity about nature is the primary
driving force and rationalization for research.” During the 1970s he chaired
and cochaired a series of international programs that established the existence
and importance of intermediate-scale eddies in the open ocean, the internal
weather of the sea. His research led him to formulate numerical models for
ocean forecasting and to emphasize the role of ocean physics in regulating bio-
logical activity. Robinson has also contributed significantly to the development
of techniques for the assimilation of data in ocean-forecasting models. During
the 1980s and 1990s, he led a group of international scientists, predominantly
from bordering nations, to advance the science of the Mediterranean Sea. Later,
he headed a program to synthesize knowledge of the interdisciplinary global
coastal ocean. (A. R. Robinson, Harvard University)



Chapter 17

Instabilities of Rotating
Stratified Flows

ABSTRACT
In a stratified rotating fluid, not all geostrophic flows are stable, for some are vulnera-
ble to growing perturbations. This chapter presents two primary mechanisms by which
instability may occur: motion of individual particles (called inertial instability) and orga-
nized motions across the flow (called baroclinic instability). In each case, kinetic energy
is supplied to the disturbance by release of potential energy from the original flow.
Baroclinic instability is at the origin of the midlatitude cyclones and anticyclones that
make our weather so variable. Because the evolution of weather perturbations is essen-
tially nonlinear, a two-layer quasi-geostrophic model is presented here to simulate the
evolution of the baroclinic instability past the linear-growth phase.

17.1 TWO TYPES OF INSTABILITY

There are two broad types of flow instability. One is local or punctual in the
sense that every particle in (at least a portion of) the flow is in an unstable situ-
ation. A prime example of this type is gravitational instability, which occurs
in the presence of a reverse stratification (top-heavy fluid): if displaced, either
upward or downward, a particle is subjected to a buoyancy force that pulls it
further away from its original location and, since all other particles are indivi-
dually subjected to a similar pull, the result is a catastrophic overturn of the fluid
followed by mixing. In the absence of friction, there is no specific temporal and
spatial scales for the event.

The second type of instability can exist only if the flow is stable with respect
to the first kind. It is more gradual and relies on a collaborative action of many,
if not all, particles and for this reason can be called global or organized. The
instability is manifested by the temporal growth of a wave at a preferential
wavelength that eventually overturns and forms vortices. An example is the
barotropic instability encountered in Chapter 10 (see Section 10.4 in particular).

Rotating stratified flows can be subjected to either type of instability. If the
instability is local, it is called inertial instability, and if it is global, baroclinic

553
Introduction to Geophysical Fluid Dynamics, Volume 101, ISSN 0074-6142, DOI: 10.1016/B978-0-12-088759-0.00017-1
Copyright © 2011, Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/B978-0-12-088759-0.00017-1


554 PART | IV Combined Rotation and Stratification Effects

�

�

�

�

TABLE 17.1 Contrasting Characteristics of the Two Types of Instability to
which a Fluid Flow May Be Subjected

Local Instability Global Instability

Particles act individually. Particles act in concert.

Motion proceeds randomly. Motion proceeds in a wave arrangement.

Instability criterion depends only on
local properties of the flow.

Instability criterion depends on bulk
properties of the flow and on
wavelength of perturbation.

Instability is independent of boundary
conditions.

Instability is sensitive to boundary
conditions.

Instability is catastrophic (major
overturn, mixing).

Instability is gradual (growing wave and
vortex formation).

Example: overturning of a top-heavy
fluid

Example: Kelvin–Helmholtz instability

In rotating stratified flow: inertial
instability

In rotating stratified flow: mixed
barotropic–baroclinic instability

instability. Table 17.1 summarizes the contrasting properties of the two types of
instabilities.

Baroclinic instability is actually an end member of a more general instabi-
lity, called mixed barotropic–baroclinic instability, which occurs when the flow
is sheared in both horizontal and vertical directions. Baroclinic instability is
the extreme when there is no shear in the horizontal, and barotropic instability
(Chapter 10) is the other extreme, when the original flow has a no shear in the
vertical.

17.2 INERTIAL INSTABILITY

In this section, we consider the possibility of catastrophic instability, namely
one in which a fluid particle once displaced from its position of equilibrium
keeps moving further away from that position. Such instability is catastrophic
because, if one such particle migrates away from its initial position, all others
can do so as well, and the ensuing situation is overturn, mixing and chaos.

This instability can be characterized also as inertial because acceleration is
the crux of the growing displacement of the particles in the system. Finally,
inertial instability is sometimes called symmetric instability (Holton, 1992) due
to some symmetry in its formulation, as the following developments will shortly
reveal.
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Let us consider an inviscid steady flow in thermal-wind balance with varia-
tion across the vertical plane (x, z), with sheared velocity v(x,z) in equilibrium
with a slanted stratification ρ(x,z). Such flow must be both geostrophic and
hydrostatic:

−f v=− 1

ρ0

∂p

∂x
(17.1a)

0=− 1

ρ0

∂p

∂z
− gρ

ρ0
. (17.1b)

Elimination of pressure p between these two equations yields the thermal-wind
balance

f
∂v

∂z
=− g

ρ0

∂ρ

∂x
. (17.2)

From these flow characteristics, let us define the stratification frequency N by

N2=− g

ρ0

∂ρ

∂z
= 1

ρ0

∂2p

∂z2
, (17.3)

and, similarly, two quantities that will be become useful momentarily:

F2= f

(
f + ∂v

∂x

)
= f 2+ 1

ρ0

∂2p

∂x2
(17.4)

f M= f
∂v

∂z
=− g

ρ0

∂ρ

∂x
= 1

ρ0

∂2p

∂x∂z
. (17.5)

Note that the three quantities N2, F2, and f M all have the dimension of a fre-
quency squared. But, although the first two are defined as squares, we ought to
entertain the possibility that they may be negative.

Next, let us perturb such flow by adding time dependency and velocity
components u and w within the x–z plane, while assuming still no variation in
the perpendicular direction. For clarity of exposition, we further assume invis-
cid flow and restrict the attention to the f -plane, but we allow for possible
nonhydrostaticity in the vertical, in anticipation of large vertical accelerations:

du

dt
− f v=− 1

ρ0

∂p

∂x
(17.6a)

dv

dt
+ fu=0 (17.6b)

dw

dt
=− 1

ρ0

∂p

∂z
− gρ

ρ0
, (17.6c)

where d/dt stands for the material derivative (following particle movement).
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In this flow, let us track an individual fluid particle with moving coordinates
[x(t), z(t)]. Its velocity components in the vertical plane are

u= dx

dt
, w= dz

dt
, (17.7)

which transform Eq. (17.6b) into

dv

dt
+ f

dx

dt
=0. (17.8)

Since f is constant in our model, the quantity v+ fx is an invariant of the
motion,1 and it follows that if the particle is displaced horizontally over a
distance 1x it undergoes a change of transverse velocity 1v such that

1v+ f1x=0. (17.9)

Turning our attention to Eqs. (17.6a) and (17.6c) and eliminating from them
u and w by using (17.7), we obtain

d2x

dt2
− f v=− 1

ρ0

∂p

∂x
(17.10a)

d2z

dt2
=− 1

ρ0

∂p

∂z
− gρ

ρ0
. (17.10b)

Note that in these equations the pressure terms on the right-hand side are
complicated functions of the particle position (x, z).

Let us now imagine that the fluid particle under consideration is only moved
from its original position by a small displacement 1x in the horizontal and 1z
in the vertical: x(t)= x0+1x(t), z(t)= z0+1z(t), so that we may linearize the
equations. Note that any displacement along y has no effect on the dynamic bal-
ance and can be ignored. Neglecting compressibility effects, we assume that the
displacement causes no change in density for the particle. At its new position,
the particle is out of equilibrium. In the vertical, it is subject to a buoyancy force,
while in the horizontal, it is no longer in geostrophic equilibrium. These forces
are reflected in the new, local values of the pressure gradient, which for a small
displacement can be obtained from the original values by a Taylor expansion:

∂p

∂x

∣∣∣∣
at x+1x,z+1z

= ∂p

∂x

∣∣∣∣
at x,z
+1x

∂2p

∂x2

∣∣∣∣
at x,z
+1z

∂2p

∂x∂z

∣∣∣∣
at x,z

(17.11a)

∂p

∂z

∣∣∣∣
at x+1x,z+1z

= ∂p

∂z

∣∣∣∣
at x,z
+1x

∂2p

∂x∂z

∣∣∣∣
at x,z
+1z

∂2p

∂z2

∣∣∣∣
at x,z

. (17.11b)

1This is occasionally called the geostrophic momentum.
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After subtraction of the unperturbed state, the equations governing the evolution
of the displacement are

d21x

dt2
− f1v=− 1

ρ0

(
∂2p

∂x2

)
1x− 1

ρ0

(
∂2p

∂x∂z

)
1z (17.12a)

d21z

dt2
=− 1

ρ0

(
∂2p

∂x∂z

)
1x− 1

ρ0

(
∂2p

∂z2

)
1z, (17.12b)

in which 1v=−f1x according to (17.9). The first equation tells that the force
imbalance in the x-direction is due in part to the Coriolis force having changed
by f1v and in part to immersion in a new pressure gradient. By Newton’s sec-
ond law, this causes a horizontal acceleration d21x/dt2. Likewise, the second
equation states that the modified pressure environment causes an imbalance in
the vertical. The new neighbors together exert a buoyancy force on our particle,
and the latter acquires a vertical acceleration d21z/dt2.

Since the equations are now linear, we may seek solutions of the form

1x=X exp(iωt), 1z=Z exp(iωt). (17.13)

If the frequency ω is real, the particle oscillates around its original position
of equilibrium, and the flow can be characterized as stable. On the contrary,
should ω be complex and have a negative imaginary part, the solution includes
exponential growth, the particle drifts away from its original position, and the
flow is deemed to be unstable.

Substitution on the solution type in the governing equations yields a two-by-
two system for the amplitudes X and Z:

(F2−ω2)1x+ f M1z=0 (17.14a)

f M1x+(N2−ω2)1z=0, (17.14b)

in which we introduced quantities defined in (17.3), (17.4), and (17.5).
A nonzero solution exists only if ω obeys

(F2−ω2)(N2−ω2)= f 2M2, (17.15)

of which the ω2 roots are

ω2= F2+N2±
√
(F2−N2)2+4f 2M2

2
. (17.16)

The question is whether one or both ω2 values can be negative, in which case
there is at least one ω root with a negative imaginary part.

Before proceeding with the general case, it is instructive to consider two
extreme cases. First is the case of stratification without rotation (v is a constant
and ρ is a function of z only; F2= f M=0 and N2 6=0), for which

ω2 = N2±
√

N4

2
= 0 or N2. (17.17)
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All ω values are real if N2≥0, which corresponds to a density increasing
downward (dρ/dz<0). Otherwise the fluid is top heavy and overturns. This
is gravitational instability first encountered in Section 11.2.

The second extreme case is that of a pure shear (v is a function of x only and
ρ is a constant: F2 6=0 and f M=N2=0), for which

ω2 = F2±
√

F4

2
= 0 or F2. (17.18)

All ω values are real if F2≥0, which corresponds to f ( f +∂v/∂x)≥0, that
is, ( f +∂v/∂x) of the same sign as f . Should F2 be negative, the flow mixes
horizontally. This is inertial instability in a pure form.

This result is less intuitive than the first and begs for a physical explana-
tion. So let us follow the evolution of a particle displaced laterally (Fig. 17.1).
During the displacement 1x, it conserves its geostrophic momentum and sees
its velocity v change according to (17.9). As it arrives at a new place, the
Coriolis force exerted on the particle no longer matches the pressure gradient
force, for the following two reasons: the particle’s own velocity has changed
and the pressure gradient is different at the new place. Hence the particle is

�x

�v

�x

�v

Coriolis force

Coriolis force, surrounding fluid

Restoring force Coriolis force

Coriolis force, surrounding fluid

Outward pull

FIGURE 17.1 A fluid particle displaced to the right by a distance1x>0 conserves its geostrophic
momentum and sees its velocity drop to v(x)− f1x. In the case of the left panel, the new particle
velocity is weaker than the ambient velocity v(x+1x)=v(x)+(dv/dx)1x at its new place, and
its own Coriolis force (from left to right) is insufficient to meet the local pressure-gradient force
(from right to left). Consequently, the particle is subjected to a net residual force (from right to left)
that pushes it back toward its original position, a restoring force. In the case of the right panel, the
situation is reversed: the particle’s new velocity exceeds the ambient velocity, and its Coriolis force
(from left to right) is stronger than the local pressure-gradient force (from right to left), leaving a
difference that pulls the particle from left to right and thus further away from its original place. The
former case is stable, whereas the latter is unstable.
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no longer in geostrophic equilibrium and undergoes a net acceleration in the
x-direction. It is either pushed back toward its original location or further acce-
lerated away from there, depending on how the particle’s Coriolis force com-
pares to the local pressure-gradient force. As shown in Fig. 17.1, in the northern
hemisphere ( f >0), stability requires that a particle displaced to the right
(1x>0) sees its new velocity v− f1x fall below the surrounding velocity
v+1x(∂v/∂x) to be pushed back toward its original location, hence stability
condition f +∂v/∂x>0.

Returning to the general case, we realize that the switch between stability
and instability occurs when ω2=0, which according to (17.16) occurs when

F2N2= f 2M2. (17.19)

Around this relation, the signs of the ω2 roots are as depicted in Fig. 17.2. It is
clear from this graph that stability demands three conditions2:

F2≥0, N2≥0, and F2N2≥ f 2M2. (17.20)

The third condition is the most intriguing of the group and deserves some
physical interpretation. For this, let us take F2 and N2 both positive and define
the slope (positive downward) of the lines in the vertical (x, z) plane along which

One ω2 root>0
Other ω2 root<0

(instability)

F2N 2 � f2M2

F2N2 � f 2M2

Both roots>0
(stability)

Both roots<0
(instability)

F2

N2

FIGURE 17.2 Stability diagram in the

parameter space (F2, N2) for the inertial
instability of a thermal-wind flow.

2Note that F2N2≥ f 2M2 alone is not sufficient because it could be obtained with F2 and N2 each
negative.
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the geostrophic momentum v+ fx and density ρ are constant:

Smomentum = slope of line v+ fx= constant

= ∂(v+ fx)/∂x

∂(v+ fx)/∂z
= F2

f M
(17.21)

Sdensity = slope of line ρ= constant

= ∂ρ/∂x

∂ρ/∂z
= f M

N2
. (17.22)

The stability threshold F2N2= f 2M2 then corresponds to equal momentum
and density slopes. Normally, the velocity varies strongly in x and weakly in
z, whereas density behaves in the opposite way, varying more rapidly in z than
in x. Typically, therefore, lines of equal geostrophic momentum are steeper than
lines of equal density. It turns out that this is the stable case F2N2> f 2M2 (left
panel of Fig. 17.3).

With increasing thermal wind, momentum lines become less inclined and
density lines more steep, until they cross. Beyond this crossing, the steeper lines
are the density lines, F2N2< f 2M2, and the system is unstable (right panel of
Fig. 17.3). Particles quickly drift away from their initial position, and the fluid
is vigorously rearranged until it becomes marginally stable, just as a top-heavy
fluid (N2<0) is gravitationally unstable and becomes mixed until its density
is homogenized (N2=0). In other words, a situation with density lines steeper
than geostrophic lines cannot persist and rearranges itself quickly until these
lines coincide.

x

z

Stable

x

z

Unstable

v+ fx =
constant

Wedge of

instability

1
2

ρ=
constant

v+ fx = constant ρ=constant

FIGURE 17.3 Left panel: Stability when lines of constant geostrophic momentum v+ fx are
steeper than lines of constant density ρ. Right panel: Instability when lines of constant geostrophic
momentum are less steep than lines of constant density; any particle (such as the one highlighted on
the figure) displaced within the wedge is pulled further away by a combination of buoyancy force
(1) and geostrophic imbalance (2).
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In the unstable regime, it can be shown (see Analytical Problem 17.6) that
growing particle displacements lie in the wedge between the momentum and
density lines (right panel of Fig. 17.3). This justifies yet another name for the
process: wedge instability.

17.3 BAROCLINIC INSTABILITY—THE MECHANISM

In thermal-wind balance, geostrophy and hydrostaticity combine to maintain
a flow in equilibrium. Assuming that this flow is stable with respect to iner-
tial instability (previous section), the equilibrium is not that of least energy,
because a reduction in slope of density surfaces by spreading of the lighter fluid
above the heavier fluid would lower the center of gravity and thus the potential
energy. Simultaneously, it would also reduce the pressure gradient, its associated
geostrophic flow and the kinetic energy of the system. Evidently, the state of rest
is that of least energy (minimum potential energy and zero kinetic energy).

In a thermal wind, relaxation of the density distribution and tendency toward
the state of rest cannot occur in any direct, spontaneous manner. Such an evo-
lution would require vertical stretching and squeezing of fluid columns, neither
of which can occur without alteration of potential vorticity.

Friction is capable of modifying potential vorticity, and under the slow
action of friction a state of thermal wind decays, eventually bringing the sys-
tem to rest. But there is a more rapid process that operates before the influence
of friction becomes noticeable.

Vertical stretching and squeezing of fluid parcels is possible under conserva-
tion of potential vorticity if relative vorticity comes into play. As we have seen
in Section 12.3, a column of stratified fluid that is stretched vertically develops
cyclonic relative vorticity, and one that is squeezed acquires anticyclonic vor-
ticity. In a slightly perturbed thermal-wind system, the vertical stretching and
squeezing occurring simultaneously at different places generates a pattern of
interacting vortices. Under certain conditions, these interactions can increase
the initial perturbation, thus forcing the system to evolve away from its original
state.

Physically, a partial relaxation of the density surfaces liberates some poten-
tial energy, while the concomitant stretching and squeezing creates new relative
vorticity. The kinetic energy of the new motions can naturally be provided by
the potential energy release. If conditions are favorable, these motions can then
contribute to further relaxation of the density field and to stronger vortices.
With time, large vortices can be formed at the expense of the original thermal
wind. Vortices noticeably increase the amount of velocity shear in the system,
greatly enhancing the action of friction. The evolution toward a lower energy
level is therefore more effective via the transformation from potential energy
into kinetic energy and generation of vortices than by friction acting on the
thermal-wind flow.
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Let us now investigate how a disturbance of a thermal-wind flow can gene-
rate a relative-vorticity distribution favorable to growth. For this purpose, a
two-fluid idealization, as depicted in Fig. 17.4, is sufficient. For the discussion,
let us also ignore the beta effect and align the x-direction with that of the thermal
wind (U1−U2). The interface then slopes upward in the y-direction (middle
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FIGURE 17.4 Patterns of squeezing and stretching caused by lateral displacements in a two-layer
flow in thermal-wind balance. Squeezing generates anticyclonic vorticity (clockwise motion in the
northern hemisphere), while stretching generates cyclonic vorticity (counterclockwise motion in the
northern hemisphere). The flexibility of the density interface distributes the squeezing and stretching
across both layers, and the result is that a cross-flow displacement in the upper layer (upper left of
the figure) causes an accompanying pattern of squeezing and stretching in the lower layer (lower
left of the figure). Vice versa, a cross-flow displacement in the lower layer (lower right of the figure)
causes a similar pattern of squeezing and stretching in the upper layer (upper right of the figure).
Growth occurs when the two sets of patterns mutually reinforce each other.
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panels of Fig. 17.4). A perturbation of the upper flow causes some of its
parcels to move in the +y-direction, into a shallower region (middle-left panel
of the figure), and these undergo some vertical squeezing and thus acquire
anticyclonic vorticity (clockwise in the figure). Because the density interface
is not a rigid bottom but a flexible surface, it deflects slightly, relieving the
upper parcels from some squeezing and creating a complementary squeeze in
the lower layer. Thus, lower layer parcels, too, develop anticyclonic vorticity at
the same location. Note that a lowering of the interface on the shallower side is
also in the direction of a decrease of available potential energy.

Elsewhere, the disturbance causes upper layer parcels to move in the oppo-
site direction—that is, toward a deeper region. There, vertical stretching takes
place, and, again, because the interface is flexible, this stretching in the upper
layer is only partial, the interface rises somewhat, and a complementary stretch-
ing occurs in the lower layer. Thus, parcels in both layers develop cyclonic
relative vorticity (counterclockwise in the figure). Note that a lifting of the
interface on the deeper side is again in the direction of a decrease of available
potential energy. If the disturbance has some periodicity, as shown in the figure,
alternating positive and negative displacements in the upper layer cause alter-
nating columns of anticyclonic and cyclonic vorticities extending through both
layers. Parcels lying between these columns of vortical motion are entrained
in the directions marked by the arrows in the figure (upper left and lower left
panels), creating subsequent displacements. Because these latter displacements
occur not at but between the crests and troughs of the original displacements,
they lead not to growth but to a translation of the disturbance.3 Thus, a pattern
of displacement in the upper layer generates a propagating wave. The direction
of propagation (c1 in upper left panel of Fig. 17.4) is opposite to that of the
thermal wind (U1−U2).

Similarly, cross-flow displacements in the lower layer (right panel of
Fig. 17.4) generate patterns of stretching and squeezing in both layers. The
difference is that, because of the sloping nature of the density interface, displace-
ments in the +y-direction (middle-right panel in the figure) are accompanied
by stretching instead of squeezing. Fluid parcels lying between vortical motions
take their turn in being displaced, and the pattern again propagates as a wave (c2
in lower right panel of Fig. 17.4), this time in the direction of the thermal wind.

By itself, each displacement pattern in a layer only generates a vorticity
wave, but growth or decay of the whole can take place depending on whether
the two separately induced patterns reinforce or negate each other. If the vor-
ticity patterns induced by the upper layer and lower layer displacements are in
quadrature with each other, the complementary vortical motions (upper right
and upper left sides of Fig. 17.4, respectively) of one set fall at the crests and

3The mechanism here is identical to that of planetary and topographic waves, discussed in
Section 9.6.



564 PART | IV Combined Rotation and Stratification Effects

x

y

FIGURE 17.5 Interaction of displacement patterns and vortex
tubes in the upper layer of a two-layer thermal-wind flow when dis-
placements occur in both layers. The illustration depicts the case of
a mutually reinforcing pair of patterns, when the vortical motions of
one pattern act to increase the displacements of the other. A similar
figure could be drawn for the lower layer, and it can be shown that, if
the combination of patterns is self-reinforcing in one layer, it is self-
reinforcing in the other layer, too. This is the essence of baroclinic
instability.

troughs of the other set, and the ensuing interaction is either favorable or unfa-
vorable to growth. If the spatial phase difference is such that the displacement
pattern in one layer is shifted in the direction of the thermal-wind flow in that
layer (U1−U2 in the upper layer—the opposite in the lower layer), as depicted
in Fig. 17.5, the vortical motions of one pattern act to increase the displacements
of the other, and the disturbance in each layer amplifies that in the other. The
system evolves away from its initial equilibrium.

The preceding description points to the need of a specific phase arrangement
between the displacements in the two layers and emphasizes the role of vorticity
generation. A further requirement is necessary for growth: the disturbance must
have a wavelength that is neither too short nor too long and must be such that
the vertical stretching and squeezing effectively generates relative vorticity. To
show this in the simplest terms, let us consider the quasi-geostrophic form of
the potential vorticity (16.17), on the f -plane:

q=∇2ψ+ ∂

∂z

(
f 2

N2

∂ψ

∂z

)
, (17.23)

where ψ is the streamfunction, f the Coriolis parameter, N the stratification
frequency, and∇2 the two-dimensional Laplacian. For a displacement pattern of
wavelength L, the first term representing relative vorticity is on the the order of

∇2ψ∼ 9
L2
, (17.24)

where the streamfunction scale 9 is proportional to the amplitude of the dis-
placements. If the height of the system is H, the second term (representing
vertical stretching) scales as

∂

∂z

(
f 2

N2

∂ψ

∂z

)
∼ f 29

N2H2
= 9

R2
, (17.25)

where we have defined the deformation radius R=NH/f .
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Now, if L is much larger than R, the relative vorticity cannot match the ver-
tical stretching as scaled. This implies that vertical stretching will be inhibited,
and the displacements in the layers will tend to be in phase in order to reduce
squeezing and stretching of fluid parcels in each layer. On the other hand, if
L is much shorter than R, relative vorticity dominates potential vorticity. The
two layers become uncoupled, and there is insufficient potential energy to feed
a growing disturbance. In sum, displacement wavelengths on the order of the
deformation radius are the most favorable to growth.

Another requirement for the two layers to interact is related to their rela-
tive propagation speed. It is clear that the interaction described above must be
persistent in order to allow the positive feedback mechanism to continue. With
propagating patterns in each layer this is only possible if the two features are
moving at the same speed with respect to a fixed observer. The upper layer per-
turbation moves with a retrograde speed c1 with respect to the flow velocity U1,
thus at speed U1−c1. The lower layer perturbation moves at a forward speed
c2 with respect to the flow velocity U2, thus at speed U2+c2. For the layers to
interact in a persistent matter, we therefore expect

U1−c1=U2+c2. (17.26)

Neglecting momentarily the asymmetry in wave propagation due to the beta
effect, c1 and c2 are wave speeds of topographic waves associated with the
sloping interface between the layers. For identical layer thicknesses, symmetry
dictates c1= c2, and condition (17.26) gives c1= c2= (U1−U2)/2. The abso-
lute propagation speed of the instability is U1−c1=U2+c2= (U1+U2)/2, the
average flow speed.

Because fluctuations are so ubiquitous in nature, an existing flow in thermal-
wind balance will continuously be subjected to perturbations. Most of these will
have a benign effect because they do not have the proper phase arrangement or
a suitable wavelength. But, sooner or later, a perturbation with both favorable
phase and wavelength will occur, prompting the system to evolve irreversibly
from its equilibrium state. We conclude that flows in thermal-wind balance are
intrinsically unstable. Because their instability process depends crucially on a
phase shift with height, the fatal wave must have a baroclinic structure. To
reflect this fact, the process is termed baroclinic instability.

The cyclones and anticyclones of our midlatitude weather are manifesta-
tions of the baroclinic instability of the atmospheric jet stream. The person who
first analyzed the stability of vertically sheared currents (thermal wind) and who
demonstrated the relevance of the instability mechanism to our weather is J. G.
Charney.4 While Charney (1947) performed the stability analysis for a contin-
uously stratified fluid on the beta plane, Eady (1949) did the analysis on the
f -plane independently. The comparison between the two theories reveals that

4For a short biography, see the end of Chapter 16.
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the beta effect is a stabilizing influence. Briefly, a change in planetary vortic-
ity (by meridional displacements) is another way to allow vertical stretching
and squeezing while preserving potential vorticity. Relative vorticity is then
no longer as essential and, in some cases, sufficiently suppressed to render the
thermal wind stable to perturbations of all wavelengths.

17.4 LINEAR THEORY OF BAROCLINIC INSTABILITY

Numerous stability analyses have been published since those of Charney and
Eady, exemplifying one aspect or another. Phillips (1954) idealized the contin-
uous vertical stratification to a two-layer system, a case which Pedlosky (1963,
1964) generalized by allowing arbitrary horizontal shear in the basic flow, and
Pedlosky and Thomson (2003) generalized to temporally oscillating basic flow.
Barcilon (1964) studied the influence of friction on baroclinic instability by
including the effect of Ekman layers, whereas Orlanski (1968, 1969) investi-
gated the importance of non-quasi-geostrophic effects and of a bottom slope.
Later, Orlanski and Cox (1973), Gill, Green and Simmons (1974), and Robin-
son and McWilliams (1974) confirmed that baroclinic instability is the primary
cause of the observed oceanic variability at intermediate scales (tens to hundreds
of kilometers).

Here, we only present one of the simplest mathematical models, taken from
Phillips (1954), because it best exemplifies the mechanism described in the pre-
vious section. The fluid consists of two layers with equal thicknesses H/2 and
unequal densities ρ1 on top and ρ2 below, on the beta plane (β0 6=0) over a flat
bottom (at z=0) and under a rigid lid (at z=H, constant). The fluid is further
assumed to be inviscid (A and νE=0). The basic flow is taken uniform in the
horizontal and unidirectional but with distinct velocities in each layer:

ū1=U1, v̄1=0 for
H

2
≤ z≤H (17.27a)

ū2=U2, v̄2=0 for 0≤ z≤ H

2
. (17.27b)

As we shall see, it is precisely the velocity difference 1U=U1−U2 between
the two layers, the vertical shear, that causes the instability. For simplicity,
the dynamics are chosen to be quasi-geostrophic, prompting us to introduce
a streamfunction ψ and potential vorticity q that obey (16.16) and (16.17):

∂q

∂t
+J(ψ,q)=0, (17.28a)

q=∇2ψ+ f 2
0

N2

∂2ψ

∂z2
+β0y. (17.28b)

Because of identical layer thicknesses, the stratification frequency may be con-
sidered uniform, in agreement with the layered model of Section 12.2, where
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equal layer heights corresponded to a uniform stratification. The second equa-
tion contains derivatives in z, which must be “discretized” to conform with a
two-layer representation. For this, we place valuesψ1 andψ2 at midlevel in each
layer and two additional values ψ0 and ψ3 above and below at equal distances
(Fig. 17.6). These latter values fall beyond the boundaries and are defined for
the sole purpose of enforcing boundary conditions in the vertical. The flat bot-
tom and rigid lid require zero vertical velocity at those levels, which by virtue of
(16.18e) translate into ∂ψ/∂z=0. In discretized form, the boundary conditions
are ψ0=ψ1 and ψ3=ψ2. The second derivatives may then be approximated as

∂2ψ

∂z2

∣∣∣∣
1
≈ ψ0−2ψ1+ψ2

1z2
= ψ1−2ψ1+ψ2

(H/2)2
= 4(ψ2−ψ1)

H2

∂2ψ

∂z2

∣∣∣∣
2
≈ ψ1−2ψ2+ψ3

1z2
= ψ1−2ψ2+ψ2

(H/2)2
= 4(ψ1−ψ2)

H2
.

In a similar vein, we discretize the stratification frequency:

N2=− g

ρ0

dρ

dz
≈− g

ρ0

ρ1−ρ2

1z
=+2g(ρ2−ρ1)

ρ0H
= 2g′

H
, (17.29)

for which we have defined the reduced gravity g′=g(ρ2−ρ1)/ρ0. It is also
convenient to introduce the baroclinic radius of deformation as

R= 1

f0

√
g′

H1H2

H1+H2
=
√

g′H
2f0

. (17.30)

The set of two governing equations can now be written as follows:

∂q1

∂t
+J(ψ1,q1)=0 (17.31a)

∂q2

∂t
+J(ψ2,q2)=0, (17.31b)
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FIGURE 17.6 Representation of
the vertical stratification by two
layers of uniform density in a quasi-
geostrophic model.
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where the potential vorticities q1 and q2 are expressed in terms of the stream-
functions ψ1 and ψ2 as

q1=∇2ψ1+
1

2R2
(ψ2−ψ1)+β0y (17.32a)

q2=∇2ψ2−
1

2R2
(ψ2−ψ1)+β0y. (17.32b)

From these quantities, the primary physical variables are derived as follows
[see Eqs. (16.18)]

ui=−
∂ψi

∂y
, vi=+

∂ψi

∂x
(17.33a)

w1.5=
2f0

N2H

[
∂(ψ2−ψ1)

∂t
+J (ψ1,ψ2)

]
(17.33b)

p′i=ρ0 f0ψi, (17.33c)

where i=1,2. The vertical displacement a of the density interface between
the layers can be obtained from the hydrostatic balance p′2=p′1+(ρ2−ρ1)ga,
which in terms of the streamfunctions yields

a= f0
g′
(ψ2−ψ1). (17.34)

The same set of equations can be derived from the two-layer model of
Section 12.4, in which the quasi-geostrophic approach is applied in each layer,
following the perturbation technique of Chapter 16.

The basic-state values of ψi and qi corresponding to (17.27) are

ψ̄1=−U1y, q̄1=
(
β0+

1U

2R2

)
y (17.35a)

ψ̄2=−U2y, q̄2=
(
β0−

1U

2R2

)
y. (17.35b)

Adding a perturbationψ ′i to ψ̄i with corresponding perturbation q′i to q̄i, both
of infinitesimal amplitudes so that the equations can be linearized, we obtain,
from (17.31) and (17.32), the following:

∂q′i
∂t
+J(ψ̄i,q

′
i)+J(ψ ′i , q̄i)=0 (17.36a)

q′1=∇2ψ ′1+
1

2R2

(
ψ ′2−ψ ′1

)
(17.36b)

q′2=∇2ψ ′2−
1

2R2

(
ψ ′2−ψ ′1

)
. (17.36c)
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Elimination of q′ and replacement of the basic-flow quantities with (17.35) yield
a pair of coupled equations for ψ ′1 and ψ ′2:(

∂

∂t
+U1

∂

∂x

)[
∇2ψ ′1+

1

2R2
(ψ ′2−ψ ′1)

]
+
(
β0+

1U

2R2

)
∂ψ ′1
∂x
=0, (17.37a)

(
∂

∂t
+U2

∂

∂x

)[
∇2ψ ′2−

1

2R2
(ψ ′2−ψ ′1)

]
+
(
β0−

1U

2R2

)
∂ψ ′2
∂x
=0. (17.37b)

Because both these equations have coefficients independent of x, y, and time,
a sinusoidal function in those variables is a solution, and we write

ψ ′i =<
[
φie

i(kxx+kyy−ωt)
]
, (17.38)

where φ1 and φ2 form a pair of unknowns giving the vertical structure of the
wave perturbation, kx and ky are horizontal wavenumber components (both
taken as real), and ω is the angular frequency. The symbol < indicates that only
the real part of what follows is retained. Should the frequency ω be complex
with a positive imaginary part, exponential growth occurs in time, and the wave
is unstable. Substitution in (17.37) leads to algebraic equations for φ1 and φ2:

(U1−c)

[
−k2φ1+

1

2R2
(φ2−φ1)

]
+
(
β0+

1U

2R2

)
φ1 = 0 (17.39a)

(U2−c)

[
−k2φ2−

1

2R2
(φ2−φ1)

]
+
(
β0−

1U

2R2

)
φ2 = 0, (17.39b)

in which we have defined c=ω/kx and k2= k2
x+k2

y . At this point, it is useful to
decompose the φ values into barotropic and baroclinic components:

Barotropic component: A= φ1+φ2

2
(17.40a)

Baroclinic component: B= φ1−φ2

2
. (17.40b)

The sum and difference of the preceding equations then yield[
2β0−k2(U1+U2−2c)

]
A− k21U B = 0 (17.41a)(

1

R2
−k2

)
1U A+

[
2β0 −

(
k2+ 1

R2

)
(U1+U2−2c)

]
B = 0. (17.41b)

Note that a purely barotropic solution (B=0, A 6=0) is possible only in
the absence of shear (1U=0), and for a wave speed c=U−β0/k2 easily
interpreted as a barotropic planetary wave.
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The preceding two equations form a homogeneous system of coupled linear
equations for the constants A and B, the solution of which is trivially A=B=0
unless the determinant of the system vanishes. This occurs when

R2k2(1+R2k2)

(
U1+U2−2c

1U

)2

−2
β0R2

1U
(1+2R2k2)

(
U1+U2−2c

1U

)
+ 4

β2
0 R4

1U2
+R2k2(1−R2k2)=0, (17.42)

the c solution of which can be expressed as

U1+U2−2c

1U
= β0R2

1U

2R2k2+1

R2k2(R2k2+1)

± 1

R2k2(R2k2+1)

√
β2

0 R4

1U2
−R4k4(1−R4k4). (17.43)

It is clear from this equation that the phase speed c of the wave is real as long as
the quantity under the square root is positive, that is, as long as the wavenumber
k satisfies the condition

R4k4(1−R4k4)≤
(
β0R2

1U

)2

. (17.44)

The function R4k4(1−R4k4) reaches a maximum of 1/4 for Rk=1/21/4=
0.841 (Fig. 17.7), and therefore, the condition is met for a perturbation of any
wavenumber as long as

|1U|≤2β0R2= β0g′H
2f 2

0

. (17.45)

In other words, the system is stable to all small perturbations when the veloc-
ity shear 1U is sufficiently weak not to exceed 2β0R2. Put another way, shear
is destabilizing because the greater is 1U, the higher is the likelihood that
the threshold value will be exceeded. In contrast, the beta effect is stabilizing
because the greater is β0, the more generous is the threshold.

When the velocity shear exceeds the threshold value, condition (17.45)
is not met, and not all wavenumbers satisfy condition (17.44). Perturbations

of wavenumber k=
√

k2
x+k2

y within the interval kmin< k< kmax are unstable,
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FIGURE 17.7 Instability interval for two-layer baroclinic instability. Small-amplitude waves with
wavenumber k falling in the hatched interval are unstable and grow in time.

where

kmin=

1−
√

1−4β2
0 R4/1U2

2R4

1/4

(17.46a)

kmax=

1+
√

1−4β2
0 R4/1U2

2R4

1/4

. (17.46b)

Note that unstable waves not only grow but also propagate in time. According
to (17.43), the real part of the wave speed is

<(c)= U1+U2

2
− β0

2k2

1+2R2k2

1+R2k2
(17.47)

when c is complex, and thus, the zonal propagation speed is (U1+U2)/2, or the
average velocity of the basic flow, minus a (westward) planetary wave speed.

From Fig. 17.7 or from Eq. (17.45), we see that instability on the beta plane
can only occur for a sufficiently large shear 1U. With increasing 1U starting
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from a stable flow, the first instability occurs when 1U=2β0R2. At this level
of shear, the wavenumber of the sole unstable mode is k=1/(21/4R)=0.841/R
and has the wavelength

λ= 2π

k
=7.472 R. (17.48)

For a given 1U>2β0R2, a range of wavelengths and wavenumbers (kmin<

k< kmax) correspond to unstable waves, and wavelength (17.48) happens not to
be that of the fastest growing wave.

Finding the fastest growing wave is rather complicated with a nonzero beta
effect. To keep the analysis to a minimum, we thus restrict our attention to the
f -plane (β0=0, leading to kmin=0 and kmax=1/R), which can be justified
when considering shorter scales, more typical of the ocean than of the atmo-
sphere. All perturbations of wavenumber k<1/R are unstable, corresponding to
all wavelengths longer than 2πR. Until finite-amplitude effects become impor-
tant, the perturbation that distorts the system most—and thus the one most
noticeable at the start of the instability—is the one with the largest growth rate,
ωi (the imaginary part of ω). On the f -plane, Eq. (17.43) gives c= cr+ ici with
real part cr= (U1+U2)/2 and positive imaginary part

ci=
1U

2

√
1−k2R2

1+k2R2
(kR<1) (17.49)

The growth rate is ωi= kxci and reaches a maximum with respect to kx and
ky for

kx=
√√

2−1

R
= 0.644

R
, ky=0. (17.50)

The wavelength of the fastest growing mode is λ=9.763 R.
It is interesting at this point to return to our initial considerations

(Section 17.3) and to confirm them with the preceding solution. First and fore-
most, the fact that both the critical wavelength for instability (2πR) and the
wavelength of the fastest growing perturbation (9.763 R) are proportional to R
validates the argument that self-amplification requires a scale on the order of
the deformation radius. Physically, it also verifies that the instability process
involves a rearrangement of potential vorticity between relative vorticity and
vertical stretching.

The necessary phase relationship between the transverse displacements of
the upper and lower fluids can be checked as follows. We define the transverse
displacement d, one for each layer, in terms of the meridional velocity by

v′= ∂d

∂t
+ ū

∂d

∂x
, (17.51)
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after linearization. Expressing v′ in terms of the streamfunction perturba-
tion (v′= ∂ψ ′/∂x) and implementing the wave form di=<[Di expi(kxx+kyy−
ωt)], we then obtain

Di=
φi

Ui−c
, (17.52)

from which we can deduce the ratio of transverse displacements in the upper
and lower layers:

D1

D2
= U2−c

U1−c

A+B

A−B
. (17.53)

For the fastest growing wave on the f -plane in the case U1>U2 (i.e., 1U>0),
the wavenumber is k=0.644/R, and the ratio of displacements is found to be

D1

D2
=0.66− i0.75

= cos(49◦)+ i sin(−49◦). (17.54)

Physically, the negative 49◦ angle corresponds to an advance (in the direction
of the basic flow) of the top displacement over that in the bottom layer. The
shift is not the 90◦ phase quadrature that was expected, but it is in the direction
anticipated from the simple physical argument of the previous section.

From an observational point of view, however, the interest lies in the pres-
sure field, which is proportional to the streamfunction [see (17.33c)]. Within
an arbitrary multiplicative constant, which the linear theory is unable to deter-
mine, the pressure field associated with the fastest growing perturbation can be
expressed in terms of the vertical structure of the streamfunction perturbation:

φ1

φ2
= A+B

A−B

= cos(66◦)+ i sin(66◦). (17.55)

From this, we conclude that the crests and troughs of the pressure pattern at the
top lag those of the bottom pattern by a fifth to sixth of a wavelength.

Finally, the maximum growth rate is

ωi= kxci=
1U

R

√
2−1

2
. (17.56)

If we assume the Rossby number Ro to be small, which must be by virtue of the
quasi-geostrophic approximation, we find ωi .0.2 f Ro� f . The timescale char-
acteristic of the growth is therefore much longer than f−1 so that the solution is
consistent within the quasi-geostrophic theory.

To conclude we briefly examine the confining effect of boundaries, taken as
vertical walls at y=0 and y=L. The basic flow, in the x-direction, satisfies the
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impermeability condition and needs no adjustment. As for the perturbation flow,
the normal velocity must vanish at each boundary, which according to (17.33a)
demands ∂ψ/∂x=0 at y=0 and y=L. With ψ given by (17.38), both boundary
conditions can be simultaneously met only when the sinusoidal structure in y of
the streamfunction is such that kyL=nπ with n=1,2, .... In this case

k2R2=
(

k2
x+

n2π2

L2

)
R2. (17.57)

Since according to (17.46), instability is only possible for k2R2<1, the bound-
aries must be sufficiently distant from each other to satisfy

R2

L2
≤ 1

π2
. (17.58)

This simply means that the domain must be wide enough to accommodate the
instability, otherwise it cannot develop.

Interestingly, the preceding inequality, (17.58), shows that the Burger num-
ber associated with the basic flow of width L should not exceed 0.1, and this
implies, according to (16.34), that the energy in the basic flow must be predomi-
nantly in the form of available potential energy in the basic flow. This reserve
of potential energy feeds the growth of the instability. Note that, for the pertur-
bation itself, the Burger number is always on the order of one, since the scale of
the instability is the deformation radius.

17.5 HEAT TRANSPORT

The qualitative arguments developed in Section 17.3 revolved around the idea
that if a flow in thermal-wind equilibrium is unstable, it will seek a lower level
of energy by relaxation of density surfaces toward simple gravitational equilib-
rium. If we now think of the atmosphere, where the heavier fluid is colder air
and the lighter fluid warmer air, relaxation implies a flow of warm air spilling
over the colder air (+y-direction in Fig. 17.4) and of cold air intruding under
the warmer air (−y-direction in Fig. 17.4). In other words, we expect a net heat
flux and, because the atmospheric temperature typically increases toward the
equator, a poleward heat flux. Let us examine what the preceding linear theory
predicts.

The vertically integrated heat flux in the north-south direction (y-direction)
per unit length of east-west direction (x-direction) is defined as

q=ρ0Cp

H∫
0

vT dz, (17.59)

where Cp is the heat capacity of the fluid at constant pressure (1005 Jkg−1 K−1

for dry air, 4186 Jkg−1 K−1 for seawater), T is temperature, and the overbar
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indicates an average over a wavelength in the x-direction. In the two-layer
representation of Fig. 17.6, the vertical integration is straightforward:

q=ρ0Cp

[
v2T2(H2+a) + v1T1(H1−a)

]
=ρ0Cp [v2a T2−v1a T1] (17.60)

since the temperature is uniform within each layer and the integral over a wave-
length yields v1=0 and v2=0. Using vi=v′i= ∂ψ ′i/∂x and a= f0(ψ ′2−ψ ′1)/g′
and then exploiting ∂ψ2

i /∂x=0 and ∂(ψ2ψ1)/∂x=0, we have successively

q= ρ0Cp f0
g′

[
T2
∂ψ ′2
∂x

(ψ ′2−ψ ′1)−T1
∂ψ ′1
∂x

(ψ ′2−ψ ′1)
]

= ρ0Cp f0
g′

[
−T2ψ

′
1

∂ψ ′2
∂x
−T1ψ

′
2

∂ψ ′1
∂x

]

= ρ0Cp f0
g′

(T1−T2)ψ
′
1

∂ψ ′2
∂x

. (17.61)

Some rather lengthy algebra using the periodic structure (17.38) and the modal
decomposition (17.40) successively provides

ψ ′1
∂ψ ′2
∂x
= kx

2
[=(φ1)<(φ2)−<(φ1)=(φ2)]e

2=(ω)t

= kx [<(A)=(B)−=(A)<(B)] e2=(ω)t.

The real and imaginary parts of Eq. (17.41a) are[
2β0−k2(U1+U2−2cr)

]
<(A)−k2ci =(A)= k21U <(B)[

2β0−k2(U1+U2−2cr)
]
=(A)+k2ci <(A)= k21U =(B),

where cr and ci stand, respectively, for the real and imaginary parts of c. From
these relations, it follows that

<(A)=(B)−=(A)<(B)= ci

1U
|A|2. (17.62)

Putting it altogether, we finally obtain an expression for the heat flux

q= ρ0Cp f0=(ω)
g′1U

(T1−T2)|A|2e2=(ω)t. (17.63)

It is clear from this expression that the heat flux is nonzero only when the wave
is unstable (imaginary part of ω 6=0) and is positive, as anticipated by the earlier
physical arguments. In the atmospheric case, this means that the heat flux is
poleward.
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Because the earth is heated in the tropics and cooled at high latitudes, the
global heat budget requires a net poleward heat flux in each hemisphere. The
flux is carried by both atmosphere and ocean. In the atmosphere, higher temper-
atures in the tropics and lower temperatures at high latitudes maintain an overall
thermal wind system, which is baroclinically unstable. Vortices emerge on the
scale of the baroclinic radius of deformation (R∼ 1000 km), which carry the
heat poleward and tend to relax the thermal-wind structure. The latter, however,
is maintained by continuous heating in the tropics and cooling at high latitudes.
As a consequence, the cyclones and anticyclones of our weather are the pri-
mary agents of meridional heat transfer in the atmosphere. Without baroclinic
instability, they would not exist, and weather forecasting would be a much sim-
pler task, but the tropical regions would be much hotter and the polar regions,
much colder. Also, the dominance of zonal winds would preclude efficient mix-
ing across latitudes, exacerbating certain problems by severely limiting, for
example, the spread of volcanic ash. Moreover, less atmospheric variability
would imply greatly reduced temperature and moisture contrasts and thus much
less precipitation at midlatitudes. All in all, we must concede that baroclinic
instability in our atmosphere is highly beneficial.

In the ocean, the situation is quite different. The presence of meridional
boundaries prevents thermal-wind type currents from encircling the globe, and
ocean circulation consists of large-scale gyres (Chapter 20). The meridional
branches of these gyres, especially the western boundary currents (Gulf Stream
in the North Atlantic, Kuroshio in North Pacific), are the main conveyers of
heat toward high latitudes (e.g., Siedler, Church & Gould, 2001). This greatly
reduces the need for poleward heat transfer by eddies. Baroclinic instability is
active in regions of strong currents, such as the Antarctic Circumpolar Current,
Gulf Stream, and Kuroshio extensions, but the eddies so created transport lit-
tle net heat across latitudes. One should also remember here that the baroclinic
radius of deformation is significantly shorter in the ocean than in the atmo-
sphere, with the consequence that the aggregate effect of eddies in the ocean is
more regional than planetary.

17.6 BULK CRITERIA

The theory exposed in Section 17.4 is admittedly a very simplified version of
baroclinic-instability physics. Since it is not our purpose here to review the
many advanced analyses that have been published over the years since the pio-
neering studies of Charney, Eady, and Phillips (the interested reader will find a
survey in the book of Pedlosky, 1987), we will once again turn to integral rela-
tions, from which some necessary but not sufficient criteria for instability can be
derived. We already used this approach in the study of horizontally sheared cur-
rents in homogeneous fluids (Section 10.2) and of vertically sheared currents in
nonrotating stratified fluids (Section 14.2). Although a general presentation that
would encompass the preceding two situations and baroclinic instability could
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be formulated, it is most instructive to emphasize the conditions necessary for
baroclinic instability by basing the analysis on the quasi-geostrophic equation.5

The following derivations are based on the work of Charney and Stern (1962).
We start again with Eqs. (17.28) but this time retain continuous variation in

the vertical albeit with uniform stratification frequency. Adding a small pertur-
bation to a basic zonal flow ū(y,z) possessing both horizontal and vertical shear,
we obtain

∂q′

∂t
+J(ψ̄,q′)+J(ψ ′, q̄)=0 (17.64a)

q′=∇2ψ ′+ f 2
0

N2

∂2ψ ′

∂z2
, (17.64b)

where ψ̄(y,z) is the streamfunction associated with the basic zonal flow (ū=
−∂ψ̄/∂y), and the basic potential vorticity is related to it by

q̄= ∂
2ψ̄

∂y2
+ f 2

0

N2

∂2ψ̄

∂z2
+β0y. (17.65)

Substitution of (17.64b) and (17.65) into (17.64a) yields a single equation
for the streamfunction perturbation ψ ′, which includes nonconstant coeffi-
cients depending on the basic flow structure via ψ̄ and q̄. Because those
coefficients depend only on y and z, a waveform solution in x and time can
be sought: ψ ′(x,y,z, t)=<[φ(y,z)exp(ikx(x−ct))]. The amplitude function
φ(y,z) must obey

∂2φ

∂y2
+ f 2

0

N2

∂2φ

∂z2
+
(

1

ū−c

∂ q̄

∂y
−k2

x

)
φ=0, (17.66)

with q̄ defined in (17.65).
The upper and lower boundaries are once again taken as rigid horizontal

surfaces, where the vertical velocity must vanish. According to (16.18e), this
implies after splitting between basic flow and perturbation and linearizing:

(ū−c)
∂φ

∂z
− ∂ ū

∂z
φ=0 at z=0,H. (17.67)

In the meridional direction, we idealize the domain to a channel of width L
between two vertical walls, where the meridional velocity v′= ∂ψ ′/∂x vanishes.
We thus impose

φ=0 at y=0, L. (17.68)

5Actually, this equation eliminates the Kelvin–Helmholtz instability but not barotropic instability.
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Multiplying (17.66) by the complex conjugate φ∗ of φ, integrating over the
meridional and vertical extents of the domain, performing integrations by parts,
and using the preceding boundary conditions, we obtain

H∫
0

L∫
0

[∣∣∣∣∂φ∂y

∣∣∣∣2 + f 2
0

N2

∣∣∣∣∂φ∂z

∣∣∣∣2+k2
x |φ|2

]
dydz

=
H∫

0

L∫
0

1

ū−c

∂ q̄

∂y
|φ|2 dydz

+
L∫

0

[
f 2
0

N2

1

ū−c

∂ ū

∂z
|φ|2

]H

0

dy. (17.69)

The imaginary part of this equation is

ci


H∫

0

L∫
0

|φ|2
|ū−c|2

∂ q̄

∂y
dydz+

L∫
0

[
f 2
0

N2

|φ|2
|ū−c|2

∂ ū

∂z

]H

0

dy

=0. (17.70)

A necessary condition for instability is that ci not be zero (so that the disturbance
grows in time). According to (17.70), this implies that the quantity within braces
must vanish, and therefore conditions for instability are

1. ∂ q̄/∂y changes sign in the domain, or
2. the sign of ∂ q̄/∂y is opposite to that of ∂ ū/∂z at the top, or
3. the sign of ∂ q̄/∂y is the same as that of ∂ ū/∂z at the bottom.

A sufficient condition for stability is that none of the above three conditions
is met.

Before proceeding, it is worth applying this result to the case of a uniform
shear flow ū=Uz/H in the absence of the beta effect (β0=0). We then have
q̄=0 and ∂ ū/∂z=U/H, reducing (17.70) to

ci

L∫
0

f 2
0 U

N2H

[ |φ(y,H)|2
|U−c|2 −

|φ(y,0)|2
|c|2

]
dy=0, (17.71)

in which the integral is obviously not sign definite. Stability cannot be guaran-
teed, and this flow is unstable (Eady, 1949). Had we instead chosen a weak flow
field with no vertical shear at the boundaries [e.g., ū(z)=U(3z2/H2−2z3/H3)]
and on the beta plane (∂ q̄/∂y'β0), we would have concluded (after much
lengthier mathematics) that this flow is stable to all perturbations. This points to
the sensitivity of baroclinic instability to the structure of the basic flow field.

Another application of (17.70) is to laterally sheared but vertically uniform
flow, ū(y). Then, the potential-vorticity gradient is dq̄/dy=β0−d2ū/dy2, and
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(17.70) reduces to

ci

H

L∫
0

|φ|2
|ū−c|2

(
β0−

d2ū

dy2

)
dy

=0. (17.72)

Here, we recover the result of barotropic instability obtained in Section 10.2 [see
Eq. (10.13)] and conclude that the instability conditions stated above include
both barotropic and baroclinic instability criteria. Put another way, barotropic
and baroclinic instabilities are two end members of a more general barotropic–
baroclinic mixed instability.

Charney and Stern (1962) explored the case when ∂ ū/∂z vanishes at both
upper and lower boundaries by assuming a vanishing thermal-wind there (e.g.,
uniform temperature) and/or taking the limits H→∞, ū(H)→0. Of (17.70),
only the first integral remains, and the necessary condition for instability is that
∂ q̄/∂y vanishes somewhere in the domain, a statement identical in form to—but
differing in content from—the barotropic-instability criterion of Section 10.2.

According to Gill et al. (1974), the presence of a bottom slope in the
meridional direction modifies the last of the three conditions as follows:

3. The sign of ∂ q̄/∂y is the same as that of ∂ ū/∂z−(N2/f0)db/dy at the bottom
z=b(y).

Therefore, a bottom slope may be either stabilizing or destabilizing. It is gen-
erally a stabilizing factor if it creates an ambient potential-vorticity gradient in
the same direction as the beta effect (i.e., shallower fluid toward higher lati-
tudes; see Fig. 9.6) and a destabilizing factor otherwise. However, the theory
fails to take into account the zonal topographic gradients that are more common
on Earth (e.g., the Rocky Mountains in North America for the atmosphere and
the Mid-Atlantic Ridge along the North Atlantic for the ocean).

There exist a number of other studies in baroclinic instability. The interested
reader is referred to Gill (1982, Chapter 13), Pedlosky (1987, Chapter 7), and
Vallis (2006, Chapters 6 and 9).

17.7 FINITE-AMPLITUDE DEVELOPMENT

Once the instability is underway, exponential growth eventually leads to pertur-
bations whose amplitudes are no longer small compared to the size of the basic
flow. Linear theory then ceases to be valid, and we must deal with the nonlinear
equations, resorting as usual to numerical methods. The task in front of us is
solving Eqs. (17.32) and (17.31) using the quasi-geostrophic approximation.
Since these equations are similar to those of the two-dimensional QG model
of Section 16.7, we may start with the discretization of the latter and adapt it
for our present purpose. In addition, for the study of baroclinic instability, it
is useful to exploit the fact that, because the basic flow is stationary, only the
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perturbation variables need to be updated. So, we solve

∂q′1
∂t
+J(ψ1,q1)=0, (17.73a)

∂q′2
∂t
+J(ψ2,q2)=0. (17.73b)

Note that the Jacobian operator J involves the streamfunction and potential
vorticity of the flow consisting of both basic flow and perturbation. Updating
only perturbation components, therefore, does not involve any linearization.
Equations (17.73) are readily discretized if we use the Arakawa Jacobian of
Section 16.7. For time stepping, the simplest approach is an explicit scheme
such as the predictor-corrector method, so that we can easily calculate the poten-
tial vorticities at time level n+1 knowing both streamfunction and vorticity at
time level n.

Once perturbations q′1 and q′2 are obtained at the new time level, we have to
invert a pair of Poisson equations (17.36b) and (17.36c) to calculate the respec-
tive streamfunction at the same moment, in preparation of the next time step.
Solving these Poisson equations, however, is more complicated than in the two-
dimensional case of Chapter 16 because we are now in the presence of two
coupled equations. To overcome the added complexity, we generalize the itera-
tive Gauss–Seidel approach, working jointly on ψ ′1 and ψ ′2. Omitting the ′ and
referring to an iteration by superscript (k+1), we iterate in tandem as follows:

ψ
(k+1)
1 =ψ (k)1 +α

[
∇2ψ1−q1+

(ψ
(k)
2 −ψ

(k)
1 )

2R2

]

ψ
(k+1)
2 =ψ (k)2 +α

[
∇2ψ2−q2−

(ψ
(k)
2 −ψ

(k+1)
1 )

2R2

]
.

The spatial operator∇2 is calculated using the most recent values ofψ available
on the discrete grid, and the iterations are performed at a frozen time level.6 The
parameter α contains discretization constants and over-relaxation parameters.
This approach is easily implemented and can be generalized to more than two
layers.

For the present two-layer model, another option is to decouple the equations
by decomposing q1 and q2 into their barotropic and baroclinic parts. The sum
and difference of (17.73a) and (17.73b) then yield two uncoupled equations that
can be solved independently, possibly with different iteration schemes.

Once the iterations have converged, the two perturbation streamfunctions
are known at the new time level, and the total (basic flow + perturbation)

6Do not confuse the time index n with the iteration index (k).
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streamfunction and potential vorticity can be evaluated. The Arakawa Jacobian
is then recalculated, and the time stepping continued.

To initialize the whole procedure, it is sufficient to provide initial conditions
on either vorticity or streamfunction. If the streamfunction is provided as the
initial condition, initial potential vorticity can be deduced from the streamfunc-
tion by definitions (17.36b)–(17.36c), and time stepping can start. If vorticity is
provided as the initial condition, we have to begin with a solution (inversion) of
the Poisson equations before time stepping can begin.

We also have to provide adequate boundary conditions. In the x-direction,
the length of the domain is dictated by the wavelength of the perturbation whose
stability is being investigated. Periodic conditions are then readily applied to
both streamfunction and vorticity. In the y-direction, we assume a channel con-
figuration with zonal boundaries at y=0 and y=L. The condition of zero normal
velocity forces the streamfunction to be uniform along each wall at a given
moment. At t=0, the values of the constants are dictated by the initial condition
of the still unperturbed flow. In analytical studies, these initial constants are then
kept fixed over time. This is justified by the fact that the analytical streamfunc-
tion perturbation possesses a wave structure in the x-direction, which demands
that the amplitude of the wave be zero on the boundary.

With the nonlinear equations, the situation is different because all we need
to ensure is that the instantaneous streamfunction, combining basic flow and
perturbation, is constant along the wall. The value of the constant, however,
is allowed to change with time. The physical reason lies in the possibility that
the interface between the two layers flattens out, in which case the cumulated
flow across the channel weakens in each layer. The problem we face is similar
to the one encountered in Section 7.7, where values of the streamfunction on
the periphery of islands had to be determined depending on the flow evolution
itself. For the correct and subtle way of specifying such boundary conditions in
a quasi-geostrophic model, we refer to McWilliams (1977). Here, we follow the
simpler approach of Phillips (1954), which is appropriate to our configuration.
The original equation for the velocity component u in an isopycnal model can
be cast as

∂u

∂t
+ 1

2

∂u2

∂x
+v

∂u

∂y
= f v− 1

ρ0

∂P

∂x
. (17.74)

For simplicity, there is no need to indicate to which layer we refer because
the same type of equation holds for each layer. We can integrate the preceding
equation over the wavelength λ in the x-direction. By virtue of periodicity, the
second term of the left-hand side as well as the second term of the right-hand
side will not contribute to the integral. As long as the wall coincides with the
same x-direction, impermeability requires v=0, and the third term of the left-
hand side and the first term of the right-hand side vanish. All that remains is
the integration of the first term, which must vanish on its own. In terms of the
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streamfunction (u=−∂ψ/∂y), we have

λ∫
0

∂2ψ

∂y∂t
dx=0 on a wall parallel the x-axis. (17.75)

In conclusion, the constant value to be ascribed to the streamfunction along an
impermeable boundary is to be obtained from (17.75).

The implementation of this new boundary condition can be shown for the
boundary at y=0. To determine the value of ψi,1=C1 along the boundary at
the new time step, we discretize Eq. (17.75) as

Cn+1
1 =C0

1+
1

m

m∑
i=1

(
ψn+1

i,2 −ψ0
i,2

)
(17.76)

in which the sum covers the grid points along the wall. Hence, the value to be
prescribed along the boundary depends on the yet unknown values ψn+1

i,2 in the
interior of the domain, themselves depending on the boundary conditions. This
circular dependence can be resolved by wrapping the evaluation of constant C1
into the iterations of the Poisson solver, updating ψ not only in the interior but
also on the boundary during the Gauss–Seidel iterations.

If the Poisson solver is applied to the perturbationψ ′ only, then the boundary
condition formulation is simpler: the initial value of

∫ λ
0 ∂ψ/∂y dx is fixed by the

basic flow, and
∫ λ

0 ∂ψ
′/∂y dx must be held at zero at all times.

The outlined numerical algorithm was implemented in baroclinic.m and
is now used to simulate baroclinic instability as presented in Section 17.3
extended into the nonlinear regime. We show results of such a model simu-
lation at different moments of the evolution (Fig. 17.8). For simplicity, we take
U2=−U1, so that the linear perturbation theory predicts a wave that amplifies
in place.

Initially, the evolution follows the theoretical prediction: The perturbation
grows without displacement, maintaining the expected phase shift between lay-
ers. After a while, however, the perturbation reaches a mature stage when its
amplitude is comparable to the strength of the basic flow. We are then in the
nonlinear regime. Now, the phase shift between layers diminishes, and the inter-
face between layers relaxes. Together these changes indicate a barotropization
of the flow, (Fig. 17.9) that is, the two layers begin to act more and more as
if they were making a single layer. This is confirmed by the structure of the
potential vorticity, which becomes almost vertically uniform by the end of the
simulation. We conclude that baroclinic instability releases available potential
energy and uses it to spin eddies and to strengthen the barotropic component of
the flow.
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Streamfunction layer 1

Streamfunction layer 1

Layer 1 PV

Layer 1 PV

Streamfunction layer 2

Streamfunction layer 2

Layer 2 PV

Layer 2 PV

FIGURE 17.8 Evolution of a perturbed thermal wind. For each of the two snapshots during
the evolution of the system, four panels show, in order of presentation: the upper layer potential
vorticity, the lower layer potential vorticity, the upper layer streamfunction, and lower layer stream-
function. On the latter two, the contours depict the streamfunction perturbation. On the upper layer
streamfunction plot, symbols have been added to represent the location of the maximum ψ ′ value
of the upper (cross) and lower layer (circle). On the lower layer streamfunction plot, a line depicting
the x-averaged position of the interface is shown. White separates the positive from negative values.
For perturbations, the contoured values change over time. To view the evolution as computer ani-
mation, the reader should run baroclinic.m or look at the video provided with the files.

Layer 1 PV Layer 2 PV

Streamfunction layer 2Streamfunction layer 1

FIGURE 17.9 Further evolution of the instability showing barotropization of the flow.
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ANALYTICAL PROBLEMS

17.1. Irrespectively of momentum considerations, suppose we exchange fluid
parcels 1 and 2 of Fig. 17.10. Show that the potential energy released is
maximum when the slope of the line connecting points 1 and 2 is half
that of the isopycnal slope. Show that in this case, the release of potential
energy per unit volume 1PE is

1PE= ρ0

4
N2L2 (17.77)

17.2. Demonstrate the assertion made at the end of Section 17.6 that the
vertically sheared flow

ū(z)=U

(
3

z2

H2
−2

z3

H3

)
in 0≤ z≤H is baroclinically stable on the beta plane as long as U falls
below a critical value. What is that critical value?

17.3. Establish an energy budget involving quadratic forms of the perturbation
variables. Then, derive an energy budget involving quadratic forms of the
total velocity. Identify types of energy and the exchanges between them.

17.4. Compare the magnitudes of the potential and kinetic energies of the most
unstable wave described in Section 17.4.

17.5. Assuming a general initial profile of the interface a= ā(y), with zero total
transport in each column, establish linearized equations a small pertur-
bation of this situation must obey. Verify that for a linear interface, you
retrieve formulation (17.37) with U1=−U2.

17.6. Prove the assertion made at the end of Section 17.2 that the unstable
regime of the wedge instability corresponds to particles moving along

1

2

3

4

L

x

z

FIGURE 17.10 Exchange of fluid parcels across a system in thermal-wind balance. Exchange
between parcels 1 and 2 leads to a release of potential energy, whereas exchange between parcels 3
and 4 would obviously lead to an increase in potential energy. Lighter shades represent lighter fluid.
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surfaces wedged between geostrophic surfaces and isopycnals. (Hint:
Solve for the equations of motion (17.14) for the vector displacement
(1x, 1z) and study its direction.)

17.7. Apply the two-layer model of baroclinic instability to an atmospheric sit-
uation, where the domain height H∼7 km encompasses the troposphere
with typical stratification N=10−2 s−1. Calculate the wavelength of the
most unstable mode. Compare to the weather patterns of the synoptic
maps you see any day in the newspaper or online. Then, calculate the
growth rate and compare to the lead time of a typical weather forecast.

NUMERICAL EXERCISES

17.1. Program (17.43) and plot, as a function of 1U, the wavenumber cor-
responding to the maximum growth rate and the growth rate itself for
different values of β0 and R.

17.2. Use baroclinic.m to see what happens if instead of boundary condition
(17.75), the initial value of ψ is kept on the boundaries.

17.3. Explore with baroclinic.m the effect of changing the domain width.

17.4. Use baroclinic.m and add the beta term to the discretization. Apply the
new program to a wide domain and analyze the impact of the beta effect
by placing yourself in situations allowing to verify that (17.45) corre-
sponds to the stability limit. If necessary, use the program you constructed
for solving Numerical Exercise 17.1.

17.5. Include the possibility of more general interfacial profiles in baro-
clinic.m and analyze a localized baroclinic jet where the interface
displacement around mid-depth is

a= f0UR

g′
tanh

( y

R

)
, (17.78)

where R is the internal deformation radius, U the jet velocity, and y the
cross-channel coordinate, centered in the middle of the channel.

17.6. Include diagnostics of energy evolution and transfers of energy into
baroclinic.m. Check to which extent the numerical discretization con-
serves energy. Verify if another time discretization can improve the
simulation.
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Joseph Pedlosky
1938–

A student of J. G. Charney, Joseph Pedlosky first followed his mentor’s footsteps
and developed a fascination for baroclinic instability. He quickly became an
authority on the subject, having derived new instability criteria and developed
a nonlinear theory for growing baroclinic disturbances in nearly inviscid flow.
He also made important contributions to the general theory of rotating strati-
fied fluids, the oceanic thermocline, the Gulf Stream, and the general oceanic
circulation. In 1979, Pedlosky published the first treatise on Geophysical Fluid
Dynamics, which greatly helped codify the discipline.

Pedlosky’s approach to research is first to find a problem that is simple
enough to be solved completely, yet physically informative, and then to “worry a
great deal about it until I could describe the results to an amateur.” This incessant
quest for clarity has won him great respect as a scientist and much admiration
as a speaker. (Photo credit: J. Pedlosky)
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Peter Broomell Rhines
1942–

Peter Rhines studied aerospace engineering, but his professors at MIT and Cam-
bridge University exposed him to Rossby waves and potential vorticity, and he
became hooked by geophysical fluid dynamics. Over his career, his interests
have covered a wide span of geophysical phenomena, ranging from the general
ocean circulation and oceanic eddies, to the dynamics of the atmosphere and
climate. His approach to questions is equally diverse, replete with paradigm-
shifting theories (on potential vorticity homogenization in the ocean), original
laboratory experiments, incisive numerical simulations (in geostrophic turbu-
lence), and challenging oceanographic cruises to “white and blue rim of the
Arctic world.”

The numerous awards Rhines has received emphasize his “amazing physi-
cal insight and profound appreciation of observations” and honor his “elegant
theoretical studies that have initiated new fields of inquiry.” But Rhines remains
modest, claiming that “in a sparsely populated discipline like geophysical fluid
dynamics, a short life is long enough to work on many aspects of the field.”
(Photo courtesy of Peter B. Rhines)



Chapter 18

Fronts, Jets and Vortices

ABSTRACT
When the Rossby number is not small, the dynamics are nonlinear and nonquasi-
geostrophic. Such regimes exhibit fronts and jets, the latter being related to the former
through pressure gradients. Strong jets meander and shed vortices, which also populate
this dynamical regime. The chapter ends with a brief discussion of geostrophic turbu-
lence, the state of many interacting vortices under the influence of Coriolis effects. This
problem is particularly well suited to introduce spectral methods for nonlinear problems.

18.1 FRONTS AND JETS

18.1.1 Origin and Scales

A common occurrence in the atmosphere and ocean is the encounter of two fluid
masses that, due to separate origins, have distinct properties. The result is the
existence of a local transitional region that is relatively narrow (compared with
the dimensions of the main fluid masses) and where properties vary spatially
more rapidly than on either side. Such a region of intensified gradients of fluid
properties is called a front.

Typically, the adjacent fluid masses have different densities, and the front
is accompanied by a relatively large pressure gradient. Under the action of
Coriolis forces, the process of geostrophic adjustment is at work, leading to
a relatively intense flow aligned with the front. The weaker density gradients in
the main part of each fluid mass confine the motion to the frontal region, and
the flow exhibits the form of a jet. The most notable jet in the atmosphere is the
so-called polar-front jet stream found around a latitude of 45◦N and a few kilo-
meters above sea level (pressure around 300 millibars), at the boundary between
subtropical and polar air masses (Fig. 18.1). From the thermal–wind relation

f
∂u

∂z
= g

ρ0

∂ρ

∂y
, (18.1)

we can readily see that a weak velocity at sea level must intensify with height to
become an intense eastward flow at high altitude. This is because of the general
north–south gradient of temperature between the two air masses. In the ocean,
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FIGURE 18.1 Monthly winds (in meters per second) over the northern hemisphere for January
1991 at the 300-mb pressure level. Note the jet stream around the 45◦N parallel, except over the east-
ern North Pacific and eastern North Atlantic, where blockings are present. (From National Weather
Service, NOAA, Department of Commerce, Washington, D.C.)

a surface-to-bottom front is often found in the vicinity of the shelf break owing
to different water properties above the continental shelf and in the deep ocean;
such a front is invariably accompanied by currents along the shelf (Fig. 18.2).

According to Section 15.1, the simultaneous presence of a horizontal gra-
dient of density and a vertical gradient of horizontal velocity can yield a
thermal–wind balance, which may persist for quite some time. Our earlier dis-
cussions of geostrophic adjustment (Section 15.2) demonstrated how such a
balance can be achieved following the penetration of one fluid mass into another
of different density and indicated that the width of the transitional region is
measured by the internal radius of deformation, expressed as

R= NH

f
∼
√

g′H
f

(18.2)



Chapter | 18 Fronts, Jets and Vortices 591

200

100

0
North

D
ep

th
 (

m
)

Velocity (cm/s)

0 5 10

20100

nm

km

4 6

8
10

12

8

6

4
2

0

2
4

South

FIGURE 18.2 Monthly mean along-shelf currents for April 1979 across the shelf break on the
southern flank of Georges Bank (41◦N, 67◦W). The units are centimeters per second, and pos-
itive values indicate flow pointing into the page. (From Beardsley et al., 1983, as adapted by
Gawarkiewicz & Chapman, 1992)

in the respective cases of continuous stratification and layered configuration.
Here f is the Coriolis parameter, H is an appropriate height scale (assuming
large excursions of density surfaces in frontal systems), N is the stratification
frequency, and g′ is a suitable reduced gravity. If the density difference between
the fluid masses is1ρ, the accompanying pressure difference is1P∼1ρ gH=
ρ0g′H, and, through geostrophy, the velocity scale is

U= 1P

ρ0 f R
∼ g′H

f R
=
√

g′H. (18.3)

From this follows that the internal radius of deformation may also be
expressed as R=U/f , in which we recognize the inertial-oscillation radius (see
Section 2.3). Here, the two coincide because we assume a frontal structure with
1H=H.

The Froude and Rossby numbers are, respectively

Fr= U

NH
∼
√

g′H
f R
∼1, (18.4)

Ro= U

f R
∼
√

g′H
f R
∼1, (18.5)

and thus both are on the order of unity, implying that the effects of stratification
and rotation are equally important within the jet (see Section 11.6).
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The jet has a velocity maximum, coinciding more or less with the location
of the maximum density gradient, on both sides of which the velocity decays.
The corresponding shears form a distribution of relative vorticity that is clock-
wise on the right and counterclockwise on the left (respectively, anticyclonic and
cyclonic in the northern hemisphere). This shear vorticity scales as Z=U/R∼ f ,
which is thus comparable with the planetary vorticity. Note that, if the relative
vorticity is strongly anticyclonic, the total vorticity may have the sign opposite
to f . Hence, use of conservation of potential vorticity requires some care.

18.1.2 Meanders

Observations reveal that all jets meander, unless they are strongly constrained
by the local geography. As a fluid parcel flows in a meander, its path curves,
subjecting it to a transverse centrifugal force on the order of KU2, where K is
the local curvature of the trajectory (the inverse of the radius of curvature). This
force can be met by a reduction or increase of the Coriolis force if the parcel’s
velocity adjusts by 1U, such that f1U∼KU2, or

1U

U
∼ KU

f
∼KR. (18.6)

Note that the product KR is in essence the deformation radius divided by the
curvature radius.

In the northern hemisphere ( f >0), the Coriolis force acts to the right of
the fluid parcel, and thus a rightward turn causing a centrifugal force to the
left necessitates a greater Coriolis force and an acceleration (1U>0) (see
Fig. 18.3). Similarly, a leftward turn is accompanied by a jet deceleration
(1U<0). The reverse conclusions hold for the southern hemisphere, but in each
case, the stronger the curvature, the larger the change in velocity, according to
Eq. (18.6).

f / 2

x

KU2

KU2

U −�UfU + f �U

U +�U

fU − f �U

− 1
ρ0

∂ p
∂ y

− 1
ρ0

∂ p
∂ y

FIGURE 18.3 For the same pressure gradient, a rightward turn requires a larger velocity enabling
Coriolis force to balance pressure and centrifugal force. In a left turn, the opposite takes place, and
the velocity is reduced.
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The same result can be obtained by considering changes in relative vorticity.
Neglecting for the moment the beta effect as well as any vertical stretching or
squeezing, the relative vorticity is conserved. It can be expressed locally as

ζ = ∂v
∂x
− ∂u

∂y
= ∂V

∂n
−KV, (18.7)

where V= (u2+v2)1/2 is the flow speed (scaling as U), n is the cross-jet coordi-
nate (measured positively to the right of the local velocity and scaling as R), and
K is the jet’s path curvature (positive clockwise). The first term, ∂V/∂n, is the
contribution of the shear and the second, −KV , represents a vorticity due to the
turning of the flow. We shall call these contributions shear vorticity and orbital
vorticity (See Fig. 18.4 and Analytical Problem 11). In a rightward turn (K>0),
the fluid parcel acquires clockwise orbital vorticity, on the order of KU, which
must be at the expense of shear vorticity, 1U/R. Equating KU to 1U/R again
leads to Eq. (18.6).

The change in shear vorticity implies a shift of the parcel with respect to the
jet axis. To show this, let us take for example, the fluid parcel that possesses
the maximum velocity (i.e., it is on the jet axis) upstream of the meander; there,
it has no shear and no orbital vorticity. If this parcel turns to the right in the
meander, it acquires clockwise orbital vorticity, which must be compensated
by a counterclockwise shear vorticity of the same magnitude. Thus, the parcel
must now be on the left flank of the jet. The parcel occupying the jet axis (having
maximum velocity and thus no shear vorticity) is one that was on the right flank
of the jet upstream and has exchanged its entire clockwise shear vorticity for an
equal amount of clockwise orbital vorticity. From this, it is straightforward to
conclude that all parcels are displaced leftward with respect to the jet axis in a
rightward meander, and rightward with respect to the jet axis in a leftward turn.
(This rule is easy to remember: Fluid parcels shift across the jet in the direction
of the centrifugal force.)

A consequence of these vorticity adjustments created by meandering is that
fluid parcels near the edges may separate from the jet or be captured by it.

Orbital
vorticity

Shear
vorticity

FIGURE 18.4 Difference between shear and orbital vorticity of a jet.
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n

V

FIGURE 18.5 Separation and capture of fluid parcels along the edges of a meandering jet. This
process occurs because the vorticity adjustment required by the meander causes marginal parcels to
reverse their velocity. Parcels near the inside edge of the meander see their velocity reversed once
curvature has ceased and effectively leave the jet. Similarly, parcels of fluid are joining the jet from
the outside at the exit of a meander.

North

x

U

Crest

TroughK< 0

K> 0

Y > 0

Y < 0

FIGURE 18.6 Meandering of an eastward jet on the beta plane (northern hemisphere). If the
meridional displacement Y , curvature K, and jet speed U are related by β0Y'KU, changes in
planetary and orbital vorticity are comparable and opposite in sign, leaving the velocity profile of
the jet (shear vorticity) relatively unperturbed.

Indeed, a parcel on the edge of the jet may have insufficient shear vorticity
for trading with orbital vorticity (Fig. 18.5).

The preceding considerations ignored the beta effect, by which the Coriolis
force is able to vary. Let us limit ourselves here to the case of an eastward
westerly jet in the northern hemisphere, which is the case of the atmospheric
jet stream and the Gulf Stream in the North Atlantic beyond Cape Hatteras. In a
northern meander excursion, called a crest (because it appears higher on a map),
the curvature is rightward or anticyclonic (Fig. 18.6). The meridional displace-
ment Y , the meander’s amplitude, causes an augmentation to the Coriolis force
on the order of β0YU, acting to the right of the parcel. However, the centrifugal
force on the order of KU2 acts to its left. Three cases are possible: β0Y is much
less than, on the order of, or much greater than KU.

l If β0Y is much less thanKU, we are in the presence of weak meander ampli-
tudes (small Y) and/or short meander wavelengths (largeK). In this case, the
beta effect mitigates the curvature effect but not in a significant way, and the
previous conclusions remain qualitatively unchanged.

l If β0Y is on the order of KU, then the beta and curvature effects can
balance each other, leaving the structure of the jet barely affected. For
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a sinusoidal meander Y(x)=Asinkxx, where A is the meander amplitude,
λ=2π/kx is its wavelength, and x is the eastward coordinate, we deduce
that at the meander’s peak (sinkxx=+1), the meridional displacement Y is
A, and the curvatureK=−[d2Y/dx2]/[1+(dY/dx)2]3/2 is k2

xA. The balance
β0Y∼KU then yields β0∼ k2

xU or

λ= 2π

kx
=2π

√
U

β0
. (18.8)

From this emerges a particular length scale,

Lβ =
√

U

β0
, (18.9)

which we shall call the critical meander scale. Cressman (1948) noted
its importance in relation to the development of long waves on the atmo-
spheric jet stream, whereas Moore (1963) obtained a solution to an ocean-
circulation model that exhibits meanders at that scale. Later, Rhines (1975)
demonstrated how this same scale plays a pivotal role in the evolution of
geostrophic turbulence on the beta plane.

l In very broad meanders, for which meridional displacements are large and
curvatures are small (β0Y�KU), the beta effect dwarfs the curvature effect,
and the trade-off is almost exclusively between changes in planetary vortic-
ity and shear vorticity. In a meander crest (greater f ), the shear vorticity must
become less cyclonic or more anticyclonic (see Fig. 18.7).

Meanders on a jet do not remain stationary but propagate, usually down-
stream and rarely upstream. The direction of propagation can be inferred from

Jet axis

North
Weakened cyclonic vorticity

Increased cyclonic
vorticity

L

H

FIGURE 18.7 Changes in shear vorticity in very broad meanders. These are caused by the beta
effect, which changes the Coriolis force with latitude. The figure is drawn for the case of south–north
displacements in the northern hemisphere. The letters H and L indicate high- and low-pressure
regions, respectively.
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FIGURE 18.8 Schematic descriptions explaining why (a) curvature and (b) beta effects on an east-
ward jet induce meander-propagation tendencies that are, respectively, downstream and upstream.

vorticity considerations, as outlined previously. In the absence of the beta effect
(or β0Y�KU), leftward and rightward turns create, respectively, clockwise and
counterclockwise shear vorticity. Picturing these vorticity anomalies as vortices
at the meanders’ tips (Fig. 18.8a), we infer that the entrainment velocities at the
inflection points between meanders all have a downstream component and that
the meander pattern translates downstream. On a westerly jet, this direction is
eastward. At the opposite extreme of a large beta effect and negligible curvature
(β0Y�KU), the vorticity anomalies are cyclonic in troughs and anticyclonic in
crests (Fig. 18.8b). The entrainment velocities at the inflection points all point
westward. On a westerly jet, this is upstream. This mechanism is the same as that
invoked in Section 9.4 to explain the westward phase propagation of planetary
waves. (Compare Fig. 18.8b with Fig. 9.7)

We note, therefore, that curvature and beta effects induce opposite meander-
propagation tendencies on an eastward jet. Comparing β0Y with KU — or,
equivalently, the wavelength to the critical meander scale — we conclude that
if the former is larger than the latter, the meander propagates upstream (west-
ward) and in the opposite direction otherwise. The meander is stationary if the
tendencies cancel each other, which occurs if its wavelength is near the critical
meander scale. Since this scale is rather long (220 km in the ocean and 1600 km
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in the atmosphere, with β0=2×10−11 m−1s−1 and U ranging from 1 m/s to
50 m/s), observed meanders are usually of the curvature-type and propagate
eastward.

18.1.3 Multiple Equilibria

Because the critical meander scale depends on the jet speed U, and also because
the relation β0Y∼KU depends on the shape of the meander (Y and K are not
simply related if the meander is other than sinusoidal), the critical size for mean-
der stationarity depends on the jet speed and the meander shape. This conclusion
is the basis of one explanation for the bimodality of the Kuroshio (Fig. 18.9).
The geography of coastal Japan and the regional bottom topography force this
intense current of the western North Pacific to pass through two channels, south
of Yakushima Island (30◦N, 130◦E) and between Miyake and Hachijo Islands
near the Izu Ridge (34◦N, 140◦E).

Between these two points, the current is known to assume one of two
preferential states: a relatively straight path or a curved path with a substan-
tial southward excursion. Each pattern persists for several years, whereas the
transition from one to the other is relatively brief. The theory (Masuda, 1982;
Robinson & Taft, 1972) explains this bimodal character by arguing that a sta-
tionary meander with a half-wavelength meeting the geographical specification
may or may not exist, depending on the jet velocity. Calculations show that the
meander state occurs if the jet velocity does not exceed a certain threshold value.
At any velocity below this value, there exists a stationary-meander shape that
meets the geographical constraints. At larger velocities, no stationary meander
is possible, and the jet must assume a straight path.

The atmospheric analog of this oceanic situation is known as blocking, a
word now used in a sense different from that used in Chapter 11. Here, block-
ing is a midlatitude phenomenon characterized by the unusual persistence of
a nearly stationary meander on an eastward jet over topographic irregularities
(Fig. 18.1). The theory (Charney & DeVore, 1979; Charney & Flierl, 1981)
again invokes multiplicity of equilibrium solutions, including the normal state
(no meander) and the anomalous blocking configuration (with large meander).

18.1.4 Stretching and Topographic Effects

Up to here, our considerations of vorticity adjustments in a jet meander included
exchanges among planetary, shear, and orbital vorticity for an unchanged total.
This is correct only for barotropic jets over a flat bottom, whereas in a baroclinic
jet, in which vertical stretching can occur, potential vorticity rather than vorticity
is the conserved quantity.

A complete theory involving all relevant dynamics such as momentum and
mass balances is beyond our scope, and we derive here only the vertical-
stretching tendency experienced by a fluid parcel in a meander. Assuming that
the trade-off is solely between orbital vorticity due to the meander’s curvature
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FIGURE 18.9 Observed Kuroshio paths: (a) straight jet and (b) stationary meander. (From
Robinson & Taft, 1972)
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and vertical stretching, we reason that a meander crest (with anticyclonic orbital
vorticity) lowers the total vorticity and thus calls for a proportional decrease in
the column’s vertical thickness. In meander troughs, fluid columns are verti-
cally stretched and shifted toward the anticyclonic side of the jet. In an oceanic
surface jet such as the Gulf Stream, such a modification causes upwelling upon
approaching crests and downwelling upon approaching troughs. Observations
(Bower & Rossby, 1989) confirm such behavior, which can also be noted in
numerical simulations (Fig. 18.10).

Just as meanders generate vertical stretching or squeezing, vertical stretch-
ing or squeezing induced by topography can cause meanders. To illustrate this,
let us consider the case of a zonal jet (barotropic or baroclinic) on the beta plane
that encounters a topographic step (Fig. 18.11). If the jet is flowing eastward
(the usual situation) and enters a deeper region, the expansion in layer thick-
ness translates first into a cyclonic deflection, away from the equator. As the
Coriolis parameter increases away from the equator, this cyclonic vorticity is
progressively exchanged downstream by a greater planetary vorticity, and the jet
curvature weakens. Further poleward progression reverses the sense of orbital

FIGURE 18.10 Frontal meander on a sea surface temperature field (left panel) and associated
vertical-velocity distribution indicating upwelling and downwelling cells (right panel). Note that
maxima of vertical velocity occur between the meander’s crests and troughs (From Rixen, Beckers
& Allen, 2001).

N

(a) (b)

N

�H �H

FIGURE 18.11 Eastward and westward jets passing over a topographic step: (a) the eastward jet
develops an oscillatory behavior, whereas (b) the westward jet begins to feel the influence of the step
upstream and executes a single meander. Both experience a net meridional shift Y= f01H/β0h, the
sign of which depends on whether the step is up or down.
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vorticity, and the jet oscillates back and forth about a new latitude (Fig. 18.11a).
The average northward shift, Y , of the jet axis corresponds to an exchange
between vertical stretching and increased planetary vorticity:

β0Y

f0
∼ 1H

h
, (18.10)

where 1H is the height of the topographic step, and h is the upstream thickness
of the jet. Because the first meander is rooted at the location of the step, the
meander must be stationary, and therefore the wavelength must be comparable
to the critical meander scale.

The same argument can be invoked for an eastward jet entering a shallower
region to conclude that the flow exhibits a stationary oscillation about a net
equatorward shift, given by Eq. (18.10) where 1H is now negative. However,
the argument fails for westward jets. Upon entering a deeper region, a fluid
parcel acquires cyclonic vorticity and turns equatorward, its planetary vortic-
ity decreases, further increasing the orbital vorticity. Clearly, if this were the
case, the jet would be looping onto itself. Instead, the jet begins to be distorted
ahead of the topographic step (Fig. 18.11b), acquiring an anticyclonic curvature
in which the negative orbital vorticity is compensated by an increase in plane-
tary vorticity. The jet thus reaches the step at an oblique angle. The nature of
the vorticity adjustments past the step progressively restores the jet’s original
zonal orientation. A net meridional shift remains, expressing a balance between
changes in planetary vorticity and vertical thickness. The reader can verify that
this shift is again given by Eq. (18.10).

18.1.5 Instabilities

In addition to their propagation, meanders on a jet also distort and frequently
grow, close onto themselves, and form eddies that separate from the rest of
the jet. Such a finite change to the jet structure results from an instability, the
nature of which is barotropic (Chapter 10), baroclinic (Chapter 17), or mixed.
Barotropic instability proceeds with the extraction of kinetic energy from the
horizontally sheared flow to feed the growing meander. The greater the shear in
the jet, the more likely is this type of instability. Baroclinic instability, how-
ever, is associated with a conversion of available potential energy from the
horizontal density distribution in balance with the thermal wind. Although the
example treated in Section 10.4 suggests that critical wavelengths associated
with barotropic instability scale as the jet width, consideration of baroclinic
instability points to the critical role of the internal radius of deformation [see
Eq. (17.48)]. If the two length scales are comparable, as is the case in a baro-
clinic jet with finite Rossby number, both processes may be equally active, and
the instability is most likely of the mixed type (Griffiths, Killworth & Stern,
1982; Killworth, Paldor & Stern, 1984; Orlanski, 1968). The beta effect further
complicates the situation, occasionally facilitating the eddy detachment process:
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The large meridional displacement of the growing meander induces a westward-
propagation tendency, whereas the high-curvature regions where the meander
attaches to the rest of the jet induce a downstream propagation tendency. The
result is a complex situation in which the outcome sensitively depends on
the relative magnitudes of the different effects (Flierl, Malanotte-Rizzoli &
Zabusky, 1987; Robinson, Spall & Pinardi, 1988). The meandering and eddy
shedding of the Gulf Stream manifest this complexity.

The development of synoptic-scale weather disturbances, a process now
called cyclogenesis, is thought to be initiated mostly by baroclinic instability,
whereas accompanying finer-scale processes, such as cold and warm fronts, are
explained by ageostrophic dynamics. The interested reader is referred to the
book by Holton (1992) and Section 15.5.

18.2 VORTICES

A vortex, or eddy, is defined as a closed circulation that is relatively persistent.
By persistence, we mean that the turnaround time of a fluid parcel embedded in
the structure is much shorter than the time during which the structure remains
identifiable. A cyclone is a vortex in which the rotary motion is in the same
sense as the earth’s rotation, counterclockwise in the northern hemisphere and
clockwise in the southern hemisphere. An anticyclone rotates the other way,
clockwise in the northern hemisphere and counterclockwise in the southern
hemisphere.

The prototypical vortex is a steady circular motion on the f -plane. Using
cylindrical coordinates, we can express the balance of forces in the radial
direction r (measured outward) as follows:

− v2

r
− f v = − 1

ρ0

∂p

∂r
, (18.11)

where v is the orbital velocity (positive counterclockwise), and p is the pressure
(or Montgomery potential). Both v and p may be dependent upon the vertical
coordinate, either height z or density ρ. This equation, called the gradient-wind
balance, represents an equilibrium between three forces, the centrifugal force
(first term), the Coriolis force (second term), and the pressure force (third term).
Although the centrifugal force is always directed outward, the Coriolis and pres-
sure forces can be directed either inward or outward, depending on the direction
of the orbital flow and on the center pressure.

If we introduce the following scales, U for the orbital velocity, L for r
(measuring the vortex radius), and 1P for the pressure difference between the
ambient value and that at the vortex center, we note that the terms composing
(18.11) scale, respectively, as

U2

L
, f U,

1P

ρ0L
. (18.12)
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At low Rossby numbers (Ro = U/f L�1), the first term is negligible relative to
the second (i.e., the centrifugal force is small compared with the Coriolis force),
the balance is nearly geostrophic, providing

f U= 1P

ρ0L
, (18.13)

and thus U=1P/(ρ0 f L). Since the pressure difference is most likely the result
of a density anomaly 1ρ, the hydrostatic balance provides 1P = 1ρ gH =
ρ0g′H, where H is the appropriate height scale (thickness of vortex), and g′=
g1ρ/ρ0 is the reduced gravity. This leads to U=g′H/f L and

Ro= U

f L
= g′H

f 2L2
=
(

R

L

)2

, (18.14)

in which we recognize the internal deformation radius R= (g′H)1/2/f . Thus,
a small Rossby number occurs as a consequence of a horizontal scale large
compared with the deformation radius. This is typically the case in the largest
weather cyclones and anticyclones at midlatitudes and in large-scale oceanic
gyres (Fig. 18.12-top). Note that in this analysis, the Rossby number coincides
with the Burger number. Thus, its smallness implies that the vorticity in broad
gyres is mostly constrained by vertical stretching rather than relative vorticity
(see Section 16.3). Also, the energy of such gyres is dominated by available
potential energy rather than kinetic energy as shown by Eq. (16.34).

At scales on the order of the deformation radius, L can be taken equal to R,
the Rossby number is on the order of unity, the velocity scale is U= (g′H)1/2,
and the centrifugal force is comparable with the Coriolis force. Around a low
pressure, the outward centrifugal force partially balances the inward pressure
force, leaving the Coriolis force to meet only the difference. By contrast, the
Coriolis force acting on the flow around a high pressure must balance both the
outward pressure force and the outward centrifugal force (Fig. 18.12-middle).
Consequently, the orbital velocity in an anticyclone is greater than that in a
cyclone of identical size and equivalent pressure anomaly. Tropical hurricanes
(Anthes, 1982; Emmanuel, 1991) and the so-called rings shed by the Gulf
Stream (Flierl, 1987; Olson, 1991) fall in the category of vortices with length
scale on the order of the deformation radius.

At progressively shorter radii, the centrifugal force becomes increasingly
important, and for L�R, the Coriolis force becomes negligible. The cyclone-
anticyclone nomenclature then loses its meaning, and the relevant characteristic
is the sign of the pressure anomaly. The inward force around a low pressure is
balanced by the outward centrifugal force regardless of the direction of rota-
tion (Fig. 18.12-bottom). Such a state is said to be in cyclostrophic balance.
Examples are tornadoes and bathtub vortices. A vortex with high-pressure cen-
ter cannot exist because pressure and centrifugal forces would both be directed
outward.
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v2/r forces in northern hemispheric circular vortices. The letters L and H indicate low and high
pressures, respectively.

It is interesting to determine the minimum size for which an anticyclone of
given pressure anomaly can exist. Returning to the gradient-wind balance where
we introduce v=−fr/2+v′, we write

f 2r

4
+ 1

ρ0

∂p

∂r
= 1

r
v′2≥0. (18.15)

Integrating over the radius a of the vortex and defining the pressure anomaly
1p=p(r=0)−p(r=a), we obtain

a2≥ 81p

ρ0 f 2
. (18.16)
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For a low-pressure center (1p<0), this inequality yields no constraint, whereas
for a high-pressure center (1p>0), it specifies a minimum vortex radius. Below
this minimum, high-pressure centers simply do not exist as isolated steady
structures.

Let us now examine how an existing vortex can move within the fluid that
surrounds it. To do this, we consider a vortex contained within a single layer
of fluid, be it the lowest, the uppermost, or any intermediate layer in the fluid.
If the local thickness of this layer is h, and the pressure (actually, Montgomery
potential) is p, we write, in density coordinates,

∂u

∂t
+u

∂u

∂x
+v

∂u

∂y
− f v=− 1

ρ0

∂p

∂x
, (18.17a)

∂v

∂t
+u

∂v

∂x
+v

∂v

∂y
+ fu=− 1

ρ0

∂p

∂y
, (18.17b)

∂h

∂t
+ ∂

∂x
(hu)+ ∂

∂y
(hv)=0. (18.17c)

We further restrict ourselves to the f -plane. At large distances from the vortex
center, in what can be considered the ambient fluid, we assume that there exists
a steady uniform flow (ū, v̄) and a uniform thickness gradient (∂ h̄/∂x, ∂ h̄/∂y).
According to Eqs. (18.17a) and (18.17b), this flow must be geostrophic, and
according to Eq. (18.17c), it must be aligned with the direction of constant layer
thickness:

−f v̄=− 1

ρ0

∂ p̄

∂x
, (18.18a)

+f ū=− 1

ρ0

∂ p̄

∂y
, (18.18b)

ū
∂ h̄

∂x
+ v̄

∂ h̄

∂y
=0. (18.18c)

A thickness gradient is retained because, in some instances, a thermal wind in
layers above or below may be accompanied by such a thickness variation. Also,
if the vortex lies in the lowest layer, the thickness gradient may represent a bot-
tom slope. The assumption of uniformity of ū, v̄, and of the derivatives of p̄ and
h̄ is justified if the ambient-flow properties vary over horizontal distances much
longer than the vortex diameter. Defining the velocity components, pressure,
and layer-thickness variations proper to the vortex as u′ = u− ū, v′ = v− v̄,
p′ = p− p̄, and h′ = h− h̄, we can transform Eqs. (18.17) as follows:

∂u′

∂t
+(ū+u′)

∂u′

∂x
+(v̄+v′)

∂u′

∂y
− f v′=− 1

ρ0

∂p′

∂x
(18.19a)

∂v′

∂t
+(ū+u′)

∂v′

∂x
+(v̄+v′)

∂v′

∂y
+ fu′=− 1

ρ0

∂p′

∂y
(18.19b)
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∂h′

∂t
+ ∂(h

′ū)
∂x
+ ∂(h

′v̄)
∂y
+ ∂

∂x

[
(h̄+h′)u′

]
+ ∂

∂y

[
(h̄+h′)v′

]
=0. (18.19c)

We then define the anomalous layer volume due to the vortex:

V=
∫∫

h′ dxdy, (18.20)

where the integration covers the entire horizontal extent of the layer. The pertur-
bation h′ induced by the vortex is assumed to be sufficiently localized to make
the preceding integral finite. The use of continuity equation (18.19c) followed
by integration by parts over several terms shows that the temporal derivative of
this volume,

dV

dt
=
∫∫

∂h′

∂t
dxdy (18.21)

vanishes, as we expect. Defining the coordinates of the vortex position by the
volume-weighted averages

X= 1

V

∫∫
xh′ dxdy, Y= 1

V

∫∫
yh′ dxdy, (18.22)

we can track the vortex displacements by calculating their temporal derivatives.
For X, we obtain successively

dX

dt
= 1

V

∫∫
x
∂h′

∂t
dxdy

= −1

V

∫∫ {
xū
∂h′

∂x
+xv̄

∂h′

∂y
+x

∂

∂x
[(h̄+h′)u′]+x

∂

∂y
[(h̄+h′)v′]

}
dxdy

= +1

V

∫∫
[ūh′+(h̄+h′)u′]dxdy

= ū+ 1

V

∫∫
hu′ dxdy. (18.23)

Similarly, we obtain for the other coordinate

dY

dt
= v̄+ 1

V

∫∫
hv′ dxdy. (18.24)

The preceding integrals cannot be evaluated without knowing the precise struc-
ture of the vortex. However, a second time derivative will bring forth the
acceleration (∂u′/∂t, ∂v′/∂t), which is provided by the equations of motion,
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(18.19a) and (18.19b). For the X-coordinate, we obtain

d2X

dt2
= 1

V

∫∫ [
∂h′

∂t
u′+(h̄+h′)

∂u′

∂t

]
,dxdy

= −1

V

∫∫ [
∂

∂x
(huu′)+ ∂

∂y
(hvu′)

]
dxdy

+ f

V

∫∫
hv′ dxdy− 1

ρ0V

∫∫
h
∂p′

∂x
dxdy. (18.25)

The pressure anomaly p′ associated with the vortex motions can be related by
hydrostatic balance to the layer-thickness anomaly. If other layers do not move
and keep their pressure value over time, the pressure anomaly inside the vortex
is given by integration of Eq. (12.14) where the pressure anomaly above the
layer of interest is zero:

p′=ρ0g′h′, (18.26)

with a suitable definition of the reduced gravity g′. Note that if the vortex is
contained in the lowest layer above an uneven bottom, the bottom elevation
does not enter (18.26) but instead enters the corresponding hydrostatic balance
for the mean-flow properties.

Noting that the first integral in Eq. (18.25) vanishes because u′ and v′ go to
zero at large distances from the vortex, that the second integral can be eliminated
by use of Eq. (18.24), and that the third integral, integrated by parts, can be
simplified with use of Eq. (18.26), we obtain

d2X

dt2
= f

dY

dt
− f v̄+g′

∂ h̄

∂x
. (18.27)

A similar treatment of the second derivative of Y yields

d2Y

dt2
=−f

dX

dt
+ f ū+g′

∂ h̄

∂y
. (18.28)

Because the gradient of h̄ is assumed uniform, and f , ū, and v̄ are constants, the
preceding two equations can be solved for the velocity of the vortex:

dX

dt
=
(

ū+ g′

f

∂ h̄

∂y

)
(1−cos ft)−

(
v̄− g′

f

∂ h̄

∂x

)
sin ft (18.29a)

dY

dt
=
(

v̄− g′

f

∂ h̄

∂x

)
(1−cos ft)+

(
ū+ g′

f

∂ h̄

∂y

)
sin ft, (18.29b)

where the constants of integration have been determined under the assump-
tion that the vortex is not translating initially. In the preceding solution, we
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recognize inertial oscillations superimposed on a mean drift. This mean drift has
two components:

cx= ū+ g′

f

∂ h̄

∂y
, cy= v̄− g′

f

∂ h̄

∂x
. (18.30)

The first contribution (ū, v̄) indicates that the vortex is entrained by the ambient
motion of its containing layer. Together, this entrainment and the inertial oscil-
lations do not distinguish the vortex from a single fluid parcel. The cause of
the second contribution, proportional to the gradient of h̄, is less obvious and is
what really distinguishes a vortex from a fluid parcel.

The existence of a thickness gradient in the vicinity of the vortex implies a
nonuniform distribution of potential vorticity, which the swirling motion of the
vortex redistributes; fluid parcels on the edge of the vortex are thus stretched
and squeezed and develop vorticity anomalies that, in turn, act to displace the
main part of the vortex. As the example in Fig. 18.13 illustrates, a northward
decrease of layer thickness in the northern hemisphere causes squeezing on
parcels moved northward and stretching on those moved southward. (The sense
of rotation in the vortex is irrelevant here.) This causes the fluid on the north-
ern flank of the vortex to acquire anticyclonic vorticity and that on the southern
flank to acquire cyclonic vorticity. Both vorticity anomalies induce a westward
displacement of the bulk of the vortex. Equations (18.30) confirm that those
conditions (∂ h̄/∂x=0, ∂ h̄/∂y<0, f >0) imply a negative cx and a zero cy. The
general rule is that the vortex translates with the thin-layer side on its right in
the northern hemisphere and on its left in the southern hemisphere.

Gradients in the vortex-containing layer can be caused by one of two rea-
sons. If other layers, above or below, flow at speeds different from that of
the vortex layer, there exists a thermal wind, which by virtue of the Margules
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FIGURE 18.13 Lateral drift of a vortex embedded in layer of varying thickness. Advection by
surrounding fluid induces cyclonic and anticyclonic vorticities, which combine to induce a drift of
the vortex along lines of constant thickness. In the northern hemisphere (as drawn in the figure), the
vortex moves with the thin-layer side on its right. Direction is opposite in the southern hemisphere.
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relation [see (15.5)] requires sloping density surfaces and, therefore, varying
layer thicknesses. It is left to the reader to show that in such a case the vorticity-
induction mechanism described in the preceding paragraph amounts to a drift
of the vortex in the same direction as the thermal wind. The other reason for
layer-thickness variations is bottom topography. If the vortex is contained in the
lower layer, bounded below by a sloping bottom, fluid parcels surrounding the
vortex will be moved up or down this slope and undergo vorticity adjustments.
The result (see Fig. 18.13 again) is a drift of the vortex with the shallower region
to its right in the northern hemisphere and to its left in the southern hemisphere.
Nof (1983) discusses this effect for cold eddy lenses on the ocean bottom.

Note that if the vortex starts from a resting position, its migration is not
immediately transverse to the thickness gradient but is up-gradient, as solu-
tion (18.29) indicates for small values of time. In the case of a sloping bottom,
this implies that the vortex first goes downhill, gradually acquiring a velocity
in that direction, and under the action of the Coriolis force has its trajectory
subsequently deflected in the direction transverse to the topographic gradient.
(Compare this situation with that of Analytical Problem 2.9.)

Because of the analogy between a topographic slope and the beta effect (see
Section 9.6), the preceding conclusions can be extrapolated to the motion of vor-
tices on the beta plane. Regardless of their polarity (cyclonic or anticyclonic),
vortices have a self-induced westward tendency. Repeating the argument made
with Fig. 18.13, with the replacement of the thick-to-thin direction by the
northward direction, we conclude that surrounding parcels entrained from the
southern tip to the northern end acquire planetary vorticity and thus develop
anticyclonic relative vorticity. Similarly, the surrounding parcels entrained from
north to south develop cyclonic relative vorticity. The combined effect at the
latitude of the vortex center is a westward drift. Theories (Cushman-Roisin,
Chassignet & Tang, 1990 and references therein) show that the induced speed
is on the order of β0R2, where R is the internal radius of deformation, being
slightly larger for anticyclones than cyclones. However, in both atmosphere
and oceans, this speed is usually too weak to be noticeable compared with the
entrainment by the ambient flow.

Instead of interpreting the westward drift in terms of potential vorticity, we
can also explain the drift by a balance of forces. On the northern side of an
anticyclonic eddy in the northern hemisphere, geostrophic velocity is smaller
than on the southern side under identical Coriolis force balancing the pressure
gradient (Fig. 18.14). The velocity difference yields a convergence (divergence)
on the western (eastern) flank of the vortex. This in turn causes a vertical dis-
placement of the density interface, causing the vortex volume to slide sideways
with upwelling in its eastern flank and downwelling on its western flank. For
the cyclone, similar reasoning yields again a westward displacement.

Implicit in the preceding derivations was the assumption that all variables
related to the vortex decay sufficiently fast away from the vortex core to make
all integrals finite. However, in the presence of a potential-vorticity gradient
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FIGURE 18.14 Alternative explication of the westward drift for an anticyclone (left side) and
cyclone (right side). The vertical section at top shows an anticyclone’s core of lighter fluid (top-left)
and the reduced layer thickness associated with a cyclone (top-right). The plots below represent top
views spanning the equator (dotted line) and show the velocity fields. The convergence and diver-
gence pattern associated with north–south velocity differences cause the vortex to move westward
regardless of its sense of rotation.

such as one created by a layer-thickness gradient (see the preceding text) or
by the beta effect (β0=df /dy), waves are possible (Sections 9.4 and 9.5) and
energy can be radiated away to large distances from the vortex, yielding non
negligible eddy-related motions there. As it turns out, it is possible to predict,
at least qualitatively, the effect of such waves by considering the early time
evolution of the vortex. Figure 18.15 depicts the relative-vorticity adjustments
brought to surrounding fluid parcels as they are moved by the vortex for the first
quarter of their evolution. As for linear waves (Section 9.6), there is a direct
analogy between the layer-thickness gradient and the beta effect: The thin-layer
side and the poleward direction are dynamically similar, for they both point
to an increase in potential vorticity. After a quarter turn, parcels surrounding
the vortex acquire relative vorticity by stretching (or squeezing) or a decrease
(or increase) in planetary vorticity. As Fig. 18.15 reveals, the cumulative effect
in the northern hemisphere is a migration of cyclones toward decreasing layer
thicknesses or northward; anticyclones migrate in the opposite direction. As
vortices move in those directions, their own core fluid undergoes similar stretch-
ing or squeezing or planetary-vorticity changes. In all cases, the net result is
a decrease in the absolute value of the relative vorticity and thus an overall
spin-down of the vortex.
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FIGURE 18.15 Secondary drift of vortices. The advection of surrounding fluid induces cyclonic
and anticyclonic vortices on the flanks of the vortex, which combine to cause a drift as indicated.
This drift component is perpendicular and in addition to that depicted in Fig. 18.13. Again, the
figure is drawn for the northern hemisphere. In the southern hemisphere, cyclones still move in the
direction of smaller layer thickness or poleward, and anticyclones move in the direction of greater
layer thickness, or equatorward.

In the study of hurricane motion, Shapiro (1992) distinctly shows how the
trajectory of the hurricane center (a low-pressure center and thus a cyclone)
can be explained by the mechanisms just summarized. Here, the beta effect
is relatively unimportant, but the presence of a westerly wind aloft and its
accompanying layer-thickness gradient (thicker southward) combine to make
the hurricane progress in the northwestward direction.

A discussion of geophysical vortices ought to address additional aspects
such as axisymmetrization (assuming a nearly circular shape despite anisotropic
birthing conditions), instabilities, secondary motions, frictional spin-down,
wave radiation, and so on. Partly, because space does not permit a deeper dis-
cussion here but mostly because these aspects tend to be quite different in the
atmosphere and ocean, the reader interested in atmospheric vortices is referred
to the monograph by Anthes (1982), and the reader interested in oceanic vortices
is referred to the book edited by Robinson (1983). Laboratory simulations of
geophysical vortices have also been conducted; an interesting article on vortex
instabilities is that by Griffiths and Linden (1981).
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18.3 GEOSTROPHIC TURBULENCE

We alluded to geostrophic turbulence, which is the study of a large number of
interacting vortices, in Section 16.6 when we introduced nonlinear effects in
quasi-geostrophic dynamics. Here, we tackle the subject from the vortex point
of view, without making the quasi-geostrophic assumption.

When several eddies are present and not too distant from one another, inter-
actions are unavoidable. Vortices shear and peel off the sides of their neighbors
and, at times, merge to create larger vortices. The sheared elements either curl
onto themselves, forming new, smaller vortices, or dissipate under the action of
friction. The net result is a combination of consolidation and destruction. When
many vortices are simultaneously present, the situation is best described in a
statistical sense.

A number of important properties can be derived rather simply by consider-
ing three integrals of motion, namely, the kinetic energy, the available potential
energy, and the enstrophy, the latter being the integrated squared vorticity. We
thus define the following:

Kinetic energy: KE= 1

2
ρ0

∫∫∫
(u2+v2)dxdydz (18.31a)

Available potential energy: APE= 1

2
ρ0

∫∫∫
N2h2 dxdydz (18.31b)

Enstrophy: S= 1

2

∫∫∫ (
∂v

∂x
− ∂u

∂y

)2

dxdydz. (18.31c)

In the formulation of the kinetic energy, the contribution of vertical velocity is
usually insignificant. (It is insignificant whenever hydrostatic balance holds.) If
the horizontal velocity scale is U, the domain depth is H, and the horizontal area
is A, the size of KE is about ρ0U2HA. Available potential energy was defined
in Eq. (16.29). If the vertical displacements of the density surfaces scale as
1H (1H≤H, naturally) and if reduced gravity is introduced via g′=N2H [see
(18.2)], the available potential energy is on the order of ρ0g′1H2A. For eddies
of average size L, vorticity scales as U/L and enstrophy as (U/L)2HA. Finally, if
we invoke geostrophy to set the velocity scale, we state f0U∼g′1H/L (barring
a substantial barotropic component) and write

KE∼ρ0

(
g′1H

f0L

)2

HA (18.32a)

APE∼ρ0g′1H2A (18.32b)

S∼
(

g′1H

f0L2

)2

HA. (18.32c)
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The ratio of kinetic to potential energy is

KE

APE
∼ g′H

f 2
0 L2
=
(

R

L

)2

, (18.33)

where R is the internal radius of deformation. We recognize here the Burger
number of Eq. (16.34).

As the interactions among vortices proceed, the shearing and tearing of
vortices introduce motions at ever shorter scales, until frictional dissipation
becomes important. Because S increases much faster than KE with decreasing
length scales, while APE is unaffected, friction removes disproportionally more
enstrophy than kinetic energy and, surely, potential energy. In first approxima-
tion, we can assume that the total energy is conserved, while enstrophy decays
with time. In a fixed domain (HA = constant) and with constant f0 and g′ values
(no heating or cooling), a decrease in enstrophy requires, by virtue of (18.32c),
a decrease in the ratio 1H/L2.

At short length scales (L�R), the energy consists primarily of kinetic
energy, via (18.33), and its near conservation requires that 1H/L remain
approximately constant. The only possibility that satisfies both requirements is a
steady increase of the length scale L, with a proportional increase in eddy ampli-
tude 1H. Thus, vortices become, on average, larger and stronger. Obviously, to
conserve the total space allowed to them, they also become fewer. There is thus a
natural tendency toward successive eddy mergers. With every merger, energy is
consolidated into larger structures with concomitant enstrophy losses. Thus, the
eddy field gradually assumes a dual pattern with ever fewer and larger vortices
(coherent structures of increasing length scale) swimming in an increasingly
sheared and disordered interstitial fluid (incoherent flow of decreasing length
scale).

As the length scale of vortices increases toward the radius of deformation,
the relative importance of potential energy increases. Because APE increases
like1H2, further increase in mean eddy amplitude1H requires a corresponding
decrease in kinetic energy to preserve total energy, and 1H2/L2 must begin
to decrease. The result is that 1H and L continue to increase but no longer
proportionally, L increasing faster than 1H.

As the length scale continues to increase, indicating continued merging
activity, it will eventually become much larger than R. Then, the energy is pri-
marily in the form of potential energy, and its conservation requires a saturated
value of1H. Further enstrophy decrease under frictional action is possible only
with a further increase in length scale L (Rhines, 1975; Salmon, 1982). In sum,
the interactions of a large number of vortices without addition of energy lead
to an irreversible tendency toward fewer and larger vortices. This implies an
emergence of coherent structures from a random initial vorticity field. As for
the mean eddy amplitude, it increases only up to a certain point. The maximum
possible eddy amplitude is achieved when almost all the energy available is in
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the form of available potential energy—that is,

1Hmax∼
√

E

ρ0g′A
, (18.34)

where E is the total energy present in the system (E=KE+APE), and A is the
horizontal area of the system. Should this value exceeds the depth H of the
domain, vortex amplitudes will be limited by the latter and not all the energy
can be turned into potential energy; a certain portion of the energy must remain
in the form of kinetic energy, implying a limit to the length scale L.

Pioneering results concerning the emergence of coherent vortices in quasi-
geostrophic turbulence can be found in McWilliams (1984, 1989). Let us also
note that the tendency toward successive merger is at the basis of the theories
(Galperin, Nakano, Huang & Sukoriansky, 2004; Williams and Wilson, 1988,
and references therein) that explain the persistence of the Great Red Spot in
Jupiter’s atmosphere (Fig. 1.5). This begs the question as to why no single dom-
inating vortex occurs in our terrestrial atmosphere as on Jupiter. The answer lies
in diabatic and orographic effects constantly acting to form and destroy exist-
ing atmospheric vortices. In other words, geostrophic turbulence in the earth’s
atmosphere is never freely evolving for very long. Similarly, wind forcing over
the ocean and dissipation by internal waves and in coastal areas combine to
prevent oceanic geostrophic turbulence from following its intrinsic evolution.

18.4 SIMULATIONS OF GEOSTROPHIC TURBULENCE

In the study of many interacting eddies and the statistical analysis of geostrophic
turbulence, lateral boundaries are not the focus of the investigation, and may
be ignored by invoking periodicity in space (as if the same domain were
repeating itself in the several directions of space). When this is the case, a
particular meshless spectral method can be used for numerical simulations. We
already encountered a spectral technique for the solution of linear problems (see
Section 8.8), and we now adapt it to a nonlinear problem.

For simplicity, we design the numerical scheme for a one-layer quasi-
geostrophic system with rigid-lid and scale-selective biharmonic dissipation of
vorticity (see Section 10.6 on filtering). The governing equations on the f -plane
are thus

∂q

∂t
+J(ψ,q)=−B

(
∂4q

∂x4
+2

∂4q

∂x2∂y2
+ ∂

4q

∂y4

)
(18.35a)

∂2ψ

∂x2
+ ∂

2ψ

∂y2
=q (18.35b)

where the parameter B controls the strength of the damping. Both stream-
function ψ and potential vorticity q are expanded as truncated series of sine
and cosine functions spanning the periodic domain of interest 0≤ x≤Lx and
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0≤ y≤Ly. For convenience, we use complex exponentials instead of sine and
cosine functions and write

ψ̃(x,y, t)=
∑

k

∑
l

9kl(t)e
i 2πkx

Lx ei 2π ly
Ly , (18.36a)

q̃(x,y, t)=
∑

k

∑
l

Qkl(t)e
i 2πkx

Lx ei 2π ly
Ly . (18.36b)

The time-dependent coefficients 9kl and Qkl, also called spectral coefficients,
are the amplitudes of the spatial Fourier modes, and their value over time consti-
tutes the solution to the problem. We obtain equations governing their evolution
by multiplying (18.35) by exp(−2iπk′x/Lx) exp(−2iπ l′y/Ly) and integrating
over the extent of the domain. The orthogonality of the sine and cosine func-
tions then isolates the time evolution of Qk′l′ and, after relabeling k′ as k and l′

as l, leads to

∂Qkl

∂t
+ 1

LxLy

Lx∫
0

Ly∫
0

J(ψ̃, q̃)e−i 2πkx
Lx e−i 2π ly

Ly dydx=−αklQkl (18.37)

with

αkl=B
[(

2πk

Lx

)2

+
(

2π l

Ly

)2
]2

. (18.38)

Note how the dissipation term involving derivatives was nicely transformed
into an algebraic operation and how clearly the attenuation of amplitudes for
different wavelengths can be seen in the value of αkl.

Applying the same spectral projection to Eq. (18.35b) that serves as the defi-
nition of potential vorticity, we obtain the governing equation for streamfunction
amplitudes:

−
[(

2πk

Lx

)2

+
(

2π l

Ly

)2
]
9kl=Qkl. (18.39)

The solution of what was the Poisson equation is now trivial since the equation
is now algebraic and retrieving the streamfunction from vorticity is reduced to
a division. Note that for wavenumber k= l=0, there is no need for a division
by zero, because the streamfunction is defined up to an arbitrary constant 900,
which plays no role in the dynamics. All linear operations are trivial to perform
in the so-called spectral space, i.e., in the discrete (k, l) space associated with
wavelengths Lx/k and Ly/l. Also, initialization of the fields from a given stream-
function in physical space can easily be translated into initial conditions for the
spectral coefficients. Because periodic boundary conditions are already taken
into account by the use of periodic functions in the truncated series, all we have
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to do is to calculate the time evolution of the amplitudes using Eq. (18.37). Once
amplitudes are known, series (18.36) can be evaluated at any desired location
(x,y) to obtain the solution in physical space.

There remains, however, to calculate the contribution from the nonlinear
Jacobian term that appears inside the integral term of Eq. (18.37). Each deriva-
tive appearing in this term can be evaluated by means of the derivatives of the
basis functions, for example

∂ψ̃

∂x
=
∑

k

∑
l

akl ei 2πkx
Lx ei 2π ly

Ly

akl= i
2πk

Lx
9kl (18.40)

and similarly for the other derivatives ∂ψ̃/∂y, ∂ q̃/∂x, and ∂ q̃/∂y. The Jaco-
bian term can then be expressed from products of these series-expansions and
becomes

J(ψ̃, q̃)= 4π2

LxLy

∑
i

∑
j

∑
m

∑
n

(jm− in)9ijQmn ei 2π(i+m)x
Lx ei 2π(j+n)y

Ly . (18.41)

Then, because of the orthogonality property of the basis functions, most of
those terms after projection onto the (k, l) component in Eq. (18.37) vanish,
except the terms for which i+m= k and j+n= l. Using Eq. (18.39) to eliminate
the streamfunction amplitudes and introducing the so-called interaction coeffi-
cients cmnkl, we finally arrive at the equations governing the temporal evolution
of the spectral coefficients of potential vorticity:

∂Qkl

∂t
=−αklQkl−

∑
m

∑
n

cmnkl QmnQk−m,l−n. (18.42)

For the time stepping of Qkl, any previous numerical method may be used
since the interaction coefficients cmnkl are known as well as parameters αkl,
which depend on the particular form of physical dissipation utilized in the
model. The nonlinear term clearly reflects the physical interaction between wave
components (eddies) at different scales.

The method has the advantage of automatically including periodic boundary
conditions and avoiding the inversion of a Poisson equation at every time step.
It further avoids another problem that can plague nonlinear numerical models,
namely the aliasing of higher, unresolved wavenumbers created by interactions
into lower, resolved wavenumbers (see Section 1.12 and 10.5). As we work in
spectral space, we can easily disregard the higher wavenumbers that are created
by nonlinear combinations by setting the corresponding interaction coefficients
to zero.

The method is thus appealing but has a major drawback, its computational
cost. If we retain N Fourier coefficients for each spatial direction, each sum in
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Eq. (18.42) involves N terms, and a double sum requires N2 operations. For
each of the N2 equations for Fourier amplitudes, we must therefore perform N2

operations for the sums associated with the nonlinear term. The computational
burden is then proportional to N4 (M2 in terms of the number M of unknowns).
Because one aim of a geostrophic turbulence model is the study of turbulence
per se, unrealistic subgrid-scale parameterizations must be avoided, and very
high spatial resolution must be attempted. The computational cost of the present
approach can rapidly become prohibitive.

A major breakthrough for the spectral approach came with the discovery
of the so-called Transform Method (e.g., Orszag, 1970). The basic idea is to
switch back and forth between physical space and spectral space, performing
each task in the space in which it is least burdensome. Thus, one first calculates
derivatives in spectral space by generating coefficients as in Eq. (18.40). The
spatial derivative can then be calculated at any location from the Fourier series,
on a regular grid spanning the physical domain of interest. Once all derivatives
appearing in the Jacobian have been so calculated, the latter can be calculated
in physical space from products at each grid node. With the numerical value of
the Jacobian known on a regular grid, its spectral amplitudes are then obtained
in the wavenumber space, which permit the calculation of time changes of the
spectral coefficient of vorticity (Fig. 18.16). Because in the physical domain,
the cost of operations associated with the Jacobian is only proportional to the
number of grid points M, there is a net gain from the detour if the cost of the
transformation falls below M2.

For such method to be viable, the number of calculations involved in the
switch back and forth between physical domain and spectral space must be
lower than the number of calculations saved by performing the tasks in their
respective space of greatest ease. This is the case because there exists a fast
transformation method to pass back and forth between physical domain and
spectral space.

For a one-dimensional case, the Fourier transformation can be achieved effi-
ciently by the so-called Fast Fourier Transform (FFT, see Appendix C), which

ik�kl, il   kl�kl,  kl
Spectral derivatives

Transformation from
spectral to physical
space

Products in physical space

= ...

Calculation of spectral
components

Linear terms

∂t
∂  kl

∂x ∂y
,∂ψ̃ ∂q̃

J (ψ̃, q̃)

FIGURE 18.16 Schematic representation of the transform method applied to the evaluation of the
Jacobian as the forcing term for spectral componentsQkl.
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demands only N logN operations for N Fourier modes and N grid points. In two
dimensions, we first perform N FFTs along the x-direction, one for each of the
y values. Each of these N transforms costs N logN operations, and we thus per-
form N2 logN operations. We then perform N FFTs of the latter coefficients in
the other direction, requiring another N2 logN operations. In total, N2 logN2, or
in terms of the total number M of unknowns, M logM operations are needed for
one passage from physical domain to spectral space or vice versa. With M oper-
ations needed for the calculation of the Jacobian by products in physical space,
the chief cost is that of the transformation, but this is less than if the Jacobian
had been computed in the spectral space, at the cost of M2 calculations. The
larger M (and M must be large indeed to achieve high resolution), the greater
the reduction of operations.

The transform method can, of course, be generalized to any other term that is
not easily calculated in spectral space, such as nonlinear source terms for tracers.
All that needs to be done is to pass from spectral space to physical domain using
an FFT scheme, calculate those complicated terms on the spatial grid and then
return to spectral space by the inverse transformation.

Convergence of the truncated spectral series to exact solutions can be shown
to be faster than any power of M as long as the solution is smooth for all deriva-
tives. This makes the method extremely attractive. We note in passing that we
found a way to solve a classical Poisson equation on a periodic domain with
M logM operations through the transform approach.

Unfortunately, the advantage of the transform method is partially mitigated
by a drawback, the aliasing due to products in physical space. As seen in
Section 10.5, for a grid spacing of1x, we can avoid any aliasing in the quadratic
terms if modes with wavelengths between 21x and 31x are systematically
removed from the solution. But removing modes downgrades resolution, and the
requirement must be turned the other way round: For the shortest wavelength λ
that needs to be resolved, we have to create a physical grid such that 1x=λ/3
instead of 1x=λ/2, the strict minimum needed to resolve λ. On this grid, the
amplitudes of projected modes between 21x and 31x are absent by construc-
tion, and no aliasing can occur when computing quadratic terms. In other words,
we simply have to use 3/2N grid points instead of N to be sure that the product
in physical space does not lead to nonlinear numerical instabilities. In practice,
such a generation of a higher-resolution sampling can be performed efficiently
by first padding with N/2 zeros the arrays containing Fourier coefficients and
then applying the transformation. This amounts to assigning zero amplitudes to
higher-wavenumber signals and then calculating the resulting series expansions
on a regular grid with 3N/2 points using standard FFTs (see Appendix C). This
method of proceeding permits to retain the advantage of a spectral method while
avoiding aliasing.

An additional advantage of working in spectral space lies in the fact that
spectral analysis of the results is trivial and that the power spectrum of ini-
tial conditions is easily controlled. This is particularly useful for statistical
analysis of geostrophic turbulence which starts from a random field of known
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FIGURE 18.17 Emergence of isolated vortices from a random initial field. Vorticity (left) and
streamfunction (right) in a periodic domain at three successive moments. The simulation was per-
formed with a spectral method implemented in qgspectral.m.

statistical spectral profile. Generally, the fields are generated as a realization of
random streamfunctions with a Gaussian distribution of zero mean and vari-
ances depending on wavenumbers. Simulations then allow to see how vortices
become organized under different dissipation conditions (Fig. 18.17) and how
power spectra evolve.

ANALYTICAL PROBLEMS

18.1. Consider the center fluid parcel (y=0) of the Gaussian jet u(y)=
U exp(−y2/2L2) with U=10 m/s and L = 100 km. On the f -plane, what
is the shear vorticity acquired by that parcel in a rightward mean-
der of curvature K=1/800 km? On the beta plane, what meridional
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displacement Y would permit the parcel to conserve its speed and
maintain its center position?

18.2. For the one-layer reduced gravity model (12.19), express the gradient-
wind balance for steady circular vortices on the f -plane. If the layer
thickness is H at the center, and the density interface outcrops at radius
a [i.e., h(r=0)=H, h(r=a)=0], show that H and a must satisfy the
inequality

a≥
√

8g′H
f

. (18.43)

18.3. Take a stretch of the jet profile u(y)=U(1−|y|/a) in |y|≤a, u(y)=0
elsewhere (see Fig. 10.13), and bend it to create a clockwise vortex. On
the f -plane and in the absence of vertical variations, what is the orbital-
velocity profile that preserves vorticity on every trajectory? How does
the pressure anomaly in the vortex is compared with the pressure differ-
ence across the jet? Finally, show that the proportion of fluids with each
vorticity is the same in the vortex as in the straight jet.

18.4. Determine the behavior of an eastward jet in the northern hemisphere
flowing over a topographic step-up followed by a step-down of equal
height. Is the flow oscillatory beyond the second step? Also discuss
the cases where the distance between the two steps is short and long
compared with the critical meander scale.

18.5. Redo Problem 18.4 for a westward jet in the southern hemisphere.

18.6. Hurricane Hugo (10–22 September 1989 in the western North Atlantic—
see Fig. 18.18) had a maximum wind speed of 62 m/s and a low central
pressure of 941.4 millibars during its passage over Guadeloupe on 17
September (Case & Mayfield, 1990). Assuming that the normal pressure
outside the hurricane was 1010 millibars, estimate the storm’s radius and
importance of the centrifugal force relative to the Coriolis force (latitude
= 16◦N).

18.7. Using the gradient-wind balance (18.11) in a reduced-gravity model ( p=
ρ0g′h), explore lens-like vortex solutions where the interface exhibits a
paraboloidal shape between a central maximum depth (h=H at r=0)
and a peripheral outcrop (h=0 at r=R). Show that the flow is in solid-
body rotation. Relate vortex radius R to central depth H and discuss the
limiting cases of wide/shallow and narrow/deep vortices. Do you recover
an inequality of type (18.16)?

18.8. In first-approximation, the thick atmosphere of Jupiter may be modeled
as a reduced-gravity system with g′=2.64 m/s2. Knowing that planet
radius is 69,000 km, and that one Jovian day is only 10 Earth hours long,
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FIGURE 18.18 Satellite visible image of Hurricane Hugo in the evening of 21 September 1989
as it approached the south-eastern coast of the United States. (Courtesy of NOAA, Department of
Commerce, Washington, D.C.)
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FIGURE 18.19 Velocity field on Jupiter in and around the Great Red Spot, obtained after tracking
small cloud features in sequential images from Voyager spacecraft. The origin of each vector is
indicated by a dot. (From Dowling & Ingersoll, 1988)

derive the thickness h of moving fluid for a few radial sections across the
wind-velocity chart provided in Fig. 18.19.

18.9. A uniform eastward flow of velocity U over a flat bottom approaches a
topographic step at right angle. Topography changes from H0 to H1 at
x=0. Determine the stationary streamfunction for x>0 under the rigid-
lid approximation and on the beta plane. Can you identify the critical
meander scale in the solution? (Hint: On a streamline, potential vorticity
is conserved. Express that at the step the relationship between the value
of the streamfunction and vorticity is known and is thus valid beyond the
step.)
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18.10. Redo Analytical Problem 18.9 for a westward flow.

18.11. Prove Eq. (18.7). (Hint: Use Frenet coordinates.)

NUMERICAL EXERCISES

18.1. Use qgspectral.m to experiment with different eddy fields. Then
include the beta effect and higher-order dissipation using sixth-order
derivatives.

18.2. Include diagnostics on energy, enstrophy, and wavelength into qgspec-
tral.m and simulate with different eddy viscosity values. Also include
diagnostics on

ke=
∫

k |k9k|2 dk∫ |k9k|2 dk
(18.44)

ko=
∫

k |Qk|2 dk∫ |Qk|2 dk
, (18.45)

where integrals are performed over all wavenumbers k=
√

k2
x+k2

y . Look

at the time evolution of these quantities and provide an interpretation.

18.3. Generalize qgspectral.m to a two-layer system with equations given
in (17.31). In particular, mind the vertical coupling in (17.32) and solve
the coupled problem in spectral space exactly. Vary the parameter R to
explore the effect of vertical stratification.
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Melvin Ernest Stern
1929–2010

Melvin Stern was an important contributor to the GFD Summer Program at
the Woods Hole Oceanographic Institution (see historical note at the end of
Chapter 1) and had a major influence on the evolution of the field ever since the
inception of that program. His early work in meteorology was followed by fun-
damental contributions to our understanding of baroclinic instability (work with
Jule Charney) and of salt fingering (an oceanic small-scale diffusive process).
After publishing a book titled Ocean Circulation Physics (Academic Press,
1975), Stern dedicated an increasing amount of time and effort to the inves-
tigation of vortices. He is credited with the modon solution (Section 16.6), and
seminal studies of jets and jet-vortex interactions, complementing his theoreti-
cal results with original and illuminating laboratory experiments. (Photo by the
first author)
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Peter Douglas Killworth
1946–2008

A student of Adrian Gill (see Biography at the end of Chapter 13), Peter Kill-
worth, made a career of touching on almost all aspects of ocean modeling. He
is renowned for his contributions to both theoretical oceanography, including
wave and stability analysis, and numerical model developments. His breadth
of interests went as far as social networks, which he analyzed using mathe-
matical and modeling skills that he cultivated while working on oceanographic
problems.

In addition, Killworth gained a reputation as an extremely incisive and
responsive editor from authors and reviewers of Ocean Modelling. He was
awarded numerous honors “for his many far-reaching contributions to theoret-
ical oceanography, which have significantly enlarged our understanding of the
processes determining ocean circulation.” (Photo by Sarah Killworth)



Chapter 19

Atmospheric General
Circulation

ABSTRACT
This chapter briefly reviews the principal factors controlling the climate on our planet.
We first summarize the global heat budget and then describe the large-scale convective
cells and review the major wind systems. The chapter ends with weather forecasting and
the particular challenge of simulating cloud dynamics. Ingredients of modern operational
weather-forecast models are described.

19.1 CLIMATE VERSUS WEATHER

Climate is to be distinguished from weather. Whereas weather includes the
detailed behavior of the atmosphere on a timescale of a day to a week, climate
represents the prevailing or average weather conditions over a period of years.
In other words, the climate of the earth can be regarded as the basic state of the
atmosphere, subject to variations over years, centuries, millennia, and beyond,
whereas the weather corresponds to its incessant and short-lived instabilities.
The engine of climate is a global convection carrying heat from the warmer
tropical belt to the much colder polar regions, and its primary manifestation is
the distribution of prevailing winds over the globe.

Numerous books have been written on climate and weather dynamics. For
texts presenting materials at a slightly deeper level than presented here, the
reader is referred to the classic book by Gill (1982) and the highly readable
textbook by Marshall and Plumb (2008), each written from the perspective of
geophysical fluid dynamics.

19.2 PLANETARY HEAT BUDGET

Because the long-term gradual cooling of the earth’s core contributes insignif-
icantly to the heat input near the surface, the incoming solar radiation can be
considered as the sole source of heat. From its hot surface (T' 5750 K), the sun
emits most of its energy in short wavelengths (200–4000 nm; 1 nm = 10−9 m),
of which about 40% is in the visible range (400–670 nm). According to the
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Reflected Emitted

Absorbed A = I − R = 227

= 117

Incident
I = 344 = 227

E = AR = α I
FIGURE 19.1 Simplest possible model of the
earth’s budget. Straight lines indicate short-wave
radiation, whereas the wavy line represents long-
wave radiation. (Fluxes are in watts per square
meter.) Under this scenario, which does not
account for the atmosphere, the earth’s average
temperature would be a freezing −21◦C.

Stefan–Boltzmann law, a so-called black body (a perfect emitter and absorber
of radiation) emits a radiative flux F depending on its temperature

F=σT4, (19.1)

where σ is a constant equal to 5.67×10−8 Wm−2 K−4, and T is the abso-
lute temperature. Idealizing the sun to a black body, we obtain Fsun=6.2×
107 W/m2 as the outgoing energy flux from the sun’s surface. Given the size of
the sun, the sun–earth distance, and the earth’s area exposed to the sun, the earth
receives only a minute fraction of the sun’s output: 1376 W/m2. Averaged over
the entire earth’s surface (equal to four times the projected area facing the sun),
this incident flux amounts to I=344 W/m2.

Let us, at this point, first discard the thickness of the atmosphere and idealize
the earth’s land and sea surface plus atmosphere as a thin sheet insulated from
below. Of the incident radiation, a fraction is reflected out to space by snow, ice,
some types of clouds, and everything else that is bright. With α as the reflec-
tion coefficient, called the albedo (α'0.34), the amount of radiation reflected
is R=αI=117 W/m2. The difference is the amount absorbed by the earth’s sur-
face: A= I−R= (1−α)I=227 W/m2 (Fig. 19.1). Because the earth is in overall
thermal equilibrium1 (its temperature is not constantly rising), its outgoing radi-
ation matches absorption, and the earth emits a radiative flux E equal to A. This
outgoing radiation is in the form of longer wavelengths than the incoming solar
radiation and is termed long-wave radiation. Assuming as for the sun that the
earth behaves as a black body and using the preceding values, we state

σT4=E=227 W/m2 (19.2)

and deduce a mean temperature for the earth to be T=251 K = −21◦C. This
value is obviously much less than the average temperature of the earth as we
know it (about 15◦C). The failure of this simple model resides in the neglect

1Some of the heat received by the sun is transformed into mechanical (wind) and chemical
(photosynthesis) energies, but these eventually dissipate and turn back into heat.
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116.9 227.1

I = 344 R1 = 113.5

R2 = 6.8

= 65.3

E2 = 519.4

T2 = 3.4

T1 = 168.6

T3 = 26.0 0.36 E1 = 201.1

0.64 E1 = 357.6

[61.9] + [3.4]
= A1

[558.7]

A2 = 161.8

FIGURE 19.2 A second model of the earth’s budget, which distinguishes the atmospheric layer
from the earth’s surface. All flux values are in watts per square meter. Under this scenario, the earth’s
average temperature would be a very warm +36◦C. Here the greenhouse effect (flux loop between
the earth’s surface and the atmosphere) is present and exaggerated. Note how this effect causes
the long-wave radiative fluxes from the earth and atmosphere to exceed the incident short-wave
radiative flux from the sun.

of the atmospheric layer. The preceding value is more representative of the
temperature at the top of the atmosphere than at ground level.

As a next step, we distinguish the atmosphere from the earth’s surface
(Fig. 19.2). The incident short-wave radiation from the sun is unchanged
(I=344 W/m2); of it, the fraction α1 (= 0.33) is reflected back to space, primar-
ily by clouds and secondarily by particulate matter (R1=α1I=113.5 W/m2),
the fraction β1 (= 0.49) is transmitted to the earth’s surface (T1=β1I=168.6
W/m2), and the rest is absorbed by the atmosphere. The earth’s surface (snow,
ice, and so on) reflects a fraction α2 (= 0.04) of what it receives (R2=α2T1=
6.8 W/m2) and absorbs the rest (A2=T1−R2=161.8 W/m2). Of the portion
R2 reflected from the earth’s surface, the fraction β1 is transmitted through
the atmosphere and out to space (T2=β1R2=3.4 W/m2), whereas the rest is
absorbed by the atmosphere. Thus the atmosphere absorbs short-wave radiation
directly from the sun (I−R1−T1) and indirectly from the earth below (R2−T2),
and the net is

A1= (I−R1−T1)+(R2−T2)

= [1−α1−β1+β1α2(1−β1)]I

=65.3 W/m2. (19.3)
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Then both the atmosphere and the earth’s surface emit long-wave radiation, in
amounts equal to their total intakes of both short- and long-wave radiation. If the
atmosphere emits a flux E1, some of it goes upward into space and the rest goes
downward to the earth. Because the top of the atmosphere, where the outgoing
radiation originates, is colder than its lower layers, where the earthbound radi-
ation originates, the two amounts are not equal; a representative split is 36% to
space and 64% to the earth. Thus, the earth receives 0.64E1 of long-wave radia-
tion from the atmosphere in addition to the amount A2 received in short waves,
and its emission E2 must equal their sum:

E2=A2+0.64E1. (19.4)

At this point, we still do not know either E1 and E2, but we can already
conclude that the presence of atmospheric radiation toward the earth’s surface
establishes a loop, whereby the earth’s surface emits some radiation, a portion
of which returns to the earth. As a consequence, the earth’s surface must emit
more radiation in the presence of an atmosphere than in its absence and (accord-
ing to the Stefan–Boltzmann law) must be correspondingly warmer. This is the
greenhouse effect, so called because of its believed similarity with the trapping
of long-wave infrared radiation by the glass panes of a greenhouse.2

Of the amount E2 radiated by the earth’s surface and entering the atmo-
sphere, a fraction β2 (= 0.05) is transmitted and lost to space (T3=β2E2),
with the remainder being absorbed by the atmosphere (E2−T3). If the atmo-
sphere absorbs the amounts A1 and E2−T3 in short- and long-wave radiations,
respectively, its total emission must be equal to their sum; that is,

E1=A1+E2−T3

=A1+(1−β2)E2. (19.5)

From Eqs. (19.4) and (19.5), we can obtain the emission fluxes E1 and E2 to
find E1=558.7 W/m2 and E2=519.4 W/m2. Note that both are higher than the
incident flux I=344 W/m2. Then, using the Stefan–Boltzmann law (19.1), we
estimate the mean temperature of the earth’s surface to be T= (519.4/σ)1/4=
309 K = 36◦C. This temperature is higher than the first estimate, thanks to the
capping effect of the atmosphere (greenhouse effect) but is unrealistically high.

In reality, the warming influence of the greenhouse effect is partially short-
circuited by the hydrological cycle. As water evaporates over the ocean and
land, latent heat is extracted from the earth’s surface. (Latent heat is the heat
required to change the phase of a substance, here to transform liquid water
into water vapor. The latent heat of water is 2.5 × 106 J/kg.) This water vapor
rises through the atmosphere, where it condenses in clouds before returning

2In fact this belief is incorrect because heat retention in a physical greenhouse is chiefly because of
the elimination of convection by the glass barrier. Greenhouses covered with polyethylene plastic
are about as effective as glass-covered greenhouses.



Chapter | 19 Atmospheric General Circulation 631

I = 344 R1 = 113.5

R2 = 6.8

A1 = 65.3

E2 = 415.0

T2 = 3.4

T1 = 168.6

T3 = 20.7 0.36 E1 = 206.4

0.64 E1
= 366.8

+ H = 113.6

[573.2]

− H = 113.6A2 = 161.8

FIGURE 19.3 A third model of the earth’s budget, with atmosphere and hydrological cycle. All
flux values are in watts per square meter. This scenario includes the greenhouse effect tempered by
the hydrological cycle, resulting in a realistic average temperature at the earth’s surface of +19◦C.

to the earth’s surface as rain (liquid phase). Thus, the latent heat extracted
from the earth’s surface is released in the atmosphere, causing a net heat flux
from the earth to the atmosphere that is not in the form of radiation. To this
latent-heat flux is added a convective heat transfer. With an estimated total non-
radiative heat flux H=113.6 W/m2, the earth and atmospheric balances, (19.4)
and (19.5), must be amended as (Fig. 19.3):

E2=A2+0.64 E1−H, (19.6a)

E1=A1+E2−T3+H, (19.6b)

yielding E1=573.2 W/m2 and E2=415.0 W/m2. From the radiation law, we
deduce a corrected estimate of the mean temperature at the earth’s surface: T=
(415.0/σ)1/4=292 K=19◦C. This third estimate is in good agreement with
the seasonally and globally averaged temperature on the earth’s surface. All in
all, we conclude that the greenhouse effect resulting from the presence of the
atmosphere (especially with regard to its near opacity to long-wave radiation)
raises the temperature of the earth’s surface and that the impact of this effect is
partially canceled by the hydrological cycle.

19.3 DIRECT AND INDIRECT CONVECTIVE CELLS

The preceding considerations exposed the globally averaged heat budget, gloss-
ing over all spatial variations. However, that the tropical regions of the globe
receive a disproportionate amount of solar radiation, because of their better
exposure, is not to be overlooked. The earth receives considerably more heat
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FIGURE 19.4 Averaged radiation flux by latitude, calculated from satellite data over the period
1974–1978. The latitude scale simulates the amount of surface area between latitude bands. Incom-
ing radiation is the short-wave solar radiation absorbed by the earth and atmosphere. Outgoing
radiation is the long-wave radiation leaving the atmosphere. (From Winston et al., 1979)

at low latitudes than near the poles, but its outgoing radiation is more uni-
formly spread, decreasing only slightly with latitude (Fig. 19.4). The resulting
heat excess at low latitudes and deficit at high latitudes call for a poleward heat
transfer. George Hadley3 hypothesized that this transfer is accomplished by a
giant thermally driven circulation: Warm tropical air rises and flows toward each
pole, where it cools and sinks, returning to the tropics along the surface (Hadley,
1735). As it turns out, Hadley was partly correct, insofar as such convective cir-
culations exist on both sides of the equator, and partly incorrect, insofar as these
meridional circulations extend only to 30◦ of latitude.

Indeed, a single Hadley cell spanning equator to pole is unlikely to exist
because of conservation of angular momentum. In the absence of friction, a
torus of equatorial air mass m at rest with respect to the earth conserves its

3British physicist and meteorologist (1685–1768) who first explained the trade winds.
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absolute angular momentum. Hence, when progressing poleward to latitude ϕ,
it ought to conserve ma2�=mr(�r+u)=macosϕ (�acosϕ+u), where a is
the earth’s radius and r=acosϕ is the distance of the torus to the earth’s axis
of rotation. This would lead to unrealistically high wind velocities u at high
latitudes.

North of 30◦N and south of 30◦S, different circulations are observed, up
to 60◦, beyond which circulations in the sense predicted by Hadley are again
found. Because the convective circulations theorized by Hadley follow our intu-
ition, they are generally called direct cells. Those direct cells bordering the
equator are also called Hadley cells. In contrast, the reverse circulations found
at midlatitudes bear the name of indirect cells. Our purpose here is to explain, in
some qualitative manner, why such oppositely directed meridional circulations
exist. The story is not simple, invoking the aggregate effect of the transient
weather systems (storms) of the midlatitude regions.

To begin, we note that, although a single direct convective cell could theoret-
ically span an entire hemisphere, such would be unstable. The strong zonal flow
in thermal-wind balance with the large meridional temperature gradient would
be baroclinically unstable. In fact, the more moderate zonal winds accompany-
ing the alternating circulation structure that exists on the earth are themselves
unstable, as the vagaries of the midlatitude weather show so well. According to
our discussion of baroclinic instability (Section 17.4), such instabilities develop
into coherent vortex systems, called cyclones and anticyclones, that are capable
of transferring heat meridionally (Section 17.5). At midlatitudes, therefore, the
transfer does not take place in a vertical loop, as in a Hadley cell, but through
the horizontal circulation of each vortex moving warm air poleward on one side
and cold air equatorward on the other. We will now show how the cumulative
action of these weather systems at midlatitudes can perform the required pole-
ward transfer of heat so effectively as to reverse the meridional circulation in
the vertical plane.

The analysis starts with a few modifications of the governing equations.
First, the density departure from the reference ρ0 is expressed in terms of a
temperature anomaly T measured from the temperature corresponding to the
reference density: ρ=−ρ0αT , where α=1/T0 is the thermal-expansion coef-
ficient. Then, viscosity and heat diffusivity are neglected, but a heat source or
sink term is added in the temperature equation to represent the heat gain in the
tropics and the heat loss at high latitudes. From Eqs. (4.21), we have

∂u

∂t
+u

∂u

∂x
+v

∂u

∂y
+w

∂u

∂z
− f v = − 1

ρ0

∂p

∂x
(19.7a)

∂v

∂t
+u

∂v

∂x
+v

∂v

∂y
+w

∂v

∂z
+ fu = − 1

ρ0

∂p

∂y
(19.7b)

∂p

∂z
= ρ0αgT (19.7c)
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∂u

∂x
+ ∂v
∂y
+ ∂w

∂z
= 0 (19.7d)

∂T

∂t
+u

∂T

∂x
+v

∂T

∂y
+w

∂T

∂z
= Q

ρ0Cp
, (19.7e)

where Q is the aforementioned thermal forcing (in watts per cubic meter).
Focusing exclusively on the northern hemisphere, we take Q positive in the
tropics (at lower values of y, the northward coordinate) and negative at high lat-
itudes (higher values of y). Thus, the gradient ∂Q/∂y is negative. The choice of
beta-plane equations based on a Cartesian coordinate system over more accurate
equations in spherical coordinates is justified in the spirit of a highly simplified
analysis aimed at highlighting physical processes in a qualitative way.

We next define the zonal average as the mean over the values of x at any
given y and z levels and time t. The zonal averages of the linear equations (19.7c)
and (19.7d) are immediate:

∂ p̄

∂z
= ρ0αgT̄ (19.8)

∂ v̄

∂y
+ ∂w̄

∂z
= 0, (19.9)

where the overbar denotes this zonal average. With a prime denoting the depar-
ture from the average (e.g., u= ū+u′ etc.) and with some use of Eq. (19.7d),
the zonal average of Eq. (19.7b) can be expressed as

∂ v̄

∂t
+ v̄

∂ v̄

∂y
+ w̄

∂ v̄

∂z
+ f ū=− 1

ρ0

∂ p̄

∂y
− ∂

∂y
v′2− ∂

∂z
v′w′. (19.10)

The large meridional pressure gradient (∂ p̄/∂y) associated with the important
northward decrease in temperature (∂T̄/∂y<0) is balanced by a significant
zonal flow (ū). In contrast, the meridional cell (v̄, w̄) is much weaker, as are the
corresponding eddy fluxes (v′2, v′w′). Thus, the preceding may be reduced to

f ū=− 1

ρ0

∂ p̄

∂y
. (19.11)

Together, the hydrostatic balance, Eq. (19.8), and the geostrophic relation,
Eq. (19.11), provide the thermal-wind relation

f
∂ ū

∂z
=−αg

∂T̄

∂y
, (19.12)

which relates the vertical shear of the average zonal wind to the average merid-
ional temperature gradient. With the temperature decreasing northward in the
northern hemisphere (∂T̄/∂y<0, f >0), the wind shear is positive (∂ ū/∂z>0),
indicating that the winds must become more westerly (eastward) with altitude.
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Finally, we apply the zonal average to the remaining two equations, (19.7a)
and (19.7e), to obtain:

∂ ū

∂t
+ v̄

∂ ū

∂y
+ w̄

∂ ū

∂z
− f v̄ = − ∂

∂y
u′v′ − ∂

∂z
u′w′ (19.13a)

∂T̄

∂t
+ v̄

∂T̄

∂y
+ w̄

∂T̄

∂z
= Q̄

ρ0Cp
− ∂

∂y
v′T ′ − ∂

∂z
w′T ′. (19.13b)

According to our previous remarks, the eddy fluxes of momentum and heat asso-
ciated with the horizontal circulations of the weather systems (u′v′ and v′T ′) are
anticipated to be important, and the corresponding terms are retained. However,
the vertical eddy fluxes (u′w′ and w′T ′) are neglected. Except for the mean ver-
tical advection of temperature (w̄∂T̄/∂z) because there is a substantial vertical
stratification, mean meridional and vertical advection is unimportant, compared
with the meridional eddy transports. In the light of these considerations, the
leading terms of the preceding two equations are

∂ ū

∂t
− f v̄ = − ∂

∂y
u′v′ (19.14)

∂T̄

∂t
+ N2

αg
w̄ = Q̄

ρ0Cp
− ∂

∂y
v′T ′. (19.15)

Here, we have introduced the stratification frequency N through N2=αg∂T̄/∂z.
We shall assume that it does not vary significantly with y.

Forming f times the z-derivative of the first equation plus αg times the
y-derivative of the second, to eliminate the time derivatives through Eq. (19.12),
we obtain

∂w̄

∂y
− f 2

N2

∂ v̄

∂z︸ ︷︷ ︸
=ω

= αg

ρ0CpN2

∂Q̄

∂y

− αg

N2

∂2

∂y2
v′T ′ − f

N2

∂2

∂y∂z
u′v′. (19.16)

In this last equation, the sign of the left-hand side ω is directly related to
the direction of the average circulation in the vertical plane. For simplicity,
let us restrict our attention again to the northern hemisphere. In a direct cell
(Fig. 19.5a), w̄ decreases northward and v̄ increases upward, together yielding
a negative ω. On the other hand (Fig. 19.5b), an indirect cell corresponds to a
positive left-hand side.

According to the right-hand side of Eq. (19.16), there are three competing
mechanisms influencing the sense of the circulation. In the tropical regions,
away from the midlatitude eddy activity, the dominant factor is heating (Q̄
term). Because the rate of heating decreases northward (∂Q̄/∂y<0), this term
is negative, and the circulation in the vertical plane is in the direct sense (as in
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FIGURE 19.5 Atmospheric circulation in the meridional-vertical plane: (a) direct cell, also called
Hadley cell, with ∂w̄/∂y<0, ∂ v̄/∂z>0, and ω<0, and (b) indirect cell, also called Ferrel cell, with
opposite circulation and positive ω.

Fig. 19.5a). This occurs up to about 30◦N, and the circulation driven by thermal
convection is the Hadley cell. The northerly (equatorward) winds along the sur-
face (v̄<0) veer to the right under the action of the Coriolis force, resulting in
easterly (westward) zonal winds (ū<0). These form the trade winds.

North of approximately 30◦N, where the eddy activity is most intense, the
corresponding terms (v′T ′ and u′v′) dominate the right-hand side of Eq. (19.16).
Both induce an indirect circulation. This is easy to see with the v′T ′ term and a
little harder with the u′v′ term. The average product v′T ′ is proportional to the
meridional heat flux of the eddies. Because this net heat flux must be north-
ward, warm anomalies (T ′>0) are preferentially moved northward (v′>0),
while cold anomalies, are advected southward (T ′<0, v′<0), both yielding
a net positive v′T ′ correlation. Because the storm activity is most intense at
midlatitudes, the term v′T ′ reaches a maximum there. Thus, the second deriva-
tive ∂2v′T ′/∂y2 must be negative. Preceded by a minus sign in Eq. (19.16), the
corresponding term is positive.

The convergence of warm and cold air masses aloft creates a locally inten-
sified gradient of temperature. In thermal-wind balance with this gradient is the
polar-front jet stream (Fig. 18.1) that flows eastward. The maintenance of this
jet in spite of eddy activity requires a continuous influx of eastward momen-
tum (i.e., positive u′ anomalies must be transported to that latitude). This is
effected by the eddies, which import positive momentum anomalies from the
south (u′>0, v′>0) and from the north (u′>0, v′<0). Thus, the average u′v′ is
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FIGURE 19.6 Sketch of the general atmospheric circulation, composed of direct (Hadley) and
indirect (Ferrel) cells in the meridional direction and alternating winds in the zonal direction.

positive south of the jet and negative north of it, and the derivative ∂u′v′/∂y
must be negative. At the surface, where the jet stream is not found, the correla-
tion u′v′ is much less important, and we conclude that ∂u′v′/∂y is increasingly
negative with altitude, namely, ∂2u′v′/∂y∂z is negative. Preceded by a minus
sign in Eq. (19.16), this term adds to the positive contribution of the other
eddy-flux term, and together these terms overcome the Q̄ term. The result is
an indirect cell, called the Ferrel cell. A corresponding indirect cell is found
in the southern hemisphere. These Ferrel cells extend to approximately 60◦;
beyond that latitude, eddy activity yields to a thermal circulation in the vertical
and direct cells exist (Fig. 19.6).

The alternation of direct and indirect cells across latitudes leads to a similar
alternation in surface zonal winds: from the easterly trades to the prevailing
westerlies, to the polar easterlies (Fig. 19.6).

19.4 ATMOSPHERIC CIRCULATION MODELS

Atmospheric circulation models are generally at the forefront of developments
in both parameterization of subgrid-scale processes and numerical aspects (see
Section 1.9) and continue to change in terms of included physics and numer-
ical discretizations. From the first operational models using a single-layer
quasi-geostrophic approach, models have progressed to solving the primitive
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equations at ever shorter scales. The equations solved numerically are the gov-
erning equations of Section 4.4, to which are added turbulence closure, cloud
parameterization, radiation budgets, and tracer evolution. An account of the
improvements in atmospheric models during the last couple of decades lies
beyond the scope of this book (see Randall, 2000, for a coverage of the progress
made during the 1990s), and we focus here on the distinguishing features of
atmospheric models compared to oceanic models or general geophysical-flow
models.

The most widely used models for weather prediction at global scale include
those of the European Centre for Medium-Range Weather Forecasts (ECMWF,
EU) and the National Centers for Environmental Prediction (NCEP, USA). Both
models are adapted to the atmosphere by including a series of physical mod-
els or parameterizations, specific to the air that we have on Earth. Radiation
budgets are more complicated than those of Section 19.2, and in reality, the
heat equation should contain a local source term due to radiation, the behavior
of which should depend among other things on the orientation of the sun, the
wavelength of the radiation, humidity and presence of aerosols, the latter being
transported with the winds and hence governed by an advection-diffusion equa-
tion. Because radiation is behaving differently for each wavelength, a separate
equation for radiative transfer should be used for each wavelength. In practice,
wavelengths are lumped into spectral bands, and, at a minimum, two groups
are distinguished: short- and long-wave radiation, as we did earlier in our sim-
ple globally averaged models. The models include absorption of radiation (and
hence local heating) by water vapor, ozone, carbon dioxide, and clouds within
the atmosphere itself and on the lower boundary, the earth’s surface. Not only
absorption must be calculated at each grid point, but also the scattering of radi-
ation by aerosols and clouds, as well as the reflection by the earth’s surface and
clouds. One must further take care of the re-emission of long-wave radiation by
ozone. These processes involve a series of parameterizations which make up the
particular radiative transfer equations of the models.

The ECMWF model uses for example a radiation scheme based on Orcrette
(1991): for clear-sky conditions, short-wave radiation is mainly constrained
by aerosol scattering and the effects of the absorption by water vapor, ozone,
oxygen, carbon monoxide, methane, and nitrous oxide. Clear-sky, long-wave
radiation is modeled using absorptive properties of water vapor, carbon diox-
ide, and ozone, which are temperature and pressure dependent. Cloudy skies
are handled separately, and their parameterization includes absorption and scat-
tering properties of cloud droplets, with clouds being characterized by optical
thickness and their scattering properties. Cloud physics are not only important
for studies of radiative transfer but also in precipitation forecasts. Because of
their short dimensions compared with typical model grid sizes, clouds need to
be parameterized in some ways. This requires specific treatment (Section 19.6).

When weather is calculated over the entire planet, Atmospheric General Cir-
culation Models (AGCMs) have to take into account the spherical nature of
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the domain and hence governing equations are most naturally written in spher-
ical coordinates (Appendix A). This is both a source of complications and of
simplifications. Complications arise because of the more complex nature of the
equations (coefficients now depend on latitude ϕ) and of the mathematical sin-
gularities at each pole because of the presence of 1/cosϕ in certain coefficients.
The latter causes numerical stability problems.

To understand why numerical stability problems may arise, let us imagine
that discretization is performed by using a rectangular grid in the longi-
tude–latitude (λ,ϕ) coordinates with1λ=2π/M where M is the number of grid
points used in the west–east direction. Then, the Euclidean distance between
two neighboring grid points is 1x=acosϕ1λ, where a is the earth’s radius. It
is clear that this distance 1x vanishes at the poles. So, if there is any numeri-
cal stability condition of the type U1t≤1x, where U is a physical propagation
velocity of similar magnitude across latitudes, the stability condition will be
much more stringent near the pole than near the equator, even if the underlying
physical process acts similarly in both locations. The overall numerical effi-
ciency is then drastically reduced if a pole imposes its stability condition on the
rest of the domain. This is called the problem of convergence of meridians, and
it must be addressed. If finite-difference grids in longitude–latitude are used, an
implicit scheme or filtering must be used in the vicinity of the poles.

A distinct simplification for any AGCM covering the planet is the absence
of any lateral boundary, avoiding the need for open-boundary conditions.
Regional models (so-called Limited Area Models, nicknamed LAMs) may also
avoid the open-boundary problem by appropriate nesting within an AGCM
running alongside. The ALADIN model (Aire Limitée Adaptation dynamique
Développement InterNational4) is one such LAM used for downscaling pro-
cesses from the global scale to the desired regional scale. ALADIN simu-
lates smaller scale features such as the sea breeze and thunderstorms, using
high-resolution orography and less parameterization.

Even if they do not have lateral boundaries, AGCMs need conditions at the
vertical edges of the domain. The upper boundary of atmospheric models is
generally taken at a given pressure level (e.g., 0.25 hPa) or at a given height
(e.g., 70 km), well above the troposphere in which most weather phenomena
are confined. It is also placed well above the tropopause to avoid unphysical
reflections of waves at the boundary. This, however, is still an artificial bound-
ary because air gradually rarefies with height, and there exists no distinct level
where the atmosphere ends and space begins. Nevertheless, rigid-lid conditions
are commonly assumed. At the lower boundary, the atmosphere interacts with
oceans, land masses, and ice covers, which all demand specific definitions of
fluxes of heat and momentum.

4Translation: Limited area, dynamical adaptation, international development.
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FIGURE 19.7 Depending on its intrinsic timescale compared with that of the atmosphere, the
effect of an interacting system (such as vegetation or clouds) may be reduced to persistence or
instantaneous adaptation. Only when the timescales of both systems are comparable is the fully
coupled version to be retained.

Depending on the timescale of the processes at hand, those interactions
between systems may be simplified (Fig. 19.7). If the system coupled to the
atmosphere (e.g., glaciers or vegetation) is reacting comparatively slowly, there
is no need to take into account temporal variations in the feedback mechanism,
and persistence of the slower system can be assumed while the atmospheric
model is moved forward for some time. For example, the ice cover of Antarctica
does not change significantly within the few days covered by a weather forecast
model, and the observation of the ice cover at the beginning of the forecast is
sufficient to constrain the atmospheric evolution during the forecast period.

If on the contrary the coupled component reacts relatively fast compared
with atmospheric conditions, it is often possible to establish quasi-equilibrium
laws predicting those fast adaptations directly in terms of atmospheric param-
eters. For example, the albedo of the land surface changes in time following
alterations to surface characteristics and should normally require a compre-
hensive land-use model, but, if the atmospheric model predicts snow fall, the
albedo may be immediately updated for use in the atmospheric model so as to
accommodate the change in reflection.

When the non-atmospheric system possesses a similar timescale to, and
interacts with, the atmosphere, both models must be run in parallel, and outputs
from each must inform the other. A good example of such a situation is the fore-
cast of El Niño events (see Section 21.4). Such coupling, however, is not easy,
and the first attempts at coupling AGCMs to ocean models for climate calcu-
lations demanded unphysical discontinuities in fluxes between the atmosphere
and ocean. Ocean models are sensitive to errors in wind distribution over the sea



Chapter | 19 Atmospheric General Circulation 641

surface, requiring that the wind field provided by the atmospheric model include
the same timescales (spectral window) as those active in the ocean model. When
fluxes were not subjected to one correction or another, the atmospheric and
ocean models drifted away from each other, leading to unrealistic situations. To
enable simulation of past climatic variations, it was then deemed necessary to
inject information on the climatic average within the flux formulations, usually
by way of relaxation toward a known state. This meant that a piece of the solu-
tion had to be incorporated into the model formulation. Such an unsatisfactory
approach of feeding models with a priori knowledge was cause for objecting
that climate forecasts based on such models could not be trusted. At this time,
improvements have been made, and flux correction is no longer necessary. Cou-
pled ocean-atmospheric models are now the core of so-called global climate
models incorporating a vast number of physical, biological, and chemical com-
ponents such as wind, ocean currents, ice cover, hydrological cycle, vegetation,
land use, carbon and nutrients cycles, and so on.

The coupling of models allows feedback to be taken into account such as
the melting of ice due to heating followed by a change in the albedo itself
modifying heat budgets. Other feedback loops are possible through chemical
reactions. The ozone layer, for example, changes under modified climate condi-
tions, itself changing radiative budgets. Integrated models that include feedback
loops are called Earth simulators. They incorporate as many processes as possi-
ble instead of considering them as forcing functions. Note that because of high
computational demands, most of the submodels are optimized to exploit partic-
ular computer hardware (parallel, distributed, or shared), and making them work
together is not trivial. Because of the physical coupling, this requires informa-
tion exchange between models, called message passing on parallel computers.
The implementation of exchanges is quite a challenging task both in terms of
physical-interaction modeling as well as technical programming. Needless to
say, such integrated models are also more and more demanding in terms of
understanding the simulation results, particularly when grid resolution increases
and more and more physical processes are resolved. After all, the model should
behave almost as the real world does, which, as we know, is extremely difficult
to comprehend. Hence, associated with most models, there is now a suite of sta-
tistical and graphical analysis tools to help the modeler grapple with the huge
amount of information produced.

When speaking about atmospheric models, it should always be specified if
the model is used for weather forecast, seasonal forecast, or climate-change
scenarios. Indeed, a frequent argument invoked to disqualify climate-change
studies is the inability to predict weather beyond a few days while germane
models are used for investigating climate change. This argument simply disre-
gards the difference between weather and climate (see Section 19.1). We may
well be unable to predict next week’s weather in New York but still be able
to predict an increase of temperature over the United States over the next few
years. The situation is similar to the unpredictability of individual eddies in a
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turbulent flow not preventing us from making meaningful statements about their
aggregate effect on pollutant transport while tapping from the same family of
governing principles and models. The problem is simply a question of scales
of interest, and the reader may benefit from meditating on Fig. 1.7. As long as
the model possesses prediction capability for the processes at temporal and spa-
tial scales of interest, it does not matter whether its prediction capabilities are
reduced for processes at other scales.

19.5 BRIEF REMARKS ON WEATHER FORECASTING

For weather forecasts, namely for forecasts not beyond of few days, most of the
feedbacks with systems other than the atmosphere itself can be simplified and
rendered relatively passive. For example, air–sea heat fluxes depend on sea sur-
face temperature (SST), and the situation should ideally call for a fully coupled
ocean-atmosphere model, but for weather forecast, the atmospheric model can
rely on estimates of sea surface temperature, such as climatological sea surface
temperature, observed SST over previous days, a simple mixed-layer model, or
any combination of these.

The general approach of using observations to prescribe forcings explains
why weather forecasting needs to rely on dense observational networks. To
improve over time, however, prediction capabilities demand not only denser
observational networks and better data-assimilation techniques but also more
sophisticated physical parameterizations, better performing numerical methods,
and ever more powerful computers to permit increased spatial resolution.

Nowadays, weather predictions are accompanied by calculated error bars
around the predicted values. Thus, the weather reporter may speak about prob-
ability of occurrence of events, such rain probability. The error bars are not
restricted to precipitation, however; they also apply to temperature, dew point,
wind speed, pressure, cloud cover, snow fall, visibility, radiation, and so on.
Although forecast capability has improved significantly over the last decades,
weather remains somewhat elusive and difficult to predict, especially in the case
of extreme events.

19.6 CLOUD PARAMETERIZATIONS

Probably the most difficult parameterizations encountered in atmospheric mod-
els are those related to clouds because several difficulties arise simultaneously:
The physical processes at play are multiple and complex, and cover a broad
range of scales. Clouds involve microphysics at crystal and water-drop level
(millimeter scale), convection related processes at larger scales (hundreds of
meters), and turbulence at all scales. Yet, none of these can possibly be repre-
sented in an explicit way in a global model. In one grid cell of a global model,
even the largest cumulus clouds barely cover a fraction of the space.
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At the shortest scale, physical processes leading to precipitation are compli-
cated but can be explained by thermodynamics. The description involves water
condensation on tiny solid particles (aerosols), collisions of incipient droplets,
and interaction between water droplets and ice crystals (Bergeron process). The
problem for models, of course, is that they are not able to represent these pro-
cesses for each individual droplet, but models must nonetheless incorporate
the aggregate effect at the level of the variables retained in the model. Mixing
ratios5 of cloud water content and ice content are typical variables to be com-
puted. Because drop formation is controlled by the presence of condensation
nuclei, aerosol concentration is also a pertinent variable. Then, in the calcula-
tion of water budget, ice and vapor content within a grid cell, exchanges between
the three phases of water (ice, liquid water, and water vapor) must appear in the
governing equations. The problem is to extrapolate these microphysical pro-
cesses to the scale of the grid cell. For example, condensation and evaporation
can coexist depending on the vapor pressure distribution within the cell (satu-
rated vapor). Yet, the model can only calculate one value for the entire grid cell
(Fig. 19.8).

Outlining a series of cloud parameterization techniques lies beyond the
scope of the present introductory text, and the reader is referred to Randall,
Khairoutdinov, Arakawa and Grabowski (2003) for a helpful review and fur-
ther references. For examples of actual parameterizations, one can consult
Sundqvist, Berge and Kristjansson (1989). The variables most commonly
involved include humidity and temperature in cloud-free and cloud-covered
regions, as well as fractional stratiform cloud coverage, mixing ratios of cloud
water and ice, mixing ratios of rain and snow, and so on.

For some cloud types, parameterization is easier than for others. Stratus-type
clouds are associated with large-scale global upward motion and stratiform con-
densation so that they can be captured by model grids. Cumulus-type clouds, on
the contrary, are formed by shorter-scale convective motions that are nonhydro-
static. Towers of ascending buoyant air, involving thermals, cannot be captured
by the grid and need a heavy dose of parameterization, which generally assumes
that surrounding air is uniform with properties specified by the model solution
at the resolved scale so that exchange laws between convective and ambient air
can be formulated in terms of temperature, moisture, and so on of the ambient
air and cloud.

The situation is even more complicated with heat budgets associated with
phase changes. Warming by condensation and cooling through evaporation may
take place side by side, over a distance shorter than the width of a grid cell. This
creates thermal gradients and movement at the level of unresolved dynamics
that are important because they modify cloud behavior, which in turn affects
radiation, heat content, and so on. In other words, the system includes feedback

5Mixing ratios are expressed in gram or kilogram of the variable per kilogram of air.
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FIGURE 19.8 Numerical grids of glo-
bal atmospheric models are too wide to
represent individualclouds.The localized
upward motion inside a cumulus cloud
and the subsidence that surrounds it can-
not be resolved by the grid, yet the cloud
formedbycondensationinupwardmotion
of moist air and associated precipitation
affects the water budget. The situation is
further complicated by possible entrain-
ment of surrounding unsaturated air, lead-
ing to evaporation, cooling, and weaken-
ing updraft. Precipitation originating in
saturated air is normally modeled as a
loss of water in the model. Yet, during its
journey down to the earth surface, it can
pass through unsaturated air and evapo-
rate. This cools the air and, in the presence
ofdownwardentrainmentcreatesadown-
draft. These and other processes all take
placeonaspatialscaleshorter thanthesize
of a single grid cell.

mechanisms at unresolved scales. This is not only important for day-to-day pre-
diction of rainfall, but clouds also play an essential role in climate dynamics.
Because clouds provide shadow in the day but act as a thermal blankets dur-
ing night, they are crucial in the global heat budget. Climate variations in turn
modify the hydrological cycle and cloud coverage and yet another feedback
exists. Because of the extreme complexity of cloud dynamics, the Intergovern-
mental Panel on Climate Change (IPCC, 2001) identified possible changes in
cloud cover as one of the major uncertainties in predicting future states of the
climate.

19.7 SPECTRAL METHODS

Numerical methods used in atmospheric models have evolved from quasi-
geostrophic models using Arakawa grids for the discretization of the Jacobian
operator and inversion of Poisson equations toward more sophisticated spectral
models based on the primitive equations (i.e., no longer any QG approximation)
with semi-Lagrangian tracer advection. Most modern global models are based
on this approach, which we now outline.

Spectral models are based on the same technique as the spectral models
presented in the quasi-geostrophic framework (see Section 16.7). They use a
truncated series of orthogonal basis functions spanning the domain of interest.
For global models, spherical coordinates do not lend themselves to a classical
Fourier expansion of the solution in terms of trigonometric (sine and cosine)
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functions, and more complicated spherical functions must be used. Assuming
that the vertical dependence is handled by standard finite-volume or finite-
difference techniques, the dependence of a field u on longitude λ and latitude ϕ
is expressed as a series of functions Ym,n called spherical harmonics:

u(λ,ϕ, t)=
∑

m

∑
n

am,nYm,n(λ,sinϕ) (19.17)

in which

Ym,n(λ,sinϕ)=Pm,n(sinϕ)eimλ. (19.18)

The expansion series is of Fourier type in longitude but involves Legendre
functions Pm,n of sinϕ:

Pm,n(x)=
√
(2n+1)(n−m)!

2(n+m)!
(1−x2)m

dm

dxm
Pn(x). (19.19)

These Legendre functions are in turn defined in terms of Legendre polynomials
of degree n:

Pn(x)=
1

2nn!

dn

dxn

[
(x2−1)n

]
. (19.20)

Because Pn is a polynomial of degree n, Legendre functions differ from zero
only when m≤n. Extension toward negative values of m is desirable to corre-
spond to the full set of Fourier modes exp(imλ), and so we extend the definition
of Legendre functions with P−m,n(x)= (−1)mPm,n(x). With the well-chosen
coefficient in front of Eq. (19.19), Legendre functions are orthonormal:

1∫
−1

Pm,n(x)Pm,k(x)dx= δn,k, (19.21)

which is =1 if n= k and =0 otherwise.
On the surface S of the sphere of radius r, the elementary surface element

r2 cosϕ dϕdλ may be written as r2 dξdλ with ξ = sinϕ so that

1

r2

∫
S

Ym,nY∗p,kdS=
1∫
−1

2π∫
0

Ym,nY∗p,kdλdξ =2πδm,p δn,k, (19.22)

where the symbol ∗ stands for the complex conjugate. The horizontal Laplacian
of the basis functions is in spherical coordinates:

∇2Ym,n=−
n(n+1)

r2
Ym,n (19.23)
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so that inversion of the Poisson equation can be performed algebraically
in the transformed space. Note that, surprisingly, the pseudo6 wavenumber√

n(n+1)/r is independent of m.
Orthogonality of spherical harmonics can be used to obtain separate evolu-

tion equations for the amplitudes am,n(t) by multiplying the governing equations
by Ym,n

∗ and integrating over the global surface. To do so, we exploit the
inverse transform (19.17) and the associated forward transformation that reads

am,n=
1∫
−1

 2π∫
0

u(λ,ξ, t)e−imλdλ

Pm,n(ξ)dξ (19.24)

as it follows from the orthogonality property.
Truncation of the sums in numerical schemes can be achieved in several

ways (Fig. 19.10), the only constraint being that in all cases |m|≤n which can
be achieved by

ũ=
M∑

m=−M

N(m)∑
n=|m|

am,nYm,n (19.25)

The structure of spatial resolution depends on the value taken for N(m). When
N(m)=M, called a triangular truncation, uniform resolution is achieved on
the sphere. Other truncations provide increased resolution in particular regions
(Figs. 19.9 and 19.10).

The various possibilities are denoted according to the chosen truncation.
For example, T256L60 signifies a triangular truncation with M=256 spectral
components.7 The qualifier L60 stands for the vertical grid using 60 discrete
levels.

In the ECMWF model, vertical levels are distributed according to a hybrid
coordinate system where the vertical coordinate s depends on pressure p and
surface pressure psurf by s= s(p,psurf) scaled so that s(0,psurf)=0 (top of the
atmosphere) and s(psurf,psurf)=1 (land or ocean surface). This is a generaliza-
tion of a pressure coordinate, called σ coordinate, introduced by Phillips (1957)
with s=p/psurf and which is used in NCEP. Because more general hybrid
vertical coordinates are now used in ocean models, we will postpone the
corresponding discussion until Section 20.6.1.

6In Cartesian coordinates with the Fourier decomposition u=U exp(ikxx+ ikyy), we would have
∇2u=−(k2

x +k2
y ) u, hence the analogy.

7Note that because m takes negative values, the actual wavenumbers resolved are indeed M, con-
trary to the standard FFT presentation, which uses only positive values and hence half of the
wavenumbers (see Appendix C).
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FIGURE 19.9 Real part of spherical harmonics Ym,n for (m,n) taking values (0,1),(1,1) on the
first row, (0,2),(1,2),(2,2) on the second row, and (0,3),(1,3),(2,3),(3,3) on the bottom row. The white
color marks the separation between positive and negative values. Mode (0,0) is not shown because
its value is constant on the sphere.

n
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n

FIGURE 19.10 Triangular and rhomboidal truncations stipulating which values of m are retained
for every value of n. Only positive m values are shown, the negative ones being symmetric.
Triangular truncation is now more popular than the originally preferred rhomboidal version.

With discrete versions of integrals, orthogonality of basis functions is no
longer ensured, and a direct transformation followed by an inverse transfor-
mation does not guarantee to a perfect return to the original function. For the
discrete Fourier transform, orthogonality is maintained (see Appendix C and
Section 18.4), so that we can evaluate the inner integral of the forward trans-
form through an FFT and the corresponding inverse transform by an inverse
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FFT. There only remains to ensure that the numerical treatment of the outer
integral of Eq. (19.24) conserves orthogonality.

Unfortunately, there exists no numerical tool similar to the FFT that allows to
perform transforms on the Legendre expansion as quickly, and we must resort to
numerical quadrature of the integrals. First we can perform an FFT at a series of
given latitudes ϕj, j=1, . . . .,J with ξj= sinϕj to obtain the Fourier coefficients

bm(ξj, t)=
2π∫

0

u(λ,ξj, t)e
−imλdλ (19.26)

defined at locations ξj. Then the time-dependent coefficients am,n can be esti-
mated by a numerical quadrature using the value of the integrand at those
locations ϕj:

am,n=
J∑

j=1

wjbm(ξj, t)Pm,n(ξj). (19.27)

The weights wj and locations ξj can be chosen so as to reduce integration errors.
Gaussian quadrature can be shown to produce exact results when integrating
polynomials of degree (2J−1) if the J points on which the integrand is eval-
uated coincide with the zeros of the Legendre polynomial of degree J, that is,
PJ(ξj)=0 and if the weights are taken as

wj=
2

(1−ξ2
j )
[

dPJ
dξ (ξj)

]2
. (19.28)

It would appear that the integrands are not polynomials because Legendre
functions involve square roots. What matters, however, is that transforms of the
nonlinear terms, such as u∂u/∂λ, are treated correctly, and these, fortunately,
involve products of Legendre functions which turn into polynomials that can be
integrated exactly. The number of points J must then be taken so as to integrate
correctly polynomials of the highest degree as a consequence of nonlinear terms.
The transform of such a term would require the evaluation of triplet of Legendre
functions (one for each appearance of u and then the application of the transform
itself involving the third Legendre function). For a highest degree, m=M, of
Legendre functions, a polynomial of degree 3M appears, and we must therefore
use J>(3M+1)/2 points to integrate it exactly.

For the Fourier transform in longitude, we also face an aliasing problem,
and the same analysis as in Section 18.4 applies. Because M modes use (2M+1)
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grid points,8 avoidance of aliasing requires the use of (3M+1) evaluation points
in longitude. Hence a model with 42 modes will use typically an underlying
longitude–latitude grid of 128 × 64 points for the evaluation of the nonlin-
ear terms (note the rounding toward powers of 2 to take advantage of efficient
FFTs). This grid is called the Gaussian grid or transform grid. The calculation of
grid spacing based on the number of Gaussian grid points overestimates actual
resolution because it is designed to avoid aliasing on nonlinear interactions,
and the actual, lower resolution is that which corresponds to the wavenumbers
associated with the spectral decomposition.

The transform methods thus allows us to calculate some terms in spectral
space (linear terms) and others (quadratic advection terms and nonlinear terms
stemming from various parameterizations) in the transformed space so as to
use the most appropriate technique for each term. In practice, it means that the
model utilizes both spectral and grid representations of each variable.

The high convergence rate of spectral methods is inherited with the spherical
harmonics, as long as the physical solution is sufficiently smooth. When fronts
or jumps are present in the solution, however, spatial oscillations emerge near
the place of rapid variation. This is known as Gibb’s phenomena. The associated
over- or undershooting on the physical grid can lead to spurious physical results.
An overshooting of specific humidity, for example, may lead to the poetically
named spectral rain.

Because of the calculation of some terms on the physical grid, the geometri-
cal convergence of meridians toward the poles may also be a problem. For the
advection part, this can be overcome by the semi-Lagrangian approach, which
we describe next.

19.8 SEMI-LAGRANGIAN METHODS

To deal with advection, we again turn our attention to the passive-tracer con-
centration c, which is conserved along a trajectory of a parcel of fluid as long
as diffusion remains negligible. The Lagrangian approach ensures exact con-
servation of the tracer value at the price of calculating its trajectory in time
(see Section 12.8). As we have seen, however, the pure Lagrangian method
leads sooner or later to an impractical distribution of particles, and it becomes
impossible to determine concentration values in regions nearly void of parti-
cles. This is what happens when we follow the same set of particles over time:
some of which flow out of the system or are caught in stagnation points. Semi-
Lagrangian methods avoid this problem by using a different set of particles
at each time step. The set is chosen at tn so that at tn+1 the chosen particles
arrive at the nodes of the numerical grid. This amounts to integrating trajectories

8Remember that the sum runs from −M to M.
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FIGURE 19.11 In a semi-Lagrangian
method, trajectories are integrated back-
ward in order to find an earlier location of
the fluid particle that reaches grid node (i, j)
by time tn+1. Once this location is known,
the value of the variable of interest, such
as a temperature or concentration, at that
location can be obtained by interpolation
of nearby values. The interpolated value
is then translated by advection to the new
location (i, j) at time tn+1.

backward for one time step in order to find where they originate. Once the
past locations are determined, at tn, the concentration in those locations is then
determined by interpolation among known values on the grid (Fig. 19.11).

For simplification, let us consider first the one-dimensional case with posi-
tive velocity u and uniformly spaced grid (Fig. 19.12). The particle that lands at
grid node xi by time tn+1 was at the earlier time tn= tn+1−1t at position

x= xi−u1t. (19.29)

On a uniform grid with spacing1x, this position x most likely lies within a grid
interval rather than, per chance, at an other grid point. This grid interval is given
by

xi−1−p≤ x= xi−u1t≤ xi−p, with p= integer part of u
1t

1x
. (19.30)

By virtue of advection without diffusion, the value of c̃n+1
i is none other than

c̃n at x, a value which we can obtain by interpolation. Performing a linear
interpolation, we obtain

c̃n+1
i = (xi−p−x)

1x
c̃n

i−1−p+
(x−xi−1−p)

1x
c̃n

i−p= C̃c̃n
i−1−p+(1− C̃)c̃n

i−p, (19.31)
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u�t

p�x

i− 1 − p

FIGURE 19.12 The semi-Lagrangian method in one dimension. The particle in light gray moves
during time interval [tn, tn+1] over a distance u1t to reach grid node labeled i at time tn+1.
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for which we define

C̃=
(

u1t

1x
−p

)
. (19.32)

The scheme is monotonic and thus of first order. We can easily see that, as long
as u1t≤1x (and thus p=0), the scheme is equivalent to the upwind scheme.
However, contrary to the upwind scheme, no stability condition is necessary
here because the method uses the correct grid interval from which to interpolate.
Numerical diffusion persists, however, although it is reduced in the sense that
large time steps can be used and the total number of time steps can be decreased.
For a given simulation time, fewer time steps mean less numerical diffusion.

To decrease the amount of diffusion introduced by the interpolation, a better
than linear interpolation can be used. A second-order, parabolic interpolation
yields a scheme equivalent to the Lax–Wendroff method.9

In two dimensions, the approach is readily generalized with backward tra-
jectories for a single time step followed by 2D spatial interpolation (either
bilinear or biparabolic). The trajectory calculation needs to take into account
that the flow field (u, v), and this may become quite complicated if U1t≥1x.
If the velocity field varies over the trajectory on a scale comparable to the grid
scale 1x, intermediate time steps are necessary for the calculation of the back-
ward trajectory in order to maintain accuracy, and the calculation cost increases
rapidly.

However, if the velocity is relatively smooth on the scale of the numer-
ical grid (which ought to be the case and will necessarily be the case near
the pole), that is, 1x�L, simple trajectory integrations will suffice. In fact,
if 1x�U1t�L the semi-Lagrangian approach is much more efficient than
the Eulerian method because during each time step, a large number of grid
points can be “jumped over” by advection. Hence, interpolation (and associated
diffusion) is less frequent, and the spatial scale of the trajectories is correctly
captured. This is the way to reap the maximum benefit for the Semi-Lagrangian
approach.

If1x∼L, time steps are similar to the Eulerian approach. The major advan-
tage in this case is the stability of the method in the face of the occasionally
excessive time step. For higher accuracy, however, one should not use longer
time steps than allowed by U1t∼L. If there are many different tracers to be
advected simultaneously, as in air pollution studies or ecosystem modeling, the
method presents considerable advantages because a single, common trajectory
needs to be calculated for all tracers.

For the nonadvective terms, such as source/sink and diffusion terms,
a fractional-step approach is possible, for example, by first using a semi-

9Note the difference: In Eulerian methods, we spoke about interpolating for flux calculations to be
discretized subsequently; here we speak about interpolation of the solution itself.
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Lagrangian advection scheme followed by a Eulerian diffusion scheme either
on the physical grid or in spectral space. Alternatively, the evolution of source
terms may be taken into account along the trajectory (e.g., McDonald, 1986).
Contrary to the finite-volume approach of Eulerian methods, global conservation
properties are more difficult to handle but can be respected (e.g., Yabe, Xiao &
Utsumi, 2001).

ANALYTICAL PROBLEMS

19.1. Consider the regular gardening greenhouse and idealize the system as fol-
lows: The air plays no role, the ground absorbs all radiation and reradiates
it as a black body, and the glass is perfectly transparent to short-wave (vis-
ible) radiation but totally opaque to long-wave (heat) radiation. Further,
the glass emits its radiation inward and outward in equal parts. Compare
the ground temperature inside the greenhouse with that outside. Then,
redo the exercise for a greenhouse with two layers of glass separated by a
layer of air.

19.2. Consider the long-wave radiation fluxes of Figs. 19.2 and 19.3. In each
case, the upward flux from the ground (E2) is greater than the downward
flux from the atmosphere (0.64 E1). Can you explain why?

19.3. Consider the crudest heat budget for the earth (without atmosphere and
hydrological cycle) and assume the following dependency of the albedo
on temperature: At low temperatures, much ice and clouds cover the earth,
yielding a high albedo, whereas at high temperatures, the absence of ice
and clouds reduce the albedo to zero. Taking the functional dependence as

α=0.5 for T≤250 K

α= 270−T

40
for 250 K ≤T≤270 K

α=0 for 270 K≤T, (19.33)

solve for the earth’s average temperature T . Discuss the several solutions.

19.4. Using the global heat budget of the earth model, complete with an
atmospheric layer and hydrological cycle, explore a worst-case scenario,
whereby elevated concentrations of greenhouse gases completely block
the transmission of long-wave radiation from the earth’s surface, the
intensity of the hydrological cycle is unchanged, and the anticipated
global warming has caused the complete melting of all ice sheets, effec-
tively eliminating all reflection by the earth’s surface of short-wave solar
radiation. What would then be the globally averaged temperature of the
earth’s surface? (Except for those transmission and reflection coefficients
that need to be revised, use the parameter values quoted in the text.)
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NUMERICAL EXERCISES

19.1. What is the spatial resolution (in kilometers) along the equator for a T256
spectral model? How many grid points must the underlying Gaussian grid
have in order to avoid aliasing in the advection terms?

19.2. Use spherical.m to consider other basis functions Ym,n than those of
Fig. 19.9.

19.3. Estimate the numerical cost of the forward and inverse transform associ-
ated with spectral harmonics.

19.4. In addition to the problem of decreasing grid spacing near the poles,
which other problem can you identify at the poles for models that do
not work with a spectral decomposition? (Hint: Think about boundary
conditions for an AGCM, for longitude first and then for latitude.)

19.5. Exploiting properties of Legendre polynomials, given for example in
Abramowitz and Stegun (1972), find the spectral coefficients of spa-
tial derivatives, knowing the spectral coefficients of the function to be
differentiated.
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Edward Norton Lorenz
1917–2008

Edward Lorenz began his career as a weather forecaster for the U.S. army dur-
ing World War II, before obtaining his doctorate in meteorology from MIT and
later becoming professor of meteorology at the same institution. In the early
1960s, while using early numerical models of weather systems, Lorenz once
introduced a small error in the value of a parameter that led to a completely
different weather scenario. Puzzled by this, he proceeded to reduce the complex
problem to an apparently simple set of equations (see Section 22.1) and sensitiv-
ity to very small perturbations persisted. The result was the discovery of chaos in
atmospheric dynamics, published in a highly acclaimed paper (Lorenz, 1963).
This contribution, among the most often cited scientific papers in the world,
initiated a brand new field of research, that of deterministic chaos and strange
attractors. Since then, the poetically named “butterfly effect” has become a stan-
dard metaphor for describing the sensitive dependence of a system’s evolution
on its initial conditions. (Photo by Jane Loban)
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Joseph Smagorinsky
1924–2005

A native of New York City, Joseph Smagorinsky studied meteorology and began
a career with the U.S. Weather Bureau. In 1955, he founded the Geophysi-
cal Fluid Dynamics Laboratory, which was first established in Washington and
later relocated to Princeton University. The 1950s were exciting years when the
prospect of computers gave hope that weather could be predicted by machines.
Recognizing this opportunity, Smagorinsky developed numerical methods for
predicting weather and climate, and by so doing profoundly influenced the prac-
tice of weather forecasting. In particular, he made the first attempt in 1955 to
predict precipitation, and this led him to include compensating effects like radia-
tion and to argue for the inclusion of a comprehensive “physics package,” which
became standard in all operational models.

Besides numerical methods and models, Smagorinsky also contributed to
weather prediction by assuming a leading role in the establishment of a global
observational network. While setting high goals for himself, Smagorinsky had
an excellent sense of humor and a common touch. (Photo by Michael Oort)



Chapter 20

Oceanic General Circulation

ABSTRACT
The concepts of geostrophy, hydrostaticity, and potential vorticity are merged to study
the large-scale baroclinic circulation in the midlatitude oceans. The results lead to the
Sverdrup balance, the beta spiral, and a number of properties of large-scale oceanic
motions. The numerical part of the chapter provides an overview of the issues raised
in constructing a model of the 3D circulation at the scale of ocean basins or the planet.

20.1 WHAT DRIVES THE OCEANIC CIRCULATION

Ocean motions span a great variety of scales in both time and space. At one
extreme, we find microturbulence, not unlike that in hydraulics, and at the other,
the large-scale circulation, which spans ocean basins and evolves over climatic
timescales. The latter extreme is the objective of this chapter.

There are multiple mechanisms that set oceanic water masses in motion:
the gravitational pull exerted by the moon and sun, differences in atmospheric
pressure at sea level, wind stress over the sea surface, and convection resulting
from atmospheric cooling and evaporation. The moon and sun generate periodic
tides with negligible permanent circulation, whereas differences in atmospheric
pressure play no significant role. On the other hand, deep convection at high
latitudes generates currents responsible for a very slow movement in the abyss
called the conveyor belt (Fig. 20.1). This leaves the stress exerted by the winds
along the sea surface as the main driving force of basin-wide circulations in the
upper part of the water column.

Ocean waters respond to the wind stress because of their low resistance
to shear (low viscosity, even after viscosity magnification by turbulence) and
because of the relative consistency with which winds blow over the ocean.
Good examples are the trade winds in the tropics; they are so steady that shortly
after Christopher Columbus and until the advent of steam, ships chartered their
courses across the Atlantic according to those winds; hence their name. Further
away from the tropics are winds blowing in the opposite direction. While trade
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FIGURE 20.1 Cold and salty waters newly formed by deep convection at high latitudes are carried
away by the conveyor belt across the ocean basins. These waters eventually resurface in warmer
climes and return toward places of deep convection. The time to complete a loop is on the order of
several hundred years to millennia. (Kuhlbrodt et al., 2007).

winds blow from the east and slightly toward the equator (they are also more
aptly called northeasterlies and southeasterlies, depending on the hemisphere),
midlatitude winds blow from west to east and are called westerlies (Fig. 20.2).
Generally, much more variable than the trades, these westerlies nonetheless pos-
sess a substantial average component, and the combination of the two wind
systems drives significant circulations in all midlatitude basins: North and South
Atlantic, North and South Pacific, and Indian Oceans.

In the ocean, the water column can be broadly divided into four segments
(Fig. 20.3). At the top lies the mixed layer that is stirred by the surface wind
stress. With a depth on the order of 10 m, this layer can be assimilated for the
purpose of large-scale ocean circulation with the Ekman layer (see Chapter 8)
and is characterized by ∂ρ/∂z'0. Below lies a layer called the seasonal ther-
mocline, a layer in which the vertical stratification is erased every winter by
convective cooling. Its depth is on the order of 100 m. Below the maximum
depth of winter convection is the main thermocline, which is fed by water left
behind whenever the seasonal thermocline retreats; it is permanently stratified
(∂ρ/∂z 6=0), and its thickness is on the order of 500–1000 m. The rest of the
water column, which comprises most of the ocean water, is the abyssal layer. It
is very cold, and its movement is very slow.

When considered together, the main thermocline and the abyssal layer form
the oceanic interior. While mesoscale motions exist in both these layers, under
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FIGURE 20.2 The major winds over the world ocean for the month of January averaged over the
years 1968–1996 and associated sea surface pressure. (From NCEP)

the action of pressure fluctuations in the upper layers, it is believed that, in first
approximation, the study of the slow background motion in the oceanic interior
can proceed independently of the smaller scale, higher-frequency processes.

Although mariners have long been aware of the major ocean currents, such
as the Gulf Stream,1 ocean circulation theory was long in coming, chiefly for
lack of systematic data below the surface. The discipline began in earnest

1Benjamin Franklin receives credit for publicizing and mapping the Gulf Stream in 1770.
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FIGURE 20.3 Vertical structure of the ocean from the point of view of large-scale circulation.
Note that the relative thicknesses of the various layers are not to scale, for the abyss is far thicker
than all other layers combined.

with the seminal works of Harald Sverdrup,2 who formulated the equations
of large-scale ocean dynamics (Sverdrup, 1947) and Henry Stommel3, whose
major contributions to ocean circulation are many and diverse, beginning with
the first correct theory for the Gulf Strean (Stommel, 1948). Today, ocean cir-
culation theory is a significant body of knowledge (Marshall & Plumb, 2008;
Pedlosky, 1996; Warren & Wunsch, 1981).

20.2 LARGE-SCALE OCEAN DYNAMICS (SVERDRUP
DYNAMICS)

Because oceanic basins have dimensions comparable to the size of the earth,
model accuracy demands the use of spherical coordinates, but because the
present book only intends to present an introduction to physical oceanography,
clarity of exposition trumps accuracy, and we continue to use Cartesian coordi-
nates, with inclusion nonetheless of the beta effect (see Section 9.4). Spherical

2Harald Ulrik Sverdrup (1888–1957), Norwegian oceanographer who made his greatest contri-
butions while being director of the Scripps Institution of Oceanography in California. A unit of
volumetric ocean transport bears his name: 1 sverdrup = 1 Sv = 106 m3/s.
3See biography at end of this chapter.
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coordinates (Appendix A) do not change the qualitative nature of the theoretical
results exposed here (Pedlosky, 1996, Chapter 1).

Large-scale flows in the main thermocline and abyss are slow and nearly
steady. Their long timescales allow us to ignore all time derivatives, whereas
their low velocities over long distances make their Rossby number very small
and allow us to neglect the nonlinear advection terms in the momentum
equations. Furthermore, there is a strong indication that dissipation is not an
important feature of large-scale dynamics, at least not at the leading order
(Pedlosky, 1996, page 6). Without time derivatives, advection, and dissipation,
the horizontal momentum equations reduce to the geostrophic balance:

− f v=− 1

ρ0

∂p

∂x
(20.1a)

+ fu=− 1

ρ0

∂p

∂y
, (20.1b)

in which the Coriolis parameter f includes the so-called beta effect, which is
important over the long length scales under consideration:

f = f0+β0y. (20.2)

The y-coordinate is thus directed northward, leaving the x-direction to point
eastward. The coefficients (see Eq. 9.18) f0=2�sinϕ and β0=2(�/a)cosϕ
both depend on the choice of a reference latitude ϕ, which may be taken as the
middle latitude of the basin under consideration.

The geostrophic equations are complemented by the hydrostatic balance

∂p

∂z
=−ρg, (20.3)

the continuity equation (mass conservation for an incompressible fluid)

∂u

∂x
+ ∂v
∂y
+ ∂w

∂z
=0, (20.4)

and the energy equation, which states conservation of heat and salt but is
expressed as conservation of density, again with neglect of the time derivative:

u
∂ρ

∂x
+v

∂ρ

∂y
+w

∂ρ

∂z
=0. (20.5)

In the preceding equations, u, v, and w are the velocity components in the east-
ward, northward, and upward directions, respectively, ρ0 is the reference density
(a constant), ρ is the density anomaly, the difference between the actual density
and ρ0, p is the hydrostatic pressure induced by the density anomaly ρ, and g is
the earth’s gravitational acceleration (a constant). This set of five equations for
five unknowns (u, v, w, p, and ρ) is sometimes referred to as Sverdrup dynamics.
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Note that the problem is nonlinear owing to product of unknowns in the density
equation (20.5). We now proceed with the study of some of its most immediate
properties.

20.2.1 Sverdrup Relation

Elimination of pressure between the two momentum equations, by subtracting
the y-derivative of Eq. (20.1a) from the x-derivative of Eq. (20.1b) yields

∂

∂x
( fu)+ ∂

∂y
( f v)=0, (20.6)

or since f is a function of y but not of x,

f

(
∂u

∂x
+ ∂v
∂y

)
+β0v=0. (20.7)

With the use of continuity equation (20.4), it can be recasted as

β0v= f
∂w

∂z
. (20.8)

This most simple equation, called the Sverdrup relation, has a clear physi-
cal meaning. The factor ∂w/∂z represents vertical stretching, and any stretching
(∂w/∂z>0) or squeezing (∂w/∂z<0) demands a change in vorticity for the
sake of potential-vorticity conservation, which holds in the absence of dissipa-
tion. There is no relative vorticity here,4 and the only way for a parcel of fluid to
change its vorticity is to adjust its planetary vorticity (Fig. 20.4). This requires a
meridional displacement, and hence meridional velocity v, to reach the correct
f value.

However, this is not the end of the story. We can go further with a vertical
integration:

β0

−d∫
−H

v dz= f [w(z=−d)−w(z=−H)], (20.9)

where z=−H(x,y) represents the ocean bottom and z=−d the base of the
Ekman layer (Fig. 20.3). Note that in performing this integration, we have
taken the liberty of including the seasonal thermocline under the assumption that
although it is marked by seasonal variations, that time scale is long compared to
the inertial period and its flow is nearly geostrophic.

Abyssal flow is extremely slow, and we may very well take w(z=−H)=0
at the bottom regardless of whether the bottom is sloping or is accompanied by

4Relative vorticity scales as U/L while planetary vorticity changes are on the order of βL. The
former is much smaller than the latter because motion is slow and over a long scale, with L2�U/β.
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FIGURE 20.4 Meridional migration of fluid parcels induced by vertical stretching or squeezing in
the large-scale oceanic circulation.

a bottom Ekman layer. At the base of the Ekman layer, the vertical velocity is
the Ekman pumping

wEk=
1

ρ0

[
∂

∂x

(
τ y

f

)
− ∂

∂y

(
τ x

f

)]
, (20.10)

as in Eq. (8.36).

20.2.2 Sverdrup Transport

If we define the meridional transport as the vertically integrated north-south
velocity, V=

∫ −d
−H v dz, from the ocean’s bottom to the base of the Ekman layer,

Eqs. (20.9) and (20.10) provide

V= f

β0
w(z=−d)

= f

β0
wEk

= f

ρ0β0

[
∂

∂x

(
τ y

f

)
− ∂

∂y

(
τ x

f

)]
. (20.11a)
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To this we can add the Ekman-layer contribution given by Eq. (8.34b):

VEk=−
τ x

ρ0 f
, (20.11b)

for a total of

Vtotal=V+VEk

= 1

ρ0β0

(
∂τ y

∂x
− ∂τ

x

∂y

)
. (20.11c)

We note this surprising result that the vertically cumulated flow component in
the north-south direction is not dependent on the basin shape, size or overall
wind-stress distribution but is solely dependent on the local curl of the wind
stress. This equation is called the Sverdrup transport.

However, the same cannot be said of the zonal transport, which we define
as the vertical integration of the east-west velocity u. Lumping all layers of the
ocean together, we can obtain the total transport Utotal=

∫ 0
−H udz directly from

the vertically integrated continuity equation (20.4):

∂Utotal

∂x
+ ∂Vtotal

∂y
=0, (20.12)

which yields

Utotal=−
1

ρ0β0

x∫
x0

∂

∂y

(
∂τ y

∂x
− ∂τ

x

∂y

)
dx, (20.13)

where the starting point of integration (x= x0) is to be selected wisely.
Ideally, we wish to impose a boundary condition on the flow at both eastern

and western ends of the basin. For example, if we consider a basin limited on
both eastern and western sides by north-south coastlines (a fair approximation of
the major oceanic basins), the zonal flow and its vertical integral (Utotal) ought
to vanish at those ends. However, this is impossible to require simultaneously
because there is only one constant (x0) to adjust. If we set x0= xE, the value
of x at the eastern shore of the basin, then we enforce the impermeable-wall
condition on the eastern side but make no provision for meeting any boundary
condition on the western side, and vice versa if we take x0= xW, the value of x
at the western shore of the basin. The consequence is that the theory fails at one
end of the domain, and as we will see in Section 20.3, a boundary layer must
exist at one of the sides, which turns out to be western boundary.

20.2.3 Thermal Wind and Beta Spiral

In the ocean interior, the flow is approximately geostrophic, as we assumed
when we wrote Eqs. (20.1). If we now take the vertical derivative of these equa-
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tions and then eliminate ∂p/∂z by use of the hydrostatic balance (20.3), we
obtain the thermal-wind relations:

∂u

∂z
=+ g

ρ0 f

∂ρ

∂y
(20.14a)

∂v

∂z
=− g

ρ0 f

∂ρ

∂x
. (20.14b)

These are powerful relations in analyzing large-scale oceanic data. While
oceanic velocities are difficult to measure,5 density data are comparatively
easy to obtain by dropping a Conductivity-Temperature-Depth (CTD) probe at
repeated intervals from a ship cruising across the ocean. After some smooth-
ing over mesoscale wiggles, the data provide the large-scale trends of density
across the ocean basin, and it is relatively straightforward to determine the zonal
and meridional gradients of density. Thus, we can consider ∂ρ/∂x and ∂ρ/∂y as
known quantities and, from them, infer the velocity shear (20.14).

To obtain the actual velocity components u and v requires an additional
assumption. The traditional approach is to assume a level of no motion, a deep
horizon along which the pressure field is assumed to be uniform. Vertical inte-
gration of Eq. (20.14) from this level upward then provides the horizontal
velocity up to the surface. This approach works well if the deep horizon is
chosen within the relatively quiet abyssal layer, and the upward integration is
performed to obtain the flow field in the main thermocline (Talley, Pickard,
Emery & Swift, 2007).

Let us now return to the thermal-wind relations and extract from them an
interesting property. For this, we decompose the horizontal velocity (u, v) in its
magnitude U and azimuth θ :

u=U cosθ, v=U sinθ. (20.15)

The azimuth angle θ is measured counterclockwise from east and is related to
the velocity components by θ = arctan(v/u). Its vertical variation is given

∂θ

∂z
= 1

u2+v2

(
u
∂v

∂z
−v

∂u

∂z

)
= −g

ρ0 fU2

(
u
∂ρ

∂x
+v

∂ρ

∂y

)
= gw

ρ0 fU2

∂ρ

∂z
, (20.16)

where the last step makes use of Eq. (20.5).

5There are several reasons why horizontal velocities are notoriously difficult to obtain directly from
the deep ocean. First, they are almost always fluctuating at the mesoscale, making the time average
easily fall within the noise level. Second, deep-water currentmeter moorings are expensive and
wobble, thus adding an instrumental drift component to the velocity.
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FIGURE 20.5 Beta spiral con-
structed from hydrographic data
in the vicinity of 28◦N, 36◦W in
the North Atlantic ocean. Num-
bers along the curve indicate
depth in units of 100 m. Error
bars are shown at the origin.
(Redrawn from Stommel &
Schott, 1977)

As we can see, there is a direct relation between the vertical velocity and
the veering (twisting) of the horizontal velocity in the vertical. In the north-
ern hemisphere (f >0) and in the presence of a gravitationally stable water
column (∂ρ/∂z<0), ∂θ/∂z has the opposite sign of w. Thus, in the midlati-
tudes, where the wind-stress curl is clockwise and Ekman pumping downward,
the vertical velocity w is generally negative, and the vector of horizontal
velocity turns clockwise with depth. This property has been dubbed the beta
spiral (Schott & Stommel, 1978; Stommel & Schott, 1977). Figure 20.5 shows
an example from the North Atlantic Ocean.

The veering implies that the waters at different levels in the vertical come
from different directions and thus possess different origins. However, all levels
of motion are under the tight constraint of the Sverdrup transport (20.11c). The
local wind-stress curl appears therefore as a constraint on, rather than the forcing
of, the flow.

20.2.4 A Bernoulli Function

In Sverdrup dynamics, the Montgomery potential defined as P=p+ρgz [see
Eq. (12.4)] happens to play the role of a Bernoulli function. To show this,
we need to prove that P is conserved along streamlines. Thus, we calculate its
material derivative, which for steady flow contains only the spatial derivatives:

dP

dt
=u

∂P

∂x
+v

∂P

∂y
+w

∂P

∂z
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=u

(
∂p

∂x
+gz

∂ρ

∂x

)
+v

(
∂p

∂y
+gz

∂ρ

∂y

)
+w

(
∂p

∂z
+ρg+gz

∂ρ

∂z

)
. (20.17)

Use of the geostrophic relations (20.1) and hydrostatic balance (20.3) to
eliminate all three derivatives of p leads to the cancellation of several terms,
leaving

dP

dt
=gz

(
u
∂ρ

∂x
+v

∂ρ

∂y
+w

∂ρ

∂z

)
, (20.18)

which is identically zero by virtue of density conservation (20.5). Thus, the
Montgomery potential P is conserved along the flow.6 The same result could
have been obtained more directly if we had taken the preliminary trouble of
expressing the equations in density coordinate (Chapter 12).

While the preceding result holds some appeal, it is rarely useful because it
is nearly impossible in the deep ocean to extract the dynamic signal of the pres-
sure field from pressure measurements dominated by the hydrostatic component
(that due to ρ0!) and depth uncertainties caused by the variable sea surface. In
contrast, potential vorticity, which depends on the density field, is of greater use
with data.

20.2.5 Potential Vorticity

In the low Rossby number regime, momentum advection is negligible com-
pared to the Coriolis acceleration, and consequently, the formulation of potential
vorticity does not include relative vorticity next to planetary vorticity. We thus
expect that in large-scale ocean dynamics, the expression of potential vorticity
reduces to planetary vorticity over layer thickness. Specifically, the form is

q= f

1z/1ρ

=− f

∂z/∂ρ
(20.19)

in density coordinates, to become in depth coordinates

q=−f
∂ρ

∂z
. (20.20)

6The more general expression of the Bernoulli function is B=ρ0(u
2+v2+w2)/2+p+ρgz, but the

kinetic-energy term is absent here as a consequence of the neglect of advection in the momentum
equations, leaving only the last two terms, which together form the Montgomery potential.



668 PART | V Special Topics

To show that this expression is indeed conserved for Sverdrup dynamics, we
begin by taking the vertical derivative of the density equation (20.5):

d

dt

(
∂ρ

∂z

)
+ ∂u

∂z

∂ρ

∂x
+ ∂v
∂z

∂ρ

∂y
+ ∂w

∂z

∂ρ

∂z
=0. (20.21)

If we now eliminate the z-derivatives of u and v by using the thermal-wind
relations (20.14) and the Sverdrup relation (20.8) to eliminate ∂w/∂z, the middle
terms cancel out, and we obtain

d

dt

(
∂ρ

∂z

)
+ β0v

f

∂ρ

∂z
=0. (20.22)

Then recognizing that β0v=v (df /dy)=df /dt, the equation can be recast as

f
d

dt

(
∂ρ

∂z

)
+ df

dt

∂ρ

∂z
= d

dt

(
f
∂ρ

∂z

)
=0, (20.23)

which means that the expression f (∂ρ/∂z) is conserved along the flow. Thus,
the potential vorticity defined above in Eq. (20.20) is conserved by individual
water parcels. This conservation law, like conservation of the Bernoulli function
shown in the previous subsection, holds wherever the flow is on a large scale
and dissipation is weak, that is, in the main thermocline and abyssal layer.

It is interesting to return to the beta spiral and interpret it in the light of poten-
tial vorticity. The connection is illustrated in Fig. 20.6, which ties the following
ingredients: conservation of potential vorticity, thermal wind, and the effect of
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FIGURE 20.6 Along its journey toward the equator, a fluid column experiences a decrease of
planetary vorticity f , which is compensated by a decrease in layer height. If we follow the flow in
the vertical transect along the trajectory (right panel), there is, by definition of the trajectory, no
transverse flow at the level of the water column being followed. Because the layer height decreases
approaching the equator, a thermal wind must appear (v1 on the right panel and gray trajectory in
the left panel). With zero transverse flow below, the horizontal velocity vector turns clockwise with
depth, in agreement with Eq. (20.16) and downward vertical movement.
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vertical velocity. It shows how the necessary squeezing along a southward tra-
jectory must be accompanied by a thermal wind that creates veering with depth
and hence the beta spiral.

We have seen that in the ocean’s interior, three quantities are conserved
simultaneously by traveling water parcels: their density ρ, their Montgomery
potential P, and their potential vorticity q. Since it retains its ρ value along the
way, a moving parcel is confined to stay on an isopycnal surface. Similarly with
P, the same parcel is also confined to stay on a surface of constant P value.
Putting both constraints together, we conclude that a trajectory is an intersec-
tion line between a ρ surface and a P surface. Since all trajectories are also
lines of constant q, it follows that the potential vorticity q must be everywhere
a function of density ρ and Montgomery potential P:

q=Q(ρ,P). (20.24)

In considering data from the North Atlantic Ocean, Williams (1991) found
that the density and depth of the seasonal thermocline at its late-winter coldest
and deepest stage are such that the waters deposited in the main thermo-
cline are characterized by a potential vorticity that is nearly homogeneous
along isopycnal surfaces. This is particularly true for densities in the range
1026.4–1026.75 kg/m3, corresponding to the main thermocline between 30◦ and
40◦N. Where this occurs, we may reduce the preceding relation to a function of
a single variable:

q=Q(ρ). (20.25)

Since both density and potential vorticity are easily observed variables, map-
ping these is a standard procedure in the construction of ocean circulation from
observations (see also Optimal Interpolation in Section 22.3). Mapping can
show isolines of potential vorticity on isopycnal surfaces. Because both den-
sity and potential vorticity are nearly conserved, potential vorticity then serves
as a tag to trace water movement.

20.3 WESTERN BOUNDARY CURRENTS

In commenting on Eq. (20.13), we concluded that the simplified Sverdrup
dynamics do not allow the simultaneous enforcement of impermeability bound-
ary conditions at both eastern and western sides of an ocean basin. Thus,
Sverdrup dynamics must break down at one of the sides. The answer is that a
boundary layer with scale shorter than the basin scale must exist on the western
side of the basin. Let us now verify this.

Over the midlatitude ocean basins, the wind pattern is clockwise (counter-
clockwise) in the northern (southern) hemisphere because trade winds blow
from east to west in the tropics and westerly winds blow from west to east
further away from the equator (see Fig. 20.2). The resulting Ekman pumping is
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FIGURE 20.7 The two possible configurations for a northward boundary current to compensate
the southward Sverdrup flow that exists across most of a midlatitude ocean basin of the northern
hemisphere: (a) boundary current on the eastern side, (b) boundary current on the western side. The
former is to be rejected on dynamic grounds, leaving the latter as the correct configuration.

downward, and the Sverdrup transport (20.11c) is equatorward (in both hemi-
spheres). Conservation of mass requires that water flow toward the equator
must be compensated elsewhere by poleward flow, but poleward flow violates
Sverdrup dynamics. Thus, this return flow must exist on a scale shorter than
the long length scale invoked in Sverdrup dynamics. In other words, it exists
in the form of a narrow boundary current. With two meridional boundaries,
one on each side of the basin, there are only two possibilities: either the pole-
ward current follows the eastern boundary (Fig. 20.7a) or it follows the western
boundary (Fig. 20.7b). In each case, connection with the equatorward Sverdrup
flow in the basin’s interior creates a velocity gradient (shear) and thus relative
vorticity.

To make the argument easier, let us restrict our attention to the northern
hemisphere. (The conclusion continues to hold for the southern hemisphere.)
If the boundary layer lies along the eastern wall as shown in Fig. 20.7a,
the northward flow has positive ∂v/∂x. This derivative is large because the
boundary layer is narrow and also the velocity must be large to accommodate
the entire Sverdrup transport. By comparison, ∂u/∂y is very small. Thus, if
flow is returning on the eastern side, it has positive relative vorticity (ζ >0).
On the contrary, if the boundary layer lies along the western wall (Fig. 20.7b),
the velocity shear ∂v/∂x is negative, and because ∂u/∂y is still negligible, the
return flow has negative vorticity (ζ <0). But which type of vorticity is the
return flow allowed to have?

When it makes its return journey back toward higher latitudes, water
sees its planetary vorticity f increases, and conservation of potential vorticity
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( f +ζ )/h demands that ζ or h or both change accordingly. Since relative vor-
ticity ζ becomes important in the boundary current, the increase in f must be
accompanied by a decrease in ζ, thus the value of ζ must drop from about
zero to a negative value as fluid parcels exit the Sverdrup interior and enter
the boundary current. The western boundary current does accomplish that,
whereas the eastern boundary current does not. So, we reject the existence
of a boundary layer along the eastern side of the basin and conclude that
the necessary boundary layer must lie along the western side of the basin
(Fig. 20.7b).
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It is evident that the circulation takes the form of an asymmetric gyre, with a
slow equatorward flow (the Sverdrup transport) occupying most of the domain
and a swift narrow current on the western side that returns the water poleward
(Fig. 20.8). The latter current is naturally identified with the Gulf Stream in
the North Atlantic Ocean and the respective western-boundary currents in the
other ocean basins: Brazil Current in the South Atlantic, Kuroshio in the North
Pacific, East Australia Current in the South Pacific, and Agulhas Current in
the south Indian Ocean. The circulation closes with zonal currents that connect
the entrance and exit of the western boundary current with the interior Sver-
drup flow. The funneling of the equatorward Sverdrup transport into a strong
return current on the western side of the ocean basin has been termed westward
intensification by Henry Stommel, who provided the first correct theory for the
existence of the Gulf Stream (Stommel, 1948).

With the solution now at hand, let us recapitulate the results. As we are
becoming aware, the mechanisms of ocean circulation are intricate and certainly
less direct than a simple torque exerted by a surface stress on a viscous fluid.
The chief reasons are that viscosity is weak, and the Coriolis effect is strong,
including its variation with latitude.

The scenario is as follows. The large-scale atmospheric winds, comprising
essentially the trades and westerlies, generate a stress along the ocean surface.
Because seawater is only slightly viscous and planetary rotation is strong, the
direct effect of the stress is limited to a thin (10 m or so) layer of the ocean. The
earth’s rotation also generates a component of the upper layer flow transverse to
the winds, which converges, resulting in a downward flow into the ocean interior
below (Ekman pumping). Although relatively weak on the order of 10−6 m/s,
which is about 30 m per year, this vertical flow squeezes water parcels verti-
cally. In reaction, fluid parcels flatten and widen, and their planetary vorticity
decreases in order to conserve their circulation. They are thus forced to migrate
equatorward. As they progress toward the equator, these waters run into a region
of slower flow, veering westward and gathering into a zonal flow that intensifies
downstream. On arriving at the western boundary, the waters turn and form a
swift poleward flow, so swift that their relative vorticity becomes sufficient to
compensate for the adverse change in planetary vorticity.

Obviously, all of our assumptions have eliminated a considerable number
of additional processes that can all affect the ocean circulation in one way or
another. Inertia (represented by the nonlinear advection terms) is important in
the western boundary layer where the flow is swift and narrow (Rossby number
becoming of order 1). The consequence is a detachment of this intense cur-
rent from the coast and its penetration into the ocean interior, where it starts
to meander rather freely. Barotropic instabilities (see Chapter 10) are likely.
Stratification is another aspect that requires ample consideration. Briefly, the
effect of stratification is to decouple the flow in the vertical and thus to make it
respond less to bottom friction. On the other hand, a reserve of potential energy
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due to the presence of stratification causes baroclinic instabilities (Chapter 17).
Barotropic and baroclinic instabilities generate eddies, and these in turn create
a net horizontal mixing of momentum. Finally, because poleward western-
boundary currents, such as the Gulf Stream, bring warm water masses to
higher latitudes, an air–sea heat flux is created, resulting in the cooling of the
ocean and a distortion of the circulation pattern. The interested reader will find
additional information on ocean-circulation dynamics in the review article by
Veronis (1981), the book by Abarbanel and Young (1987), and the article by
Cushman-Roisin (1987a).

20.4 THERMOHALINE CIRCULATION

As stated in Section 20.1, the region below the seasonal thermocline is com-
prised of two subregions, the main thermocline and the abyssal layer, together
called the ocean interior. The dynamics expounded in the previous section are
applicable to both these regions. We now turn our attention more specifically to
the upper of these two layers, the main thermocline.

In contrast to the abyss, which is fed by deep-water convection at high lati-
tudes, the main thermocline is the region of the ocean in which the circulation is
primarily caused by the wind-driven Ekman pumping received from the surface
layer and is most pronounced at midlatitudes. Figure 20.9, compiled by Talley
et al. (2007), summarizes the meridional distribution of density in the North
and South Atlantic, North and South Pacific, and Indian Oceans. They reveal
similar patterns in all five oceans. The pycnocline is very strong and shallow
(100–200 m) at the equator; from there, it spreads vertically downward toward
the poles, with a tendency to split into two branches: one surfacing around
25◦ latitude and the other plunging down to 1000 m around 35◦ before heading
upward again and surfacing around 45◦ latitude.

20.4.1 Subduction

At the top of the unchanging ocean interior, water is exchanged with the sea-
sonal thermocline. The process called subduction, if the water passes from the
seasonal thermocline to the steady interior, or entrainment, if water is engulfed
by the seasonal thermocline, deserves special attention.

There are several processes by which water enters the main thermocline:
downward Ekman pumping injection, retreat of the convective mixed layer at
the end of winter, and convergence of the flow inside the mixed layer (Cushman-
Roisin, 1987b). The sum of these processes creates subduction, which can be
defined as the deposition of fluid formerly belonging to the seasonal thermocline
into the ocean interior. It is expressed mathematically as a volumetric flow rate
per unit horizontal area (i.e., with dimensions of velocity, although it is not a
vertical velocity).
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Consider a fluid column of infinitesimal width and extending from the base
of the seasonal thermocline upward to the base fluid of the Ekman layer. The
density is this fluid column is vertically uniform because the seasonal thermo-
cline is in a state of mixing (by definition). Denoting its height by h(x,y, t), its
volume budget is

∂h

∂t
+ ∂(huST)

∂x
+ ∂(hvST)

∂y
=−wEk−Su, (20.26)

where uST and vST are the eastward and northward velocity components inside
the seasonal thermocline, wEk the Ekman pumping at its top (base of Ekman
layer—see Fig. 20.3), and Su the subduction rate at its bottom. Positive Su
represents subduction proper (flow into the main thermocline below), whereas
negative Su corresponds to capture of ocean interior water by the seasonal ther-
mocline, that is entrainment. A negative wEk brings water from the surface
mixed layer down and into the seasonal thermocline.

If we now assume that the horizontal velocity (uST, vST) is characterized
on a seasonal scale by low frequency and long length scale, it must be nearly
geostrophic, and we may write

−ρ0 f vST=−
∂pST

∂x
, +ρ0 fuST=−

∂pST

∂y
, (20.27)

with f = f0+βy and pST the pressure inside the seasonal thermocline. The
divergence term of Eq. (20.26) becomes

∂(huST)

∂x
+ ∂(hvST)

∂y
= J

(
pST

ρ0
,

h

f

)
, (20.28)

and Eq. (20.26) can then be recast as

Su=−∂h

∂t
−wEk−J

(
pST

ρ0
,

h

f

)
, (20.29)

which shows that subduction is a combination of seasonal thermocline retreat,
downward Ekman pumping, and convergence of geostrophic flow in the
seasonal thermocline.

Before continuing with motion inside the main thermocline, it is worth
making a few remarks concerning the temporal variability of subduction. As
Stommel (1979) remarked, much of the water left behind during spring and
summer when the thermocline retreats is recaptured the following fall and win-
ter, because it has not had the time to sink deeply enough into the interior before
the seasonal thermocline penetrates once again. Much of subduction is in vain,
and effective feeding of the ocean interior by subduction occurs only during
a relatively brief time interval in late winter. This explains why water proper-
ties in the ocean interior systematically reflect surface water properties of late
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winter and never those of summer (Stommel, 1979). Cushman-Roisin (1987b)
explored in somewhat greater detail the kinematics of seasonal subduction and
concluded that the time of effective subduction is not quite as brief as Stommel
suggested but that about 30% of the volume subducted escapes recapture and
feeds the ocean interior.

20.4.2 Ventilated Thermocline Theory

Early theories of the main thermocline attempted to explain the observed verti-
cal temperature structure as a local advection–diffusion equilibrium between
upwelling of cold abyssal water and downward diffusion of heat from the
surface or sought analytical solutions based on assumptions dictated by math-
ematical convenience. Then, the paradigm changed in the 1980s with the
publication of a paper by Luyten, Pedlosky and Stommel (1983) titled “The
ventilated thermocline.” The theory combines subduction from the mixed layer
with advective descent into the stratified thermocline.

The scenario is as follows. In the midlatitude ocean, where Ekman pump-
ing is downward, mixed-layer waters are subducted into the main thermocline
where they slide along density surfaces, carrying with them their surface prop-
erties such as density and potential vorticity, which are set at subduction time.
Layers of thermocline water that can be traced back to the base of the mixed
layer where Ekman pumping is downward are said to be ventilated, and their
intersection with the mixed layer where they are supplied is called the out-
crop line. The vertical structure of the main thermocline in the ventilated area
thus reflects the density distribution at the surface in winter (time of effective
subduction), a fact long noted by Iselin (1938).

Under these premises, the thermocline problem reduces to solving for the
vertical layering of density by tracking individual density layers upstream to
their respective outcrop lines, where the (winter) surface density distribution is
known. As the idea of subduction and subsequent sliding along density surface
suggests a thermocline controlled by advection, a theory using an inviscid and
nondiffusive fluid seems appropriate (Luyten et al., 1983). The theory was later
extended to continuous stratification by Huang (1989). The situation is compli-
cated by the fact that only a sector of the main thermocline can be traced back
to outcrops where surface conditions are known; the remaining portions, on the
eastern and western sides, form so-called shadow zones. In these zones, the flow
is circulating without surface contact, and it has been speculated that it is char-
acterized by a slow but effective homogenization of potential vorticity (Huang,
1989).

Instead of launching in an exposition of the ventilated-thermocline theory
and the attending complication of shadow zones (for this, the reader is referred
to chapter 4 of Pedlosky, 1996), we shall limit ourselves here to determining a
scale for the vertical thickness of the main thermocline.
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20.4.3 Scaling of the Main Thermocline

The dynamics of the circulation in the main ocean thermocline are governed by
a small number of parameters, namely the constants f0, β0, ρ0, and g that enter
the governing equations, and a few external scales that enter through boundary
conditions: Lx the width of the basin, WEk a typical magnitude of the Ekman
pumping, and 1ρ a typical density variation across the thermocline.

Following Welander (1975), the thermocline depth hscale can be derived by
balancing the various terms in the equations of Sverdrup dynamics. First, the
scale for pressure is 1P=ghscale1ρ from the hydrostatic balance (20.3), from
which follow the north-south velocity scale through (20.1a): v∼1P/(ρ0f0Lx)=
ghscale1ρ/(ρ0f0Lx). The vertical velocity must necessarily scale like the Ekman
pumping velocity because it is equal to it at the base of the Ekman layer. With
scales for both meridional and vertical velocities known, the Sverdrup relation
(20.8) implies

β0
ghscale1ρ

ρ0 f0Lx
∼ f0

WEk

hscale
(20.30)

from which follows the depth scale hscale of the main thermocline:

hscale=
√

f 2
0 LxWEk

β0g(1ρ/ρ0)
. (20.31)

To see whether this scale is reasonable, let us use numbers corresponding to
the North Atlantic Ocean circa 35◦N. At that latitude, the Coriolis parameters
are f0=8.4×10−5 s−1 and β0=1.9×10−11 m−1s−1, while the width of the
basin, stretching from 10◦ to 80◦W, gives Lx=6400 km. With a wind stress curl
leading to an Ekman pumping on the order of WEk=2×10−6 m/s and a relative
density difference1ρ/ρ0 of about 0.002, we obtain hscale=490 m, about 500 m
as observations indicate.

Because ocean basins are much deeper7 than this scale, there is much water
lying below the main thermocline that is not subject to surface Ekman pump-
ing. This is the abyssal layer, which is the subject of the next section. As we
shall see, it is driven by deep convection under atmospheric cooling at high
latitudes.

20.5 ABYSSAL CIRCULATION

Since the wind stress only affects a relatively small portion of the water column,
the bulk of ocean waters forming the abyssal layer must be driven by another

7The average depth in the ocean is 3720 m.



678 PART | V Special Topics

Thermocline

Surface flow

C
on

ve
ct

io
n

Abyssal flow

z

u
λ10

Equator

Tw

S0

w0
z � 0

z �−H

S0

ϕ

λ

v

FIGURE 20.10 A highly simplified model of the abyssal circulation, with “longitude” arbitrarily
taken as zero at the western boundary (Left panel: side view - Right panel: top view). The volumetric
source S0 is meant to represent dense-water formation at high latitudes.

mechanism. As it turns out, this greatest body of water is set in slow motion by
vertical convection taking place over an exceedingly small portion of the ocean
surface, narrow zones of extreme cooling at high latitudes.

The scenario is as follows. Exposure to a very cold and dry atmosphere
at high latitudes causes both thermal contraction and evaporation. Evaporation
takes distilled water away, leaving the salt in the ocean. Brine rejection from
water freezing into ice further increases the salinity of the remaining liquid
water, and the result is a water that is both very cold and very salty, thus sig-
nificantly denser than typical seawater. This dense water sinks under the effect
of gravity, slowly but effectively filling the abyss of the world ocean. Known
areas of dense-water formation by deep convection are the northern reaches of
the Atlantic Ocean at the entrance of the Arctic Ocean and several marginal seas
along the periphery of Antarctica (Weddell Sea and Ross Sea).

To close the circulation, slow upwelling in lower latitudes must take place
to return the waters back to the surface, where they are heated and can once
again migrate to high latitudes and complete the circuit (Fig. 20.10). In three
dimensions, the totality of this circulation system forms the so-called conveyor
belt (Fig. 20.1), and a round trip along this path is believed to take thousands of
years.

By way of exception, we work here in spherical coordinates because the
present analysis is not much more complicated than with Cartesian coordinates,
and its results are easier to identify with actual oceanic features. The analysis
follows closely that of Stommel and Arons (1960a,b).

The dynamical balance reduces as usual to geostrophy, now in spherical
coordinates [see (A.18)] and is complemented by volume conservation:

−f v=− 1

acosϕ

∂p

∂λ
(20.32a)
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+ fu=−1

a

∂p

∂ϕ
(20.32b)

1

a

∂u

∂λ
+ 1

a

∂

∂ϕ
(v cosϕ)+ ∂

∂z
(wcosϕ)=0, (20.32c)

where a is the earth’s radius, λ longitude, ϕ latitude, z the local vertical coordi-
nate, and f =2�sinϕ the latitude-dependent Coriolis parameter. Elimination of
pressure between the first two equations yields

∂

∂λ
( fu)+ ∂

∂ϕ
( f v cosϕ)=0, (20.33)

from where, by using volume conservation (20.32c), we recover the Sverdrup
relation, now in spherical coordinates

βv= f
∂w

∂z
, (20.34)

with β=2(�/a)cosϕ.
Vertical integration across the abyssal layer (from −H to 0) from a flat

bottom yields the Sverdrup transport

0∫
−H

v dz=V=aw0 tanϕ. (20.35)

With positive velocity (upwelling) w0 almost everywhere (since the sinking
of dense water is confined to small corner regions), the abyssal flow must be
northward in the northern hemisphere (ϕ>0) and southward in the southern
hemisphere (ϕ<0), that is, everywhere poleward. We also note that there is
no Sverdrup transport across the equator (ϕ=0). This is evidently problematic
since intuition would lead us to believe that convection at polar latitudes should
create flow away from, not toward, the poles. The solution to this paradox is
that the flow coming from the high-latitude regions is confined to narrow strips
along the western margins of the oceanic basins, and the broader abyssal flow
consists of the return flow toward higher latitudes.

For the following discussion, we now restrict our attention to the north-
ern hemisphere. The water budget from any northern latitude ϕ up to the pole,
including the deep-water source, demands that the flow carried by the interior
(boundary integral of V) plus the deep-water inflow (S0) be compensated by the
western boundary layer flow (Tw), which goes further south, and the cumulated
effect of upwelling at the top (surface integral of w0):

S0+
λ1∫

0

Vacosϕ dλ=Tw(ϕ)+
π/2∫
ϕ

λ1∫
0

w0 a2 cosϕ dλdϕ. (20.36)
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In the case of a uniform upwelling speed w0 and with Eq. (20.35) to eliminate
V, we have

S0+sinϕλ1a2w0=Tw(ϕ)+(1−sinϕ)λ1a2w0. (20.37)

The transport in the western boundary layer must therefore be

Tw(ϕ)=S0+(2sinϕ−1)λ1a2w0, (20.38)

which is maximum at the pole (ϕ=π/2) and decreases toward the equator (ϕ=
0). Three cases can arise.

Case 1: S0=λ1a2w0. In this case, upwelling from the equator to the pole
exactly matches the source at the pole. The transport in the western bound-
ary current is Tw=2S0 sinϕ, which vanishes at the equator (ϕ=0). Since
the Sverdrup transport is also zero at the equator, the two hemispheres are
decoupled. We further note that near the pole, the boundary-layer flow is
twice as strong as the source, while the northward Sverdrup flow is equal
to the source implying that the half the flow is pure recirculation. This
suprising feature seemed so counterintuitive to Stommel and Arons that
they performed laboratory experiments (Stommel & Arons, 1960a,b) to
verify their findings.

Case 2: S0>λ1a2w0. The dense-water source is stronger than the distributed
upwelling, and an excess transport spills across the equator into the other
hemisphere. This is the situation encountered in the North Atlantic.

Case 3: S0<λ1a2w0. The source is insufficient to sustain the required
upwelling, and a northward boundary-layer flow across the equator is nec-
essary to supply the difference. Such a situation is prevailing in the North
Pacific.

The preceding solution can be extended to any w0 distribution in the calcula-
tion of the zonal velocity u, requiring zero normal flow at the eastern boundary,
consistent with the position of the unresolved boundary layer along the western
boundary. From Eq. (20.32a), knowing the meridional velocity in a barotropic
abyssal layer (20.35), we can calculate the pressure by imposing a constant
value, taken as zero without loss of generality, along the eastern boundary:

p= 2�a2

H
sin2ϕ

λ∫
λ1

w0 dλ, (20.39)

from which we deduce the zonal velocity according to Eq. (20.32b)

u=− a

H sinϕ

∂

∂ϕ

sin2ϕ

λ∫
λ1

w0 dλ

 . (20.40)
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FIGURE 20.11 A few trajectories of the abyssal flow in a basin sector (left panel) and the abyssal
circulation inferred by Stommel (1958) (right panel).

For uniform w0, this reduces to

u=2
a

H
w0(λ1−λ)cosϕ, (20.41)

which is always directed eastward, implying that the boundary layer feeding this
flow must be on the western side of the basin.

The velocity field (20.41) and (20.35) gives rise to the trajectories depicted
in the left panel of Fig. 20.11, in the light of which we can understand the abyssal
circulation proposed by Stommel (1958), right panel of Fig. 20.11.

The preceding theory serves as an interesting application of geophysical
fluid dynamics but barely illustrates the complex dynamics of the abyssal cir-
culation. Chief among our assumptions was that of a flat bottom. The oceanic
bathymetry, as we all know, is rather fractured, with a multiplicity of ridges
standing as obstacles and passages guiding the flow. Among the special features
that ridges and passages inflict on the flow are concentrated zonal currents and
recirculation patterns. The interested reader is referred to chapter 7 of Pedlosky
(1996).

20.6 OCEANIC CIRCULATION MODELS

A milestone in numerical ocean modeling was the first Ocean General
Circulation Model, or OGCM in short, developed by a team of scientists at
Princeton University’s Geophysical Fluid Dynamics Laboratory (Bryan, 1969;
Bryan & Cox, 1972). The release to the scientific community of the source
code of this model and its successive variants, of the type now called Modu-
lar Ocean Model (MOM), contributed to the model’s widespread use, especially
because the simple numerics lent themselves to various adaptations by many
users. The code was based on straightforward second-order centered finite dif-
ferencing of the governing equations in longitude-latitude coordinates with
stepwise representation of coastlines and bottom topography. Time marching
was leapfrog.
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20°N

FIGURE 20.12 Ocean model grid with numerical grid poles over continents. (LODYC, ORCA
configuration; Madec, Delecluse, Imbard & Levy, 1998)

This model enabled the first general circulation studies with the primitive
equations (that is, without reliance on the quasi-geostrophic approximation, as
it had been the case until then), but it eventually became apparent that a series of
improvements were necessary. In particular, the polar convergence of meridians
in spherical coordinates led to annoying singularities, creating the so-called pole
problem. This was later avoided by shifting the spherical coordinate system to
relocate its “poles” on continents or by using curvilinear orthogonal grids that
maintain a topologically rectangular grid (Fig. 20.12). The stepwise topography
(Fig. 20.13) was also ill fitted to simulate weak bottom slopes and the asso-
ciated potential-vorticity constraint. In response, partially masked cells were
introduced (e.g., Adcroft, Hill & Marshall, 1997). A further issue caused by
stepwise topography was its poor representation of overflows typical of deep-
water formation (Fig. 20.14). To tackle such situations, special algorithms have
been developed (e.g., Beckmann & Döscher, 1997). Worthy of special note
is DieCAST (Dietrich, 1998), which uses a modified Arakawa “A” grid with
fourth-order accuracy in the horizontal directions. The unusually low dissipa-
tion of this model provides more accurate simulation of narrower features, such
as boundary currents and mesoscale eddies.

In addition to these improvements, new generations of models are constantly
being developed. Perhaps the most significant change in terms of numerical
implementation is the move from structured to unstructured grids. The presence
of continental boundaries remains an obstacle to the use of spectral models (pre-
ferred in modeling of the global atmosphere), while unstructured grids offer, by
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FIGURE 20.13 Masking of a regular grid allows to discretize topography. For rectangular grid
boxes, weak slopes can only be resolved if 1z<1x|∂b/∂x| with bottom given by z=b(x,y). If
not, the weak slope is awkwardly approximated by a flat bottom stretching over several grid steps
followed by an abrupt step. Masking can also be applied to the top boundary in the presence of
icebergs or thick ice (thick compared to the vertical spacing near the surface).
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Real flow
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Horizontal advection
followed by vertical 
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FIGURE 20.14 Vertical section of a schematic overflow where dense bottom water cascades down
a slope. With stepwise topography representation, advection carries the dense water horizontally to
a model grid point with lower density. It is tempting to remove the resulting unphysical gravitational
instability by a mixing algorithm, but this has the unfortunate consequence of diluting the dense-
water vein.
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FIGURE 20.15 Example of a finite-element model grid for the world ocean. (Legrand, Legat &
Deleersnijder, 2000)

design, the possibility of following complicated contour lines. Structured grids,
natural for models discretized along Cartesian coordinates or longitude-latitude,
are topologically similar to a rectangular grid, with every grid point having one
and only one neighbor to the “east,” “west,” “north,” “south,” above and below.
In unstructured grids, on the contrary, every grid cell has a variable number
of neighbors (Fig. 20.15), providing great flexibility in terms of geographical
coverage. Coastlines can be followed by adding small elements along the side,
canyons resolved by adding small elements at the bottom, and open boundaries
pushed further away by increasing the size of distant elements. Intense model
developments continue unabated (see, e.g., Pietrzak, Deleersnijder & Schroeter,
2005).

An unstructured finite-volume approach is a generalization of the finite-
volume approach presented in Section 5.5, in which integration is performed
over each finite volume, with the entire group covering the model domain.
Physical coupling between the finite volumes arises naturally through the fluxes
across the shared interfaces. Finite elements, in contrast, start with a totally
different approach based on the Galerkin method (Section 8.8). The solution
is expanded as a sum of non-orthogonal basis functions, and each governing
equation is multiplied by each basis function before being integrated over the
model domain. The basis functions (sometimes also called trial functions) used
in finite-element methods are of a special nature, being nonzero only over a
given element. Connection between elements then arises because functions are
forced to obey some continuity requirement between elements. This necessitates
solving a system of linear equations (i.e., inverting a matrix) at every time step,
but the nature of the basis functions leads to relatively sparse matrices.
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Beside the widespread finite-volume and finite-element methods, additional
schemes have been implemented in ocean models such as the spherical cube
grid (a three-dimensional generalization of the squaring of a circle, with spe-
cial connectivity at a few nodes—Adcroft, Campin, Hill & Marshall, 2004)
and spectral elements (Haidvogel, Wilkin & Young, 1991) a method in which
a domain is covered by large elements, inside of which spectral series are used
to approximate the solution.

The advantage of variable resolution exposes the fundamental problem of
subgrid-scale parameterization. Scales resolved by the variable grid do change
regionally, and therefore the nature of the parameterizations involved should
change from place to place within the same model. Among processes requir-
ing parameterization, deep-water formation is perhaps the most crucial example
(see Section 11.4). The sinking of dense water is dominated by nonhydrostatic
convection, forcing all hydrostatic models to have a parameterization of one
form or another. Because the validity of the hydrostatic approximation is related
to the aspect ratio of the flow (ratio of vertical scale to horizontal scale, see
Section 4.3), nonhydrostatic effects are only relevant at extremely high res-
olution, and ocean general circulation models are rarely nonhydrostatic. Yet,
highly localized dense-water formation does influence broader scale flow and
needs to be included in these models. The brutal, and rather common, way to
deal with the issue is convective adjustment (see Section 11.4). In this scheme,
whenever the water column is found to have a density reversal between two
vertically aligned grid points, temperature and salinity are merely replaced by
their average values, and the process continues downward until no inversion
remains. Despite many years of use, this scheme was eventually found to be
flawed (Cessi, 1996), for it generates an unstable mode at the smallest resolved
horizontal scale. A better way to handle convective overturn is by local mesh
refinement with flexible horizontal grids, and today’s hydrostatic ocean mod-
els often include a nonhydrostatic option, such as used in MITgcm (Marshall,
Jones & Hill, 1998).

The upper boundary of an ocean circulation model requires special care
because this is where atmospheric forcing is applied to the ocean. Rigid-lid
models eliminate the fast surface gravity waves in order to permit longer time
steps. However, there is a trend toward the use of free-surface models because
of their added flexibility and wider range of applicability, including tidal repre-
sentation. The trick to continue enjoying a reasonably large time step is to treat
time stepping of the surface elevation either implicitly, semi-implicitly, or with
a mode-splitting scheme (Section 12.7), while the rest of the scheme remains
explicit.

The coupling with the atmosphere (see Section 19.4) remains a difficult
problem because the ocean model must simulate both surface temperature and
mixed-layer depth correctly. The former is essential for air–sea exchanges while
the product of temperature and mixed-layer depth is directly related to the heat
content of the water column and therefore also the heat budget. Because of the
low heat capacity of air, the atmospheric component of the model can be very
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sensitive to a small error in the heat content of the upper ocean. Furthermore,
because mixed-layer evolution critically depends on turbulence, special care is
needed in the specification of the eddy viscosity and diffusivities, particularly if
vertical grid spacing is coarse. Turbulence-closure schemes were described in
Sections 14.3–14.5.

20.6.1 Coordinate Systems

Vertical resolution near the surface is essential to capture air–sea interactions,
and most oceanic models use shorter vertical grid spacing near the surface.
For the ocean interior, vertical gridding is again considered crucial, and a sig-
nificant part of the problem is the separation between vertical and horizontal
coordinates, which is necessary because of the small geometric aspect ratio
and the vast difference in dynamics between the vertical and horizontal direc-
tions. We therefore assume that the horizontal discretization is performed using
one among the methods outlined earlier in this text and focus now on vertical
gridding.

Vertical gridding can be done quite freely, with variable resolution per-
mitting higher resolution in sensitive segments (near the surface, across a
pycnocline, and near the bottom) and lower resolution at less important lev-
els for the sake of computational economy. About the only requirement is that
a grid point topologically above (below) another grid point corresponds to a
physical point also physically above (below) the other point. The nature of
the vertical coordinate can very well change from top to bottom, switching
from depth to density to a bottom-following coordinate. The generation of such
hybrid-grid models can be achieved in one of two ways: we can subject the
governing equations to the finite-volume integration technique over the desired
vertical spacings and write a set of governing equations for each cell, or we
can first perform a change of coordinates after which we discretize the equa-
tions along a uniform grid in that new coordinate system (Fig. 20.16; see also
Section 15.6).

Direct integration in physical space exposes the need for parameterization
because integrals of nonlinear terms cannot be expressed in terms of cell aver-
ages unless some assumptions are made. In contrast, a coordinate transformation
followed by finite differencing runs the risk of masking the need for parameter-
ization of subgrid-scale processes. Ultimately, however, the discrete equations
that are obtained will be similar, and the choice of approach depends on the path
preferred by the modeler.

Here we present the coordinate transformation approach, in close analogy
with the isopycnal coordinate change of Chapter 12. In the original Carte-
sian system of coordinates (x,y,z, t), z is an independent variable, while in the
transformed coordinate system (x,y,s, t) the new coordinate s replaces z as an
independent variable and z(x,y,s, t) becomes a dependent variable giving the
depth at which the value s is found at location (x,y) and at time t. A surface
along which s is constant is called a coordinate surface. From a differentiation
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Equations in new coordinatesPrimitive equations

Moving layer model

Vertical coordinate change

Vertical integration
between moving interfaces

Vertical integration
in fixed coordinates

FIGURE 20.16 Equations for discrete layers can be obtained either by integrating the govern-
ing equations across each chosen layer or by a transformation to moving coordinates followed by
discretization on a fixed grid. The discrete equations to be solved by the computer are the same.

of the expression a=a(x,y,s(x,y,z, t), t), where a stands for any variable, the
rules for the change of variables follow:

∂

∂x
−→ ∂a

∂x

∣∣∣
z
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∂x
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s
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in analogy with the isopycnal coordinate system presented in Chapter 12. A
noteworthy difference with isopycnal coordinates is that s is not necessarily
a physical property conserved along the flow. An important expression in the
coordinate transformation is the quantity

~= ∂z

∂s
, (20.42)

which denotes the change in z for a unit change in s. Hence, it is a measure of the
coordinate layer thickness, analogous to the thickness of a density layer. It can
be positive or negative depending on whether s increases upward or downward.
(It is negative if s=ρ, the density coordinate of Chapter 12.)

The material derivative in the new coordinate system takes the form:

da

dt
= ∂a

∂t
+u

∂a

∂x
+v

∂a

∂y
+ω∂a

∂s
, (20.43)

where all derivatives are taken in the transformed space (∂a/∂x is performed at
constant s, etc.) and where ω substitutes for the vertical velocity. It is defined as

ω= ∂s
∂t

∣∣∣
z
+u

∂s
∂x

∣∣∣
z
+v

∂s
∂y

∣∣∣
z
+w

∂s
∂z
. (20.44)
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The product ~ω is the vertical velocity of the flow relative to the moving s
coordinate surface (recall Section 15.6). Clearly, if s is density and if density is
conserved with the flow (i.e., in the absence of mixing), ω=0, and we recover
the isopycnal coordinate system, which has the advantage of eliminating the
vertical velocity. If the ocean surface and/or ocean bottom are taken as coordi-
nate surfaces, the “vertical” velocity ω vanishes at those boundaries because the
flow must follow that material boundary. In general, however, ~ω is not zero.

The transformation of the volume-conservation equation (4.9) using the pre-
ceding rules of change of variables and the definition of the vertical velocity
leads to

∂~
∂t
+ ∂

∂x
(~u)+ ∂

∂y
(~v)+ ∂

∂s
(~ω)=0 (20.45)

with derivatives taken in s space. Interestingly, if we integrate from bottom to
top in the case of s constant along both ocean surface and bottom, we obtain

∂η

∂t
+ ∂U

∂x
+ ∂V

∂y
=0 (20.46)

because

surface∫
bottom

~ ds= zsurface−zbottom (20.47)

which, for a time-independent bottom, leads after temporal derivation to the
time derivative of the surface elevation η. The other two terms involve U and
V, which are the vertically integrated transports

U=
∫

u~ds=
∫

udz, V=
∫

v~ds=
∫

v dz, (20.48)

where the integration is performed from bottom to top. We recover a vertically
integrated volume-conservation equation.

Irrespective of whether or not the ocean surface and bottom are taken as
coordinate surfaces, volume conservation leads to a conservative form of the
material derivative

~
(
∂a

∂t
+u

∂a

∂x
+v

∂a

∂y
+ω∂a

∂s

)
= ∂

∂t
(~a)+ ∂

∂x
(~au)+ ∂

∂y
(~av)+ ∂

∂s
(~aω), (20.49)

which we can interpret as the evolution of the content of a within a layer of s.
This form is particularly well suited for integration over a finite volume in the
transformed space.
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The vertical diffusion term is readily transformed in the new coordinate
system:

∂

∂z

(
νE
∂a

∂z

)
= 1

~
∂

∂s

(
νE

~
∂a

∂s

)
, (20.50)

so that the governing equation for a vertically diffusing tracer c becomes

∂

∂t
(~c)+ ∂

∂x
(~cu)+ ∂

∂y
(~cv)+ ∂

∂s
(~cω)= ∂

∂s

(
κE

~
∂c

∂s

)
. (20.51)

We could also transform the horizontal diffusion term, but generally this opera-
tion is combined with the parameterization of subgrid-scale processes (see next
section).

In view of the isomorphy of (20.51) with a Cartesian-coordinate version,
an s-model can thus be implemented in a general way without much additional
work once the functional relationship s(x,y,z, t) is specified. The choice is at
the modeler’s discretion.

Besides the isopycnal transform with s=ρ or s=−ρ/1ρ, another coor-
dinate change is the so-called sigma coordinate (σ ) system, a particular form
of terrain-following coordinates. It is very popular in coastal modeling. This
coordinate is defined as

s=σ = z−b

h
, ~=h, (20.52)

so that it varies between 0 at the bottom [z=b(x,y)] and 1 at the surface
[z=b(x,y)+h(x,y, t)], which are therefore coordinate surfaces (Fig. 20.17). All
topographic slopes and free surface movements are naturally followed, avoiding
the problem of discretizing equations in a changing domain. Also, calculation
points are efficiently used because they all fall into the water column (0≤σ ≤1),
and vertical boundary conditions are straightforward. Moreover, and this is the
main advantage in coastal modeling, grid points are more closely spaced in shal-
low water than in deep water, providing the highest vertical resolution where it
is the most needed (Fig. 20.17).

However, the use of this coordinate transform in global-ocean models
has raised some concern about the so-called pressure-gradient problem (e.g.,
Deleersnijder & Beckers, 1992; Haney, 1991). Although the problem was ini-
tially identified for the σ -coordinate, it is more general, and we describe it here
in a general coordinate framework.

The horizontal pressure gradient, for example, along x, can be evaluated in
the new coordinate system by using the following transformation rules:

∂p

∂x

∣∣∣
z
= ∂p

∂x

∣∣∣
s
+ ∂p

∂s
∂s
∂x

∣∣∣
z
, (20.53)
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FIGURE 20.17 A sigma coordinate system divides the entire water column into an equal number
of vertical grid cells regardless of local depth and surface elevation.

while the hydrostatic balance used to calculate pressure becomes

∂p

∂z
= 1

~
∂p

∂s
=−ρg. (20.54)

This allows us to write several, mathematically equivalent expressions for the
horizontal pressure force

1
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(20.55a)

= 1
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J (p,z) (20.55b)
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(20.55d)

where the last expression uses the Montgomery potential P=p+ρgz. For the
second and third expressions, the Jacobian operator J is defined as J(a,b)=
(∂a/∂x)(∂b/∂s)−(∂a/∂s)(∂b/∂x) in the transformed space.

A standard test for terrain-following models is to prescribe density and
pressure fields that depend solely on z (e.g., Beckmann & Haidvogel, 1993;
Numerical Exercise 20.4). In this way, the horizontal pressure gradient should
be identically zero, and no motion should be generated in the absence of exter-
nal driving forces. The two terms on the right-hand side of Eqs. (20.55a) and
(20.55d) cancel each other exactly in the continuous representation and should
continue to do so after discretization. Due to the different nature of the two
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FIGURE 20.18 In the numerical grid (x,s), a standard finite differencing of the pressure gradient
at the location of the squares involves the logical neighbors in the discrete mesh, connected with
dashed lines in the physical space (left panel). For upper right point, the calculation points are
physical neighbors but for the lower left point, the calculation uses far distant points and performs
extrapolations.

terms, however, even very careful numerical discretization will most likely leave
a residual that acts as a nonzero pressure force and hence generates unphysical
horizontal motion. The main problem is that this error is most often not small
because the vertical variation of pressure p(z) is very large and taking the pressure
gradient along a sloping s direction entails a large vertical component.

Should we argue that the problem would be eliminated with increased res-
olution, another problem would appear, the problem of so-called hydrostatic
consistency: By increasing resolution more rapidly in the vertical than in the
horizontal direction, (Fig. 20.18) the numerical stencil used in the calculation
of a horizontal pressure gradient may involve grid points that are vertically too
far away, and horizontal derivatives may be evaluated by extrapolation instead
of interpolation. Such extrapolation leads to large relative errors (see Numer-
ical Exercise 3.5), as well as to an inconsistency. The vertical gradients in
Eq. (20.55a)–(20.55d) are then not calculated at the same depth as the horizon-
tal gradient. For simple finite-difference schemes, extrapolations are avoided if
the following criterion between slopes is met:∣∣∣∣∂z/∂x|s

∂z/∂s

∣∣∣∣≤ 1s

1x
, (20.56)

The slope of z lines in the transformed space (left-hand side) cannot be larger
than the aspect ratio of the grid in the same space (right-hand side) so that lines
of constant z remain within the local stencil. This constraint is not unlike the
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constraint on the domain of dependence of advection schemes (Section 6.4).
Contrary to the problem in Fig. 20.13, we now have a lower bound for vertical
grid spacing, in relation to the slope of the coordinate surfaces. Alternatively,
for a fixed vertical grid and given slopes, the requirement imposes a horizontal
grid that must be sufficiently fine to resolve the slopes accurately.

For the σ -coordinate,8 this translates into a constraint that involves the water
column height h: ∣∣∣∣1h ∂h

∂x

∣∣∣∣≤ 1σ1x

1

1−σ , (20.57)

where 1σ and σ are the values at the numerical grid level under consideration.
For a uniform grid in σ space, the constraint is most severe near the bottom
layer.

Hence, the worst problems are encountered where the topography is shallow
but steep, such as near a shelf break, where the length scale related to topogra-
phy |(1/h)(∂h/∂x)|−1 is shortest and must be resolved by the grid spacing. This
length scale thus appears as an additional scale to be considered in the design
of horizontal grids. Since stratification on the shelf break is typically intersect-
ing topography, problems with the pressure gradient will be exacerbated there:
regions of large variations in ρ coincide with regions of large ∂z/∂x|s, and the
two contributions to the horizontal pressure force are large, leading to a sig-
nificant numerical error. Solutions to this problem include higher-order finite
differencing (using more grid points and being less prone to extrapolations—
e.g., McCalpin, 1997), subtraction of average density profiles ρ=ρ(z) before
any pressure calculation (e.g., Mellor, Oey & Ezer, 1998), specialized finite dif-
ferencing (e.g., Song, 1998), partial masking of topography (replacing slopes
by vertical sections—e.g., Beckers, 1991; Gerdes, 1993), or, simply, smoothing
the bottom topography.

With the aforementioned provision for the proper treatment of the pressure
gradient, a generalized vertical coordinate can be very attractive, and several
models have implemented the approach (e.g., Pietrzak, Jakobson, Burchard,
Vested & Peterson, 2002), without actually using them at their full potential
but prescribing a priori the position of coordinate surfaces. The general rule
for the placement of coordinate surfaces is to match as closely as possible the
surface on which physical properties remain smooth (Fig. 20.19; see also adap-
tive grids in Section 15.6). In ocean circulation models, grids should therefore
follow closely density surfaces in the ocean interior, where mixing is weak.

Because a density coordinate is ill-suited to represent mixed layers, the use
of the z-coordinate should be preferred near the surface. An implementation
that nearly achieves this requirement is HYCOM (HYbrid Coordinate Ocean
Model—e.g., Bleck, 2002), which is an extension of an earlier density model

8We neglect here any surface gradient for the sake of simplicity.
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FIGURE 20.19 Most physically meaningful types of coordinate surfaces as a function of water
depth. Near the surface and in the mixed layer, lateral coordinates run horizontally, or nearly hor-
izontally, in order to follow the surface. In the ocean interior, where motion proceeds with little
or no mixing, density becomes the best vertical coordinate, and coordinate surfaces follow density
surfaces. Near the bottom, which the flow is forced to follow, a terrain-following coordinate is best.

allowing for an upper mixed layer spread over several z levels. For further
improvement, the vertical coordinate near the bottom may be made to follow
the topography and thus behave as a σ coordinate.

20.6.2 Subgrid-Scale Processes

Once the grid is defined, and the shortest resolved scale known, subgrid-scale
processes must be considered. Up to this point, subgrid-scale processes other
than turbulence were modeled by horizontal diffusion such as

D(c)= ∂

∂x

(
A
∂c

∂x

)
+ ∂

∂y

(
A
∂c

∂y

)
(20.58)

for any quantity c, be it a tracer concentration, temperature, salinity, or even a
velocity component. One question that arises is whether the derivatives in this
expression ought to be those in Cartesian coordinates or in any other set of coor-
dinates. The choice of Cartesian coordinates implies that there exists a tendency
to mix properties along the horizontal plane, but this may not always be repre-
sentative of what is actually happening. The case in point is preferential mixing
along (possibly sloping) density surfaces because this is the direction in which
mixing motions are not inhibited by buoyancy forces. So, let us suppose that,
to be faithful to the physics, mixing occurs along surfaces of constant density
ρ, and the x- and y-derivatives in the preceding expression are to be taken at
constant ρ.
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The diffusion operator expressed as classical diffusion in the coordinate
of choice can then be translated back into Cartesian coordinates, as done by
Redi (1982). The price to pay is the presence of additional terms and non-
constant coefficients, and, contrary to the original operator, its discretization
may no longer be monotonic (e.g., Beckers, Burchard, Campin, Deleersnijder
& Mathieu, 1998).

Diffusion-like parameterizations are, of course, based on the expectation that
unresolved eddies act similarly to diffusion. However, depending on the scales
under consideration, some subgrid-scale processes may not be considered ran-
domly mixing the ocean, especially at the larger scales. The internal radius of
deformation is a locus of energetic motions, in large part due to baroclinic insta-
bility (see Chapter 17). Because the deformation radius in the ocean is at most
a few tens of kilometers, global ocean models typically do not resolve baro-
clinic instability and hence the eddies that it sheds. Unless regional models are
used, coarse-resolution ocean models must parameterize the effect of mesoscale
motions. Baroclinic instability releases potential energy by flattening density
surfaces, a process quite different from pure mixing. Isopycnal diffusion can-
not account for such a flattening since by construction it diffuses only along
isopycnals, hence not forcing them to flatten out.

Instead of a diffusion-type parameterization, the so-called Gent–
McWilliams parameterization (Gent & McWilliams, 1990; Gent, Willebrand,
McDoughall & McWilliams, 1995) is recommended. This scheme proceeds by
adding a so-called bolus velocity to the large-scale currents, the components of
which, marked with a star, are

u?=−∂Qx

∂z
, v?=−∂Qy

∂z
, w?= ∂Qx

∂x
+ ∂Qy

∂y
, (20.59)

with the pair (Qx, Qy) taken as

Qx=−
κ

ρz

∂ρ

∂x
=κ ∂z

∂x

∣∣∣
ρ

(20.60a)

Qy=−
κ

ρz

∂ρ

∂y
=κ ∂z

∂y

∣∣∣
ρ

(20.60b)

where ρz= ∂ρ/∂z.
As it immediately appears, these quantities are proportional to the x- and y-

slopes of the isopycnals, with the coefficient κ of proportionality being a tunable
model parameter with same dimension as a diffusion coefficient (length squared
per time). Since the derivatives are expressed in Cartesian coordinates, it is eas-
ily verified that the bolus velocity is divergence-free, a property that should be
preserved by the numerical discretization. The bolus velocity effectively advects
the density field and, with the chosen signs, leads to a reduction of the frontal
slope (Fig. 20.20), substituting therefore for baroclinic instability. It is impor-
tant to note that this advection is performed without any underlying dynamical
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FIGURE 20.20 Vertical section across a density field with frontal structure as shown by sloping
isopycnals (left panel) and the corresponding bolus velocity (right panel, with velocities originating
from the dotted ends). Note how the bolus velocity acts to relax the density field in time so that some
time later the front has indeed been weakened (right panel, solid lines). Since the bolus velocity
depends on the existing slope, the flattening of isopycnals slows down over time.

equation, reflecting the fact that this is a parameterization of unresolved dynam-
ics. The strength of the effect is controlled by the parameter κ , and Griffies
(1998) shows how one may combine bolus advection with the isopycnal diffu-
sion into a single operator as long as both “diffusion” coefficients are equal. For
additional information and a recent review of ocean model developments, the
reader is referred to Griffies et al. (2000) and references therein.

ANALYTICAL PROBLEMS

20.1. Derive the expression for the Sverdrup transport on an irregular bottom.

20.2. Derive the veering of the horizontal velocity with respect to depth, work-
ing with density ρ as the vertical coordinate. Show that one recovers
Eq. (20.16) by changing to z-coordinates.

20.3. Given that the North Pacific Ocean is about twice as wide as the North
Atlantic Ocean and that both basins are subjected to equally strong winds,
compare their Sverdrup transport cumulated over the width of the basin.
Express your answers in Sverdrup units (1 Sv = 106 m3/s).

20.4. Demonstrate that western intensification would still occur if the global
wind patterns were reversed, that is if Ekman pumping were upward and
Sverdrup transport poleward at midlatitudes. In other words, show that
the return flow from the Sverdrup transport must be squeezed against the
western boundary regardless of the sign of the wind-stress curl over the
ocean.

20.5. Imagine that a single ocean were covering the entire globe as the atmo-
sphere does. With no western wall to support a boundary current returning
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the equatorward Sverdrup flow, what would the circulation pattern be?
Relate your results to the existence of the Antarctic Circumpolar Current.
[For a succinct description of this major current, see Section 7.2 of the
book by Pickard and Emery (1990) or some other physical oceanography
textbook.]

20.6. Consider the Stommel–Arons model of the abyssal circulation with zero
total flow across the equator. Show that the travel time to reach the pole is
independent of the initial longitude of a water parcel released at latitude
ϕ0. Calculate this travel time by time integration of the trajectory in the
case of uniform upwelling velocity. (Hint: Use the definition of velocities
in spherical coordinates from the material derivative (A.17) and integrate
trajectories in the (λ, ϕ) domain.)

20.7. Consider the bolus velocity of equation (20.59), with constant diffusion
coefficient κ . Investigate the possibility of stationary solutions for the
density field solely advected by this bolus velocity in the (x,z) verti-
cal plane for convenience. After finding a general condition on Qx and
ρ, assume a linear relationship between those variables and a uniform
vertical stratification to determine a particular, stationary solution for ρ.

NUMERICAL EXERCISES

20.1. Take the density data used in iwavemed and calculate the geostrophic
velocities. Work in z-coordinates with z levels corresponding to the data.
First assume a level of no motion at 500 m and calculate currents at the
surface and 2000 m down. Then repeat with level of no motion at 1500 m.

20.2. Experiment with bolus to see the flattening of isopycnals in a vertical
section with flat bottom. Then implement a sigma-coordinate change in a
vertical section with flat surface and topography given by

h(x)=h0+αx, (20.61)

where the domain extends from x=−L/2 to x=L/2 and where αL=h0.
Start from the same physical density distribution as in the flat-bottom
case. (Hint: Express the bolus advection term as a Jacobian in the vertical
plane. Then use the rules of change of variables to express this Jacobian
in the new coordinate system. Do not forget to calculate the slopes using
the rules of changes of variables.)

20.3. Obtain a density section from somewhere and calculate bolus velocity
using bolus. Which problems do you expect near boundaries? (Hint: You
might consider κ as a calibration parameter that varies in space.)
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20.4. Use pgerror to explore the pressure-gradient error for a fixed density
anomaly profile depending only on z according to

ρ=1ρ tanh

(
z+D

W

)
, (20.62)

in which D and W control the position and thickness of the pycnocline.
Bottom topography is given by

h(x)=H0+1H tanh
( x

L

)
, (20.63)

where L and 1H control the steepness of the slope. Calculate the error
and associated geostrophic velocity for f =10−4 s−1. Vary the number of
vertical grid points, horizontal grid points, the position of the pycnocline,
its depth, and strength. What happens if you increase only the number
of vertical grid points? Implement the discretization of another pressure
gradient expression of (20.55) in bcpgr and compare.

20.5. Bottom topography is generally smoothed before it is used in a
model, by the repeated application of a Laplacian-type diffusion. In
view of the hydrostatic consistency constraint, which adapted filter
technique would you advocate? (Hint: Remember that a Laplacian
filter applied to a function F decreases the norm of the gradient∫ ∫ [

(∂F/∂x)2+(∂F/∂y)2
]

dxdy over the domain.)
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Henry Melson Stommel
1920–1992

At an early age, Henry Stommel considered a career in astronomy but turned to
oceanography as a way to make a peaceful living during World War II. Having
been denied admission to graduate school at the Scripps Institution of Oceanog-
raphy by H. U. Sverdrup, then its director, Stommel never obtained a doctorate.
This did not deter him; having soon realized that, in those years, oceanography
was largely a descriptive science almost devoid of physical principles, he set
out to develop dynamic hypotheses and to test them against observations. To
him, we owe the first correct theory of the Gulf Stream (1948), theories of the
abyssal circulation (early 1960s), and a great number of significant contributions
on virtually all aspects of physical oceanography.

Unassuming and avoiding the limelight, Stommel relied on a keen physical
insight and plain common sense to develop simple models that clarify the roles
and implications of physical processes. He was generally wary of numerical
models. Particularly inspiring to young scientists, Stommel continuously radi-
ated enthusiasm for his chosen field, which, as he was the first to acknowledge,
is still in its infancy. (Photo by George Knapp)
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Kirk Bryan
1929–

As soon as computer mainframes became available for scientific research, in
the 1960s, Kirk Bryan in collaboration with colleague Michael Cox (1941–
1989) and student Bert Semtner began to develop codes for the simulation of
oceanic circulation. This was truly pioneering work not only in the face of strin-
gent hardware limitations but also because still little was known at the time
about numerical stability, accuracy, spurious modes, etc. The so-called Bryan-
Cox code of Princeton University’s Geophysical Fluid Dynamics Laboratory
quickly became a staple in oceanic modeling, often at the root of others’ codes.

Concerns over climate change prompted Bryan later in his career to con-
struct fully coupled atmosphere–ocean models, which are extremely challeng-
ing in view of their complexity and vastly different temporal scales. Rather than
being daunted by this complexity, Bryan stresses the complementarity between
atmospheric and oceanic processes and scales of motion.

Fame and numerous awards have come his way, but Kirk Bryan has retained
a gentlemanly demeanor, with a kind word for all with whom he comes in
contact. (Photo courtesy of Princeton University)



Chapter 21

Equatorial Dynamics

ABSTRACT
Because the Coriolis force vanishes along the equator, tropical regions exhibit particular
dynamics. After an overview of linear waves that exist only along the equator, the chapter
concludes with a brief presentation of the episodic transfer of warm waters from the
western to the eastern tropical Pacific Ocean, a phenomenon called El Niño. The problem
of its seasonal forecast then allows us to introduce another type of predictive tool, one
based on empirical relationships.

21.1 EQUATORIAL BETA PLANE

Along the equator (latitude ϕ=0◦), the Coriolis parameter f =2�sinϕ van-
ishes. Without a horizontal Coriolis force, currents cannot be maintained in
geostrophic balance, and we expect dramatic dynamical differences between
tropical and extratropical regions. The first question is the determination of
the meridional extent of the tropical region where these special effects can be
expected.

It is most natural here to choose the equator as the origin of the meridional
axis. The beta-plane approximation to the Coriolis parameter (see Section 9.4)
then yields

f =β0y, (21.1)

where y measures the meridional distance from the equator (positive northward)
and β0 = 2�/a = 2.28×10−11 m−1 s−1 with � and a being, respectively, the
earth’s angular rotation rate and radius (� = 7.29×10−5 s−1, a = 6371km).
This representation of the Coriolis parameter bears the name of equatorial
beta-plane approximation.

Our previous considerations of midlatitude processes (see Chapter 16, for
example) point to the important role played by the internal deformation radius,

R=
√

g′H
f
= c

f
, (21.2)
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in governing the extent of dynamical structures. Here, g′ is a suitable reduced
gravity characterizing the stratification and H is a layer thickness. As f varies
with y, so does R. If this distance from a given meridional position y includes
the equator, equatorial dynamics must supersede midlatitude dynamics. Thus, a
criterion to determine the width Req of the tropical region is (Fig. 21.1)

Req=R at y=Req. (21.3)

Substituting Eq. (21.1) in Eq. (21.2), the criterion yields

Req=
√

c

β0
, (21.4)

which is called the equatorial radius of deformation. For the previously quoted
value of β0 and for c= (g′H)1/2 = 1.4 m/s, typical of the tropical ocean
(Philander, 1990, Chapter 3), we estimate Req =248 km, or 2.23◦ of latitude.
Because the stratification of the atmosphere is much stronger than that of the
ocean, the equatorial radius of deformation is several times larger in the atmo-
sphere. This implies that connections between tropical and temperate latitudes
are different in the atmosphere and oceans.

Since c is a velocity (to be related shortly to a wave speed), we can define
an equatorial inertial time Teq as the travel time to cover the distance Req at
speed c. Simple algebra yields

Teq=
1√
β0c

, (21.5)

which, for the previous values, is about 2 days.

y

y

R(y)

0
0

Equator

Req

Req

FIGURE 21.1 Definition of the equatorial
radius of deformation.
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21.2 LINEAR WAVE THEORY

Because of the important role they play in the so-called El Niño phenomenon,
the focus of this section is on oceanic waves. The stratification of the equatorial
ocean generally consists of a distinct warm layer separated from the deeper
waters by a shallow thermocline (Fig. 21.2). Typical values are 1ρ/ρ0=0.002
and thermocline depth H=100 m, leading to the previously quoted value of c=
(g′H)1/2=1.4 m/s. This suggests the use of a one-layer reduced-gravity model,
which for the purpose of a wave theory is immediately linearized:

∂u

∂t
−β0yv=−g′

∂h

∂x
(21.6a)

∂v

∂t
+β0yu=−g′

∂h

∂y
(21.6b)

∂h

∂t
+H

(
∂u

∂x
+ ∂v
∂y

)
=0. (21.6c)

Here u and v are, respectively, the zonal and meridional velocity components, g′

the reduced gravity g1ρ/ρ0 (=0.02 m/s2), and h the layer thickness variation
(thickening counted positively and thinning counted negatively).

The preceding set of equations admits a solution with zero meridional flow.
When v=0, Eqs. (21.6a) and (21.6c) reduce to

∂u

∂t
=−g′

∂h

∂x
,

∂h

∂t
+H

∂u

∂x
=0,

having any function of x±ct and y as its solution. The remaining equation,
(21.6b), sets the meridional structure, which for a signal decaying away from
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FIGURE 21.2 Temperature (in ◦ C) as a function of depth and longitude along the equator, as
measured in 1963 by Colin, Henin, Hisard and Oudot (1971). Note the strong thermocline between
100 and 200 m.
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the equator is given by

u= cF(x−ct)e−y2/2R2
eq (21.7a)

v=0 (21.7b)

h=HF(x−ct)e−y2/2R2
eq , (21.7c)

where F(·) is an arbitrary function of its argument and Req= (c/β0)
1/2 is the

equatorial radius of deformation introduced in the preceding section. This solu-
tion describes a wave traveling eastward at speed c=

√
g′H, with maximum

amplitude along the equator and decaying symmetrically with latitude over a
distance on the order of the equatorial radius of deformation. The analogy with
the coastal Kelvin wave exposed in Section 9.2 is immediate: wave speed equal
to gravitational wave speed, absence of transverse flow, nondispersive behavior,
and decay over a deformation radius. For this reason, it is called the equatorial
Kelvin wave. Credit for the discovery of this wave, however, does not go to Lord
Kelvin but to Wallace and Kousky (1968).

The set of equations (21.6) admits additional wave solutions, more akin to
inertia-gravity (Poincaré) and planetary (Rossby) waves. To find these, we seek
periodic solutions in time and zonal direction:

u=U(y)cos(kx−ωt) (21.8a)

v=V(y)sin(kx−ωt) (21.8b)

h=A(y)cos(kx−ωt). (21.8c)

Elimination of the U(y) and A(y) amplitude functions yields a single equation
governing the meridional structure V(y) of the meridional velocity:

d2V

dy2
+
(
ω2−β2

0 y2

c2
− β0k

ω
−k2

)
V=0. (21.9)

Because the expression between parentheses depends on the variable y, the solu-
tions to this equation are not sinusoidal. In fact, for values of y sufficiently large,
this coefficient becomes negative, and we anticipate exponential decay at large
distances from the equator. It can be shown that solutions of Eq. (21.9) are of
the type

V(y)=Hn

(
y

Req

)
e−y2/2R2

eq , (21.10)

where Hn is a polynomial of degree n, and that solutions decaying at large
distances from the equator exist only if

ω2

c2
−k2− β0k

ω
= 2n+1

R2
eq

. (21.11)
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Thus, the waves form a discrete set of modes (n=0,1,2, . . .). Equation (21.11)
is the dispersion relation providing frequencies ω as a function of wavenum-
ber k for each mode. As Fig. 21.3 shows, three ω roots exist for each n as k
varies. (Important note: In this context, the phase speed ω/k of the wave is not
necessarily equal to c, the speed of the Kelvin wave encountered previously.)

The largest positive and negative roots for n≥1 correspond to frequencies
greater than the inverse of the equatorial inertial time. The slight asymmetry in
these curves is caused by the beta term in Eq. (21.11). Without this term, the
frequencies can be approximated by
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FIGURE 21.3 Dispersion diagram for equatorially trapped waves.
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ω'±
√

2n+1

T2
eq
+g′H k2, n≥1, (21.12)

which is analogous to Eq. (9.17), the dispersion relation of inertia-gravity
waves. These waves are thus the low-latitude extensions of the extratropical
inertia-gravity waves (Section 9.3).

The third and much smaller roots for n≥1 correspond to subinertial frequen-
cies and thus to tropical extensions of the midlatitude planetary waves (Section
9.4). At long wavelengths (small k values), these waves are nearly nondispersive
and propagate westward at speeds

cn=
ωn

k
'−

β0R2
eq

2n+1
, n≥1, (21.13)

which are to be compared with Eq. (9.30).
The case n=0 is peculiar. Its frequency ω0 is the root of

(ω0+ck)

(
ω0Teq−

1

ω0Teq
−kReq

)
=0. (21.14)

The root ω0=−ck can be shown to be a spurious solution introduced during
the elimination of U(y) from the governing equation. This elimination indeed
assumed ω0+ck 6=0, which we therefore may not accept as a valid solution.
The remaining two roots are readily calculated. As Fig. 21.3 shows, this wave
exhibits a mixed behavior between planetary and inertia-gravity waves. Finally,
the Kelvin-wave solution can formally be included in the set by taking n=−1
(Fig. 21.3).

The polynomials of Eq. (21.10) are not arbitrary but must be the so-called
Hermite polynomials (Abramowitz & Stegun, 1972, Chapter 22). The first few
polynomials of this set are H0(ξ)=1, H1(ξ)=2ξ and H2(ξ)=4ξ2−2. From
the solution V(y), the layer thickness anomaly A(y) can be retrieved by back-
ward substitution. It is seen that when V is odd in y, A is even, and vice versa.
Waves of even order are antisymmetric about the equator [h(−y)=−h(y)],
whereas those of odd order are symmetric [h(−y)=h(y)]. The mixed wave is
antisymmetric and the Kelvin wave is symmetric.

When the equatorial ocean is perturbed (e.g., by changing winds), its
adjustment toward a new state is accomplished by wave propagation. At low fre-
quencies (periods longer than Teq, or about 2 days), inertia-gravity waves are not
excited, and the ocean’s response consists entirely of the Kelvin wave, the mixed
wave, and some planetary waves (those of appropriate frequencies). If, more-
over, the perturbation is symmetric about the equator (and generally there is a
high degree of symmetry about the equator), the mixed wave and all planetary
waves of even order are ruled out. The Kelvin wave and odd planetary waves
of short wavelengths (if any) carry energy eastward, whereas the odd planetary
waves of long wavelengths carry energy westward. Figure 21.4 displays the
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FIGURE 21.4 The dispersion of a perturbation generated by a 10-day wind anomaly imposed on
a spot of the equatorial ocean. Clearly visible are the one-bulge Kelvin wave moving eastward and
the double-bulge planetary (Rossby) wave propagating westward at a slower pace.

temporal dispersion of a thermocline displacement generated by a wind-stress
anomaly imposed on a stretch of equatorial ocean. Clearly visible are the one-
bulge Kelvin wave progressing eastward and the double-bulge lowest planetary
wave (n=1) propagating westward. Although this case is obviously academic,
it is believed that Kelvin waves and low-order planetary waves, together with
wind-driven currents, are frequent in the equatorial ocean.

At this point, a number of interesting topics can be presented, such
as the reflection of a Kelvin wave upon encountering an eastern boundary
(Fig. 21.5), waves around islands, and the generation of equatorial currents
by time-dependent winds. We shall, however, leave these matters for the more
specialized literature (Gill, 1982; Philander, 1990; McPhaden & Ripa, 1990;
and references therein) and limit ourselves to the presentation of the El Niño
phenomenon.

21.3 EL NIÑO – SOUTHERN OSCILLATION (ENSO)

Every year, around the Christmas season, warm waters flow along the west-
ern coast of South America from the equator to Peru and beyond. These
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FIGURE 21.5 Continuation of the wave propagation shown in the preceding figure. Planetary
(Rossby) waves are reflected at the western wall and turned into Kelvin waves, while the Kelvin
wave generates a planetary wave after reflection against the eastern boundary.

waters, which are several degrees warmer than usual and are much less saline,
perturb the coastal ocean, suppressing—among other things—the semiperma-
nent coastal upwelling of cold waters. So noticeable is this phenomenon that
early fishermen called it El Niño, which in Spanish means “the child” or more
specifically the Christ Child, in relation to the Christmas season.

Regularly but not periodically (every 3 to 7 years), the amount of passing
warm waters is substantially greater than in normal years, and life in those
regions is greatly perturbed, for better and for worse. Anomalously abundant
precipitations, caused by the warm ocean, can in a few weeks turn the oth-
erwise arid coastal region of Peru into a land of plenty. But, suppression of
coastal upwelling causes widespread destruction of plankton and fish. The eco-
logical and economic consequences are noticeable. In Peru, the fish harvest is
much reduced, sea birds (which prey on fish) die in large numbers, and, to com-
pound the problem, dead fish and birds rotting on the beach create unsanitary
atmospheric conditions.

In the scientific community, the name El Niño is being restricted to such
anomalous occurrences and, by extension, the name La Niña has been used
to signify the opposite situation, when waters are abnormally cold in the east-
ern tropical Pacific. Major El Niño events of the twentieth century occurred in
1904–05, 1913–15, 1925–26, 1940–41, 1957–58, 1972–73, 1982–83, 1986–88,
1991–95, 1997–98 (the strongest of all), and sofar in twenty-first century in
2002–2003, 2004–2005, and 2006–2007 (WMO, 1999; NOAA-WWW, 2006).
Their cause remained obscure until Wyrtki (1973) discovered a strong correla-
tion with changes in the central and western tropical Pacific Ocean, thousands of
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kilometers away. It is now well established (Philander, 1990) that El Niño events
are caused by changes in the surface winds over the tropical Pacific, which
episodically release and drive warm waters, previously piled up by trade winds
in the western half of the basin, eastward to the American continent and south-
ward along the coast. The situation is quite complex, and it took oceanographers
and meteorologists more than a decade to understand the various oceanic and
atmospheric factors.

Under normal conditions, winds over the tropical Pacific Ocean consist
of the northeast trade winds (northeasterlies) and the southeast trade winds
(southeasterlies) that converge over the intertropical convergence zone (ITCZ)
and blow westward (Section 19.3). Although it migrates meridionally in the
course of the year, the ITCZ sits predominantly in the northern hemisphere
(around 5◦ to 10◦N). In addition to pushing and accumulating warm water in
the western tropical Pacific, the trade winds also generate equatorial upwelling
(Section 15.4) over the eastern part of the basin. Thus, in a normal situation, the
tropical Pacific Ocean is characterized by a warm water pool in the west and
cold surface waters in the east. This structure is manifested by the westward
deepening of the thermocline, as shown in Fig. 21.2.

The origin of an anomalous, El Niño event is associated with a weakening
of the trade winds in the western Pacific or with the appearance of a warm sea
surface temperature (SST) anomaly in the central tropical Pacific. Although one
may precede the other, they soon go hand in hand. A slackening of the west-
ern trades relaxes the thermocline slope and releases some of the warm waters;
this relaxation takes the form of a downwelling Kelvin wave, whose wake is
thus a warm SST anomaly. On the other hand, a warm SST anomaly locally
heats the atmosphere, creating ascending motions that need to be compensated
by horizontal convergence. This horizontal convergence naturally calls for east-
ward winds on its western side, thus weakening or reversing the trade winds
there (Gill, 1980). In sum, a relaxation of the trade winds in the western Pacific
creates a warm sea surface anomaly, and vice versa. Feedback occurs and the
perturbation amplifies. On the eastern side of the anomaly, convergence calls
for a strengthening of the trades that, in turn, enhances equatorial upwelling.
This cooling interferes with the eastward progression of the downwelling Kelvin
wave, and it is not clear which should dominate. During an El Niño event, the
anomaly does travel eastward while amplifying. Once the warm water arrives
at the American continent, it separates into a weaker northward branch and
a stronger southward branch, each becoming a coastal Kelvin wave (down-
welling). The subsequent events are as described at the beginning of this section.

When an El Niño event occurs, its temporal development is strictly con-
trolled by the annual cycle. The warm waters arrive in Peru around December,
and the seasonal variation of the general atmospheric circulation calls for a
northward return of the ITCZ and a reestablishment of the southeast trade winds
along the equator. The situation returns to normal.
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This sequence of events is relatively well understood (Philander, 1990) and
has been successfully modeled (Cane, Zebiak & Dolan, 1986). Today, models
are routinely used to forecast the next occurrence of an El Niño event and its
intensity with a lead time of 9 to 12 months. What remains less clear is the vari-
ability of the atmosphere-ocean system on the scales of several years. A strong
connection with the Southern Oscillation has been made clear, and the broader
phenomenon is called ENSO, for El Niño–Southern Oscillation (Rasmusson &
Carpenter, 1982). The Southern Oscillation is a quasi-periodic variation of the
surface atmospheric pressure and precipitation distributions over large portions
of the globe (Bromwich et al., 2000; Troup, 1965).

Much hinges on variations of the so-called Walker circulation. This atmo-
spheric circulation (Walker, 1924) consists of easterly trade winds over the
tropical Pacific Ocean, low pressure and rising air above the western basin and
Indonesia (with associated heavy precipitation) and, at the eastern end of the
basin, high pressure, sinking air, and relatively dry climate. The strength of this
circulation is effectively measured by the sea-level pressure difference 1pTD
between Tahiti (18◦S, 149◦W) and Darwin (in northern Australia, at 12◦S,
131◦E). In practice, the Southern Oscillation Index (SOI) is defined as (Troup,
1965):

SOI=10
monthly value of 1pTD− long-term average of 1pTD

standard deviation of 1pTD
, (21.15)

The nearly perfect negative correlation between these two pressures indicates
that both are parts of a larger coherent system. The presence of a higher than
normal pressure in Darwin with simultaneous lower pressure in Tahiti (negative
SOI value) is intimately connected with an El Niño occurrence (Fig. 21.6). In
its broad lines, the scenario unfolds as follows. A negative SOI value leads to
a weakening of the Walker circulation, reduced strength of the easterly trade
winds, especially in the western Pacific. The western warm water pool relaxes
and begins to spill eastward as an equatorial Kelvin wave toward the central
basin, accompanied by a similarly eastward displacement of the low atmo-
spheric pressure above it. Feeding the low pressure from the west, anomalous
westerly winds accelerate the eastward movement of the warm water pool. And
so, the situation progresses eastward in an amplifying manner until the warm
water pool reaches the coast of Peru and an El Niño event occurs. Because
atmospheric pressure is then higher than normal on the western side, drought
conditions occur over Indonesia and Australia, while South America experi-
ences stronger precipitation than normal. For a more complete description of
the many facets and ramifications of the event, the interested reader is referred
to specialized books (D’Aleo, 2002; Diaz & Markgraf, 2000; Philander, 1990).

A conceptual model of the ENSO event that captures its major characteris-
tics with a minimum of variables is the so-called recharge-discharge oscillator
proposed by Jin (1997a,b). The situation being considered is defined by anoma-
lies with respect to a mean climatological state, the latter being characterized by
the Walker circulation, upwelling in the eastern Pacific, and warm water piled
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FIGURE 21.6 Time series of temperature anomalies over the central tropical Pacific Ocean and of
the Southern Oscillation Index (3-month running means). There is a very strong correlation between
higher than normal temperatures (El Niño events) and negative index values, indicating that El Niño
is part of a global climatic variation. A spectral analysis of the temporal evolution of SOI reveals a
peak in the interval of 3.5–4.5 years. (NOAA, U.S. Department of Commerce, Washington, D.C.)

up in the western Pacific. The variables are therefore the anomalies of the wind
stress (positive for a westerly anomaly, corresponding to a weakening of the
Walker circulation), of the oceanic surface layer thickness (positive for a thicker
layer), and of the sea surface temperature (positive at the coast of Peru during an
El-Niño event). The oceanic component is modeled as a single, reduced-gravity
layer of average depth H. The model distinguishes two depth anomalies, one
in the western basin and the other in the eastern basin of the Pacific, one value
for each basin without further specification of the zonal and meridional struc-
ture. Since El Niño and La Niña are characterized, respectively, by positive and
negative temperature anomalies in the eastern Pacific, we limit the tempera-
ture description to this anomaly (Fig. 21.7). With these few variables, we now
proceed to model the key dynamics.

21.3.1 The Ocean

l Dynamics: Under changing wind stress, the ocean adjusts by means of wave
propagation, but we may consider the time needed for such an adjustment to
be short compared with the seasonal and longer time scales of an ENSO
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FIGURE 21.7 Schematic situation for a simple ENSO model. Two depth anomalies hW and hE are
assigned respectively to the western and eastern Pacific basins and are counted positive downward.
The water pool in the eastern Pacific, at temperature TE, can become warmer or colder as a result
of an anomaly. A wind blows above the surface, and τ denotes its windstress anomaly, which is
responsible for a lateral transport V.

event. Therefore, following Jin (1997a), we suppose that a wind-stress
anomaly τ in the zonal direction is instantaneously accompanied by an
anomalous pressure difference between eastern and western basins. In the
framework of a reduced-gravity model, the pressure-gradient anomaly is
expressed as the difference in thermocline depth between East (hE) and West
(hW), and equilibrium requires

g′
hE−hW

L
= τ

ρ0H
. (21.16)

For a given wind-stress anomaly, we can therefore calculate one of the two
depth anomalies from the other. Volume conservation will be the means by
which we can write a second relation between the two depth anomalies.

We further assume that the zonal velocity is proportional to the wind-
stress anomaly:

U=γ τ, (21.17)

in which U is the scale that provides the size of the zonal velocity
anomaly and γ is an empirical coefficient of proportionality. This is justi-
fied for a wind stress that acts over an elongated nonrotating basin (e.g.,
Mathieu, Deleersnijder, Cushman-Roisin, Beckers & Bolding, 2002), like
an equatorial strip.

l Volume conservation: During an ENSO event, the temperature anomaly is
concentrated in the eastern Pacific, with the wind-stress anomaly occurring
on its western flank. The volume budget is first established by integrating
volume conservation Eq. (12.9) over the western pool, starting from no flow
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at the western boundary. Because of the balance of forces (21.16) in the
zonal direction, there is no reason for persisting zonal transport between
the western and eastern basins, and this leaves the meridional transport
as the only way to export or import waters. Since the depth anomaly is
characteristic of the equatorial strip of ocean water, we need to calculate
the transport at the northern and southern limits of the equatorial band of
interest, which we take as one equatorial radius of deformation from either
side of the equator: y=±Req, with Req defined in Eq. (21.4). According to
Eq. (20.11c), a meridional Sverdrup and Ekman transport must exist. With
the wind anomaly aligned with the equator, the meridional transport is

V=− 1

ρ0β0

∂τ x

∂y
. (21.18)

With atmospheric and oceanic anomalies tightly coupled, we may assume
they are both concentrated around the equator in a strip of width 2Req
and that the wind-stress anomaly decreases from τ at the equator to 0 at
y∼±Req, and we estimate

V≈± 1

ρ0β0

τ

Req
, (21.19)

with the plus (minus) sign at the northern (southern) boundary. It follows
that the flow divergence D between the two boundaries is

D≈ τ

ρ0β0R2
eq
. (21.20)

This divergence of flow in turn modifies the thermocline depth in the western
basin, and the equation governing this thermocline depth is therefore

dhW

dt
=−D−r hW, (21.21)

where the last term on the right-hand side is intended to represent some
damping of the ocean adjustment by lateral mixing and boundary-layer
exchange.

l Heat budget: When the surface layer is modeled as a reduced-gravity model,
a temperature anomaly is susceptible to modify the value of g′ but not sig-
nificantly. In the absence of anomalies, the heat budget of either basin is
considered closed, and thus any departure from this unperturbed state is a
function of the anomalies only. There are two ways by which the temper-
ature in the eastern basin can be affected, either by zonal advection or by
vertical advection.

The zonal velocity anomaly u caused by the wind-stress anomaly τ

moves the background climatological temperature field in or out of the
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eastern basin,1 and we may write

u
∂T̄

∂x
∼U

TE−TW

L
, (21.22)

in which U is the previously defined scale for the zonal velocity anomaly and
related to the wind-stress anomaly τ by Eq. (21.17), and TE and TW are the
climatological temperatures in the eastern and western basins, respectively.
For positive U (eastward flow under positive wind-stress anomaly τ ), the
temperature TE in the east increases by import of warmer water from the
western pool (because TW>TE).

For vertical advection, the situation is more subtle. Without anomaly,
vertical advection of temperature in the eastern pool is

w̄
∂T̄

∂z
∼ w̄

T̄surf− T̄−H

H
, (21.23)

where the overbar refers to the climatological basic state. The strength of
the upwelling w̄ is proportional to the wind stress, w̄=−ατ̄ , with the minus
sign corresponding to upwelling under normal easterly trade winds.

A positive wind-stress anomaly τ reduces the upwelling intensity and
thus creates a negative upwelling anomaly w̃. Therefore, less deep (and less
cold) waters than usual are brought to the surface, and this corresponds to a
positive heat flux anomaly. This flux anomaly can be estimated as the differ-
ence of Eq. (21.23) in which w̄ is replaced by w̄+ w̃, and the climatological
basic-state equation (21.23):

w̃
Tsurf−T−H

H
∼−ατ 1vT

H
, (21.24)

in which 1vT is the vertical temperature difference between climatological
surface water and deep water.

If the eastern Pacific has a positive depth anomaly, the temperature at
y=−H is not the climatological value, but the climatological value found
at −H+hE, because a positive depth anomaly shifts the temperature profile
downward. The surface temperature is the surface temperature augmented
by the temperature anomaly, and taking the difference of Eq. (21.23) with
these two modified temperature values and the reference (21.23) provides

− w̄

(
TE

H
− ∂T̄

∂z

hE

H

)
∼− w̄

H
TE+

w̄1vT

H2
hE, (21.25)

in which we linearized T̄−H+hE around T̄−H . The interpretation of the sign
in the term proportional to hE is that a deeper thermocline results in an

1Even if the vertically averaged velocity is zero between the western and eastern pools, a wind-
induced surface current can displace temperature anomalies.
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upwelling of warmer waters than usual, creating a positive temperature
anomaly.

Grouping the three contributions into the budget for temperature anomaly,
we obtain

dTE

dt
=−

(
r′+ w̄

H

)
TE+

w̄1vT

H2
hE+

(
γ
1hT

L
+α1vT

H

)
τ, (21.26)

in which 1hT=TW−TE is the positive climatological temperature differ-
ence between western and eastern Pacific. In the first term on the right-hand
side, we added a damping effect as for hW and also included damping by
exchanges with the atmosphere.

21.3.2 The Atmosphere

Because of the much lower inertia of the atmosphere compared with the ocean,
we may assume that the sea surface anomaly in the east immediately creates a
Walker circulation and write

τ =µTE. (21.27)

The coupling parameter can be calculated by a simplified atmospheric model
(Gill, 1980).

21.3.3 The Coupled Model

Gathering the different pieces, we finally obtain the governing equations of the
simplified model of an ENSO event:

dhW

dt
=− µ

ρβ0R2
eq

TE−r hW (21.28)

dTE

dt
=
[
µ

(
γ
1hT

L
+α1vT

H
+ w̄L1vT

H3g′ρ0

)
−r′− w̄

H

]
TE+

w̄1vT

H2
hW. (21.29)

We note the positive temperature feedback in the temperature equation when
the coupling parameter µ is large enough. As this term represents the coupling
with the atmosphere and the advection feedback, it is clear that it models the
amplification process described at the beginning of this section.

With realistic values for the model parameters (coded in jin.m), the solution
exhibits a damped oscillation (Fig. 21.8; for an animation execute jinmodel.m)
that models the mechanism depicted in Fig. 21.9. Although this model nicely
captures ENSO oscillations with the phase shift between temperature and
thermocline-depth anomalies, as well as a period of about 4 years, scientists
debate whether ENSO has a natural oscillating cycle as described by the present
model or it is triggered by some external effect (e.g., Kessler, 2002).
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FIGURE 21.8 Temperature anomaly (low amplitude curve) and depth anomaly (high amplitude
curve) as a function of time (in years). The period of the slightly damped oscillation is close to 4
years. Scales for temperature and depth are arbitrary.

21.4 ENSO FORECASTING

Forecasting the El Niño–Southern Oscillation (ENSO) event is of great interest
to society because an impressive number of its consequences can affect daily
life, ranging from changes in weather, appearance of droughts or floodings, to
changes in crops, fish catch, and human health. These effects are not only felt
in the equatorial region but also in remote locations, such as Australia. Hence,
it is no surprise that reliable prediction of an El Niño or La Niña event can be of
great help in preparing for the upcoming perturbations.

In forecasting ENSO, monthly averaged weather patterns are of interest
because a given month in an El Niño year is quite different from the same
month in a La Niña year. But since the forecast has to span several months,
if not seasons, sea surface temperature (SST) cannot be considered known, and
coupled atmosphere-ocean models are needed. This was recognized by Zebiak
and Cane (1987), who succeeded in building the first coupled model to forecast
ENSO. The importance of coupling between air and sea can be nicely shown
by the following hindcast experiments: The use of observed variations in SST
during an ENSO event generally helps to predict the atmospheric part correctly;
similarly, using observed variations in atmospheric fluxes along the sea surface
reveals the oceanic component of ENSO. Hence, both components are needed
for the forecast.

ENSO forecasts differ from weather forecasts in that only average situa-
tions are predicted. While weather forecasts are mostly constrained by initial
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FIGURE 21.9 Discharge/recharge mechanism proposed by Jin (1997a, 1997b) as adapted by
Meinen and McPhaden (2000). During a warm, El Nino phase (Phase I), the westerly wind-stress
anomaly creates a diverging poleward Sverdrup flow. This removes water from the equatorial Pacific
and, via the zonal dynamical balance, the anomalous warm water pool of the eastern Pacific. When
the eastern warm water pool no longer exists, no east-west temperature anomaly remains, and the
associated anomalous Walker circulation disapears (Phase II). During this stage, winds are those of
the climatological Walker circulation, which are responsible for normal upwelling. Since the ther-
mocline is shallower than usual, upwelling in the eastern Pacific brings up colder waters than usual,
and the cold, La Nina phase begins. The reversal of the wind-stress anomaly creates an equatorward
Sverdrup flow, which recharges the eastern pool (Phase III) until the mean thermocline is deeper
than average (Phase IV). At this stage, climatological upwelling again brings up warmer water than
usual, and the cycle repeats with a warm phase (Phase I).

conditions in the atmosphere and can be of only short duration, seasonal forecast
benefits from the ocean’s inertia, and its predictability extends over several
months. Hence, seasonal forecast is constrained mostly by initial conditions in
the ocean. Observing the tropical ocean is a crucial component of any ENSO
forecast system, with the most important data being provided by the Tropical
Atmosphere Ocean (TAO) array of moorings and by satellites measuring sea
surface height and temperature.

Seasonal forecasting of ENSO is relatively successful because ENSO is
known to be the largest single source of predictable internannual variability.
Yet, even with a strong signal, models must be able to extract the informa-
tion amidst the dominant high-frequency signal of atmospheric variability. With
unavoidable model uncertainties, this is a challenging task, and one way to
reduce uncertainties is to perform model intercomparisons (e.g., Mechoso et al.,
1995; Neelin et al., 1992). Models are also used to identify teleconnections that
is, correlations between dynamics in distant regions and ENSO events. If such
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teleconnections are identified, predictions of El Niño can be “extrapolated” to
other regions. The identification of such teleconnections is generally obtained
from statistics of model simulations and observations, leading to as many
prediction models as identified teleconnections.

Forecasts can also be performed by means of statistics in place of a dynami-
cal model. Empirical predictive models of El Niño begin with past observations
of well-chosen parameters and search for correlations by fitting curves across
data points, such as a linear regression of the SOI. Instead of a priori choosing a
functional relationship, self-learning approaches such as neural networks (e.g.,
Tangang, Tang, Monahan & Hsieh, 1998) or genetic algorithms (e.g., Alvarez,
Orfila & Tintore, 2001) select on their own the “best” functions. To do so, data
are separated into two sets, a learning and a validation set. From the learning
set, the model is given input data called predictors (such as the SOI of the previ-
ous year) and the known output value called predictand (such as the prediction
of SOI for the next 6 months). If enough input-output pairs are available, the
network or genetic algorithm is able to find a functional relationship that min-
imizes the error in the output for this given data set. The danger of such an
approach is that overfitting may occur: If the functional relationship contains
more adjustable parameters than independent data to be fitted, one can always
find a “perfect” fit. The latter, however, will work only on this particular data
set. An independent validation data set is required on which the model must be
tested after the learning phase. If the performance in forecasting degrades sig-
nificantly after switching from the learning set to the validation set, the model is
unreliable. However, if validation is successful, such models offer predictions at
extremely small computational costs compared with primitive equation models.

The simplest models, if they have any predictive skill, are therefore valuable
in defining base forecasts against which forecats from more complex models
may be compared, and to justify their use in operational forecasts, the highly
complex dynamical models must demonstrate their superiority in prediction
ability compared with statistical models (see Fig. 21.10). At the time of this
writing, it appears that dynamical models are better predictors of early stages of
an El Niño, but once the event is under way, statistical models are quite satis-
factory. The lesson is that the trigger is relatively difficult to identify but that,
once an ENSO event begins, it unfolds according to a repeatable pattern.

The search for empirical relationships can of course be guided by physical
considerations. For El Niño, wave propagation along the equator and reflection
at continental boundaries provide a delayed feedback mechanism on the sys-
tem. This can be formally translated into a delayed oscillator model (Suarez &
Schopf, 1988), the governing equation of which can be expressed in the form:

dT

dt
=aT(t)−aT3(t)−bT(t−δ), (21.30)

where T stands for a normalized temperature anomaly associated with El Niño,
the term aT models the positive feedback of the initial Kelvin wave with the



Chapter | 21 Equatorial Dynamics 719

3
Model forecasts of ENSO from Dec 2005

Dynamical model:

Statistical model:

NASA
NCEP/CFS

SCRIPPS
LDEO
AUS/POAMA
ECMWF
UKMO
KOREA SNU
ZHANG ICM
ECHAM/MOM
COLA ANOM

CPC MRKOV
CDC LIM
CPC CA
CPC CCA
CSU CLIPR
UBC NNET
FSU REGR

SON

2005

N
IN

O
3.

4 
S

S
T

 a
no

m
al

y
(º

C
)

2006

Nov NDJ DJF JFM FMA MAM AMJ MJJ JJA JAS ASO

OBS FORECAST

IRI

UCLA-TCD

JMA

2.5

2

1.5

1

0.5

0

−0.5

−1

−1.5

−2

(a)

120E 150E 180Ê 150W

Longitude

La
tit

ud
e NINO 4

30
S

0Ê
30

N

NINO 3

NINO 1 + 2NINO 3.4

120W 90W 60W

(b)

FIGURE 21.10 Prediction of a future El Nino event by means of sea surface temperature (SST)
anomaly starting from December 2005 by several models, including coupled ocean-atmosphere
primitive equation models and statistical models. Predictions were made for different subregions in
a central strip of the basin (see insert), the probablity of El Niño in 2006 was deemed low. (IRI,
International Research Institute for Climate and Society)

moving atmospheric perturbation, and the cubic term −aT3 represents damp-
ing to keep the solution bounded in time.2 Finally, the last term −bT(t−δ)
is introduced to include the negative feedback of the initial westward Rossby
wave that is then reflected as a Kelvin wave of opposite amplitude. The delay
δ is readily interpreted in terms of wave travel time along the equator. If the

2The temperature T can always be scaled so that the cubic term appears with the same coefficient
as the linear feedback.
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negative feedback is sufficiently strong, implying a reflection with some degree
of amplification, an opposite event can be triggered, and an El Niño may be fol-
lowed by a La Niña. Parameters of this model can then be fitted to observations
if a simple model is desired (Numerical Exercise 21.7).

ANALYTICAL PROBLEMS

21.1. How long does an equatorial Kelvin wave take to cross the entire Pacific
Ocean?

21.2. Generalize the equatorial Kelvin-wave theory to the uniformly stratified
ocean. Assume inviscid and nonhydrostatic motions. Discuss analogies
with internal waves.

21.3. Show that equatorial upwelling (mentioned in Section 15.4; see Fig.
15.6) must be confined at low frequencies to a width on the order of the
equatorial radius of deformation.

21.4. In the Indian Ocean, two current-meter moorings placed at the same lon-
gitude and symmetrically about the equator (±1.5◦ of latitude) record
velocity oscillations with a dominant period of 12 days. Furthermore, the
zonal velocity at the northern mooring leads by a quarter of a period the
meridional velocities of both moorings and by half a period the zonal
velocity at the southern mooring. The stratification provides c=1.2 m/s.
What kind of wave is being observed? What is its zonal wavelength? Can
a comparison of the maximum zonal and meridional velocities provide a
confirmation of this wavelength?

21.5. Consider geostrophic adjustment in the tropical ocean. What would be
the final steady state following the release of buoyant waters with zero
potential vorticity along the equator of an infinitely deep and motionless
ocean? For simplicity, assume zonal invariance and equatorial symmetry.

21.6. What kind of initial conditions are needed for the delayed oscillator model
(21.30)?

21.7. Search for information to check whether the forecast provided in
December 2005 of an unlikey El Niño in 2006 came true.

21.8. Show that the linearization of the governing equations for a Kelvin wave
is valid as long as the function F is small enough, |F|�1.

21.9. Study equatorial upwelling on a beta plane with an arbitrary wind-stress
field. Use the approach of Section 8.6 but include a linear friction term in
addition to vertical diffusion. What happens to the solution if this linear
friction term is dropped? (Hint: Do not calculate explicitly the vertical
structure of the Ekman layer but integrate vertically.)
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NUMERICAL EXERCISES

21.1. Design a numerical solver for the delayed oscillator equation (21.30).
Find the solution with a−1=50 days, δ=400 days, and b−1=90 days
for different initial conditions. Then, change to a−1=100 days and b−1=
180 days.

21.2. Design a numerical version of the linear reduced-gravity model (21.6), to
which a spatially varying zonal wind stress is added, of the form

τ = τ0e−(x
2+y2)/L2

. (21.31)

Use a finite-difference approach on the Arakawa C-grid and time stepping
of your choice. Start with a situation at rest and then apply the wind stress
for 30 days. For the wind-stress amplitude and length scale, take τ0=0.1
N/m2 (directed eastward) and L=300 km. The reduced-gravity model’s
parameters are 1ρ/ρ0=0.002 with a thermocline depth H=100 m. For
a first simulation, use a closed domain with boundaries at x=−3000 km,
x=10000 km and y=±2000 km. Simulate the evolution for 600 days.

21.3. For the conditions set in Numerical Exercise 21.2 with closed southern
and northern boundaries, the perturbation eventually propagates along
these boundaries. Which physical process is responsible for this? Mod-
ify the southern and northern boundary conditions by opening the domain
and apply v=±

√
g′H h there. Choose a physically reasonable sign for

each boundary by considering a physical interpretation of such boundary
conditions.

21.4. Change the topology of the domain in Numerical Exercise 21.3 by adding
land points in the southwestern (lower left) and northeastern (upper right)
corners to represent continents on each side of the Pacific Ocean and
redo the simulations. Can you identify the modes that are now present
compared with the symmetric case?

21.5. Search for a spatial discretization of the Coriolis term on the Arakawa
C-grid that does not create mechanical work in the sense that, after mul-
tiplying the evolution equation for ui−1/2,j by itself and adding a similar
product of the vi,j−1/2 equation by itself, the Coriolis terms cancel out.
(Hint: Analyze which products of u and v appear, similar to the analy-
sis of the Arakawa Jacobian performed in Section 16.7 and find how to
average by taking into account the variation of y.)

21.6. Using the sea-surface temperature (SST) anomalies and Southern Oscil-
lation Index (SOI) values from 1991 to 2005 included in soi.m, perform
a linear regression over data windows and find out whether the extrapo-
lation of these regressions is able or unable to predict the SST or SOI at
later times. First, use a data window of 4 months and try to extrapolate
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for the next month. Plot the prediction error over time when applying the
method over all possible data windows. To decide whether the prediction
is useful, compare with the prediction error corresponding to simple per-
sistence (constant anomaly). Then, try to change the data window and lead
time to improve the prediction. Instead of a linear regression, higher-order
polynomial fits may also be tried.

21.7. Do the same as in Numerical Exercise 21.6, but try to calibrate the delayed
oscillator model (21.30) for the temperature anomaly. Use the calibrated
model for the extrapolation. If necessary, use data windows of several
years.
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S. George H. Philander
1942–

Born in South Africa and son of a poet, George Philander studied applied
mathematics and physics before going to Harvard University to obtain his
doctorate and embarking on a career in oceanography. His seminal studies of
El Niño and, from there, also the Southern Oscillation earned him a position
of prominence in Geophysical Fluid Dynamics. From unraveling the global
connection between ocean and atmosphere, the study of global warming and
climate change necessarily became the next scientific pursuit. Philander is
known as a “teacher to his bones,” passionate about sharing knowledge with
the next generation, and he is praised for his clarity of thought and elegance of
expression.

Philander is also a prolific writer, having written multiple books on the sub-
ject of El Niño and climate, for both experts and nonexperts alike, including
Our Affair with El Niño – How We Transformed an Enchanting Peruvian Cur-
rent into a Global Climate Hazard (2006) an acclaimed book aimed at a broad
readership. (Photo credit: Princeton University)
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Paola Malanotte Rizzoli

Paola Malanotte Rizzoli had obtained a doctorate in quantum mechanics and
was well on her way to a distinguished career in physics when a massive flood of
Venice, where she worked at the time, made her change her mind. She switched
to physical oceanography and obtained a second doctorate. Her contributions
to this field have been significant and varied, spanning the theory of long-lived
geophysical structures, such as eddies and hurricanes, numerical modeling of
the Atlantic Ocean and Gulf Stream system, the Black Sea ecosystem, data
assimilation, and tropical-subtropical interactions.

Professor Rizzoli teaches at the Massachusetts Institute of Technology and
lectures across the world. She is known as a dynamic speaker and an inspiring
scientist. In addition to her teaching and research, she has served the oceano-
graphic community in a number of capacities, at both national and international
levels.

Never abandoning her love for Venice, Paola Rizzoli was instrumental in
developing a system of sea gates to protect the city from future floods and sea
level rise. This protection system is currently under construction. (Photo MIT
archives)



Chapter 22

Data Assimilation

ABSTRACT
This chapter outlines the problem of predictability and the methods used to blend, in
an optimal way, observations with model computations in order to guide the latter and
to produce improved simulations of geophysical fluid phenomena. The methods invoke
physical as well as statistical reasoning and rely on certain approximations that facilitate
their implementation in operational forecast models.

22.1 NEED FOR DATA ASSIMILATION

Personal experience teaches us that a weather forecast is reliable for only a few
days from the moment when it is issued. The time up to which the prediction is
made is called lead time, and a reliable forecast can only be had if the lead time is
not too long, typically no more than a week for midlatitude weather. Predictions
further into the future are so imprecise that very simple prediction methods,
such as the use of climatological values for the day concerned or persistence
of today’s weather, may perform as well as sophisticated weather forecast sys-
tems. Before discussing the reasons why forecasting errors increase with lead
time, we anticipate that any forecast system will need periodic reinitialization if
predictions are needed on a regular basis. Such a reinitialization must certainly
take into account the most recent observations in order to infer a correct present
state of the system, an operation known as field estimation in forecast jargon.
From this better estimate, a forecast can be restarted on a better basis.

For weather forecasts, field estimates are sequential in the sense that they
only use existing data, that is, from the past up to the day on which the fore-
cast begins. For other applications, the best field estimate of a past situation is
constructed, in which case data from moments after the forecast has begun can
also be incorporated, and a nonsequential method is used. A typical example in
which all available data are used is a so-called re-analysis, which incorporates
the best fields over a given time period together with the physics; these provide
the best picture of reality at any moment.

The melding of physical laws and observations, be it in a sequential or
nonsequential way, is carried out through so-called data assimilation. Data
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assimilation may be performed intermittently, for example every day using data
from the previous day, or continuously, as data become available.

Since data assimilation exploits observational data, it is also possible to
quantify the forecast errors up to a point once new data have arrived. Forecast
errors can then be used to assess the skill of the forecast system, a measure of its
predictive capability. Here, it is customary to compare the error of the forecast
with the error of an elementary forecast. Rudimentary forecasts are one of the
following: Persistence (tomorrow the weather will be the same as today), clima-
tology (next week’s weather will be the average weather of the last twenty years
at the same time of year), or random forecast (e.g., one of the two preceding
methods with an added random noise of zero average and prescribed variance).
One measure of forecasting skill is the Brier skill score, S, which is calculated
from an error measure εf of the actual forecast system and the corresponding
error measure εr of a rudimentary (or reference) forecast system (Brier, 1950;
see also Wilks, 2005):

S=1− ε
f

εr
, (22.1)

Clearly, if the forecasting system has an error (εf ) equal to the rudimentary
approach error (εr), its skill is nil. On this scale, the unattainable perfect fore-
casting skill corresponds to a score of unity (100%). Should the skill of the
forecast system falls below zero, the forecast system should be considered as no
better than the most basic forecast system, although there might still be some
useful information in the forecast. The skill score is often used to quantify the
improvement of a new forecast system over an older version, in which case εr

is taken as the error of that older system.
Clearly the skill score depends on the nature of the chosen error norm ε,

which is, for example, the root-mean-square (rms) error between two fields,
the error on the maximum temperature, the error on the hours of sunshine etc.,
but more importantly the skill varies with lead time. The further the forecast
extents into the future, the lower the skill score tends to be, and we naturally
come back to the question of why it is so difficult to make accurate long-range
forecasts. The previous chapters might have biased our perception of geophysi-
cal fluid dynamics toward a system governed by equations, the solutions of
which uniquely follow from an adequate set of initial and boundary conditions.
This is the case in theory, but we ought to accept the idea that with imperfect
models and inaccurate boundary and, especially, initial conditions, errors can
have a tendency to accumulate over the course of a long-range forecast and
thus to reduce skill with lead time. As a matter of fact, the situation is more
dramatic than that. Even if we could control the initial errors below any arbi-
trary value, which obviously we would never be able to do, some dynamical
equations, by their very nature, lead to solutions that diverge rapidly for even
extremely small changes in the initial conditions. The famous Lorenz equations
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(Lorenz, 1963, page 135) provide an archetype of a system of equations that
exhibit such a behavior:

dx

dt
=σ(y−x), (22.2a)

dy

dt
= rx−y−xz, (22.2b)

dz

dt
= xy−bz, (22.2c)

in which σ , r, and b are fixed parameters, and x, y, and z are temporal variables.
The equations form a low-order truncation of a spectral model of atmospheric
motions and, despite their innocent look, are known to generate chaotic trajecto-
ries such that two very close initial conditions will lead to completely different
solutions after some time (Fig. 22.1). Clearly, there is a predictability limit.

More generally, the accumulation of errors, even when starting with arbi-
trarily small errors in the initial conditions, can result in the existence of a
predictability limit in strongly nonlinear systems. This limit is estimated to be
one to two weeks for the global atmosphere and on the order of one month
for midlatitude ocean eddies. It is therefore not surprising that forecast skill
decreases with lead time approaching the predictability limit of the system
(Fig. 22.2). An idea of the predictability limit can be obtained by considering
the autocorrelation of the solution for time delay 1t>0:

ρ(1t)=
1
T

∫ T
1t u(t)u(t−1t)dt√

1
T

∫ T
1t u(t)2 dt

√
1
T

∫ T
1t u(t−1t)2 dt

(22.3)
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FIGURE 22.1 Trajectory in (x,z) space (left panel) showing the vacillation of the solution between
two cycles. For two slightly different initial conditions, the corresponding two solutions x(t) track
each other for some time and then diverge (right panel). Graph obtained by using chaos.m that
solves the Lorenz equations (22.2) with σ =10, r=28 and b=8/3.
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FIGURE 22.2 For incorrect initial conditions, the logarithm of the forecast error increases as a
function of lead time (left panel). Skill score decreases as a function of lead time for two differ-
ent base forecasts (right panel). For each curve an ensemble of 200 simulations with the Lorenz
equations was averaged.
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FIGURE 22.3 Autocorrelation as a function
of time delay1t for a solution x(t) of the Lorenz
equations (22.2). The curve, obtained by aver-
aging 200 different trajectories, shows that, on
average, after a few time units, the solution is
not well correlated with its own previous values.

with time T→∞. This function measures the extent to which the solution at
a given moment is on average close to the solution at a moment 1t earlier. In
this sense, the delay 1t for which the autocorrelation value ρ approaches zero
defines the time interval over which the solution no longer resembles its own
past, i.e., the time over which it “decorrelates” from itself. Put another way, the
value of 1t for which ρ falls close to zero is the memory time of the dynamical
process. For a purely random function, one without any past memory, the auto-
correlation is zero for any delay1t. For the solution to the Lorenz equations, the
predictability time can inferred from Fig. 22.3. It is important to note, however,
that the system may still be considered as deterministic as every initial condition
determines a unique evolution. The gradual loss of predictability means that, as
time goes on, we become less able to identify this unique trajectory even with
the finest numerical surgery and measurement tools.

In geophysical fluid dynamics, motions are not only controlled by initial
conditions but also by boundary conditions, and the predictability limit depends
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on the relative importance of boundary conditions to initial conditions. If the
system mostly responds to forcing applied at a boundary, such as an semi-
enclosed shallow sea with a strong ocean tide at its opening, the future behavior
can be predicted very far ahead, and the model’s skill is essentially measured
by the accuracy of the forcing. Since forcings and boundary conditions are
typically well known, skill remains high for long periods. The predictability
issue manifests itself most severely with systems essentially controlled by ini-
tial conditions. The global atmosphere, which has no lateral boundary, is the
quintessential example, and its initial conditions must be set with utmost care,
and, nonetheless, the prediction skill may start very high but degrade quite
quickly. Between those two extremes, the predictability of a system depends
on the relative importance of initial over boundary conditions (Fig. 22.4).

Despite the inherent problem of predictability, we can increase forecast
skills by reducing to a maximum the uncertainties in the model and its initial
and boundary conditions, so as to push further away the predictability limit of
the forecasting system. We can try to keep some of the errors under control,
especially those already classified as modeling errors (see Section 4.8). Within
the pages of this book, we encountered various levels of model simplifications,
such as the hydrostatic approximations, the quasi-geostrophic approximation,
and the shallow-water model. For all of these, numerical discretization in space
and time added further sources of errors. For initial and boundary conditions
based on observed fields, we can also distinguish several other kinds of error,
with the most obvious one being instrumental error (of generally known and
relatively low standard deviation). In Section 1.8, we also encountered the rep-
resentativity error due to the fact that a point measurement (e.g., a temperature
measurement in a city) is not the variable we actually would like to observe (the
temperature at the 50 km scale). Synopticity errors (i.e., lack of simultaneity
among several measurements) can be a concern when observations are binned
into time slots for analysis and assimilation (e.g., assembling into a single “snap-
shot” view of the ocean the data gathered during the span of a cruise) because
waves propagate, and temporal shifts can lead to severe Doppler effects (Rixen,
Beckers & Allen, 2001). In general, any data treatment before assimilation into
the model, such as interpolation, must be taken into account when assessing the
errors associated with the “observation.”

Lead time

High skill

No skill

FIGURE 22.4 Predictability behavior for
boundary-condition dependent systems (flat
line), initial-condition dependent systems (steep
line) and mixed situations (intermediate line).
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The distinction between modeling and observational errors is not always
clear, and the discrete sampling necessitated by the numerical grid can be
considered either a modeling error (truncation of continuous operators) or an
observational error (inaccurate because incomplete data). In any case, we face
the problem that some of the information, both from model and observations,
is incomplete and corrupted by errors. The main objective of data assimilation
is the reduction of the influence of those errors on the simulation by utilizing
data to guide the model in the best possible way. This improved analysis will
generally extend the lead time for which predictions are reliable. This, however,
is not the sole advantage of data assimilation; others will be discussed at the end
of the chapter.

The methods described below were for the most part developed within
the context of atmospheric modeling (e.g., Bengtsson, Ghil & Kallen, 1981;
Ghil & Childress, 1987; see also Navon, 2009 for a review) and later adapted
by the oceanographic community (e.g., Evensen, 1994; Ghil, 1989; Ghil &
Malanotte-Rizzoli, 1991). The presentation uses the unified notation proposed
by Ide, Courtier, Ghil and Lorenc (1997) also adopted in the reference book
of Kalnay (2003), with a few exceptions to stay consistent with the notation
used elsewhere in this book. Further seminal textbooks are those by Bennett
(1992), Malanotte-Rizzoli (1996), Robinson, Lermusiaux and Sloan (1998), and
Wunsch (1996).

22.2 NUDGING

Among the first methods used to guide numerical simulations by data injec-
tion is the nudging method. It starts from the governing equations of the state
vector x, which is the collection of variables in the forecasting system,

dx
dt
=Q(x, t),

where the operator Q bearing on the set of variables stands for the model equa-
tions. Assuming the observations are distributed in exactly the same way as the
state-vector components (i.e., observations are collected on the same grid as
the numerical model), we group them into a vector y (y being what x should
have been if the model had been correct). The nudging method then simply
adds a correction term proportional to the difference between model results and
observations:

dx
dt
=Q(x, t)+K(y−x). (22.4)

The additional term is the product of a matrix K with the model-observation
misfit. For the nudging method, this matrix is the diagonal matrix formed with
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a set of so-called time scales of relaxation noted τi, which may differ from
variable to variable: Kii=1/τi and Kij=0 for i 6= j. Since the difference between
the model simulation x and observations y is zero where there is no error, the
additional term only acts as a correction wherever necessary, “nudging” (i.e.,
pulling) the solution towards the observations.

The “strength” of the nudging depends intimately on the values ascribed to
the relaxation time scales τi. If the time scale is long compared with the time
scale of evolution of the corresponding variable, the correction is kept small
and qualified as background relaxation. Such background relaxation very often
uses climatological values in place of “observations.” When no observation is
present for a variable, the corresponding relaxation time is simply set to infinity.
When observations are only available at certain moments, the relaxation time
scale is made to decrease from a large to a small value when approaching the
moment to at which data are available to ensure a smooth temporal incorporation
of data. An example of time-dependent function is

1

τ
=K exp

[
−(t− to)2/T2

]
(22.5)

with T being an appropriate time scale over which the observation can nudge
the simulation. The time relaxation can also be made spatially dependent when
different dynamical regimes can be identified for physical reasons. One particu-
lar form of nudging is surface relaxation in ocean models, where the simulated
sea surface is nudged towards the observed surface fields. Such nudging is often
maintained with a low intensity even when full atmospheric fluxes are applied
onto the ocean in order to avoid any drift (e.g., Pinardi et al., 2003). At the other
extreme, when the relaxation time is taken very short and comparable with the
time step, the nudging method basically replaces the simulated value with the
corresponding observation, a process called direct insertion when carried out in
a single time step.

Nudging was widely used in the early days of data assimilation but has
now been superseded by more sophisticated techniques (see below). Nonethe-
less nudging remains popular near boundaries, where it can be interpreted as a
boundary condition corrected by observations. In this case, the time-continuous
nature of the correction is beneficial by avoiding sudden shocks in the model.

22.3 OPTIMAL INTERPOLATION

The previous method, though robust and found useful in the past, is rather an
ad-hoc approach, and we will now present a method that is based on sound sta-
tistical optimization. In particular, relationships between different variables will
be exploited in order to enhance the assimilation. For this, we will use a notation
that is slightly different from the discretization notation used until now. Because
sequential assimilation cycles perform an analysis at not every time step of the
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Today

Tomorrow

Time stepping

Day + 1

Prediction for lead time

Initialization

Day + 2

Day + 1

Observations

Reinitialization combining observations and previous forecast

Prediction

Prediction

Prediction for lead time

Day + 2

FIGURE 22.5 Schematic representation of reinitialization through sequential data assimilation on
a daily basis. On a given day, the model provides a forecast for several days ahead. The next day,
two pieces of information become available, the forecast for the day and the daily observation.
Combining the two generates a new initial condition for the model, and an improved forecast can
be provided for the following days.

model (Fig. 22.5), we shall denote by xn a particular cycle of the assimilation.1

We also should keep in mind that in practical applications, it is advantageous to
use a state vector defined by anomalies (i.e., departure from a reference state),
normalized so that each element of the state vector should be comparable with
the others. The state vector then does not gather velocity and temperature but
normalized versions of them. Because it contains variables of different types, we
are heading for a so-called multivariate approach. Forecast values will be refer-
enced by superscript f and the “analyzed” variables, obtained after combining
forecast with observations by the superscript a.

For the purpose of illustration, we start with the elementary problem of
having at our disposal at a given moment two pieces of information about a
temperature of unknown true state T t. The information can originate from either
measurement or model and can include an error ε. For the two given values T1
and T2, we therefore write

T1=T t+ε1, 〈ε1〉=0, T2=T t+ε2, 〈ε2〉=0, (22.6a)

1Note the difference with the notation xn previously used to refer to the variable at time step n.
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where we assume that, on average, denoted by brackets 〈 〉, errors van-
ish. In other words, we suppose the values to be unbiased. We can estimate
the unknown, true temperature by a linear combination of the two available
values:

T=w1 T1+w2 T2= (w1+w2)T
t+(w1ε1+w2ε2) (22.7)

and on average, this estimate will take the value

〈T〉= (w1+w2)T
t, (22.8)

so that we obtain an unbiased estimate of the true state if we take w1+w2=1.
In this case, we perform a de-facto weighted average among the two pieces of
available information, an intuitive approach. An unbiased estimate, or analysis,
Ta of the true state is therefore

Ta= (1−w2)T1+w2 T2=T1+w2 (T2−T1) (22.9)

while in reality there is an error

Ta−T t= (1−w2)ε1+w2 ε2. (22.10)

This error is zero on average, but its variance is not zero:

〈
(Ta−T t)2

〉
= (1−w2)

2 〈ε2
1

〉
+w2

2

〈
ε2

2

〉
+2(1−w2)w2 〈ε1ε2〉. (22.11)

The actual errors ε1 and ε2 are not known, otherwise we would have had
ready access to T t. However, given some basic information on the source of
the errors, we can assess the so-called error variance

〈
ε2

1

〉
or, equivalently, the

standard deviation
√〈
ε2

1

〉
. If the two pieces of information (observed and/or

modeled) leading to T1 and T2 are independent of each other, we may reason-
ably suppose that the errors ε1 and ε2 are uncorrelated, which in statistical terms
means 〈ε1ε2〉=0. Hence, the error variance

〈
ε2
〉

of the analysis is

〈
ε2〉= (1−w2)

2〈ε2
1

〉
+w2

2

〈
ε2

2

〉
. (22.12)

Naturally, the best estimate of T t is the one with the lowest error variance. Find-
ing the value of w2 that minimizes the right-hand side of the preceding equation,
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we obtain

w2=
〈
ε2

1

〉〈
ε2

1

〉
+
〈
ε2

2

〉 (22.13)

and obtain the minimal error variance:

〈
ε2〉= 〈

ε2
1

〉 〈
ε2

2

〉〈
ε2

1

〉
+
〈
ε2

2

〉 =(1−
〈
ε2

1

〉〈
ε2

1

〉
+
〈
ε2

2

〉) 〈ε2
1

〉
, (22.14)

while the temperature estimate is

Ta=T1+
( 〈

ε2
1

〉〈
ε2

1

〉
+
〈
ε2

2

〉)(T2−T1). (22.15)

We observe that the error variance of the combination of T1 and T2 is smaller
than each of

〈
ε2

1

〉
and

〈
ε2

2

〉
. Using information from two sources, even if one of

the two has a relatively large error, reduces on average the uncertainty. This
is the idea underlying data assimilation using error analysis to reduce overall
uncertainty. If optimization such as the minimization of Eq. (22.12) is used, the
process can be quite effective at decreasing the forecast error.

We can reach the same optimal estimate by finding the T value that min-
imizes a weighted measure of the differences between the analysis and the
available information, with weights inversely proportional to the error variance
of the information:

min
T

J= (T−T1)
2

2
〈
ε2

1

〉 + (T−T2)
2

2
〈
ε2

2

〉 . (22.16)

In other words, we do not mind that the analysis departs from the rela-
tively uncertain observation, but we do require that the analysis falls closer
to the observation if the latter happens to be more accurate. The minimum of
Eq. (22.16) is reached when T takes the value Ta of Eq. (22.15).

The optimal reduction in error can be used to blend observations with a
model forecast through the technique called Optimal Interpolation.2 Typically,
there are many more model data than available observations3 so that the size M
of x is much larger than the size P of the vector y containing observations.

2Sometimes the term objective analysis is used instead. This is a poor choice of words, however, as
the latter is generally no more than a mathematical interpolation that stands opposed to the historical
subjective analysis of weather patterns by pencil and paper.
3In 2006, The European Centre for Medium-Range Weather Forecasts, ECMWF, used M=3×107

state variables for its operational ensemble T256 weather forecast model and assimilated
P=3×106 observations every cycle of 12 hours. The Mercator ocean model PSY3v1 operates
with M=108 but “only” P=0.25×106 data were assimilated once a week.
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To blend observations into a model simulation at a certain point in time, we
construct the xa, called the analysis, as a linear combination of the forecast x f

up to that point in time with the observations y that have become available:

xa=x f +K
(

y−Hx f
)
. (22.17)

This procedure uses a linear observation operator H that selects or interpolates
the simulated state variables to the points of observation in order to quantify the
model-observation misfit (y−Hx f ) (e.g., the temperature forecast is interpo-
lated to the position in which a meteorological station measures temperature).
In some cases, the matrix H may contain mathematical operations that relate
multiple forecast fields to observed parameters not directly predicted. For exam-
ple, the so-called Gelbstoff (literally, yellow matter) measured in the ocean by
satellites is an aggregate value of organic compounds in the water column, but
the corresponding dispersion model typically calculates the three-dimensional
structure of the organic matter, and the matrix H has to add the values at the
various grid points spanning the height of the water column at the point of obser-
vation. Occasionally the relationship between model variables and observations
is nonlinear, and the correction term, called innovation vector and noted d,
should be replaced by

d=y−H
(
x f
)

(22.18)

where H stands for a nonlinear function. Here, we only consider a matrix H
assuming a linear relationship between observed and modeled values.

We can also mention that the interpretation of observation errors depends
on how the data are prepared, and how the observation operator is constructed.
Altimetric data can, for example, be assimilated along tracks, and the observa-
tional error estimated as a combination of instrumental, representativity (mix
of spatial scales), synopticity (time-slot binning), and interpolation errors when
sampling the model along the tracks using H. If, for convenience, the tracks are
gridded beforehand on the same mesh as the model grid, this interpolation, itself
performed, for example, with a spatial Optimal Interpolation version (Numeri-
cal Exercise 22.2), has an associated error covariance, which must be taken into
account in prescribing the observational error. Generally, interpolation from the
model to data location (through H) introduces fewer errors because there are
typically many more model grid points than observation points.

The matrix K of size M×P, where M is the number of model variables and P
the number of observations, is determined in order to obtain the “best” analysis,
that is, an optimal blending of data into model. This analysis depends on the
error fields of both forecast and observations. The forecast error is

ε=x−xt, (22.19)
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that is, the difference between the calculated field x and the (unknown) true state
xt. Likewise, the observational error is

εo=y−yt. (22.20)

From these errors, even though we do not know their actual values because
the true states are not known, we can define statistical averages and variances.
Obviously, for unbiased models and observations—which we both assume—
the averages (first-order moments) 〈ε〉 and 〈εo〉 are zero. The error-covariance
matrix for observations

R=
〈
εoεoT〉 (22.21)

is square matrix with nonzero elements on the diagonal if each observation is
subject to its own error. On the diagonal, we therefore find the error variance
of each observation. Off-diagonal terms are nonzero whenever two separate
observations are correlated, as it occasionally happens with satellite observa-
tions. Note that off-diagonal terms are symmetric and that for any vector z, the

quadratic form zTRz=
〈 (

zTεo
)2 〉

is never negative so that a covariance matrix
is always semi-positively defined. If errors are random and span the whole
state-vector space, the covariance matrix is strictly positively defined.

The analysis step (22.17) can be expressed as

xt+εa=xt+ε f +K
(
εo−Hε f )+K

(
yt−Hxt)︸ ︷︷ ︸
=0

. (22.22)

The last term is zero because, by definition, a perfect model would perfectly
match the observations of the true state. It follows that the error on the analysis
field is

εa= ε f +K
(
εo−Hε f ), (22.23)

from which we can proceed to construct the error covariance
〈
εaεaT〉 of the

analysis by multiplying (22.23) by its own transposed and take the average:〈
εaεaT〉= 〈ε f ε f T

〉
+K

〈
(εo−Hε f )ε f T

〉
+
〈
ε f
(
εoT−ε f T

HT
)〉

KT

+K
〈(

εo−Hε f )(εoT−ε f T
HT
)〉

KT. (22.24)

Defining covariance matrices

P=
〈
εεT〉 (22.25)



Chapter | 22 Data Assimilation 737

for both forecast and analysis error fields (with superscripts f and a, respec-
tively) and making the reasonable assumption that there is no correlation4

between observational error and forecast error, i.e.,
〈
εoεf T〉=0, we can rewrite

the error-covariance matrix after analysis as

Pa=P f −KHP f −P f HTKT+K
(
R+HP f HT

)
KT

=P f −P f HTA−1HP f +
(
P f HT−KA

)
A−1

(
HP f −AKT

)
(22.26)

in which matrix A, defined for convenience as

A=HP f HT+R (22.27)

is symmetric and can most likely be inverted.5

If state variables are suitably scaled to enable comparison of, say, tempera-
ture errors with velocity errors, the overall error εa of the analyzed field may be
taken as the expected norm of the error vector:

εa=
〈
εaTεa〉. (22.28)

This, however, is nothing other than the trace of the covariance matrix
〈
εaεaT

〉
,

and an overall measure of the analysis error is thus

εa= trace
(
Pa). (22.29)

Since the M×P matrix K is still unspecified, a reasonable choice is to choose
it such that it minimizes the global error. One way of proceeding is to take the
trace of Eq. (22.26) and differentiate the trace with respect to all components
of K in order to find the extremal value of the global error; because (22.26) is a
quadratic form in terms of K, and because A−1 is positive defined if it exists, the
extremum is assured to be a minimum. Alternatively, we can think of the error
as being a function εa(K) of the matrix K and search for an optimal K such that

εa(K+L)−εa(K )=0 (22.30)

for an arbitrary, small departure matrix L. After linearization with respect to L,
we thus require

trace
(
−L

(
HP f −AKT

)
−
(
P f HT−KA

)
LT
)
=0. (22.31)

4Decorrelation between observational error and modeling error is justified by the very different
origin of the information.
5Because P and R are semipositive defined matrices, the chances are not low. In addition, when
observations and state variables are covering a wide domain, the covariances between distant points
are generally small so that the matrices have a tendency to be diagonally dominant.
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Since the two terms are the transpose of each other and thus share the same
trace, it is sufficient that this common trace vanishes

trace
((

P f HT−KA
)

LT
)
=0.

Since L is arbitrary, its matrix coefficient must be zero, and the K matrix that
minimizes the analysis error is

K=P f HTA−1

=P f HT
(
HP f HT+R

)−1
. (22.32)

We note that matrix A must be invertible in order to reach the error minimum.
The K matrix, which combines model forecast with data, is the analog of
Eq. (22.13) and is called the Kalman gain matrix.

The minimum error covariance of the analysis is obtained by inserting
(22.32) into (22.26):

Pa= (I−KH)P f =
(

I−P f HT
(
HP f HT+R

)−1
H
)

P f (22.33)

which is the analog of Eq. (22.14). We note that neither optimal Kalman gain
matrix nor minimum error covariance depends on the value of the observations
or the forecast state vector but only on their statistical error covariance. The
only field that depends on the actual field values is, of course, the state vector
itself, which after optimal analysis becomes

xa=x f +P f HT
(
HP f HT+R

)−1(
y−Hx f

)
. (22.34)

The use of Eq. (22.32) in Eq. (22.17) to combine forecast and observations
with respective error covariances P f and R is known as Optimal Interpola-
tion (OI).

With forecast and observation covariances given, an alternative derivation
of Optimal Interpolation is a variational approach called 3D-Var, in which the
objective is to find the state vector that minimizes the error measure J given by

J(x)= 1

2

(
x−x f

)T
P f−1

(
x−x f

)
+ 1

2
(Hx−y)TR−1 (Hx−y) (22.35)

In other words, the procedure is to search for the state vector closest to both
model forecast and observations and which penalizes less the more accurate
information, in close analogy with Eq. (22.16). Finding the optimum state vector
leads to the same analyzed field as in Eq. (22.34). The demonstration is left as
an exercise (Analytical Problem 22.4).

Optimal Interpolation can also be cast in terms of the maximum likelihood
estimator of the true field, i.e., the field that has the highest probability of match-
ing reality, which is also given by Eq. (22.34) if the probability density function
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(pdf) of each errors follows the normal (Gaussian) distribution (e.g., Lorenc,
1986). In any case, it is necessary to quantify all error variances, which is not
an easy task (see for example Lermusiaux et al., 2006).

22.4 KALMAN FILTERING

In the formulation of Optimal Interpolation, it turns out that the dynamical
model used to provide the forecast does not appear explicitly. Only its fore-
cast error covariance matrix P f is needed besides the forecast itself. Thus, very
little of what is known about the model is actually used.

Knowing, for example, that a fluid-flow model has a tendency to propagate
errors on state variables along preferential directions, such as the flow itself or a
wave guide, or may be amplified by unstable modes, we ought to ask how data
assimilation could take into account certain model properties. For this, we start
from the fact that between times n and n+1 when assimilation is performed the
model advances the state vector according to

xn+1=M(xn)+ fn+ηn, (22.36)

where fn represents the external forcing between times n and n+1, and ηn
the error introduced by the model as it marches through a multiplicity of time
steps from time level n of the last data assimilation to time level n+1 when
the next data assimilation is scheduled to take place. The operator M stands
for the inner machinery of the model, which calculates the state vector at time
level n+1, over multiple time steps, from its previous value at time level n.
Assuming the model forecast starts at time level n with the analyzed field pro-
duced from data assimilation at that time and also assuming a linearized model
(for pure convenience because it is not true!), we write with a certain level of
approximation:

x f
n+1=Mxa

n+ fn+ηn, (22.37)

where the matrix M replaces the nonlinear operator M of Eq. (22.36). Such a
matrix is actually never constructed in operational models but is only introduced
here to provide an elegant presentation of the method. The unknown, true state
evolves similarly but without modeling error and thus obeys

xt
n+1=Mxt

n+ fn (22.38)

so that the forecast error ε f =x f −xt is

ε
f
n+1=M εa

n+ηn. (22.39)

Multiplying this last equation to the right by its transpose and performing the
statistical average to obtain error covariance, we obtain the so-called Lyapunov
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equation, which allows for the advancement in time of the error covariance:

P f
n+1=MPa

nMT+Qn=M
(
MPa

n

)T+Qn (22.40)

with the following definition of the model-error covariance matrix:

Qn=
〈
ηnη

T
n

〉
. (22.41)

As earlier, errors of different origins are assumed to be uncorrelated. Since
the forcing f disappears from the error evolution equation, we will not keep it
during later developments. Note that, even if we do not write down the matrix
M explicitly, the evolution of the error-covariance matrix Pa can still be calcu-
lated by using instead the actual model on each of its columns c, as shown by
operations such as Mc involved in the error-covariance matrix updates. In order
to start the calculation of the error evolution, we need to know the initial value
of P, which is related to the error on initial conditions:

P0=
〈(

x0−xt
0

)(
x0−xt

0

)T〉
. (22.42)

Now, we have a method by which we can calculate the evolution of the error-
covariance, and the Kalman filter assimilation is summarized in Fig. 22.6, which
includes an extension towards a nonlinear model with linearized error propaga-
tion (Extended Kalman Filter, EKF). The analysis step itself is unchanged from
Optimal Interpolation, but the error covariance is updated at each assimilation
step. In sum, what Kalman Filtering adds to Optimal Interpolation is that not
only state variables but also their errors are marched in time by the forecast
model.

Two extremes are noteworthy. At one extreme, the time between two con-
secutive assimilations is very short compared with the time scale of evolution
of the dynamical process being modeled, and the state variables and their error
remain virtually unchanged. The model can then be considered as persistent,
with M∼ I. In this case

P f
n+1∼Pa

n+Qn. (22.43)

In other words, the forecast error is the error of the previous analysis, without
advection or any other modification, augmented by the model error introduced
during the simulation between assimilations. The last error is relatively small for
a well-constructed model because the time integration is short compared with
the time scale of interest.

At the other extreme, when assimilation takes place only very infrequently,
the model is likely to reach its limit of predictability, and its forecast becomes
little more than random. Put another way, the forecast itself is the modeling
error. Mathematically this amounts to write M∼0 and hence

P f
n+1∼Qn, (22.44)
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x f
n+1

 = M (xa
n)

P f
n+1

 = Mn P
a
n
 Mn

T + Qn

Forecast:

Initialization: x0
a = x

P0
a = P

xa
n+1

 = x f
n+1 + Kn+1 (yn+1 − Hn+1 x

f
n+1)

Pa
n+1

 = P f
n+1 − Kn+1 Hn+1 P

f
n+1

Analysis: Kn+1 = P f
n+1 H

T
n+1 (Hn+1 P

f
n+1 H

T
n+1 + Rn+1)−1

FIGURE 22.6 Sequence of steps followed in the Extended Kalman Filter assimilation scheme with
changing observation network (changing matrix H), nonlinear model forecast (M), and model lin-
earization for the error forecast between times of assimilation. Note that strongly nonlinear models,
such as those found in ecosystem studies, lead to special problems (e.g., Robinson & Lermusiaux,
2002).

implying that the error field no longer has any memory of the previous error, a
fact consistent with the trespassing of the predictability limit, but is entirely due
to the simulation. Obviously, Qn in this case is much larger than in the previous
case because of the long-term integration and error amplifications inherent to
the predictability limit.

In order to illustrate the structure of Kalman filtering in a general case, we
first note that for the analysis step the error covariance matrix only appears in
the combination P f HT,

P f HT=
〈
ε f ε f T

〉
HT=

〈(
x f −xt

)(
Hx f −Hxt

)T
〉

(22.45)
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which is the covariance between the observed quantities and all others. Because
it is the matrix that ultimately multiplies a vector of the size of the observational
data set (P), it effectively propagates information from the data locations into
the model grid. We also have

A = HP f HT+R=
〈(

Hx f −Hxt
)(

Hx f −Hxt
)T
〉
+R

=
〈(

Hx f −y
)(

Hx f −y
)T
〉

(22.46)

which can be interpreted in terms of error variance of the forecast in the
observed part, combined with the corresponding observational error, reminis-
cent of

〈
ε2

1

〉
+
〈
ε2

2

〉
in Eq. (22.13). This also shows that A−1 exists according to the

statistics regarding the innovation vector Hx f −y. Should a component of this
innovation vector always be zero making A singular, this would mean that the
corresponding model part would never need a correction and that it should there-
fore be excluded from the data analysis procedure. Also, note that the Kalman
gain matrix K gives greater weight to observations with higher accuracy and that
it transmits the corresponding information to other locations.

It is instructive to look at the assimilation of a single observation on the kth

component of the state vector x. In this case

l P f HT is an M×1 matrix with components P f
ik, i=1, . . . ,M, and it is thus

responsible for transferring the innovation learned from observation in loca-
tion k to the other components of the state vector. The covariance matrix
thus appears as the matrix allowing the correction of the fields using remote
information. The structure of the covariance depends on the problem at hand
(Fig. 22.7). In the example of Fig. 22.7, the error covariance after the anal-
ysis is reduced at the data location and then advected by the flow. Hence,
downstream of the data point, error covariances are lower and reflect the
remote influence of the data.

l

(
HP f HT+R

)−1
reduces to a scalar value

(
P f

kk+ε2
0

)−1 in which ε2
0 is the

variance of the observational error and P f
kk the forecast error covariance at

the same location.

The error-covariance matrix thus allows the radiation of information from
the data location into other regions of the domain and onto other state variables
taking into account the relative error of observations and model. Thus, assim-
ilating data from atmospheric temperature profiles might well serve to change
winds elsewhere, and sea surface height measurement by an altimeter satellite
may well be used to adjust density fields in deeper ocean layers. In contrast
to the atmosphere for which a large network of ground-based observation sys-
tems and vertical profile soundings by means of balloons have been deployed
at reasonable cost, it is far more expensive at sea to maintain a fixed network
of moorings or to perform periodic ship cruises in order to sample the ocean
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FIGURE 22.7 Assimilation experiment in an advection problem in which data are provided at grid
point i=40 at every time step. Left panel: The error-covariance matrix (left panel with lower values
in black and higher values in lighter shades). The covariance matrix has the largest values along its
diagonal, symptomatic of locality. Note, however, that these diagonal values are lower downstream
of the data point because the accurate data reduce errors there. Right panel: The advected field,
initial pattern (square signal on the left), what it should have been at a later time (square signal
on the right), what it actually turned out to be with inaccurate velocity and numerical diffusion
(dotted curve), and what the prediction became with the help data assimilation (solid curve). See
kalmanupwadv.m for details of the implementation.

interior. In consequence, satellite data are immensely valuable in ocean fore-
casts, and it is essential to be able to utilize these surface data to inform density
fields and currents in the interior of the ocean.

Because of our minimization of errors using linear combinations and the
hypotheses of zero bias, the full Kalman filter is called a Best Linear Unbiased
Estimation (BLUE) of the true state. Other linear methods presented previously,
such as nudging, are suboptimal. It is interesting to note that the Kalman filter
approach encompasses in some way the other assimilation methods. For exam-
ple, if we were to prescribe a priori the forecast error covariance in the Kalman
filter instead of letting it be calculated by the model, we would downgrade the
Kalman filter to an Optimal Interpolation. If, furthermore, the error and obser-
vation covariance matrices were not just prescribed but also taken diagonal,
then we recover the nudging scheme. Finally, should the nudging time scale
be decreased towards zero, the procedure would be reduced to direct inser-
tion (mere replacement of state variables by corresponding observations). In all
cases, the term filter method is appropriate because only past data are utilized to
estimate local fields.

22.5 INVERSE METHODS

The Kalman filter operation relies only on past information, the only type
of information that is available in an operational forecast mode. Separately,
it acknowledges that the dynamic model is not perfect. The procedure of
data assimilation optimized with the Kalman filter, however, presents a major
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FIGURE 22.8 The Kalman Filter approach leads to a model trajectory that is interrupted each
time data assimilation is performed. Vertical bars depicting the error level show that errors creep up
during forecast intervals but are suddenly reduced every time assimilation takes place.

drawback in terms of model simulation analyzed over long time periods: The
simulated model states (trajectories of state variables) are no longer continuous
but exhibit a jump each time data assimilation is performed (Fig. 22.8), and
these sudden variations in the values of dynamical variables may cause unphys-
ical shocks. For some applications, it is desirable to avoid any jump to obtain a
simulation that preserves the continuity of the physical system (Fig. 22.9).

When we are concerned with obtaining a continuous model trajectory, it is
reasonable to assume the dynamical model is perfect except that errors may be
introduced by inaccurate initial conditions, incorrect forcing, and possibly also
incorrect model parameters such as an eddy-viscosity value. Those errors are
then considered responsible for model predictions not conforming with reality.
The idea we will now follow is that of optimizing those model components so
that the model evolution remains as close as possible to the observations over
an extended period of time. The state of the system is at any moment influenced
not only by prior data but also by future data. Needless to say, this is not possible
in a forecasting mode, but is nonetheless a useful method for re-analysis of past
observations with an eye on model improvement. Such a method using data over
an interval of time is termed a smoother.

With an inverse model, the goal is the minimization of model-data misfit over
a finite time interval with N data sets yn available along the way by searching
for an optimal set of initial conditions x0. The method proceeds by minimizing
a so-called cost function defined as

J=
N−1∑
n=0

1

2

(
Hnxn−yn

)TR−1
n

(
Hnxn−yn

)
+Jb. (22.47)
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FIGURE 22.9 The adjoint method selects the model trajectory that best fits the observations over
time. The initial conditions used to create different trajectories are drawn with a probability density
function centered on a background state xb

0.

The quadratic first term is understood as a weighted sum of squares of misfits
between observation (yn) and corresponding model realizations (Hnxn). To this
has been added a term Jb, which may become useful should we want to avoid
a set of initial conditions x0 departing too much from a reference (background)
field xb

0. In such case, this extra term takes the form

Jb=
1

2

(
x0−xb

0

)T
P−1

0

(
x0−xb

0

)
, (22.48)

the minimization of which “pulls” the initial conditions toward their background
values. Such a background state xb

0 of initial conditions can be supplied for
example by previous forecasts or climatology.

In addition to the minimization of the cost function J, we need to enforce the
constraint that the solution x is a model result satisfying

xn+1=M(xn). (22.49)

For simplicity, however, we again resort to a linearized version,

xn+1=Mnxn. (22.50)

An elegant way to satisfy the combination of constraints is to use the method
of Lagrange multipliers. By means of these multipliers λn, the set constraints
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(22.50) are merged into the cost function to form the following expression:

J=
N−1∑
n=0

1

2
(Hnxn−yn)

TR−1
n (Hnxn−yn)

+
N−1∑
n=0

λT
n (xn+1−Mnxn)

+ 1

2

(
x0−xb

0

)T
P−1

0

(
x0−xb

0

)
. (22.51)

This augmented cost function is then optimized with respect to all variables,
including the Lagrangian multipliers. This forms a new variational problem
called 4D-Var. Note that we chose to take the initial observations xb

0 into account
in the cost function as well as all observations yn along the way (up to n=N−1)
but not the simulation outcome xN , which can thus be regarded as the forecast
based on an evolution that is constrained to pass as close as possible to the N
previous observations.

The optimization of (22.51) with respect to the Lagrange multipliers (i.e.,
derivatives with respect to λn set to zero) returns the model constraints of
Eq. (22.50) for n=0 to N−1. Variation with respect to the initial state x0 leads
to

∇x0J=P−1
0

(
x0−xb

0

)
+HT

0R−1
0

(
H0x0−y0

)
−MT

0λ0, (22.52)

which must vanish for the optimal solution. Variation of Eq. (22.51) with respect
to each intermediate state xm must also be zero. Realizing that xm appears in
each sum for both n=m and n=m−1, we obtain the following condition in
which we switched from m back to n:

HT
nR−1

n (Hnxn−yn)−MT
nλn+λn−1=0 n=1, . . . ,N−1. (22.53)

Finally, variation with respect to the final state xN simply provides λN−1=0.
The different conditions can be recast into the following algorithm. We start

with an estimate x0 of the initial condition and then perform the following
operations

xn+1=Mn xn, n=0, . . . ,N−1 (22.54a)

λN−1=0 (22.54b)

λn−1=MT
nλn−HT

nR−1
n (Hnxn−yn), n=N−1, . . . ,1. (22.54c)

In this process, we note that model-data misfits Hnxn−yn are driving the values
of the Lagrange multipliers. All stationary conditions imposed on Eq. (22.51)
are now satisfied except that∇x0J given by Eq. (22.52) is not yet zero. The recur-
rence (22.54c) on the Lagrange multiplier can formally be extended to n=0 so
that λ−1 takes on the value of −∇x0J if no background field is used (P−1

0 =0).
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FIGURE 22.10 The forward integration starts from an initial guess of the control (adjustable)
parameters and then provides the state variable over the simulation window. Misfits between obser-
vations and model results are stored, and error norms of the cost function J defined by Eq. (22.35)
are accumulated. Then, the adjoint model is integrated backward in time, with the misfits used as
forcing. Upon returning to the start n=0, the gradient (22.52) can be calculated. If it is not zero, the
optimum is not reached and an improved guess of the control parameters can be calculated by mini-
mization tools using the cost function value J and its gradient with respect to the control parameters.

But because we now have access to a value of J and its gradient with respect to
the variables on which we optimize our solution, the initial condition, we may
use any mathematical minimization tool that searches for such minimum using
gradients. The steepest descent or the most efficient conjugate gradient methods
(see Section 7.8) are iterative methods that generate a succession of states (here
for x0) that decrease the value of the cost function J depending on the gradient
of the function. We therefore now have a relatively simple way of calculating
those gradients by performing a forward integration of the model, called the
direct model, and a backward integration to evaluate the Lagrange multipliers,
called the inverse model, and finally the gradients (Fig. 22.10).

This apparently simple procedure masks several practical problems, how-
ever. The equations for the Lagrange multipliers are very similar to those of the
direct model with the seemingly innocent difference that, instead of matrix M,
its transpose appears, and instead of applying M we apply its adjoint to λn to
create the time series. Therefore, we speak of the adjoint model when referring
to the backward integration for the Lagrange multipliers. In practice, since a
numerical model never explicitly creates the matrix M, this means that actual
programming of an adjoint, nonlinear model is necessary, the action of which on
λ is equivalent to applying the transpose model matrix. Another practical prob-
lem for time-varying models is the need to store intermediate model results, or
to regenerate them on a need basis, over the entire simulation interval because
of the backward integration. For more details on implementation aspects of the
adjoint method, the reader is referred to Courtier, Thepaut and Hollingsworth,
1994 and for early theoretical developments to Talagrand and Courtier (1987).

The method is readily extended to optimizations of parameter values such
as eddy viscosity and boundary conditions. Parameters to be optimized, called
control parameters, can, for example, be introduced as additional state variables
into the state vector, with an evolution equation of persistence. In all cases, it
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must be kept in mind, however, that any inversion is only valid as long as the
direct model itself is able to simulate correct results. In other words, should an
inverse method be used on a grossly inadequate model in an attempt to improve
it by estimating suitable parameter values, these parameter values run the risk
of no longer having any physical meaning and to be just ad-hoc values. It might
therefore be necessary instead to relax the hypothesis of a dynamically correct
model and allow for modeling errors, as done when a Kalman filter is used.

Allowing the model solution to deviate somewhat from a pure model solu-
tion is achieved by replacing the strong constraint (22.50) with a so-called weak
constraint, penalizing only strong departures from Eq. (22.50), with the stiffest
penalties reserved for models that are most trustworthy. Doing so, we can adapt
the cost function of the inverse model to form a generalized inverse model by
minimizing

J=
N−1∑
n=0

1

2
(Hnxn−yn)

TR−1
n (Hnxn−yn)

+
N−1∑
n=0

1

2
(xn+1−Mn xn)

TQ−1
n (xn+1−Mn xn)

+ 1

2

(
x0−xb

0

)T
P−1

0

(
x0−xb

0

)
, (22.55)

where Q is the error covariance of the model.
Differentiation with respect to the initial condition provides

∇x0J=P−1
0

(
x0−xb

0

)
+HT

0R−1
0

(
H0x0−y0

)
−MT

0Q−1
0 (x1−M0 x0), (22.56)

while differentiation with respect to intermediate states (n=1, . . . ,N−1) leads
to the additional conditions

HT
nR−1

n (Hnxn−yn)−
MT

nQ−1
n (xn+1−Mn xn)+Q−1

n−1 (xn−Mn−1 xn−1)=0, (22.57)

and differentiation with respect to the final state provides xN =MN−1 xN−1.
This system of equations can be written in a more familiar way as

xn=Mn−1 xn−1+Qn−1λn−1, n=1, . . . ,N (22.58a)

λN−1=0 (22.58b)

λn−1=MT
nλn−HT

nR−1
n (Hnxn−yn) n=N−1, . . . ,1 (22.58c)

with the need for gradient (22.56) to be zero. These equations are very similar to
those of the adjoint method (22.54) with the additional term involving Q in the
direct model allowing the propagation of model errors. Though similar, the prac-
tical solution is now more complicated than for the adjoint method and can be



Chapter | 22 Data Assimilation 749

t

Observation

x

Initial condition

Control of initial conditions

Modified model trajectoryData influence

Unmodified model trajectory

FIGURE 22.11 Generalized inverse methods allow the simultaneous optimization of initial
conditions and the minimization of the departure of the model from observations.

obtained with the so-called representer method (Bennett, 1992). The generalized
inverse method thus exhibits a solution that is not a true solution of the direct
model but one that effectively reaches a compromise between observations and
a true model solution (Fig. 22.11).

Variational approaches are attractive because they permit efficient model
calibration, but error covariances of observations and model need to be pre-
scribed a priori, which is a handicap. More importantly, except for the value
of the cost function, which is an overall measure, the analysis is not accom-
panied by an error estimate on the final analysis contrary to the Kalman filter
(22.33). In principle, it is possible to obtain such error estimates with varia-
tional methods by having recourse to the second derivatives of the cost function
with respect to the control parameters, the Hessian matrix. Intuitively, if the
cost function is decreasing sharply (i.e., if it can be said that it exhibits a “deep
well”), the optimum is much better constrained than for a relatively flat cost
function (Fig. 22.12). The Hessian (curvature) matrix allows therefore the cal-
culation of the error covariance, a property demonstrated in Rabier and Courtier
(1992).

Another way to obtain smooth trajectories with error estimates is to gener-
alize the Kalman filter to include not only past values but also future ones. The
so-called Kalman smoother does this and provides, for linear systems, identical
results to those of the generalized inverse approach over the whole simulation
interval.

Similarly it can be shown that the standard 4D-Var method and Kalman filter
are equivalent to each other for a perfect model with identical data over a given
time interval and initial error covariance, in the sense that they lead to the same
final analysis for linear models and linear observation operators.

Although equivalence has been proven in some cases, the methods tend to
lose their overlaps when the underlying hypotheses, such as linearity of the
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FIGURE 22.12 When the Hessian matrix of J—the set of its second derivatives with respect
to adjustable parameters—is large, the minimum tends to be well constrained (“deep well”—left
panel), and errors in the final state are small. On the contrary, errors in the optimal solution will
be larger if the cost function exhibits a wide range over which the adjustable parameters may vary
without penalizing significantly the value of J (“shallow well”—right panel).

model and unbiased information, are violated. The different methods then lead
to different outcomes. Also, the practical implementation can differ significantly
from method to method and can widely affect their algorithmic performance.

22.6 OPERATIONAL MODELS

Practical implementation of the aforementioned data assimilation methods is a
concern when considering the typical number of operations that are to be per-
formed routinely with an operational model. The nudging method barely adds
a linear term to existing equations, and the overhead cost associated with this
procedure is negligible. For Optimal Interpolation in its original form, there
arises at least the need to invert a matrix of size proportional to the number
of observations.6 Since the matrix H is generally mostly composed of zeros,
we need not pay attention to costs associated with multiplications by H. Nev-
ertheless, for a full matrix HPHT+R, the cost of its inversion is roughly P3

operations. In addition, we need to store HP of size M×P. This amounts to a
major burden on computer resources if P is large. If we want to calculate the
error covariance after the analysis, the required matrix multiplications demand
PM2 operations. If only the diagonal of the covariance matrix, i.e., if only the
local error variances are sought, the number of operations drops to PM, still a
large number.

The computational demand, of course, rises if we update the error covari-
ance over time as needed in Kalman filtering. Granted, we never construct the
matrix M to march the model forward, but multiplication by this matrix with a
vector actually represents a model integration. Hence, if the matrix M multiplies
another matrix of size M×M, the cost estimate is that of M model integrations,

6This is assuming the covariance matrix P or, rather, HP can be easily calculated.
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which is therefore the cost of updating the forecast error covariance, which must
be compared with the cost of a single model integration as when no assimilation
is performed.

For the 3D-Var method, the situation is not any better because it necessi-
tates M3 operations to invert each covariance matrix, unless their inverses are
provided. In that case, we need M2 operations to calculate each cost function,
M operations to calculate its gradient, and K iterations to find the minimum. In
order to reach the minimum, K=M iterations are needed in theory, but good
approximations can be found for K much less than M.

For 4D-Var, similar estimates apply with the need to perform a direct model
integration and its adjoint, reverse integration for each evaluation of the gradient
needed during the minimization. For K iterations, KM model integrations are
required, while each evaluation of the cost function along the way requires M2

operations, unless the error covariances have special forms (e.g., a diagonal
matrix).

In view of the numbers M (on the order of 107 or 108) of model variables
and P (on the order of 106) of observations in use for operational models, we
clearly see a need for simplification. Otherwise, for the sizes of state vectors
and observation arrays currently in use, Kalman filters and 3D-Var are out of
the question unless covariance matrices are of a very special form. Reducing the
complexity of an assimilation method to a computationally affordable version
while retaining its advantages is where the “art” of modeling comes into play,
by sifting the unnecessary elements from the essential features.

The type and quantity of observation greatly affects the possibility of simpli-
fications. In the ocean, for operational purposes, observations are mostly surface
data from satellites (sea-level anomaly with respect to an average dynamical
position, sea surface temperature, color, sea ice and, hopefully in the future,
salinity as well) and coastal data (sea level at tide gages), with Argo floats (e.g.,
Taillandier, Griffa, Poulain & Béranger, 2006) complementing the information
with a few deep profiles. In the atmosphere, observational networks are much
denser than at sea, and, in particular, daily radiosoundings from all over the
globe contribute to data assimilation. Simplified assimilation methods generally
take into account the type of data incorporated. For the ocean, one approach is
to perform assimilation in two steps, one incorporating only surface information
and the other profile data, with moreover specific simplifications brought to the
covariances.

Reduction of complexity can be justified in most cases because the system’s
evolution includes a series of physically damped modes, which do not require
correction since they fade away. Damped modes occur through the existence of
attractors such as geostrophic equilibrium. However, unstable modes, so charac-
teristic of our weather patterns, must absolutely be followed by the assimilation
process.

Another avenue for simplifications is the size of the state vector. The very
large number of numerical state variables results mostly from our numerical
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need to have the grid size short compared with the scales of interest, i.e.,
1x�L and 1z�H. But this immediately indicates that we are using many
more calculation points than the actual number of degrees of freedom that
are needed. We can therefore try to downsize the burden of the data assimi-
lation procedure from the number of computational points to the significantly
lower number of significant degrees of freedom in the dynamics or number of
observations.

One of the most popular approaches to simplify the assimilation procedure
is the use of a reduced rank covariance matrix, by writing

P∼SST (22.59)

in which the reduced matrix S is of size M×K, which is significantly less
than M×M because K is much smaller than M. It is easily demonstrated that
the rank7 of SST is at most K, hence the name reduced rank. When adopting
this simplification, we no longer need to store P because we store the much
smaller matrix S and any matrix multiplication involving P reduces to succes-
sive matrix multiplications by S and its transpose. A multiplication of P with a
square matrix of identical size M×M no longer requires M3 operations but only
2KM2 operations.

We can also achieve reduction by saving computations at the level of matrix
inversion. The effect of a reduced rank can be exemplified most easily with
a diagonal matrix R of uncorrelated observational errors with the same error
variance µ2 at all locations. Defining the matrix U=HS of dimension P×K
with K�P, we have

PHT
(
HSSTHT+R

)−1
=SUT

(
UUT+µ2I

)−1
=S

(
UTU+µ2I

)−1
UT.

(22.60)

The last equality can be demonstrated directly by matrix operations or by
using a special case of arguably the most useful matrix identity in data assim-
ilation, the Sherman-Morisson formula (Analytical Problem 22.8). The last
operation in Eq. (22.60) transforms the matrix to be inverted from a P×P matrix
into a much smaller K×K one. This is where a major gain in computing is
obtained. The same gain is attained when R is not diagonal but has an inverse
that can be calculated easily.

In an ensemble forecast approach (e.g., Houtekamer & Mitchell, 1998), the
direct model is used to create a series of simulations, each one being a slightly
perturbed version of the others, with perturbations introduced through initial
conditions, forcings, parameter values, or even topographic modifications. The
ensemble of model results thus obtained permits statistical parameters to be
estimated from the ensemble members. In practice, the convergence of vari-
ance estimations from K samples converges only as 1/

√
K, and we therefore

7The rank of a matrix is the number of linearly independent columns.
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anticipate needing a large ensemble or somehow creating an ensemble with
optimal distributions of its members (e.g., Evensen, 2004).

Combining ensemble approaches and reduced rank approximations leads to
a series of data assimilation variants with different implementations (e.g., Barth,
Alvera-Azcárate, Beckers, Rixen & Vandenbulcke, 2007; Brasseur, 2006;
Lermusiaux & Robinson, 1999; Pham, Verron & Roubaud, 1998; Robinson
et al., 1998). The ensemble approach can even be extended to include not
only simulation results of a single model with perturbed setups but also differ-
ent models, aimed at modeling the same properties (super-ensemble approach)
or even using different physical parameterizations and governing equations
(hyper-ensemble approach). Such combinations can dramatically reduce errors,
in particular biases (e.g., Rixen & Coelho, 2007).

Other simplifications are based on the reduction of the size of the state vector
on which assimilation works. One possibility is to propagate error covariances
with coarser grids or simplified models (e.g., Fukumori & Malanotte-Rizzoli,
1995). Particular dynamical balances can also be taken into account through
covariances. If only one component of such a balance is observed, for example,
sea surface height in a geostrophically balanced system, velocity does not need to
be included in the assimilation step. Once a correction of sea surface height and
density is made, corrections to velocity can be calculated by using geostrophy.

Operational models have been in use for some applications for quite some
time, with weather forecasts based on numerical models having been initiated in
the postwar period. These are now widespread with two major centers providing
global forecasts (ECMWF and NCEP). Operational tidal models, hurricane pre-
dictions, and tsunami warning systems in the Pacific are also well established,
incorporating data from observational networks at dedicated institutes. Ocean
circulation forecasts began to appear (Mersea, Hycom, Hops etc.) well before
public demand for tsunami predictions in December 2004.

A common aspect of operational models is that data assimilation was ini-
tially developed to reduce errors. It is fair, however, to request that operational
models not only include forecasts but also provide the associated uncertainty by
means of confidence intervals, which assimilation now permits to do. From a
scientific point of view, we might well argue that the forecast corrections do not
provide new insight into physical processes. In reality, the analysis of assimila-
tion cycles can help in understanding error sources and verify that model results
are statistically consistent with observations. Also verifying that the innovations
(model-data departures) and error estimates are compatible with the statistical
models in use allows us to identify inconsistencies. For example, innovations
should on average be zero, lest a bias arises in the system that needs correction.
Forecast verifications (Jolliffe & Stephenson, 2003) can teach us not only about
dynamics but also about model and observation errors and can help to identify
the model or observing system components that are most in need of improve-
ment. Finally, strategies for adaptive sampling can emerge from such studies
(e.g., Lermusiaux, 2007).
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ANALYTICAL PROBLEMS

22.1. Analyze the exact solution of the following equations

du

dt
=+f̃ v− u−uo(t)

τ
(22.61)

dv

dt
=−f̃ u− v−vo(t)

τ
(22.62)

with uo(t)= cos( ft), v0=−sin( ft) and a relaxation time τ =1/(αf̃ ).
These equations represent nudging to follow an inertial oscillation of
frequency f while the “model” has a tendency to generate inertial oscilla-
tions with incorrect frequency f̃ . Identify how nudging corrects an error
on the initial condition, distinguishing the effect of an error on amplitude
and phase. Then investigate how a difference between f̃ and f affects the
solution.

22.2. Establish and describe an Optimal Interpolation method to interpolate in
space knowing the spatial covariance of the true field and data errors at
given locations.

22.3. An analysis method provides both optimal fields and their corresponding
error estimates, as shown in Fig. 22.13 under the assumption that the
background (or forecast) field has a uniform error variance. In view of
the data distribution, the error field, and spatial structure of the analysis,
how would you rank the following measures

l observational error
l forecast error

and include an estimate of their values? In your opinion, what is a rough
estimate of a correlation length used for the analysis of the field? (Hint:
Think about the way observations are propagated into the domain and
the significance of covariance functions. In particular, investigate how
the analysis behaves far away from any observation and then near a sin-
gle observation far away from any other data location. For better reading
of the fields displayed in Fig. 22.13, refer to divashow.m.)

22.4. Prove that the minimization of Eq. (22.35) leads to the same analysis as
the Optimal Interpolation. What is the value of J at the optimum?

22.5. A weather forecast is typically limited to one or two weeks, after which
the forecast skill is nil. Can you justify why climate models, which use
the same governing equations of geophysical fluid dynamics, may be
used to predict decades ahead? (Hint: Think about the significance of
state variables and parameterizations.)

22.6. Bottom friction is generally parameterized by a quadratic law τb=
ρ0Cdu2. Show that, even for an unbiased estimate of u, the bottom-stress
estimate itself is biased. What is the error variance?
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FIGURE 22.13 Upper panel: An Optimal Interpolation of surface-salinity data in the Mediter-
ranean Sea with data locations indicated by white dots. Lower panel: The corresponding analysis
error (in the same units as salinity), assuming uniform observational errors and a uniform forecast
error. Note the impact of data distribution on the error estimates. (Data Interpolating Varia-
tional Analysis (Diva), Brasseur, Blayo & Verron, 1996).

22.7. Prove the following identity:

LT
(
LLT+µ2I

)−1
=
(
LTL+µ2I

)−1
LT. (22.63)

Are there conditions to be satisfied for this to hold true?

22.8. Prove the Sherman-Morrison formula:(
A+UVT

)−1
=A−1−A−1U

(
I+VTA−1U

)−1
VTA−1. (22.64)
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22.9. Should the full state vector x be known with zero observational error,
how would the Kalman gain matrix behave?

22.10. Derive the equation that steady-state forecast error covariance must sat-
isfy, assuming the error-covariance matrix P reaches a stationary value.
Show that it is a Ricatti equation. When do you expect the use of this
error covariance to become interesting?

22.11. Can you see a reason for including an error of a perfect model εp dif-
ferent from zero in the definition (22.1) of the skill score? (Hint: Think
about what a perfect model is able to predict.)

22.12. When do you think autocorrelation provides useful information on the
predictability limit discussed in Fig. 22.4?

22.13. The Lyapunov equation (22.40) can also be used to recover classical
results in error estimations. Suppose you use a state equation ρ(T,S)
and your measurements on T and S are plagued by errors with known
error variance σ 2

T and σ 2
S . Calculate the expected error variance on ρ and

show that it can be recast into the form (22.40). Can you interpret Q in
this case?

22.14. Altimetric data allow the detection of changes in sea surface elevation
1η between successive passes of the satellite. If potential vorticity is
conserved in the ocean at large scales, we can expect that the vertical
density structure has not changed before the return of the satellite but
has only been displaced vertically over a distance 1z. Calculate this
displacement assuming that it is small and that pressure at a level of
no-motion at z=−z0 has not changed. Neglect density variations near
the surface. What is the sign of the displacement if sea surface height
is increased between the two passes? Interpret your finding in terms of
baroclinic modes and explain how the result can be used for a simple
data assimilation scheme (see Cooper & Haines, 1996).

NUMERICAL EXERCISES

22.1. Implement a nudging method and solve numerically Analytical Problem
22.1. When you decrease τ , what specific action do you need to take
during time stepping? Investigate what happens when you add noise to the
“observations” u0 and v0 and decrease the sampling rate of the “pseudo
data.”

22.2. Work with an Optimal Interpolation scheme on a one-dimensional
gravity-wave problem already discretized in oigrav.m with 61 inte-
rior calculation points in a 61 km long and 100 m deep domain. Perform
a twin experiment with a reference simulation starting from rest with
a sinusoidal elevation of 40 cm amplitude and wavelength equal to the
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domain size. From this simulation, you can extract pseudo data in order
to compare at least two assimilation strategies:

l A sampling point for surface elevation η located near the left bound-
ary, at one third of the total domain length, sampled, and assimilated
every 10 seconds.

l An observation of the surface elevation at all grid points sampled and
assimilated every 10 minutes.

In both cases, add random noise to your “data” with a standard deviation
representative of altimetric precision (2 cm). Assume the noise is uncorre-
lated in time and space. For the assimilation experiment, start from initial
conditions at rest and zero sea-level height.

Prescribe the forecast covariance as a function of distance between
points xi and xj, proportional to the following correlation function

c(xi,xj)= exp
[
−(xi−xj)

2/R2
]

(22.65)

where R is a correlation length. The covariance is obtained by multiplying
this correlation function by the estimated variance of the forecast.

The observational error covariance can be specified according to the
perturbation added. Look at the evolution of the simulations and quantify
the error individually on η and velocity.

Which variance of the background field would you advocate in view
of the initial conditions? Change the value and assess the effect on the
assimilation behavior. Then, change the value of correlation length and
finally try other combinations of space-time coverage. (Hint: For ease of
programming, the two simulations (reference run and assimilation run)
may be advanced simultaneously, and you can diagnose the error as you
go, before assimilating, however.)

22.3. Experiment with kalmanupwadv.m by changing the error specifications,
sampling rate, and sampling locations.

22.4. Develop an adjoint method for Numerical Exercise 22.3 and optimize
the initial condition using the same “observations” as for the Kalman fil-
ter of Numerical Exercise 22.3. Use the exact advection velocity with
C=U1t/1x=0.2 and then C=1 in order to witness the effect of model
errors, remembering that C=1 corresponds to perfect dynamics because
the upwind scheme is exact in this case. What is the effect of reduc-
ing the number of observations and disregarding the background initial
conditions? (Hint: Think about underdetermined and overdetermined
problems.)

22.5. Estimate the computer memory needed to store P for today’s weather
forecast systems.
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22.6. Implement an ensemble Kalman filter for the Lorenz equations (22.2) and
the assimilation of observations of x(t) only. Investigate the effect of the
observation frequency by performing assimilation steps at 0.001, 0.01,
0.1, and 1 time intervals.

22.7. Work to improve the Optimal Interpolation of Numerical Exercise 22.2 by
calculating and using covariance functions estimated from an ensemble
run in which you perturb the initial condition.

22.8. Improve the assimilation scheme of Numerical Exercise 22.2 by imple-
menting the full Kalman filter with an updated covariance matrix. For
ease of programming, you might consider constructing explicitly the
transition matrix M.
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Michael Ghil
1944–

Born in Budapest, Hungary, Michael Ghil spent his high-school years in Bucha-
rest, Romania and then acquired an engineering education in Israel, where he
served as a naval officer. After moving to the United States, he obtained his doc-
torate at the Courant Institute of Mathematical Sciences of New York University
under Professor Peter Lax (see biography at end of Chapter 6).

His scientific work includes seminal contributions to climate system mod-
eling, chaos theory, numerical and statistical methods, data assimilation, and
mathematical economics. He provided self-consistent theories of Quaternary
glaciation cycles, of the low-frequency variability of extratropical atmospheric
flows, and of the midlatitude oceanic interannual variability. He is a prolific
writer, with his name attached to a dozen books and well over two hundred
research and review articles.

Professor Ghil takes turns teaching at the École Normale Supérieure in Paris
and at the University of California in Los Angeles. He has enjoyed learning
from and working with a large number of students and younger colleagues,
with whom he often stays in contact. Many of these have attained considerable
professional achievements in their own right, on three continents. Ghil speaks
six languages fluently. (Photo by Philippe Bruère, Compagnie des Guides,
Chamonix—Mont Blanc)
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Eugenia Kalnay
1942–

Eugenia Kalnay was awarded a Ph.D in Meteorology from the Massachusetts
Institute of Technology under the direction of Jule Charney (see biography end
of Chapter 16). Following a position as Associate Professor in the same depart-
ment, she became Chief of the Global Modeling and Simulation Branch at the
NASA Goddard Space Flight Center, where she developed the accurate and
efficient “NASA Fourth Order Global Model.” Later as Director of the Envi-
ronmental Modeling Center of the US National Weather Service (NWS), she
spearheaded major improvements in the forecast skills of the NWS models.
Many successful projects such as ensemble forecasting, 3D and 4D varia-
tional data assimilation, advanced quality control, seasonal and interannual
dynamical predictions, were started under her leadership. She also directed the
NCEP/NCAR 50-year Reanalysis Project, and the resulting re-analysis paper of
1996 is one of the most cited paper in all of geosciences. Moving to academia,
Professor Kalnay cofounded at the University of Maryland the Weather-Chaos
Group, a leader in Ensemble Kalman Filter methods.

Over the years, Kalnay has received numerous awards, including the pres-
tigious IMO prize of the World Meteorological Organization, for her contri-
butions to numerical weather prediction, data assimilation, and predictability.
Kalnay, a key figure in this field, has pioneered many of the essential techniques,
which she describes in her book Atmospheric Modeling, Data Assimilation, and
Predictability (2003). (Photo by Zhao-Xia Pu, used with permission)



Part VI

Web site Information



762 PART | VI Web site Information

The content is organized by folders numbered according to the chapters of the
book. In each folder, the Matlab™ programs mentioned in each chapter are
found and can be edited. The files contain comments beginning with % like
% this is a comment. This helps identifying the parameters to be changed
by the students and the meaning of variables and loops.

To execute the programs, the Current Folder of Matlab™ must be set
to the chapter under investigation.

The distribution contains Matlab™ scripts rather than programs with a
graphical user interface. This is a choice made in order to get students used
to programming and automatic chaining of operations encountered in lead-
ing modeling centers. The programs are not designed to exploit and optimize
Matlab™ features but rather serve as illustrations of the numerical schemes
and not programming languages. Hence, sometimes loops are spelled out in the
programs and sometimes more efficient direct matrix operations are used. The
Matlab™ expert users certainly would like to modify some of the codes to
replace loops of finite differencing over the domain by a sparse matrix mul-
tiplication, where the sparse matrix contains the discretisation constants. Also
sometimes short programs are written for which Matlab™ functions exist.

When the execution of programs to prepare animations is time consuming,
the distribution contains some precalculated movies in Quicktime .mov format
in folder animations.

For students not having access to Matlab™, a freely available clone exists
and is called Octave (http://octave.sourceforge.net). Most opera-
tions used in the programs are portable between Matlab™ and Octave, only
plotting parts might require adaptations.

Input data are stored predominantly in netCDF format in folder nc. Files
in netCDF format are very common in the ocean and atmosphere model-
ing community because they are platform independent and self-explaining. For
netCDF support installations and testing, please consult the README.txt file.

Because the programs write out some results and images on disk as in real
modeling centers, the user cannot run Matlab™ from a CD but needs to
execute programs in a folder with writing access.

Finally, the authors may be contacted for updated versions of the distribution
content and additional explanations on the programs.

http://www.octave.sourceforge.net
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Elements of Fluid Mechanics

ABSTRACT
Basic principles of fluid mechanics are recalled and summarized. It is shown how budgets
can be established on infinitesimal volumes. The distinction is made between Eulerian
and Lagrangian approaches to fluid dynamics. For reference, a few equations and oper-
ators are expressed in cylindrical and spherical coordinates. Finally, the link between
vorticity and rotation is outlined.

A.1 BUDGETS

Most physical principles of fluid mechanics can be cast as budgets of one quan-
tity or another, with the simplest budget being the one for mass conservation.
We begin here with the one-dimensional (1D) version, from which the 3D
generalization is immediate.

For a 1D budget, we consider a very short (infinitesimal) segment of fluid, of
length dx, along the x-axis of the system (Fig. A.1), for which we state that the
mass within this segment at one moment, say time t+dt, is the mass that was
there at a previous moment, say time t, augmented by the amount of inflow on
the left, say at x−dx, minus the amount of outflow from the right, say x, during
the elapsed time dt:

ρ(x, t+dt)dx︸ ︷︷ ︸
mass at time t+dt

= ρ(x, t)dx︸ ︷︷ ︸
mass at time t

+ u(x−dx, t)dtρ(x−dx, t)︸ ︷︷ ︸
mass entering

−u(x, t)dtρ(x, t)︸ ︷︷ ︸
mass exiting

.

(A.1)

After division by the time interval dt and space interval dx, this budget can be
recast as

ρ(x, t+dt)−ρ(x, t)
dt

+ ρ(x, t)u(x, t)−ρ(x−dx, t)u(x−dx, t)

dx
=0. (A.2)
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t

t + dt

ρ (x, t)ρ (x − dx, t) ρ(x + dx, t)

u(x − dx, t) dt u(x, t) dt

dx

ρ (x, t + dt) =

Total mass present
divided by volume

FIGURE A.1 One-dimensional mass conservation.

In the limit of vanishing dt and dx, the differences become derivatives, and the
one-dimensional mass conservation equation is obtained:

∂ρ

∂t
+ ∂

∂x
(ρu)=0. (A.3)

Note that we assumed such an infinitesimal limit exists, meaning that
“infinitesimal” is extremely small compared with the scales of macroscopic
properties, yet large compared with the size of the molecules constituting the
fluid for which the budget is established. This is the essence of continuum
mechanics.

Similarly, for a three-dimensional domain (Fig. A.2), the budget calculation
yields:

ρ(x,y,z, t+dt)dxdydz=ρ(x,y,z, t)dxdydz

+ u(x−dx,y,z, t)dt dydzρ(x−dx,y,z, t)−u(x,y,z, t)dt dydzρ(x,y,z, t)

+ v(x,y−dy,z, t)dt dxdzρ(x,y−dy,z, t)−v(x,y,z, t)dt dxdzρ(x,y,z, t)

+ w(x,y,z−dz, t)dt dxdyρ(x,y,z−dz, t)−w(x,y,z, t)dt dxdyρ(x,y,z, t).

Division by the infinitesimal volume dxdydz and time interval dt provides in
the continuous limit:

∂ρ

∂t
+ ∂

∂x
(ρu)+ ∂

∂y
(ρv)+ ∂

∂z
(ρw)=0. (A.4)

This is the mass conservation equation, also called the continuity equation.
Newton’s second law of physics stating that mass times acceleration is

equal to the sum of forces can likewise be cast as a budget, this time with
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i

j

k

dx

ρ(x, y, z, t)w(x, y, z, t)ρ(x, y, z, t)v(x, y, z, t)

ρ(x, y, z, t)u(x, y, z, t)

FIGURE A.2 Infinitesimal volume with mass inflow and outflow across boundaries for the three-
dimensional mass budget.

momentum (mass times velocity, here per unit volume) being the quantity
for which the budget is written and with forces (per unit volume) acting as
sources. For clarity, the budget is established here in the two-dimensional case
(Fig. A.3).

A suitable departure point is the mass budget equation (A.1) in which we
replace density by the product of density with velocity. The sources are forces
per volume. We also progress from one to two dimensions. Thus, we write

ρu|at x,y,t+dt dxdy=ρu|at x,y,t dxdy

+ ρuu|at x−dx,y dydt−ρuu|at x,y dydt

+ ρuv|at x,y−dy dxdt−ρuv|at x,y dxdt

+ Sum of forces in the x-direction (A.5a)

ρv|at x,y,t+dt dxdy=ρv|at x,y,t dxdy

+ ρv u|at x−dx,y dydt−ρv u|at x,y dydt

+ ρv v|at x,y−dy dxdt−ρv v|at x,y dxdt

+ Sum of forces in the y-direction. (A.5b)
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p(x, y)

p(x, y)

ρ( fx, fy)

τ yy(x, y)

τ xy(x, y)

τ yx(x, y)

τ xx(x, y)

τ yy(x, y − dy)

dx

j

i

dy

p(x, y − dy)

p(x − dx, y )

τxx(x − dx, y )

τ yx(x − dx, y )

τ xy(x, y − dy)

FIGURE A.3 Two-dimensional element subject to the typical forces encountered in a fluid flow:
pressure p (a normal force per unit area), shear stress τ (a tangential force per unit area), and an
internal (body) force ρ( fx, fy), which is usually the gravitational force.

The forces applied to the fluid element are as follows:

Sum of forces in the x-direction=p|at x−dx,y dy−p|at x,y dy

− τ xx|at x−dx,y dy+τ xx|at x,y dy

− τ xy|at x,y−dy dx+τ xy|at x,y dx

+ ρfx dxdy (A.6a)

Sum of forces in the y-direction=p|at x,y−dy dx−p|at x,y dx

− τ yx|at x−dx,y dy+τ yx|at x,y dy

− τ yy|at x,y−dy dx+τ yy|at x,y dx

+ ρfy dxdy. (A.6b)

Here, the force ( fx, fy) is the body force per unit mass, so that the product
ρ( fx, fy) is the body force per unit volume. Note that the stresses τ depend on
the nature of the fluid and its flow, and that the tangential stresses τ xy and τ yx act
in different directions (Fig. A.3) but must have the same strength. This equality
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du

Stress τ

Fixed

dy

FIGURE A.4 Creeping flow with stress proportional to shear: τ∝du/dy.

of stresses, τ xy(x,y)= τ yx(x,y), proceeds from the fact that, if this were not the
case, the infinitesimal element would be subjected to an uncompensated torque.

A so-called constitutive equation must relate the stress components to the
fluid flow, usually its velocity shear (see Fig. A.4).

With these forces and dividing by dxdy, we obtain the momentum budget in
the x-direction.

∂

∂t
(ρu)+ ∂

∂x
(ρuu)+ ∂

∂y
(ρuv)+

=ρfx−
∂p

∂x
+ ∂τ

xx

∂x
+ ∂τ

xy

∂y
, (A.7)

and similarly in the y-direction. Generalization to three dimensions is straight-
forward and leads to Eq. (3.2) with Eq. (3.3).

Note that in solid mechanics, Newton’s second law is presented by follow-
ing a given mass along its path (called the Lagrangian approach) rather than by
performing a budget over a fixed part of space (called the Eulerian approach).
Because the physical law is the same, we should be able to reach the same gov-
erning equations by either approach. To show that this is possible, we express
the Eulerian derivative of a field F(x,y,z, t), which may be any property of the
fluid or flow field, as

∂F

∂t
=derivative of F with respect to t, at fixed x,y,z. (A.8)

In other words, this is the time change of F as perceived by an observer at a
fixed location. In contrast, the Lagrangian approach considers the change mov-
ing with a fluid parcel, the position of which changes over time, (x,y,z)=
[x(t),y(t),z(t)]. This time dependence of the coordinates describes the trajec-
tory of the fluid parcel. The time change of F, taking the displacement over
time into account, is the total time derivative of F:

dF

dt
=derivative of F(x(t),y(t),z(t), t) with respect to t. (A.9)



768 PART | VI Web site Information

This change of F for a fluid parcel is obtained by the chain rule of derivatives:

dF

dt
= ∂F

∂x

dx

dt
+ ∂F

∂y

dy

dt
+ ∂F

∂z

dz

dt
+ ∂F

∂t
. (A.10)

Because [x(t),y(t),z(t)] is the trajectory of the fluid parcel, the change in posi-
tion over time dx/dt is nothing else than the parcel velocity u, and similarly
dy/dt=v and dz/dt=w, so that we can express the Lagrangian derivative
dF/dt, also called the material derivative, as

dF

dt
= ∂F

∂t
+u

∂F

∂x
+v

∂F

∂y
+w

∂F

∂z
. (A.11)

This relates the Lagrangian derivative to the Eulerian derivative, permitting a
switch from one approach to the other. The difference between the two expres-
sions, that is, the sum of terms with velocity components, is the advection
contribution.

The passage from Eulerian to Lagrangian formulation also permits a manip-
ulation of the mass-conservation equation (A.4) by using the material derivative
(A.11):

1

v

dv

dt
=− 1

ρ

dρ

dt
= ∂u

∂x
+ ∂v
∂y
+ ∂w

∂z
, (A.12)

with v=1/ρ being the volume per unit mass. The expression ∂u/∂x+∂v/∂y+
∂w/∂z is the divergence of the flow field. It is positive when the flow diverges
and negative when it converges. It follows that a fluid volume is dilated
(shrinking) and density drops (increases) when the flow diverges (converges).

In two dimensions, we can proceed one step further by relating the diver-
gence to the area S containing the fluid element:

1

S
dS
dt
= ∂u

∂x
+ ∂v
∂y
. (A.13)

This last expression becomes useful in the study of vorticity. It is left as an
exercise to the reader to formulate the momentum equation in a Lagrangian
way and to interpret the resulting equation.

A.2 EQUATIONS IN CYLINDRICAL COORDINATES

The preceding equations assumed a rectangular (Cartesian) system of coordi-
nates, but in geophysical fluid dynamics, we occasionally encounter circular
structures, such as vortices, for which the use of cylindrical coordinates is more
convenient. The three coordinates of space are then the radial distance r, the
azimuthal angle θ (in radians), and the vertical coordinate z.
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In cylindrical coordinates, the material derivative becomes

d

dt
= ∂

∂t
+u

∂

∂r
+ v

r

∂

∂θ
+w

∂

∂z
. (A.14)

In this notation, u is the radial velocity, v the azimuthal velocity (positive for
a parcel turning in the trigonometric sense, increasing θ ), and w the vertical
velocity.

Mass conservation and horizontal components of the momentum equations
are as follows:

∂ρ

∂t
+ 1

r

∂

∂r
(ρru)+ 1

r

∂

∂θ
(ρv)+ ∂

∂z
(ρw)=0 (A.15a)

ρ

(
du

dt
− v2

r
− f v+ f∗w

)
=−∂p

∂r
+Fr (A.15b)

ρ

(
dv

dt
+ uv

r
+ fu

)
=−1

r

∂p

∂θ
+Fθ (A.15c)

ρ

(
dw

dt
− f∗u

)
=−∂p

∂z
−ρg+Fz (A.15d)

where Fr, Fθ , and Fz are the stress terms. The Laplacian of a scalar fieldψ reads

∇2ψ= 1

r

∂

∂r

(
r
∂ψ

∂r

)
+ 1

r2

∂2ψ

∂θ2
+ ∂

2ψ

∂z2
. (A.16)

Polar coordinates are cylindrical coordinates in two dimensions, with the z
dependence dropped.

A.3 EQUATIONS IN SPHERICAL COORDINATES

When the dimension of the domain is comparable to the earth’s radius, and espe-
cially when the entire globe is the domain, spherical coordinates are preferred.
The three coordinates of space are then the radial distance r from the center
of the earth (which is often cropped to z along the local vertical and measured
form the mean sea level), longitude λ, and latitude1 ϕ (both expressed in radians
rather than degrees). The material derivative becomes

d

dt
= ∂

∂t
+ u

r cosϕ

∂

∂λ
+ v

r

∂

∂ϕ
+w

∂

∂r
. (A.17)

1Contrary to classical spherical coordinates, we do not use the polar angle but latitude.
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Equations (3.1) through (3.3) become:

∂

∂t
(ρ cosϕ)+ ∂

∂λ

(ρu

r

)
+ ∂

∂ϕ

(ρv cosϕ

r

)
+ 1

r2

∂

∂r

(
r2ρwcosϕ

)
=0 (A.18a)

ρ

(
du

dt
− uv tanϕ

r
+ uw

r
− f v+ f∗w

)
=− 1

r cosϕ

∂p

∂λ
+Fλ (A.18b)

ρ

(
dv

dt
+ u2 tanϕ

r
+ vw

r
+ fu

)
=−1

r

∂p

∂ϕ
+Fϕ (A.18c)

ρ

(
dw

dt
− u2+v2

r
− f∗u

)
=−∂p

∂r
−ρg+Fr, (A.18d)

in which f =2�sinϕ and f∗=2�cosϕ. The components Fλ, Fϕ , and Fr of the
frictional force have complicated expressions and need not be reproduced here.
For a detailed development of these equations, the reader is referred to Chapter 4
of the book by Gill (1982). The Laplacian of a scalar field ψ reads

∇2ψ= 1

r2 cosϕ2

∂2ψ

∂λ2
+ 1

r2 cosϕ

∂

∂ϕ

(
cosϕ

∂ψ

∂ϕ

)
+ 1

r2

∂

∂r

(
r2 ∂ψ

∂r

)
. (A.19)

It is worth noting that since the radius of the earth is much longer than the
thickness of either atmosphere or ocean, some vertical derivatives may be
approximated as

1

r2

∂(r2a)

∂r
' ∂a

∂z
(A.20a)

1

r2

∂

∂r

(
r2 ∂a

∂r

)
' ∂

2a

∂z2
. (A.20b)

A.4 VORTICITY AND ROTATION

Vorticity, as it name indicates, quantifies the rotation rate of a fluid parcel.
Because rotation is also defined by an axis around which the spin occurs, vor-
ticity ought to be a vector. For simplicity, however, we start by considering
the case of a flow in the horizontal plane, so that rotation takes place around
the vertical axis, and the vorticity vector is directed along this axis. Only its
intensity matters, which is defined as

ζ = ∂v
∂x
− ∂u

∂y
. (A.21)

First let us consider a flow in solid-body rotation around the origin of the
axes (left part of Fig. A.5). The flow field is then (u=−�y, v=+�x), and the
vorticity defined by Eq. (A.21) is ζ =2�, twice the rotation rate of the flow, and
except for the factor 2, this seems intuitive.
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x

y

u �−�y, v�−�x

�

δx/2

δv/2

ζ

FIGURE A.5 Vorticity and rotation.

Not only flows with curved trajectories have vorticity; rectilinear shear
flows, too, possess vorticity, as depicted in the middle of Fig. A.5. Take for
example the flow v(x) in which fluid parcels located at different x positions
travel at different velocities in the y-direction, some overtaking others in a slip-
ping movement. A stick placed across the flow would see one tip proceeding
faster than the other and would effectively be rotated by the flow. This rotation
is expressed mathematically by the vorticity:

ζ = dv

dx
. (A.22)

The sign of vorticity is such that it is positive for rotation in the trigonometric
(counterclockwise) sense seen downward along the vertical axis.

In three-dimensions, vorticity is the curl of the vector velocity, and its three
components are as follows:

ζx=
∂w

∂y
− ∂v
∂z

(A.23)

ζy=
∂u

∂z
− ∂w

∂x
(A.24)

ζz=
∂v

∂x
− ∂u

∂y
. (A.25)

ANALYTICAL PROBLEMS

A.1. Verify that the velocity components in cylindrical coordinates are

u= dr

dt
, v= r

dθ

dt
, w= dz

dt
. (A.26)
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Can you interpret these formulas? (Hint: Apply the definition of the
material derivative.)

A.2. Determine the vorticity of an eddy in which the velocity field is

u=−∂ψ
∂y
, v=+∂ψ

∂x
(A.27)

with the streamfunction ψ given as

ψ=ωL2 exp

(
−x2+y2

L2

)
. (A.28)

In particular, calculate the value at the origin and at x=3L,y=0.

A.3. Assume a two-dimensional flow, for which, in cylindrical coordinates, the
radial velocity component is zero, whereas the azimuthal component is
only depending on r:

v=v(r). (A.29)

Calculate the circulation2 around a circle of radius R, centered at the
origin. Relate the result to the vorticity distribution within the surface
delimited by the circle. (Hint: Show that vorticity is ζz= (1/r)(d/dr)(rv).)

A.4. Knowing that the divergence of a flow is the relative change of density
over time, can you derive the expression of the divergence operator
in cylindrical and spherical coordinates? (Hint: Look at the mass-
conservation equation.)

NUMERICAL EXERCISE

A.1. Plot the velocity and vorticity fields of Analytical Problem A.2.

2Circulation is tangential velocity integrated along the chosen path, here simply the product of the
azimuthal velocity by the circumference of the circle.



Appendix B

Wave Kinematics

ABSTRACT
Because numerous geophysical flow phenomena can be interpreted as waves, some
understanding of basic wave properties is required in the study of geophysical fluid
dynamics. The concepts of wavenumber, frequency, dispersion relation, phase speed and
group velocity are introduced and given physical interpretations.

B.1 WAVENUMBER AND WAVELENGTH

For simplicity of presentation and easier graphical representation, we will con-
sider here a two-dimensional plane wave, namely, a physical signal occupying
the (x, y) plane, evolving with time t and with straight crest lines. The proto-
typical wave form is the sinusoidal function, and so we assume that a physical
variable of the system, denoted by a and being pressure, a velocity component
or whatever, evolves according to

a=Acos(kxx+kyy−ωt+φ). (B.1)

The coefficient A is the wave amplitude (−A≤a≤+A), whereas the argument

α= kxx+kyy−ωt+φ (B.2)

is called the phase. The latter consists of terms that vary with each independent
variable and a constant φ, called the reference phase. The coefficients kx, ky, and
ω of x, y, and t, respectively, bear the names of wavenumber in x, wavenumber
in y, and angular frequency, most often abbreviated to frequency. They indicate
how rapidly the wave undulates in space and how fast it oscillates in time.

Equivalent expressions for the wave signal are

a = A1 cos(kxx+kyy−ωt)+ A2 sin(kxx+kyy−ωt), (B.3)
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where A1=A cosφ and A2=−A sinφ, and

a=<
[
Acei(kxx+kyy−ωt)

]
, (B.4)

where the notation <[ ] means “the real part of” and Ac=A1− iA2=A eiφ is
a complex amplitude coefficient. The choice of mathematical representation
is generally dictated by the problem at hand. Formulation (B.3) is helpful
in the discussion of problems exhibiting coexisting signals that are either in
perfect phase or in quadrature, whereas formulation (B.4) is preferred when
a given dynamical system is subjected to a wave analysis. Here, we will use
formulation (B.1).

A wave crest is defined as the line in the (x, y) plane and at time t along which
the signal is maximum (a=+A); similarly, a trough is a line along which the
signal is minimum (a=−A). These lines and, in general, all lines along which
the signal has a constant value at an instant in time are called phase lines. In a
plane wave, as the one considered here, all crests, troughs, and other phase lines
are straight lines. Figure B.1 depicts a few phase lines in the case of positive
wavenumbers kx and ky.

FIGURE B.1 Instantaneous phase lines of a plane two-dimensional wave signal. The lines are
straight and parallel. The distances from crest to nearest crest along the x- and y-axes are λx and λy,
respectively, whereas the wavelength λ is the shortest diagonal distance from crest line to nearest
crest line.

j
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Because of the oscillatory behavior of the sinusoidal function, crest lines
recur at constant intervals, thus giving the wavy aspect to the signal. The
distance over which the signal repeats itself in the x-direction is the distance
over which the phase portion kxx increases by 2π , that is,

λx=
2π

kx
. (B.5)

Similarly, the distance over which the signal repeats itself in the y-direction is

λy=
2π

ky
. (B.6)

The quantities λx and λy are called the wavelengths in the x- and y-directions.
They are the wavelengths seen by an observer who would detect the signal only
through slits aligned with the x- and y-axes. The actual wavelength, λ, of the
wave is the shortest distance from the crest to nearest crest (Fig. B.1) and is,
therefore, smaller than both λx and λy. Elementary geometric considerations
provide

1

λ2
= 1

λ2
x
+ 1

λ2
y
=

k2
x+k2

y

4π2

or

λ= 2π

k
, (B.7)

where k, called the wavenumber, is defined as

k=
√

k2
x+k2

y . (B.8)

Note that since λ2 is not the sum of λ2
x and λ2

y , the pair (λx, λy) does not
make a vector. However, the pair (kx, ky) can be used to define the wavenumber
vector

k= kxi+kyj, (B.9)

where i and j are the unit vectors aligned with the axes (Fig. B.1). In this fashion,
the wavenumber k is the magnitude of the wavenumber vector k.

By definition, phase lines at any given time correspond to lines of constant
values of the expression kxx+kyy=k ·r, where r= xi+yj is the vector position.
Geometrically, this means that a phase line is the locus of points whose vectors
from the origin share the same projection onto the wavenumber vector. These
points form a straight line perpendicular to k, and therefore the wavenumber
vector points perpendicularly to all phase lines (Fig. B.1), that is, in the direction
of the undulation.
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B.2 FREQUENCY, PHASE SPEED, AND DISPERSION

Let us now turn our attention to the temporal evolution of the wave signal. At a
fixed position (x and y given), an observer sees an oscillatory signal. The interval
of time between two consecutive instants at which the signal is maximum is the
time taken for the portion ωt of the phase to increase by 2π . It is called the
period, which is

T= 2π

ω
. (B.10)

Let us now follow a particular crest line (a=A) from a certain time t1 to
a later time t2 and note the time interval 1t= t2− t1. During this time interval,
the wave crest has progressed from one position to another (Fig. B.2). The inter-
section with the x-axis has translated over the distance 1x=ωt2/kx−ωt1/kx=
ω1t/kx in time 1t. This defines the propagation speed of the wave along the
x-direction:

cx=
1x

1t
= ω

kx
. (B.11)
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FIGURE B.2 Progress of a wave crest from time t1 to time t2. The ratio of the distance traveled,
1s, to the time interval 1t= t2− t1 is the phase speed.
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Similarly, the propagation speed along the y-direction is the distance 1y=
ωt2/ky−ωt1/ky divided by the time interval 1t, or

cy=
1y

1t
= ω

ky
. (B.12)

But, these speeds are only speeds in particular directions. The true propaga-
tion speed of the wave is the distance1s, measured perpendicularly to the crest
line (Fig. B.2), covered by this crest line during the time interval 1t. Again,
elementary geometric considerations provide

1

1s2
= 1

1x2
+ 1

1y2
,

from which we deduce

1s= ω1t

k
,

where k is the wavenumber defined in Eq. (B.8). The propagation speed of the
crest line is thus

c= 1s

1t
= ω

k
. (B.13)

Because all phase lines propagate at the same speed (so that the wave preserves
its sinusoidal form over time), the quantity c is called the phase speed. Note
that because c2 is not equal to c2

x+c2
y (in fact, c is less than both cx and cy!),

the pair (cx, cy) does not constitute a physical vector. The direction of phase
propagation, as discussed before, is parallel to the wavenumber vector k.

In general, the expression (B.1) of the wave signal appears as the solution
to a particular dynamical system. Therefore, it must somehow be constrained
by the physics of the problem, and not all its parameters can be varied inde-
pendently. Let us suppose that the system under consideration is initially
unchanging in time (state of rest or steady flow) and that at time t=0, it is
perturbed spatially according to a sinusoidal distribution of wavenumbers kx

and ky in the x- and y-directions, respectively, and of amplitude A for the vari-
able a. Intuition leads us to anticipate that subsequent to this perturbation, the
system will react in a time-dependent fashion. If this reaction takes the form
of a wave, it will have a frequency ω determined by the system. Therefore,
the frequency can be viewed as dependent upon the wavenumber components
kx and ky and the amplitude A. In most instances, the system’s response is a
wave because the set of equations representing the physics is linear, and when
this is the case, the mathematical analysis yields a frequency that is indepen-
dent of the amplitude of the perturbation. Therefore, ω is typically a function
of kx and ky only.
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FIGURE B.3 Graphic representation of the dispersion relation ω=2kx/
(
k2

x +k2
y +1

)
by curves of

constant ω values in the (kx, ky) wavenumber plane.

If the frequency is a function of the wavenumber components, so is the phase
speed:

c= ω(kx,ky)√
k2

x+k2
y

= c(kx,ky).

Physically, this implies that the various waves of a composite signal will all
travel at different speeds, causing a distortion of the signal over time. In partic-
ular, a localized burst of activity, which by virtue of the Fourier-decomposition
theorem contains waves of many different wavelengths, will be progressively
less localized as time goes on. This phenomenon is called dispersion, and
the mathematical function that relates the frequency ω to the wavenumber
components kx and ky bears the name of dispersion relation.

The dispersion relation can be represented, in two dimensions, as a set of
curves in the (kx, ky) plane along which ω is a constant. Figure B.3 provides
an example. At one dimension (kx= k, ky=0) or at two dimensions when the
physical system is isotropic (ω function of k only), a single ω-versus-k curve
suffices to represent the dispersion relation.

In some special physical systems, the dispersion relation reduces to a sin-
gle proportionality between frequency ω and wavenumber k. The phase speed
is then the same for all wavenumbers, all waves travel in perfect accord, and
the total signal retains its shape as time evolves. Such a wave is called a
nondispersive wave.

B.3 GROUP VELOCITY AND ENERGY PROPAGATION

In general, a wave pattern consists of more than a single wave. A series of
waves are superimposed, leading to constructive and destructive interference.
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In areas where the waves are interfering constructively, the wave amplitude is
greater, and the energy level is higher than in areas where the waves interfere
destructively. Therefore, energy distribution is a property of a set of waves rather
than of a single wave. (It can be said that a single wave has a uniform energy
distribution.) Energy propagation by a set of waves depends on how interference
patterns move about and is generally not the average speed of the waves present.
To illustrate the principles and determine the speed at which energy propagates,
let us restrict our attention to two one-dimensional waves and, more precisely,
to two waves of equal amplitude and nearly equal wavenumbers:

a=Acos(k1x−ω1t)+Acos(k2x−ω2t), (B.14)

where the wavenumbers k1 and k2 are close to their average k= (k1+k2)/2,
and the difference 1k= k1−k2 is much smaller (|1k|� |k|). Because both
waves obey the single dispersion relation of the dynamical system, ω=ω(k),
the two frequencies ω1=ω(k1) and ω2=ω(k2) are close to their average
ω= (ω1+ω2)/2, which is much larger than their difference 1ω=ω1−ω2
(|1ω|� |ω|). In expression (B.14), the two reference phases were set to zero,
which can always be done under suitable choices of space and time origins.

A trigonometric manipulation transforms expression (B.14) into

a=2Acos

(
1k

2
x−1ω

2
t

)
cos(kx−ωt), (B.15)

which now appears as the product of two waves. The second cosine function
represents an average wave, of wavenumber and frequency between those of
the two individual waves comprising the signal. The first cosine function, how-
ever, involves a much smaller wavenumber (i.e., much longer wavelength) and
a much lower frequency. Over the cycle of the shorter (k, ω) wave, the longer
wave appears almost unchanging. In other words, the (k, ω) wave appears mod-
ulated; its amplitude, 2Acos[(1kx−1ωt)/2], is slowly varying in space and
time, as seen in Fig. B.4.

Although the wave signal exhibits a wavelength from crest to trough to the
next crest equal to λ=2π/k, the envelope has a much longer wavelength, λ′=
1
2 [2π/(1k/2)]=2π/1k. The wave pattern is a succession of wave bursts, each
of length λ′. Within each burst, the wave propagates at the phase speed c=ω/k,
while the burst travels at the speed c′=1ω/1k.

Considering an infinitesimal wavenumber difference, we are led to define

cg=
dω

dk
. (B.16)

Because this is the propagation speed of a burst, or group of similar waves, it
is called the group velocity. Energy is associated with each group, and so the
group velocity is also the velocity at which energy is carried by the waves.

The preceding wave description relies on the existence of two waves of
identical amplitudes. When two waves do not have equal amplitude, say A1
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FIGURE B.4 The interference pattern of two one-dimensional waves with close wavenumbers.
While the wave crests and troughs propagate at the speed c=ω/k, the envelope (dashed line)
propagates at the group velocity cg=dω/dk.

and A2, destructive interference is nowhere complete (the weak wave cannot
completely cancel the strong wave), and there is no clear pinch-off between
wave bursts. Rather, the modulating envelope undulates between the values
A1+A2 and |A1−A2| on the positive side and −(A1+A2) and −|A1−A2| on
the negative side. It remains, however, that regions of constructive interference,
and thus of higher energy level, propagate at the group velocity.

The theory can easily be extended to multidimensional waves. At
two dimensions, for example, we define the group velocities in the x- and
y-directions, respectively, as

cgx=
∂ω

∂kx
, cgy=

∂ω

∂ky
, (B.17)

given the dispersion relation ω(kx, ky). Because these expressions are the com-
ponents of the gradient of the function ω in the (kx, ky) wavenumber space, they
can be interpreted as the components of a physical vector depicting the group
velocity

cg=∇kω, (B.18)

where ∇k stands for the gradient operator with respect to the variables kx and ky.
On the two-dimensional diagram (Fig. B.3), this vector group velocity points
perpendicularly to the ω curves, toward the higher values of ω. Aligning the
kx- and ky-axes with the x- and y-axes of the plane provides the direction of
energy propagation in space.

Generalization to the three-dimensional space is immediate. An example is
the internal wave discussed extensively in Chapter 13.

a

x 

λ′

λcg

c
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ANALYTICAL PROBLEMS

B.1. In waters deeper than half the wavelength, surface gravity waves obey
the dispersion relation ω =√gk, where g is the gravitational acceleration
(g =9.81 m/s2). For these waves, show that the wavelength is proportional
to the square of the period. At which speed does a 10-m-long wave travel?

B.2. Show that the group velocity of deep-water waves (see Problem B.1) is
always less than the phase speed.

B.3. A former sea captain recounts a stormy night in the middle of the North
Atlantic when he observed waves with wavelengths of a few meters
passing his 51-m-long ship in less than 3 s. Should you believe him?

B.4. Suppose that you are in the middle of the ocean and off in the distance you
see a storm. A little while later, you observe the passage of surface gravity
waves of wavelength 5 m. Two hours later, you still observe gravity waves,
but now their wavelength is 2 m. How far away was the storm?

B.5. Find the frequency ω of a Kelvin wave of wavenumber k (Section 9.2). Is
the Kelvin wave dispersive?

B.6. Show that for inertia-gravity waves [ω2= f 2+gH
(
k2

x+k2
y

)
; Section 9.3],

the group velocity is always less than the phase speed. In which limit does
the group velocity approach the phase speed?

B.7. Demonstrate that when the frequency ω is a function of the ratio kx/ky, the
energy propagates perpendicularly to the phase.

B.8. Given the dispersion relation of internal waves in a vertical plane (see
Section 13.2),

ω=N
kx√

k2
x+k2

z

,

where N is a constant, kx is the horizontal wavenumber and kz is the ver-
tical wavenumber, show that phase and energy always propagate in the
same horizontal direction but in opposite vertical directions.

NUMERICAL EXERCISES

B.1. Using animated graphics, display a time sequence (t= 0 to 10π by steps
of π /4) of the double wave

a (x, t) = A1 cos(k1x−ω1t) + A2 cos(k2x−ω2t)

with A1 = A2 = 1, k1 =1.9, k2 =2.1, ω1 =2.1, ω2 = 1.9, and for x rang-
ing from 0 to 100. A suggested step in x is 0.25. Notice how the short
waves [of wavelength= 4π/(k1+k2) = π ] travel toward increasing x
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at the speed c = (ω1 + ω2)/(k1 + k2) = +1, while the wave envelope
[of wavelength= 2π/(k2 − k1) = 10π] travels in the opposite direction
at speed cg= (ω1−ω2)/(k1−k2)=−1. This unequivocally demonstrates
the nonintuitive fact that the energy propagation may well propagate in the
direction opposite to the advancing crests and troughs. In other words, it
is not impossible for energy to be transported up-wave.
Variations of this exercise can include uneven amplitudes (e.g., A1 =1 and
A2 =0.5) and modified values for the wavenumbers and frequencies.

B.2. Using animated graphics, use the same function as in exercise B.1 with
k1 = 0.35, k2 = 0.5, ω1 = 0.5, and ω2 = 0.35 the other values unchanged.
Show the evolution of a and then of a2/2. Can you explain the apparently
shorter waves?

B.3. Given a dispersion relation

ω= k

(k2+1)
,

analyze the signal composed of two waves

a(x, t) = A1 cos(k1x−ω(k1)t)+ A2 cos(k2x−ω(k2)t),

where ω is calculated using the dispersion relation. As before, show the
evolution for A1=A2=1 in the following situations:

l k1 = k2 = 0.5,
l k1 = k2 = 2
l k1 = 1.95,k2 = 2.05
l k1 = 0.45,k2 = 0.55

Can you explain the behavior? (Hint: Plot the dispersion relation.)

B.4. Redo exercise B.1 with k1 =1, A1 =1, A2 =0, and ω1 =1. Then change
the step in x to π/4 and π/2. Finally when using a step of 4π/3, what do
you observe?



Appendix C

Recapitulation of Numerical
Schemes

ABSTRACT
This appendix gathers the most common numerical schemes for comparison and in order
to facilitate their implementation.

C.1 THE TRIDIAGONAL SYSTEM SOLVER

As a special case of the general LU decomposition (e.g., Riley, Hobson &
Bence, 1977), an efficient tridiagonal system solver, based on the so-called
Thomas algorithm, can be constructed. We begin by assuming that there exists a
decomposition for which the lower (L) and upper (U) matrices possess the same
bandwidth of 2, that is, nonzero elements exist only along two diagonals:

a1 c1 0 0 · · · 0
b2 a2 c2 0 · · · 0
0 b3 a3 c3 · · · 0
...

...
. . .

. . .
. . .

...

0 0 · · · bm−1 am−1 cm−1
0 0 · · · 0 bm am


=



1 0 0 0 · · · 0
β2 1 0 0 · · · 0
0 β3 1 0 · · · 0
...

...
. . .

. . .
. . .

...

0 0 · · · βm−1 1 0
0 0 · · · 0 βm 1



×



α1 γ1 0 0 · · · 0
0 α2 γ2 0 · · · 0
0 0 α3 γ3 · · · 0
...

...
. . .

. . .
. . .

...

0 0 · · · 0 αm−1 γm−1
0 0 · · · 0 0 αm


(C.1)

where the first matrix is the original tridiagonal matrix to be decomposed
(i.e., elements a1 etc. are known), the second matrix is L with one line of nonzero
elements below the diagonal, and the last matrix is U with one line of nonzero
elements above the diagonal.
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Performing the product of matrices, we identify elements (k,k−1), (k,k),
and (k,k+1) of the product as

bk=βkαk−1 (C.2a)

ak=βkγk−1+αk (C.2b)

ck=γk. (C.2c)

These relations can be solved for the components of L and U by observing that
γk= ck for all k. Since the first row demands a1=α1, subsequent rows provide
αk and βk recursively from

βk=
bk

αk−1
, αk=ak−βkck−1, k=2, . . . ,m (C.3)

provided that no αk is zero, otherwise the matrix is singular and cannot be
decomposed. Note that there is no β1.

The tridiagonal matrix A has now been decomposed into the product of
lower and upper triangular matrices. The solution of Ax=LUx= f is then
obtained by first solving Ly= f

1 0 0 0 · · · 0
β2 1 0 0 · · · 0
0 β3 1 0 · · · 0
...

...
. . .

. . .
. . .

...

0 0 · · · βm−1 1 0
0 0 · · · 0 βm 1





y1
y2
y3
...

ym−1
ym


=



f1
f2
f3
...

fm−1
fm


(C.4)

by proceeding from the first row downward and then solving Ux=y,

α1 γ1 0 0 · · · 0
0 α2 γ2 0 · · · 0
0 0 α3 γ3 · · · 0
...

...
. . .

. . .
. . .

...

0 0 · · · 0 αm−1 γm−1
0 0 · · · 0 0 αm





x1
x2
x3
...

xm−1
xm


=



y1
y2
y3
...

ym−1
ym


, (C.5)

by proceeding from the bottom row upward. The solution is

y1= f1, yk= fk−βkyk−1, k=2, . . . ,m (C.6)

xm=
ym

αm
, xk=

yk−γkxk+1

αk
, k=m−1, . . . ,1. (C.7)

In practice, the α values can be stored in vector a initially holding the val-
ues ak, since once αk is known, ak is no longer needed. Similarly, β values
can be stored in vector b initially holding bk and γ values in a vector c. Also
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the y and f values can share the same vector f as the fk value is no longer needed
once the yk value has been computed. With the additional vector x for the solu-
tion, only five vectors are required, and the solution is obtained with only three
loops over m points. This demands approximately 5m floating-point operations
instead of the m3 operations that a brutal matrix inversion would have required.
The algorithm is implemented in Matlab™ file thomas.m.

C.2 1D FINITE-DIFFERENCE SCHEMES OF VARIOUS ORDERS�

�

�

�

TABLE C.1 Standard Finite-difference Operators for Uniform Grids

Forward Difference O(1 t) Forward Difference O(1 t2)

un un+1 un+2 un+3 un+4 un un+1 un+2 un+3 un+4 un+5

1t ∂u
∂t −1 1 21t ∂u

∂t −3 4 −1

1t2 ∂
2u
∂t2

1 −2 1 1t2 ∂
2u
∂t2

2 −5 4 −1

1t3 ∂
3u
∂t3

−1 3 −3 1 21t3 ∂
3u
∂t3

−5 18 −24 14 −3

1t4 ∂
4u
∂t4

1 −4 6 −4 1 1t4 ∂
4u
∂t4

3 −14 26 −24 11 −2

Backward Difference O(1 t) Backward Difference O(1 t2)

un−4 un−3 un−2 un−1 un un−5 un−4 un−3 un−2 un−1 un

1t ∂u
∂t −1 1 21t ∂u

∂t 1 −4 3

1t2 ∂
2u
∂t2

1 −2 1 1t2 ∂
2u
∂t2

−1 4 −5 2

1t3 ∂
3u
∂t3

−1 3 −3 1 21t3 ∂
3u
∂t3

3 −14 24 −18 5

1t4 ∂
4u
∂t4

1 −4 6 −4 1 1t4 ∂
4u
∂t4

−2 11 −24 26 −14 3

Central Difference O(1 t2) Central Difference O(1 t4)

un−2 un−1 un un+1 un+2 un−3 un−2 un−1 un un+1 un+2 un+3

21t ∂u
∂t −1 0 1 121t ∂u

∂t 1 −8 0 8 −1

1t2 ∂
2u
∂t2

1 −2 1 121t2 ∂
2u
∂t2

−1 16 −30 16 −1

21t3 ∂
3u
∂t3

−1 2 0 2 1 81t3 ∂
3u
∂t3

1 −8 13 0 −13 8 −1

1t4 ∂
4u
∂t4

1 −4 6 −4 1 61t4 ∂
4u
∂t4

−1 12 −39 56 −39 12 −1

Adapted from Chung (2002)
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C.3 TIME-STEPPING ALGORITHMS�

�

�

�

TABLE C.2 Standard Time-stepping Methods for du/dt=Q(t,u)

Euler Methods

Scheme Order

Explicit ũn+1= ũn+1tQn 1t

Implicit ũn+1= ũn+1tQn+1 1t

Trapezoidal ũn+1= ũn+ 1t
2

(
Qn+Qn+1) 1t2

General ũn+1= ũn+1t
(
(1−α)Qn+αQn+1) 1t

Multistage Methods

Scheme Order

Runge-
Kutta

ũn+1/2= ũn+ 1t
2 Q

(
tn, ũn)

ũn+1= ũn+1tQ
(
tn+1/2, ũn+1/2) 1t2

Runge-
Kutta

ũn+1/2
a = ũn+ 1t

2 Q
(
tn, ũn)

ũn+1/2
b = ũn+ 1t

2 Q
(
tn+1/2, ũn+1/2

a
)

ũ?= ũn+1t Q
(
tn+1/2, ũn+1/2

b

)
ũn+1= ũn+1t

(
1
6 Q
(
tn, ũn)+ 2

6 Q
(
tn+1/2, ũn+1/2

a
)

+ 2
6 Q
(
tn+1/2, ũn+1/2

b

)
+ 1

6 Q
(
tn+1, ũ?

))
1t4

Multistep Methods

Scheme Truncation Order

Leapfrog ũn+1= ũn−1+21tQn 1t2

Adams-
Bashforth ũn+1= ũn+ 1t

2

(
−Qn−1+3Qn) 1t2

Adams-
Moulton ũn+1= ũn+ 1t

12

(
−Qn−1+8Qn+5Qn+1) 1t3

Adams-
Bashforth ũn+1= ũn+ 1t

12

(
5Qn−2−16Qn−1+23Qn+1) 1t3

Predictor-Corrector Methods

Scheme Order

Heun

ũ?= ũn+1tQ
(
tn, ũn)

ũn+1= ũn+ 1t
2

(
Q
(
tn, ũn)+Q

(
tn+1, ũ?

))
1t2

Leapfrog-
Trapezoidal

ũ?= ũn−1+21tQn

ũn+1= ũn+ 1t
2

(
Qn+5Q

(
tn+1, ũ?

))
1t2

ABM

ũ?= ũn+ 1t
2

(
−Qn−1+3Qn)

ũn+1= ũn+ 1t
12

(
−Qn−1+8Qn+5Q

(
tn+1, ũ?

))
1t3
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C.4 PARTIAL-DERIVATIVES FINITE DIFFERENCES

On a regular grid x= x0+ i1x, y= y0+ j1y, the following expressions are of
second order

l Jacobian J(a,b)= ∂a

∂x

∂b

∂y
− ∂b

∂x

∂a

∂y

J++i,j =
(ai+1,j−ai−1,j)(bi,j+1−bi,j−1)−(bi+1,j−bi−1,j)(ai,j+1−ai,j−1)

41x1y

J+×i,j =
[
ai+1,j(bi+1,j+1−bi+1,j−1)−ai−1,j(bi−1,j+1−bi−1,j−1)

]
41x1y

−
[
ai,j+1(bi+1,j+1−bi−1,j+1)−ai,j−1(bi+1,j−1−bi−1,j−1)

]
41x1y

J×+i,j =
[
bi,j+1(ai+1,j+1−ai−1,j+1)−bi,j−1(ai+1,j−1−ai−1,j−1)

]
41x1y

−
[
bi+1,j(ai+1,j+1−ai+1,j−1)−bi−1,j(ai−1,j+1−ai−1,j−1)

]
41x1y

l Cross derivatives

∂2u

∂x∂y

∣∣∣∣
i+1/2,j+1/2

' ui+1,j+1−ui+1,j+ui,j−ui,j+1

1x1y

∂2u

∂x∂y

∣∣∣∣
i,j
' ui+1,j+1−ui+1,j−1+ui−1,j−1−ui−1,j+1

41x1y

l Laplacian

∂2u

∂x2
+ ∂

2u

∂y2

∣∣∣∣
i,j
' ui+1,j+ui−1,j−2ui,j

1x2
+ ui,j+1+ui,j−1−2ui,j

1y2

C.5 DISCRETE FOURIER TRANSFORM AND FAST FOURIER
TRANSFORM

In a periodic domain in which x varies between 0 and L, a complex function
u(x) may be expanded in Fourier modes according to

u(x)=
+∞∑

n=−∞
an ei n 2πx

L . (C.8)
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u

x
0 LxN − 1

FIGURE C.1 Periodic signal sampled with N evenly spaced points x0 to xN−1. Note that no xN is
needed since by periodicity the value of the function at xN is the same as at x0.

From the orthogonality among Fourier modes,1

1

L

L∫
0

ei (n−m) 2πx
L dx = δnm, (C.9)

the complex coefficients an are readily obtained by multiplying (C.8) by
exp(−i m2πx/L) and integrating over the interval:

am =
1

L

L∫
0

u(x)e−i m 2πx
L dx. (C.10)

Note that we could have defined an=bn/L such that bn were the integral without
the factor 1/L. Different authors use different notations.

To be an exact representation of the periodic function, the sum must cover
an infinity of Fourier modes, but this is not possible on finite computers. The
discrete Fourier transform (DFT) simply truncates the infinite series by lim-
iting it to its first N terms. The procedure begins with the sampling of the
function u(x) at N equidistant points: uj=u(xj), with xj= j1x, j=0, . . . ,N−1
(1x=L/N). The Fourier coefficients are then calculated from

an=
1

N

N−1∑
j=0

uj e−i nj 2π
N , (C.11)

1The symbol δij is called the Kronecker delta. Its value is 1 if i= j, and 0 if i differs from j.
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and the sampled function can be reconstructed by summing over the first N
modes2:

ũ(x)=
N−1∑
n=0

an ei n 2πx
L . (C.12)

Obviously, this amounts to a discrete and finite version of the set (C.8) and
(C.10). The interesting point is that the coefficients an are exact in the sense
that if we evaluate ũ(xj) with those coefficients, we recover the sampled values
at grid points u(xj). The proof that ũ(xj)=u(xj), which is not trivial, begins by
evaluating ũ(xj) of (C.12) with the an coefficients given by (C.11). We obtain
successively

ũ(xj)=
N−1∑
n=0

an ei n
2πxj

L (C.13)

=
N−1∑
n=0

1

N

N−1∑
m=0

um e−i nm 2π
N ei nj 2π

N

= 1

N

N−1∑
m=0

um

[
N−1∑
n=0

ei ( j−m)n 2π
N

]

= 1

N

N−1∑
m=0

um

[
N−1∑
n=0

ρn

]
(C.14)

where

ρ= ei (j−m) 2π
N . (C.15)

For j 6=m, ρ 6=1, and the geometric sum takes the value

N−1∑
n=0

ρn= 1−ρN

1−ρ , (C.16)

which turns out to vanish because ρN =1 with j−m being an integer. When
j=m, the sum between brackets is simply the sum of ones and is equal to N,
which leads to ũ(xj)=u(xj), the desired result.

Transformation (C.11) is called the direct discrete Fourier transform (DFT),
whereas (C.13) is called the inverse discrete Fourier transform (IDFT). Note
that the direct and inverse transforms are very similar in form, with two essential

2The truncation from 0 to N−1 is quite arbitrary. Sometimes a series with mode number running
from −N/2 to N/2 is preferred.
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FIGURE C.2 Coefficients an contain the amplitudes of the different modes. With the summation
running from 0 to N−1, aN/2 contains the amplitude of the shortest wave.

differences, the sign in the exponential and the factor 1/N. As for the infinite
Fourier series, the scaling factor (then 1/L, now 1/N) is occasionally placed in
front of the inverse transform rather than in front of the direct transform. It is a
matter of choice.

Once the Fourier coefficients are known, Eq. (C.12) effectively provides
a continuous and differentiable interpolation of the function u(x) known only
from its sampled values uj. This interpolation may be used to calculate the value
of the function at any intermediate location and also to evaluate derivatives to
any order. The first derivative is

dũ

dx
=

N−1∑
n=0

iknan ei knx, kn=
2πn

L
. (C.17)

Thus, all we have to do to calculate the first derivative is to create a set of Fourier
coefficients bn that are simply the function’s Fourier coefficients an multiplied
by a factor: bn= iknan. This simplicity is the key to the usefulness of the Fourier
transform. Schematically, we have

u(x)
sampling
−−−−−−−−→u(xj)

DFT(uj)−−−−−−−→an
derivative−−−−−−−→bn= iknan

IDFT(bn)−−−−−−→ dũ

dx

∣∣∣∣
xj

.

It is worth noting that the wavenumber kN−n associated with mode N−n in
Eq. (C.12) corresponds to the same wavelength as wavenumber kn of mode n.
This is because the two exponentials differ by the factor exp(i2πNx/L)=
exp(i2πx/1x), which is equal to 1 at every sampling point. From this fol-
lows that the shortest wavelength resolved by the truncated series corresponds
to n=N/2 and has wavenumber k=Nπ/L or wavelength 2L/N=21x. Indeed,
the shortest wave in numerical terms is the simple oscillation (+1,−1,+1,−1,
etc.) that repeats every 21x interval. The coefficient a0 corresponds to the zero-
wavenumber component and thus holds the average value; the pair (a1, aN−1)
contains information on wavelength L (amplitude and phase), (a2, aN−2) on
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wavelength L/2, and so on up to aN/2 for which there is no phase informa-
tion.3 We can see why some presentations of the DFT define the series with an
index n running between −N/2 and N/2 instead of running from 0 to N. The
information content, or N+1 numbers, is the same.

Up to now, the functions we considered were complex functions. For a real-
valued function u, there is a redundancy among the coefficients an: aN−n is
equal to the complex conjugate of an. This is easily seen by equating the Fourier
transforms of the function and of its complex conjugate, which must be the same
because a real number is always its own complex conjugate.

Some algorithms exploit this redundancy. Cosine Fourier transforms (CFT)
and sine Fourier transforms (SFT) perform in a way similar to DFT by using
only cosine or sine functions, and they are particularly useful if the solution of a
problem is known to satisfy particular boundary conditions. For homogeneous
Neumann conditions at x=0 and x=L (i.e., derivative of function vanishes at
both ends), CFT is the method of choice, whereas for homogeneous Dirichlet
conditions (i.e., function itself vanishes at both ends), expansion in terms of sine
functions guarantees automatic satisfaction of the boundary conditions.

The annoying aspect about the discrete Fourier transform is that a straight-
forward implementation as a sum of exponentials demands a data array of length
N, and for each coefficient an the calculation of N exponentials, necessitating a
total of N2 calculations of exponential functions (or sine or cosine functions).
Recognizing that this is prohibitively expensive even for a modicum of spatial
resolution, Cooley and Tukey (1965) introduced a clever method that probably
ranks among the most celebrated numerical algorithms of all times. It reduces
the computational cost of the DFT from N2 to N log2 N operations. Interestingly
enough, the original idea of the method, now called Fast Fourier Transform,
goes back to Gauss in 1805 (see collected reprints Gauss, 1866), long before
computational methods could exploit it.

The Fast Fourier Transform (FFT) is a practical calculation of the discrete
Fourier transform that starts with the observation that if N is even, the series can
be split between its even and odd terms in j:

Nan=
N−1∑
j=0

j even

uj e−inj 2π
N +

N−1∑
j=0
j odd

uj e−inj 2π
N

=
N/2−1∑
m=0

u2m e−inm 2π
(N/2) + e−i n 2π

N

N/2−1∑
m=0

u2m+1 e−inm 2π
(N/2) (C.18)

in which we set j=2m in the first sum where j is even and j=2m+1 in the
second sum where j is odd. Now, if N is divisible by 2, the new exponentials are

3For the 21x wave, the only possible phase shift is the shift by 1x, which is accommodated by a
sign change in amplitude.
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those of a discrete Fourier transform with only N/2 points, that is, half as many
points. In turn, if N/2 is itself divisible by 2, the coefficients can be obtained
from a transform with yet half as many points, N/4. Quite obviously, the greatest
advantage is obtained when N is repeatedly divisible by 2, that is, when it is a
power of 2, but computational efficiency can also be achieved, to a lesser extent,
with N values that have factors other than 2.

To estimate the computational cost C(N) for a transformation with N data,
we note that it consists of the cost of two transformations of size N/2 and a
multiplication by exp(−i n(2π/N)) for each of the N coefficients an. Hence,

C(N)=2C (N/2)+N. (C.19)

For a single point (N=1), only one operation is needed (C(1)=1) so that we
have C(2)=4, C(4)=12, C(8)=32, C(16)=80, etc. leading to an asymptotic
behavior growing with N as

C(N)∼N log2 N. (C.20)

There is thus a substantial gain compared to the brute-force approach, and
this is particularly interesting in the context of spectral methods (Section 18.4)
when direct and inverse transforms are performed repeatedly.

Interpolation of a function knowing its Fourier series coefficients could be
obtained by brute-force summation of many exponential functions (or sines and
cosines) as prescribed by (C.12) at the various sampling locations. But we can
do better. Suppose that we have at our disposal values of a function on a certain
regular grid xj= ( j/N)L, j=0, ...,N−1 and that we need to interpolate onto
a finer regular grid xk= (k/M)L, k=0, ...,M−1 with M>N. One method of
interpolation is to perform the discrete Fourier transform of the function on the
original grid, add a string of zeros for the amplitudes of the higher modes permit-
ted by the finer grid but absent from the original grid, and then take the inverse
Fourier transform. This back and forth transformation in and out of spectral
space may first appear as a wasteful detour, but given the computational effi-
ciency of the Fast Fourier Transform, the procedure is actually advantageous.
The procedure is called padding.

ANALYTICAL PROBLEMS

C.1. Find the truncation errors of the two Adams–Bashforth schemes by means
of Taylor expansions.

C.2. Which of the two second-order approximations of the cross derivative has
the lowest truncation error?

C.3. Generate a finite-difference approximation of a Jacobian at a corner point
i+1/2, j+1/2, using only values from the nearest grid points.
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C.4. Prove that the discrete Fourier transform is exact in the sense that the
inverse transform of the transform returns exactly the initial set of values.

C.5. Prove that C(N)∼N log2 N is the asymptotic behavior of recursive
relation C(N)=2 C(N/2)+N for large N.

NUMERICAL EXERCISES

C.1. Compare the behavior of the second-order Adams–Bashforths method and
leapfrog-trapezoidal method in the numerical simulation of an inertial
oscillation.

C.2. Discretize the function u(x,y)= sin(2πx/L)cos(2πy/L) on a regular grid
in the plane (x,y). Calculate the numerical Jacobian between

l ũ and ũ
l ũ and ũ2

l ũ and ũ3

and interpret your results.

C.3. Perform an FFT on f (x)= sin(2πx/L) between x=0 and x=L by sam-
pling with 10, 20, or 40 points. Using the spectral coefficients obtained
from the FFT, plot the Fourier series using very fine resolution in x (say,
200 points) and verify that you recover the initial function. Then repeat
with the function f (x)= x. What do you observe?

C.4. Redo Numerical Exercise C.3 using the padding technique instead of the
brute-force evaluation to plot the Fourier series expansion.
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Barth, A., Alvera-Azcárate, A., Rixen, M., & Beckers, J.-M. (2005). Two-way nested model of

mesoscale circulation features in the Ligurian Sea. Progress in Oceanography, 66, 171–189.
Batchelor, G. K. (1967). An Introduction to Fluid Dynamics. London and New York: Cambridge

University Press, 615 pages.
Beardsley, R. C., Mills, C. A., Vermersch, J. A., Jr., Brown, W. S., Pettigrew, N., Irish, J., Ramp,

S., Schlitz, R., & Butman, B. (1983). Nantucket Shoals Flux Experiment (NSFE’79). Part 2:
Moored array data report. Woods Hole Oceanographic Institution Tech. Rep. No. WHOI-83-
13, 140 pages.

Beckers, J.-M. (1991). Application of a 3D model to the Western Mediterranean. Journal of Marine

Systems, 1, 315–332.
Beckers, J.-M. (1999). On some stability properties of the discretization of the damped propagation

of shallow-water inertia-gravity waves on the Arakawa B-grid. Ocean Modelling, 1, 53–69.

795



796 References

Beckers, J.-M. (1999b). Application of Miller’s theorem to the stability analysis of numerical
schemes; some useful tools for rapid inspection of discretisations in ocean modelling. Ocean
Modelling, 1, 29–37.

Beckers, J.-M. (2002). Selection of a staggered grid for inertia-gravity waves in shallow water.
International Journal of Numerical Methods in Fluids, 38, 729–746.

Beckers, J.-M., Burchard, H., Campin, J.-M., Deleersnijder, E., & Mathieu, P.-P. (1998). Another
reason why simple discretisations of rotated diffusion operators cause problems in ocean
models. Comments on “Isoneutral diffusion in a z-coordinate ocean model”. Journal of
Physical Oceanography, 28, 1552–1559.

Beckers, J.-M., Burchard, H., Deleersnijder, E., & Mathieu, P.-P. (2000). Numerical discretisation
of rotated diffusion operators in ocean models. Monthly Weather Review, 128, 2711–2733.

Beckers, J.-M., & Deleersnijder, E. (1993). Stability of a FBTCS scheme applied to the propaga-
tion of shallow-water inertia-gravity waves on various space grids. Journal of Computational
Physics, 108, 95–104.
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A-grid model, 294, 296f
Absolute velocity, 42, 43
Abyssal circulation, 677–681
Abyssal layer, 658
Accuracy, 118, 119

and errors, 120–125
Acoustic Doppler current profilers, 18
Adams–Bashforth method, 66, 67f
Adaptive time-stepping, 125
Adiabatic conservation law, 350
Adiabatic lapse rate, 351
Adjoint method, 745f
Adjoint model, 747
Adriatic

density profile, 13
seiches, 278, 381

Advection, 193f, 194f, 768
1D, 191, 192f
2D, 186–187, 190f
and diffusion, 163–167
multidimensional approach,

186–196
relative importance of, 167–168
with TVD scheme, 195f

Advection schemes
centered, 169–176
numerical, 187
standard test for, 175
upwind, 176–183, 177f, 178f

Advection–diffusion
equation, 163

properties of, 165
with sources and sinks, 183–186

Advective instability, 418
AGCMs, see Atmospheric General

Circulation Models
Ageostrophic motion, 280, 524–525, 529,

532, 537, 601
Aire Limitée Adaptation dynamique

Développement InterNational
(ALADIN) model, 639

Air–sea interactions, 5
ALADIN model, see Aire Limitée

Adaptation dynamique
Développement InterNational model

Albedo, 628, 640
Algebraic Reynolds-stress models, 453
Aliasing, 33–35, 329–330
Alternating direction implicit (ADI)

methods, 156
Amphidromic points, 308, 381
Amplification factor, 145, 146, 150
Angular frequency, 773
Anticyclones, 20, 601, 609f

of midlatitude weather, 565
Anticyclonic vorticity, 490
Arakawa, Akio, 295, 315
Arakawa Jacobian, 545
Arakawa’s grids, 289f, 296

A-grid model, 294, 296f
C-grid, 295, 297f
Coriolis force, 291, 292, 300
numerical models, 289
second-order method, 290
staggered grid, 291, 293

Artificial diffusion, see Numerical diffusion
Asselin filter, 334
Atlantic Ocean, 27
Atmosphere, 715

length, velocity and time scales, 15t
motion in, 14–17
processes and structures in, 16f

Atmospheric boundary layer, 257, 462
Atmospheric circulation models, 637–642
Atmospheric convection, 463–465

parameterization, 355, 643
Atmospheric frontogenesis, 490–502,

491f –493f, 499f, 500f
physical processes in, 492
temperature gradient, 494

Atmospheric General Circulations Models
(AGCMs), 19, 638–639

Atmospheric stratification, 349–354

815



816 Index

Automatic Sequence Controlled Calculator
(ASCC), 22

Available potential energy, 382, 530–532,
611–612

B
Backward-difference approximation, 29
Backward scheme, 63
Baltic Sea, 55, 56f
Banded matrix, 152
Baroclinic mode, 377, 379f, 535
Baroclinic instability, 553–554, 600,

694
interval for two-layer, 571f
linear theory of, 566–574
mechanism, 561–566

Baroclinic planetary wave, 536, 538f
Barotropic flow, 210, 318
Barotropic instability, 317f, 600

mechanism, 327, 328
Barotropic mode, 377, 379f
Barotropic waves, 535

Arakawa’s grids, 291f
inertia-gravity waves, 276–278
Kelvin wave, 273–276
linear wave dynamics, 271–273
planetary waves, 278–283
tides and storm surges, 309

amphidromic point, 308
drag coefficient, 302
equilibrium tide, 307
shallow-water equations, 300, 301
tidal force, 304, 308
tidal potential, 307

topographic waves, 283–287
Basis functions, 258
Beam–Warming schemes, 180–181, 508,

512f
Bergeron process, 643
Bernoulli function, 390, 666–667
Bessel functions, 541
Best Linear Unbiased Estimation (BLUE),

743
Beta parameter, 279
Beta plane, 279

equatorial, 701–702
Beta spiral, 664–666
Biharmonic diffusion, 197, 332, 613
Biharmonic filter, 332
Bjerknes, Vilhelm Frimann Koren, 20, 83,

97, 269, 363, 490
Black body, 628
Blocking, 597

BLUE, see Best Linear Unbiased
Estimation

Boundary conditions, 109–112, 110f
dynamic conditions, 114–116, 116f
heat flux, 116–117
kinematic conditions, 112–114, 113f,

114f
numerical implementation of, 117–120,

118f, 119f
salt flux, 117
on streamfunction in ocean model, 223f
tracer, 117

Boundary layer, 115, 244, 251
atmospheric, 257
equations, 248

Boundedness, property of, 167
Boussinesq, Joseph Valentin, 96
Boussinesq approximation, 83–87,

106–107, 428
Brunt, David, 363
Brunt–Väisälä frequency, 349, 352, 398
Bryan, Kirk, 699
Buffer layer, 242
Bulk criteria, 576–579
Buoyancy, 348

buoyancy force, 85, 348, 351, 425f, 462,
556f

buoyancy production, 444, 445
Burger number, 360, 528, 532, 539, 574

C
Cartesian coordinates, 693
Cartesian framework of reference, 53, 54f
Cascade of energy, 133, 137, 438–440, 451
Catastrophic instability, 554
Cauchy condition, 116
Cell-averaged concentrations, 169, 170
Centered schemes, 169–176
Centrifugal force, 6, 592, 594, 602

unimportance of, 44–46, 45f, 46f
CFD, see Computational fluid dynamics
CFL condition, 177, 178
CFL parameter, see Courant number
CFT, see Cosine Fourier transforms
Chaotic trajectories, 727, 727f
Characteristic line, 172, 173f
Charney, Jule Gregory, 22, 161, 521, 550,

565, 576, 586, 622, 760
Checker-board mode, 295f
Chemical species, 164
Cholesky decomposition, 230
Climate, 627
Cloud parameterizations, 642–644
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Coastal upwelling, 15, 482f
development of, 482f
finite-amplitude upwelling, 486–489,

488f, 489f
formation of, 489f
model of, 484–486
outcomes of, 488f
process of, 482–484, 483f, 484f
simple model of, 484–486
types of, 484
upwelling front, variability of, 489–490,

491f
Cold front, 490, 492f
Collocation methods, 258
Complete vertical mixing, 426
Compressible fluid, 349
Computational fluid dynamics (CFD), 39,

113
Computational mode, 174
Computational speed, increase, 24f
Conjugate gradient methods, 227, 229, 230,

747
Conservation of momentum, 78, 426, 765
Conservative formulation, 87
Continental shelf waves, 286
Continuity equation, 77, 764
Continuous stratification, 531
Contour dynamics, 334–340

contour surgery, 339
two-dimensional problem, replacing of,

339
uniform vorticity simulated with, 338
velocity determination, 337

Contour surgery, 339
Control parameters, 747
Convection, 349, 353, 463–465
Convection parameterizations, atmospheric,

355
Convective schemes, 354–355
Convergence of meridians, 639
Convergence–divergence pattern, 538
Convergent method, 63
Conveyor belt, 657, 658f, 678
Coordinate surface, 686
Coordinate systems, 692–693

cylindrical coordinates, 768–769
discrete equations, 686, 687f
hybrid-grid models, 686
hydrostatic consistency, 691
pressure-gradient problem, 689
sigma coordinate system, 689, 690f
spherical coordinates, 660, 678,

769–770

Coriolis, Gaspard Gustave de, 75
Coriolis acceleration, 44
Coriolis effect, 49, 478
Coriolis force, 6, 291, 292, 300, 474, 476,

521, 592
centrifugal force, 44–46, 45f, 46f
in geophysical flows, 105
Rossby number, 108

Coriolis parameter, 47, 55, 205, 208, 213,
240, 245, 272, 273, 278–279, 283,
318, 538, 591, 599, 701

Corner Transport Upstream (CTU) scheme,
188, 189f, 190f

Cosine Fourier transforms (CFT), 791
Cost function, 744
Coupled model, ENSO, 715–716, 717f
Courant Institute, 201, 202, 759
Courant number, 172, 182n, 190, 506, 510
Courant, Richard, 22, 174, 201
Covariance matrix, 736

model-error, 740
reduced rank, 752

Crank-Nicholson scheme, see
Semi-implicit scheme

Crest, 594, 774, 776f
Critical level, 323
Cumulus clouds, 643
Cutoff frequency, 34
Cyclogenesis, 601
Cyclones, 20, 22, 601, 609f, see also

Anticyclones
of midlatitude weather, 565

Cyclostrophic balance, 602
Cylindrical coordinates, equations in,

768–769

D
Damped modes, 751
Data acquisition, 17–19

measurement, vertical velocity and
pressure, 18

sampling frequencies, 18
Data assimilation, 725–730, 727f, 728f,

732f
implementation of, 750
procedure of, 743–744

Dead waters, 7–8, 8f, 395
Decorrelation, 737n4
Density-coordinate system, 365f, 523
Density gradient, horizontal, 473–474, 474f
DFT, see Discrete Fourier transform
Diagnostic equations, 437
Diagnostic variables, 110
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Diffusion, 163–167
Diffusivity, 138, 154
Dimensionless numbers, 107–109
Direct cells, see Hadley cell
Direct convective cells and indirect

convective cells, 631
Ferrel cell, 636f, 637, 637f
Hadley cell, 632–633, 636f
indirect cells, 633
zonal averages, 634

Direct insertion, 731
Direct model, 747
Dirichlet condition, 116, 222
Discrete equations, 686, 687f
Discrete Fourier transform (DFT), 647,

787–792
Discretization

methods, 89–90, 90f
variable, 25

Discretization errors, 120–121
estimates, 121–125

Dispersion
turbulent dispersion, 102, 137
numerical dispersion, 180–181, 182,

196, 389
wave dispersion, 146, 315, 418, 776f

Dissipation rate, 438, 441
Divergence theorem, 87
Domain decomposition, 127
Donor cell scheme, see Upwind scheme
Double diffusion, 86
Drag coefficient, 115
Drag force, 415, 416
Dynamic conditions, 114–116, 116f
Dynamic pressure, 87

E
Earth simulators, 641
Earth–Sun orientation, 11
Eastward jet, 599f, 600

curvature and beta effects on, 596, 596f
meandering of, 594, 594f

ECMWF, see European Centre for
Medium-Range Weather Forecasts

Eddy coefficients, 101–102
Eddy diffusivity, 86, 102, 117, 131

formulation, 447
Eddy viscosity, 101–102, 125, 242–243,

436
formulation of, 441–442, 446, 450, 453,

454
profile, 268
value, 108, 255, 744

Eigenfunctions, 261–262, 263, 320, 404,
406, 410, 534

Eigenvalues, 261–263, 320, 404, 405, 409,
432, 534

EKF, see Extended Kalman Filter
Ekman, Vagn Walfrid, 8, 251, 269
Ekman depth, 247, 249, 252, 255–256
Ekman drift, 255, 475, 482–483, 486, 489
Ekman layer, 239f, 482, 566, 660

bottom, 245–247, 249
velocity spiral in, 247, 253

definition, 244
in real geophysical flows, 254–257
surface, 251–254
over uneven terrain, 250–251

Ekman number, 108–109, 243–244, 522
Ekman pumping, 249, 251, 254, 267, 663,

666, 669–670
subduction, 673, 675, 676, 677

Ekman transport, 253, 713
El Niño, 703, 708, 709

occurrence, 710
prediction of, 716, 718, 719f

El Niño – Southern Oscillation (ENSO), 5,
707–711, 711f, 717f

forecasting, 716–720
model of

conceptual, 710, 712f
coupled, 715–716
empirical predictive, 719

Electronic Discrete Variable Calculator
(EDVAC), 22

Electronic Numerical Integrator and
Computer (ENIAC), 22

Elliptic equation, 217–218, 221, 222, 225
two-dimensional, discretization of,

218f
Emergence of coherent structures, 612
Energy budget, 80–82, 382, 444, 449,

452–453, 464–465, 480–481,
530–532

Energy cascade, 133, 137, 438–440, 451
Energy conservation, 80, 381–383
Energy dissipation, 133, 135
Energy method, 177–178
Energy propagation, 778–780
Energy spectrum

internal waves, 418
turbulence, 135–137, 440

English Channel, 275, 276f
ENO methods, see Essentially

nonoscillatory methods
Ensemble forecast approach, 752, 753
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ENSO, see El Niño – Southern Oscillation
Enstrophy, 611–612
Entrainment, 384

during convection, 644
in thermocline, 673, 675

Epilimnion, 379
Equation of state, 79–80
Equatorial beta plane, 701–702
Equatorial currents, 671
Equatorial inertial time, 702
Equatorial radius of deformation, 702f
Equatorial radius of earth, 45
Equatorial upwelling, 484, 520
Equatorial waves, 424, 703f

equatorial Kelvin wave, 704, 706, 709
equatorial planetary waves, 704,

706–707, 708f
equatorial mixed wave, 706

Equilibrium tide, 307
Equipotential surface, 46
Error-covariance matrix, 736, 737, 742,

743f
Error estimate, 123–124
Error variance, 733
Error vector, 737
Essential boundary condition, 260
Essentially nonoscillatory (ENO) methods,

507
Euler method, 55–57, 63, 172
Euler scheme, 111, 142, 146, 176

diffusion, 184
Eulerian approach, 387, 767, 768
Eulerian vorticity evolution, 339
European Centre for Medium-Range

Weather Forecasts (ECMWF), 368,
734n3

Explicit schemes, 58, 154
Extended Kalman Filter (EKF), 740,

741f
External radius of deformation, 373,

377–378, 536, 546

F
Fast Fourier transform (FFT), 230, 616,

789–794
FCT, see Flux-corrected transport
Ferrel cell, 636f, 637, 637f
FFT, see Fast Fourier transform
Field estimation, 725
Filtering, 153, 280, 331–334

Asselin filter, 334
biharmonic filter, 332
Kalman filtering, 739–743

Finite-amplitude development, 328,
579–583

Finite-amplitude upwelling, 486–489, 488f,
489f

Finite-difference approximation, relative
error, 29, 30f, 31f

Finite-difference representation, 263
Finite differences, 23–28
Finite elements, 261
Finite-volume approach, 257
Finite-volume discretization, 88–92, 89f,

91f, 92f
Finite-volume technique, 153, 153f,

169–170, 180
2D advection, 186–187
one-dimensional, 170f

First law of thermodynamics, 80
First-order accurate, 57
First-order upwind scheme, 508
Fluid-flow model, 739
Fluid layer, density, 10
Fluid mechanics, budgets on infinitesimal

volumes, 763–768
Fluid motions, rotations in, 10–12
Fluid parcels, vertical stretching and

squeezing of, 561, 562f
Fluid transverse transport, calculations of,

247
Flux, 137
Flux-corrected transport (FCT), 507
Flux formulation and conservative form,

87–88, 88f
Flux-limiter methods, 507, 509
Forecast error, 735–736, 740
Forecasting, 18–20, 23
Formal stability definition, 61
Forward-difference approximation, 28
Forward scheme, 63
4D-Var method, 746, 749, 751
Fourier coefficient, 788, 790
Fourier law, 81
Fourier-mode formalism, 173
Fourth-order discretization, 119–120
Fourth-order finite-difference

approximation, 32, 785
Fourth-order method, 66
Fractional steps, see Operator splitting

methods
Free surface, 112, 113, 533
Frequency, 773, 776–778
Friction, 561

velocity, 240, 458
Frontal meanders, 599f



820 Index

Frontogenesis
atmospheric, see Atmospheric

frontogenesis
physical processes in, 492
temperature gradient, 494

Fronts
cold, 490, 492f
definition, 589
origin and scales, 589–592
warm, 490, 492f

Froude number, 356–358, 360, 417, 591
Full upwelling, 486
Fully implicit scheme, 150

G
Galerkin method, 260
Garrett–Munk spectrum, 418, 419f
Gaussian elimination, 151
Gaussian grid, 649
Gauss–Seidel method, 155, 156, 225, 580,

582
Gelbstoff, 735
General Circulation Models (GCMs), 19
Generalized inverse model, 748
Gent–McWilliams parameterization, 694
Geoid, 46
Geopotential, 46
Georges Bank, 591
Geostrophic adjustment, 475–480, 476f,

479f
energetics of, 480–482
examples of, 479f

Geostrophic balance, 521
Geostrophic component, 524
Geostrophic contours, 209
Geostrophic coordinate, 497
Geostrophic equilibrium, 524
Geostrophic momentum, 556n
Geostrophic turbulence, 134, 539, 611–613

simulations of, 613–618
Geostrophic velocity component, 537
Geostrophy, 207, 264, 483
Ghil, Michael, 759
Gibb’s phenomena, 649
Gill, Adrian Edmund, 424, 623
Glaciation cycles, 17
Global climate models, 641
Global conservation, 92, 92f
Godunov theorem, 182, 508
Governing equations, 522–527, 523f

summary of, 83
Gradient-wind balance, 601
Gram–Schmidt orthogonalization process,

228–229

Gravitational force, 45–46
Gravitational instability, 553
Great Red Spot in Jupiter’s atmosphere, 9,

35, 320, 542, 613, 620
Greenhouse effect, 630
Greenhouse gases, 5–6
Grid nodes, 503–505, 504f
Grid Peclet number, 179
Grid spacing, 27–28
Group velocity, 282, 282f, 780–782
Growth rate, 320
Gulf Stream, 14, 17, 659, 672, 673

H
Hadley cell, 632–633, 636f
Hadley, George, 632
Heat budget, 92, 464, 576, 627–631, 644,

685, 713
Heat capacity, 80
Heat flux, 15, 116–117, 350
Heat transport, 574–576
Helium, 164
Hermite polynomials, 706
Hessian matrix, 749, 750f
Heun method, 65
High Reynolds-number flows, 439
Higher-order approximations, 28–33
Higher-order schemes, 65–69, 66f –69f
Highly advective situations, 168–169
Homogeneous fluids, rigidity, 6, 7f
Homogeneous geostrophic flows, 205–208,

206f, 208–210
Horizontal density gradient, 473–474
Horizontal eddy diffusivity, 452
Horizontal eddy viscosity, 102
Horizontal geostrophic interior flow, 250
Horizontal momentum equations, 108
Howard, Louis Norberg, 343, 434
Howard semicircle theorem, 323, 435
Hurricane Frances, 9

computer prediction of path, 4f –5f
Hurricanes, 602, 610
Hybrid-grid models, 686
Hydrological cycle, 630, 631f, 644
Hydrostatic balance, 105–106
Hydrostatic consistency, 691
Hydrostatic equation, 105, 109, 351
Hypolimnion, 379

I
Implicit Euler scheme, 63
Implicit scheme, 58

damping rate of, 150, 151f
Incompressible fluid, 213, 348
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Indirect cells, 633
Indonesia’s Sumatra Island, earthquake, 4
Inertia, 672
Inertia-gravity waves, 276–278
Inertial instability, 553–561, 558f –560f
Inertial oscillation, 48, 55
Inertial period, 48
Inertial (Poincaré) waves, 404
Innovation vector, 735
Instability, 331

advective, 418
baroclinic, 553–554, 600
barotropic, 317f, 600
catastrophic, 554
gravitational, 553
inertial, 553–561, 558f –560f
Kelvin-Helmholtz, 427, 428
mixed barotropic-baroclinic, 554, 579,

600
types of, 553–554, 554t

Integrated models, 641
Interface, 369
Interference patterns, 779, 780
Interior cyclonic motion, 249
Internal radius of deformation, 360, 373,

378, 406, 528, 536, 541, 590–591
Internal solitary wave, 418
Internal waves

amplitudes, 416
in atmosphere, 396f
nonlinear effects, 416–419
structure of, 399–401, 400f
surface manifestation of oceanic, 396f
from surface to, 395–397
theory, 397–399
vertical modes, 401–404

bounds on frequency, 404–405
constant N2, 405–407
numerical decomposition, 407–410
vertical eigenvalue problem, 404
waves concentration at pycnocline,

410–412
Intertropical convergence zone (ITCZ), 709
Inverse barometric response, 307
Inverse methods, 743–750, 744f, 745f,

747f
generalized, 749f

Inversion, 462
Inviscid fluid, 429
Isobaric flow, 206, 207
Isobars, 206
Isobaths, 209, 215
Isopycnal diffusion, 384
Isopycnal surface, 365

Isotropic and homogeneous turbulence,
131–132

eddy length versus velocity scale in,
132–135, 132f

energy spectrum of, 135–137
ITCZ, see Intertropical convergence zone
Iteration errors, 120
Iterative method, 503
Iterative solvers, 155, 224

J
Jacobi method, 155, 224
Jacobian, 787
Jacobian operator, 525, 542–543

grid notation for, 543f
Jet

curvature and beta effects on, 596, 596f
eastward and westward, 599f
instabilities, 600
meandering, 592–597
multiple equilibria, 597
origin and scales, 589–592
shear and orbital vorticity of, 593f, 594f
stretching and topographic effects,

597–600
Jupiter

equatorial circumference, 69
Great Red Spot, 3, 9, 320, 542, 613
southern hemisphere, 9f

K
k−klm model, 450
k model, 437, 446
Kalman filter, 739–743, 748, 749

approach, 744f
Extended Kalman filter, 740, 741f
operation, 743

Kalman filtering, 739–743
Kalman gain matrix, 738
Kalman smoother, 749
Kalnay, Eugenia, 760
Kelvin, Lord, 97, 274, 314
Kelvin wave

coastal, 273–276, 277, 286, 532, 704
equatorial, 704, 706, 707–708, 709, 718
internal, 406, 489

Kelvin–Helmholtz instability, 427–431,
554, 577

Kelvin’s theorem, 214
Killworth, Peter Douglas, 623
Kinematic conditions, 112–114, 113f, 114f
Kinematic viscosity, 85
Kinetic energy, 481, 611–612

and stratification, 12
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Kinetic-energy
loss in, 426
spectrum, 439, 440

Kolmogorov, Andrey Nikolaevich, 160
Kolmogorov scale, 134
Kolmogorov turbulent cascade theory, 132,

133, 137, 441, 451
Kuroshio paths, 597, 598f

L
La Niña, 708, 711, 716, 720
Lagrangian

approach, 348, 387–390, 506, 769, 770
multipliers, 482, 745, 746

Laminar flow, 131
Laplace, Pierre Simon Marquis de, 74
Laplacian inversion, 224–231
Laplacian operator, 81, 280, 525, 564
Large gradients, numerical handling of,

502–507, 504f
Large-scale atmospheric flow, 7
Large-scale motions, 3
Large-scale ocean dynamics, 660

Bernoulli function, 666–667
potential vorticity, 667–669
Sverdrup relation, 662–663
Sverdrup transport, 663–664
thermal wind and beta spiral, 664–666

Lateral heterogeneities, 478
Lax, Peter, 202, 759
Lax–Richtmyer theorem, 60, 62, 63, 148
Lax–Wendroff schemes, 180, 182, 183,

196f, 508, 511, 512f, 651
second-order, 181f, 183

Layered models
from depth to density, 365–369
energy conservation, 381–383
interface, 369
Lagrangian approach, 387–390
numerical, 383–387
potential vorticity, 374
radius of deformation, 373
reduced-gravity model, 371, 372f, 372t,

374
rigid-lid approximation, 370
shallow-water reduced-gravity model,

374
two-layer models, 374–379
wind-induced seiches, lakes, 379–381

Lead time, 725
Leapfrog scheme, 66, 67f, 174–176, 176f,

508
amplification factor of, 152
numerical dependence of, 175f

Leapfrog time discretization, 219, 222
Lee waves, 412–414
Legendre functions, 645, 648
Leibniz rule, 506
Limited area models (LAMs), see Regional

models
Limiter, 182–183
Linear continuity equation, 102
Linear discretization operator, 171
Linear observation operator, 735
Linear theory, of baroclinic instability,

566–574
Linear wave

dynamics, 271–273
theory, 703–707, 703f, 705f, 708f

Local conservation, 92, 92f
Logarithmic profile, 240–242
Long-wave disturbances, 326
Long-wave radiation, 628f, 630, 638
Lorenz, Edward Norton, 20, 654
Lorenz equations, 726–728, 728f
Lower-upper decomposition, see Gaussian

elimination
Lyapunov equation, 739–740

M
MacCormack scheme, second-order, 181
Macro scales, 438
Malkus, Willem, 343, 519
Marginal ice zone, 483, 484f
Margules relation, 474, 475f
Mass budget, 77
Mass conservation, 77

equation, one-dimensional, 766
Material derivative, 78, 768, 769
MATLAB™ programs, 34, 763
Matrix decomposition, 151, 230, 785f
Matrix method, 148
Max-min property, 167
McWilliams, James Cyrus, 238, 613, 694
Meanders, 592–597, 599f

meander scale, 595
Mechanical-energy budget, 530
Mellor, George Lincoln, 470
Mellor–Yamada model, 450
Mercator ocean model, 734n3
Meshless spectral method, 613
Mesoscale, 479
Meteorological Office, 39
Micro scales, 439
Midpoint method, 65
Mixed barotropic–baroclinic instability,

554
Mixed-layer modeling, 450–454



Index 823

Mixing length, 86, 243, 270, 441–442, 446,
449f

Mode splitting, 386
Model-error covariance matrix, 740
Modeling errors, 120
Modon, 541
Modular Ocean Model (MOM), 681
Moisture budgets, 82
Molecular viscosity, 134
MOM, see Modular Ocean Model
Momentum budget, 78–79
Momentum equations, 769
Monin–Obukhov length, 459, 461, 465
Monotonic scheme, 167
Monotonicity preserving scheme, see

Monotonic scheme
Montgomery, Raymond Braislin, 369, 393
Montgomery potential, 367–371, 601, 604,

666–667, 669, 690
Moore’s Law, 28
Motions

parameterization of, 28
scales of, 8–10

length and velocity, 11, 12t
Mountain ridges, 14
Mountain wave, structure of, 415f, 417f
Moving boundary problem, 113
Multidimensional approach, 186–196
Multigrid methods, 230, 231
Multiple equilibria, 597
Multistage methods, 65
Multistep methods, 65
Multivariate approach, 732
Munk, Walter Heinrich, 418, 423

N
Nansen, Fridtjof, 8, 36, 251, 253, 269
Natural fluid motions, 4
Neumann boundary condition, 116, 141,

260
Neumann problem, 217
Neumann stability analysis, 173, 184
Newton’s law, 44, 47, 301f, 303

second law, 78, 348, 557, 764, 767
Non-amplifying wave, 326
Non-atmospheric system, 640
Nondiffusive fluid, 429
Nondispersive wave, 778
Nongeostrophic flows, 210–212
Nonhydrostaticity, 398
Nonlinear advection, 438

schemes, 507–512, 512f, 513f
Nonlinear effects, 539–542
Nonlinear instability, 331

Nonlinear motions, quasi-geostrophic
equation for, 526

Nonlinear numerical instability, 330
Nonlinear systems, 727

discretization error in, 122
Nonlinearities, in barotropic instability,

328–331
Nonmonotonic behavior, 331–334
Nonuniform currents, generalization to,

247–249
Nonzero perturbations, 326
North America, weather forecasting skill,

23f
Nudging, 730–731, 743, 750
Numerical convergence, and stability,

59–63, 62f
Numerical diffusion, 179
Numerical discretization, 544
Numerical grids, 651

of global atmospheric models, 644f
Numerical instability, 143, 153
Numerical methods, 644
Numerical models, 289

layered, 383–387
Numerical scheme

multi-dimensional, 154–157
one-dimensional, 140–144, 150–154
stability analysis of, 144–150
stability condition of, 146–148

Numerical simulations, fluid motions,
19–23

Numerical stability, 174
Numerical stencil, 32
Nyquist frequency, 34

O
O’Brien, James Joseph, 394
Ocean General Circulation Model

(OGCM), 681
Oceanic circulation, 657–660

models
coastlines, 684
MOM, 681
pole problem, 682
subgrid-scale processes, 693–695
turbulence-closure schemes, 686

Oceanic flows, 7
Oceanic General Circulation Models

(OGCMs), 19
Oceans, see also Atmosphere

dynamics, 711–712
heat budget, 713–715
length, velocity and time scales, 15t
motion in, 14–17
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Oceans (continued)
oceanic interior, 658, 660, 669, 672,

673f, 692
processes and structures in, 16
volume conservation, 712–713

OGCM, see Ocean General Circulation
Model

OI, see Optimal interpolation
One D finite-difference schemes, 785
One-dimensional tracer equation, 505
One-equation turbulence model, 446
One-layer reduced-gravity model, 703
One-point closure model, 440
One-point closure schemes, 450
Open boundary, 115, 116f
Operational models, 750–753
Operator splitting methods, 190
Optimal interpolation (OI), 731–738, 750

formulation of, 739
Orbital vorticity, 593f, 594f
Orders of magnitude, 8
Oscillatory motions, numerical approach to,

55–59
Outcrop line, 676
Overreflection, 328
Over-relaxation, 224f, 545, 580

P
Padding, 794
Parameterization

cloud, 642–644
of shorter scale motions, 28
subgrid-scale, 101, 616, 685

Partial-derivatives finite differences, 789
Patankar-type discretizations, 455–458
Peclet number, 167–168
Pedlosky, Joseph, 586
Penetrative convection, 461–466
Perigee, 51
Perturbation, 7

equations, 436
growth rate, 323
wavelength of, 327

Phase lines, 774, 774f
Phase speed, 277, 285, 323, 432, 777

of topographic waves, 286
Philander, George, 723
Physical advection, 179–180
Physical molecular diffusion, 332
Planetary heat budget, 627–631
Planetary number, 279
Planetary waves, 278–283, 536

in stratified fluid, 532–539, 535f

Plume, 164, 164f
Poincaré waves, see Inertia-gravity waves
Poisson equation, 222, 545, 614

inversion of discrete, 224–231
Polar-front jet stream, 589
Pole-to-equator temperature difference, 7
Potential density, 352
Potential-energy, 480–481, 530–532

barrier, 434
and stratification, 12–13

Potential temperature, 81, 352, 353f
Potential vorticity, 487, 542, 667–669

conservation principle, 477, 481
definition, 214
equation for, 526
expression, 287, 289, 527–528
layered models, 374

Power spectrum, of turbulence, 135, 136f
Prandtl, Ludwig, 96, 244, 270, 441–442
Prandtl frequency, 433, 451
Prandtl model/closure, 451, 452, 453
Predictability

behavior, 729f
gradual loss of, 728
inherent problem of, 729
limit, 727

Predictor-corrector methods, 63–65, 64f, 181
Predictors, 718
Pressure-gradient

anomaly, 712
problem, 689

Primitive equations, 22, 107
Probability density function, 738–739
Progressive vector diagram, 55, 56f
Prototypical vortex, 601
Pseudo-compressible approach, 194, 195f
Pseudo dissipation, 444n
Pseudospectral methods, 265
Pycnocline, waves concentration at,

410–412

Q
Quasi-equilibrium versions, 454
Quasi-geostrophic dynamics, 542

energetics, 530–532, 531f
length and timescale, 527–529
simplifying assumption, 521–522

Quasi-geostrophic equation, 522, 539, 577
for nonlinear motions, 526

Quasi-geostrophic formalism, 523, 529,
530

Quasi-geostrophic ocean modeling,
542–545
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Quasi-geostrophic structure, 529
Quasi-geostrophic theory, 573

R
Radiating energy, 481
Radiating waves, 414–415
Radiation law, 631
Radius of deformation

equatorial, 702
external, 373, 377–378, 536, 546
internal, 360, 373, 378, 406, 528, 536,

541, 590–591
Random walk, 389
Rayleigh equation, 319, 432
Rayleigh, Lord, 314
Rayleigh number, 462, 463, 465
Rayleigh-Ritz inequalities, 408, 421
Recapitulation of equations, 106–107
Reciprocal Coriolis parameter, 55
Red-black method, 225–226, 226f
Reduced-gravity model, 371, 372f, 372t,

374, 385, 476–477, 484–485, 713
framework of, 712

Reduced rank
approximations, 753
covariance matrix, 752
effect of, 752

Regional models, 639
Relative error, finite-difference

approximation, 29, 30f, 31f
Relative velocity, 42, 43
Relative vorticity, 527–528
Representer method, 749
Reynolds, Osborne, 96, 100, 128, 160
Reynolds-averaged equations, 99–101
Reynolds averages, 436
Reynolds number, 109, 134–135, 137
Reynolds stress, 100, 415, 416, 435, 436
Reynolds stress tensor, 445
Rhines, Peter Broomell, 587
Rhomboidal truncation, 647f
Rhône River waters, 163–164, 164f
Richardson extrapolation, 123
Richardson, Lewis Fry, 20–22, 161, 363,

434, 438, 469, 550
Richardson number, 109, 433–434, 453,

461
Richardson’s model, 20–22
Rigid-lid approximation, 113, 215–216,

370–371, 385
Rigid-lid pressure equation, numerical

solution of, 217–221
Rigidity, homogeneous fluids, 6, 7f

Rizzoli, Paola Malanotte, 724
Robin condition, 116
Robinson, Allan Richard, 551
Root-mean-square (RMS) error, 726
Rossby, Carl-Gustaf Arvid, 129, 280, 393
Rossby number, 108, 214, 215, 356–358,

360, 521, 522, 573, 591, 602
temporal Rossby number, 108, 280f, 522

Rossby radius of deformation, 275
Rossby waves, see Planetary waves
Rotating fluids, 401
Rotating framework, of reference, 41–44,

42f
Rotating homogenous fluids, 204, 205
Rotating plane, free motion on, 47–50, 48f,

49f
Rotation, 10–12, 43, 45, 48
Rotation effect, 521
Roughness height, 242
Rounding errors, 120
Runge–Kutta methods, 65, 66f

S
Salinity, 79, 82
Salt budget, 82
Salt flux, 117
Saturated adiabatic lapse rate, 354
Scale analysis, 23–28, 103–106
Scales of motion, 8–10, 103–106, 103t, 522
Schmidt number, 446n
Sea surface temperature (SST), 709, 716,

719f
Seasonal thermocline, 658
Second-moment closure, 437
Second-order approximation, 33
Second-order closure, 437
Second-order convergence, 29
Second-order difference, design of, 29
Second-order differential equation, 478
Second-order partial differential equations,

111
Second-order truncation error, 29
Seiches, 278, 379–380

in the Adriatic Sea, 381
Self-amplifying wave, 330
Semi-implicit scheme, 59, 182
Semi-Lagrangian methods, 649–652
Semicircle theorem, 435
Semidiscrete numerical scheme, 142
SFT, see Sine Fourier transforms
Shadow zones, 676
Shallow flows, numerical simulation of,

257–258
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Shallow-water equations, 300, 301
Shallow-water model, 212, 729

momentum equations of, 216
reduced-gravity model, 374

Shallow-water system, deformation radius
in, 406

Shear flow
finite-amplitude development of, 328
idealized shear flow profile, 325
in homogeneous fluid, 317f
in stratified fluid, 426, 429f
velocity shear, 239
waves on, 318–321

Shear instability, 419
Shear production, 444
Shear turbulence, 239–240

eddy viscosity, 242–243
logarithmic profile, 240–242

Shear vorticity, 593f –595f
Sherman-Morisson formula, 752
Short-wave radiation, 628, 628f, 638
Shortest wave, 34f
Sidereal day, 10
Sigma coordinate system, 689, 690f
Signal, aliasing, 33–35
Sine Fourier transforms (SFT), 791
Smagorinski formulation, 102, 139, 451
Smagorinsky, Joseph, 655
SOI, see Southern Oscillation Index
Solar radiation in atmosphere, 14–15
Southern hemisphere of Jupiter, 9f
Southern Oscillation, 710
Southern Oscillation Index (SOI), 710, 711f
Specific humidity, 80
Spectral coefficients, see Time-dependent

coefficients
Spectral methods, 262, 644–649
Spectral space, 614
Spherical

coordinates, 660, 678, 769–770
geometry, 45, 77

Spherical harmonics, 645, 647f, 649
orthogonality of, 646

Splitting method, 191, 192f
Spurious mode, 152, 174
SST, see Sea surface temperature
Stability criterion, choice of, 61–63, 62f
Stability functions, 453, 454
Stability parameters, 453
Staggered grid, 219, 291, 293
Standard linear differential equation, 60
Standard microturbulent (eddy) diffusion,

333

State variables, 110
State vector, 730, 732, 738, 739
Static stability, fluid in, 348–349
Steepest descent method, 226
Stefan–Boltzmann law, 628, 630
Stern, Melvin Ernest, 622
Stokes theorem, 223, 334
Stommel, Henry Melson, 660, 672, 698
Storm surge, 303
Strang splitting method, 192, 195f
Stratification, 7, 10, 347, 348, 429, 431,

442, 459
atmospheric, 349–354
combination of rotation and, 358–360
continuous, 531
dynamical, 12–14
Froude numbers, 356–358, 360

Stratification frequency, see Brunt–Väisälä
frequency

Stratified fluids, 347
instability of, 429–435
mixing of, 425–429
planetary waves in, 532–539, 535f
with velocity shear, 426

Stratus-type clouds, 643
Streamfunction, 187, 530, 532, 533,

539–541, 614
distributions, 537
equation, numerical solution of,

221–224
scale, 529

Strict stability, 61
Stripes, 320
Subduction, 673–676
Subgrid-scale parameterization, 101, 616,

685
Subgrid-scale processes, 693–695
Successive over-relaxation (SOR), 225, 545
Sulfuric acid in atmosphere, 164
Sumatra Island, 4, 311
Superbee scheme, 511, 512f
Surface Ekman layer, 251–254

structure of, 253
Surface waves, 395
Sverdrup

dynamics, 660f
Harald Ulrik Sverdrup, 660
interior, 671
relation, 662–663
transport, 663–664, 671
unit, 660

Symmetric instability, 554
Synchronization, 21
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Synoptic scale, 479
Synopticity errors, 729

T
TAO, see Tropical Atmosphere Ocean
Taylor, Geoffrey Ingram, 6, 237
Taylor columns, 209, 277, 215, 358, 360,

401
Taylor curtains, 7
Taylor expansion, 57, 179, 556
Taylor series, 26, 28–30, 32, 59, 149, 279
Taylor–Goldstein equation, 432
Taylor–Proudman theorem, 206, 231
Temporal Rossby number, 108
Thermal wind, 473–475, 474f, 475f, 561,

664–666
Thermal-wind balance, 495, 555, 561, 565,

590
Thermals, 354, 463–465, 643
Thermocline

along equator, 703
definition, 379
main / permanent, 369, 551, 586, 658,

660, 661f, 673
movement of, 379, 707, 709, 717
scaling, 677
seasonal, 658, 660, 669, 675
subduction into, 673, 675
ventilated thermocline, 676

Thermodynamics, first law of, 80
Thermohaline circulation

subduction, 673–676
thermocline, scaling of, 677
ventilated thermocline theory, 676

Thomas algorithm, 783
3D-Var method, 738, 751
Three-dimensional rotating planet,

acceleration on, 52–55, 54f, 56f
Tidal force, 304, 308
Tidal potential, 307
Tides, 303
Time-dependent coefficients, 614
Time-dependent function, 731
Time scales of relaxation, 730
Time-stepping algorithms, 57, 58, 786
Time-varying models, 747
Timescale analysis, 25f
Topographic waves, 283–287
Total Variation Diminishing (TVD) scheme,

183, 188, 507, 508, 510–512
Total Variation (TV), 508
Trade winds, 273, 483, 632, 636, 637, 657,

672, 709f

Transcendental equation, 478
Transform grid, see Gaussian grid
Transform method, 616
Trapezoidal scheme, 63, 182

second-order, 183
Trapezoidal time discretization, 171
Trapped waves, 275, 286, 416, 424, 705
Triangular truncation, 646, 647f
Tridiagonal system solver, 783–785
Tritium, 164
Tropical Atmosphere Ocean (TAO), 717
Trough, 774
Truncation error, 27, 29, 32, 57, 121–122
Tsunami, 5, 278, 311, 753
Turbulence closure, 435f, 686

closure problem, 437
eddy viscosity and, 436, 441, 448
high Reynolds-number flows, 439
second-order closure, 437
turbulent kinetic energy model, 443
zero-equation turbulence model, 443

Turbulence-enhanced mixing, 437
Turbulent diffusion, 137–140
Turbulent diffusion coefficient, 138
Turbulent dissipation, 527
Turbulent eddies, 133
Turbulent energy cascade, 133, 133f
Turbulent flow, 131, 132, 134
Turbulent kinetic energy model, 443, 446
Turbulent velocity, 240
Turning point, 410
TV, see Total Variation
TVD, see Total Variation Diminishing
Two-equation models, 450
Two-equation turbulence model, 450
Two-layer models, 374–379, 568, 580
Two-layer quasi-geostrophic model, 22
Two-layer stratification, 530–531, 531f
Two-point methods, 64

U
Upwelling

coastal, see Coastal upwelling
finite-amplitude, 486–489
front, variability of, 489–490, 491f
full, 486
process, 482–484, 483f, 484f

Upwelling-favorable winds, 484
Upwind scheme, 176–183, 177f, 178f

V
Väisälä, Vilho, 364
Velocity equation, 219, 221
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Velocity profile, 239
Velocity shear, 239
Ventilated thermocline theory, 676
Veronis, George, 519
Vertical density stratification, 431
Vertical eddy diffusivity, 102
Vertical modes, 401–404

decomposition into, 407f
Vertical-momentum equation, 85, 431
Vertical stretching, 527–528
Vertical velocity, determination of, 250
Vertical-velocity scale, 104
Viscous sink, 439
Volume-conservation equation,

transformation of, 688
Volume-transport streamfunction, 221
von Helmholtz, Hermann, 97, 314, 474
von Kármán constant, 241, 442, 459
von Neumann, John Louis, 22, 144, 161,

202, 550
von Neumann method, 173, 177, 184
Vortex semi-major axis, 9
Vortex semi-minor axis, 9
Vortices, 334, 339

anomalous layer volume due to, 605
emergence of isolated, 618f
gradients in, 607
prototypical, 601
secondary drift of, 609, 610f

Vorticity
distribution, 334
dynamics, 212–215
and rotation, 770–771

W
Walker circulation, 710, 715, 717
Walsh Cottage, 41
Warm front, 490, 492f
Warning system, 4
Waves

amplitude, 275, 416, 773
continental shelf, 286
dispersion, 780
dispersion relation, 173–175, 276, 280,

285, 297–298, 326, 398, 404, 405,
414, 534, 705, 780

equatorial, 703f
group velocity, 282, 394, 400, 414–415,

536, 781–782
inertia-gravity (Poincaré), 276f, 286,

289, 315, 401, 486, 704–706

internal, 7–8, 15, 106, 395f
Kelvin, 273f, 314, 406, 489, 704, 706,

709, 719
lee / mountain, 412f
nondispersive, 274, 277, 704
phase speed, 277, 281, 285, 320,

322–324, 400, 418, 432, 536, 705,
776–777

planetary (Rossby), 16, 129, 278f,
287–288, 324, 532f, 541–542, 569,
596, 706–707

unstable, 145, 322, 326, 428, 571–572
Wave propagation, 708f, 718
Wavelength, 398, 401, 413, 417, 773–775
Wavenumbers, 135, 398–401, 773–775

unresolved short wave transformation,
329

Weak constraint, 748
Weather

versus climate, 627
forecasting, 642
prediction by numerical simulations, 19,

20
Weather Prediction by Numerical Process

(Richardson), 20–21
Wedge instability, 561
Weighted-residual equations, 259
Weighted-residual method, 260
Westerlies, 658
Western boundary currents, 669–673
Western North Atlantic, currents in, 7
Westward intensification, 672
Westward jets, 599f, 600
Westward velocity, 324
Wind

impulse, 486–489
mixing, 459–461
stress, 459
thermal, 473–475, 474f
upwelling-favorable, 484

Wind-driven horizontal transport, 252
Wind-induced seiches, lakes, 379–381
Wind-stress anomaly, 712, 714

Y
Yoshida, Kozo, 520

Z
Zabusky, Norman Julius, 334, 344
Zero-equation turbulence model, 443
Zonal velocity, 712, 713
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